WO2023248708A1 - Composite device - Google Patents

Composite device Download PDF

Info

Publication number
WO2023248708A1
WO2023248708A1 PCT/JP2023/019681 JP2023019681W WO2023248708A1 WO 2023248708 A1 WO2023248708 A1 WO 2023248708A1 JP 2023019681 W JP2023019681 W JP 2023019681W WO 2023248708 A1 WO2023248708 A1 WO 2023248708A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
housing
control circuit
refrigerant
motor drive
Prior art date
Application number
PCT/JP2023/019681
Other languages
French (fr)
Japanese (ja)
Inventor
龍之介 関
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2023248708A1 publication Critical patent/WO2023248708A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a composite device having a refrigerant compression function and a heat medium heating function.
  • Patent Document 1 describes a vehicle air conditioner that can be applied to vehicles such as hybrid cars and electric cars.
  • the vehicle air conditioner described in Patent Document 1 includes an electric compressor that compresses refrigerant, a radiator that radiates heat from the refrigerant discharged from the electric compressor to heat air supplied into the vehicle interior, and a heat radiator that heats the air supplied into the vehicle interior.
  • the refrigerant circuit includes an expansion valve that expands the refrigerant under reduced pressure, and a heat exchanger that corresponds to an evaporator that exchanges heat between the refrigerant that has been expanded under reduced pressure and the outside air.
  • the vehicle air conditioner described in Patent Document 1 includes a heat medium heating electric heater that heats a heat medium and a heated heat medium that is supplied into the vehicle interior in order to assist heating of the vehicle interior by a radiator. and a heat medium-air heat exchanger that heats the air.
  • the vehicle air conditioner described in Patent Document 1 can compensate for the lack of heating capacity due to the radiator.
  • an electric compressor, a heat medium heating electric heater, and the like are individually provided. As a result, the overall size of the device has increased, and there is room for improvement in terms of installation space and other aspects.
  • An object of the present invention is to provide a composite device that can contribute to miniaturization of vehicle air conditioners, etc., and to suppress malfunctions of electronic circuits installed therein.
  • a composite device having a refrigerant compression function and a heat medium heating function houses a compression mechanism that compresses a refrigerant and an electric motor that drives the compression mechanism, and also has a refrigerant inlet that allows the refrigerant to flow into the inside, and a refrigerant that allows the refrigerant compressed by the compression mechanism to flow out to the outside.
  • a compressor housing having an outlet, an electric heater for heating a heat medium housed therein, a heat medium inlet for causing the heat medium to flow into the inside, and a heat medium for causing the heat medium heated by the electric heater to flow out to the outside.
  • a heater housing having a medium outlet; a motor drive circuit that drives the electric motor; a heater control circuit that controls the electric heater; and a control circuit that controls the operation of the motor drive circuit and the heater control circuit.
  • a circuit housing that accommodates therein the motor drive circuit, the heater control circuit, and a power supply circuit that generates power to be supplied to the control circuit.
  • the compressor housing, the heater housing and the circuit housing are integrally coupled.
  • the motor drive circuit, the heater control circuit, and the power supply circuit each include a switching element, and the drive frequency of the switching element of the motor drive circuit, the drive frequency of the switching element of the heater control circuit, and the power supply circuit are different from each other.
  • the drive frequencies of the switching elements are set so that they do not overlap with each other.
  • the present invention it is possible to provide a composite device that can contribute to downsizing of vehicle air conditioners and the like. Furthermore, malfunctions of electronic circuits (motor drive circuit, heater control circuit, power supply circuit, etc.) mounted on the multifunction device can be suppressed.
  • FIG. 1 is a front view of a multifunction device according to an embodiment.
  • FIG. 2 is a right side view of the multifunction device according to the embodiment.
  • FIG. 1 is a top view of a multifunction device according to an embodiment.
  • 3 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the AA sectional view of FIG. 2.
  • FIG. 1 is a diagram illustrating an example of a main part configuration of a motor drive circuit of a multifunction device according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a main part configuration of a heater control circuit of a multifunction device according to an embodiment.
  • FIG. 1 is a diagram illustrating an example of a main part configuration of a power supply circuit of a multifunction device according to an embodiment
  • FIG. FIG. 3 is a circuit block diagram of a circuit board of the multifunction device according to the embodiment.
  • 4 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the BB sectional view of FIG. 3.
  • FIG. 3 is a diagram illustrating an example of a main part configuration of a power supply circuit of a multifunction device according to an embodiment
  • FIG. 3 is a circuit block diagram of a circuit board of the multifunction device according to the embodiment
  • 4 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the BB sectional view of FIG. 3.
  • FIG. 1 to 4 show a schematic configuration of a multifunction device 1 according to an embodiment of the present invention.
  • FIG. 1 is a front view of the multifunction device 1 according to the embodiment
  • FIG. 2 is a right side view of the multifunction device 1 according to the embodiment
  • FIG. 3 is a top view of the multifunction device 1 according to the embodiment.
  • 4 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the AA sectional view of FIG. 2.
  • the composite device 1 has a refrigerant compression function that compresses a refrigerant, and a heat medium heating function that heats a heat medium other than the refrigerant. That is, the composite device 1 has a configuration in which a refrigerant compressor and a heat medium heating device are integrated.
  • the composite device 1 can be applied to a vehicle air conditioner as described above. That is, the composite device 1 can be used by being incorporated into a refrigerant circuit in which a refrigerant circulates, and a heat medium circuit in which a heat medium is circulated by a pump section including an electric pump or the like.
  • the refrigerant compression function section of the composite device 1 is incorporated in the refrigerant circuit, compresses the refrigerant that has passed through the expansion valve and the evaporator (or a heat exchanger equivalent to this), and also compresses the compressed refrigerant.
  • the heat medium heating function section of the composite device 1 is incorporated in the heat medium circuit and heats the heat medium that has passed through the heat medium-air heat exchanger that heats the air supplied into the vehicle interior.
  • the heating medium may be configured to supply the heating medium to the heating medium-air heat exchanger.
  • the refrigerant and the heat medium may be selected arbitrarily, and for example, a gas refrigerant may be used as the refrigerant, and a liquid may be used as the heat medium.
  • water including water mixed with antifreeze or the like
  • the heat medium heating function may also be referred to as a water heating function (water heating device).
  • the composite device 1 has a housing 2. As shown in FIG.
  • the housing 2 of the composite device 1 includes a first housing 2A, a second housing 2B, a third housing 2C, a first cover 2D, a second cover 2E, and a third cover 2F, which are not shown. They are integrally connected (fastened) using fastening members such as bolts.
  • the first housing 2A is formed into a substantially cylindrical shape.
  • a compression mechanism 3 that compresses refrigerant and an electric motor 4 that drives the compression mechanism 3 are housed in the first housing 2A in series in the axial direction.
  • the compression mechanism 3 may be a scroll compression mechanism including a fixed scroll and a movable (orbiting) scroll.
  • the output shaft 4a of the electric motor 4 is connected to the compression mechanism 3 (for example, the movable (orbiting) scroll).
  • first housing 2A One of the two open ends of the first housing 2A (the lower open end in FIGS. 1 and 2), that is, the open end of the first housing 2A on the compression mechanism 3 side is connected to the first cover. occluded by 2D.
  • first housing 2A that houses the compression mechanism 3 and the electric motor 4 that drives it may also be referred to as a "compressor housing.”
  • the second housing 2B is arranged on the side of the first housing 2A.
  • the second housing 2B is formed into a substantially rectangular cylindrical shape.
  • An electric heater 5 that heats the heat medium is housed inside the second housing 2B.
  • the second housing 2B that accommodates the electric heater 5 may also be referred to as a "heater housing.”
  • the third housing 2C is formed into a box shape with an open top surface. Inside the third housing 2C, there are a motor drive circuit 20 that drives (controls) the electric motor 4, a heater control circuit 30 that controls the electric heater 5, and a motor drive circuit 20 that controls the operation of the motor drive circuit 20 and the operation of the heater control circuit 30.
  • a control circuit 40 for controlling and a power supply circuit 50 for generating power to be supplied to the motor drive circuit 20, the heater control circuit 30, and the control circuit 40 are housed.
  • one circuit board 6 on which these motor drive circuit 20, heater control circuit 30, control circuit 40, and power supply circuit 50 are mounted is housed inside the third housing 2C.
  • the bottom wall 7 of the third housing 2C is connected to the other open end of the first housing 2A (the upper open end in FIGS. 1 and 2), that is, the open end of the first housing 2A on the electric motor 4 side, and the second The other open end (the upper open end in FIGS. 1 and 2) of the housing 2B is closed.
  • the inside of the first housing 2A and the inside of the third housing 2C are partitioned off, and the inside of the second housing 2B and the inside of the third housing 2C are partitioned off.
  • the bottom wall 7 of the third housing 2C has a first partition part 71 that partitions the inside of the first housing 2A and the inside of the third housing 2C, and a first partition part 71 that partitions the inside of the second housing 2B and the inside of the third housing 2C. It has a second partition part 72 for partitioning.
  • the upper surface (opening end) of the third housing 2C is closed by the third cover 2F.
  • the third housing 2C that houses the motor drive circuit 20, heater control circuit 30, control circuit 40, and power supply circuit 50 (specifically, the circuit board 6 on which these are mounted) is referred to as a "circuit housing” or a “board housing”. ” can also be called.
  • the refrigerant compression function (refrigerant compressor) is mainly realized by the compression mechanism 3, the electric motor 4, and the motor drive circuit 20, and the heat medium heating function is mainly realized by the electric heater 5 and the heater control circuit 30. (heat medium heating device) is realized.
  • a refrigerant inlet 8 for allowing the refrigerant circulating in the refrigerant circuit to flow into the first housing 2A is formed in the first housing 2A.
  • the refrigerant to be introduced is, for example, a refrigerant that has passed through an expansion valve and an evaporator (or a heat exchanger equivalent thereto), that is, a low-temperature, low-pressure refrigerant.
  • the refrigerant inlet 8 is located in a portion of the first housing 2A on the third housing 2C side, that is, in the vicinity of the first partition portion 71 that partitions the inside of the first housing 2A and the inside of the third housing 2C. It is provided.
  • the refrigerant inlet 8 is configured to cause the refrigerant circulating in the refrigerant circuit to flow into the first housing 2A so that at least a portion of the refrigerant flows along the first partition portion 71.
  • the refrigerant sucked into the compression mechanism 3 is compressed by the compression mechanism 3, and is discharged from the compression mechanism 3 as a high-temperature, high-pressure refrigerant.
  • the discharged (high temperature and high pressure) refrigerant flows out from the refrigerant outlet 9 formed in the first housing 2A, and is supplied to, for example, the above-mentioned radiator (refrigerant-air heat exchanger).
  • the refrigerant outlet 9 is provided in a portion of the first housing 2A on the first cover 2D side, that is, at a position away from the refrigerant inlet 8 in the vertical direction in FIGS. 1 and 2. Therefore, in this embodiment, the refrigerant that has flowed into the first housing 2A from the refrigerant inlet 8 flows from the upper side to the lower side in FIGS. 1 and 2 within the first housing 2A.
  • the first partition part 71 can be cooled by the (low temperature, low pressure) refrigerant flowing into the first housing 2A through the refrigerant inlet 8, and the electric motor 4 can be cooled by the refrigerant flowing inside the first housing 2A. May be cooled. Further, the refrigerant inlet 8, the inside of the first housing 2A, and the refrigerant outlet 9 constitute a part of the refrigerant circuit.
  • a heat medium inlet 10 is formed in the second housing 2B for allowing the heat medium circulating in the heat medium circuit to flow into the second housing 2B.
  • the heat medium to be introduced is, for example, a heat medium that has passed through the above-described heat medium-air heat exchanger, that is, a low-temperature heat medium.
  • the heat medium inlet 10 is located at a portion of the second housing 2B on the third housing 2C side, that is, near the second partition portion 72 that partitions the inside of the second housing 2B and the inside of the third housing 2C. and is provided on the back side in FIG. 1 (on the right side in FIG. 2).
  • the heat medium inlet 10 is configured to cause the heat medium circulating in the heat medium circuit to flow into the second housing 2B so that at least a portion of the heat medium flows along the second partition portion 72. has been done.
  • the heated heat medium flows out from the heat medium outlet 11 formed in the second housing 2B, and is supplied to, for example, the above-mentioned heat medium-air heat exchanger.
  • the heat medium outlet 11 is located near the second partition part 72 that partitions the inside of the second housing 2B and the inside of the third housing 2C, and on the near side in FIG. 1 (left side in FIG. 2). It is set in. Therefore, in the present embodiment, the heat medium flowing into the second housing 2B from the heat medium inlet 10 flows inside the second housing 2B from the right side in FIGS. 2 and 4 along the second partition part 72. flows towards the left.
  • the second partition portion 72 may be cooled by the (low-temperature) heat medium flowing into the second housing 2B through the heat medium inlet 10. Further, the heat medium inlet 10, the inside of the second housing 2B, and the heat medium outlet 11 constitute a part of the heat medium circuit.
  • the power supply line from the motor drive circuit 20 to the electric motor 4 and the power supply line from the heater control circuit 30 to the electric heater 5 are connected to the third housing in an airtight and liquidtight state, respectively. It extends through the bottom wall 7 of 2C.
  • the motor drive circuit 20 drives (controls) the electric motor 4 by converting a DC voltage from a high voltage power source HV such as a high voltage battery mounted on a vehicle into a three-phase AC voltage and supplying the voltage to the electric motor 4. It is configured as follows.
  • FIG. 5 is a diagram showing an example of the main part configuration of the motor drive circuit 20. As shown in FIG. As shown in FIG. 5, the motor drive circuit 20 includes a smoothing capacitor 21, a first power module 22, and a first driver 23.
  • the smoothing capacitor 21 is connected between the power line of the high voltage power supply HV and the ground line, and smoothes the DC voltage from the high voltage power supply HV.
  • the first power module 22 includes six power switching elements (hereinafter referred to as "first switching elements") Q1 to Q6 and six diodes D1 to D6.
  • first switching elements may be IGBTs (insulated gate bipolar transistors).
  • the first power module 22 converts the DC voltage from the high voltage power supply HV into a three-phase AC voltage and supplies it to the electric motor 4 by subjecting the first switching elements Q1 to Q6 to PWM control.
  • the first power module 22 has a U-phase arm, a V-phase arm, and a W-phase arm that are provided in parallel with each other between the power line of the high-voltage power supply HV and the ground line.
  • Two first switching elements Q1 and Q2 are connected in series to the U-phase arm, and diodes D1 and D2 are connected in antiparallel to each of the first switching elements Q1 and Q2, respectively.
  • Two first switching elements Q3 and Q4 are connected in series to the V-phase arm, and diodes D3 and D4 are connected in antiparallel to each of the first switching elements Q3 and Q4, respectively.
  • Two first switching elements Q5 and Q6 are connected in series to the W-phase arm, and diodes D5 and D6 are connected in antiparallel to each of the first switching elements Q5 and Q6, respectively.
  • the intermediate points of the U, V, and W phase arms are connected to the other ends of the U, V, and W phase coils of the electric motor 4, which are star-connected at one end of each. That is, the midpoint between the first switching elements Q1 and Q2 of the U-phase arm is connected to the U-phase coil, the midpoint of the first switching elements Q3 and Q4 of the V-phase arm is connected to the V-phase coil, and the W-phase A midpoint between the first switching elements Q5 and Q6 of the arm is connected to the W-phase coil.
  • the first power module 22 has a ratio of the ON period of the first switching elements Q1, Q3, Q5 on the power line side of each phase arm to the ON period of the first switching elements Q2, Q4, Q6 on the ground line side. is controlled (PWM controlled), the DC voltage from the high voltage power supply HV smoothed by the smoothing capacitor 21 can be converted into a three-phase AC voltage and supplied to the electric motor 4. Accordingly, the electric motor 4 and the compression mechanism 3 can be driven.
  • the first driver 23 turns ON/OFF (switches) the first switching elements Q1 to Q6 (gates thereof) based on a control signal (PWM signal) from the control circuit 40.
  • the operation of the motor drive circuit 20 switching operation of the first switching elements Q1 to Q6
  • the operation of the electric motor 4 and the compression mechanism 3 that is, the refrigerant compression function
  • the heater control circuit 30 is configured to apply the voltage of the high voltage power supply HV to the electric heater 5.
  • FIG. 6 is a diagram showing an example of the main part configuration of the heater control circuit 30. As shown in FIG. As shown in FIG. 6, the heater control circuit 30 includes a second power module 31 and a second driver 32. Although not shown, a smoothing capacitor may be connected between the power line of the high voltage power supply HV and the ground line, similar to the motor drive circuit 20.
  • the second power module 31 includes two power switching elements (hereinafter referred to as "second switching elements") Q7 and Q8 that control energization to the electric heater 5.
  • the second switching elements Q7 and Q8 may be IGBTs like the first switching elements Q1 to Q6 of the motor drive circuit 20.
  • one of the two second switching elements Q7 and Q8 is provided on the output side (voltage side) of the high voltage power supply HV than the electric heater 5, and the other second switching element Q7 is provided on the output side (voltage side) of the high voltage power supply HV than the electric heater 5.
  • the switching element Q8 is provided closer to the ground side of the high voltage power supply HV than the electric heater 5 is.
  • the second power module 31 turns ON/OFF the current between the high voltage power supply HV and the electric heater 5 by controlling the second switching elements Q7 and Q8 (PWM control). , and further the temperature of the heat medium heated by the electric heater 5 can be controlled.
  • the second driver 32 turns ON/OFF (switches) the second switching elements Q7 and Q8 (gates thereof) based on a control signal (PWM signal) from the control circuit 40.
  • the operation of the heater control circuit 30 (second switching elements Q7, Q8) and, by extension, the operation of the electric heater 5 (thermal medium heating function) are controlled by the control circuit 40. .
  • the control circuit 40 outputs a control signal to the first driver 23 in response to a request for operation of the refrigerant compression function from a higher-level control device (for example, the control device for the above-mentioned vehicle air conditioner), which is not shown, to heat the heat medium. It is configured to output a control signal to the second driver 32 in accordance with a functional operation request.
  • a higher-level control device for example, the control device for the above-mentioned vehicle air conditioner
  • the control circuit 40 is configured with a microcontrol unit (MCU).
  • the power supply circuit 50 is, for example, a switching type DC-DC converter, and generates predetermined DC voltages (15V and 5V) by switching a low-voltage power supply LV (DC12V in this case) such as a low-voltage battery mounted on a vehicle. It is configured to supply the generated DC voltage to a motor drive circuit 20, a heater control circuit 30, and a control circuit (MCU) 40.
  • a control circuit MCU 40.
  • the 15V DC voltage generated by the power supply circuit 50 is supplied to the first driver 23 of the motor drive circuit 20 and the second driver 32 of the heater control circuit 30, and the 5V DC voltage generated by the power supply circuit 50 is The DC voltage is supplied to a control circuit (MCU) 40.
  • FIG. 7 is a diagram showing an example of the configuration of main parts of the power supply circuit 50.
  • power supply circuit 50 includes a switching transformer 51.
  • the switching transformer 51 is an insulating transformer, and has a primary winding 52 and a secondary winding 53 insulated from the primary winding 52.
  • a winding end 52B of the primary winding 52 is connected to a power supply line 54 of a low voltage power supply LV, and a winding start end 52A of the primary winding 52 is connected to a winding end 52A of the primary winding 52 via a switching element (hereinafter referred to as "third switching element") Q9. It is connected to the ground line 56 of the low voltage power supply LV.
  • the third switching element Q9 may be a MOSFET (metal oxide semiconductor field effect transistor).
  • the ON/OFF operation (switching operation) (of the gate) of the third switching element Q9 is controlled by the power supply circuit controller 55.
  • the power supply circuit controller 55 is supplied with DC voltage from the low voltage power supply LV.
  • a smoothing capacitor 57 is connected between the power line 54 of the low voltage power source LV and the ground line 56.
  • the secondary winding 53 has a first winding part 58 and a second winding part 59.
  • a winding start end 58A of the first winding portion 58 is connected to a first power output line (15V line) 60 via a diode D7.
  • a winding end 58B of the first winding portion 58 is connected to a second power output line (5V line) 62 via a diode D8 and a regulator (LDO: low dropout regulator) 61.
  • the winding start end 59A of the second winding part 59 is connected to the winding end 58B of the first winding part 58, and the winding end 59B of the second winding part 59 connects the secondary side ground line 63. It is connected to secondary ground (SGND) through the terminal.
  • the first driver 23 of the motor drive circuit 20 and the second driver 32 of the heater control circuit 30 are connected to the first power output line 60, and the control circuit (MCU) 40 is connected to the second power output line 62. Ru.
  • a smoothing capacitor 64 is connected between the first power output line 60 and the secondary ground line 63, and the second power output line 62 before and after the regulator 61 and the secondary ground line 63 are connected to each other. Smoothing capacitors 65 and 66 are connected between them, respectively. Further, in this embodiment, the winding end 52B side of the primary winding 52 of the switching transformer 51 and the winding end 59B side of the second winding portion 59 of the secondary winding 53 are connected to each other via the coupling capacitor 67. are combined.
  • the power supply circuit controller 55 controls the switching operation of the third switching element Q9 according to the turns ratio of the switching transformer 51 so that DC 15V is output to the first power supply output line 60.
  • DC 15V is supplied to the first driver 23 of the motor drive circuit 20 and the second driver 32 of the heater control circuit 30.
  • DC 5V is supplied to the control circuit (MCU) 40 via a regulator 61 from an intermediate output according to the turns ratio between the first winding section 58 and the second winding section 59 of the secondary winding 53. .
  • FIG. 8 is a circuit block diagram of the circuit board 6.
  • FIG. 9 is a partial schematic cross-sectional view of the composite device 1 (corresponding to the BB cross-sectional view in FIG. 3).
  • the circuit board 6 on which the motor drive circuit 20, the heater control circuit 30, the control circuit (MCU) 40, and the power supply circuit 50 are mounted is provided inside the third housing 2C, as shown in FIG. It can be attached to a plurality of board attachment parts 12 that are attached to each other.
  • each of the plurality of board mounting parts 12 is formed in a boss shape that protrudes from the bottom wall 7 of the third housing 2C (in the direction away from the first housing 2A and the second housing 2B).
  • a circuit board 6 is attached to the upper surface of the board attachment part 12 with screws 13.
  • the first switching elements Q1 to Q6 of the motor drive circuit 20 and the second switching elements Q7 and Q8 of the heater control circuit 30 are connected from the refrigerant inlet 8 into the first housing 2A in the third housing 2C. It is arranged at a position where it can be cooled by the inflowing refrigerant.
  • the first switching elements Q1 to Q6 of the motor drive circuit 20 and the second switching elements Q7 and Q8 of the heater control circuit 30 are connected to the bottom of the third housing 2C of the circuit board 6 attached to the board mounting part 12. It is mounted on the surface on the wall 7 side and is in thermal contact with a first partition portion 71 that partitions the inside of the first housing 2A and the inside of the third housing 2C.
  • “being in thermal contact with the first partition part 71” means being in a state where heat exchange is possible with the first partition part 71, and being in direct contact with the first partition part 71. This includes being close enough to the first partition part 71 to allow heat exchange, and indirectly contacting the first partition part 71 via a heat exchange member with high thermal conductivity. It will be done.
  • the first switching elements Q1 to Q6 of the motor drive circuit 20, the second switching elements Q7 and Q8 of the heater control circuit 30, and the third switching element Q9 of the power supply circuit 50 are set respectively. It is driven at a different drive frequency (also called switching frequency).
  • first switching elements Q1 to Q6 of the motor drive circuit 20 are driven at the drive frequency (hereinafter referred to as "first drive frequency") f1 for the first switching elements Q1 to Q6, and the second The switching elements Q7 and Q8 are driven at a driving frequency (hereinafter referred to as “second driving frequency”) f2 for the second switching elements Q7 and Q8, and the third switching element Q9 of the power supply circuit 50 is driven at a driving frequency f2 for the second switching elements Q7 and Q8. (hereinafter referred to as "third drive frequency").
  • first drive frequency f1 and the second drive frequency f2 overlap, the first drive frequency f1 and the third drive frequency f3 overlap, or the second drive frequency f2 and the third drive frequency f3 overlap, This may lead to an increase in the noise level or malfunction of the circuit.
  • the first drive frequency f1, the second drive frequency f2, and the third drive frequency f3 are set so as not to overlap (shift) with each other.
  • the first drive frequency (first switching frequency) f1, the second drive frequency (second switching frequency) f2, and the third drive frequency (third switching frequency) f3 are set such that they do not affect each other, that is, , are set so that no interference or resonance occurs between them.
  • the first drive frequency f1 of the first switching elements Q1 to Q6 of the motor drive circuit 20 is set to the first drive frequency f1 of the first switching elements Q1 to Q6 of the heater control circuit 30.
  • the third drive frequency f3 of the third switching element Q9 of the power supply circuit 50 is set higher than the second drive frequency f2 by one order or more, and the third drive frequency f3 of the third switching element Q9 of the power supply circuit 50 is higher than the first drive frequency f1 of the first switching elements Q1 to Q6 of the motor drive circuit 20. will also be set more than an order of magnitude higher.
  • the first driving frequency f1 is set to a frequency on the order of several tens of kHz (10 to 99 kHz)
  • the second driving frequency f2 is set to a frequency on the order of several tens of Hz (10 to 99 Hz)
  • the third driving frequency f3 is set to a frequency on the order of several tens of kHz (10 to 99 Hz).
  • the first drive frequency f1 may be 10 to 20 kHz
  • the second drive frequency f2 may be 50 to 65 Hz
  • the third drive frequency f3 may be 150 to 200 kHz.
  • the composite device 1 includes a first housing (1) that houses in series a compression mechanism 3 that compresses a refrigerant and an electric motor 4 that drives the compression mechanism 3, and has a refrigerant inlet 8 and a refrigerant outlet 9.
  • a compressor housing) 2A a second housing (heater housing) 2B that houses an electric heater 5 for heating a heat medium and has a heat medium inlet 10 and a heat medium outlet 11, and drives an electric motor 4.
  • a motor drive circuit 20 that controls the electric heater 5; a heater control circuit 30 that controls the electric heater 5; a control circuit (MCU) 40 that controls the operation of the motor drive circuit 20 and the heater control circuit 30; It includes a third housing (circuit housing) 2C that houses therein a power supply circuit 50 that generates power to be supplied to the circuit 30 and the control circuit (MCU) 40.
  • the first housing (compressor housing) 2A, the second housing 2B (heater housing), and the third housing (circuit housing) 2C are integrally connected.
  • Such a composite device 1 can function as a refrigerant compressor (electric compressor) that compresses a refrigerant and a heat medium heating device that heats a heat medium, and can heat the heat medium while compressing the refrigerant. Can be done. Therefore, the composite device 1 can be applied to a vehicle air conditioner as described above. By applying the composite device 1 to a vehicle air conditioner, it is possible to downsize the vehicle air conditioner compared to a conventional configuration that separately includes an electric compressor and a heat medium heating device. It is.
  • a refrigerant compressor electric compressor
  • the motor drive circuit 20 includes first switching elements Q1 to Q6 that convert a DC voltage into a three-phase AC voltage
  • the heater control circuit 30 includes a second switching element that turns ON/OFF energization to the electric heater 5.
  • the power supply circuit 50 is configured with a switching type DC-DC converter, and includes a third switching element Q9.
  • the motor drive circuit 20, the heater control circuit 30, the control circuit 40, and the power supply circuit 50 are mounted on one circuit board 6, and the first switching elements Q1 to Q6 of the motor drive circuit 20 are first driven.
  • the frequency f1, the second drive frequency f2 of the second switching elements Q7 and Q8 of the heater control circuit 30, and the third drive frequency f3 of the third switching element Q9 of the power supply circuit 50 are set so as not to overlap with each other.
  • the first drive frequency f1 is set to a frequency on the order of several 10 kHz
  • the second drive frequency f2 is set to a frequency on the order of several 10 Hz
  • the third drive frequency f3 is set to a frequency on the order of several 100 kHz.
  • the composite device 1 is mainly applied to a vehicle air conditioner. However, it is not limited to this.
  • the composite device 1 can be applied to various devices and systems that utilize an electric compressor that compresses a refrigerant and a heat medium heating device that heats a heat medium.
  • SYMBOLS 1 Compound device, 2... Housing, 2A... First housing (compressor housing), 2B... Second housing (heater housing), 2C... Third housing (circuit housing), 3... Compression mechanism, 4... Electric motor, 5... Electric heater, 6... Circuit board, 7... Bottom wall, 8... Refrigerant inlet, 9... Refrigerant outlet, 10... Heat medium inlet, 11... Heat medium outlet, 20... Motor drive circuit, 30... Heater Control circuit, 40... Control circuit, 50... Power supply circuit, Q1 to Q6... First switching element (switching element of the motor drive circuit), Q7, Q8... Second switching element (switching element of the heater control circuit), Q9... 3 switching elements (switching elements of power supply circuit)

Abstract

[Problem] To provide a composite device that can contribute to miniaturization of a vehicle air conditioning device, etc., and to suppress malfunctions, etc., of electronic circuits mounted therein. [Solution] This composite device 1 comprises: a first housing 2A in which a compression mechanism 3 for compressing a refrigerant and an electric motor 4 for driving the compression mechanism 3 are accommodated; a second housing 2B in which an electric heater 5 for heating a heat medium is accommodated; and a third housing 2C in which a motor drive circuit 20, a heater control circuit 30, and a power supply circuit 50 that generates power to be supplied to the motor drive circuit 20 and the heater control circuit are accommodated. The drive frequency of first switching elements Q1-Q6 of the motor drive circuit 20, the drive frequency of second switching elements Q7, Q8 of the heater control circuit 30, and the drive frequency of a third switching element Q9 of the power supply circuit 50 are set so as not to overlap each other.

Description

複合装置complex device
 本発明は、冷媒圧縮機能と熱媒体加熱機能とを有する複合装置に関する。 The present invention relates to a composite device having a refrigerant compression function and a heat medium heating function.
 特許文献1には、ハイブリッド自動車や電気自動車などの車両に適用可能な車両用空気調和装置が記載されている。特許文献1に記載された車両用空気調和装置は、冷媒を圧縮する電動圧縮機と、電動圧縮機から吐出された冷媒を放熱させて車室内に供給される空気を加熱する放熱器と、放熱された冷媒を減圧膨張させる膨張弁と、減圧膨張された冷媒と外気との間で熱交換を行わせる蒸発器に相当する熱交換器を含む冷媒回路を有している。また、特許文献1に記載された車両用空気調和装置は、放熱器による車室内の暖房を補助するため、熱媒体を加熱する熱媒体加熱電気ヒータと、加熱された熱媒体で車室内に供給される空気を加熱する熱媒体-空気熱交換器と、を有している。 Patent Document 1 describes a vehicle air conditioner that can be applied to vehicles such as hybrid cars and electric cars. The vehicle air conditioner described in Patent Document 1 includes an electric compressor that compresses refrigerant, a radiator that radiates heat from the refrigerant discharged from the electric compressor to heat air supplied into the vehicle interior, and a heat radiator that heats the air supplied into the vehicle interior. The refrigerant circuit includes an expansion valve that expands the refrigerant under reduced pressure, and a heat exchanger that corresponds to an evaporator that exchanges heat between the refrigerant that has been expanded under reduced pressure and the outside air. In addition, the vehicle air conditioner described in Patent Document 1 includes a heat medium heating electric heater that heats a heat medium and a heated heat medium that is supplied into the vehicle interior in order to assist heating of the vehicle interior by a radiator. and a heat medium-air heat exchanger that heats the air.
特開2014-213765号公報Japanese Patent Application Publication No. 2014-213765
 特許文献1に記載された車両用空気調和装置は、放熱器による暖房能力の不足を補完することが可能である。しかし、特許文献1に記載された車両用空気調和装置では、電動圧縮機や熱媒体加熱電気ヒータなどが個別に設けられている。このため、装置全体が大型化し、設置スペースなどの面で改良の余地があった。 The vehicle air conditioner described in Patent Document 1 can compensate for the lack of heating capacity due to the radiator. However, in the vehicle air conditioner described in Patent Document 1, an electric compressor, a heat medium heating electric heater, and the like are individually provided. As a result, the overall size of the device has increased, and there is room for improvement in terms of installation space and other aspects.
 本発明は、車両用空気調和装置等の小型化に資することができる複合装置を提供すると共に、そこに搭載された電子回路の誤動作等を抑制することを目的とする。 An object of the present invention is to provide a composite device that can contribute to miniaturization of vehicle air conditioners, etc., and to suppress malfunctions of electronic circuits installed therein.
 本発明の一側面によると、冷媒圧縮機能及び熱媒体加熱機能を有する複合装置が提供される。複合装置は、冷媒を圧縮する圧縮機構及び前記圧縮機構を駆動する電動モータを内部に収容すると共に、冷媒を内部に流入させる冷媒流入口及び前記圧縮機構で圧縮された冷媒を外部に流出させる冷媒流出口を有する圧縮機ハウジングと、熱媒体を加熱する電気ヒータを内部に収容すると共に、熱媒体を内部に流入させる熱媒体流入口及び前記電気ヒータで加熱された熱媒体を外部に流出させる熱媒体流出口を有するヒータハウジングと、前記電動モータを駆動するモータ駆動回路と、前記電気ヒータを制御するヒータ制御回路と、前記モータ駆動回路の動作及び前記ヒータ制御回路の動作を制御する制御回路と、前記モータ駆動回路、前記ヒータ制御回路及び前記制御回路に供給する電源を生成する電源回路とを内部に収容する回路ハウジングとを含む。前記圧縮機ハウジング、前記ヒータハウジング及び前記回路ハウジングは、一体的に結合されている。また、前記モータ駆動回路、前記ヒータ制御回路及び前記電源回路は、それぞれスイッチング素子を含み、前記モータ駆動回路のスイッチング素子の駆動周波数と、前記ヒータ制御回路のスイッチング素子の駆動周波数と、前記電源回路のスイッチング素子の駆動周波数とが互いに重ならないように設定されている。 According to one aspect of the present invention, a composite device having a refrigerant compression function and a heat medium heating function is provided. The composite device houses a compression mechanism that compresses a refrigerant and an electric motor that drives the compression mechanism, and also has a refrigerant inlet that allows the refrigerant to flow into the inside, and a refrigerant that allows the refrigerant compressed by the compression mechanism to flow out to the outside. A compressor housing having an outlet, an electric heater for heating a heat medium housed therein, a heat medium inlet for causing the heat medium to flow into the inside, and a heat medium for causing the heat medium heated by the electric heater to flow out to the outside. a heater housing having a medium outlet; a motor drive circuit that drives the electric motor; a heater control circuit that controls the electric heater; and a control circuit that controls the operation of the motor drive circuit and the heater control circuit. , a circuit housing that accommodates therein the motor drive circuit, the heater control circuit, and a power supply circuit that generates power to be supplied to the control circuit. The compressor housing, the heater housing and the circuit housing are integrally coupled. The motor drive circuit, the heater control circuit, and the power supply circuit each include a switching element, and the drive frequency of the switching element of the motor drive circuit, the drive frequency of the switching element of the heater control circuit, and the power supply circuit are different from each other. The drive frequencies of the switching elements are set so that they do not overlap with each other.
 本発明によれば、車両用空気調和装置等の小型化に資することができる複合装置を提供することができる。また、複合装置に搭載された電子回路(モータ駆動回路、ヒータ制御回路、電源回路等)の誤動作を抑制することができる。 According to the present invention, it is possible to provide a composite device that can contribute to downsizing of vehicle air conditioners and the like. Furthermore, malfunctions of electronic circuits (motor drive circuit, heater control circuit, power supply circuit, etc.) mounted on the multifunction device can be suppressed.
実施形態に係る複合装置の正面図である。FIG. 1 is a front view of a multifunction device according to an embodiment. 実施形態に係る複合装置の右側面図である。FIG. 2 is a right side view of the multifunction device according to the embodiment. 実施形態に係る複合装置の上面図である。FIG. 1 is a top view of a multifunction device according to an embodiment. 実施形態に係る複合装置の部分概略断面図であり、図2のA-A断面図に相当する図である。3 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the AA sectional view of FIG. 2. FIG. 実施形態に係る複合装置のモータ駆動回路の要部構成例を示す図である。1 is a diagram illustrating an example of a main part configuration of a motor drive circuit of a multifunction device according to an embodiment. 実施形態に係る複合装置のヒータ制御回路の要部構成例を示す図である。FIG. 2 is a diagram illustrating an example of a main part configuration of a heater control circuit of a multifunction device according to an embodiment. 実施形態に係る複合装置の電源回路の要部構成例を示す図である。1 is a diagram illustrating an example of a main part configuration of a power supply circuit of a multifunction device according to an embodiment; FIG. 実施形態に係る複合装置の回路基板の回路ブロック図である。FIG. 3 is a circuit block diagram of a circuit board of the multifunction device according to the embodiment. 実施形態に係る複合装置の部分概略断面図であり、図3のB-B断面図に相当する図である。4 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the BB sectional view of FIG. 3. FIG.
 以下、本発明の実施の形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.
 図1~図4は、本発明の実施形態に係る複合装置1の概略構成を示している。図1は、実施形態に係る複合装置1の正面図であり、図2は、実施形態に係る複合装置1の右側面図であり、図3は、実施形態に係る複合装置1の上面図であり、図4は、実施形態に係る複合装置の部分概略断面図であり、図2のA-A断面図に相当する図である。 1 to 4 show a schematic configuration of a multifunction device 1 according to an embodiment of the present invention. FIG. 1 is a front view of the multifunction device 1 according to the embodiment, FIG. 2 is a right side view of the multifunction device 1 according to the embodiment, and FIG. 3 is a top view of the multifunction device 1 according to the embodiment. 4 is a partial schematic sectional view of the composite device according to the embodiment, and is a view corresponding to the AA sectional view of FIG. 2.
 実施形態に係る複合装置1は、冷媒を圧縮する冷媒圧縮機能と、冷媒とは別の熱媒体を加熱する熱媒体加熱機能とを有している。つまり、複合装置1は、冷媒圧縮機と熱媒体加熱装置とが一体化された構成を有する。 The composite device 1 according to the embodiment has a refrigerant compression function that compresses a refrigerant, and a heat medium heating function that heats a heat medium other than the refrigerant. That is, the composite device 1 has a configuration in which a refrigerant compressor and a heat medium heating device are integrated.
 複合装置1は、上述したような車両用空気調和装置に適用され得る。すなわち、複合装置1は、冷媒が循環する冷媒回路と、電動ポンプなどで構成されるポンプ部によって熱媒体が循環する熱媒体回路とに組み込まれて使用され得る。例えば、複合装置1の冷媒圧縮機能部は、前記冷媒回路に組み込まれ、膨張弁と、蒸発器(又はこれに相当する熱交換器)とを通過した冷媒を圧縮すると共に、圧縮された冷媒を、車室内に供給される空気を加熱する放熱器(冷媒-空気熱交換器)に供給するように構成され得る。また、複合装置1の熱媒体加熱機能部は、前記熱媒体回路に組み込まれ、車室内に供給される空気を加熱する熱媒体-空気熱交換器を通過した熱媒体を加熱すると共に、加熱された熱媒体を前記熱媒体-空気熱交換器に供給するように構成され得る。なお、冷媒及び熱媒体は、それぞれ任意に選択され得るが、例えば、冷媒としては気体冷媒が用いられ、熱媒体としては液体が用いられ得る。また、特に限定されないが、熱媒体には、通常、水(不凍液などが混入されたものを含む)が用いられる。したがって、熱媒体加熱機能(熱媒体加熱装置)は、水加熱機能(水加熱装置)とも称され得る。 The composite device 1 can be applied to a vehicle air conditioner as described above. That is, the composite device 1 can be used by being incorporated into a refrigerant circuit in which a refrigerant circulates, and a heat medium circuit in which a heat medium is circulated by a pump section including an electric pump or the like. For example, the refrigerant compression function section of the composite device 1 is incorporated in the refrigerant circuit, compresses the refrigerant that has passed through the expansion valve and the evaporator (or a heat exchanger equivalent to this), and also compresses the compressed refrigerant. , may be configured to supply a radiator (refrigerant-air heat exchanger) that heats air supplied into the vehicle interior. The heat medium heating function section of the composite device 1 is incorporated in the heat medium circuit and heats the heat medium that has passed through the heat medium-air heat exchanger that heats the air supplied into the vehicle interior. The heating medium may be configured to supply the heating medium to the heating medium-air heat exchanger. Note that the refrigerant and the heat medium may be selected arbitrarily, and for example, a gas refrigerant may be used as the refrigerant, and a liquid may be used as the heat medium. Furthermore, although not particularly limited, water (including water mixed with antifreeze or the like) is usually used as the heat medium. Therefore, the heat medium heating function (heat medium heating device) may also be referred to as a water heating function (water heating device).
 図1~図4を参照すると、複合装置1は、ハウジング2を有する。複合装置1のハウジング2は、第1ハウジング2Aと、第2ハウジング2Bと、第3ハウジング2Cと、第1カバー2Dと、第2カバー2Eと、第3カバー2Fとを含み、これらが図示省略のボルトなどの締結部材によって一体的に結合(締結)されて構成されている。 Referring to FIGS. 1 to 4, the composite device 1 has a housing 2. As shown in FIG. The housing 2 of the composite device 1 includes a first housing 2A, a second housing 2B, a third housing 2C, a first cover 2D, a second cover 2E, and a third cover 2F, which are not shown. They are integrally connected (fastened) using fastening members such as bolts.
 第1ハウジング2Aは、略円筒状に形成されている。第1ハウジング2Aの内部には、冷媒を圧縮する圧縮機構3と、圧縮機構3を駆動する電動モータ4とが軸方向に直列に収容されている。特に限定されないが、圧縮機構3は、固定スクロールと可動(旋回)スクロールとを含むスクロール圧縮機構であり得る。また、電動モータ4の出力軸4aは、圧縮機構3(例えば、前記可動(旋回)スクロール)に連結されている。 The first housing 2A is formed into a substantially cylindrical shape. A compression mechanism 3 that compresses refrigerant and an electric motor 4 that drives the compression mechanism 3 are housed in the first housing 2A in series in the axial direction. Although not particularly limited, the compression mechanism 3 may be a scroll compression mechanism including a fixed scroll and a movable (orbiting) scroll. Further, the output shaft 4a of the electric motor 4 is connected to the compression mechanism 3 (for example, the movable (orbiting) scroll).
 第1ハウジング2Aの2つの開口端のうちの一方の開口端(図1、図2における下側のの開口端)、すなわち、第1ハウジング2Aの圧縮機構3側の開口端は、第1カバー2Dによって閉塞されている。なお、圧縮機構3及びこれを駆動する電動モータ4を収容する第1ハウジング2Aは「圧縮機ハウジング」とも称され得る。 One of the two open ends of the first housing 2A (the lower open end in FIGS. 1 and 2), that is, the open end of the first housing 2A on the compression mechanism 3 side is connected to the first cover. occluded by 2D. Note that the first housing 2A that houses the compression mechanism 3 and the electric motor 4 that drives it may also be referred to as a "compressor housing."
 第2ハウジング2Bは、第1ハウジング2Aの側方に配置されている。第2ハウジング2Bは、略矩形筒状に形成されている。第2ハウジング2Bの内部には、熱媒体を加熱する電気ヒータ5が収容されている。 The second housing 2B is arranged on the side of the first housing 2A. The second housing 2B is formed into a substantially rectangular cylindrical shape. An electric heater 5 that heats the heat medium is housed inside the second housing 2B.
 第2ハウジング2Bの2つの開口端のうちの一方の開口端(図1、図2における下側のの開口端)は、第2カバー2Eによって閉塞されている。なお、電気ヒータ5を収容する第2ハウジング2Bは、「ヒータハウジング」とも称され得る。 One of the two open ends of the second housing 2B (the lower open end in FIGS. 1 and 2) is closed by the second cover 2E. Note that the second housing 2B that accommodates the electric heater 5 may also be referred to as a "heater housing."
 第3ハウジング2Cは、上面が開放された箱型に形成されている。第3ハウジング2Cの内部には、電動モータ4を駆動(制御)するモータ駆動回路20と、電気ヒータ5を制御するヒータ制御回路30と、モータ駆動回路20の動作及びヒータ制御回路30の動作を制御する制御回路40と、モータ駆動回路20、ヒータ制御回路30及び制御回路40に供給する電源を生成する電源回路50とが収容されている。具体的には、本実施形態において、これらモータ駆動回路20、ヒータ制御回路30、制御回路40及び電源回路50が実装された一つの回路基板6が第3ハウジング2Cの内部に収容されている。 The third housing 2C is formed into a box shape with an open top surface. Inside the third housing 2C, there are a motor drive circuit 20 that drives (controls) the electric motor 4, a heater control circuit 30 that controls the electric heater 5, and a motor drive circuit 20 that controls the operation of the motor drive circuit 20 and the operation of the heater control circuit 30. A control circuit 40 for controlling and a power supply circuit 50 for generating power to be supplied to the motor drive circuit 20, the heater control circuit 30, and the control circuit 40 are housed. Specifically, in this embodiment, one circuit board 6 on which these motor drive circuit 20, heater control circuit 30, control circuit 40, and power supply circuit 50 are mounted is housed inside the third housing 2C.
 第3ハウジング2Cの底壁7は、第1ハウジング2Aの他方の開口端(図1、図2における上側の開口端)、すなわち、第1ハウジング2Aの電動モータ4側の開口端と、第2ハウジング2Bの他方の開口端(図1、図2における上側の開口端)とを閉塞している。これにより、第1ハウジング2Aの内部と第3ハウジング2Cの内部とが仕切られ、第2ハウジング2Bの内部と第3ハウジング2Cの内部とが仕切られている。つまり、第3ハウジング2Cの底壁7は、第1ハウジング2Aの内部と第3ハウジング2Cの内部とを仕切る第1仕切部71と、第2ハウジング2Bの内部と第3ハウジング2Cの内部とを仕切る第2仕切部72を有する。 The bottom wall 7 of the third housing 2C is connected to the other open end of the first housing 2A (the upper open end in FIGS. 1 and 2), that is, the open end of the first housing 2A on the electric motor 4 side, and the second The other open end (the upper open end in FIGS. 1 and 2) of the housing 2B is closed. Thereby, the inside of the first housing 2A and the inside of the third housing 2C are partitioned off, and the inside of the second housing 2B and the inside of the third housing 2C are partitioned off. That is, the bottom wall 7 of the third housing 2C has a first partition part 71 that partitions the inside of the first housing 2A and the inside of the third housing 2C, and a first partition part 71 that partitions the inside of the second housing 2B and the inside of the third housing 2C. It has a second partition part 72 for partitioning.
 第3ハウジング2Cの上面(開口端)は、第3カバー2Fによって閉塞されている。なお、モータ駆動回路20、ヒータ制御回路30、制御回路40及び電源回路50(具体的にはこれらが実装された回路基板6)を収容する第3ハウジング2Cは、「回路ハウジング」又は「基板ハウジング」とも称され得る。 The upper surface (opening end) of the third housing 2C is closed by the third cover 2F. Note that the third housing 2C that houses the motor drive circuit 20, heater control circuit 30, control circuit 40, and power supply circuit 50 (specifically, the circuit board 6 on which these are mounted) is referred to as a "circuit housing" or a "board housing". ” can also be called.
 そして、複合装置1においては、主に圧縮機構3、電動モータ4及びモータ駆動回路20によって冷媒圧縮機能(冷媒圧縮機)が実現され、主に電気ヒータ5及びヒータ制御回路30によって熱媒体加熱機能(熱媒体加熱装置)が実現される。 In the composite device 1, the refrigerant compression function (refrigerant compressor) is mainly realized by the compression mechanism 3, the electric motor 4, and the motor drive circuit 20, and the heat medium heating function is mainly realized by the electric heater 5 and the heater control circuit 30. (heat medium heating device) is realized.
 第1ハウジング2Aには、前記冷媒回路を循環する冷媒を内部に流入させるための冷媒流入口8が形成されている。流入させる冷媒は、例えば、膨張弁と蒸発器(またはこれに相当する熱交換器)とを通過した冷媒、すなわち、低温低圧の冷媒である。本実施形態において、冷媒流入口8は、第1ハウジング2Aの第3ハウジング2C側の部位、つまり、第1ハウジング2Aの内部と第3ハウジング2Cの内部とを仕切る第1仕切部71の近傍に設けられている。好ましくは、冷媒流入口8は、冷媒の少なくとも一部が第1仕切部71に沿って流れるように、前記冷媒回路を循環する冷媒を第1ハウジング2A内に流入させるように構成されている。 A refrigerant inlet 8 for allowing the refrigerant circulating in the refrigerant circuit to flow into the first housing 2A is formed in the first housing 2A. The refrigerant to be introduced is, for example, a refrigerant that has passed through an expansion valve and an evaporator (or a heat exchanger equivalent thereto), that is, a low-temperature, low-pressure refrigerant. In this embodiment, the refrigerant inlet 8 is located in a portion of the first housing 2A on the third housing 2C side, that is, in the vicinity of the first partition portion 71 that partitions the inside of the first housing 2A and the inside of the third housing 2C. It is provided. Preferably, the refrigerant inlet 8 is configured to cause the refrigerant circulating in the refrigerant circuit to flow into the first housing 2A so that at least a portion of the refrigerant flows along the first partition portion 71.
 冷媒流入口8を介して第1ハウジング2Aの内部に流入した(低温低圧の)冷媒は、第1ハウジング2Aの内部を流れて圧縮機構3に吸入される。圧縮機構3に吸入された冷媒は、圧縮機構3によって圧縮され、高温高圧の冷媒となって圧縮機構3から吐出される。吐出された(高温高圧の)冷媒は、第1ハウジング2Aに形成された冷媒流出口9から流出し、例えば、上述の放熱器(冷媒-空気熱交換器)に供給される。 The (low-temperature, low-pressure) refrigerant that has flowed into the first housing 2A through the refrigerant inlet 8 flows inside the first housing 2A and is sucked into the compression mechanism 3. The refrigerant sucked into the compression mechanism 3 is compressed by the compression mechanism 3, and is discharged from the compression mechanism 3 as a high-temperature, high-pressure refrigerant. The discharged (high temperature and high pressure) refrigerant flows out from the refrigerant outlet 9 formed in the first housing 2A, and is supplied to, for example, the above-mentioned radiator (refrigerant-air heat exchanger).
 本実施形態において、冷媒流出口9は、第1ハウジング2Aの第1カバー2D側の部位に、すなわち、冷媒流入口8から図1、図2における上下方向に離れた位置に設けられている。このため、本実施形態において、冷媒流入口8から第1ハウジング2A内に流入した冷媒は、第1ハウジング2A内を図1、図2における上側から下側に向かって流れる。 In this embodiment, the refrigerant outlet 9 is provided in a portion of the first housing 2A on the first cover 2D side, that is, at a position away from the refrigerant inlet 8 in the vertical direction in FIGS. 1 and 2. Therefore, in this embodiment, the refrigerant that has flowed into the first housing 2A from the refrigerant inlet 8 flows from the upper side to the lower side in FIGS. 1 and 2 within the first housing 2A.
 なお、第1仕切部71は、冷媒流入口8を介して第1ハウジング2A内に流入する(低温低圧の)冷媒によって冷却され得、電動モータ4は、第1ハウジング2Aの内部を流れる冷媒によって冷却され得る。また、冷媒流入口8、第1ハウジング2Aの内部及び冷媒流出口9は、前記冷媒回路の一部を構成する。 Note that the first partition part 71 can be cooled by the (low temperature, low pressure) refrigerant flowing into the first housing 2A through the refrigerant inlet 8, and the electric motor 4 can be cooled by the refrigerant flowing inside the first housing 2A. May be cooled. Further, the refrigerant inlet 8, the inside of the first housing 2A, and the refrigerant outlet 9 constitute a part of the refrigerant circuit.
 第2ハウジング2Bには、前記熱媒体回路を循環する熱媒体を内部に流入させるための熱媒体流入口10が形成されている。流入させる熱媒体は、例えば、上述の熱媒体-空気熱交換器を通過した熱媒体、すなわち、低温の熱媒体である。本実施形態において、熱媒体流入口10は、第2ハウジング2Bの第3ハウジング2C側の部位、つまり、第2ハウジング2Bの内部と第3ハウジング2Cの内部とを仕切る第2仕切部72の近傍であって且つ図1における奥側(図2における右側)に設けられている。好ましくは、熱媒体流入口10は、熱媒体の少なくとも一部が第2仕切部72に沿って流れるように、前記熱媒体回路を循環する熱媒体を第2ハウジング2B内に流入させるように構成されている。 A heat medium inlet 10 is formed in the second housing 2B for allowing the heat medium circulating in the heat medium circuit to flow into the second housing 2B. The heat medium to be introduced is, for example, a heat medium that has passed through the above-described heat medium-air heat exchanger, that is, a low-temperature heat medium. In the present embodiment, the heat medium inlet 10 is located at a portion of the second housing 2B on the third housing 2C side, that is, near the second partition portion 72 that partitions the inside of the second housing 2B and the inside of the third housing 2C. and is provided on the back side in FIG. 1 (on the right side in FIG. 2). Preferably, the heat medium inlet 10 is configured to cause the heat medium circulating in the heat medium circuit to flow into the second housing 2B so that at least a portion of the heat medium flows along the second partition portion 72. has been done.
 熱媒体流入口10を介して第2ハウジング2Bの内部に流入した(低温の)熱媒体は、第2ハウジング2Bの内部を流れ、その際、電気ヒータ5によって加熱されて昇温する。加熱された熱媒体は、第2ハウジング2Bに形成された熱媒体流出口11から流出し、例えば、上述の熱媒体-空気熱交換器に供給される。 The (low-temperature) heat medium that has flowed into the second housing 2B through the heat medium inlet 10 flows inside the second housing 2B and is heated by the electric heater 5 to raise its temperature. The heated heat medium flows out from the heat medium outlet 11 formed in the second housing 2B, and is supplied to, for example, the above-mentioned heat medium-air heat exchanger.
 本実施形態において、熱媒体流出口11は、第2ハウジング2Bの内部と第3ハウジング2Cの内部とを仕切る第2仕切部72の近傍であって且つ図1における手前側(図2における左側)に設けられている。このため、本実施形態において、熱媒体流入口10から第2ハウジング2B内に流入した熱媒体は、第2ハウジング2B内を、第2仕切部72に沿って、図2、図4における右側から左側に向かって流れる。 In this embodiment, the heat medium outlet 11 is located near the second partition part 72 that partitions the inside of the second housing 2B and the inside of the third housing 2C, and on the near side in FIG. 1 (left side in FIG. 2). It is set in. Therefore, in the present embodiment, the heat medium flowing into the second housing 2B from the heat medium inlet 10 flows inside the second housing 2B from the right side in FIGS. 2 and 4 along the second partition part 72. flows towards the left.
 なお、第2仕切部72は、熱媒体流入口10を介して第2ハウジング2B内に流入する(低温の)熱媒体によって冷却され得る。また、熱媒体流入口10、第2ハウジング2Bの内部及び熱媒体流出口11は、前記熱媒体回路の一部を構成する。 Note that the second partition portion 72 may be cooled by the (low-temperature) heat medium flowing into the second housing 2B through the heat medium inlet 10. Further, the heat medium inlet 10, the inside of the second housing 2B, and the heat medium outlet 11 constitute a part of the heat medium circuit.
 ここで、図には示されていないが、モータ駆動回路20から電動モータ4への給電線及びヒータ制御回路30から電気ヒータ5への給電線は、それぞれ気密及び液密な状態で第3ハウジング2Cの底壁7を貫通して延びている。 Although not shown in the figure, the power supply line from the motor drive circuit 20 to the electric motor 4 and the power supply line from the heater control circuit 30 to the electric heater 5 are connected to the third housing in an airtight and liquidtight state, respectively. It extends through the bottom wall 7 of 2C.
 次に、モータ駆動回路20、ヒータ制御回路30、制御回路40及び電源回路50について説明する。 Next, the motor drive circuit 20, heater control circuit 30, control circuit 40, and power supply circuit 50 will be explained.
 モータ駆動回路20は、車両に搭載された高電圧バッテリなどの高電圧電源HVからの直流電圧を三相交流電圧に変換して電動モータ4に供給することで電動モータ4を駆動(制御)するように構成されている。図5は、モータ駆動回路20の要部構成例を示す図である。図5に示されるように、モータ駆動回路20は、平滑コンデンサ21と、第1パワーモジュール22と、第1ドライバ23とを有する。 The motor drive circuit 20 drives (controls) the electric motor 4 by converting a DC voltage from a high voltage power source HV such as a high voltage battery mounted on a vehicle into a three-phase AC voltage and supplying the voltage to the electric motor 4. It is configured as follows. FIG. 5 is a diagram showing an example of the main part configuration of the motor drive circuit 20. As shown in FIG. As shown in FIG. 5, the motor drive circuit 20 includes a smoothing capacitor 21, a first power module 22, and a first driver 23.
 平滑コンデンサ21は、高電圧電源HVの電源ラインと接地ラインとの間に接続されており、高電圧電源HVからの直流電圧を平滑化する。 The smoothing capacitor 21 is connected between the power line of the high voltage power supply HV and the ground line, and smoothes the DC voltage from the high voltage power supply HV.
 第1パワーモジュール22は、6つのパワースイッチング素子(以下「第1スイッチング素子」という)Q1~Q6と、6つのダイオードD1~D6とを含む。特に限定されないが、第1スイッチング素子Q1~Q6は、IGBT(絶縁ゲート型バイポーラトランジスタ)であり得る。第1パワーモジュール22は、第1スイッチング素子Q1~Q6がPWM制御されることにより、高電圧電源HVからの直流電圧を三相交流電圧に変換して電動モータ4に供給する。 The first power module 22 includes six power switching elements (hereinafter referred to as "first switching elements") Q1 to Q6 and six diodes D1 to D6. Although not particularly limited, the first switching elements Q1 to Q6 may be IGBTs (insulated gate bipolar transistors). The first power module 22 converts the DC voltage from the high voltage power supply HV into a three-phase AC voltage and supplies it to the electric motor 4 by subjecting the first switching elements Q1 to Q6 to PWM control.
 具体的には、第1パワーモジュール22は、高電圧電源HVの電源ラインと接地ラインとの間に、互いに並列に設けられたU相アーム、V相アーム及びW相アームを有する。 Specifically, the first power module 22 has a U-phase arm, a V-phase arm, and a W-phase arm that are provided in parallel with each other between the power line of the high-voltage power supply HV and the ground line.
 U相アームには、2つの第1スイッチング素子Q1、Q2が直列に接続されており、各第1スイッチング素子Q1、Q2にはダイオードD1、D2がそれぞれ逆並列に接続されている。 Two first switching elements Q1 and Q2 are connected in series to the U-phase arm, and diodes D1 and D2 are connected in antiparallel to each of the first switching elements Q1 and Q2, respectively.
 V相アームには、2つの第1スイッチング素子Q3、Q4が直列に接続されており、各第1スイッチング素子Q3、Q4にはダイオードD3、D4がそれぞれ逆並列に接続されている。 Two first switching elements Q3 and Q4 are connected in series to the V-phase arm, and diodes D3 and D4 are connected in antiparallel to each of the first switching elements Q3 and Q4, respectively.
 W相アームには、2つの第1スイッチング素子Q5、Q6が直列に接続されており、各第1スイッチング素子Q5、Q6にはダイオードD5、D6がそれぞれ逆並列に接続されている。 Two first switching elements Q5 and Q6 are connected in series to the W-phase arm, and diodes D5 and D6 are connected in antiparallel to each of the first switching elements Q5 and Q6, respectively.
 また、U、V、W各相アームの中間点は、それぞれの一端においてスター結線された電動モータ4のU、V、W各相コイルの他端に接続されている。つまり、U相アームの第1スイッチング素子Q1、Q2の中間点がU相コイルに接続され、V相アームの第1スイッチング素子Q3、Q4の中間点がV相コイルに接続され、及び、W相アームの第1スイッチング素子Q5、Q6の中間点がW相コイルに接続されている。 Furthermore, the intermediate points of the U, V, and W phase arms are connected to the other ends of the U, V, and W phase coils of the electric motor 4, which are star-connected at one end of each. That is, the midpoint between the first switching elements Q1 and Q2 of the U-phase arm is connected to the U-phase coil, the midpoint of the first switching elements Q3 and Q4 of the V-phase arm is connected to the V-phase coil, and the W-phase A midpoint between the first switching elements Q5 and Q6 of the arm is connected to the W-phase coil.
 したがって、第1パワーモジュール22は、各相アームの電源ライン側の第1スイッチング素子Q1,Q3,Q5のON期間と、接地ライン側の第1スイッチング素子Q2,Q4,Q6のON期間との比率が制御される(PWM制御される)ことにより、平滑コンデンサ21によって平滑化された、高電圧電源HVからの直流電圧を三相交流電圧に変換して電動モータ4に供給することができ、これにより、電動モータ4を駆動し、及び圧縮機構3を駆動することができる。 Therefore, the first power module 22 has a ratio of the ON period of the first switching elements Q1, Q3, Q5 on the power line side of each phase arm to the ON period of the first switching elements Q2, Q4, Q6 on the ground line side. is controlled (PWM controlled), the DC voltage from the high voltage power supply HV smoothed by the smoothing capacitor 21 can be converted into a three-phase AC voltage and supplied to the electric motor 4. Accordingly, the electric motor 4 and the compression mechanism 3 can be driven.
 第1ドライバ23は、制御回路40からの制御信号(PWM信号)に基づき、第1スイッチング素子Q1~Q6(のゲート)をON/OFF駆動(スイッチング)する。 The first driver 23 turns ON/OFF (switches) the first switching elements Q1 to Q6 (gates thereof) based on a control signal (PWM signal) from the control circuit 40.
 つまり、本実施形態において、モータ駆動回路20の動作(第1スイッチング素子Q1~Q6のスイッチング動作)、ひいては、電動モータ4及び圧縮機構3(すなわち、冷媒圧縮機能)の動作は、制御回路40によって制御されるようになっている。 That is, in this embodiment, the operation of the motor drive circuit 20 (switching operation of the first switching elements Q1 to Q6), and furthermore, the operation of the electric motor 4 and the compression mechanism 3 (that is, the refrigerant compression function) is controlled by the control circuit 40. It's about to be controlled.
 ヒータ制御回路30は、高電圧電源HVの電圧を電気ヒータ5に印加するように構成されている。図6は、ヒータ制御回路30の要部構成例を示す図である。図6に示されるように、ヒータ制御回路30は、第2パワーモジュール31と、第2ドライバ32とを有する。なお、図示省略するが、モータ駆動回路20と同様、高電圧電源HVの電源ラインと接地ラインとの間に平滑コンデンサが接続されてもよい。 The heater control circuit 30 is configured to apply the voltage of the high voltage power supply HV to the electric heater 5. FIG. 6 is a diagram showing an example of the main part configuration of the heater control circuit 30. As shown in FIG. As shown in FIG. 6, the heater control circuit 30 includes a second power module 31 and a second driver 32. Although not shown, a smoothing capacitor may be connected between the power line of the high voltage power supply HV and the ground line, similar to the motor drive circuit 20.
 第2パワーモジュール31は、電気ヒータ5への通電を制御する2つのパワースイッチング素子(以下「第2スイッチング素子」という)Q7、Q8を含む。第2スイッチング素子Q7、Q8は、モータ駆動回路20の第1スイッチング素子Q1~Q6と同様、IGBTであり得る。本実施形態において、2つの第2スイッチング素子Q7、Q8のうちの一方の第2スイッチング素子Q7は、電気ヒータ5よりも高電圧電源HVの出力側(電圧側)に設けられ、他方の第2スイッチング素子Q8は、電気ヒータ5よりも高電圧電源HVの接地側に設けられている。 The second power module 31 includes two power switching elements (hereinafter referred to as "second switching elements") Q7 and Q8 that control energization to the electric heater 5. The second switching elements Q7 and Q8 may be IGBTs like the first switching elements Q1 to Q6 of the motor drive circuit 20. In this embodiment, one of the two second switching elements Q7 and Q8 is provided on the output side (voltage side) of the high voltage power supply HV than the electric heater 5, and the other second switching element Q7 is provided on the output side (voltage side) of the high voltage power supply HV than the electric heater 5. The switching element Q8 is provided closer to the ground side of the high voltage power supply HV than the electric heater 5 is.
 第2パワーモジュール31は、第2スイッチング素子Q7、Q8が制御(PWM制御)されることにより、高電圧電源HVと電気ヒータ5との間の通電をON/OFFし、これによって、電気ヒータ5の温度、さらには、電気ヒータ5によって加熱される熱媒体の温度を制御することができる。 The second power module 31 turns ON/OFF the current between the high voltage power supply HV and the electric heater 5 by controlling the second switching elements Q7 and Q8 (PWM control). , and further the temperature of the heat medium heated by the electric heater 5 can be controlled.
 第2ドライバ32は、制御回路40からの制御信号(PWM信号)に基づき、第2スイッチング素子Q7、Q8(のゲート)をON/OFF駆動(スイッチング)する。 The second driver 32 turns ON/OFF (switches) the second switching elements Q7 and Q8 (gates thereof) based on a control signal (PWM signal) from the control circuit 40.
 つまり、本実施形態において、ヒータ制御回路30(第2スイッチング素子Q7、Q8)の動作、ひいては、電気ヒータ5(熱媒体加熱機能)の動作は、制御回路40によって制御されるようになっている。 That is, in this embodiment, the operation of the heater control circuit 30 (second switching elements Q7, Q8) and, by extension, the operation of the electric heater 5 (thermal medium heating function) are controlled by the control circuit 40. .
 制御回路40は、図示省略の上位の制御装置(例えば、上述の車両用空調装置の制御装置)からの冷媒圧縮機能の動作要求に応じた制御信号を第1ドライバ23に出力し、熱媒体加熱機能の動作要求に応じた制御信号を第2ドライバ32に出力するように構成されている。特に限定されないが、本実施形態において、制御回路40は、マイクロコントロールユニット(MCU)で構成されている。 The control circuit 40 outputs a control signal to the first driver 23 in response to a request for operation of the refrigerant compression function from a higher-level control device (for example, the control device for the above-mentioned vehicle air conditioner), which is not shown, to heat the heat medium. It is configured to output a control signal to the second driver 32 in accordance with a functional operation request. Although not particularly limited, in this embodiment, the control circuit 40 is configured with a microcontrol unit (MCU).
 電源回路50は、例えばスイッチング式のDC-DCコンバータであり、車両に搭載された低電圧バッテリなどの低電圧電源LV(ここではDC12V)をスイッチングして所定の直流電圧(15V及び5V)を生成し、生成された直流電圧をモータ駆動回路20、ヒータ制御回路30及び制御回路(MCU)40に供給するように構成されている。本実施形態において、電源回路50によって生成された15Vの直流電圧は、モータ駆動回路20の第1ドライバ23及びヒータ制御回路30の第2ドライバ32に供給され、電源回路50によって生成された5Vの直流電圧は、制御回路(MCU)40に供給される。 The power supply circuit 50 is, for example, a switching type DC-DC converter, and generates predetermined DC voltages (15V and 5V) by switching a low-voltage power supply LV (DC12V in this case) such as a low-voltage battery mounted on a vehicle. It is configured to supply the generated DC voltage to a motor drive circuit 20, a heater control circuit 30, and a control circuit (MCU) 40. In this embodiment, the 15V DC voltage generated by the power supply circuit 50 is supplied to the first driver 23 of the motor drive circuit 20 and the second driver 32 of the heater control circuit 30, and the 5V DC voltage generated by the power supply circuit 50 is The DC voltage is supplied to a control circuit (MCU) 40.
 図7は、電源回路50の要部構成例を示す図である。図7に示されるように、電源回路50は、スイッチングトランス51を含む。スイッチングトランス51は、絶縁トランスであり、一次巻線52と、一次巻線52とは絶縁された二次巻線53とを有する。 FIG. 7 is a diagram showing an example of the configuration of main parts of the power supply circuit 50. As shown in FIG. 7, power supply circuit 50 includes a switching transformer 51. The switching transformer 51 is an insulating transformer, and has a primary winding 52 and a secondary winding 53 insulated from the primary winding 52.
 一次巻線52の巻き終わり端52Bは、低電圧電源LVの電源ライン54に接続され、一次巻線52の巻き始め端52Aは、スイッチング素子(以下「第3スイッチング素子」という)Q9を介して低電圧電源LVの接地ライン56に接続されている。特に限定されないが、第3スイッチング素子Q9は、MOSFET(金属酸化膜半導体電界効果トランジスタ)であり得る。 A winding end 52B of the primary winding 52 is connected to a power supply line 54 of a low voltage power supply LV, and a winding start end 52A of the primary winding 52 is connected to a winding end 52A of the primary winding 52 via a switching element (hereinafter referred to as "third switching element") Q9. It is connected to the ground line 56 of the low voltage power supply LV. Although not particularly limited, the third switching element Q9 may be a MOSFET (metal oxide semiconductor field effect transistor).
 第3スイッチング素子Q9の(ゲートの)ON/OFF動作(スイッチング動作)は、電源回路コントローラ55によって制御される。電源回路コントローラ55には、低電圧電源LVからの直流電圧が供給されている。なお、低電圧電源LVの電源ライン54と接地ライン56との間には、平滑コンデンサ57が接続されている。 The ON/OFF operation (switching operation) (of the gate) of the third switching element Q9 is controlled by the power supply circuit controller 55. The power supply circuit controller 55 is supplied with DC voltage from the low voltage power supply LV. Note that a smoothing capacitor 57 is connected between the power line 54 of the low voltage power source LV and the ground line 56.
 二次巻線53は、第1巻線部58と第2巻線部59とを有する。第1巻線部58の巻き始め端58Aは、ダイオードD7を介して第1電源出力ライン(15Vライン)60に接続されている。第1巻線部58の巻き終わり端58Bは、ダイオードD8及びレギュレータ(LDO:ロー・ドロップアウト・レギュレータ)61を介して第2電源出力ライン(5Vライン)62に接続されている。また、第2巻線部59の巻き始め端59Aは、第1巻線部58の巻き終わり端58Bに接続され、第2巻線部59の巻き終わり端59Bは、二次側接地ライン63を介して二次側接地(SGND)に接続されている。 The secondary winding 53 has a first winding part 58 and a second winding part 59. A winding start end 58A of the first winding portion 58 is connected to a first power output line (15V line) 60 via a diode D7. A winding end 58B of the first winding portion 58 is connected to a second power output line (5V line) 62 via a diode D8 and a regulator (LDO: low dropout regulator) 61. Further, the winding start end 59A of the second winding part 59 is connected to the winding end 58B of the first winding part 58, and the winding end 59B of the second winding part 59 connects the secondary side ground line 63. It is connected to secondary ground (SGND) through the terminal.
 第1電源出力ライン60には、モータ駆動回路20の第1ドライバ23及びヒータ制御回路30の第2ドライバ32が接続され、第2電源出力ライン62には、制御回路(MCU)40が接続される。 The first driver 23 of the motor drive circuit 20 and the second driver 32 of the heater control circuit 30 are connected to the first power output line 60, and the control circuit (MCU) 40 is connected to the second power output line 62. Ru.
 なお、第1電源出力ライン60と二次側接地ライン63との間には、平滑コンデンサ64が接続されており、レギュレータ61の前後の第2電源出力ライン62と二次側接地ライン63との間には、それぞれ平滑コンデンサ65、66が接続されている。また、本実施形態においては、スイッチングトランス51の一次巻線52の巻き終わり端52B側と二次巻線53の第2巻線部59の巻き終わり端59B側とが、カップリングコンデンサ67を介して結合されている。 Note that a smoothing capacitor 64 is connected between the first power output line 60 and the secondary ground line 63, and the second power output line 62 before and after the regulator 61 and the secondary ground line 63 are connected to each other. Smoothing capacitors 65 and 66 are connected between them, respectively. Further, in this embodiment, the winding end 52B side of the primary winding 52 of the switching transformer 51 and the winding end 59B side of the second winding portion 59 of the secondary winding 53 are connected to each other via the coupling capacitor 67. are combined.
 電源回路コントローラ55は、スイッチングトランス51の巻数比に応じて、第1電源出力ライン60にDC15Vが出力されるように第3スイッチング素子Q9のスイッチング動作を制御する。これにより、DC15Vがモータ駆動回路20の第1ドライバ23及びヒータ制御回路30の第2ドライバ32に供給される。また、制御回路(MCU)40には、二次巻線53の第1巻線部58と第2巻線部59との巻数比に応じた中間出力からレギュレータ61を介してDC5Vが供給される。 The power supply circuit controller 55 controls the switching operation of the third switching element Q9 according to the turns ratio of the switching transformer 51 so that DC 15V is output to the first power supply output line 60. As a result, DC 15V is supplied to the first driver 23 of the motor drive circuit 20 and the second driver 32 of the heater control circuit 30. Further, DC 5V is supplied to the control circuit (MCU) 40 via a regulator 61 from an intermediate output according to the turns ratio between the first winding section 58 and the second winding section 59 of the secondary winding 53. .
 上述のように、本実施形態において、モータ駆動回路20、ヒータ制御回路30、制御回路(MCU)40及び電源回路50は、一つの回路基板6に実装されている。なお、図8は、回路基板6の回路ブロック図である。 As described above, in this embodiment, the motor drive circuit 20, heater control circuit 30, control circuit (MCU) 40, and power supply circuit 50 are mounted on one circuit board 6. Note that FIG. 8 is a circuit block diagram of the circuit board 6.
 次に、図9を参照して実施形態に係る複合装置1における、モータ駆動回路20の第1スイッチング素子Q1~Q6及びヒータ制御回路30の第2スイッチング素子Q7、Q8の配置構造について説明する。図9は、複合装置1の部分概略断面図(図3のB-B断面図に相当する図)である。 Next, the arrangement structure of the first switching elements Q1 to Q6 of the motor drive circuit 20 and the second switching elements Q7 and Q8 of the heater control circuit 30 in the multifunction device 1 according to the embodiment will be described with reference to FIG. FIG. 9 is a partial schematic cross-sectional view of the composite device 1 (corresponding to the BB cross-sectional view in FIG. 3).
 上述のように、モータ駆動回路20、ヒータ制御回路30、制御回路(MCU)40及び電源回路50が実装された回路基板6は、図9に示されるように、第3ハウジング2Cの内部に設けられた複数の基板取付部12に取り付けられ得る。本実施形態において、複数の基板取付部12のそれぞれは、第3ハウジング2Cの底壁7から(第1ハウジング2A及び第2ハウジング2Bから離れる方向)に突出するボス状に形成されており、複数の基板取付部12の上面に回路基板6がねじ13によって取り付けられている。 As described above, the circuit board 6 on which the motor drive circuit 20, the heater control circuit 30, the control circuit (MCU) 40, and the power supply circuit 50 are mounted is provided inside the third housing 2C, as shown in FIG. It can be attached to a plurality of board attachment parts 12 that are attached to each other. In this embodiment, each of the plurality of board mounting parts 12 is formed in a boss shape that protrudes from the bottom wall 7 of the third housing 2C (in the direction away from the first housing 2A and the second housing 2B). A circuit board 6 is attached to the upper surface of the board attachment part 12 with screws 13.
 本実施形態において、モータ駆動回路20の第1スイッチング素子Q1~Q6及びヒータ制御回路30の第2スイッチング素子Q7、Q8は、第3ハウジング2C内において、冷媒流入口8から第1ハウジング2A内に流入した冷媒によって冷却され得る位置に配置されている。 In this embodiment, the first switching elements Q1 to Q6 of the motor drive circuit 20 and the second switching elements Q7 and Q8 of the heater control circuit 30 are connected from the refrigerant inlet 8 into the first housing 2A in the third housing 2C. It is arranged at a position where it can be cooled by the inflowing refrigerant.
 具体的には、モータ駆動回路20の第1スイッチング素子Q1~Q6及びヒータ制御回路30の第2スイッチング素子Q7、Q8は、基板取付部12に取り付けられた回路基板6の第3ハウジング2Cの底壁7側の面に実装され、第1ハウジング2Aの内部と第3ハウジング2Cの内部とを仕切る第1仕切部71に熱的に接触している。なお、「第1仕切部71に熱的に接触している」とは、第1仕切部71との間で熱交換可能な状態にあることをいい、第1仕切部71に直接接触していること、第1仕切部71に熱交換可能な程度に近接していること、及び、熱伝導率が高い熱交換部材などを介して第1仕切部71に間接的に接触することなどが含まれる。 Specifically, the first switching elements Q1 to Q6 of the motor drive circuit 20 and the second switching elements Q7 and Q8 of the heater control circuit 30 are connected to the bottom of the third housing 2C of the circuit board 6 attached to the board mounting part 12. It is mounted on the surface on the wall 7 side and is in thermal contact with a first partition portion 71 that partitions the inside of the first housing 2A and the inside of the third housing 2C. Note that "being in thermal contact with the first partition part 71" means being in a state where heat exchange is possible with the first partition part 71, and being in direct contact with the first partition part 71. This includes being close enough to the first partition part 71 to allow heat exchange, and indirectly contacting the first partition part 71 via a heat exchange member with high thermal conductivity. It will be done.
 ところで、第3ハウジング2C内において、モータ駆動回路20の第1スイッチング素子Q1~Q6、ヒータ制御回路30の第2スイッチング素子Q7、Q8及び電源回路50の第3スイッチング素子Q9は、それぞれに設定された駆動周波数(スイッチング周波数ともいう)で駆動される。すなわち、モータ駆動回路20の第1スイッチング素子Q1~Q6は、第1スイッチング素子Q1~Q6のための駆動周波数(以下「第1駆動周波数」という)f1で駆動され、ヒータ制御回路30の第2スイッチング素子Q7、Q8は、第2スイッチング素子Q7、Q8にための駆動周波数(以下「第2駆動周波数」という)f2で駆動され、電源回路50の第3スイッチング素子Q9は、第3スイッチング素子Q9のための駆動周波数(以下「第3駆動周波数」という)で駆動される。 By the way, in the third housing 2C, the first switching elements Q1 to Q6 of the motor drive circuit 20, the second switching elements Q7 and Q8 of the heater control circuit 30, and the third switching element Q9 of the power supply circuit 50 are set respectively. It is driven at a different drive frequency (also called switching frequency). That is, the first switching elements Q1 to Q6 of the motor drive circuit 20 are driven at the drive frequency (hereinafter referred to as "first drive frequency") f1 for the first switching elements Q1 to Q6, and the second The switching elements Q7 and Q8 are driven at a driving frequency (hereinafter referred to as "second driving frequency") f2 for the second switching elements Q7 and Q8, and the third switching element Q9 of the power supply circuit 50 is driven at a driving frequency f2 for the second switching elements Q7 and Q8. (hereinafter referred to as "third drive frequency").
 ここで、第1駆動周波数f1と第2駆動周波数f2とが重なったり、第1駆動周波数f1と第3駆動周波数f3とが重なったり、第2駆動周波数f2と第3駆動周波数f3とが重なると、ノイズレベルの増大や回路の誤動作を招くおそれがある。 Here, if the first drive frequency f1 and the second drive frequency f2 overlap, the first drive frequency f1 and the third drive frequency f3 overlap, or the second drive frequency f2 and the third drive frequency f3 overlap, This may lead to an increase in the noise level or malfunction of the circuit.
 そのため、本実施形態において、第1駆動周波数f1、第2駆動周波数f2及び第3駆動周波数f3は、互いに重ならないように(ずらして)設定されている。換言すれば、第1駆動周波数(第1スイッチング周波数)f1、第2駆動周波数(第2スイッチング周波数)f2及び第3駆動周波数(第3スイッチング周波数)f3は、互い影響を与えないように、すなわち、それらの間で干渉や共振などが生じないように、設定されている。 Therefore, in this embodiment, the first drive frequency f1, the second drive frequency f2, and the third drive frequency f3 are set so as not to overlap (shift) with each other. In other words, the first drive frequency (first switching frequency) f1, the second drive frequency (second switching frequency) f2, and the third drive frequency (third switching frequency) f3 are set such that they do not affect each other, that is, , are set so that no interference or resonance occurs between them.
 基本的には、各回路に要求される性能等を考慮し、モータ駆動回路20の第1スイッチング素子Q1~Q6の第1駆動周波数f1は、ヒータ制御回路30の第2スイッチング素子Q7、Q8の第2駆動周波数f2よりも一桁以上高く設定され、電源回路50の第3スイッチング素子Q9の第3駆動周波数f3は、モータ駆動回路20の第1スイッチング素子Q1~Q6の第1駆動周波数f1よりも一桁以上高く設定される。 Basically, considering the performance required for each circuit, the first drive frequency f1 of the first switching elements Q1 to Q6 of the motor drive circuit 20 is set to the first drive frequency f1 of the first switching elements Q1 to Q6 of the heater control circuit 30. The third drive frequency f3 of the third switching element Q9 of the power supply circuit 50 is set higher than the second drive frequency f2 by one order or more, and the third drive frequency f3 of the third switching element Q9 of the power supply circuit 50 is higher than the first drive frequency f1 of the first switching elements Q1 to Q6 of the motor drive circuit 20. will also be set more than an order of magnitude higher.
 例えば、第1駆動周波数f1は、数10kHzオーダーの周波数(10~99kHz)に設定され、第2駆動周波数f2は、数10Hzオーダーの周波数(10~99Hz)に設定され、第3駆動周波数f3は、数100kHzオーダー(100~999kHz)の周波数に設定され得る。特に限定されないが、一例として、第1駆動周波数f1は10~20kHzであり、第2駆動周波数f2は50~65Hzであり、第3駆動周波数f3は150~200kHzであり得る。 For example, the first driving frequency f1 is set to a frequency on the order of several tens of kHz (10 to 99 kHz), the second driving frequency f2 is set to a frequency on the order of several tens of Hz (10 to 99 Hz), and the third driving frequency f3 is set to a frequency on the order of several tens of kHz (10 to 99 Hz). , can be set to a frequency on the order of several hundred kHz (100 to 999 kHz). Although not particularly limited, by way of example, the first drive frequency f1 may be 10 to 20 kHz, the second drive frequency f2 may be 50 to 65 Hz, and the third drive frequency f3 may be 150 to 200 kHz.
 実施形態に係る複合装置1によれば以下の効果が得られる。 According to the multifunction device 1 according to the embodiment, the following effects can be obtained.
 実施形態に係る複合装置1は、冷媒を圧縮する圧縮機構3及び圧縮機構3を駆動する電動モータ4を内部に直列に収容すると共に、冷媒流入口8及び冷媒流出口9を有する第1ハウジング(圧縮機ハウジング)2Aと、熱媒体を加熱する電気ヒータ5を内部に収容すると共に、熱媒体流入口10及び熱媒体流出口11を有する第2ハウジング(ヒータハウジング)2Bと、電動モータ4を駆動するモータ駆動回路20と、電気ヒータ5を制御するヒータ制御回路30と、モータ駆動回路20の動作及びヒータ制御回路30の動作を制御する制御回路(MCU)40と、モータ駆動回路20、ヒータ制御回路30及び制御回路(MCU)40に供給する電源を生成する電源回路50とを内部に収容する第3ハウジング(回路ハウジング)2Cとを含む。そして、第1ハウジング(圧縮機ハウジング)2A、第2ハウジング2B(ヒータハウジング)及び第3ハウジング(回路ハウジング)2Cは、一体的に結合されている。 The composite device 1 according to the embodiment includes a first housing (1) that houses in series a compression mechanism 3 that compresses a refrigerant and an electric motor 4 that drives the compression mechanism 3, and has a refrigerant inlet 8 and a refrigerant outlet 9. A compressor housing) 2A, a second housing (heater housing) 2B that houses an electric heater 5 for heating a heat medium and has a heat medium inlet 10 and a heat medium outlet 11, and drives an electric motor 4. a motor drive circuit 20 that controls the electric heater 5; a heater control circuit 30 that controls the electric heater 5; a control circuit (MCU) 40 that controls the operation of the motor drive circuit 20 and the heater control circuit 30; It includes a third housing (circuit housing) 2C that houses therein a power supply circuit 50 that generates power to be supplied to the circuit 30 and the control circuit (MCU) 40. The first housing (compressor housing) 2A, the second housing 2B (heater housing), and the third housing (circuit housing) 2C are integrally connected.
 このような複合装置1は、冷媒を圧縮する冷媒圧縮機(電動圧縮機)及び熱媒体を加熱する熱媒体加熱装置として機能し得るものであり、冷媒を圧縮しながら、熱媒体を加熱することができる。このため、複合装置1は、上述したような車両用空気調和装置に適用され得る。そして、複合装置1が車両用空気調和装置に適用されることにより、電動圧縮機及び熱媒体加熱装置を別個に有する従来の構成に比べて、車両用空気調和装置の小型化を図ることが可能である。 Such a composite device 1 can function as a refrigerant compressor (electric compressor) that compresses a refrigerant and a heat medium heating device that heats a heat medium, and can heat the heat medium while compressing the refrigerant. Can be done. Therefore, the composite device 1 can be applied to a vehicle air conditioner as described above. By applying the composite device 1 to a vehicle air conditioner, it is possible to downsize the vehicle air conditioner compared to a conventional configuration that separately includes an electric compressor and a heat medium heating device. It is.
 ここで、モータ駆動回路20は、直流電圧を三相交流電圧に変換する第1スイッチング素子Q1~Q6を含み、ヒータ制御回路30は、電気ヒータ5への通電をON/OFFする第2スイッチング素子Q7、Q8を含む。また、電源回路50は、スイッチング式のDC-DCコンバータで構成されており、第3スイッチング素子Q9を含む。そして、モータ駆動回路20、ヒータ制御回路30、制御回路40及び電源回路50は、一つの回路基板6に実装されており、また、モータ駆動回路20の第1スイッチング素子Q1~Q6の第1駆動周波数f1と、ヒータ制御回路30の第2スイッチング素子Q7、Q8の第2駆動周波数f2と、電源回路50の第3スイッチング素子Q9の第3駆動周波数f3とが互いに重ならないように設定されている。好ましくは、第1駆動周波数f1は数10kHzオーダーの周波数に設定され、第2駆動周波数f2は数10Hzオーダーの周波数に設定され、第3駆動周波数f3は数100kHzオーダーの周波数に設定される。 Here, the motor drive circuit 20 includes first switching elements Q1 to Q6 that convert a DC voltage into a three-phase AC voltage, and the heater control circuit 30 includes a second switching element that turns ON/OFF energization to the electric heater 5. Including Q7 and Q8. Further, the power supply circuit 50 is configured with a switching type DC-DC converter, and includes a third switching element Q9. The motor drive circuit 20, the heater control circuit 30, the control circuit 40, and the power supply circuit 50 are mounted on one circuit board 6, and the first switching elements Q1 to Q6 of the motor drive circuit 20 are first driven. The frequency f1, the second drive frequency f2 of the second switching elements Q7 and Q8 of the heater control circuit 30, and the third drive frequency f3 of the third switching element Q9 of the power supply circuit 50 are set so as not to overlap with each other. . Preferably, the first drive frequency f1 is set to a frequency on the order of several 10 kHz, the second drive frequency f2 is set to a frequency on the order of several 10 Hz, and the third drive frequency f3 is set to a frequency on the order of several 100 kHz.
 このため、第3ハウジング(回路ハウジング)2Cの複雑化や大型化を招くことなく、各回路の誤動作等を防止することができ、複合装置1の安定した動作が確保され得る。 Therefore, malfunction of each circuit can be prevented without complicating or increasing the size of the third housing (circuit housing) 2C, and stable operation of the multifunction device 1 can be ensured.
 なお、上記では、主に複合装置1が車両用空気調和装置に適用される場合について説明されている。しかし、これに限られるものではない。複合装置1は、冷媒を圧縮する電動圧縮機及び熱媒体を加熱する熱媒体加熱装置を利用する種々の装置やシステムに適用することが可能である。 Note that, in the above description, the case where the composite device 1 is mainly applied to a vehicle air conditioner is described. However, it is not limited to this. The composite device 1 can be applied to various devices and systems that utilize an electric compressor that compresses a refrigerant and a heat medium heating device that heats a heat medium.
 以上、本発明の実施形態について説明したが、本発明は、上述の実施形態に制限されるものではなく、本発明の技術的思想に基づいて変形及び変更が可能であることはもちろんである。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that modifications and changes can be made based on the technical idea of the present invention.
 1…複合装置、2…ハウジング、2A…第1ハウジング(圧縮機ハウジング)、2B…第2ハウジング(ヒータハウジング)、2C…第3ハウジング(回路ハウジング)、3…圧縮機構、4…電動モータ、5…電気ヒータ、6…回路基板、7…底壁、8…冷媒流入口、9…冷媒流出口、10…熱媒体流入口、11…熱媒体流出口、20…モータ駆動回路、30…ヒータ制御回路、40…制御回路、50…電源回路、Q1~Q6…第1スイッチング素子(モータ駆動回路のスイッチング素子)、Q7,Q8…第2スイッチング素子(ヒータ制御回路のスイッチング素子)、Q9…第3スイッチング素子(電源回路のスイッチング素子) DESCRIPTION OF SYMBOLS 1... Compound device, 2... Housing, 2A... First housing (compressor housing), 2B... Second housing (heater housing), 2C... Third housing (circuit housing), 3... Compression mechanism, 4... Electric motor, 5... Electric heater, 6... Circuit board, 7... Bottom wall, 8... Refrigerant inlet, 9... Refrigerant outlet, 10... Heat medium inlet, 11... Heat medium outlet, 20... Motor drive circuit, 30... Heater Control circuit, 40... Control circuit, 50... Power supply circuit, Q1 to Q6... First switching element (switching element of the motor drive circuit), Q7, Q8... Second switching element (switching element of the heater control circuit), Q9... 3 switching elements (switching elements of power supply circuit)

Claims (5)

  1.  冷媒圧縮機能及び熱媒体加熱機能を有する複合装置であって、
     冷媒を圧縮する圧縮機構及び前記圧縮機構を駆動する電動モータを内部に収容すると共に、冷媒を内部に流入させる冷媒流入口及び前記圧縮機構で圧縮された冷媒を外部に流出させる冷媒流出口を有する圧縮機ハウジングと、
     熱媒体を加熱する電気ヒータを内部に収容すると共に、熱媒体を内部に流入させる熱媒体流入口及び前記電気ヒータで加熱された熱媒体を外部に流出させる熱媒体流出口を有するヒータハウジングと、
     前記電動モータを駆動するモータ駆動回路と、前記電気ヒータを制御するヒータ制御回路と、前記モータ駆動回路及び前記ヒータ制御回路に供給する電源を生成する電源回路とを内部に収容する回路ハウジングと、
     を含み、
     前記圧縮機ハウジング、前記ヒータハウジング及び前記回路ハウジングは、一体的に結合されており、
     前記モータ駆動回路、前記ヒータ制御回路及び前記電源回路は、それぞれスイッチング素子を含み、
     前記モータ駆動回路のスイッチング素子の駆動周波数と、前記ヒータ制御回路のスイッチング素子の駆動周波数と、前記電源回路のスイッチング素子の駆動周波数とが互いに重ならないように設定されている、
     複合装置。
    A composite device having a refrigerant compression function and a heat medium heating function,
    A compression mechanism that compresses a refrigerant and an electric motor that drives the compression mechanism are housed inside, and a refrigerant inlet that allows the refrigerant to flow into the inside and a refrigerant outlet that allows the refrigerant compressed by the compression mechanism to flow out to the outside. a compressor housing;
    A heater housing that houses an electric heater that heats a heat medium therein, and has a heat medium inlet that causes the heat medium to flow into the interior, and a heat medium outlet that causes the heat medium heated by the electric heater to flow out to the outside;
    a circuit housing that houses therein a motor drive circuit that drives the electric motor, a heater control circuit that controls the electric heater, and a power supply circuit that generates power to be supplied to the motor drive circuit and the heater control circuit;
    including;
    the compressor housing, the heater housing and the circuit housing are integrally coupled;
    The motor drive circuit, the heater control circuit, and the power supply circuit each include a switching element,
    The driving frequency of the switching element of the motor drive circuit, the driving frequency of the switching element of the heater control circuit, and the driving frequency of the switching element of the power supply circuit are set so as not to overlap with each other.
    Composite device.
  2.  前記モータ駆動回路、前記ヒータ制御回路及び前記電源回路が一つの回路基板に実装されている、請求項1に記載の複合装置。 The composite device according to claim 1, wherein the motor drive circuit, the heater control circuit, and the power supply circuit are mounted on one circuit board.
  3.  前記回路基板には、前記モータ駆動回路の動作及び前記ヒータ制御回路の動作を制御する制御回路がさらに実装されており、
     前記電源回路は、前記モータ駆動回路及び前記ヒータ制御回路に供給する電源に加えて前記制御回路に供給する電源を生成するように構成されている、
     請求項2に記載の複合装置。
    A control circuit that controls the operation of the motor drive circuit and the heater control circuit is further mounted on the circuit board,
    The power supply circuit is configured to generate power to be supplied to the control circuit in addition to power to be supplied to the motor drive circuit and the heater control circuit.
    The composite device according to claim 2.
  4.  前記モータ駆動回路のスイッチング素子の駆動周波数は、前記ヒータ制御回路のスイッチング素子の駆動周波数よりも一桁以上高く、前記電源回路のスイッチング素子の駆動周波数は、前記モータ駆動回路のスイッチング素子の駆動周波数よりも一桁以上高い、請求項1~3のいずれか一つに記載の複合装置。 The driving frequency of the switching element of the motor drive circuit is one order of magnitude higher than the driving frequency of the switching element of the heater control circuit, and the driving frequency of the switching element of the power supply circuit is higher than the driving frequency of the switching element of the motor drive circuit. The composite device according to any one of claims 1 to 3, which is one order of magnitude or more higher than .
  5.  前記モータ駆動回路のスイッチング素子の駆動周波数は数10kHzオーダーの周波数に設定され、前記ヒータ制御回路のスイッチング素子の駆動周波数は数10Hzオーダーの周波数に設定され、前記電源回路のスイッチング素子の駆動周波数は数100kHzオーダーの周波数に設定されている、請求項4に記載の複合装置。 The driving frequency of the switching element of the motor drive circuit is set to a frequency on the order of several tens of kHz, the driving frequency of the switching element of the heater control circuit is set to a frequency of the order of several tens of Hz, and the driving frequency of the switching element of the power supply circuit is set to a frequency on the order of several tens of kHz. 5. The composite device according to claim 4, wherein the frequency is set on the order of several 100 kHz.
PCT/JP2023/019681 2022-06-22 2023-05-26 Composite device WO2023248708A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-100243 2022-06-22
JP2022100243A JP2024001533A (en) 2022-06-22 2022-06-22 Composite device

Publications (1)

Publication Number Publication Date
WO2023248708A1 true WO2023248708A1 (en) 2023-12-28

Family

ID=89379809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019681 WO2023248708A1 (en) 2022-06-22 2023-05-26 Composite device

Country Status (2)

Country Link
JP (1) JP2024001533A (en)
WO (1) WO2023248708A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136069A (en) * 2007-11-29 2009-06-18 Canon Inc High-voltage power supply device and image forming apparatus
WO2013035147A1 (en) * 2011-09-05 2013-03-14 トヨタ自動車株式会社 Fuel cell system
JP2014084024A (en) * 2012-10-25 2014-05-12 Mitsubishi Heavy Ind Ltd Electric compressor and air conditioner for vehicle having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136069A (en) * 2007-11-29 2009-06-18 Canon Inc High-voltage power supply device and image forming apparatus
WO2013035147A1 (en) * 2011-09-05 2013-03-14 トヨタ自動車株式会社 Fuel cell system
JP2014084024A (en) * 2012-10-25 2014-05-12 Mitsubishi Heavy Ind Ltd Electric compressor and air conditioner for vehicle having the same

Also Published As

Publication number Publication date
JP2024001533A (en) 2024-01-10

Similar Documents

Publication Publication Date Title
US10003241B2 (en) Vehicle inverter device and motor-driven compressor
WO2014103482A1 (en) Inverter-integrated electrical compressor
JP6587023B2 (en) In-vehicle electric compressor
JP4144465B2 (en) Inverter-integrated electric compressor for vehicles
KR101972434B1 (en) Electric compressor
US10544805B2 (en) On-vehicle motor-driven compressor
US20190305647A1 (en) On-vehicle motor-driven compressor
JP4529540B2 (en) Air conditioning apparatus and compressor preheating method
JP6435717B2 (en) Refrigeration equipment
WO2023248708A1 (en) Composite device
WO2023248705A1 (en) Composite device
WO2023228644A1 (en) Composite device
WO2023120020A1 (en) Composite apparatus
WO2023228643A1 (en) Composite device
WO2023223770A1 (en) Composite device
WO2023119493A1 (en) Composite device
WO2023120019A1 (en) Combined device
WO2023203940A1 (en) Composite device
WO2024042981A1 (en) Combined device
JP2016050725A (en) Freezer
WO2024042982A1 (en) Electric compressor for vehicle
WO2023228639A1 (en) Inverter device and electric compressor provided with same
US11745590B2 (en) Vehicle inverter device and vehicle fluid machine
US20230299648A1 (en) Motor-driven compressor
JP2021169788A (en) Motor compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23826896

Country of ref document: EP

Kind code of ref document: A1