WO2024042982A1 - Electric compressor for vehicle - Google Patents

Electric compressor for vehicle Download PDF

Info

Publication number
WO2024042982A1
WO2024042982A1 PCT/JP2023/027527 JP2023027527W WO2024042982A1 WO 2024042982 A1 WO2024042982 A1 WO 2024042982A1 JP 2023027527 W JP2023027527 W JP 2023027527W WO 2024042982 A1 WO2024042982 A1 WO 2024042982A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
switching elements
vehicle
current
discharge
Prior art date
Application number
PCT/JP2023/027527
Other languages
French (fr)
Japanese (ja)
Inventor
知里 井田
峻輔 金子
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2024042982A1 publication Critical patent/WO2024042982A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a vehicle electric compressor mounted on a vehicle.
  • An on-vehicle electric compressor described in Patent Document 1 is known as an example of an electric compressor for a vehicle.
  • the on-vehicle electric compressor described in Patent Document 1 uses a current sensor to detect a non-conduction between a battery as a DC power source installed in a vehicle and an inverter circuit (a connector connecting the two is disconnected).
  • the inverter circuit is configured to control a switching element of the inverter circuit to start discharging the capacitor when de-energization is detected.
  • Patent Document 1 the on-vehicle electric compressor described in Patent Document 1 has the following problems.
  • the vehicle side capacitor In addition to discharging the capacitor on the electric compressor side, there are cases where it is required to discharge the capacitor on the vehicle side.
  • the vehicle side capacitor generally has a larger capacitance than the electric compressor side capacitor. Therefore, when such a request is met, the current flowing through the switching element (that is, the heat generation of the switching element) becomes larger than expected, and the switching element may be thermally destroyed.
  • An object of the present invention is to provide an electric compressor for a vehicle that can prevent damage (thermal destruction, etc.) to switching elements of an inverter circuit due to capacitor discharge control for discharging a capacitor.
  • an electric compressor for a vehicle that includes, in a housing, an electric motor, a compression mechanism driven by the electric motor, and an inverter device that supplies electric power to the electric motor.
  • This electric compressor for a vehicle includes a plurality of switching elements arranged between a positive electrode bus and a negative electrode bus connected to a DC power supply of a vehicle, and converts DC power from the DC power supply of the vehicle into AC power.
  • an inverter circuit that supplies electricity to the coil of the electric motor; a capacitor that is connected between the positive busbar and the negative busbar and that is located closer to the DC power source of the vehicle than the inverter circuit;
  • a temperature detection section that detects the temperature of the switching element or the temperature near the plurality of switching elements, and controlling at least some of the switching elements of the plurality of switching elements;
  • a control unit that performs capacitor discharge control for discharging the charge accumulated in the capacitor via the coil of the electric motor, the controller configured to perform capacitor discharge control to discharge electric charge accumulated in the capacitor via the coil of the electric motor, the control unit being configured to control a current flowing through at least some of the switching elements during the capacitor discharge control.
  • a control unit configured to control at least some of the switching elements so that the current is equal to or less than an allowable current according to the temperature detected by the temperature detection unit.
  • an electric compressor for a vehicle that can prevent damage (thermal destruction, etc.) to switching elements of an inverter circuit due to capacitor discharge control for discharging a capacitor.
  • FIG. 1 is a schematic vertical cross-sectional view of an electric compressor for a vehicle according to an embodiment.
  • FIG. 1 is a circuit configuration diagram of a vehicle electric compressor according to an embodiment.
  • FIG. 3 is a diagram showing an example of a capacitor discharge circuit. It is a flow chart which shows an example of capacitor discharge control. It is a flow chart which shows an example of capacitor discharge control. It is a figure which shows an example of a target discharge current setting map. It is a figure which shows an example of the duty ratio of a switching element to be set. It is a figure which shows the other example of the duty ratio of a switching element to be set.
  • FIG. 1 is a schematic vertical sectional view of a vehicle electric compressor (hereinafter simply referred to as "electric compressor") 1 according to an embodiment of the present invention.
  • the electric compressor 1 according to the embodiment is an inverter-integrated electric compressor that integrally includes an inverter device.
  • the electric compressor 1 is mounted on a vehicle, forms part of a refrigerant circuit of a vehicle air conditioner, and may be configured to compress and discharge refrigerant.
  • an electric compressor 1 includes an electric motor 2, a compression mechanism 3 driven by the electric motor to compress refrigerant, a main housing 4 housing the electric motor 2 and the compression mechanism 3, and an electric motor 2.
  • the inverter device 5 includes an inverter device 5 that supplies power to the inverter device 5, and an inverter housing 6 that houses the inverter device 5.
  • the main housing 4 and the inverter housing 6 constitute a housing of the electric compressor 1. That is, the electric compressor 1 includes an electric motor 2, a compression mechanism 3, and an inverter device 5 in a housing.
  • the electric motor 2 is, for example, a three-phase synchronous motor (brushless DC motor).
  • the compression mechanism 3 is, for example, a scroll compression mechanism.
  • the electric motor 2 and the compression mechanism 3 are arranged in series in the axial direction of the output shaft 2a of the electric motor 2 in the main housing 4, and the output shaft 2a of the electric motor 2 is connected to the compression mechanism 3 (in the case of a scroll compression mechanism is connected to an orbiting scroll).
  • the inverter device 5 includes a circuit board 7 on which various electronic components are mounted.
  • the circuit board 7 is attached within the inverter housing 6 by a plurality of fixing members.
  • the inverter housing 6 is provided integrally with the main housing 4.
  • the inverter housing 6 is disposed on one end side of the main housing 4 in the axial direction, specifically, on the opposite side of the compression mechanism 3 with the electric motor 2 interposed therebetween.
  • the inverter housing 6 includes a housing body 61 that is integrally formed with the main housing 4 and a cover member 62 that is removable from the housing body 61.
  • the housing body 61 has a bottom wall 611 and a peripheral wall 612 that stands up from the periphery of the bottom wall 611 and defines an opening facing the bottom wall 611.
  • the cover member 62 is attached to the housing body 61 so as to close the opening of the housing body 61.
  • a portion of the bottom wall 611 of the housing body 61 (which is also the bottom wall of the inverter housing 6) constitutes a partition wall 8 that partitions the inside of the main housing 4 and the inside of the inverter housing 6.
  • the electric motor 2 and the inverter device 5 are electrically connected via a power supply line 9 that extends through the partition wall 8 in an airtight and liquidtight state.
  • a refrigerant inlet 4 a that allows refrigerant from outside to flow into the main housing 4 is formed in a portion of the main housing 4 on the partition wall 8 side.
  • the refrigerant that has flowed into the main housing 4 from the refrigerant inlet 4 a flows through the main housing 4 (in the gap between the electric motor 2 ) and reaches the compression mechanism 3 .
  • the compression mechanism 3 is driven by the electric motor 2 to compress and discharge the refrigerant.
  • the refrigerant flowing into the main housing 4 from the refrigerant inlet 4a is, for example, a refrigerant that has passed through an expansion valve and an evaporator in the refrigerant circuit of the vehicle air conditioner, and is a low-temperature, low-pressure refrigerant. Therefore, the partition wall 8 and the electric motor 2 can be cooled by the refrigerant flowing into the main housing 4 from the refrigerant inlet 4a.
  • the refrigerant flowing through the main housing 4 is compressed by the compression mechanism 3 to become a high-temperature, high-pressure refrigerant that is discharged from the compression mechanism 3.
  • the refrigerant (high temperature and high pressure) discharged from the compression mechanism 3 flows out from the refrigerant outlet 4b formed in the main housing 4.
  • FIG. 2 is a circuit diagram of the electric compressor 1.
  • the electric compressor 1 is connected to an on-vehicle battery (hereinafter simply referred to as "battery”) VB as a DC power source of the vehicle via a connector 20. Then, DC power is supplied from the battery VB to the electric compressor 1 via the connector 20, and more specifically to the inverter circuit 50 of the inverter device 5, which will be described later.
  • battery hereinafter simply referred to as "battery”
  • the inverter device 5 of the electric compressor 1 includes an inverter circuit 50, a first capacitor 51, a temperature detection section 52, a voltage detection section 53, a current detection section 54, and a control section 55. At least some of these are mounted on the circuit board 7.
  • the inverter device 5 includes a plurality of circuit boards, and is not limited to this. 1 capacitor 51 and the like may be distributed and arranged on the plurality of circuit boards.
  • Inverter circuit 50 is connected to battery VB via connector 20 and system main relay SMR. Specifically, the inverter circuit 50 has a positive electrode bus 56P and a negative electrode bus 56N, and the positive electrode bus 56P of the inverter circuit 50 is connected to the positive terminal of the battery VB via the connector 20 and the system main relay SMR. Negative bus bar 56N is connected to the negative terminal of battery VB via connector 20.
  • the system main relay SMR is configured to be closed by the vehicle control device (vehicle ECU) 100 when the start button of the vehicle is turned ON, and opened when the start button of the vehicle is turned OFF. has been done.
  • vehicle ECU vehicle ECU
  • system main relay SMR When system main relay SMR is closed, battery VB and electric compressor 1 (inverter device 5) are electrically connected, and when system main relay SMR is opened, battery VB and electric compressor 1 ( The inverter device 5) is electrically disconnected.
  • the inverter circuit 50 includes a plurality of (here, six) switching elements Q1 to Q6 arranged between a positive electrode bus 56P and a negative electrode bus 56N connected to the battery VB, and the same number of switching elements Q1 to Q6 (here, six). diodes D1 to D6.
  • the switching elements Q1 to Q6 may be IGBTs (insulated gate bipolar transistors).
  • Inverter circuit 50 is configured to convert DC power from battery VB into three-phase AC power and supply it to electric motor 2 by controlling switching elements Q1 to Q6 (PMW control).
  • the plurality of switching elements Q1 to Q6 are arranged in the inverter housing 6 so as to be in thermal contact with the partition wall 8 (see FIG. 1).
  • to be in thermal contact with the partition wall 8 means to be in a state where heat exchange is possible with the partition wall 8, and to be in direct contact with the partition wall 8, or to be in close proximity to the partition wall 8.
  • This also includes indirect contact with the partition wall 8 via a heat exchange member with high thermal conductivity. Therefore, the plurality of switching elements Q1 to Q6 can be cooled via the partition wall 8 by the (low temperature) refrigerant flowing into the main housing 4.
  • the inverter circuit 50 has a U-phase arm, a V-phase arm, and a W-phase arm that are provided in parallel between a positive bus 56P and a negative bus 56N.
  • Two switching elements Q1 and Q2 are connected in series to the U-phase arm, and diodes D1 and D2 are connected in antiparallel to each switching element Q1 and Q2, respectively.
  • Two switching elements Q3 and Q4 are connected in series to the V-phase arm, and diodes D3 and D4 are connected in antiparallel to each switching element Q3 and Q4, respectively.
  • Two switching elements Q5 and Q6 are connected in series to the W-phase arm, and diodes D5 and D6 are connected in antiparallel to each switching element Q5 and Q6, respectively.
  • the intermediate points of each of the U-phase arm, V-phase arm, and W-phase arm are connected to the other ends of the U-phase coil, V-phase coil, and W-phase coil of the electric motor 2 which are star-connected at one end of each.
  • the midpoint of the U-phase arm located between switching elements Q1 and Q2 in the U-phase arm is connected to the U-phase coil
  • the midpoint of the V-phase arm located between switching elements Q3 and Q4 in the V-phase arm is connected to the U-phase coil.
  • the midpoint of the V-phase arm located between switching elements Q5 and Q6 in the W-phase arm is connected to the W-phase coil.
  • the inverter circuit 50 can convert the DC power from the battery VB into three-phase AC power and supply it to the electric motor 2.
  • the electric motor 2 is driven by.
  • the first capacitor 51 is connected between the positive bus 56P and the negative bus 56N of the inverter circuit 50.
  • the first capacitor 51 is arranged closer to the battery VB than the inverter circuit 50, that is, between the inverter circuit 50 and the connector 20.
  • the first capacitor 51 is a smoothing capacitor that smoothes the DC power supplied from the battery VB to the inverter circuit 50.
  • the temperature detection unit 52 detects the temperature of the switching elements Q1 to Q6 or the temperature in the vicinity of the switching elements Q1 to Q6 (hereinafter collectively referred to as "switching element temperature").
  • the voltage detection unit 53 is arranged between the inverter circuit 50 and the first capacitor 51, and detects the potential difference between the positive electrode bus 56P and the negative electrode bus 56N between the inverter circuit 50 and the first capacitor 51.
  • the current detection unit 54 detects the current flowing through the electric motor 2.
  • the current detection unit 54 is arranged on the negative bus 56N between the inverter circuit 50 and the first capacitor 51.
  • the present invention is not limited thereto, and the current detection unit 54 may be placed on the positive bus bar 56P between the inverter circuit 50 and the first capacitor 51.
  • the control unit 55 controls (PWM control) the switching elements Q1 to Q6 in order to drive the electric motor 2 and eventually the compression mechanism 3 based on an operation command from the control device (air conditioning ECU) 101 of the vehicle air conditioner. It is configured as follows.
  • control unit 55 is configured to perform control for discharging the capacitor (hereinafter referred to as "capacitor discharge control") when a capacitor discharge command is input from the vehicle ECU 100.
  • the vehicle ECU 100 outputs the capacitor discharge command to the control unit 55 on the condition that at least the start button of the vehicle is turned off (that is, the system main relay SMR is opened). It is configured.
  • a second capacitor 21 is provided closer to the battery VB than the connector 20 and connected in parallel to the battery VB.
  • the second capacitor 21 has a positive side wiring 22P that connects the positive terminal of the battery VB and the positive bus 56P of the inverter circuit 50 via the connector 20, and a connector that connects the negative terminal of the battery VB and the negative bus 56N of the inverter circuit 50. 20 and a negative electrode side wiring 22N connected therebetween.
  • the second capacitor 21 has a function of smoothing the DC power supplied from the battery VB to the inverter circuit 50.
  • the control unit 55 is configured to discharge the first capacitor 51 and the second capacitor 21 by the capacitor discharge control. That is, the control unit 55 is configured to discharge the charge accumulated in the first capacitor 51 and also discharge the charge accumulated in the second capacitor 21 by performing the capacitor discharge control.
  • the first capacitor 51 is a capacitor on the electric compressor side
  • the second capacitor 21 is a capacitor on the vehicle side.
  • the control unit 55 controls at least some of the switching elements Q1 to Q6, here, switching elements Q1, Q4, and Q6. (ON) to energize the first capacitor 51, the second capacitor 21, and the coils (U-phase coil, V-phase coil, and W-phase coil) of the electric motor 2.
  • a capacitor discharge circuit including the switching elements Q1, Q4, and Q6 and the coil of the electric motor 2 is generated, and as shown by the arrow in FIG.
  • the charges accumulated in the capacitor 21 are discharged via the switching elements Q1, Q4, and Q6 and the coils (U-phase coil, V-phase coil, and W-phase coil) of the electric motor 2.
  • the capacitor discharge control performed by the control unit 55 will be further explained.
  • the control unit 55 monitors the switching element temperature detected by the temperature detection unit 52, monitors the voltage detected by the voltage detection unit 53, and monitors the switching element temperature detected by the voltage detection unit 53. Monitoring of the current detected by 54 is started.
  • the potential difference detected by the voltage detection unit 53 is the potential difference between the positive electrode bus 56P and the negative electrode bus 56N, and corresponds to the voltage between the terminals of the first capacitor 51 and the second capacitor 21 (capacitor voltage).
  • the current detected by the current detection unit 54 corresponds to the discharge current of the first capacitor 51 and/or the second capacitor 21 when the capacitor discharge circuit is generated.
  • the potential difference detected by the voltage detection section 53 may be referred to as a "capacitor voltage equivalent value”
  • the current detected by the current detection section 54 may be referred to as a “capacitor discharge current”.
  • the control unit 55 determines whether the capacitor discharge control is necessary based on the capacitor voltage equivalent value detected by the voltage detection unit 53. When the capacitor discharge control is necessary, the control unit 55 sets a target discharge current based on the switching element temperature detected by the temperature detection unit 52, and combines the set target discharge current with the current detection unit 54.
  • the duty ratios of the switching elements Q1, Q4, and Q6 are set based on the capacitor discharge current detected by the controller, and the switching elements Q1, Q4, and Q6 are controlled with the set duty ratios.
  • FIGS 4 and 5 are flowcharts showing an example of the capacitor discharge control performed by the control unit 55. This flowchart is started when the control unit 55 inputs the capacitor discharge command.
  • step S1 the control unit 55 reads the potential difference detected by the voltage detection unit 53, that is, the capacitor voltage equivalent value.
  • step S2 the control unit 55 determines whether the read capacitor voltage equivalent value is equal to or higher than the required discharge voltage, which is a reference value that requires the capacitor discharge control. If the read capacitor voltage equivalent value is equal to or higher than the required discharge voltage, the control unit 55 proceeds to step S3, and if the read capacitor voltage equivalent value is less than the required discharge voltage, the control unit 55 proceeds to step S3. End the flow.
  • step S3 the control unit 55 reads the switching element temperature detected by the temperature detection unit 52.
  • step S4 the control unit 55 sets a target discharge current based on the read switching element temperature.
  • the control unit 55 sets the target discharge current as follows.
  • the control unit 55 has a target discharge current setting map as shown in FIG.
  • the X-axis is the switching element temperature
  • the solid line in FIG. 6 indicates the maximum allowable current of the switching element that will not cause thermal breakdown of the switching element even if it flows through the switching element
  • the broken line in FIG. 6 indicates the required discharge that is set in advance. It shows the lower limit current required to complete the discharge of the first capacitor 51 and the second capacitor 21 within the time (it does not have to be completed completely, it is sufficient if it is almost completed).
  • the allowable current and the lower limit current are determined by the capacitor discharge circuit, that is, the switching element Q1, which is generated to discharge the charges accumulated in the first capacitor 51 and the charges accumulated in the second capacitor 21. It is set in consideration of the temperature characteristics (particularly resistance fluctuation) of the capacitor discharge circuit including Q4 and Q6 and the coil of the electric motor 2.
  • the control unit 55 Based on the read switching element temperature, the control unit 55 sets a current that is less than or equal to the allowable current and greater than or equal to the lower limit current, that is, the current indicated by hatching in FIG. 6, as the target discharge current. That is, the control unit 55 basically sets a target discharge current having a higher current value as the switching element temperature is lower. Although not particularly limited, in this embodiment, the control unit 55 controls a current having a current value relatively close to the lower limit current based on the switching element temperature in order to suppress heat generation of the switching elements Q1, Q4, and Q6 as much as possible. Set as target discharge current.
  • step S5 the control unit 55 controls the switching elements Q1, Q4, and Q6 with a duty ratio of 50%. As a result, the capacitor discharge circuit is generated, and the capacitor discharge control, that is, the discharge of the charges accumulated in the first capacitor 51 and the discharge of the charges accumulated in the second capacitor 21 are started.
  • step S6 the control unit 55 reads the current detected by the current detection unit 54, that is, the capacitor discharge current.
  • step S7 the control unit 55 calculates the difference between the set target discharge current and the read capacitor discharge current.
  • step S8 the control unit 55 sets the duty ratios of the switching elements Q1, Q4, and Q6 based on the calculated difference.
  • step S9 the control unit 55 controls the switching elements Q1, Q4, and Q6 at the set duty ratio. Thereby, the electric charges accumulated in the first capacitor 51 and the electric charges accumulated in the second capacitor 21 are discharged while the current flowing through the switching elements Q1, Q4, and Q6 is limited to the above-mentioned allowable current or less.
  • step S10 the control unit 55 determines whether the required discharge time has elapsed since inputting the capacitor discharge command or starting discharge. If the required discharge time has not elapsed, the control unit 55 proceeds to step S11. On the other hand, if the required discharge time has elapsed, the control unit 55 proceeds to step S13 (FIG. 5).
  • step S11 the control unit 55 reads the potential difference detected by the voltage detection unit 53, that is, the capacitor voltage equivalent value.
  • step S12 the control unit 55 determines whether the read capacitor voltage equivalent value is equal to or higher than the required discharge voltage. If the read capacitor voltage equivalent value is equal to or higher than the required discharge voltage, the control unit 55 returns to the process of step S6, and if the read capacitor voltage equivalent value is less than the required discharge voltage, the control unit 55 returns to step S6. End the flow.
  • step S13 the control unit 55 stops capacitor discharge control.
  • step S14 the control unit 55 determines whether a preset cooling period for the switching element has elapsed since the capacitor discharge control was stopped. Then, when the cooling period of the switching element has elapsed, the control unit 55 returns to the process of step S1.
  • FIG. 7 is a diagram showing an example of the duty ratios of the switching elements Q1, Q4, and Q6 set by the control unit 55.
  • FIG. 7(a) shows a case where the switching element temperature is low
  • FIG. 7(b) shows a case where the switching element temperature is high.
  • the system main relay SMR When the capacitor discharge command is input to the control unit 55, the system main relay SMR is normally open, and the first capacitor 51 and the second capacitor 21 are electrically disconnected from the battery VB. Therefore, the capacitor voltage equivalent value detected by the voltage detection unit 53 decreases as the first capacitor 51 and the second capacitor 21 are discharged. In other words, until the required discharge time elapses, the capacitor voltage equivalent value gradually decreases as time passes from the start of the capacitor discharge control. Further, when the capacitor voltage equivalent value decreases, the capacitor discharge current detected by the current detection section 54 also decreases. Therefore, when the target discharge current is constant, in order to maintain the target discharge current, the duty ratio set in step S8 increases as time passes, as shown in FIGS. 7(a) and (b). (T1 ⁇ T2 ⁇ T3).
  • FIG. 8 is a diagram showing another example of the duty ratios of the switching elements Q1, Q4, and Q6 set by the control unit 55.
  • FIG. 8(a) shows a case where the switching element temperature is low
  • FIG. 8(b) shows a case where the switching element temperature is high.
  • the capacitor discharge command is input to the control unit 55 while the system main relay SMR is closed, in other words, if the capacitor discharge command is input to the control unit 55 by mistake, the first Capacitor 51 and second capacitor 21 are in a state of being electrically connected to battery VB.
  • the potential difference (the capacitor voltage equivalent value) detected by the voltage detection unit 53 is maintained constant (does not decrease). Therefore, when the target discharge current is constant, until the required discharge time elapses, as shown in FIGS.
  • the duty ratio is set (T1 ⁇ T2 ⁇ T3). When the switching element temperature is high, a target discharge current with a lower current value is set than when the switching element temperature is low. Therefore, the control duty ratio when the switching element temperature is high (FIG. 8(b)) is set smaller than the control duty ratio when the switching element temperature is low (FIG. 8(a)).
  • the control unit 55 when the control unit 55 inputs the capacitor discharge command, the control unit 55 controls the switching elements Q1, Q4, and Q6 and the electric motor 2.
  • the capacitor discharge control is performed to discharge the first capacitor 51 and the second capacitor 21 via the coil.
  • the control unit 55 controls the switching elements Q1, Q4, and Q6 so that the current flowing through the switching elements Q1, Q4, and Q6 is equal to or less than the allowable current of the switching elements Q1, Q4, and Q6 according to the switching element temperature. Control. In other words, the currents flowing through the switching elements Q1, Q4, and Q6 are limited to below the allowable current.
  • the capacitor discharge control prevents the switching elements Q1, Q4, and Q6 from being damaged (thermal destruction, etc.). Moreover, even if the capacitor discharge command is inputted to the control unit 55 by mistake when the battery VB is electrically connected to the first capacitor 51 and the second capacitor 21, the switching element Q1 , Q4, and Q6 are prevented from being damaged (thermal destruction, etc.).
  • the control unit 55 controls the switching elements Q1, Q4, and Q6 so that the current flowing through the switching elements Q1, Q4, and Q6 becomes equal to or higher than the lower limit current according to the required discharge time and the switching element temperature during the capacitor discharge control. Q6.
  • the lower limit current is the current required to complete the discharge of the first capacitor 51 and the second capacitor 21 within the required discharge time. Therefore, the discharge of the first capacitor 51 and the second capacitor 21 can be completed within the required discharge time while preventing the switching elements Q1, Q4, and Q6 from being damaged (thermal destruction, etc.).
  • the control unit 55 sets a target discharge current that is below the allowable current and above the lower limit current based on the switching element temperature, and compares the set target discharge current with the current detection.
  • the duty ratio of the switching elements Q1, Q4, and Q6 is set based on the capacitor discharge current detected by the unit 54, and the switching elements Q1, Q4, and Q6 are controlled with the set duty ratio. . This stabilizes the capacitor discharge control that can prevent damage (thermal destruction, etc.) to the switching elements Q1, Q4, and Q6 and complete the discharge of the first capacitor 51 and the second capacitor 21 within the required discharge time. It can be implemented as follows.
  • the control unit 55 performs the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6. However, it is not limited to this. It is sufficient to energize the first capacitor 51 and the second capacitor 21 and the coils (U-phase coil, V-phase coil, and W-phase coil) of the electric motor 2.
  • the capacitor discharge control can be performed by controlling any switching element.
  • the control unit 55 sets a target discharge current that is less than or equal to the allowable current and greater than or equal to the lower limit current based on the switching element temperature. However, it is not limited to this. When the required discharge time is not set or when the required discharge time is sufficiently long, the control unit 55 may simply set a target discharge current equal to or lower than the allowable current based on the switching element temperature.
  • the control unit 55 sets a current having a current value relatively close to the lower limit current as the target discharge current based on the switching element temperature.
  • the control unit 55 may set a current having a current value relatively close to the allowable current as the target discharge current based on the switching element temperature.
  • the control unit 55 sets an intermediate current value between the allowable current and the lower limit current based on the switching element temperature. You may set the electric current which has as said target discharge current.
  • the control unit 55 starts the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6 at a duty ratio of 50% (Step 5 in FIG. 4).
  • the initial value of the duty ratio of the switching elements Q1, Q4, and Q6 when performing the capacitor discharge control is 50%.
  • the control unit 55 can start the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6 at an arbitrary duty ratio (initial value thereof).
  • the control unit 55 starts the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6 with a duty ratio (initial value) according to the target discharge current set in step S4 of FIG. It's okay.
  • step S5 in FIG. 4 may be omitted, and the control unit 55 may start the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6 in step S9 of FIG.
  • the control unit 55 may start the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6 in step S9 of FIG.
  • control unit 55 monitors the capacitor voltage equivalent value, sets a duty ratio based on the target discharge current and the capacitor voltage equivalent value, and controls the set switching elements Q1, Q4, and Q6. You may also do so.
  • the process of step S5 is omitted, the capacitor voltage equivalent value is read in step S6 as in step S1, the process of step S7 is omitted, and the value set in step S4 is read in step S8.
  • the duty ratio is set based on the target discharge current and the capacitor voltage equivalent value read in step S6.
  • control unit 55 discharges the first capacitor 51 and the second capacitor 21 through the capacitor discharge control.
  • the control unit 55 can discharge the second capacitor 21 in the same manner as described above even when the first capacitor 51 is not present, and discharge the first capacitor 51 in the same manner as described above even when the second capacitor 21 is not present. Discharge can be performed.
  • SYMBOLS 1 Electric compressor, 2... Electric motor, 3... Compression mechanism, 4... Main housing, 5... Inverter device, 6... Inverter housing, 20... Connector, 21... Second capacitor, 50... Inverter circuit, 51... First Capacitor, 52... Temperature detection section, 53... Voltage detection section, 54... Current detection section, 55... Control section, 56P... Positive electrode bus, 56N... Negative electrode bus, Q1 to Q6... Switching element, VB... Vehicle battery

Abstract

[Problem] To provide an electric compressor for a vehicle that can prevent damage to a switching element of an inverter circuit due to capacitor discharge control in which a capacitor is discharged. [Solution] In an electric compressor 1 for a vehicle, a control unit 55 of an inverter device 5, which supplies power to an electric motor driving a compression mechanism, controls switching elements Q1, Q4 and Q6 among a plurality of switching elements Q1 to Q6 of an inverter circuit 50, to carry out capacitor discharge control in which charge accumulated in a first capacitor 51 and a second capacitor 21 is discharged. The control unit 55 is configured to control the switching elements Q1, Q4 and Q6 such that a current flowing through the switching elements Q1, Q4 and Q6 is no greater than an allowable current corresponding to a switching element temperature.

Description

車両用電動圧縮機Electric compressor for vehicles
 本発明は、車両に搭載される車両用電動圧縮機に関する。 The present invention relates to a vehicle electric compressor mounted on a vehicle.
 車両用電動圧縮機の一例として特許文献1に記載された車載用電動圧縮機が知られている。特許文献1に記載された車載用電動圧縮機は、車両に設けられた直流電源としてのバッテリとインバータ回路との間の非通電(両者を接続するコネクタが外れたこと)を電流センサによって検知し、非通電が検知された場合に前記インバータ回路のスイッチング素子を制御してコンデンサの放電を開始させるように構成されている。 An on-vehicle electric compressor described in Patent Document 1 is known as an example of an electric compressor for a vehicle. The on-vehicle electric compressor described in Patent Document 1 uses a current sensor to detect a non-conduction between a battery as a DC power source installed in a vehicle and an inverter circuit (a connector connecting the two is disconnected). , the inverter circuit is configured to control a switching element of the inverter circuit to start discharging the capacitor when de-energization is detected.
特開2018-166364号公報Japanese Patent Application Publication No. 2018-166364
 しかし、特許文献1に記載された車載用電動圧縮機では、次のような課題がある。 However, the on-vehicle electric compressor described in Patent Document 1 has the following problems.
 電流センサの誤検知などにより、バッテリとインバータ回路とが通電状態であるにもかかわらず非通電が検知されてコンデンサの放電が開始されると、高電圧が維持されたままスイッチング素子に電流が流れ続けることになり、スイッチング素子の発熱が大きくなってスイッチング素子が熱破壊するおそれがある。 If the battery and inverter circuit are detected to be de-energized even though they are energized due to a current sensor's false detection, and the capacitor starts discharging, current flows through the switching elements while maintaining the high voltage. If this continues, the heat generation of the switching element will increase and there is a risk that the switching element will be thermally destroyed.
 電動圧縮機側コンデンサの放電だけではなく、車両側コンデンサの放電が要求されることがある。車両側コンデンサは、一般に、電動圧縮機側コンデンサよりも静電容量が大きい。そのため、そのような要求に応じた場合、スイッチング素子に流れる電流(つまり、スイッチング素子の発熱)が想定以上に大きくなって、スイッチング素子が熱破壊するおそれがある。 In addition to discharging the capacitor on the electric compressor side, there are cases where it is required to discharge the capacitor on the vehicle side. The vehicle side capacitor generally has a larger capacitance than the electric compressor side capacitor. Therefore, when such a request is met, the current flowing through the switching element (that is, the heat generation of the switching element) becomes larger than expected, and the switching element may be thermally destroyed.
 本発明は、コンデンサの放電を行うためのコンデンサ放電制御によってインバータ回路のスイッチング素子が損傷(熱破壊等)することを防止できる車両用電動圧縮機を提供することを目的とする。 An object of the present invention is to provide an electric compressor for a vehicle that can prevent damage (thermal destruction, etc.) to switching elements of an inverter circuit due to capacitor discharge control for discharging a capacitor.
 本発明の一側面によると、ハウジング内に、電動モータと、前記電動モータによって駆動される圧縮機構と、前記電動モータに電力を供給するインバータ装置と、を有する車両用電動圧縮機が提供される。この車両用電動圧縮機は、車両の直流電源に接続される正極母線と負極母線との間に配置された複数のスイッチング素子を含み、前記車両の直流電源からの直流電力を交流電力に変換して前記電動モータのコイルに供給するインバータ回路と、前記正極母線と前記負極母線との間に接続されると共に、前記インバータ回路よりも前記車両の直流電源側に配置されたコンデンサと、前記複数のスイッチング素子の温度又は前記複数のスイッチング素子に近傍の温度を検知する温度検知部と、前記複数のスイッチング素子のうちの少なくとも一部のスイッチング素子を制御することにより、前記少なくとも一部のスイッチング素子及び前記電動モータの前記コイルを介して前記コンデンサに蓄積された電荷を放電させるコンデンサ放電制御を実施する制御部であって、前記コンデンサ放電制御の際に、前記少なくとも一部のスイッチング素子に流れる電流が前記温度検知部によって検知された温度に応じた許容電流以下になるように、前記少なくとも一部のスイッチング素子を制御するように構成された制御部と、を含む。 According to one aspect of the present invention, there is provided an electric compressor for a vehicle that includes, in a housing, an electric motor, a compression mechanism driven by the electric motor, and an inverter device that supplies electric power to the electric motor. . This electric compressor for a vehicle includes a plurality of switching elements arranged between a positive electrode bus and a negative electrode bus connected to a DC power supply of a vehicle, and converts DC power from the DC power supply of the vehicle into AC power. an inverter circuit that supplies electricity to the coil of the electric motor; a capacitor that is connected between the positive busbar and the negative busbar and that is located closer to the DC power source of the vehicle than the inverter circuit; A temperature detection section that detects the temperature of the switching element or the temperature near the plurality of switching elements, and controlling at least some of the switching elements of the plurality of switching elements; A control unit that performs capacitor discharge control for discharging the charge accumulated in the capacitor via the coil of the electric motor, the controller configured to perform capacitor discharge control to discharge electric charge accumulated in the capacitor via the coil of the electric motor, the control unit being configured to control a current flowing through at least some of the switching elements during the capacitor discharge control. A control unit configured to control at least some of the switching elements so that the current is equal to or less than an allowable current according to the temperature detected by the temperature detection unit.
 本発明によれば、コンデンサの放電を行うためのコンデンサ放電制御によってインバータ回路のスイッチング素子が損傷(熱破壊等)することを防止できる車両用電動圧縮機を提供することができる。 According to the present invention, it is possible to provide an electric compressor for a vehicle that can prevent damage (thermal destruction, etc.) to switching elements of an inverter circuit due to capacitor discharge control for discharging a capacitor.
実施形態に係る車両用電動圧縮機の概略縦断面図である。1 is a schematic vertical cross-sectional view of an electric compressor for a vehicle according to an embodiment. 実施形態に係る車両用電動圧縮機の回路構成図である。FIG. 1 is a circuit configuration diagram of a vehicle electric compressor according to an embodiment. コンデンサ放電回路の一例を示す図である。FIG. 3 is a diagram showing an example of a capacitor discharge circuit. コンデンサ放電制御の一例を示すフローチャートである。It is a flow chart which shows an example of capacitor discharge control. コンデンサ放電制御の一例を示すフローチャートである。It is a flow chart which shows an example of capacitor discharge control. 目標放電電流設定マップの一例を示す図である。It is a figure which shows an example of a target discharge current setting map. 設定されるスイッチング素子のデューティ比の一例を示す図である。It is a figure which shows an example of the duty ratio of a switching element to be set. 設定されるスイッチング素子のデューティ比の他の例を示す図である。It is a figure which shows the other example of the duty ratio of a switching element to be set.
 以下、本発明の実施の形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.
 図1は、本発明の一実施形態に係る車両用電動圧縮機(以下単に「電動圧縮機」という)1の概略縦断面図である。実施形態に係る電動圧縮機1は、インバータ装置を一体に有するインバータ一体型電動圧縮機である。電動圧縮機1は、車両に搭載されて車両用空調装置の冷媒回路の一部を構成し、冷媒を圧縮して吐出するように構成され得る。 FIG. 1 is a schematic vertical sectional view of a vehicle electric compressor (hereinafter simply referred to as "electric compressor") 1 according to an embodiment of the present invention. The electric compressor 1 according to the embodiment is an inverter-integrated electric compressor that integrally includes an inverter device. The electric compressor 1 is mounted on a vehicle, forms part of a refrigerant circuit of a vehicle air conditioner, and may be configured to compress and discharge refrigerant.
 図1を参照すると、電動圧縮機1は、電動モータ2と、電動モータによって駆動されて冷媒を圧縮する圧縮機構3と、電動モータ2及び圧縮機構3を収容するメインハウジング4と、電動モータ2に電力を供給するインバータ装置5と、インバータ装置5を収容するインバータハウジング6とを含む。メインハウジング4とインバータハウジング6は、電動圧縮機1のハウジングを構成する。つまり、電動圧縮機1は、電動モータ2、圧縮機構3及びインバータ装置5をハウジング内に有している。 Referring to FIG. 1, an electric compressor 1 includes an electric motor 2, a compression mechanism 3 driven by the electric motor to compress refrigerant, a main housing 4 housing the electric motor 2 and the compression mechanism 3, and an electric motor 2. The inverter device 5 includes an inverter device 5 that supplies power to the inverter device 5, and an inverter housing 6 that houses the inverter device 5. The main housing 4 and the inverter housing 6 constitute a housing of the electric compressor 1. That is, the electric compressor 1 includes an electric motor 2, a compression mechanism 3, and an inverter device 5 in a housing.
 電動モータ2は、例えば三相同期モータ(ブラシレスDCモータ)である。圧縮機構3は、例えばスクロール圧縮機構である。電動モータ2と圧縮機構3とは、メインハウジング4内において、電動モータ2の出力軸2aの軸方向に直列に配置され、電動モータ2の出力軸2aは、圧縮機構3(スクロール圧縮機構の場合には旋回スクロール)に連結されている。 The electric motor 2 is, for example, a three-phase synchronous motor (brushless DC motor). The compression mechanism 3 is, for example, a scroll compression mechanism. The electric motor 2 and the compression mechanism 3 are arranged in series in the axial direction of the output shaft 2a of the electric motor 2 in the main housing 4, and the output shaft 2a of the electric motor 2 is connected to the compression mechanism 3 (in the case of a scroll compression mechanism is connected to an orbiting scroll).
 インバータ装置5は、各種の電子部品が実装された回路基板7を含む。回路基板7は、インバータハウジング6内に複数の固定部材により取り付けられている。 The inverter device 5 includes a circuit board 7 on which various electronic components are mounted. The circuit board 7 is attached within the inverter housing 6 by a plurality of fixing members.
 インバータハウジング6は、メインハウジング4と一体的に設けられている。インバータハウジング6は、前記軸方向におけるメインハウジング4の一端側に、具体的には、電動モータ2を挟んで圧縮機構3とは反対側に配置されている。本実施形態において、インバータハウジング6は、メインハウジング4と一体に形成されたハウジング本体61と、ハウジング本体61に対して取り外し可能なカバー部材62とを含む。 The inverter housing 6 is provided integrally with the main housing 4. The inverter housing 6 is disposed on one end side of the main housing 4 in the axial direction, specifically, on the opposite side of the compression mechanism 3 with the electric motor 2 interposed therebetween. In this embodiment, the inverter housing 6 includes a housing body 61 that is integrally formed with the main housing 4 and a cover member 62 that is removable from the housing body 61.
 ハウジング本体61は、底壁611と、底壁611の周縁から立ち上がると共に底壁611に対向する開口部を画定する周壁612と、を有する。カバー部材62は、ハウジング本体61の前記開口部を閉塞するようにハウジング本体61に取り付けられている。ハウジング本体61の底壁611(インバータハウジング6の底壁でもある)の一部は、メインハウジング4内とインバータハウジング6内とを仕切る仕切壁8を構成している。また、電動モータ2とインバータ装置5とは、仕切壁8を気密及び液密な状態で貫通して延びる給電線9を介して電気的に接続されている。 The housing body 61 has a bottom wall 611 and a peripheral wall 612 that stands up from the periphery of the bottom wall 611 and defines an opening facing the bottom wall 611. The cover member 62 is attached to the housing body 61 so as to close the opening of the housing body 61. A portion of the bottom wall 611 of the housing body 61 (which is also the bottom wall of the inverter housing 6) constitutes a partition wall 8 that partitions the inside of the main housing 4 and the inside of the inverter housing 6. Further, the electric motor 2 and the inverter device 5 are electrically connected via a power supply line 9 that extends through the partition wall 8 in an airtight and liquidtight state.
 メインハウジング4の仕切壁8側の部位には、外部からの冷媒をメインハウジング4内に流入させる冷媒流入口4aが形成されている。冷媒流入口4aからメインハウジング4内に流入した冷媒は、メインハウジング4内(電動モータ2の隙間)を流れて圧縮機構3に至る。圧縮機構3は、電動モータ2によって駆動されて冷媒を圧縮して吐出する。 A refrigerant inlet 4 a that allows refrigerant from outside to flow into the main housing 4 is formed in a portion of the main housing 4 on the partition wall 8 side. The refrigerant that has flowed into the main housing 4 from the refrigerant inlet 4 a flows through the main housing 4 (in the gap between the electric motor 2 ) and reaches the compression mechanism 3 . The compression mechanism 3 is driven by the electric motor 2 to compress and discharge the refrigerant.
 冷媒流入口4aからメインハウジング4内に流入する冷媒は、例えば、前記車両用空気調和装置の冷媒回路における膨張弁及び蒸発器などを通過した冷媒であり、低温低圧の冷媒である。よって、冷媒流入口4aからメインハウジング4内に流入する冷媒により、仕切壁8及び電動モータ2が冷却され得る。メインハウジング4内を流れた冷媒は、圧縮機構3によって圧縮されて高温高圧の冷媒となって圧縮機構3から吐出される。そして、圧縮機構3から吐出された(高温高圧)の冷媒は、メインハウジング4に形成された冷媒流出口4bから流出する。 The refrigerant flowing into the main housing 4 from the refrigerant inlet 4a is, for example, a refrigerant that has passed through an expansion valve and an evaporator in the refrigerant circuit of the vehicle air conditioner, and is a low-temperature, low-pressure refrigerant. Therefore, the partition wall 8 and the electric motor 2 can be cooled by the refrigerant flowing into the main housing 4 from the refrigerant inlet 4a. The refrigerant flowing through the main housing 4 is compressed by the compression mechanism 3 to become a high-temperature, high-pressure refrigerant that is discharged from the compression mechanism 3. The refrigerant (high temperature and high pressure) discharged from the compression mechanism 3 flows out from the refrigerant outlet 4b formed in the main housing 4.
 図2は、電動圧縮機1の回路構成図である。 FIG. 2 is a circuit diagram of the electric compressor 1.
 図2を参照すると、電動圧縮機1は、コネクタ20を介して車両の直流電源としての車載バッテリ(以下単に「バッテリ」という)VBに接続される。そして、バッテリVBからコネクタ20を介して電動圧縮機1に、さらに言えば、インバータ装置5の後述するインバータ回路50に直流電力が供給される。 Referring to FIG. 2, the electric compressor 1 is connected to an on-vehicle battery (hereinafter simply referred to as "battery") VB as a DC power source of the vehicle via a connector 20. Then, DC power is supplied from the battery VB to the electric compressor 1 via the connector 20, and more specifically to the inverter circuit 50 of the inverter device 5, which will be described later.
 電動圧縮機1のインバータ装置5は、インバータ回路50と、第1コンデンサ51と、温度検知部52と、電圧検知部53と、電流検知部54と、制御部55と、を含む。そして、これらの少なくとも一部が回路基板7に実装されている。ここで、図1には1つの回路基板7が示されているが、これに限られるものではなく、インバータ装置5は、複数の回路基板を含み、インバータ装置5を構成するインバータ回路50や第1コンデンサ51などが前記複数の回路基板に分散配置されてもよい。 The inverter device 5 of the electric compressor 1 includes an inverter circuit 50, a first capacitor 51, a temperature detection section 52, a voltage detection section 53, a current detection section 54, and a control section 55. At least some of these are mounted on the circuit board 7. Here, although one circuit board 7 is shown in FIG. 1, the inverter device 5 includes a plurality of circuit boards, and is not limited to this. 1 capacitor 51 and the like may be distributed and arranged on the plurality of circuit boards.
 インバータ回路50は、コネクタ20及びシステムメインリレーSMRを介してバッテリVBに接続される。詳しくは、インバータ回路50は、正極母線56P及び負極母線56Nを有し、インバータ回路50の正極母線56Pがコネクタ20及びシステムメインリレーSMRを介してバッテリVBの正極端子に接続され、インバータ回路50の負極母線56Nがコネクタ20を介してバッテリVBの負極端子に接続される。 Inverter circuit 50 is connected to battery VB via connector 20 and system main relay SMR. Specifically, the inverter circuit 50 has a positive electrode bus 56P and a negative electrode bus 56N, and the positive electrode bus 56P of the inverter circuit 50 is connected to the positive terminal of the battery VB via the connector 20 and the system main relay SMR. Negative bus bar 56N is connected to the negative terminal of battery VB via connector 20.
 本実施形態において、システムメインリレーSMRは、車両の制御装置(車両ECU)100により、前記車両のスタートボタンのON操作によって閉成され、前記車両のスタートボタンのOFF操作によって開放されるように構成されている。システムメインリレーSMRが閉成されると、バッテリVBと電動圧縮機1(のインバータ装置5)とが電気的に接続され、システムメインリレーSMRが開放されると、バッテリVBと電動圧縮機1(のインバータ装置5)とが電気的に切断される。 In this embodiment, the system main relay SMR is configured to be closed by the vehicle control device (vehicle ECU) 100 when the start button of the vehicle is turned ON, and opened when the start button of the vehicle is turned OFF. has been done. When system main relay SMR is closed, battery VB and electric compressor 1 (inverter device 5) are electrically connected, and when system main relay SMR is opened, battery VB and electric compressor 1 ( The inverter device 5) is electrically disconnected.
 インバータ回路50は、バッテリVBに接続される正極母線56Pと負極母線56Nとの間に配置された複数(ここでは6つ)のスイッチング素子Q1~Q6と、スイッチング素子Q1~Q6と同数(ここでは6つ)のダイオードD1~D6とを含む。特に限定されないが、スイッチング素子Q1~Q6は、IGBT(絶縁ゲート型バイポーラトランジスタ)であり得る。インバータ回路50は、スイッチング素子Q1~Q6が制御(PMW制御)されることにより、バッテリVBからの直流電力を三相交流電力に変換して電動モータ2に供給するように構成されている。 The inverter circuit 50 includes a plurality of (here, six) switching elements Q1 to Q6 arranged between a positive electrode bus 56P and a negative electrode bus 56N connected to the battery VB, and the same number of switching elements Q1 to Q6 (here, six). diodes D1 to D6. Although not particularly limited, the switching elements Q1 to Q6 may be IGBTs (insulated gate bipolar transistors). Inverter circuit 50 is configured to convert DC power from battery VB into three-phase AC power and supply it to electric motor 2 by controlling switching elements Q1 to Q6 (PMW control).
 ここで、本実施形態において、複数のスイッチング素子Q1~Q6は、インバータハウジング6内において、仕切壁8に熱的に接触するように配置されている(図1参照)。ここで、仕切壁8に熱的に接触するとは、仕切壁8との間で熱交換が可能な状態にあることをいい、仕切壁8に直接接触すること、仕切壁8に近接していること、及び、熱伝導率が高い熱交換部材などを介して仕切壁8に間接的に接触することなどが含まれる。したがって、複数のスイッチング素子Q1~Q6は、メインハウジング4内に流入する(低温の)冷媒によって仕切壁8を介して冷却され得る。 Here, in this embodiment, the plurality of switching elements Q1 to Q6 are arranged in the inverter housing 6 so as to be in thermal contact with the partition wall 8 (see FIG. 1). Here, to be in thermal contact with the partition wall 8 means to be in a state where heat exchange is possible with the partition wall 8, and to be in direct contact with the partition wall 8, or to be in close proximity to the partition wall 8. This also includes indirect contact with the partition wall 8 via a heat exchange member with high thermal conductivity. Therefore, the plurality of switching elements Q1 to Q6 can be cooled via the partition wall 8 by the (low temperature) refrigerant flowing into the main housing 4.
 インバータ回路50についてさらに説明する。インバータ回路50は、正極母線56Pと負極母線56Nとの間に並列に設けられたU相アーム、V相アーム及びW相アームを有する。U相アームには2つのスイッチング素子Q1、Q2が直列に接続され、各スイッチング素子Q1、Q2にはダイオードD1、D2がそれぞれ逆並列に接続されている。V相アームには2つのスイッチング素子Q3、Q4が直列に接続され、各スイッチング素子Q3、Q4にはダイオードD3、D4がそれぞれ逆並列に接続されている。W相アームには2つのスイッチング素子Q5、Q6が直列に接続され、各スイッチング素子Q5、Q6にはダイオードD5、D6がそれぞれ逆並列に接続されている。 The inverter circuit 50 will be further explained. The inverter circuit 50 has a U-phase arm, a V-phase arm, and a W-phase arm that are provided in parallel between a positive bus 56P and a negative bus 56N. Two switching elements Q1 and Q2 are connected in series to the U-phase arm, and diodes D1 and D2 are connected in antiparallel to each switching element Q1 and Q2, respectively. Two switching elements Q3 and Q4 are connected in series to the V-phase arm, and diodes D3 and D4 are connected in antiparallel to each switching element Q3 and Q4, respectively. Two switching elements Q5 and Q6 are connected in series to the W-phase arm, and diodes D5 and D6 are connected in antiparallel to each switching element Q5 and Q6, respectively.
 また、U相アーム、V相アーム及びW相アームのそれぞれの中間点は、それぞれの一端においてスター結線された電動モータ2のU相コイル、V相コイル及びW相コイルの他端に接続されている。すなわち、U相アームにおいてスイッチング素子Q1、Q2の間の位置するU相アームの中間点はU相コイルに接続され、V相アームにおいてスイッチング素子Q3、Q4の間に位置するV相アームの中間点はV相コイルに接続され、及び、W相アームにおいてスイッチング素子Q5、Q6の間に位置するV相アームの中間点はW相コイルに接続されている。 Further, the intermediate points of each of the U-phase arm, V-phase arm, and W-phase arm are connected to the other ends of the U-phase coil, V-phase coil, and W-phase coil of the electric motor 2 which are star-connected at one end of each. There is. That is, the midpoint of the U-phase arm located between switching elements Q1 and Q2 in the U-phase arm is connected to the U-phase coil, and the midpoint of the V-phase arm located between switching elements Q3 and Q4 in the V-phase arm is connected to the U-phase coil. is connected to the V-phase coil, and the midpoint of the V-phase arm located between switching elements Q5 and Q6 in the W-phase arm is connected to the W-phase coil.
 そして、各相アームの正極母線56P側のスイッチング素子Q1、Q3、Q5のON期間の比率と負極母線56N側のスイッチング素子Q2、Q4、Q6のON期間の比率が制御されることにより、すなわち、スイッチング素子Q1~Q6がデューティ比で制御(PWM制御)されることにより、インバータ回路50は、バッテリVBからの直流電力を三相交流電力に変換して電動モータ2に供給することができ、これによって、電動モータ2を駆動する。 By controlling the ratio of the ON period of the switching elements Q1, Q3, Q5 on the positive electrode bus 56P side of each phase arm and the ON period of the switching elements Q2, Q4, Q6 on the negative electrode bus 56N side, that is, By controlling the switching elements Q1 to Q6 with the duty ratio (PWM control), the inverter circuit 50 can convert the DC power from the battery VB into three-phase AC power and supply it to the electric motor 2. The electric motor 2 is driven by.
 第1コンデンサ51は、インバータ回路50の正極母線56Pと負極母線56Nとの間に接続されている。第1コンデンサ51は、インバータ回路50よりもバッテリVB側、すなわち、インバータ回路50とコネクタ20との間に配置されている。第1コンデンサ51は、バッテリVBからインバータ回路50に供給される直流電力を平滑化する平滑コンデンサである。 The first capacitor 51 is connected between the positive bus 56P and the negative bus 56N of the inverter circuit 50. The first capacitor 51 is arranged closer to the battery VB than the inverter circuit 50, that is, between the inverter circuit 50 and the connector 20. The first capacitor 51 is a smoothing capacitor that smoothes the DC power supplied from the battery VB to the inverter circuit 50.
 温度検知部52は、スイッチング素子Q1~Q6の温度又はスイッチング素子Q1~Q6の近傍の温度(以下、これらをまとめて単に「スイッチング素子温度」という。)を検知する。 The temperature detection unit 52 detects the temperature of the switching elements Q1 to Q6 or the temperature in the vicinity of the switching elements Q1 to Q6 (hereinafter collectively referred to as "switching element temperature").
 電圧検知部53は、インバータ回路50と第1コンデンサ51との間に配置され、インバータ回路50と第1コンデンサ51との間における正極母線56Pと負極母線56Nとの間の電位差を検知する。 The voltage detection unit 53 is arranged between the inverter circuit 50 and the first capacitor 51, and detects the potential difference between the positive electrode bus 56P and the negative electrode bus 56N between the inverter circuit 50 and the first capacitor 51.
 電流検知部54は、電動モータ2を流れる電流を検知する。本実施形態において、電流検知部54は、インバータ回路50と第1コンデンサ51との間における負極母線56N上に配置されている。但し、これに限られるものではなく、電流検知部54は、インバータ回路50と第1コンデンサ51との間における正極母線56P上に配置されてもよい。 The current detection unit 54 detects the current flowing through the electric motor 2. In this embodiment, the current detection unit 54 is arranged on the negative bus 56N between the inverter circuit 50 and the first capacitor 51. However, the present invention is not limited thereto, and the current detection unit 54 may be placed on the positive bus bar 56P between the inverter circuit 50 and the first capacitor 51.
 制御部55は、前記車両用空調装置の制御装置(空調ECU)101からの動作指令に基づき、電動モータ2、ひいては圧縮機構3を駆動するため、スイッチング素子Q1~Q6を制御(PWM制御)するように構成されている。 The control unit 55 controls (PWM control) the switching elements Q1 to Q6 in order to drive the electric motor 2 and eventually the compression mechanism 3 based on an operation command from the control device (air conditioning ECU) 101 of the vehicle air conditioner. It is configured as follows.
 また、制御部55は、車両ECU100からコンデンサ放電指令を入力すると、コンデンサの放電を行うための制御(以下「コンデンサ放電制御」という)を実施するように構成されている。本実施形態において、車両ECU100は、少なくとも前記車両のスタートボタンがOFF操作されたこと(すなわち、システムメインリレーSMRを開放したこと)を条件に、前記コンデンサ放電指令を制御部55に出力するように構成されている。 Further, the control unit 55 is configured to perform control for discharging the capacitor (hereinafter referred to as "capacitor discharge control") when a capacitor discharge command is input from the vehicle ECU 100. In this embodiment, the vehicle ECU 100 outputs the capacitor discharge command to the control unit 55 on the condition that at least the start button of the vehicle is turned off (that is, the system main relay SMR is opened). It is configured.
 ここで、本実施形態においては、第1コンデンサ51の他にも、コネクタ20よりもバッテリVB側にバッテリVBに並列に接続された第2コンデンサ21が設けられている。第2コンデンサ21は、バッテリVBの正極端子とインバータ回路50の正極母線56Pとをコネクタ20を介して接続する正極側配線22Pと、バッテリVBの負極端子とインバータ回路50の負極母線56Nとをコネクタ20を介して接続する負極側配線22Nとに間に接続されている。第2コンデンサ21は、第1コンデンサ51と同様、バッテリVBからインバータ回路50に供給される直流電力を平滑化する機能を有する。 Here, in this embodiment, in addition to the first capacitor 51, a second capacitor 21 is provided closer to the battery VB than the connector 20 and connected in parallel to the battery VB. The second capacitor 21 has a positive side wiring 22P that connects the positive terminal of the battery VB and the positive bus 56P of the inverter circuit 50 via the connector 20, and a connector that connects the negative terminal of the battery VB and the negative bus 56N of the inverter circuit 50. 20 and a negative electrode side wiring 22N connected therebetween. Like the first capacitor 51, the second capacitor 21 has a function of smoothing the DC power supplied from the battery VB to the inverter circuit 50.
 そのため、本実施形態において、制御部55は、前記コンデンサ放電制御により、第1コンデンサ51及び第2コンデンサ21の放電を行うように構成されている。すなわち、制御部55は、前記コンデンサ放電制御を実施することにより、第1コンデンサ51に蓄積された電荷を放電させることに加えて、第2コンデンサ21に蓄積された電荷を放電させるように構成されている。ここで、第1コンデンサ51は、電動圧縮機側のコンデンサであり、第2コンデンサ21は、前記車両側のコンデンサである。 Therefore, in this embodiment, the control unit 55 is configured to discharge the first capacitor 51 and the second capacitor 21 by the capacitor discharge control. That is, the control unit 55 is configured to discharge the charge accumulated in the first capacitor 51 and also discharge the charge accumulated in the second capacitor 21 by performing the capacitor discharge control. ing. Here, the first capacitor 51 is a capacitor on the electric compressor side, and the second capacitor 21 is a capacitor on the vehicle side.
 具体的には、制御部55は、前記コンデンサ放電指令を入力すると、複数のスイッチング素子Q1~Q6のうちの少なくとも一部のスイッチング素子、ここでは、スイッチング素子Q1、Q4及びQ6を制御して(ONして)第1コンデンサ51及び第2コンデンサ21と、電動モータ2のコイル(U相コイル、V相コイル及びW相コイル)とを通電させる。これにより、スイッチング素子Q1、Q4及びQ6と電動モータ2の前記コイルとを含むコンデンサ放電回路が生成され、図3中に矢印で示されるように、第1コンデンサ51に蓄積された電荷及び第2コンデンサ21に蓄積された電荷がスイッチング素子Q1、Q4及びQ6と、電動モータ2の前記コイル(U相コイル、V相コイル及びW相コイル)とを介して放電される。 Specifically, upon input of the capacitor discharge command, the control unit 55 controls at least some of the switching elements Q1 to Q6, here, switching elements Q1, Q4, and Q6. (ON) to energize the first capacitor 51, the second capacitor 21, and the coils (U-phase coil, V-phase coil, and W-phase coil) of the electric motor 2. As a result, a capacitor discharge circuit including the switching elements Q1, Q4, and Q6 and the coil of the electric motor 2 is generated, and as shown by the arrow in FIG. The charges accumulated in the capacitor 21 are discharged via the switching elements Q1, Q4, and Q6 and the coils (U-phase coil, V-phase coil, and W-phase coil) of the electric motor 2.
 制御部55が実施する前記コンデンサ放電制御についてさらに説明する。 The capacitor discharge control performed by the control unit 55 will be further explained.
 本実施形態において、制御部55は、前記コンデンサ放電指令を入力すると、温度検知部52によって検知される前記スイッチング素子温度の監視、電圧検知部53によって検知される電圧の監視、及び、電流検知部54によって検知される電流の監視を開始する。ここで、電圧検知部53によって検知される電位差は、正極母線56Pと負極母線56Nとの間の電位差であり、第1コンデンサ51及び第2コンデンサ21の端子間電圧(コンデンサ電圧)に相当する。また、電流検知部54によって検知される電流は、前記コンデンサ放電回路が生成された場合の第1コンデンサ51及び/又は第2コンデンサ21の放電電流に相当する。よって、以下では、電圧検知部53によって検知される電位差を「コンデンサ電圧相当値」といい、電流検知部54によって検知される電流を「コンデンサ放電電流」ということがある。制御部55は、電圧検知部53によって検知されるコンデンサ電圧相当値に基づいて前記コンデンサ放電制御が必要か否かを判断する。そして、前記コンデンサ放電制御が必要な場合、制御部55は、温度検知部52によって検知される前記スイッチング素子温度に基づいて目標放電電流を設定し、設定された目標放電電流と、電流検知部54によって検知されるコンデンサ放電電流とに基づいてスイッチング素子Q1、Q4及びQ6のデューティ比を設定し、設定されたデューティ比でスイッチング素子Q1、Q4及びQ6を制御する。 In this embodiment, upon input of the capacitor discharge command, the control unit 55 monitors the switching element temperature detected by the temperature detection unit 52, monitors the voltage detected by the voltage detection unit 53, and monitors the switching element temperature detected by the voltage detection unit 53. Monitoring of the current detected by 54 is started. Here, the potential difference detected by the voltage detection unit 53 is the potential difference between the positive electrode bus 56P and the negative electrode bus 56N, and corresponds to the voltage between the terminals of the first capacitor 51 and the second capacitor 21 (capacitor voltage). Further, the current detected by the current detection unit 54 corresponds to the discharge current of the first capacitor 51 and/or the second capacitor 21 when the capacitor discharge circuit is generated. Therefore, hereinafter, the potential difference detected by the voltage detection section 53 may be referred to as a "capacitor voltage equivalent value", and the current detected by the current detection section 54 may be referred to as a "capacitor discharge current". The control unit 55 determines whether the capacitor discharge control is necessary based on the capacitor voltage equivalent value detected by the voltage detection unit 53. When the capacitor discharge control is necessary, the control unit 55 sets a target discharge current based on the switching element temperature detected by the temperature detection unit 52, and combines the set target discharge current with the current detection unit 54. The duty ratios of the switching elements Q1, Q4, and Q6 are set based on the capacitor discharge current detected by the controller, and the switching elements Q1, Q4, and Q6 are controlled with the set duty ratios.
 図4、図5は、制御部55が実施する前記コンデンサ放電制御の一例を示すフローチャートである。このフローチャートは、制御部55が前記コンデンサ放電指令を入力すると開始される。 4 and 5 are flowcharts showing an example of the capacitor discharge control performed by the control unit 55. This flowchart is started when the control unit 55 inputs the capacitor discharge command.
 ステップS1において、制御部55は、電圧検知部53によって検知される電位差、すなわち、コンデンサ電圧相当値を読み込む。 In step S1, the control unit 55 reads the potential difference detected by the voltage detection unit 53, that is, the capacitor voltage equivalent value.
 ステップS2において、制御部55は、読み込まれたコンデンサ電圧相当値が前記コンデンサ放電制御を必要する基準値である放電必要電圧以上であるか否かを判断する。読み込まれたコンデンサ電圧相当値が前記放電必要電圧以上である場合、制御部55はステップS3の処理に進み、読み込まれたコンデンサ電圧相当値が前記放電必要電圧未満である場合、制御部55は本フローを終了する。 In step S2, the control unit 55 determines whether the read capacitor voltage equivalent value is equal to or higher than the required discharge voltage, which is a reference value that requires the capacitor discharge control. If the read capacitor voltage equivalent value is equal to or higher than the required discharge voltage, the control unit 55 proceeds to step S3, and if the read capacitor voltage equivalent value is less than the required discharge voltage, the control unit 55 proceeds to step S3. End the flow.
 ステップS3において、制御部55は、温度検知部52によって検知されるスイッチング素子温度を読み込む。 In step S3, the control unit 55 reads the switching element temperature detected by the temperature detection unit 52.
 ステップS4において、制御部55は、読み込まれたスイッチング素子温度に基づいて目標放電電流を設定する。制御部55は、次のようにして目標放電電流を設定する。 In step S4, the control unit 55 sets a target discharge current based on the read switching element temperature. The control unit 55 sets the target discharge current as follows.
 本実施形態において、制御部55は、図6に示されるような目標放電電流設定マップを有している。この目標放電電流設定マップにおいて、X軸は前記スイッチング素子温度であり、Y軸は放電電流値(=スイッチング素子を流れる電流=電動モータ2の相電流値)である。また、図6中の実線は、スイッチング素子に流れてもスイッチング素子が熱破壊することのない最大の電流であるスイッチング素子の許容電流を示し、図6中の破線は、あらかじめ設定された要求放電時間内に第1コンデンサ51及び第2コンデンサ21の放電を完了させる(完全に完了させる必要はなく、概ね完了させればよい。)ために必要な下限電流を示している。ここで、前記許容電流及び前記下限電流は、第1コンデンサ51に蓄積された電荷及び第2コンデンサ21に蓄積された電荷を放電させるために生成される前記コンデンサ放電回路、つまり、スイッチング素子Q1、Q4及びQ6と電動モータ2の前記コイルとを含む前記コンデンサ放電回路の温度特性(特に抵抗変動)を考慮して設定されている。 In this embodiment, the control unit 55 has a target discharge current setting map as shown in FIG. In this target discharge current setting map, the X-axis is the switching element temperature, and the Y-axis is the discharge current value (=current flowing through the switching element=phase current value of the electric motor 2). The solid line in FIG. 6 indicates the maximum allowable current of the switching element that will not cause thermal breakdown of the switching element even if it flows through the switching element, and the broken line in FIG. 6 indicates the required discharge that is set in advance. It shows the lower limit current required to complete the discharge of the first capacitor 51 and the second capacitor 21 within the time (it does not have to be completed completely, it is sufficient if it is almost completed). Here, the allowable current and the lower limit current are determined by the capacitor discharge circuit, that is, the switching element Q1, which is generated to discharge the charges accumulated in the first capacitor 51 and the charges accumulated in the second capacitor 21. It is set in consideration of the temperature characteristics (particularly resistance fluctuation) of the capacitor discharge circuit including Q4 and Q6 and the coil of the electric motor 2.
 そして、制御部55は、読み込まれた前記スイッチング素子温度に基づき、前記許容電流以下であり且つ前記下限電流以上の電流、すなわち、図6中のハッチング内の電流を目標放電電流として設定する。つまり、制御部55は、基本的には、前記スイッチング素子温度が低いほど高い電流値を有する目標放電電流を設定する。特に限定されないが、本実施形態において、制御部55は、スイッチング素子Q1、Q4及びQ6の発熱をできるだけ抑制するため、前記スイッチング素子温度に基づき、前記下限電流に比較的近い電流値を有する電流を目標放電電流として設定する。 Based on the read switching element temperature, the control unit 55 sets a current that is less than or equal to the allowable current and greater than or equal to the lower limit current, that is, the current indicated by hatching in FIG. 6, as the target discharge current. That is, the control unit 55 basically sets a target discharge current having a higher current value as the switching element temperature is lower. Although not particularly limited, in this embodiment, the control unit 55 controls a current having a current value relatively close to the lower limit current based on the switching element temperature in order to suppress heat generation of the switching elements Q1, Q4, and Q6 as much as possible. Set as target discharge current.
 ステップS5において、制御部55は、デューティ比50%でスイッチング素子Q1、Q4及びQ6を制御する。これにより、前記コンデンサ放電回路が生成され、前記コンデンサ放電制御、すなわち、第1コンデンサ51に蓄積された電荷の放電及び第2コンデンサ21に蓄積された電荷の放電が開始される。 In step S5, the control unit 55 controls the switching elements Q1, Q4, and Q6 with a duty ratio of 50%. As a result, the capacitor discharge circuit is generated, and the capacitor discharge control, that is, the discharge of the charges accumulated in the first capacitor 51 and the discharge of the charges accumulated in the second capacitor 21 are started.
 ステップS6において、制御部55は、電流検知部54によって検知される電流、すなわち、コンデンサ放電電流を読み込む。 In step S6, the control unit 55 reads the current detected by the current detection unit 54, that is, the capacitor discharge current.
 ステップS7において、制御部55は、設定された目標放電電流と読み込まれた前記コンデンサ放電電流との差分を算出する。 In step S7, the control unit 55 calculates the difference between the set target discharge current and the read capacitor discharge current.
 ステップS8において、制御部55は、算出された差分に基づいてスイッチング素子Q1、Q4及びQ6のデューティ比を設定する。 In step S8, the control unit 55 sets the duty ratios of the switching elements Q1, Q4, and Q6 based on the calculated difference.
 ステップS9において、制御部55は、設定されたデューティ比でスイッチング素子Q1、Q4及びQ6を制御する。これにより、スイッチング素子Q1、Q4及びQ6を流れる電流が前記許容電流以下に制限された状態で、第1コンデンサ51に蓄積された電荷及び第2コンデンサ21に蓄積された電荷が放電される。 In step S9, the control unit 55 controls the switching elements Q1, Q4, and Q6 at the set duty ratio. Thereby, the electric charges accumulated in the first capacitor 51 and the electric charges accumulated in the second capacitor 21 are discharged while the current flowing through the switching elements Q1, Q4, and Q6 is limited to the above-mentioned allowable current or less.
 ステップS10において、制御部55は、前記コンデンサ放電指令を入力してから又は放電開始から前記要求放電時間が経過したか否かを判定する。前記要求放電時間が経過していない場合、制御部55はステップS11の処理に進む。他方、前記要求放電時間が経過している場合、制御部55はステップS13(図5)の処理に進む。 In step S10, the control unit 55 determines whether the required discharge time has elapsed since inputting the capacitor discharge command or starting discharge. If the required discharge time has not elapsed, the control unit 55 proceeds to step S11. On the other hand, if the required discharge time has elapsed, the control unit 55 proceeds to step S13 (FIG. 5).
 ステップS11において、制御部55は、電圧検知部53によって検知される電位差、すなわち、コンデンサ電圧相当値を読み込む。 In step S11, the control unit 55 reads the potential difference detected by the voltage detection unit 53, that is, the capacitor voltage equivalent value.
 ステップS12において、制御部55は、読み込まれたコンデンサ電圧相当値が放電必要電圧以上であるか否かを判断する。読み込まれたコンデンサ電圧相当値が前記放電必要電圧以上である場合、制御部55はステップS6の処理に戻り、読み込まれたコンデンサ電圧相当値が前記放電必要電圧未満である場合、制御部55は本フローを終了する。 In step S12, the control unit 55 determines whether the read capacitor voltage equivalent value is equal to or higher than the required discharge voltage. If the read capacitor voltage equivalent value is equal to or higher than the required discharge voltage, the control unit 55 returns to the process of step S6, and if the read capacitor voltage equivalent value is less than the required discharge voltage, the control unit 55 returns to step S6. End the flow.
 ステップS13において、制御部55は、コンデンサ放電制御を停止する。 In step S13, the control unit 55 stops capacitor discharge control.
 ステップS14において、制御部55は、コンデンサ放電制御を停止してからあらかじめ設定されたスイッチング素子の冷却期間が経過したか否かを判定する。そして、スイッチング素子の冷却期間が経過すると、制御部55は、ステップS1の処理に戻る。 In step S14, the control unit 55 determines whether a preset cooling period for the switching element has elapsed since the capacitor discharge control was stopped. Then, when the cooling period of the switching element has elapsed, the control unit 55 returns to the process of step S1.
 図7は、制御部55によって設定されるスイッチング素子Q1、Q4及びQ6のデューティ比の一例を示す図である。図7(a)は、前記スイッチング素子温度が低い場合を示し、図7(b)は、前記スイッチング素子温度が高い場合を示している。 FIG. 7 is a diagram showing an example of the duty ratios of the switching elements Q1, Q4, and Q6 set by the control unit 55. FIG. 7(a) shows a case where the switching element temperature is low, and FIG. 7(b) shows a case where the switching element temperature is high.
 制御部55に前記コンデンサ放電指令が入力された場合、通常はシステムメインリレーSMRが開放されており、第1コンデンサ51及び第2コンデンサ21は、バッテリVBから電気的に切断された状態にある。そのため、電圧検知部53によって検知されるコンデンサ電圧相当値は、第1コンデンサ51及び第2コンデンサ21が放電されるにつれて低下する。換言すれば、前記要求放電時間が経過するまでの間、前記コンデンサ電圧相当値は、前記コンデンサ放電制御の開始から時間の経過と共にだんだん低くなる。また、前記コンデンサ電圧相当値が低下すると、電流検知部54によって検知される前記コンデンサ放電電流も低下する。よって、前記目標放電電流が一定の場合、前記目標放電電流を維持するため、図7(a)、(b)に示されるように、時間が経過するにつれてステップS8で設定されるデューティ比が大きくなる(T1<T2<T3)。なお、前記スイッチング素子温度が高い場合、前記スイッチング素子温度が低い場合に比べて低い電流値の目標放電電流が設定される(図6参照)。そのため、前記スイッチング素子温度が高い場合の制御デューティ比(図7(b))は、前記スイッチング素子温度が低い場合のデューティ比(図7(a))よりもデューティ比の増加分が小さくなる。 When the capacitor discharge command is input to the control unit 55, the system main relay SMR is normally open, and the first capacitor 51 and the second capacitor 21 are electrically disconnected from the battery VB. Therefore, the capacitor voltage equivalent value detected by the voltage detection unit 53 decreases as the first capacitor 51 and the second capacitor 21 are discharged. In other words, until the required discharge time elapses, the capacitor voltage equivalent value gradually decreases as time passes from the start of the capacitor discharge control. Further, when the capacitor voltage equivalent value decreases, the capacitor discharge current detected by the current detection section 54 also decreases. Therefore, when the target discharge current is constant, in order to maintain the target discharge current, the duty ratio set in step S8 increases as time passes, as shown in FIGS. 7(a) and (b). (T1<T2<T3). Note that when the switching element temperature is high, a target discharge current with a lower current value is set than when the switching element temperature is low (see FIG. 6). Therefore, the control duty ratio when the switching element temperature is high (FIG. 7(b)) has a smaller increase in duty ratio than the duty ratio when the switching element temperature is low (FIG. 7(a)).
 図8は、制御部55によって設定されるスイッチング素子Q1、Q4及びQ6のデューティ比の他の例を示す図である。図8(a)は、前記スイッチング素子温度が低い場合を示し、図8(b)は、前記スイッチング素子温度が高い場合を示している。 FIG. 8 is a diagram showing another example of the duty ratios of the switching elements Q1, Q4, and Q6 set by the control unit 55. FIG. 8(a) shows a case where the switching element temperature is low, and FIG. 8(b) shows a case where the switching element temperature is high.
 何らかの事情により、システムメインリレーSMRが閉じているときに制御部55に前記コンデンサ放電指令が入力された場合、換言すれば、制御部55に誤って前記コンデンサ放電指令が入力された場合、第1コンデンサ51及び第2コンデンサ21は、バッテリVBと電気的に接続された状態にある。この場合、前記コンデンサ放電制御の開始後も電圧検知部53によって検知される電位差(前記コンデンサ電圧相当値)は一定に維持される(低下しない)。よって、前記目標放電電流が一定の場合、前記要求放電時間が経過するまでの間、図8(a)、(b)に示されるように、ステップS8で前記目標放電電流に応じたほぼ一定のデューティ比が設定される(T1≒T2≒T3)。前記スイッチング素子温度が高い場合、前記スイッチング素子温度が低い場合に比べて低い電流値の目標放電電流が設定される。そのため、前記スイッチング素子温度が高い場合の制御デューティ比(図8(b))は、前記スイッチング素子温度が低い場合の制御デューティ比(図8(a))よりも小さく設定される。 If for some reason the capacitor discharge command is input to the control unit 55 while the system main relay SMR is closed, in other words, if the capacitor discharge command is input to the control unit 55 by mistake, the first Capacitor 51 and second capacitor 21 are in a state of being electrically connected to battery VB. In this case, even after the start of the capacitor discharge control, the potential difference (the capacitor voltage equivalent value) detected by the voltage detection unit 53 is maintained constant (does not decrease). Therefore, when the target discharge current is constant, until the required discharge time elapses, as shown in FIGS. The duty ratio is set (T1≈T2≈T3). When the switching element temperature is high, a target discharge current with a lower current value is set than when the switching element temperature is low. Therefore, the control duty ratio when the switching element temperature is high (FIG. 8(b)) is set smaller than the control duty ratio when the switching element temperature is low (FIG. 8(a)).
 以上説明したように、本実施形態において、制御部55は、前記コンデンサ放電指令を入力すると、スイッチング素子Q1、Q4及びQ6を制御することにより、スイッチング素子Q1、Q4及びQ6と電動モータ2の前記コイルとを介して第1コンデンサ51及び第2コンデンサ21を放電させる前記コンデンサ放電制御を実施する。その際、制御部55は、スイッチング素子Q1、Q4及びQ6を流れる電流が前記スイッチング素子温度に応じたスイッチング素子Q1、Q4及びQ6の許容電流以下になるように、スイッチング素子Q1、Q4及びQ6を制御する。つまり、スイッチング素子Q1、Q4及びQ6を流れる電流が許容電流以下に制限される。 As explained above, in this embodiment, when the control unit 55 inputs the capacitor discharge command, the control unit 55 controls the switching elements Q1, Q4, and Q6 and the electric motor 2. The capacitor discharge control is performed to discharge the first capacitor 51 and the second capacitor 21 via the coil. At this time, the control unit 55 controls the switching elements Q1, Q4, and Q6 so that the current flowing through the switching elements Q1, Q4, and Q6 is equal to or less than the allowable current of the switching elements Q1, Q4, and Q6 according to the switching element temperature. Control. In other words, the currents flowing through the switching elements Q1, Q4, and Q6 are limited to below the allowable current.
 そのため、前記コンデンサ放電制御によりスイッチング素子Q1、Q4及びQ6が損傷(熱破壊等)することが防止される。また、バッテリVBと第1コンデンサ51及び第2コンデンサ21とが電気的に接続された状態にあるときに前記コンデンサ放電指令が誤って制御部55に入力された場合であっても、スイッチング素子Q1、Q4及びQ6が損傷(熱破壊等)することが防止される。 Therefore, the capacitor discharge control prevents the switching elements Q1, Q4, and Q6 from being damaged (thermal destruction, etc.). Moreover, even if the capacitor discharge command is inputted to the control unit 55 by mistake when the battery VB is electrically connected to the first capacitor 51 and the second capacitor 21, the switching element Q1 , Q4, and Q6 are prevented from being damaged (thermal destruction, etc.).
 制御部55は、前記コンデンサ放電制御の際に、スイッチング素子Q1、Q4及びQ6を流れる電流が前記要求放電時間及び前記スイッチング素子温度に応じた下限電流以上になるように、スイッチング素子Q1、Q4及びQ6を制御するように構成されている。下限電流は、前記要求放電時間内に第1コンデンサ51及び第2コンデンサ21の放電を完了させるために必要な電流である。そのため、スイッチング素子Q1、Q4及びQ6が損傷(熱破壊等)することを防止しつつ、前記要求放電時間内に第1コンデンサ51及び第2コンデンサ21の放電を完了させることができる。 The control unit 55 controls the switching elements Q1, Q4, and Q6 so that the current flowing through the switching elements Q1, Q4, and Q6 becomes equal to or higher than the lower limit current according to the required discharge time and the switching element temperature during the capacitor discharge control. Q6. The lower limit current is the current required to complete the discharge of the first capacitor 51 and the second capacitor 21 within the required discharge time. Therefore, the discharge of the first capacitor 51 and the second capacitor 21 can be completed within the required discharge time while preventing the switching elements Q1, Q4, and Q6 from being damaged (thermal destruction, etc.).
 具体的には、本実施形態において、制御部55は、前記スイッチング素子温度に基づいて前記許容電流以下であり且つ前記下限電流以上の目標放電電流を設定し、設定された目標放電電流と電流検知部54によって検知される前記コンデンサ放電電流とに基づいてスイッチング素子Q1、Q4及びQ6のデューティ比を設定し、設定されたデューティ比でスイッチング素子Q1、Q4及びQ6を制御するように構成されている。これにより、スイッチング素子Q1、Q4及びQ6の損傷(熱破壊等)を防止すると共に前記要求放電時間内に第1コンデンサ51及び第2コンデンサ21の放電を完了させることのできる前記コンデンサ放電制御が安定して実施され得る。 Specifically, in the present embodiment, the control unit 55 sets a target discharge current that is below the allowable current and above the lower limit current based on the switching element temperature, and compares the set target discharge current with the current detection. The duty ratio of the switching elements Q1, Q4, and Q6 is set based on the capacitor discharge current detected by the unit 54, and the switching elements Q1, Q4, and Q6 are controlled with the set duty ratio. . This stabilizes the capacitor discharge control that can prevent damage (thermal destruction, etc.) to the switching elements Q1, Q4, and Q6 and complete the discharge of the first capacitor 51 and the second capacitor 21 within the required discharge time. It can be implemented as follows.
 上述の実施形態において、制御部55は、スイッチング素子Q1、Q4及びQ6を制御することにより、前記コンデンサ放電制御を実施している。しかし、これに限られるものではない。第1コンデンサ51及び第2コンデンサ21と、電動モータ2のコイル(U相コイル、V相コイル及びW相コイル)とを通電させればよく、制御部55は、スイッチング素子Q1~Q6のうちの任意のスイッチング素子を制御して前記コンデンサ放電制御を実施することができる。 In the embodiment described above, the control unit 55 performs the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6. However, it is not limited to this. It is sufficient to energize the first capacitor 51 and the second capacitor 21 and the coils (U-phase coil, V-phase coil, and W-phase coil) of the electric motor 2. The capacitor discharge control can be performed by controlling any switching element.
 上述の実施形態において、制御部55は、前記スイッチング素子温度に基づいて前記許容電流以下であり且つ前記下限電流以上の目標放電電流を設定している。しかし、これに限られるものではない。前記要求放電時間が設定されない場合や前記要求放電時間が十分に長い場合などにおいて、制御部55は、単に前記スイッチング素子温度に基づいて前記許容電流以下の目標放電電流を設定すればよい。 In the embodiment described above, the control unit 55 sets a target discharge current that is less than or equal to the allowable current and greater than or equal to the lower limit current based on the switching element temperature. However, it is not limited to this. When the required discharge time is not set or when the required discharge time is sufficiently long, the control unit 55 may simply set a target discharge current equal to or lower than the allowable current based on the switching element temperature.
 上述の実施形態において、制御部55は、前記スイッチング素子温度に基づき、前記下限電流に比較的近い電流値を有する電流を前記目標放電電流として設定している。しかし、これに限られるものではない。例えば放電時間の短縮化が優先される場合、制御部55は、前記スイッチング素子温度に基づき、前記許容電流に比較的近い電流値を有する電流を前記目標放電電流として設定してもよい。また、スイッチング素子Q1、Q4及びQ6の発熱の抑制と放電時間の短縮化とをバランスさせる場合、制御部55は、前記スイッチング素子温度に基づき、前記許容電流と前記下限電流との中間の電流値を有する電流を前記目標放電電流として設定してもよい。 In the embodiment described above, the control unit 55 sets a current having a current value relatively close to the lower limit current as the target discharge current based on the switching element temperature. However, it is not limited to this. For example, when shortening the discharge time is prioritized, the control unit 55 may set a current having a current value relatively close to the allowable current as the target discharge current based on the switching element temperature. In addition, when balancing the suppression of heat generation of the switching elements Q1, Q4, and Q6 with the shortening of the discharge time, the control unit 55 sets an intermediate current value between the allowable current and the lower limit current based on the switching element temperature. You may set the electric current which has as said target discharge current.
 上述の実施形態において、制御部55は、デューティ比50%でスイッチング素子Q1、Q4及びQ6を制御することにより、前記コンデンサ放電制御を開始させている(図4のステップ5)。換言すれば、前記コンデンサ放電制御を実施する際のスイッチング素子Q1、Q4及びQ6のデューティ比の初期値を50%としている。しかし、これに限られるものではない。制御部55は、任意のデューティ比(の初期値)でスイッチング素子Q1、Q4及びQ6を制御することにより、前記コンデンサ放電制御を開始させることができる。例えば、制御部55は、図4のステップS4で設定された目標放電電流に応じたデューティ比(の初期値)でスイッチング素子Q1、Q4及びQ6を制御することにより、前記コンデンサ放電制御を開始させてもよい。 In the embodiment described above, the control unit 55 starts the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6 at a duty ratio of 50% (Step 5 in FIG. 4). In other words, the initial value of the duty ratio of the switching elements Q1, Q4, and Q6 when performing the capacitor discharge control is 50%. However, it is not limited to this. The control unit 55 can start the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6 at an arbitrary duty ratio (initial value thereof). For example, the control unit 55 starts the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6 with a duty ratio (initial value) according to the target discharge current set in step S4 of FIG. It's okay.
 あるいは、図4のステップS5の処理が省略され、制御部55は、図4のステップS9でスイッチング素子Q1、Q4及びQ6を制御することにより、前記コンデンサ放電制御を開始させてもよい。この場合、例えばデューティ比の上限値を設定することにより、オーバーシュートやハンチングなどを抑制するのが好ましい。 Alternatively, the process of step S5 in FIG. 4 may be omitted, and the control unit 55 may start the capacitor discharge control by controlling the switching elements Q1, Q4, and Q6 in step S9 of FIG. In this case, it is preferable to suppress overshoot, hunting, etc. by setting an upper limit value of the duty ratio, for example.
 さらに、制御部55は、前記コンデンサ電圧相当値を監視し、前記目標放電電流と前記コンデンサ電圧相当値とに基づいてデューティ比を設定し、設定されたスイッチング素子Q1、Q4及びQ6を制御するようにしてもよい。この場合、例えば、図4において、ステップS5の処理が省略され、ステップS6においてステップS1と同様に前記コンデンサ電圧相当値が読み込まれ、ステップS7の処理が省略され、ステップS8においてステップS4で設定された前記目標放電電流とステップS6で読み込まれたコンデンサ電圧相当値とに基づいてデューティ比が設定される。 Further, the control unit 55 monitors the capacitor voltage equivalent value, sets a duty ratio based on the target discharge current and the capacitor voltage equivalent value, and controls the set switching elements Q1, Q4, and Q6. You may also do so. In this case, for example, in FIG. 4, the process of step S5 is omitted, the capacitor voltage equivalent value is read in step S6 as in step S1, the process of step S7 is omitted, and the value set in step S4 is read in step S8. The duty ratio is set based on the target discharge current and the capacitor voltage equivalent value read in step S6.
 上述の実施形態において、制御部55は、前記コンデンサ放電制御により、第1コンデンサ51及び第2コンデンサ21の放電を行っている。しかし、これに限られるものではない。制御部55は、第1コンデンサ51が無い場合においても上記と同様にして第2コンデンサ21の放電を行うことができ、第2コンデンサ21が無い場合においても上記と同様にして第1コンデンサ51の放電を行うことができる。 In the embodiment described above, the control unit 55 discharges the first capacitor 51 and the second capacitor 21 through the capacitor discharge control. However, it is not limited to this. The control unit 55 can discharge the second capacitor 21 in the same manner as described above even when the first capacitor 51 is not present, and discharge the first capacitor 51 in the same manner as described above even when the second capacitor 21 is not present. Discharge can be performed.
 以上、本発明の実施形態及びその変形例について説明したが、本発明は、上述の実施形態や変形例に限定されるものではなく、本発明の技術的思想に基づいてさらなる変形が可能であることはもちろんである。 Although the embodiments and modifications of the present invention have been described above, the present invention is not limited to the above-described embodiments and modifications, and further modifications can be made based on the technical idea of the present invention. Of course.
 1…電動圧縮機、2…電動モータ、3…圧縮機構、4…メインハウジング、5…インバータ装置、6…インバータハウジング、20…コネクタ、21…第2コンデンサ、50…インバータ回路、51…第1コンデンサ、52…温度検知部、53…電圧検知部、54…電流検知部、55…制御部、56P…正極母線、56N…負極母線、Q1~Q6…スイッチング素子、VB…車載バッテリ DESCRIPTION OF SYMBOLS 1... Electric compressor, 2... Electric motor, 3... Compression mechanism, 4... Main housing, 5... Inverter device, 6... Inverter housing, 20... Connector, 21... Second capacitor, 50... Inverter circuit, 51... First Capacitor, 52... Temperature detection section, 53... Voltage detection section, 54... Current detection section, 55... Control section, 56P... Positive electrode bus, 56N... Negative electrode bus, Q1 to Q6... Switching element, VB... Vehicle battery

Claims (6)

  1.  ハウジング内に、電動モータと、電動モータによって駆動される圧縮機構と、前記電動モータに電力を供給するインバータ装置と、を有する車両用電動圧縮機であって、
     前記インバータ装置は、
     車両の直流電源に接続される正極母線と負極母線との間に配置された複数のスイッチング素子を含み、前記車両の直流電源からの直流電力を交流電力に変換して前記電動モータのコイルに供給するインバータ回路と、
     前記正極母線と前記負極母線との間に接続されると共に、前記インバータ回路よりも前記車両の直流電源側に配置されたコンデンサと、
     前記複数のスイッチング素子の温度又は前記複数のスイッチング素子の近傍の温度を検知する温度検知部と、
     前記複数のスイッチング素子のうちの少なくとも一部のスイッチング素子を制御することにより、前記少なくとも一部のスイッチング素子及び前記電動モータのコイルを介して前記コンデンサに蓄積された電荷を放電させるコンデンサ放電制御を実施する制御部であって、前記コンデンサ放電制御の際に、前記少なくとも一部のスイッチング素子を流れる電流が前記温度検知部によって検知された温度に応じた許容電流以下になるように、前記少なくとも一部のスイッチング素子を制御するように構成された制御部と、
     を含む、車両用電動圧縮機。
    An electric compressor for a vehicle that includes, in a housing, an electric motor, a compression mechanism driven by the electric motor, and an inverter device that supplies electric power to the electric motor,
    The inverter device includes:
    The device includes a plurality of switching elements arranged between a positive bus and a negative bus that are connected to a DC power supply of a vehicle, converts DC power from the DC power supply of the vehicle into AC power, and supplies the AC power to the coil of the electric motor. an inverter circuit to
    a capacitor connected between the positive busbar and the negative busbar and located closer to the DC power source of the vehicle than the inverter circuit;
    a temperature detection unit that detects the temperature of the plurality of switching elements or the temperature in the vicinity of the plurality of switching elements;
    Capacitor discharge control for discharging the charge accumulated in the capacitor via the at least some of the switching elements and the coil of the electric motor by controlling at least some of the switching elements of the plurality of switching elements. A control unit that performs the capacitor discharge control so that, during the capacitor discharge control, a current flowing through at least some of the switching elements is equal to or less than an allowable current according to the temperature detected by the temperature detection unit. a control section configured to control a switching element of the section;
    Electric compressors for vehicles, including:
  2.  前記制御部は、前記コンデンサ放電制御の際に、前記少なくとも一部のスイッチング素子を流れる電流が要求放電時間と前記温度検知部によって検知された温度とに応じた下限電流以上になるように、前記少なくとも一部のスイッチング素子を制御するように構成されている、請求項1に記載の車両用電動圧縮機。 The control section controls the control section so that, during the capacitor discharge control, a current flowing through at least some of the switching elements becomes equal to or higher than a lower limit current according to the required discharge time and the temperature detected by the temperature detection section. The vehicular electric compressor according to claim 1, configured to control at least some of the switching elements.
  3.  前記インバータ装置は、前記コンデンサと前記インバータ回路との間における前記正極母線と前記負極母線との電位差を検知する電圧検知部を含み、
     前記制御部は、前記電圧検知部によって検知された電位差が放電必要電圧以上である場合に前記コンデンサ放電制御を実施する、
     請求項1に記載の車両用電動圧縮機。
    The inverter device includes a voltage detection unit that detects a potential difference between the positive busbar and the negative busbar between the capacitor and the inverter circuit,
    The control unit performs the capacitor discharge control when the potential difference detected by the voltage detection unit is equal to or higher than the required discharge voltage.
    The electric compressor for a vehicle according to claim 1.
  4.  前記インバータ装置は、前記コンデンサ放電制御による前記コンデンサの放電電流を検知する電流検知部を含み、
     前記制御部は、前記温度検知部によって検知された温度に基づいて前記許容電流以下の目標放電電流を設定し、前記目標放電電流と前記電流検知部によって検知された前記コンデンサの放電電流とに基づいて前記少なくとも一部のスイッチング素子のデューティ比を設定し、設定されたデューティ比で前記少なくとも一部のスイッチング素子を制御する、
     請求項1に記載の車両用電動圧縮機。
    The inverter device includes a current detection unit that detects a discharge current of the capacitor due to the capacitor discharge control,
    The control unit sets a target discharge current equal to or less than the allowable current based on the temperature detected by the temperature detection unit, and based on the target discharge current and the discharge current of the capacitor detected by the current detection unit. setting a duty ratio of the at least some of the switching elements, and controlling the at least some of the switching elements with the set duty ratio;
    The electric compressor for a vehicle according to claim 1.
  5.  前記制御部は、車両からのコンデンサ放電指令に基づいて前記コンデンサ放電制御を実施する、請求項1~4のいずれか一つの記載の車両用電動圧縮機。 The electric compressor for a vehicle according to any one of claims 1 to 4, wherein the control unit performs the capacitor discharge control based on a capacitor discharge command from the vehicle.
  6.  コネクタを介して前記車両の直流電源に接続されるように構成され、
     前記制御部は、前記コンデンサ放電制御により、前記コンデンサに蓄積された電荷を放電させることに加えて、前記コネクタよりも前記車両の直流電源側に配置されて前記車両の直流電源に並列に接続された車両側コンデンサに蓄積された電荷を放電させる、
     請求項5に記載の車両用電動圧縮機。
    configured to be connected to a DC power source of the vehicle via a connector,
    In addition to discharging the charge accumulated in the capacitor by the capacitor discharge control, the control unit is arranged closer to the DC power source of the vehicle than the connector and connected in parallel to the DC power source of the vehicle. discharges the charge accumulated in the vehicle side capacitor,
    The electric compressor for a vehicle according to claim 5.
PCT/JP2023/027527 2022-08-24 2023-07-27 Electric compressor for vehicle WO2024042982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-133211 2022-08-24
JP2022133211A JP2024030364A (en) 2022-08-24 2022-08-24 Electric compressor for vehicles

Publications (1)

Publication Number Publication Date
WO2024042982A1 true WO2024042982A1 (en) 2024-02-29

Family

ID=90013277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027527 WO2024042982A1 (en) 2022-08-24 2023-07-27 Electric compressor for vehicle

Country Status (2)

Country Link
JP (1) JP2024030364A (en)
WO (1) WO2024042982A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346493A (en) * 1998-03-30 1999-12-14 Aisin Seiki Co Ltd Conduction controller for electric motor
JP2008303753A (en) * 2007-06-06 2008-12-18 Sanden Corp Control device of electric compressor
JP2015162973A (en) * 2014-02-27 2015-09-07 株式会社デンソー Motor drive device
JP2016181970A (en) * 2015-03-24 2016-10-13 日産自動車株式会社 Power conversion device and power conversion device control method
JP2018174630A (en) * 2017-03-31 2018-11-08 株式会社豊田自動織機 On-vehicle electric compressor
JP2021129360A (en) * 2020-02-12 2021-09-02 株式会社豊田自動織機 Control device for on-vehicle inverter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346493A (en) * 1998-03-30 1999-12-14 Aisin Seiki Co Ltd Conduction controller for electric motor
JP2008303753A (en) * 2007-06-06 2008-12-18 Sanden Corp Control device of electric compressor
JP2015162973A (en) * 2014-02-27 2015-09-07 株式会社デンソー Motor drive device
JP2016181970A (en) * 2015-03-24 2016-10-13 日産自動車株式会社 Power conversion device and power conversion device control method
JP2018174630A (en) * 2017-03-31 2018-11-08 株式会社豊田自動織機 On-vehicle electric compressor
JP2021129360A (en) * 2020-02-12 2021-09-02 株式会社豊田自動織機 Control device for on-vehicle inverter

Also Published As

Publication number Publication date
JP2024030364A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US10183555B2 (en) Onboard electric system
US20100045105A1 (en) Integrated multiple power conversion system for transport refrigeration units
KR101976983B1 (en) Motor-driven compressor for a vehicle
JP5488578B2 (en) Electric refrigeration cycle equipment for vehicles
US9995302B2 (en) Motor driven compressor
JP4529540B2 (en) Air conditioning apparatus and compressor preheating method
JP5561206B2 (en) Battery charge control device
CN108603794B (en) Method for operating an electric refrigeration compressor
WO2024042982A1 (en) Electric compressor for vehicle
JP5772439B2 (en) Vehicle charging device
CN111615785A (en) Electric compressor
JP4096895B2 (en) High voltage DC power supply circuit for vehicles
US11745590B2 (en) Vehicle inverter device and vehicle fluid machine
WO2023228644A1 (en) Composite device
WO2023223770A1 (en) Composite device
WO2023248708A1 (en) Composite device
WO2023203940A1 (en) Composite device
WO2024042981A1 (en) Combined device
WO2023248705A1 (en) Composite device
WO2023119493A1 (en) Composite device
JP2018125997A (en) Air conditioner
JP7218131B2 (en) refrigeration cycle equipment
WO2023120019A1 (en) Combined device
JP2021022956A (en) On-vehicle motor compressor
KR20230116691A (en) Motor-driven compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857098

Country of ref document: EP

Kind code of ref document: A1