WO2024043458A1 - 폐 규소 슬러지를 이용한 규소 분말 제조방법 및 제조장치 - Google Patents

폐 규소 슬러지를 이용한 규소 분말 제조방법 및 제조장치 Download PDF

Info

Publication number
WO2024043458A1
WO2024043458A1 PCT/KR2023/007699 KR2023007699W WO2024043458A1 WO 2024043458 A1 WO2024043458 A1 WO 2024043458A1 KR 2023007699 W KR2023007699 W KR 2023007699W WO 2024043458 A1 WO2024043458 A1 WO 2024043458A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
waste
sludge
silicon powder
waste silicon
Prior art date
Application number
PCT/KR2023/007699
Other languages
English (en)
French (fr)
Inventor
남우석
오은석
Original Assignee
주식회사 이녹스에코엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이녹스에코엠 filed Critical 주식회사 이녹스에코엠
Publication of WO2024043458A1 publication Critical patent/WO2024043458A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to a method and production device for silicon powder using waste silicon sludge. More specifically, waste silicon sludge generated in the wafer production process of the solar energy industry is recovered and recycled as a useful resource to produce silicon powder. It relates to a method and apparatus for manufacturing silicon powder that can be used as an anode material for energy storage devices.
  • waste silicon sludge generated in the solar energy industry cannot find a suitable use and is simply discarded.
  • the main recycling methods known to date include chemically treating and drying the metal components contained in waste silicon sludge to create low-quality silicon lumps for recycling, or simply drying them and using them as raw materials for refractory materials.
  • Registered Patent No. 10-2261429 proposed a method of making silicon oxide or silicon/carbon composite after removing cutting oil, acid treatment, and filtration, but the process is complicated for industrialization and a large amount of waste liquid as a by-product of the process is generated, making it difficult to mass-produce. There is a limitation that makes it difficult.
  • Patent No. 10-2021-0058397 discloses a method of producing an active material for an anode material for energy storage by dispersing silicon sludge in alcohol, separating the specific gravity, mixing it with a carbon precursor, stirring, and spray drying.
  • Patent No. 10-1650184 discloses a method of recovering silicon particles after manufacturing silicon aggregates through ultrasonic treatment, but in this case, there is a problem in that process costs, such as separate heat treatment, increase.
  • Patent Document 1 Domestic Registered Patent No. 10-2261429
  • Patent Document 2 2. Domestic Published Patent No. 10-2021-0058397
  • Patent Document 3 3. Domestic Registered Patent No. 10-1650184
  • Patent Document 4 4. Domestic Published Patent No. 10-2020-0017941
  • the purpose of the present invention is to provide a method for manufacturing silicon powder using waste silicon sludge, which can efficiently mass-produce high-purity silicon powder that can be used as a negative electrode material for energy storage devices (e.g., secondary batteries) by recycling waste silicon sludge. and providing manufacturing equipment.
  • waste silicon sludge which can efficiently mass-produce high-purity silicon powder that can be used as a negative electrode material for energy storage devices (e.g., secondary batteries) by recycling waste silicon sludge. and providing manufacturing equipment.
  • Waste silicon sludge comprising a.
  • a method for manufacturing the silicon powder used can be provided.
  • a dryer for drying waste silicon sludge to remove silicon dioxide, oxygen, and moisture And a hydrogen reduction reactor for removing the silicon dioxide oxide film (passivation layer) on the surface of the dried waste silicon sludge to obtain single crystal silicon powder. It is possible to provide an apparatus for producing silicon powder using waste silicon sludge, including a.
  • the method for manufacturing silicon powder using waste silicon sludge of the present invention can safely dry waste silicon sludge without explosion, etc., and can dry waste silicon powder discarded in the solar energy industry.
  • high-quality silicon powder that can be used in secondary batteries can be produced by removing the oxide film using relatively inexpensive hydrogen.
  • Figure 1 briefly shows a flow chart of a method for producing silicon powder using waste silicon sludge according to an embodiment of the present invention.
  • Figure 2 briefly shows the dryer of the apparatus for producing silicon powder using waste silicon sludge according to an embodiment of the present invention.
  • Figure 3 briefly shows the hydrogen reduction reactor of the apparatus for producing silicon powder using waste silicon sludge according to an embodiment of the present invention.
  • Figure 4 is a TEM photo of waste silicon sludge (raw material) added in the method for producing silicon powder using waste silicon sludge according to Example 1 of the present invention.
  • Figure 5 is a TEM photo of silicon powder reduced according to the method for producing silicon powder using waste silicon sludge according to Example 1 of the present invention.
  • the present invention includes (a) a drying step of introducing waste silicon sludge as a raw material and removing moisture in hot air at 200 to 250°C; and (b) supplying hydrogen to the sludge resulting from step (a) to reduce and remove the silicon dioxide oxide film (passivation layer) on the surface of the waste silicon sludge to obtain single crystal silicon powder.
  • Waste silicon comprising a.
  • a method for manufacturing silicon powder using sludge can be provided.
  • Waste silicon sludge generated in the solar energy industry is left in a filter cake state for a long time, so it naturally reacts with moisture on the silicon surface to form a silicon dioxide oxide film (passivation layer). Therefore, in step (a), moisture is quickly dried and removed to prevent the already formed passive layer of silicon dioxide from increasing, and only the minimum energy required for moisture drying is applied to prevent oxygen bound to the surface from transferring to the inside of the silicon particles. A drying process is performed to remove moisture.
  • moisture can be removed with hot air at 200-250°C, and it is important to prevent the formation of additional silicon dioxide by maintaining it in an inert gas state and ensuring that oxygen is not present in the gas supplied for drying. do.
  • the filter cake recovered as waste silicon sludge generated in the solar energy industry contains about 40 to 50 wt% of moisture while the particles are agglomerated under high pressure, so the filter naturally breaks down when the surrounding temperature rises above 30°C, such as in summer. As siliconization progresses gradually due to pressure and temperature inside the cake, the passivation layer becomes thicker. Since this reaction is exothermic, it raises the internal temperature and even causes spontaneous combustion.
  • step (a) removes moisture by vaporizing it using a high-speed flow of high-temperature nitrogen (N 2 ) gas. It is preferable to carry out the hot air nitrogen drying method, and in this case, the nitrogen gas means that oxygen has been removed.
  • oxygen can be removed from the inside of the dryer, and the silicon sludge can be pulverized before or at the same time as drying to prevent it from receiving heat in the form of a filter cake.
  • step (a) it is preferable to perform a fluidized bed drying method in which drying of the waste silicon sludge and grinding of the filter cake are performed simultaneously.
  • a fluidized bed type dryer/grinder (fluidized bed particle separator) was applied to break the silicon sludge particles that have already been pulverized or not pulverized into smaller pieces, thereby minimizing the agglomeration between particles and reducing the moisture contained in them.
  • the drying process can be performed with hot air at a temperature of 250°C or lower so that it dries and flies away without reacting with the silicon.
  • step (a) in order to efficiently separate particles, the silicon filter cake is first crushed into lumps of several tens of mm in size by a rotary blade rotating at high speed, and the crushed lumps are transferred to a second fluidized bed along a high-speed, high-temperature gas. This can be done in a mill-guided manner.
  • the induced silicon powder and lumps rotate along the high-speed fluid flow at the bottom of the secondary fluidized bed pulverizer and are broken into small pieces through a collision process between particles.
  • moisture that helps particles adhere is vaporized along with the high-temperature gas.
  • the dried particles lose their adhesion to moisture and fall off into individual particles, which are separated by a cyclone particle separator and moved to a fine particle collector. Fine particles that are difficult to capture with a cyclone particle separator are ultimately collected through a bag-filter, and ultrafine particles that pass through the bag-filter are finally collected and discharged from a scrubber. It can be.
  • the moisture content relative to the total weight of the waste silicon sludge in step (a) may be about 40 to 50 wt%, and after completion of step (a), the moisture content relative to the total weight of the waste silicon sludge may be about 3 wt% or less.
  • the method for producing silicon powder using waste silicon sludge according to the present invention is, after step (a), (b) supplying hydrogen to the result of step (a) to form a silicon dioxide oxide film (passivation layer) on the surface of the waste silicon sludge. ) and obtaining single crystal silicon powder.
  • the dried silicon particles have only a passive layer of silicon dioxide in the form of a natural oxide film, and specifically, about 5 wt% of a passive layer of silicon dioxide is present.
  • the silicon dioxide passivation layer In order to use it as a secondary battery anode material, the silicon dioxide passivation layer must be removed, and highly purified through the following process. In order to remove the silicon dioxide passivation layer, high-temperature hydrogen is used to reduce the oxide film on the silicon surface rather than using other chemicals, and high-quality silicon powder can be obtained.
  • the dried silicon particles as a result of step (a) are not completely dry, but have about several wt% of residual moisture physically adsorbed on the surface during the evaporation process, so when they are introduced into the hydrogen reduction reactor and immediately exposed to high temperature, they are exposed to high temperatures. , there is a problem that oxidation occurs due to moisture. Therefore, it is very important to set the temperature range for step (b), and at this time, the temperature increase of the particles for hydrogen reduction is to evaporate and remove the moisture physically adsorbed on the surface to prevent further oxidation. It is important. Set it. At this time, the desorbed moisture is discharged to the outside and removed along with the nitrogen introduced into the reduction reactor (e.g., kiln).
  • the nitrogen introduced into the reduction reactor e.g., kiln
  • step (a) is introduced into the reduction reactor for step (b) at an atmospheric temperature range of 120 to 150°C, so that the water vapor physically adsorbed on the surface is not condensed and adsorbed.
  • the water vapor may also be desorbed and removed while passing through the reduction reactor.
  • a screw-type reduction furnace as a reduction reactor, it gradually moves to a high temperature section.
  • the hydrogen in step (b) may be supplied under normal pressure conditions, for example, in an atmosphere with a core temperature of 700 to 1000°C, for example, in an atmosphere with a core temperature of 500 to 900°C, for example
  • it can be supplied under an atmosphere with a core temperature of 700 to 850°C, and a reduction reaction occurs under these conditions.
  • Step (b) is preferably performed under an inert gas atmosphere for the purpose of preventing oxidation.
  • Hydrogen in step (b) may be supplied at a flow rate of 10 to 30 L/min under normal pressure conditions, and preferably may be supplied at a flow rate of 15 to 25 L/min.
  • Silicon particles for step (b) may be added at a rate of about 1.2 to 1.5 kg/min, but are not necessarily limited thereto.
  • the reduction reaction section it is preferable to pass through a temperature increase section so that the temperature of the particles is sufficiently raised to react, and then pass through a section at the maximum temperature point that is shorter in length than the temperature increase section.
  • hydrogen is sufficiently mixed with the silicon particles and adsorbed on the surface, making it possible to reduce the oxide film in the high temperature section.
  • Silicon particles that have passed through the reduction reaction section are naturally lowered and discharged to prevent crushing due to condensation of the particles due to a rapid drop in temperature.
  • several wt% of moisture on the surface of the particles and the surface oxide film are removed. Since the water vapor generated during reduction can conversely cause an oxidation reaction of silicon, it is desirable to maintain the ambient temperature at 120°C or higher until final discharge.
  • the silicon produced through this process that is, the single crystal silicon powder obtained in step (b), is of high quality with a moisture content of 1 wt% or less and an oxygen content of 1 to 3 wt% relative to the total weight of the silicon powder. can indicate.
  • the dryer of the present invention includes a high temperature heater; raw material input machine; Primary high-speed rotary crusher; secondary fluidized bed mill; Cyclone particle separator; It may include a fine particle collector and scrubber.
  • the dryer of the present invention may be a dryer in which a drying process and a grinding process are performed simultaneously, and the drying process is preferably performed by supplying hot air at 200 to 250° C. using a high-temperature hot air blower.
  • the pulverizing process is continuously performed in a primary high-speed rotary pulverizer and a secondary fluidized bed pulverizer.
  • the primary rotary pulverizer pulverizes waste silicon sludge with a high-speed rotating blade
  • the secondary fluidized bed pulverizer pulverizes waste silicon sludge with a high-temperature and high-speed fluid.
  • Waste silicon sludge may be pulverized by flow collision.
  • the secondary fluidized bed pulverizer includes a funnel-shaped induction pipe whose diameter becomes narrower from the top to the bottom, and the lower part of the induction pipe may be inclined at an angle of 10 to 20° with respect to the upper part.
  • the high temperature and high speed fluid may be nitrogen gas supplied at a rate of 25 to 30 m 3 /hr.
  • the silicon powder discharged from the secondary fluidized bed grinder may pass through the cyclone particle separator, fine particle collector, and scrubber in that order.
  • the silicon powder discharged from the secondary fluidized bed mill is separated by a cyclone particle separator and moves to a fine particle collector. Fine particles that are difficult to capture with a cyclone particle separator are finally collected through a bag-filter (not shown), and ultrafine particles that pass through the bag-filter are finally collected through a scrubber (not shown). scrubber) can be collected and discharged.
  • the lower part in order to smoothly induce airflow and crush silicon particles, it is desirable for the lower part to have an inclination angle of 10 to 20° relative to the upper part, and for example, it may have an inclination angle of approximately 15°.
  • Silicon in the form of a lump moves to the top of the funnel-shaped tube as described above along with the airflow of high-temperature nitrogen gas and falls to the bottom. Through the funnel-shaped tube, the gas reaches the bottom as a certain volume is compressed, and the inflow As the gas speed increases by up to 20% or more compared to the speed, it can serve as a driving force that rotates and wears the silicon in lumps at high speed.
  • the lower part of the fluidized bed crusher is composed of a gentle bottom in the shape of a funnel with an inclination angle relative to the ground, so that large lumps of silicon gather in the center, and the lumps pouring from the top to the bottom naturally mix with the lumps gathered in the middle of the lower part. Collisions and crushing may occur.
  • the silicon filter cake in the form of unseparated lumps continues to rotate at the bottom of the fluidized bed mill and goes through drying, rotation, collision, and separation processes until the particles are finally dried and separated.
  • the rotation may stop and accumulate on the bottom, blocking the flow.
  • the supply rate of the silicon raw material for drying is preferably, for example, approximately 70 to 120 kg/hr. If the supply rate of the silicon raw material exceeds 120 kg/hr, the drying quality may deteriorate. There is a problem that the decomposition and pulverization of the silicon lump may not be carried out well, and on the other hand, if it is less than 70 kg/hr, the production yield is low, so mass productivity may be reduced.
  • the hydrogen reduction reactor of the present invention includes a fixed-quantity injector; Gas metering device; hydrogen reduction reactor; residual gas separator; and a silicon powder discharge port.
  • silicon powder discharged from the dryer may be introduced from the right through a fixed-quantity injector, and gas such as hydrogen may be injected through a fixed-quantity gas injector.
  • the hydrogen reduction reactor is a kiln reactor, and the kiln reactor may be operated in an inert gas atmosphere.
  • the kiln reduction reactor includes an input portion into which dried waste silicon sludge is input; A reduction reaction section where a reduction reaction occurs between the silicon dioxide oxide film (passivation layer) and hydrogen; and a discharge portion of single crystal silicon powder; the temperature of the input portion is 120 to 150°C, the temperature of the reduction reaction section is 750 to 800°C, and a flow rate of 10 to 30 L/min in the reduction reaction section. Hydrogen may be supplied, and the temperature of the discharge portion may be 120°C or higher.
  • the final product After passing through the kiln reduction reactor, the final product can be discharged through the silicon powder discharge port, and the remaining gas can be separated by a residual gas separator.
  • Drying was performed by setting the drying temperature of the dryer to 200°C.
  • the sample for drying was a filter cake of silicon powder with a moisture content of 46.2 wt%, and the supply flow rate was 80 kg/hr.
  • the dried powder collected after passing through the fluidized bed drying furnace showed good quality with a moisture content of 2.1 wt%. Additionally, some organic hydrocarbons were removed by volatilization, and the initial organic carbon was reduced from 5.3 wt% to 3.8 wt% by volatilization. In this way, the dry powder was introduced into the hydrogen reduction furnace, and hydrogen reduction was performed.
  • the dry powder guided into the reduction furnace in a nitrogen atmosphere is moved inside the reactor heated to an atmospheric temperature of 800°C to react with hydrogen, and the hydrogen and oxide film react, and the average oxygen content ranges from 4.3 wt% to 1.1 wt. lowered to %.
  • This lowered oxygen content existed as a passive SiOx film on the surface of the silicon powder and was able to increase the oxidation stability of the silicon particles.
  • 10 tons of silicon powder that had completed the reduction step were produced.
  • TEM photographs of the silicon powder that was the first input raw material in Example 1 and the finally manufactured silicon powder are shown in Figures 4 and 5, respectively.
  • the thickness of the silicon dioxide passivation layer was measured and the values were recorded.
  • the thickness is indicated as 3.12 nm, 3.62 nm, and 4.21 nm, and in Figure 5, the thickness is 0.56 nm. It is displayed. As can be seen from this, the initial silicon powder had a thick silicon dioxide passivation layer, but it was confirmed that the silicon dioxide passivation layer became thinner after the reduction step.
  • Drying was performed by setting the drying temperature of the dryer to 250°C.
  • the sample for drying was a filter cake of silicon powder with a moisture content of 45.7 wt%, and the supply flow rate was 80 kg/hr.
  • the dried powder collected after passing through the fluidized bed drying furnace showed a lower moisture content of 1.3 wt% due to the influence of high-temperature gas, and volatilization of organic carbon further progressed, from 4.8 wt% of initial organic carbon to 3.1 wt by volatilization. decreased by %.
  • the dried particles were introduced into a hydrogen reduction furnace and hydrogen reduction was performed.
  • the dry powder guided into the reduction furnace in a nitrogen atmosphere is moved inside the reactor heated to an atmospheric temperature of 750°C to react with hydrogen, and the hydrogen and oxide film react, and the average oxygen content is 3.9 wt% to 1.4 wt. %, but the reduction rate was somewhat lower.
  • the passive SiOx film on the surface of the silicon powder was able to increase the oxidation stability of the silicon particles. Using the above method, 15 tons of silicon powder that had completed the reduction step were produced.

Abstract

본 발명의 목적은, 업사이클링을 통하여 회수되는 고순도 단결정 규소 분말을 경제성 있는 방법으로 가공하여 생산할 수 있는 장비와 방법을 제공하는 것으로서, 1단계로 불활성 기체로 분위기를 조성하여 이산화규소의 부동태 층이 증가하지 못하도록 폐 규소의 추가적인 산화를 억제하면서 수분을 제거하고, 덩어리진 상태를 해쇄하여 개별 입자 상태로 건조하며, 2단계로 규소 표면의 이산화규소 부동태 층을 환원시켜 제거하기 위한 수소(H2) 기체를 질소 분위기에서 공급하여 입자의 산화도를 감소시킴으로써 고순도 규소 입자 상태로 생산하되 일정두께는 SiOx 상태로 환원시킨다.

Description

폐 규소 슬러지를 이용한 규소 분말 제조방법 및 제조장치
본 발명은 폐 규소 슬러지를 이용한 규소 분말 제조방법 및 제조장치에 관한 것으로, 보다 구체적으로는 태양광 산업의 웨이퍼 생산공정에서 발생하는 폐 규소 슬러지를 유용한 자원으로서 회수 및 재활용(upcycling)을 통해 규소 분말을 제조하여, 에너지 저장장치용 음극재로 사용될 수 있는 규소 분말 제조방법 및 제조장치에 관한 것이다.
일반적으로 태양광 산업에서 발생되는 폐 규소 슬러지는 적당한 활용처를 찾지 못하여, 단순 폐기되고 있다. 현재까지 알려진 주요 재활용 방안은 폐 규소 슬러지 속에 포함된 금속 성분을 화학적 처리하여 건조하고 저품질의 규소 괴를 만들어 재활용하거나 아니면 단순 건조 후, 내화재(refractory material) 원료로 사용하는 방법이 있다.
그러나, 태양광 산업에서 발생되는 폐 규소 슬러지는 정제(refinery)를 통하여 자체 순도를 높일 수 있기 때문에, 선별하여 태양광 산업에서 재활용하는 것이 아니라, 다른 산업인 에너지 저장 산업에서 활용하기 위한 많은 시도와 방법이 제시되었다.
등록특허 제10-2261429호에서는 절삭유를 제거하고 산처리하여 여과한 후, 산화규소 혹은 규소/탄소 복합체를 만드는 방법을 제시하였으나, 산업화하기에는 공정이 복잡하고, 공정 부산물인 폐액들이 다량으로 발생되어 양산화가 어렵다는 한계점이 존재한다.
공개특허공보 제10-2021-0058397호에서는 규소(실리콘) 슬러지를 알코올에 분산시키고, 비중 분리한 후, 탄소 전구체와 혼합 교반하여 분무 건조하는 방식으로 에너지 저장용 음극재용 활물질을 제조하는 방법을 개시하고, 등록특허 제10-1650184호는 초음파 처리하여 실리콘 응집체를 제조한 뒤 실리콘입자를 회수하는 방법을 개시하고 있으나, 이런 경우에는 별도의 열처리 등 공정 비용이 상승하게 되는 문제점이 있다.
공개특허공보 제10-2020-0017941호에서는 불화암모늄을 이용하여, 산화막을 제거하는 방법으로서, 거의 순수한 규소 분말을 얻을 수는 있으나, 액상 폐기물의 처리와 순수 규소의 비산화 건조 등의 비용이 발생한다는 문제점이 존재한다.
한편, 기존 최신 연구에서는 규소의 표면에 존재하는 이산화규소 피막을 제거하는 기술이 개발되었으나, 폐 규소 분말을 양산화하기 위해서 사용되는 불화 암모늄의 양과 부산물이 발생하는 문제와 이를 다시 처리하기 위한 비용으로 인해 실제 양산에 적용하기 어렵다는 한계점이 존재한다.
따라서, 기존의 생산 장비와 공정 기술과는 달리 상기 한계점들을 극복하여, 폐 규소 슬러지를 재활용하여 에너지 저장장치의 음극재로 사용될 수 있는 규소 분말을 효율적으로 양산할 수 있는 기술을 개발하는 것이 필요한 실정이다.
(특허문헌 1) 1. 국내등록특허 제10-2261429호
(특허문헌 2) 2. 국내공개특허 제10-2021-0058397호
(특허문헌 3) 3. 국내등록특허 제10-1650184호
(특허문헌 4) 4. 국내공개특허 제10-2020-0017941호
본 발명의 목적은, 폐 규소 슬러지를 재활용하여 에너지 저장장치(예를 들어, 이차전지)의 음극재로 사용될 수 있는 고순도의 규소 분말을 효율적으로 양산할 수 있는 폐 규소 슬러지를 이용한 규소 분말 제조방법 및 제조장치를 제공하는 것이다.
본 발명의 일 양태에 따르면, (a) 폐 규소 슬러지를 200~250℃의 열풍에서 수분을 제거하는 건조 단계; 및 (b) 상기 (a) 단계의 결과물에 슬러지에 수소를 공급하여 상기 폐 규소 슬러지 표면의 이산화규소 산화막(부동태층)을 제거하고 단결정 규소 분말을 수득하는 단계;를 포함하는, 폐 규소 슬러지를 이용한 규소 분말의 제조방법를 제공할 수 있다.
본 발명의 다른 일 양태에 따르면, 폐 규소 슬러지를 건조하여 이산화규소, 산소 및 수분을 제거하는 건조기; 및 상기 건조된 폐 규소 슬러지의 표면의 이산화규소 산화막(부동태층)을 제거하여 단결정 규소 분말을 수득하는 수소 환원 반응기;를 포함하는, 폐 규소 슬러지를 이용한 규소 분말의 제조 장치를 제공할 수 있다.
본 발명의 폐 규소 슬러지를 이용한 규소 분말의 제조방법은 상기 설명한 종래 기술의 문제점과 한계점을 해결하기 위하여, 폐 규소 슬러지를 폭발 등 없이 안전하게 건조시킬 수 있고, 태양광 산업에서 버려지는 폐 규소 분말의 산화막을 상대적으로 저가인 수소를 이용하여 제거함으로써 이차전지에 활용이 가능한 수준의 고품질 규소 분말을 생산할 수 있다는 이점이 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 본 발명의 구현예에 따른 폐 규소 슬러지를 이용한 규소 분말의 제조방법의 흐름도를 간략히 도시한 것이다.
도 2는 본 발명의 구현예에 따른 폐 규소 슬러지를 이용한 규소 분말의 제조장치의 건조기를 간략히 도시한 것이다.
도 3은 본 발명의 본 발명의 구현예에 따른 폐 규소 슬러지를 이용한 규소 분말의 제조장치의 수소 환원 반응기를 간략히 도시한 것이다.
도 4는 본 발명의 실시예 1에 따른 폐 규소 슬러지를 이용한 규소 분말의 제조방법에서 투입되는 폐 규소 슬러지(원료)의 TEM 사진이다.
도 5는 본 발명의 실시예 1에 따른 폐 규소 슬러지를 이용한 규소 분말의 제조방법에 따라 환원된 규소 분말의 TEM 사진이다.
전술한 목적, 특징 및 장점은 이하에서 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.
본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다.
본 명세서에서 기재되지 않은 내용 중 이 기술 분야의 통상의 기술자라면 충분히 기술적으로 유추할 수 있는 것은 그 설명을 생략하기로 한다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함한다", "함유한다", “갖는다(가진다)”등의 용어는 명세서 상에 기재된 여러 구성 요소들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소들을 더 포함할 수 있는 것으로 해석되어야 한다.
이하에서는, 본 발명의 일 양태에 따른 폐 규소 슬러지를 이용한 규소 분말의 제조방법에 대해 상세히 설명하도록 한다.
도 1을 참조하여 설명하면, 본 발명은 (a) 폐 규소 슬러지를 원료로서 투입하여 200~250℃의 열풍에서 수분을 제거 하는 건조 단계; 및 (b) 상기 (a) 단계의 결과물에 슬러지에 수소를 공급하여 상기 폐 규소 슬러지 표면의 이산화규소 산화막(부동태층)을 환원시켜 제거하고 단결정 규소 분말을 수득하는 단계;를 포함하는, 폐 규소 슬러지를 이용한 규소 분말의 제조방법을 제공할 수 있다.
(a) 단계
태양광 산업에서 발생한 폐 규소 슬러지는 필터 케이크로 뭉쳐 있는 상태에로 장시간 방치되기 때문에 자연스럽게 규소 표면에서 수분과 반응하면서 이산화규소 산화막(부동태층)이 형성되게 된다. 따라서, (a) 단계에서는 이미 형성된 이산화규소 부동태층이 증가되지 않도록 빠르게 수분을 건조하여 제거하고, 표면에 결합된 산소가 규소 입자의 내부로 전이되는 것을 방지하기 위하여 수분 건조에 필요한 최소 에너지만 가하면서 수분을 제거하는 건조 공정을 수행한다.
구체적으로는, 예를 들어 200~250℃의 열풍에서 수분을 제거할 수 있고, 비활성 기체상태로 유지하면서 건조를 위해 공급되는 기체에 산소가 존재하지 않도록 함으로써 추가적인 이산화규소의 형성을 방지하는 것이 중요하다.
태양광 산업에서 발생한 폐 규소 슬러지로서 회수된 필터케이크는, 입자들이 고압으로 뭉쳐져 있으면서 약 40~50 wt%의 수분이 포함된 상태이기 때문에 여름철과 같이 주변 온도가 30℃ 이상으로 올라가게 되면 자연스럽게 필터케이크 내부에서 압력과 온도에 의해서 이산화규소화가 점진적으로 진행되면서 부동태층이 두꺼워지는데 이 반응은 발열 반응이므로, 스스로 온도를 내부 높이면서 자연발화 현상까지도 일으키게 된다.
이와 같이 자연적으로 발생하는 산화막이 증가하지 않도록 입자 주변에 존재하는 수분의 건조를 빠르게 진행하기 위해서, 상기 (a) 단계는 고온의 질소(N2) 기체의 고속 흐름을 이용하여 수분을 기화시켜 제거하는 열풍 질소 건조 방식으로 수행되는 것이 바람직하고, 이 때 상기 질소 기체는 산소가 제거된 것을 의미한다.
이와 같이 추가적인 산화가 일어나지 않도록 하기 위해서 건조로 내부에서 산소를 제거할 수 있고, 규소 슬러지가 필터 케이크 상태로 열을 받지 못하도록 건조 전에 또는 건조와 동시에 분쇄할 수 있다.
따라서, 상기 (a) 단계에서 폐 규소 슬러지의 건조와 함께 필터케이크의 분쇄 공정을 동시에 수행하는 유동층 건조 방식으로 수행되는 것이 바람직하다.
또한, 이미 분쇄되거나 분쇄되지 않은 규소 슬러지 입자도 최소 단위로 더 잘게 쪼개지도록 유동층 형식의 건조·분쇄기(유동층 입자분리기)를 적용하여 더욱 잘게 쪼개지도록 하였으며, 입자간 뭉침 현상을 최소화 하면서 포함되어 있는 수분이 규소와 반응하지 않고 건조되어 날라가도록 250℃ 이하의 온도의 열풍으로 건조 공정을 수행할 수 있다.
상기 (a) 단계에 있어서, 규소 필터 케이크를 효율적으로 입자 분리하기 위하여, 1차로 고속 회전하는 회전날에 의하여 수십 mm 크기의 덩어리로 파쇄되고, 파쇄된 덩어리는 고속의 고온 기체를 따라서 2차 유동층 분쇄기로 유도되는 방식으로 수행될 수 있다.
상기 유도된 규소 분말과 덩어리는 2차 유동층 분쇄기 하부에서 고속의 유체 흐름을 따라서 회전하면서 입자간 충돌과정을 거치면서 잘게 부서지게 되는데, 이 때 입자의 부착을 돕는 수분이 고온의 기체를 따라서 기화되어 제거됨으로써, 건조된 입자는 수분에 의한 부착력을 잃고 개별 입자로 떨어져 나오면서 사이클론 입자 분리기에 의해 분리되고, 미세입자 포집기로 이동하게 된다. 사이클론 입자 분리기로 포집하기 힘든 미세입자들은 최종적으로 백-필터(bag-filter)를 통하여 수집되며, 백-필터(bag-filter)를 통과한 초미세 입자들은 최종적으로 스크러버(scrubber)에서 수집 및 배출될 수 있다.
상기 (a) 단계의 상기 폐 규소 슬러지의 총 중량 대비 수분 함량이 약 40~50 wt%일 수 있고, 상기 (a) 단계 종료 후 상기 폐 규소 슬러지의 총 중량 대비 수분 함량은 약 3 wt% 이하로 감소할 수 있다. 이 때 수분뿐 만 아니라, 태양광 산업에서 웨이퍼를 생산하기 위하여 다이아몬드 와이어 쏘잉(Diamond wire sawing) 작업을 진행하면서 투입되는 냉각제(coolant) 성분도 대부분 휘발 건조되면서 건조 전 약 3~5 wt% 정도인 탄화수소 성분들은 건조 후, 약 1 wt% 이하로 감소하게 된다.
(b) 단계
본 발명에 따른 폐 규소 슬러지를 이용한 규소 분말의 제조방법은, 상기 (a) 단계 이후, (b) 상기 (a) 단계의 결과물에 수소를 공급하여 상기 폐 규소 슬러지 표면의 이산화규소 산화막(부동태층)을 제거하고 단결정 규소 분말을 수득하는 단계를 포함한다.
상기 (a) 단계의 결과물로서 건조된 규소 입자는 자연 산화막 상태의 이산화규소 부동태층만 존재하게 되는데, 구체적으로는 약 5 wt%의 이산화규소 부동태층이 존재한다. 이를 이차전지 음극재로서 활용하기 위해서는 이산화규소 부동태층을 제거하여야 하며, 다음 과정을 거쳐서 고순화를 진행한다. 이산화규소 부동태층을 제거하기 위하여, 그 외의 화학 물질을 사용하기 보다는 고온의 수소를 이용하여, 규소 표면에서 산화막을 환원시키는 단계를 거쳐 고품질의 규소 분말을 수득할 수 있다.
한편, 상기 (a) 단계의 결과물로서 건조된 규소 입자는 완전 건조 상태가 아니라, 증발과정 중에 표면에 물리 흡착된 잔류 수분이 수 wt%정도 있기 때문에 수소 환원 반응기 내부에 도입되면서 바로 고온에 노출되면, 수분에 의한 산화가 진행된다는 문제점이 있다. 그러므로, 상기 (b) 단계의 수행 온도의 범위 설정이 매우 중요하며, 이 때, 수소 환원을 위한 입자의 온도 상승은 표면에 물리 흡착된 수분이 증발하여 제거가 되어 더 이상의 산화가 되지 않도록 하는 것이 중요하다. 설정한다. 이 때 탈착된 수분은 환원 반응기(예를 들어, kiln) 내부에 투입되는 질소와 함께 외부로 배출되어 제거 된다.
따라서, 상기 (a) 단계의 결과물은 (b) 단계를 수행하기 위한 환원 반응기로 진입할 때에 분위기 온도 120~150℃ 범위에서 투입되는 것이 바람직하고, 이로써 표면에 물리 흡착된 수증기가 응결되지 않고 흡착된 수증기도 탈착되어 제거되면서 환원 반응기를 지나가게 될 수 있다. 또한, 환원 반응기로서 스크류(screw) 방식의 환원로를 통과하면서 점차 고온 구간으로 이동된다. 따라서, 상기 (b) 단계의 수소는 상압 조건에서, 예를 들어 중심온도 700~1000℃의 분위기 하에서 공급될 수 있고, 예를 들어 중심온도 500~900℃의 분위기 하에서 공급될 수 있고, 예를 들어 중심온도 700~850℃의 분위기 하에서 공급될 수 있고, 상기 조건에서 환원 반응이 일어난다.
상기 범위의 중심온도에서 반응 기체로 투입된 수소와 표면 산화막이 환원 반응을 일으키면 표면에 질화막(SiN)이 형성되는 것이 방지될 수 있다. 만약, 경우에 따라 규소 입자의 산화 안정성을 확보하기 위하여 표면에 얇은 산화규소(SiOx) 피막을 형성하고 잔류시키기 위해서는 700~850℃의 분위기 하에서 수소가 공급되어 환원반응이 일어날 수 있도록 유지하는 것이 중요하다.
상기 (b) 단계는 산화를 방지하기 위한 목적에서 불활성 기체 분위기 하에서 수행되는 것이 바람직하다.
상기 (b) 단계의 수소는 상압 조건에서 10~30 L/min의 유량으로 공급될 수 있고, 바람직하게는 15~25 L/min의 유량으로 공급될 수 있다.
상기 (b) 단계를 거치기 위한 규소 입자는 약 1.2~1.5 kg/min의 속도로 투입될 수 있으나, 이에 반드시 한정되는 것은 아니다.
환원 반응 구간은 입자의 온도가 충분히 승온되어 반응하도록 승온 구간을 지난 후, 승온 구간보다는 짧은 길이의 최대온도 지점 구간을 통과하도록 하는 것이 바람직하다. 이 때, 수소도 규소 입자와 충분히 혼합되어 표면 흡착되고, 고온 구간에서 산화막을 환원시킬 수 있게 된다. 환원 반응 구간을 통과한 규소 입자는 급격한 온도 하강으로 입자의 응축으로 인한 파쇄가 일어나지 않도록 자연 하강시켜 배출하는데, 환원로를 거치면서 도입될 때 입자 표면에 가지고 있던 수 wt%의 수분과, 표면 산화막으로부터 환원되면서 발생된 수증기는 반대로 규소의 산화 반응을 일으킬 수 있기 때문에 최종 배출이 되기 전까지는 분위기 온도를 120℃ 이상으로 유지하는 것이 바람직하다.
이런 과정을 거쳐서 생산된 규소, 즉, 상기 (b) 단계에서 수득되는 단결정 규소 분말은, 상기 규소 분말의 총 중량 대비 수분 함량은 1 wt% 이하이고, 산소 함량은 1~3 wt%의 높은 품질을 나타낼 수 있다.
이하에서는, 본 발명의 일 양태에 따른 폐 규소 슬러지를 이용한 규소 분말의 제조장치에 대해 상세히 설명하도록 한다.
본 발명의 폐 규소 슬러지를 건조하여 수분을 제거하는 건조기; 및 상기 건조된 폐 규소 슬러지의 표면의 이산화규소 산화막(부동태층)을 제거하여 단결정 규소 분말을 수득하는 수소 환원 반응기;를 포함할 수 있다.
상기 본 발명의 건조기는, 도 2에 도시된 것처럼, 고온 열풍기; 원료 투입기; 1차 고속 회전 분쇄기; 2차 유동층 분쇄기; 사이클론 입자 분리기; 미세입자 포집기 및 스크러버를 포함하는 것일 수 있다.
따라서, 본 발명의 건조기는 건조 공정 및 분쇄 공정이 동시에 수행되는 건조기일 수 있고, 상기 건조 공정은 고온 열풍기에 의해 200~250℃의 열풍의 공급에 의해 수행되는 것이 바람직하다.
상기 분쇄 공정은, 1차 고속 회전 분쇄기 및 2차 유동층 분쇄기에서 연속적으로 수행되고, 상기 1차 회전 분쇄기는 고속 회전날에 의해 폐 규소 슬러지를 분쇄하고, 상기 2차 유동층 분쇄기는 고온·고속의 유체 흐름의 충돌에 의해 폐 규소 슬러지를 분쇄하는 것일 수 있다.
상기 2차 유동층 분쇄기는 상부에서 하부로 갈수록 관경이 좁아지는 깔대기 형태의 유도관을 포함하고, 상기 유도관은 상부를 기준으로 하부는 10~20°의 각도로 기울기를 갖는 것일 수 있다.
구체적으로, 일정한 기체 유량을 고속으로 유동층 하부로 유도하기 위하여, 유동층 분쇄기 내부에는 하부로 갈수록 관경이 좁아지도록 깔때기 형태의 유도관이 설치되는 것이 바람직하다. 상기 고온·고속의 유체는 25~30 m3/hr의 속도로 공급되는 질소 기체일 수 있다.
상기 2차 유동층 분쇄기에서 토출된 규소 분말은, 상기 사이클론 입자 분리기, 미세입자 포집기 및 스크러버 순으로 통과될 수 있다. 앞서 본 발명의 제조방법과 관련하여 상세히 설명한 것처럼, 2차 유동층 분쇄기에서 토출된 규소 분말은 사이클론 입자 분리기에 의해 분리되고, 미세입자 포집기로 이동하게 된다. 사이클론 입자 분리기로 포집하기 힘든 미세입자들은 최종적으로 백-필터(bag-filter)(도시되어 있지 않음)를 통하여 수집되며, 백-필터(bag-filter)를 통과한 초미세 입자들은 최종적으로 스크러버(scrubber)에서 수집 및 배출될 수 있다.
이 때 원활한 기류 유도와 규소 입자 분쇄를 위하여 상부를 기준으로 하부는 10~20°의 각도로 경사각 기울기를 갖는 것이 바람직하고, 예를 들어 대략 15°의 경사각 기울기를 가질 수 있다. 상기와 같은 깔때기 형태의 관 상부로 덩어리 형태의 규소가 고온의 질소 기체의 기류 흐름과 함께 이동해서 하부로 떨어지게 되는데, 깔때기 형태의 관을 통하여 기체는 일정부피가 압축되면서 하부에 도달하게 되는데, 유입속도 대비 기체 속도가 최대 20% 이상 증가하면서 덩어리 상태의 규소를 고속으로 회전·마모시키는 원동력으로 작용할 수 있다. 유동층 분쇄기의 하부는 지면을 기준으로 경사각 기울기를 가진 깔때기 형태의 완만한 바닥으로 구성되므로, 큰 덩어리 상태의 규소가 가운데로 모이도록 하였으며, 상부에서 하부로 쏟아지는 덩어리들이 하부의 가운데 모인 덩어리들과 자연스럽게 충돌 및 분쇄가 일어날 수 있다.
한편, 분리되지 못한 덩어리 상태의 규소 필터케이크는 계속해서 유동층 분쇄기 하부에서 회전하면서 입자가 최종적으로 건조 분리될 때까지 건조, 회전, 충돌, 분리 과정을 거치게 된다. 그러나, 너무 많은 규소 입자들이 공급되면, 회전이 멈추고 바닥에 쌓여서 흐름을 막을 수 있다는 문제점이 있다. 이러한 점들을 고려하여, 건조를 위한 규소 원료의 공급 속도는, 예를 들어 대략 70~120 kg/hr인 것이 바람직하고, 만약 규소 원료의 공급 속도가 120 kg/hr를 초과하면 건조 품질이 나빠질 수 있고, 규소 덩어리의 분해 및 분쇄가 잘 이루어지지 않을 수 있다는 문제점이 있고, 한편 70 kg/hr 미만이면 생산수율이 낮아지므로, 양산성이 떨어지게 될 수 있다.
본 발명의 수소 환원 반응기는, 도 3에 도시된 것처럼, 정량 투입기; 기체 정량 투입기; 수소 환원로; 잔류 기체 분리기; 및 규소 분말 토출구;를 포함하는 것일 수 있다.
도 3을 기준으로 우측에서부터 정량 투이입기를 통하여 상기 건조기에서 토출된 규소 분말이 투입되고, 수소 등의 기체는 기체 정량 투입기를 통해 투입될 수 있다. 상기 수소 환원 반응기는 가마(kiln) 반응기이고, 상기 가마 반응기는 불활성 기체 분위기에서 작동되는 것일 수 있다.
상기 가마 환원 반응기는, 건조된 폐 규소 슬러지가 투입되는 투입부; 이산화규소 산화막(부동태층)과 수소가 환원 반응이 일어나는 환원반응부; 및 단결정 규소 분말의 토출부;를 포함할 수 있고, 상기 투입부의 온도는 120~150℃이고, 상기 환원 반응부의 온도는 750~800℃이고, 상기 환원 반응부에서 10~30 L/min의 유량으로 수소가 공급될 수 있으며, 상기 토출부의 온도는 120℃ 이상일 수 있다.
상기 가마 환원 반응기를 통과한 후에 최종 완제품은 규소 분말 토출구를 통해서 토출될 수 있고, 남은 기체는 잔류 기체 분리기에 의해 분리될 수 있다.
이하에서는 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
실시예 1
건조기의 건조 온도를 200℃로 설정하여 건조를 진행하였다. 건조를 위한 시료는 함수율 46.2 wt%의 규소 분말의 필터케이크이며, 공급 유량은 80kg/hr의 속도로 공급하였다. 유동층 건조로를 통과하여 포집된 건조분말은 수분 함유율 2.1 wt%의 양호한 품질을 나타내었으며, 부차적으로 유기성 탄화수소도 일부 휘발하여 제거되었으며, 초기 유기탄소 5.3 wt%에서 휘발에 의해 3.8 wt%로 감소하였다. 이와 같이 건조 분말을 수소 환원로에 도입하여, 수소환원을 진행하였다.
질소 분위기의 환원로 내부로 유도된 상기 건조 분말은 수소와 반응을 하기 위하여 분위기 온도 800℃로 가열된 반응로 내부로 이동되어서 수소와 산화막이 반응되게 되며, 평균 산소 함유량은 4.3 wt%에서 1.1 wt%로 낮아졌다. 이와 같이 낮아진 산소 함유량은 규소 분말 표면에 부동태 SiOx 피막으로 존재하면서, 규소 입자의 산화 안정성을 높여줄 수 있었다. 상기 방법으로 환원 단계까지 완료한 규소 분말 10톤을 생산하였다.
실시예 1에서 최초 투입된 원료인 규소 분말 및 최종 제조된 규소 분말의 TEM 사진을 각각 도 4 및 도 5에 나타냈다. 도 4 및 도 5의 TEM 사진에는 이산화규소 부동태층의 두께를 측정하여 그 수치를 기록하였고, 도 4에는 3.12 ㎚, 3.62 ㎚, 4.21 ㎚로 두께가 표시되어 있고, 도 5에는 0.56 ㎚의 두께가 표시되어 있다. 이로부터 알 수 있는 것처럼, 최초 규소 분말은 이산화규소 부동태층이 두꺼웠으나, 환원 단계를 거쳐 이산화규소 부동태층이 얇아진 것을 확인할 수 있었다.
실시예 2
건조기의 건조 온도를 250℃로 설정하여 건조를 진행하였다. 건조를 위한 시료는 함수율 45.7 wt%의 규소 분말의 필터케이크이며, 공급 유량은 80kg/hr의 속도로 공급하였다. 유동층 건조로를 통과하여 포집된 건조 분말은 고온 기체의 영향으로 보다 낮은 수분 함유율 1.3 wt%를 나타내었으며, 차적으로 유기성 탄소류도 휘발이 더 진행되어, 초기 유기탄소 4.8 wt%에서 휘발에 의해 3.1 wt%로 감소하였다. 이와 같이 건조된 입자들을 수소 환원로에 도입하여, 수소환원을 진행하였다.
질소 분위기의 환원로 내부로 유도된 상기 건조 분말은 수소와 반응을 하기 위하여 분위기 온도 750℃로 가열된 반응로 내부로 이동되어서 수소와 산화막이 반응되게 되며, 평균 산소 함유량은 3.9 wt%에서 1.4 wt%로 낮아졌으나 환원율은 다소 낮아졌다. 그러나 규소 분말 표면의 부동태 SiOx 피막은 규소 입자의 산화 안정성을 높여줄 수 있었다. 상기 방법으로 환원 단계까지 완료한 규소 분말 15톤을 생산하였다.
이상 첨부된 도면을 참조하여 본 명세서의 실시예들을 더욱 상세하게 설명하였으나, 본 명세서는 반드시 이러한 실시예로 국한되는 것은 아니고, 본 명세서의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 명세서에 개시된 실시예들은 본 명세서의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 명세서의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 명세서의 보호 범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 명세서의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. (a) 폐 규소 슬러지를 200~250℃의 열풍에서 수분을 제거하는 건조 단계; 및
    (b) 상기 (a) 단계의 결과물에 수소를 공급하여 상기 폐 규소 슬러지 표면의 이산화규소 산화막(부동태층)을 환원시켜 제거하고 단결정 규소 분말을 수득하는 단계;를 포함하는,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  2. 제1항에 있어서,
    상기 (a) 단계의 폐 규소 슬러지는 필터케이크(filter cake) 상태인,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  3. 제1항에 있어서,
    상기 (a) 단계는 불활성 기체 분위기 및 산소 없는 분위기 하에서 수행하는,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  4. 제1항에 있어서,
    상기 (a) 단계는, 고온의 질소(N2) 기체로 수분을 기화시켜 제거하는 열풍 질소 건조 방식으로 수행되는,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  5. 제1항에 있어서,
    상기 (a) 단계에서 폐 규소 슬러지의 건조와 함께 필터 케이크의 분쇄 공정을 동시에 수행하는 유동층 건조 방식으로 수행되는,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  6. 제1항에 있어서,
    상기 (a) 단계의 상기 폐 규소 슬러지의 총 중량 대비 수분 함량이 40~50 wt%이고,
    상기 (a) 단계 종료 후 상기 폐 규소 슬러지의 총 중량 대비 수분 함량은 3 wt% 이하인,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  7. 제1항에 있어서,
    상기 (b) 단계의 수소는 상압 조건에서 중심온도 700~1000℃의 분위기 하에서 공급되는,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  8. 제1항에 있어서,
    상기 (b) 단계의 수소는 상압 조건에서 중심온도 700~850℃의 분위기 하에서 공급되는,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  9. 제1항에 있어서,
    상기 (b) 단계의 수소는 상압 조건에서 10~30 L/min의 유량으로 공급되는,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  10. 제1항에 있어서,
    상기 (b) 단계는 불활성 기체 분위기 하에서 수행되는,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  11. 제1항에 있어서,
    상기 (b) 단계에서 수득되는 단결정 규소 분말의 총 중량 대비 수분 함량은 1 wt% 이하이고, 산소 함량은 1~3 wt%인,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  12. 제1항에 있어서,
    상기 제조되는 단결정 규소 분말은 이차전지용 음극재로 사용되는,
    폐 규소 슬러지를 이용한 규소 분말의 제조방법.
  13. 폐 규소 슬러지를 건조하여 수분을 제거하는 건조기; 및
    상기 건조된 폐 규소 슬러지의 표면의 이산화규소 산화막(부동태층)을 제거하여 단결정 규소 분말을 수득하는 수소 환원 반응기;를 포함하는,
    폐 규소 슬러지를 이용한 규소 분말의 제조 장치.
  14. 제13항에 있어서,
    상기 건조기는, 건조 공정 및 분쇄 공정이 동시에 수행되는 건조기이고,
    상기 건조 공정은 200~250℃의 열풍의 공급에 의해 수행되는,
    폐 규소 슬러지를 이용한 규소 분말의 제조 장치.
  15. 제14항에 있어서,
    상기 분쇄 공정은,
    1차 고속 회전 분쇄기 및 2차 유동층 분쇄기에서 연속적으로 수행되고,
    상기 1차 회전 분쇄기는 고속 회전날에 의해 폐 규소 슬러지를 분쇄하고,
    상기 2차 유동층 분쇄기는 고온·고속의 유체 흐름의 충돌에 의해 폐 규소 슬러지를 분쇄하는,
    폐 규소 슬러지를 이용한 규소 분말의 제조 장치.
  16. 제15항에 있어서,
    상기 2차 유동층 분쇄기는 상부에서 하부로 갈수록 관경이 좁아지는 깔대기 형태의 유도관을 포함하고,
    상기 유도관은 상부를 기준으로 하부는 10~20°의 각도로 기울기를 갖는 것인,
    폐 규소 슬러지를 이용한 규소 분말의 제조 장치.
  17. 제15항에 있어서,
    상기 고온·고속의 유체는 25~30 m3/hr의 속도로 공급되는 질소 기체인,
    폐 규소 슬러지를 이용한 규소 분말의 제조 장치.
  18. 제13항에 있어서,
    상기 수소 환원 반응기는 가마(kiln) 반응기이고, 상기 가마 반응기는 불활성 기체 분위기에서 작동되는 것인,
    폐 규소 슬러지를 이용한 규소 분말의 제조 장치.
  19. 제18항에 있어서,
    상기 가마 환원 반응기는,
    건조된 폐 규소 슬러지가 투입되는 투입부;
    이산화규소 산화막(부동태층)과 수소가 환원 반응이 일어나는 환원반응부; 및
    단결정 규소 분말의 토출부;를 포함하고,
    상기 투입부의 온도는 120~150℃이고,
    상기 환원 반응부의 온도는 750~800℃이고, 상기 환원 반응부에서 10~30 L/min의 유량으로 수소가 공급되며,
    상기 토출부의 온도는 120℃이상인,
    폐 규소 슬러지를 이용한 규소 분말의 제조 장치.
  20. 제15항에 있어서,
    상기 건조기는 사이클론 입자 분리기, 미세입자 포집기 및 스크러버를 더 포함함고,
    상기 2차 유동층 분쇄기에서 토출된 규소 분말이, 상기 사이클론 입자 분리기, 미세입자 포집기 및 스크러버 순으로 통과되는 것인,
    폐 규소 슬러지를 이용한 규소 분말의 제조 장치.
PCT/KR2023/007699 2022-08-26 2023-06-05 폐 규소 슬러지를 이용한 규소 분말 제조방법 및 제조장치 WO2024043458A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0107312 2022-08-26
KR1020220107312A KR20240029169A (ko) 2022-08-26 2022-08-26 폐 규소 슬러지를 이용한 규소 분말 제조방법 및 제조장치

Publications (1)

Publication Number Publication Date
WO2024043458A1 true WO2024043458A1 (ko) 2024-02-29

Family

ID=90013449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007699 WO2024043458A1 (ko) 2022-08-26 2023-06-05 폐 규소 슬러지를 이용한 규소 분말 제조방법 및 제조장치

Country Status (2)

Country Link
KR (1) KR20240029169A (ko)
WO (1) WO2024043458A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823666B1 (ko) * 2007-09-11 2008-04-18 (주)세미머티리얼즈 폐실리콘 슬러지 재생장치 및 방법
JP2008162813A (ja) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd シリコンスラッジからの酸化シリコン粒製造方法
KR20120049001A (ko) * 2010-11-08 2012-05-16 주식회사 제록 웨이퍼 절단공정시 발생하는 폐슬러지내 고순도 실리콘카바이드 추출 방법
KR20200014737A (ko) * 2017-03-27 2020-02-11 시 추 다이아몬드 와이어로 실리콘을 커팅하여 생성되는 부산물인 실리콘 슬러지를 이용하여 실리콘 함유 제품을 생산하는 방법, 장치 및 시스템
KR102181908B1 (ko) * 2020-08-12 2020-11-23 주식회사 에쓰큐씨 실리콘 슬러지를 폐열을 이용하여 건조한 후 분쇄하여 이산화규소 분체를 만드는 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650184A (zh) 2008-08-15 2010-02-17 叶大卫 一种指南车
KR102143783B1 (ko) 2018-08-10 2020-08-12 한국세라믹기술원 실리콘계 분말의 순도 향상방법 및 이를 이용한 리튬이온전지의 전극 제조방법
KR20210058397A (ko) 2019-11-14 2021-05-24 주식회사 엠지아이티 태양광용 실리콘 슬러지로부터 나노실리콘을 회수하여 리튬이온배터리의 음극재용 첨가제인 실리콘/탄소 복합체를 제조하는 방법
KR102261429B1 (ko) 2019-12-06 2021-06-08 주식회사 엠지이노베이션 분무건조법을 이용한 waste silicon sludge로부터 실리콘산화물 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162813A (ja) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd シリコンスラッジからの酸化シリコン粒製造方法
KR100823666B1 (ko) * 2007-09-11 2008-04-18 (주)세미머티리얼즈 폐실리콘 슬러지 재생장치 및 방법
KR20120049001A (ko) * 2010-11-08 2012-05-16 주식회사 제록 웨이퍼 절단공정시 발생하는 폐슬러지내 고순도 실리콘카바이드 추출 방법
KR20200014737A (ko) * 2017-03-27 2020-02-11 시 추 다이아몬드 와이어로 실리콘을 커팅하여 생성되는 부산물인 실리콘 슬러지를 이용하여 실리콘 함유 제품을 생산하는 방법, 장치 및 시스템
KR102181908B1 (ko) * 2020-08-12 2020-11-23 주식회사 에쓰큐씨 실리콘 슬러지를 폐열을 이용하여 건조한 후 분쇄하여 이산화규소 분체를 만드는 장치

Also Published As

Publication number Publication date
KR20240029169A (ko) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2018147508A1 (ko) 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지
KR20200014737A (ko) 다이아몬드 와이어로 실리콘을 커팅하여 생성되는 부산물인 실리콘 슬러지를 이용하여 실리콘 함유 제품을 생산하는 방법, 장치 및 시스템
US20100068115A1 (en) Silicon reclamation apparatus and method of reclaiming silicon
Weimer et al. Rapid process for manufacturing aluminum nitride powder
KR101735425B1 (ko) 알루미늄 블랙 드로스 재활용 시스템 및 방법
Mishra et al. Production and purification of silicon by calcium reduction of rice-husk white ash
CN113620301A (zh) 一种生产氧化亚硅的方法及装置
WO2015015795A1 (ja) SiOX粉末製造法及びSiOX粉末製造装置
CN1066043A (zh) 等离子氯化法制备金红石型钛白粉
WO2015167113A1 (ko) 기계 화학적 방법에 의한 저급 흑연으로부터 가장자리가 기능화된 그래파이트의 제조방법 및 그로부터 제조된 그래핀 나노 플레이트
WO2024043458A1 (ko) 폐 규소 슬러지를 이용한 규소 분말 제조방법 및 제조장치
JPS61117111A (ja) 光起電産業で用いる金属珪素の製造方法
US8945293B2 (en) Silicon oxide removal apparatus and facility for recycling inert gas for use in silicon single crystal manufacturing apparatus
CN102746936A (zh) 硅片切割废液中碳化硅粉体回收提纯方法
CN113880136A (zh) 一种四氯化锆和/或四氯化硅、其制备方法及其制备装置
WO2020111598A1 (ko) 리튬함유 광석으로부터 황산리튬용액을 제조하는 방법 및 장치
WO2021125655A2 (ko) 과산화리튬의 입도 조절 방법 및 입도가 조절된 리튬산화물의 제조방법
US3211527A (en) Process for producing ultrafine silicon nitride
KR102596829B1 (ko) 폐 실리콘 슬러지를 이용한 실리콘 분말의 제조방법
RU2415080C2 (ru) Способ и установка для очистки кремния
JP5527250B2 (ja) 四塩化ケイ素の製造方法
AU6022796A (en) Method and apparatus for making high-grade alumina from low- grade aluminum oxide fines
WO2012118242A1 (ko) 추진기관용 고체 추진제의 재처리장치 및 재처리방법
CN110776343A (zh) 烧结灰及其制备方法
CN112595106B (zh) 高浓度氧旋风燃烧液态熔融处置料系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857497

Country of ref document: EP

Kind code of ref document: A1