WO2024042731A1 - 埋込磁石式回転子および埋込磁石式回転電機 - Google Patents

埋込磁石式回転子および埋込磁石式回転電機 Download PDF

Info

Publication number
WO2024042731A1
WO2024042731A1 PCT/JP2022/038530 JP2022038530W WO2024042731A1 WO 2024042731 A1 WO2024042731 A1 WO 2024042731A1 JP 2022038530 W JP2022038530 W JP 2022038530W WO 2024042731 A1 WO2024042731 A1 WO 2024042731A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
permanent magnet
permanent magnets
storage hole
Prior art date
Application number
PCT/JP2022/038530
Other languages
English (en)
French (fr)
Inventor
大介 森
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN202280009180.2A priority Critical patent/CN117941222A/zh
Priority to JP2023520295A priority patent/JP7346771B1/ja
Priority to US18/473,481 priority patent/US20240072583A1/en
Publication of WO2024042731A1 publication Critical patent/WO2024042731A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • Embodiments of the present invention relate to an embedded magnet rotor and an embedded magnet rotating electric machine having the same.
  • the permanent magnet In a synchronous machine such as an embedded magnet type synchronous motor having a permanent magnet in the rotor, the permanent magnet is formed in the shape of a rectangular parallelepiped.
  • This permanent magnet is a brittle material and is easily chipped by impact, and if the chipping causes pieces to fall off, the volume of the magnet decreases, resulting in a decrease in magnetic flux and characteristics. Furthermore, if a piece falls off due to chipping, the piece may get caught in a gap in the synchronous machine or become clogged, causing negative mechanical effects such as restricting rotation and negative electrical effects such as a short circuit. Furthermore, if chips occur and fall off after surface treatment for rust prevention, the material is exposed, which can lead to corrosion (rust formation) from the chipped parts.
  • tops are removed by chamfering at the four corners to form sloped surfaces. This prevents chipping due to contact between apexes during manufacturing.
  • the above-mentioned chamfering process is a time-consuming work when performed, for example, by barrel polishing or grinder polishing. Furthermore, forming the inclined surface in advance using a mold increases manufacturing costs.
  • forming an inclined surface by removing the top as described above is, in other words, reducing the magnetic force by making the magnet chipped from the rectangular parallelepiped shape, which is a process that has no electromagnetic benefits. be. Furthermore, it should be noted that dividing the magnets inserted into the rotor into a plurality of parts causes the corners of the magnets to come into contact with each other more frequently during the manufacturing process.
  • An object of the present invention is to provide an embedding method that can reduce the demagnetization rate of a plurality of permanent magnets stored in a magnet storage hole in a row without increasing eddy currents or increasing the risk of top chipping.
  • An object of the present invention is to provide a magnetic rotor.
  • an embedded magnet rotor includes a rotor shaft extending in the direction of the rotation axis, and magnetic poles formed at each magnetic pole and sandwiched between a first wall and a second wall. a rotor core that is attached to the rotor shaft; and a plurality of permanent magnets that are housed in the magnet housing hole and arranged so as to be continuous in one direction in the cross section of the magnet housing hole.
  • An embedded magnet rotor comprising a magnet, each of the plurality of permanent magnets having an approximately rectangular parallelepiped outer shape, and having inclined surfaces extending in the longitudinal direction at two opposite corners. It is characterized by being
  • FIG. 1 is a partial cross-sectional view showing the configuration of an embedded magnet rotating electric machine according to an embodiment. It is a perspective view showing the permanent magnet of the embedded magnet type rotor concerning an embodiment.
  • FIG. 2 is a partial cross-sectional view showing the permanent magnets and rotor core of the embedded magnet rotor according to the embodiment.
  • FIG. 2 is a partial cross-sectional view showing the area around the first permanent magnet of the embedded magnet rotor according to the embodiment.
  • FIG. 3 is a partial cross-sectional view showing the area around the second permanent magnet of the embedded magnet rotor according to the embodiment. It is a partial cross-sectional view showing a permanent magnet and a rotor core showing a conventional example of a permanent magnet of an embedded magnet type rotor.
  • FIG. 1 is a partial cross-sectional view showing the configuration of an embedded magnet type rotating electric machine 1 according to an embodiment.
  • the embedded magnet rotating electric machine 1 has an embedded magnet rotor 10, a stator 30, and a frame 40.
  • the stator 30 includes a stator core 31 disposed radially outside the rotor core 12 with a gap therebetween, and a stator winding 32 wound around the stator core 31.
  • the frame 40 houses the stator 30.
  • the embedded magnet rotor 10 includes a rotor shaft 11 , a rotor core 12 attached to the radially outer side of the rotor shaft 11 , and a plurality of permanent magnets 20 housed within the rotor core 12 .
  • the permanent magnet 20 has a first permanent magnet 21 and a second permanent magnet 22 arranged in series.
  • FIG. 1 shows a portion of one magnetic pole 10a.
  • FIG. 1 shows an example in which the two permanent magnets 20 in the embedded magnet rotor 10 are formed and arranged in pairs, the present invention is not limited to this.
  • one permanent magnet 20 may independently constitute one magnetic pole.
  • the feature of this embodiment relates to each permanent magnet when the permanent magnet 20 has a plurality of permanent magnets arranged in series. Note that, in the following, explanation will be given taking as an example a case where the plurality of permanent magnets included in the permanent magnet 20 are two, the first permanent magnet 21 and the second permanent magnet 22, as shown in FIG. The above permanent magnet may also be used.
  • FIG. 2 is a perspective view showing the permanent magnets 20 of the embedded magnet rotor 10 according to the embodiment.
  • FIG. 2 shows a state in which the first permanent magnet 21 and the second permanent magnet 22 are lined up in a row.
  • the general shape of the first permanent magnet 21 is a rectangular parallelepiped.
  • the first permanent magnet 21 has four side surfaces along the longitudinal direction, that is, the axial direction of the rotor shaft 11: a first side surface 21a, a second side surface 21b, a third side surface 21c, and a fourth side surface 21d.
  • a first corner inclined surface 21p is formed at the corner where the first side surface 21a and the second side surface 21b connect.
  • a second corner inclined surface 21q is formed at the corner where the third side surface 21c and the fourth side surface 21d connect.
  • the angle that the first corner inclined surface 21p makes with the first side surface 21a and the second side surface 21b is 45 degrees.
  • the angle that the second corner inclined surface 21q makes with the third side surface 21c and the fourth side surface 21d is 45 degrees.
  • the second permanent magnet 22 has a generally rectangular parallelepiped shape, and has a first side surface 22a, a second side surface 22b, a third side surface 22c, and a fourth side surface along the longitudinal direction, that is, the axial direction of the rotor shaft 11. It has four sides of 22d.
  • a first corner inclined surface 22p is formed at the corner where the first side surface 22a and the second side surface 22b connect.
  • a second corner inclined surface 22q is formed at the corner where the third side surface 22c and the fourth side surface 22d connect.
  • the angle that the first corner inclined surface 22p makes with the first side surface 22a and the second side surface 22b is 45 degrees.
  • the angle that the second corner inclined surface 22q makes with the third side surface 22c and the fourth side surface 22d is 45 degrees.
  • this angle is not limited to 45 degrees, and may be, for example, 60 degrees with respect to one side, or the first corner inclined surface 21p and the second corner inclined surface 21q are different from each other. It can also be an angle. Furthermore, the first corner inclined surface 21p and the second corner inclined surface 21q may have different areas. In the following description, an example will be explained in which both the angles are 45 degrees and have the same area.
  • the first permanent magnet 21 and the second permanent magnet 22 are such that the first side surface 21a of the first permanent magnet 21 and the first side surface 22a of the second permanent magnet 22 face the same direction, and The second side surface 21b of the magnet 21 and the third side surface 22c of the second permanent magnet 22 are arranged in such a direction that they face each other and are adjacent to each other. In other words, the first permanent magnet 21 and the second permanent magnet 22 are arranged in the same direction.
  • the adjacent partner is either side. That is, a corner having neither the first corner inclined surface 21p nor the second corner inclined surface 21q of the first permanent magnet 21, and the first corner inclined surface of the second permanent magnet 22. 22p and a corner that does not have either the second corner inclined surface 22q are not adjacent to each other.
  • Each corner inclined surface can be formed, for example, by chamfering the corners of the rectangular parallelepiped permanent magnet 20 by barrel polishing or grinder polishing. Alternatively, it can also be formed by molding the permanent magnet into a shape with inclined corners before sintering.
  • FIG. 3 is a partial cross-sectional view showing the permanent magnets 20 and rotor core 12 of the embedded magnet rotor 10 according to the embodiment.
  • FIG. 3 shows only one of the two permanent magnets 20 that constitute one magnetic pole 10a shown in FIG.
  • an outer positioning protrusion 12c is formed on the radially outer side of the radially inner surface 12d of the magnet housing hole 12a, and serves as a stepped portion toward the radially outer side.
  • an inner positioning protrusion 12b is formed on the radially inner side of the radially outer surface 12e of the magnet storage hole 12a, and is a stepped portion extending radially inward.
  • a permanent magnet 20 is housed and fixed in a region sandwiched between the inner positioning protrusion 12b and the outer positioning protrusion 12c within the magnet accommodation hole 12a. That is, as the permanent magnets 20, a first permanent magnet 21 is arranged on the inner side in the radial direction, and a second permanent magnet 22 is arranged on the outer side in the radial direction adjacent to the first permanent magnet 21.
  • the first permanent magnet 21 has its first side surface 21a connected to the radially outer surface 12e of the magnet storage hole 12a, its second side surface 21b connected to the second permanent magnet 22, and its third side surface 21c connected to the radially outer surface 12e of the magnet storage hole 12a.
  • a portion of the fourth side surface 21d is arranged on the inner side surface 12d in such a direction as to face the inner positioning projections 12b, respectively.
  • the second permanent magnet 22 has its first side surface 22a connected to the radially outer side surface 12e of the magnet storage hole 12a, a part of the second side surface 22b connected to the outer positioning protrusion 12c, and its third side surface 22c connected to the magnet storage hole 12a.
  • Fourth side surfaces 22d are arranged on the radially inner side surface 12d of the magnet 12a so as to face the first permanent magnets 21, respectively.
  • the thickness of the first permanent magnet 21 and the second permanent magnet 22 be d. Further, the width of the first corner inclined surface 21p of the first permanent magnet 21 when the first permanent magnet 21 is viewed from the second permanent magnet 22 side is defined as w1. Further, the width of the second corner inclined surface 22q of the second permanent magnet 22 when the second permanent magnet 22 is viewed from the first permanent magnet 21 side is defined as w2.
  • the width of the contacting surface of the first permanent magnet 21 and the second permanent magnet 22 is [d-(w1+w2) ].
  • FIG. 4 is a partial cross-sectional view showing the area around the first permanent magnet 21 of the embedded magnet rotor 10 according to the embodiment.
  • the magnet storage hole 12a formed in the embedded magnet type rotor 10 the magnet storage hole 12a itself and the permanent magnet 20 stored in the magnet storage hole 12a have a large magnetic resistance to an external magnetic field and function as a flux barrier. has.
  • the width of the flux barrier is approximately the distance d0 between the radially inner surface 12d and the radially outer surface 12e of the magnet storage hole 12a.
  • the width of the flux barrier is the smallest at the distance d1 between the points P1 and P2 on the cross section in FIG.
  • point P1 is the top of the inner positioning protrusion 12b.
  • point P2 is the innermost part of the third side surface 21c of the first permanent magnet 21 in the radial direction. In order for the magnetic flux to pass between the points P1 and P2 in the shortest possible time, it needs to pass through the first permanent magnet 21.
  • FIG. 5 is a partial cross-sectional view showing the area around the second permanent magnet 22 of the embedded magnet rotor 10 according to the embodiment.
  • the width of the flux barrier is the smallest at the distance d2 between points P3 and P4 on the cross section in FIG.
  • point P3 is the outermost part of the first side surface 22a of the second permanent magnet 22 in the radial direction.
  • point P4 is the top of the outer positioning protrusion 12c. In order for the magnetic flux to pass between the points P3 and P4 in the shortest possible time, it needs to pass through the second permanent magnet 22.
  • FIG. 6 is a partial cross-sectional view showing a permanent magnet and a rotor core showing a conventional example of a permanent magnet of an embedded magnet type rotor.
  • FIG. 6 shows a conventional example as a comparative example with this embodiment.
  • the conventional permanent magnet 50 has slopes at four locations: a first sloped corner surface 50p, a second sloped corner surface 50r, a third sloped corner surface 50q, and a fourth sloped corner surface 50s.
  • This embodiment differs from the present embodiment in that it has the following.
  • the distance between the two surfaces of the conventional permanent magnet 50 is the same as that of the first permanent magnet 21 and the second permanent magnet 22 of this embodiment. That is, the dimensions of the rectangular parallelepipeds are the same when the inclined surfaces are ignored. It is also assumed that the sizes of the respective inclined surfaces are also the same. The difference is that compared to a rectangular parallelepiped, the number of sloped surfaces that are equivalent to defects is two in the opposite corners in this embodiment, and four in the full-width part in the comparative example. .
  • the shape of the magnet storage hole 60 that stores the two conventional permanent magnets 50 is almost the same as the shape of the magnet storage hole 12a in this embodiment.
  • the only difference is that the dimensions of the outer positioning protrusion 61 and the inner positioning protrusion 62 in the magnet storage hole 60 of the comparative example are different from the dimensions of the inner positioning protrusion 12b and the outer positioning protrusion 12c in the magnet storage hole 12a of the present embodiment.
  • the tip of the inner positioning protrusion 61 in order to hold the conventional permanent magnet 50 in which the inner positioning protrusion 61 is arranged on the radially inner side, the tip of the inner positioning protrusion 61 must be attached to the fourth part formed on the conventional permanent magnet 50. It is necessary to extend the tip into the magnet storage hole 60 so as not to be in the middle of the corner inclined surface 50s.
  • the component of the width of the fourth corner inclined surface 50s along the direction in which the inner positioning protrusion 61 extends is defined as ⁇ w1. If the inner positioning protrusion 12b of this embodiment attempts to secure the same width as the width for holding the first permanent magnet 21, the shortest distance will approximately decrease to (d1- ⁇ w1) in the comparative example.
  • the tip of the outer positioning protrusion 62 in order to hold the conventional permanent magnet 50 in which the outer positioning protrusion 62 is arranged on the outside in the radial direction, the tip of the outer positioning protrusion 62 must be It is necessary to extend the tip into the magnet storage hole 60 so as not to be in the middle of the corner inclined surface 50r of No. 2.
  • the component of the width of the second corner inclined surface 50r along the direction in which the outer positioning protrusion 62 extends is assumed to be ⁇ w2. If the outer positioning protrusion 12c of this embodiment attempts to secure the same width as the width for holding the second permanent magnet 22, the shortest distance in the comparative example will approximately decrease to (d2- ⁇ w2).
  • the inner positioning protrusion 12b and the outer positioning protrusion 12c can be made lower in height than the comparative example, and as a result, the magnetic resistance increases when a demagnetizing field is applied, and demagnetization occurs. Can improve resistance.
  • FIG. 7 is a graph showing a comparative example of demagnetization rate to explain the effect of the embedded magnet rotor 10 according to the embodiment.
  • the horizontal axis shows the case, and shows cases where the permanent magnet is thin and thick.
  • the case of the comparative example is shown by a gray bar, and the case of this embodiment is shown by a white bar.
  • the vertical axis is the demagnetization rate [P. U. ], which is a relative value based on the comparative example.
  • the demagnetization rate [P. U. ] decreases by 33% from the comparative example. Further, when the permanent magnet is thick, the demagnetization rate [P. U. ] decreases by 9% from the comparative example.
  • the magnetic resistance when a demagnetizing field is applied is increased by increasing the width of the portion where the width of the flux barrier is the minimum by reducing the height of the inner positioning protrusion 12b and the outer positioning protrusion 12c. can be increased and demagnetization resistance can be improved.
  • FIG. 8 is a graph showing a comparative example of torque/current characteristics to explain the effects of the embedded magnet rotor 10 according to the embodiment.
  • the horizontal axis is the relative value of torque.
  • the vertical axis represents the armature current flowing through the stator winding 32 necessary to generate the torque, and is a relative value based on the case of the comparative example.
  • the white circles indicate the comparative example, and the black squares indicate the present embodiment.
  • the portion corresponding to the loss from the rectangular parallelepiped due to the formation of the inclined surface is half that of the comparative example, and the magnetic force is reduced by that much compared to the rectangular parallelepiped shape. less than.
  • the armature current can be reduced by about 0.6% or more. That is, a larger torque can be obtained for the same armature current value.
  • the conventional permanent magnet 50 in the comparative example had four inclined surfaces, whereas the permanent magnet 20 in this embodiment has two inclined surfaces on opposite sides of each other.
  • the portion corresponding to the defect is half that of the comparative example.
  • the width of the portion of the magnet storage hole 12a where the width of the flux barrier is the minimum can be increased. Note that the contact area between the first permanent magnet 21 and the second permanent magnet 22 that are adjacent to each other is the same as in the comparative example.
  • the demagnetization rate of the permanent magnet 20 can be reduced, and the torque/current characteristics can be improved.
  • the contact width between mutually adjacent permanent magnets 20, which is an index that affects the degree of eddy current is the same as in the comparative example.
  • the corners that do not have an inclined surface of one of the permanent magnets 20 are adjacent to the inclined surfaces of the adjacent permanent magnets 20, so that the corners that do not have an inclined surface are never adjacent. As a result, it has the same effect as the comparative example in terms of preventing the corners from chipping.
  • the number of inclined surfaces is halved, thereby reducing the number of manufacturing steps.
  • the demagnetization rate of a plurality of permanent magnets housed in a row in a magnet storage hole can be reduced without causing an increase in eddy current and an increase in the risk of top chipping.
  • a possible embedded magnet rotor can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

実施形態によれば埋込磁石式回転子(10)は、回転軸方向に延びたロータシャフトと、回転子鉄心(12)と、複数の永久磁石(20)とを具備する。回転子鉄心(12)は、各磁極において形成され第1の壁(12d)と第2の壁(12e)に挟まれた少なくとも一つの磁石収納孔(12a)を有し、ロータシャフトに取り付けられる。複数の永久磁石(20)は、磁石収納孔(12a)に収納されその断面において一方向に連なるように配されている。各永久磁石(20)は、ほぼ直方体の外形であって、互いに反対側にある2つの角部に傾斜面が長手方向にわたって形成されている。

Description

埋込磁石式回転子および埋込磁石式回転電機
 本発明の実施形態は、埋込磁石式回転子およびこれを有する埋込磁石式回転電機に関する。
 回転子に永久磁石を有する埋込磁石式同期電動機などの同期機においては、当該永久磁石は直方体の形状に形成される。この永久磁石は、脆性材であり衝撃により欠けやすく、欠けることにより脱落片が生じると、磁石体積低下に伴う磁束量および特性の低下をもたらす。また、欠けることにより脱落片が生じると、脱落片が、同期機内の隙間に噛み込む、詰まるなどで、回転を拘束するような機械的な悪影響、および短絡などの電気的な悪影響を引き起こす。また、防錆のための表面処理を行った後に欠けが発生し脱落すると、素材がむき出しになるため、欠けた部分からの腐食(錆の発生)が起こりえる。
 これらの理由から、ほぼ直方体の形状のように、頂部(稜線部)を有する形状の場合、当該形状に加工した後に、4つの角について面取りにより頂部を除去して傾斜面を形成することにより、製造中の頂点部同士の接触による欠けを防いでいる。
 また、近年では回転電機の効率を向上するため、回転子鉄心の磁石孔に、単一の永久磁石に代えて、複数の永久磁石を収納する、すなわち実質的に永久磁石を複数に分割することにより、永久磁石に発生する渦電流を抑制することもある。この結果、製品化の状態で、複数の永久磁石が互いに隣接し接触する状態となっている。
特許第5776275号公報 国債公開第2014/030547号
 前述の面取り加工は、たとえば、バレル研磨やグラインダー研磨によって行う場合、手間のかかる作業となる。また、型によって予め傾斜面を形成することは、製造コストの上昇をもたらす。
 さらに、前述のように頂部を除去して傾斜面を形成することは、言い換えれば、予め磁石を直方体形状から欠けた状態にして磁力を低下させることであり、電磁気的にはメリットの無い加工である。また、回転子に挿入される磁石が複数に分割されることは、製造過程において、磁石同士の角部の接触の頻度の増加をもたらすことに留意する必要がある。
 本発明の目的は、磁石収納孔に一列に収納される複数の永久磁石について、渦電流の増加および頂部の欠けのリスクの増加をもたらすことなく、永久磁石の減磁率の減少が可能な埋込磁石式回転子を提供することである。
 上述の目的を達成するため、本発明の実施形態に係る埋込磁石式回転子は、回転軸方向に延びたロータシャフトと、それぞれの磁極において形成され第1の壁と第2の壁に挟まれた少なくとも一つの磁石収納孔を有し、前記ロータシャフトに取り付けられた回転子鉄心と、前記磁石収納孔に収納され当該磁石収納孔の断面において一方向に連なるように配された複数の永久磁石と、を具備する埋込磁石式回転子であって、前記複数の永久磁石のそれぞれは、ほぼ直方体の外形であって、互いに反対側にある2つの角部に傾斜面が長手方向にわたって形成されている、ことを特徴とする。
実施形態に係る埋込磁石式回転電機の構成を示す部分横断面図である。 実施形態に係る埋込磁石式回転子の永久磁石を示す斜視図である。 実施形態に係る埋込磁石式回転子の永久磁石および回転子鉄心を示す部分横断面図である。 実施形態に係る埋込磁石式回転子の第1の永久磁石まわりを示す部分横断面図である。 実施形態に係る埋込磁石式回転子の第2の永久磁石まわりを示す部分横断面図である。 埋込磁石式回転子の永久磁石の従来例を示す永久磁石および回転子鉄心を示す部分横断面図である。 実施形態に係る埋込磁石式回転子の効果を説明する減磁率の比較例を示すグラフである。 実施形態に係る埋込磁石式回転子の効果を説明するトルク・電流特性の比較例を示すグラフである。
 以下、図面を参照して、本発明の実施形態に係る埋込磁石式回転子および埋込磁石式回転電機について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重複説明は省略する。
 図1は、実施形態に係る埋込磁石式回転電機1の構成を示す部分横断面図である。
 埋込磁石式回転電機1は、埋込磁石式回転子10、固定子30、およびフレーム40を有する。固定子30は、回転子鉄心12の径方向外側に間隙を介して配された固定子鉄心31、および固定子鉄心31に巻回された固定子巻線32を有する。フレーム40は、固定子30を収納する。
 埋込磁石式回転子10は、ロータシャフト11、ロータシャフト11の径方向の外側に取り付けられた回転子鉄心12、および回転子鉄心12内に収納された複数の永久磁石20を有する。
 永久磁石20は、直列に配された第1の永久磁石21および第2の永久磁石22を有する。
 図1は、1つの磁極10aの部分を示している。なお、図1では、埋込磁石式回転子10における2つの永久磁石20が互いに対を成すように形成され配置されている場合を例にとって示しているが、これに限定されない。たとえば、一方の永久磁石20が単独で1つの磁極を成す場合であってもよい。
 本実施形態の特徴は、永久磁石20が、直列に配された複数の永久磁石を有する場合の、それぞれの永久磁石に関するものである。なお、以下では、図1に示すように永久磁石20が有する複数の永久磁石が、第1の永久磁石21および第2の永久磁石22の2つである場合を例にとって説明するが、3つ以上の永久磁石の場合であってもよい。
 図2は、実施形態に係る埋込磁石式回転子10の永久磁石20を示す斜視図である。図2は、第1の永久磁石21と第2の永久磁石22が一列に並んでいる状態を示す。
 第1の永久磁石21の概ねの形状は直方体である。第1の永久磁石21は、長手方向すなわちロータシャフト11の軸方向に沿って、第1側面21a、第2側面21b、第3側面21c、および第4側面21dの4つの側面を有する。第1側面21aと第2側面21bが接続する角部には、第1の角部傾斜面21pが形成されている。また、第3側面21cと第4側面21dが接続する角部には、第2の角部傾斜面21qが形成されている。第1の角部傾斜面21pが第1側面21aおよび第2側面21bとなす角度は45度である。同様に、第2の角部傾斜面21qが第3側面21cおよび第4側面21dとなす角度は45度である。
 第2の永久磁石22も同様に、概ねの形状は直方体であり、長手方向すなわちロータシャフト11の軸方向に沿って、第1側面22a、第2側面22b、第3側面22c、および第4側面22dの4つの側面を有する。第1側面22aと第2側面22bが接続する角部には、第1の角部傾斜面22pが形成されている。また、第3側面22cと第4側面22dが接続する角部には、第2の角部傾斜面22qが形成されている。第1の角部傾斜面22pが第1側面22aおよび第2側面22bとなす角度は45度である。同様に、第2の角部傾斜面22qが第3側面22cおよび第4側面22dとなす角度は45度である。
 なお、この角度は、45度に限定されず、たとえば一方に対して60度の場合であってもよいし、第1の角部傾斜面21pと第2の角部傾斜面21qとが互いに異なる角度でもよい。さらに、第1の角部傾斜面21pと第2の角部傾斜面21qとが互いに異なる面積であってもよい。以下では、いずれも45度で互いに同じ面積を有する場合を例にとって説明する。
 第1の永久磁石21と第2の永久磁石22は、第1の永久磁石21の第1側面21aと第2の永久磁石22の第1側面22aが同じ方向を向き、かつ、第1の永久磁石21の第2側面21bと第2の永久磁石22の第3側面22cが互いに対向し隣接するような向きで、配置されている。いいかえれば、第1の永久磁石21と第2の永久磁石22は、互いに同じ向きとなるように配置されている。
 したがって、第1の永久磁石21の第1の角部傾斜面21pおよび第2の角部傾斜面21q、第2の永久磁石22の第1の角部傾斜面22pおよび第2の角部傾斜面22qは、いずれも、隣接する相手は、いずれかの側面である。すなわち、第1の永久磁石21の第1の角部傾斜面21pおよび第2の角部傾斜面21qのいずれも有さない角部と、第2の永久磁石22の第1の角部傾斜面22pおよび第2の角部傾斜面22qのいずれかも有さない角部とが、互いに隣接することはない。
 それぞれの角部傾斜面は、例えば、直方体形状の永久磁石20の角部にバレル研磨やグラインダー研磨によって面取り加工を施すことによって形成することができる。あるいは、永久磁石の焼結前に、角部傾斜面を有する形状に成型することによっても形成可能である。
 図3は、実施形態に係る埋込磁石式回転子10の永久磁石20および回転子鉄心12を示す部分横断面図である。図3は、図1に示した1つの磁極10aを構成する2つの永久磁石20の一方のみを示している。
 回転子鉄心12の磁石収納孔12aにおいては、磁石収納孔12aの径方向内側面12dの径方向の外側に外側位置決め突起12cが形成されており、径方向外側に向かっての段付き部となっている。また、磁石収納孔12aの径方向外側面12eの径方向の内側に内側位置決め突起12bが形成されており、径方向内側に向かっての段付き部となっている。
 磁石収納孔12a内の内側位置決め突起12bと外側位置決め突起12cに挟まれた領域に、永久磁石20が収納され、固定されている。すなわち、永久磁石20として、径方向の内側に第1の永久磁石21、これに隣接して径方向外側に第2の永久磁石22が配置されている。
 第1の永久磁石21は、その第1側面21aが磁石収納孔12aの径方向外側面12eに、第2側面21bが第2の永久磁石22に、第3側面21cが磁石収納孔12aの径方向内側面12dに、第4側面21dの一部が内側位置決め突起12bにそれぞれ対向するような向きに配されている。
 また、第2の永久磁石22は、その第1側面22aが磁石収納孔12aの径方向外側面12eに、第2側面22bの一部が外側位置決め突起12cに、第3側面22cが磁石収納孔12aの径方向内側面12dに、第4側面22dが第1の永久磁石21にそれぞれ対向するような向きに配されている。
 今、第1の永久磁石21および第2の永久磁石22の厚みをdとする。また、第2の永久磁石22の側から第1の永久磁石21を見たときの第1の永久磁石21の第1の角部傾斜面21pの幅をw1とする。また、第1の永久磁石21の側から第2の永久磁石22を見たときの第2の永久磁石22の第2の角部傾斜面22qの幅をw2とする。
 第1の永久磁石21と第2の永久磁石22がこのように配置されていることによって、第1の永久磁石21と第2の永久磁石22の接する面の幅は、[d-(w1+w2)]となる。
 図4は、実施形態に係る埋込磁石式回転子10の第1の永久磁石21まわりを示す部分横断面図である。
 埋込磁石式回転子10に形成された磁石収納孔12aにおいて、磁石収納孔12aそれ自身、および磁石収納孔12aに収納される永久磁石20は、外部磁界に対する磁気抵抗が大きく、フラックスバリアの機能を有する。フラックスバリアの幅は、概ね、磁石収納孔12aの径方向内側面12dと径方向外側面12eとの間隔d0である。
 第1の永久磁石21まわりで、フラックスバリアの幅が最も小さいのは、図4の断面上の点P1と点P2の間の間隔d1である。ここで、点P1は、内側位置決め突起12bの頂部である。また、点P2は、第1の永久磁石21の第3側面21cの径方向の最内部である。この点P1と点P2との間を磁束が最短で通過するためには、第1の永久磁石21内を通過する必要がある。
 図5は、実施形態に係る埋込磁石式回転子10の第2の永久磁石22まわりを示す部分横断面図である。
 第2の永久磁石22まわりで、フラックスバリアの幅が最も小さいのは、図5の断面上の点P3と点P4の間の間隔d2である。ここで、点P3は、第2の永久磁石22の第1側面22aの径方向の最外部である。また、点P4は、外側位置決め突起12cの頂部である。この点P3と点P4との間を磁束が最短で通過するためには、第2の永久磁石22内を通過する必要がある。
 図6は、埋込磁石式回転子の永久磁石の従来例を示す永久磁石および回転子鉄心を示す部分横断面図である。図6では、本実施形態との比較例として従来例を示している。
 比較例においては、2つの従来型永久磁石50が径方向に並んで配されている。従来型永久磁石50は、第1の角部傾斜面50p、第2の角部傾斜面50r、第3の角部傾斜面50q、第4の角部傾斜面50sと、4か所に傾斜面を有する点が本実施形態と異なる。
 比較のために、従来型永久磁石50における2つの面間距離は、本実施形態の第1の永久磁石21および第2の永久磁石22と同じである。すなわち、傾斜面を無視した時の直方体の寸法は同一である。また、それぞれの傾斜面の大きさも同一であるとする。異なるのは、直方体に比べての欠損相当部となる傾斜面の数が、本実施形態では互いに反対の角部で2か所、比較例の場合は全角部で4か所である点である。
 したがって、2つの従来型永久磁石50を収納する磁石収納孔60の形状は、本実施形態における磁石収納孔12aの形状とほぼ同様である。比較例の磁石収納孔60における外側位置決め突起61と内側位置決め突起62の寸法が、本実施形態の磁石収納孔12aにおける内側位置決め突起12bおよび外側位置決め突起12cの寸法と異なる点のみが相違する。
 すなわち、比較例において、内側位置決め突起61が径方向の内側に配された従来型永久磁石50を保持するためには、内側位置決め突起61の先端が、従来型永久磁石50に形成された第4の角部傾斜面50sの途中とならないように、その先端を磁石収納孔60内に延ばす必要がある。
 いま、第4の角部傾斜面50sの幅の、内側位置決め突起61の延びる方向に沿った成分をΔw1とする。本実施形態の内側位置決め突起12bが第1の永久磁石21を保持する幅と同じ幅を確保しようとすると、比較例においては、最短距離は、近似的に(d1-Δw1)に減少する。
 同様に、比較例において、外側位置決め突起62が径方向の外側に配された従来型永久磁石50を保持するためには、外側位置決め突起62の先端が、従来型永久磁石50に形成された第2の角部傾斜面50rの途中とならないように、その先端を磁石収納孔60内に延ばす必要がある。
 いま、第2の角部傾斜面50rの幅の、外側位置決め突起62の延びる方向に沿った成分をΔw2とする。本実施形態の外側位置決め突起12cが第2の永久磁石22を保持する幅と同じ幅を確保しようとすると、比較例においては、最短距離は、近似的に(d2-Δw2)に減少する。
 以上のことから、本実施形態の場合は、比較例に比べて、内側位置決め突起12bおよび外側位置決め突起12cを低背化でき、その結果、反磁界の印加時の磁気抵抗が増加し、減磁耐性を向上することができる。
 図7は、実施形態に係る埋込磁石式回転子10の効果を説明する減磁率の比較例を示すグラフである。横軸は、ケースを示しており、永久磁石が薄い場合と厚い場合を示す。また、それぞれについて、比較例の場合を灰色の棒で、また、本実施形態の場合を白抜きの棒で示している。縦軸は、減磁率[P.U.]であり、比較例を基準とした相対値である。
 図7に示すように、永久磁石が薄い場合には、本実施形態の場合の減磁率[P.U.]は比較例から33%減少する。また、永久磁石が厚い場合には、本実施形態の場合の減磁率[P.U.]は比較例から9%減少する。
 このように、本実施形態では、特に、内側位置決め突起12bおよび外側位置決め突起12cの低背化によりフラックスバリアの幅が最小となる部分の幅を増加させることによって、反磁界の印加時の磁気抵抗を増加させ、減磁耐性を向上することができる。
 図8は、実施形態に係る埋込磁石式回転子10の効果を説明するトルク・電流特性の比較例を示すグラフである。横軸は、トルクの相対値である。縦軸は、そのトルクを発生させるに必要な固定子巻線32を流れる電機子電流であり、比較例の場合を基準とした相対値である。白抜き丸印が比較例、黒塗り四角が本実施形態の場合を示す。
 本実施形態における永久磁石20は、傾斜面を形成することによる直方体からの欠損相当部が、比較例に比べて半分であり、その分、直方体形状と比較しての磁力の減少分が比較例に比べて少ない。この結果、図8に示すように、約0.6%以上、電機子電流の減少を図ることができる。すなわち、同じ電機子電流の値に対しては、より大きなトルクを得ることができる。
 以上のように、比較例における従来型永久磁石50では4つの傾斜面を有していたものを、本実施形態における永久磁石20では、傾斜面を互いの反対側の2か所として直方体からの欠損相当部を比較例の半分としている。さらに、磁石収納孔12aにおけるフラックスバリアの幅が最小となる部分の幅を増加させることができる。なお、互いに隣接する第1の永久磁石21と第2の永久磁石22との接触面積は、比較例と同様である。
 この結果、永久磁石20の減磁率を減少させ、また、トルク・電流特性を向上させることができる。
 また、本実施形態によれば、渦電流の程度に影響する指標である互いに隣接する永久磁石20同士の接触幅は、比較例と同様である。また、互いに隣接する永久磁石20に関して、一方の永久磁石20の傾斜面を有さない角部には、隣接する永久磁石20の傾斜面が隣接することによって、傾斜面を有さない角部同士が隣接することがない。この結果、角部が欠けることを防止する点については比較例と同様の効果を有する。
 さらに、たとえば、傾斜面をバレル研磨やグラインダー研磨によって形成する場合は、傾斜面小数が半減することにより、製作工数の低減を図ることができる。
 以上、説明した実施形態によれば、磁石収納孔に一列に収納される複数の永久磁石について、渦電流の増加および頂部の欠けのリスクの増加をもたらすことなく、永久磁石の減磁率の減少が可能な埋込磁石式回転子を提供することができる。
 [その他の実施形態]
 以上、本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。また、各実施形態の特徴を組み合わせてもよい。さらに、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…埋込磁石式回転電機、10…埋込磁石式回転子、10a…磁極、11…ロータシャフト、12…回転子鉄心、12a…磁石収納孔、12b…内側位置決め突起、12c…外側位置決め突起、12d…径方向内側面、12e…径方向外側面、20…永久磁石、21…第1の永久磁石、21a…第1側面、21b…第2側面、21c…第3側面、21d…第4側面、21p…第1の角部傾斜面、21q…第2の角部傾斜面、22…第2の永久磁石、22a…第1側面、22b…第2側面、22c…第3側面、22d…第4側面、22p…第1の角部傾斜面、22q…第2の角部傾斜面、30…固定子、31…固定子鉄心、32…固定子巻線、40…フレーム、50…従来型永久磁石、50p…第1の角部傾斜面、50r…第2の角部傾斜面、50q…第3の角部傾斜面、50s…第4の角部傾斜面、60…磁石収納孔、61…内側位置決め突起、62…外側位置決め突起

Claims (4)

  1.  回転軸方向に延びたロータシャフトと、
     それぞれの磁極において形成され第1の壁と第2の壁に挟まれた少なくとも一つの磁石収納孔を有し、前記ロータシャフトに取り付けられた回転子鉄心と、
     前記磁石収納孔に収納され当該磁石収納孔の断面において一方向に連なるように配された複数の永久磁石と、
     を具備する埋込磁石式回転子であって、
     前記複数の永久磁石のそれぞれは、ほぼ直方体の外形であって、互いに反対側にある2つの角部に傾斜面が長手方向にわたって形成されている、
     ことを特徴とする埋込磁石式回転子。
  2.  前記複数の永久磁石は、前記傾斜面の方向が同じ方向となるように連なっていることを特徴とする請求項1に記載の埋込磁石式回転子。
  3.  前記磁石収納孔の前記第1の壁および前記第2の壁には当該磁石収納孔に突出して前記複数の永久磁石を保持する第1の保持突起および第2の保持突起が形成され、
     前記第1の保持突起および第2の保持突起にそれぞれ対向する前記永久磁石の対向部分は、前記傾斜面が設けられていない側の角部であることを特徴とする請求項1に記載の埋込磁石式回転子。
  4.  請求項1ないし請求項3のいずれか一項に記載の埋込磁石式回転子と、
     固定子鉄心と、前記固定子鉄心に巻回された固定子巻線を有する固定子と、
     を備えることを特徴とする埋込磁石式回転電機。
PCT/JP2022/038530 2022-08-25 2022-10-17 埋込磁石式回転子および埋込磁石式回転電機 WO2024042731A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280009180.2A CN117941222A (zh) 2022-08-25 2022-10-17 埋入磁铁式转子以及埋入磁铁式旋转电机
JP2023520295A JP7346771B1 (ja) 2022-08-25 2022-10-17 埋込磁石式回転子および埋込磁石式回転電機
US18/473,481 US20240072583A1 (en) 2022-08-25 2023-09-25 Interior magnet rotor and interior magnet rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022134141 2022-08-25
JP2022-134141 2022-08-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/473,481 Continuation US20240072583A1 (en) 2022-08-25 2023-09-25 Interior magnet rotor and interior magnet rotary electric machine

Publications (1)

Publication Number Publication Date
WO2024042731A1 true WO2024042731A1 (ja) 2024-02-29

Family

ID=90012957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038530 WO2024042731A1 (ja) 2022-08-25 2022-10-17 埋込磁石式回転子および埋込磁石式回転電機

Country Status (1)

Country Link
WO (1) WO2024042731A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030547A1 (ja) 2012-08-21 2014-02-27 日産自動車株式会社 永久磁石式回転電機のロータ構造及びロータ製造方法
JP2014187748A (ja) * 2013-03-22 2014-10-02 Mitsubishi Electric Corp 永久磁石埋込型電動機の回転子、圧縮機及び冷凍空調装置
JP5776275B2 (ja) 2011-03-31 2015-09-09 Tdk株式会社 複合磁石構造体
JP2018164378A (ja) * 2017-03-27 2018-10-18 本田技研工業株式会社 Ipmロータ用磁石、ipmロータおよびipmロータ用磁石の製造方法
JP2019030207A (ja) * 2017-08-01 2019-02-21 株式会社デンソー 電動機の磁気発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776275B2 (ja) 2011-03-31 2015-09-09 Tdk株式会社 複合磁石構造体
WO2014030547A1 (ja) 2012-08-21 2014-02-27 日産自動車株式会社 永久磁石式回転電機のロータ構造及びロータ製造方法
JP2014187748A (ja) * 2013-03-22 2014-10-02 Mitsubishi Electric Corp 永久磁石埋込型電動機の回転子、圧縮機及び冷凍空調装置
JP2018164378A (ja) * 2017-03-27 2018-10-18 本田技研工業株式会社 Ipmロータ用磁石、ipmロータおよびipmロータ用磁石の製造方法
JP2019030207A (ja) * 2017-08-01 2019-02-21 株式会社デンソー 電動機の磁気発生装置

Similar Documents

Publication Publication Date Title
US6717315B1 (en) Permanent magnet type motor and method of producing permanent magnet type motor
EP1158651B1 (en) Permanent magnet reluctance motor
US11190069B2 (en) Consequent-pole-type rotor, electric motor, and air conditioner
US8148865B2 (en) Permanent magnet rotating electrical machine and permanent magnet rotating electrical machine system
US8760026B2 (en) Rotor with V-shaped permanent magnet arrangement, rotating electric machine, vehicle, elevator, fluid machine, and processing machine
US20080296990A1 (en) Arrangement of Rotor Laminations of a Permanently Excited Electrical Machine
JP5930994B2 (ja) 永久磁石埋込型電動機の回転子、圧縮機及び冷凍空調装置
JP2013046420A (ja) 巻線、および巻線を備えたステータコア
JP2007330030A (ja) ロータのリング磁石固定構造及び電動パワーステアリング用モータ
JP2008312321A (ja) 回転子および回転電機
JP6545387B2 (ja) コンシクエントポール型の回転子、電動機および空気調和機
JP3616338B2 (ja) 電動機の回転子
JP2006109683A (ja) 回転電機
WO2024042731A1 (ja) 埋込磁石式回転子および埋込磁石式回転電機
JP7346771B1 (ja) 埋込磁石式回転子および埋込磁石式回転電機
US20160336822A1 (en) Split rotor stack gap with a corner air barrier
JP2005094845A (ja) 永久磁石式回転電機の回転子
JP5674962B2 (ja) 永久磁石埋込型電動機
WO2020100675A1 (ja) 回転子およびそれを備えた回転電気機械
JP2010206944A (ja) 永久磁石電動機
CN102882296A (zh) 旋转电机
JP2020010539A (ja) ロータ、及びブラシレスモータ
US11979061B2 (en) Motor
JP2000316240A (ja) スピンドルモータ用ステータ及びその製造方法
JP2007110868A (ja) 永久磁石型モータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280009180.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931235

Country of ref document: EP

Kind code of ref document: A1