WO2024042711A1 - 生体情報測定システム、および測定端末 - Google Patents

生体情報測定システム、および測定端末 Download PDF

Info

Publication number
WO2024042711A1
WO2024042711A1 PCT/JP2022/032234 JP2022032234W WO2024042711A1 WO 2024042711 A1 WO2024042711 A1 WO 2024042711A1 JP 2022032234 W JP2022032234 W JP 2022032234W WO 2024042711 A1 WO2024042711 A1 WO 2024042711A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
data
time
information
measured
Prior art date
Application number
PCT/JP2022/032234
Other languages
English (en)
French (fr)
Inventor
谷井恵一
亘理聡一
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to PCT/JP2022/032234 priority Critical patent/WO2024042711A1/ja
Publication of WO2024042711A1 publication Critical patent/WO2024042711A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Definitions

  • This application describes a biological information measurement system that is used to grasp changes in biological information such as body temperature, heart rate, sweat amount, etc. of a measurement subject over a certain period of time by attaching a small measurement terminal to the measurement subject.
  • the measurement terminal used in this system in particular, the amount of information in data processing on the measurement terminal worn by the person to be measured is reduced, reducing the load on the equipment when storing data and transmitting data from the measurement terminal.
  • the present invention relates to a biological information measurement system and a measurement terminal.
  • thermometer is attached to a person to be measured over a certain period of time, for example, from several days to about two weeks, and changes in body temperature are ascertained.
  • Such a body temperature measurement system includes a thermometer and a main device to which data is transferred via wireless or wired communication between the thermometer and the measurement results from the thermometer can be sent at any time or at a fixed rate.
  • the information is sent to the main device and managed either all at once at time intervals or all at once after the measurement period ends.
  • thermometers need to be placed in close contact with the body surface of the person to be measured for a certain period of time, there is a strong demand for thermometers to be small and lightweight. For this reason, there is a limit to the size, or capacity, of the storage unit that stores measurement results, and in the method of transmitting data to the main unit each time a measurement is taken, the transmission unit operates frequently, making it difficult to use the thermometer. As the power load increases, it is necessary to increase the capacity of the battery as an operating power source included in the thermometer.
  • thermometer that is worn by the person to be measured and a body temperature display device that receives the measurement results from the thermometer via wireless communication
  • the amount of data is reduced by increasing the interval at which body temperature is measured.
  • a thermometer has been proposed that is equipped with a function to detect the heart rate of the person to be measured, and if it is determined that the person is not feeling well based on the body temperature and heart rate, the temperature measurement interval will be shortened. (See Patent Document 1).
  • thermometer In the case of the above-mentioned conventional body temperature measurement system, no particular consideration is given to the body temperature data of the person being measured using the thermometer. For this reason, for example, if the person to be measured continues to be unwell, their body temperature will be measured frequently, increasing the amount of information indicating the measurement results and putting pressure on the internal memory capacity of the thermometer. , the amount of data during wireless communication between the thermometer and the body temperature display device becomes large, and the data transmission time becomes long. Note that this issue regarding data capacity is not limited to body temperature measurement systems, but is common to all biological information measurement systems that continuously measure biological information of subjects such as heart rate and sweat rate. .
  • the purpose of this application is to solve the problems of the above-mentioned conventional technology, and to reduce the amount of data indicating the measurement results in the measurement terminal worn by the person being measured, thereby further reducing the size and weight of the measurement terminal itself.
  • the purpose of the present invention is to provide a biological information measurement system that enables rapid data communication between a measurement terminal and a main device.
  • the biological information measurement system disclosed in this application includes a measurement terminal that is attached to the body of a person to be measured and measures the biological information of the person to be measured, and a measurement terminal that is connected to the measurement terminal by short-range communication means.
  • a main body device that receives biometric data including a measured value of biometric information of the subject to be measured and measurement timing data indicating a time when the biometric information was measured, from the measurement terminal, the measurement terminal , a control unit that controls the operation of the measurement terminal; a reference clock that generates time information; a storage unit that stores the biometric data;
  • the measurement terminal disclosed in the present application is a measurement terminal that is used in any of the biological information acquisition systems disclosed in the present application, is attached to the body of a measurement subject, and measures biological information of the measurement subject
  • the measurement terminal includes a control unit that controls the operation of the measurement terminal, a reference clock that generates time information, a storage unit that stores the biometric data, and a device that measures the biometric information of the measurement subject at predetermined time intervals.
  • a biometric data generation unit that generates the biometric data
  • a measurement interval change unit that changes the time interval for measuring biometric information based on the measured value of the biometric information, and the main device.
  • the measurement timing data is time information indicating a measurement interval after measuring biological information last time.
  • the biometric information measurement system disclosed in this application reduces the amount of data handled by using measurement timing data that is linked to biometric information measured by the measurement terminal as time information indicating the measurement interval. can do. This suppresses the increase in the storage capacity of the measurement terminal and reduces the amount of data in data communication with the main device, making it possible to make the measurement terminal smaller and lighter and to shorten the time the measurement subject is restrained. .
  • the measurement terminal disclosed in the present application can be made smaller and lighter as a measurement terminal used in the above-mentioned biological information measurement system, and can reduce the burden placed on the measurement subject who wears it.
  • FIG. 1 is a block diagram showing the configuration of each part of the body temperature measurement system according to this embodiment.
  • FIG. 2 is an exploded perspective view showing the configuration of a thermometer used in the body temperature measurement system according to this embodiment.
  • FIG. 3 is a schematic diagram for explaining the relationship of each member focusing on the operational aspect of the thermometer used in the body temperature measurement system according to the present embodiment.
  • FIG. 4 is an image diagram showing a state in which a person to be measured is wearing a thermometer of the body temperature measurement system according to the present embodiment.
  • the biological information measurement system of the present disclosure includes a measurement terminal that is attached to the body of a person to be measured and measures the biological information of the person to be measured, and a measurement terminal that is connected to the measurement terminal by a short-range communication means, and from the measurement terminal, a main device that receives biological data including a measured value of the biological information of the measurement subject and measurement timing data indicating a time when the biological information was measured, and the measurement terminal controls the operation of the measurement terminal.
  • a reference clock that generates time information
  • a storage unit that stores the biometric data
  • a biometric data generation unit that measures the biometric information of the subject at predetermined time intervals to generate the biometric data.
  • the measurement timing data is time information indicating a measurement interval after measuring the biological information last time.
  • the measurement timing data for acquiring the biological information which is managed together with the biological information that is the measurement result, is used as the time information indicating the measurement interval from the previous measurement. Understand as. For this reason, compared to the case where time information is understood as absolute time, it is possible to effectively reduce the amount of data information processed within the measurement terminal, reduce the capacity of the storage unit that stores data, and reduce the amount of data transmitted when transmitting data. Communication time can be shortened.
  • the measurement timing data is a time interval in minutes divided into multiple stages, and the biological data includes the measurement timing data replaced with symbol data indicating the division. Preferably. By doing so, it is possible to further reduce the amount of measurement timing data included in the biological data.
  • control unit erases the biometric data stored in the storage unit after a communication connection with the main device is established and transmission of the biometric data is completed.
  • the capacity of the storage section of the measurement terminal can be kept small, and the measurement terminal can be made smaller and lighter.
  • the measurement terminal includes a lithium battery as an operating power source.
  • Lithium batteries have a high discharge voltage of approximately 2.8 V or more, and are easy to match with the operating voltage of the measurement terminal.
  • control unit notifies the main device that the remaining capacity of the lithium battery is low when detecting that the discharge voltage of the lithium battery has decreased to a predetermined value.
  • the control unit notifies the main device that the remaining capacity of the lithium battery is low when detecting that the discharge voltage of the lithium battery has decreased to a predetermined value.
  • the main device converts the measurement timing data included in each biometric data into time data, and measures the biometric data including the measured value of the biometric information and the time data. Preferably, result data is generated.
  • the measurement result data handled by the main device becomes time data that allows the measurement timing to be clearly understood, making it easier to manage the measurement results of biological information.
  • the main device compares the elapsed time since the establishment of the previous communication connection with the integrated value of the timing data, and compares the integrated value of the timing data.
  • the timing data is calibrated. By doing so, even if the reference clock data in the measurement terminal is not accurate, it is possible to grasp the measurement timing data of the measured biological information as accurate.
  • the biological information in addition to the body temperature of the person to be measured, information such as heart rate, respiratory rate, blood sugar level, blood pressure, blood oxygen saturation, sweat amount, etc. can be exemplified.
  • body temperature is biological information that needs to be measured under various circumstances, it is more desirable to apply the present invention.
  • the measurement terminal of the present disclosure is used in the biological information measurement system of the present disclosure, and is attached to the body of a measurement subject to measure biological information of the measurement subject, and the measurement terminal includes: a control unit that controls the operation of the measurement terminal; a reference clock that generates time information; a storage unit that stores the biometric data; When a communication connection is established between the biological data generation section that generates the biological information, the measurement interval change section that changes the time interval for measuring the biological information based on the measured value of the biological information, and the main body device, the storage section all the biometric data since the last time the communication connection was established, stored in the device, and elapsed time information indicating the elapsed time since the last measurement of the biometric information of the subject to be measured, to the main device. and a data transmitter for transmitting data, and the measurement timing data is time information indicating a measurement interval after measuring biological information last time.
  • the amount of biological data handled inside the measurement terminal is reduced, so it is possible to realize a measurement terminal that places less burden on the person to be measured even if the measurement terminal is worn for a long time.
  • the present invention can contribute to, for example, Goal 3 of the Sustainable Development Goals (SDGs) advocated by the United Nations, "Good health and welfare for all.”
  • SDGs Sustainable Development Goals
  • the biological information measurement system illustrated and described in this embodiment is a body temperature measurement system that measures body temperature as biological information of a person to be measured. More specifically, a thermometer, which is a measuring device, is worn so as to touch the body surface of the person to be measured, and changes in the body temperature of the person to be measured are continuously monitored over a predetermined measurement period (for example, two weeks). An example of a system for acquiring data will be illustrated.
  • FIG. 1 is a block diagram showing an example of the configuration of each part of the body temperature measurement system according to the present embodiment.
  • FIG. 1 describes the constituent members of a thermometer 10, which is a measurement terminal, and a smartphone 20, which is a main device, of the body temperature measurement system according to the present embodiment, from the viewpoint of their operation contents and functions. Therefore, each block shown in FIG. 1 does not represent the physical configuration, for example, the configuration of circuit elements that realize the respective functions. For this reason, a block shown as a single component in FIG. 1 may be configured with multiple circuit blocks, or in some cases distributed on different circuit boards. A plurality of blocks may be realized by one circuit element.
  • the body temperature measurement system includes a thermometer 10, which is a measurement terminal that is attached to the body surface of a subject to measure the body temperature, and a thermometer 10 that is connected to the thermometer 10 by short-range wireless communication. It has a smartphone 20 which is a main device that receives information on the body temperature of the person to be measured.
  • the thermometer 10 includes a biological information acquisition unit 11 that measures the body temperature of the person to be measured, a reference clock 12 that outputs a clock signal that serves as a reference for time information inside the thermometer 10, and a body temperature of the person to be measured acquired by the biological information acquisition unit 11.
  • a biological data generation unit 13 that generates biological data by combining a measured value of the body temperature of the person and measurement timing data representing the measurement timing at which the measured value was obtained, and measures the body temperature based on changes in the body temperature of the person to be measured.
  • a measurement interval changing unit 14 that changes the measurement time interval, a storage unit 16 that stores the biometric data generated by the biometric data generation unit 13, and transmits the biometric data stored in the storage unit 16 to the smartphone 20 that is the main device.
  • the thermometer 10 includes a data transmitting section 17 that receives calibration values of measurement timing data transmitted from the smartphone 20, a data receiving section 18 that receives calibration values of measurement timing data transmitted from the smartphone 20, and a control section 15 that controls the operation of each section within the thermometer 10.
  • the thermometer 10 which is a measuring terminal, includes a battery as an operating power source in addition to the above-mentioned parts.
  • FIG. 2 is an exploded perspective view for explaining the configuration of the thermometer of the body temperature measurement system according to the present embodiment.
  • FIG. 3 is a schematic diagram for explaining the relationship of each member of the thermometer of the body temperature measurement system according to the present embodiment, focusing in particular on the operational aspects.
  • FIG. 4 is an image diagram showing a state in which a person to be measured is wearing a thermometer of the body temperature measurement system according to the present embodiment.
  • thermometer 10 of the body temperature measurement system is placed in close contact with the body surface of the person 30 to be measured. Furthermore, since the thermometer 10 will remain attached to the person to be measured 30 during the measurement period of, for example, two weeks, it is strongly required that the thermometer 10 be small and lightweight so as not to be a burden on the person to be measured 30. . Furthermore, even if the thermometer 10 is exposed to water or moisture when the person to be measured 30 takes a bath or sweats, it is waterproofed so that it can operate normally and measure the body temperature. It has been subjected.
  • the thermometer 10 includes an upper housing 1 and a lower housing 2 made of resin such as polypropylene, which constitute an outer shell, and a circuit board 3 inside the outer shell. With the battery 6 and battery 6 installed, the connecting portion between the upper housing 1 and the lower housing 2 is ultrasonically crimped to keep the interior watertight.
  • the outer diameter is 22 mm and the thickness is 4.5 mm.
  • the body temperature measurement unit which is the biological information acquisition unit 10 included in the thermometer 10, thermally connects the chip-type temperature sensor 4 disposed on the substrate 3, the temperature sensing unit of the temperature sensor 4, and the body surface of the person to be measured 30. It is constituted by a metal terminal 5 connected to. The lower end portion of the metal terminal 5 in FIG. When the thermometer 10 is attached to the body surface of the person 30 to be measured, the lower end surface of the metal terminal 5 is in direct contact with the skin of the person 30 to be measured. Furthermore, heat transfer grease is applied between the metal terminal 5 and the temperature sensor 4 so that the temperature of the metal terminal 5 can be detected more reliably by the temperature sensor 4.
  • the measured value of the body temperature of the person to be measured 30 measured with the thermometer 10 needs to be associated with measurement timing data, which is time information indicating the time of measurement.
  • Time information in the thermometer 10 is generated by a reference clock 12 made up of a crystal oscillator.
  • the crystal resonator used for the reference clock 12 for example, a commonly used 32 MHz type crystal resonator can be suitably used.
  • the reference clock 12 it is preferable to use one having an accuracy of within ⁇ 50 ppm that complies with the Bluetooth standard.
  • the biometric data generation unit 13 generates a measured value of the body temperature of the person to be measured 30, which is biometric information acquired by the biometric information acquisition unit 11, and measurement timing data, which is time information indicating the time when the measured value was acquired. By linking them together, body temperature data, which is biological data, is generated.
  • body temperature data which is biological data, is generated.
  • the body temperature measurement system instead of using UNIX time, which is normally used in computer systems, as the time information associated with the body temperature measurement value, the elapsed time from the previous body temperature measurement, That is, time information representing the interval between body temperature measurements is used as measurement timing data.
  • Body temperature data includes timing data, which is the measurement interval between the current temperature measurement and the previous measurement, that is, the elapsed time since the previous measurement, every time the body temperature of the person being measured is measured. are connected and generated. The generated biometric data is sequentially stored in the storage unit 16.
  • the interval at which the body temperature of the person to be measured is measured is determined in advance.
  • the basic body temperature measurement interval is set to a relatively long interval such as 30 minutes, 1 hour, 2 hours, etc., as an example.
  • the temperature measurement interval may be changed to 15 minutes, 10 minutes, 5 minutes, 1 minute, etc. depending on the initial purpose of measuring changes in the person's body temperature.
  • the setting is changed to a shorter measurement interval as appropriate.
  • the measurement interval changing unit 14 changes the measurement interval to become shorter in response to a change in the body temperature of the person to be measured obtained as a measurement result, for example, when the body temperature of the person to be measured becomes higher.
  • the temperature measurement interval will be shortened by one step, and if the body temperature exceeds 37.5°, the measurement interval will be shortened by one more step.
  • the body temperature measurement interval can be changed in stages by providing a plurality of threshold values, such as making the interval shorter.
  • the measurement interval changing unit 14 may change the body temperature measurement interval to become longer, such as by sequentially returning to the originally set measurement interval. can.
  • the control unit 15 controls the operation of each circuit component mounted on the thermometer 10.
  • the control unit 15 can be configured as a microcomputer formed into an IC chip or an assembly of various arithmetic circuit elements.
  • the storage unit 16 stores body temperature data generated by the biometric data generation unit 13.
  • the storage unit 16 also stores information such as the initial setting measurement interval at which the biological information acquisition unit 11 measures the body temperature of the subject and the threshold value used as a reference for changing the measurement interval in the measurement interval change unit 14 at which the thermometer 10 operates. Data referenced by the control section 15 and each operating circuit section when performing the operations is stored.
  • EEPROM which is a memory with a capacity of about 64 Kbit and low power consumption, is preferably used. Flash memory can also be used.
  • thermometer 10 of the body temperature measurement system uses Bluetooth as a means of short-range wireless communication with the smartphone 20, which is the main device. Therefore, the data transmitting section 17 and the data receiving section 18 of the thermometer 10 are transmitting/receiving sections conforming to the Bluetooth standard.
  • the control unit 15 transmits all body temperature data stored in the storage unit 16 from the data transmission unit 17 to the smartphone 20. At this time, the control unit 15 ascertains the elapsed time from the time of data transmission and the measurement time of the measurement subject's body temperature immediately before that from the information of the reference clock 12, and similarly transmits the data from the data transmission unit 17. Send it to the smartphone 20.
  • the thermometer 10 includes a button-shaped (also called coin-shaped) battery 6 as its operating power source.
  • a battery 6 various types of batteries can be used, such as a primary battery, an air battery, and a rechargeable/dischargeable secondary battery.
  • a primary battery such as a primary battery, an air battery, and a rechargeable/dischargeable secondary battery.
  • an air battery it is necessary to incorporate oxygen to be used as the positive electrode active material, so in the case of the thermometer of this embodiment, in which the upper and lower casings 1 and 2 are waterproof and sealed, moisture must be added separately. Air vents must be provided to prevent intrusion.
  • the thermometer 10 can be used repeatedly, but a small secondary battery has a small capacity and needs to be charged frequently, and may generate heat when charging. , primary batteries are suitable for applications that measure body temperature continuously without interruption.
  • the shape of the battery is not limited to the button type (coin type) illustrated in FIG. 2, and a sheet-shaped battery can also be suitably used from the viewpoint of realizing a thinner thermometer.
  • the type of battery is not particularly limited, and aqueous solution batteries such as silver oxide batteries, manganese batteries, alkaline manganese batteries, and organic solvent primary batteries such as lithium batteries can be suitably used.
  • organic solvent-based batteries such as lithium batteries are particularly preferred because they can increase battery voltage and improve compatibility with the operating voltage of the thermometer.
  • the control unit 15 When the battery life is ascertained and it is detected that the discharge from the battery will soon end, it is preferable that the device be set to send a notification to that effect to the smartphone 20, which is the main device. By notifying the smartphone 20, which is the main device, that the battery life will soon end, it is possible to change to a new thermometer or one with sufficient battery life remaining, or to replace the thermometer with a new thermometer that has sufficient battery life remaining. It becomes possible to complete the operation as an information acquisition system.
  • One way to understand battery life is to detect when the battery's discharge voltage has fallen below a predetermined value, but when this method is adopted, the discharge voltage remains almost constant until the end of discharge.
  • the end of discharge time can be adjusted. It is preferable to be able to detect with sufficient time that the object is approaching. From this point of view, compared to silver oxide batteries, which maintain a nearly constant discharge voltage until near the end of discharge, a high discharge voltage is maintained until the remaining capacity of the battery decreases, and when the remaining capacity decreases, the discharge voltage decreases. It is preferable to use a lithium battery that has a large slope.
  • lithium batteries here refer to various types of batteries that have a negative electrode of metallic lithium, such as fluorinated graphite lithium batteries (BR) with fluorinated graphite as the anode, manganese dioxide lithium batteries (CR) with manganese dioxide, and thionyl chloride batteries with thionyl chloride.
  • BR fluorinated graphite lithium batteries
  • CR manganese dioxide lithium batteries
  • ER lithium batteries
  • CR manganese dioxide lithium battery
  • thermometer 10 As shown in FIG. 3, in the thermometer 10 according to this embodiment, a phototransistor 7 is arranged inside the upper and lower casings 1 and 2. At least one of the casings 1 and 2 is made of a resin material such as polypropylene having a translucency above a certain level as described above, and the phototransistor 7 is provided inside, so that the phototransistor 7 can emit light. When detected, the electric circuit inside the thermometer 10 starts operating. In addition, by storing the thermometer 10 sealed inside the laminate film 50, which is a material that does not allow light to pass through, immediately after manufacturing, the operation of the thermometer 10 can be minimized until it is removed from the laminate film 50 at the time of use. It is possible to effectively avoid a situation where the battery 6 is exhausted before the thermometer 10 is actually used.
  • thermometer 10 is worn so that the metal terminal 5 is in contact with the skin of the person 30 to be measured.
  • the entire thermometer 10 is covered with an adhesive tape 40 such as medical surgical tape, and the body temperature of the person 30 to be measured is kept in contact with the epidermis of the person being measured. It is preferable to attach it to Note that since the thermometer 10 has a predetermined size of 22 mm in diameter, it is difficult to measure the core body temperature of the person to be measured 30, but the thermometer 10 should be attached to a part that is not exposed to the outside air as much as possible. is preferred.
  • thermometer 10 should be worn in a place where the temperature inside the clothing of the person to be measured 30 can be detected, and where the person to be measured is unlikely to feel any discomfort due to wearing the thermometer 10; , the area from the chest to the flank is preferred as the area where the movement of the epidermis is relatively small.
  • FIG. 4 shows an image of the person to be measured wearing the thermometer.
  • a smartphone 20 is used as a main device that receives data from a thermometer 10 that is a measurement terminal.
  • the smartphone 20 as a main device has a function as a mobile phone, and includes a current time acquisition unit 21 that acquires the current time, an image display device such as a liquid crystal panel or an organic EL panel, and a processing circuit that processes data of images to be displayed.
  • the thermometer 10 which is a measurement terminal, based on the Bluetooth standard, but the data transmission section 26 and data reception section 27 that connect with the Bluetooth device are also Usually provided.
  • the measurement result data generation unit 22 converts the measurement timing data, which is time information indicating the time when the body temperature was measured, from the body temperature data transmitted from the thermometer 10 when the data communication with the thermometer 10 is established, into the measurement timing data from the previous measurement.
  • the information indicating the measurement interval from time to time is converted into measurement result data replaced with time information indicating the measurement time.
  • Data conversion from body temperature data to measurement result data is performed by application software installed on the smartphone 20 that controls the body temperature measurement system shown in this embodiment, and the converted measurement result data is sequentially stored in the storage unit 25 of the smartphone 20. be remembered. Note that details of data conversion from body temperature data to measurement result data will be described in detail later.
  • the timing data calibration unit 23 verifies the clock frequency of the reference clock 12 of the thermometer 10 based on the measurement result data generated by the measurement result data generation unit 22. If there is an error in the clock frequency, calibration data is created to calibrate this error.
  • the calibration data is transmitted from the data transmitting unit 26 to the data receiving unit 18 of the thermometer 10 through Bluetooth standard communication, and the control unit 15 of the thermometer 10 uses measurement timing data as time information to be recorded in the body temperature data obtained thereafter. is calibrated using calibration data. Note that the function of the timing data calibration unit 23 is also executed by application software corresponding to the body temperature measurement system according to this embodiment. Further, details regarding timing data calibration will be described in detail later.
  • the smartphone 20 displays on the image display unit 24 of the smartphone 20 that data communication based on the Bluetooth standard has been established with the thermometer 10 and that the biological data recorded in the storage unit 16 has been successfully transmitted and received from the thermometer 10. It is possible to notify the person to be measured 30 or a supervisor who manages the data by displaying the information as follows. Furthermore, as described above, when the control unit 15 of the thermometer 10 has a function of detecting that the battery that is the operating power source of the thermometer 10 is nearing the end of its lifespan and transmitting it to the smartphone 20, the image display unit 24 By displaying the information that the battery is nearing the end of its life span, the person 10 to be measured can be instructed to take measures such as replacing the thermometer 10 with a new one.
  • the biological data generation unit 13 of the thermometer 10 reads the body temperature of the person to be measured 30 at each predetermined measurement timing.
  • the read body temperature measurement value is used as measurement timing data, which is time information indicating the measurement time when the measurement was performed, and the elapsed time since the previous measurement, that is, the body temperature measurement interval, is used as the clock signal of the reference clock. Understand based on.
  • body temperature data which is one piece of biological data, is generated by linking the measured value of body temperature and the measurement timing data.
  • the body temperature measurement system of this embodiment continues to measure body temperature data of the person to be measured over a certain measurement period.
  • the created body temperature data is sequentially stored in the storage unit 16 of the thermometer 10, and is stored in the storage unit 16 at the timing when data communication is established between the thermometer 10 and the smartphone 20, which is the main device.
  • the body temperature data is transmitted to the smartphone 20 by data communication based on the Bluetooth standard.
  • the data size of the body temperature data handled within the thermometer 10 is small, considering that there is a strong demand for compactness and light weight, and that the frequency of data communication with the smartphone 20, which is the main device, is to be reduced for the convenience of the person to be measured. The more preferable.
  • the measured value of body temperature output as temperature information from the temperature sensor is limited to the temperature range of 25 degrees Celsius to 41 degrees Celsius, resulting in 8-bit data (resolution: 0.0625 degrees Celsius). I am packing.
  • the data size required for body temperature information can be halved compared to, for example, the standard setting of the temperature sensor 4, which has a 16-bit standard of ⁇ 256° C. and a resolution of 0.0078125° C. If the temperature sensor is specialized for body temperature measurement as in this embodiment, practical problems will not arise if temperature data can be obtained in the above temperature range of 25°C to 41°C with a resolution of 0.0625°C. do not have.
  • time information indicating the measurement timing 8-bit measurement timing data generated from the clock data of the standard clock 12 is used as an example.
  • the 8-bit temperature data and 8-bit measurement timing data thus obtained are combined to generate 16-bit body temperature data.
  • measurement timing data can be obtained by calculating the difference between the clock frequency data of the reference clock and the data from the previous measurement as described above, but this data is measured in minutes rather than seconds. By doing so, the measurement interval data itself can be set to a small value, and as a result, the body temperature data can be further reduced.
  • multiple different measurement intervals are set in stages, such as 1 minute interval, 5 minute interval, 10 minute interval, etc. By symbolizing the measurement interval as "2" and the 10 minute interval as "3", the amount of data representing the measurement timing data can be made smaller than when the measurement interval is expressed as the number of hours itself. Body temperature data can now be expressed using a smaller amount of data.
  • the measurement interval changing unit 14 evaluates the physical condition of the subject based on the body temperature measurement results, and changes the interval at which the body temperature is measured. Therefore, it is necessary to manage the measured body temperature by linking it with measurement timing data, which is information about the time when the measured value was measured.
  • body temperature data that includes time information about the measurement interval from the previous body temperature measurement as measurement timing data is converted into measurement result data that includes data representing the actual measurement time as UNIX data, for example. Describe data conversion.
  • thermometer 10 In order to reduce the capacity when storing data in the storage unit 16 of the thermometer 10 and when communicating body temperature data between the thermometer 10 and the smartphone 20, body temperature data that used measurement intervals as time information has been changed to a standard By converting the data into time information in the standard hours/minutes (seconds) format, it becomes possible to perform general data processing as data indicating measurement results.
  • the control unit 15 of the thermometer 10 stores all the body temperature data stored in the storage unit 16 and from the previous measurement timing to the time of data transmission. time data, which is elapsed time information.
  • the current time is shown in minutes, with seconds data rounded down.
  • thermometer 10 the time (year, month, day, hour, minute) at which data communication was performed between the thermometer 10 and the smartphone 20.
  • the thermometer 10 transmits a plurality of body temperature data T and elapsed time information TE since the last body temperature data measurement acquired at the previous timing. Further, regarding the body temperature data T stored in the storage unit 15, the measurement time is set as T(N), T(N-1), T(N-2), etc. in order of newest measurement time, and further, each body temperature data is Measurement timing data S, which is time information of measurement intervals included in T, will be expressed as S(N), S(N-1), S(N-2), . . . , respectively.
  • the measurement time information of all body temperature data sent together from the thermometer 10 can be converted from information representing the elapsed time since the previous measurement to absolute time information, and this can be converted into absolute time information.
  • the body temperature measurement system in the body temperature data indicating the body temperature measurement results handled inside the thermometer 10, measurement timing data indicating the measurement time is replaced with time information indicating the measurement interval from the previous measurement.
  • the amount of information (necessary number of bits) of body temperature data can be reduced compared to the case where time information is treated as absolute time information from the beginning.
  • This conversion of time information can be correctly performed by the measurement result data generation unit 22 of the smartphone 20, which is the main unit, by the method described above. Therefore, the capacity of the storage section 16 in the thermometer 10 can be reduced compared to the case where time information as time data is included from the beginning without affecting the accuracy of the data. Further, more body temperature data can be stored in the storage unit 16 having the same capacity. Furthermore, when transmitting a plurality of body temperature data to the smartphone 20 at once, the transmission time can be shortened.
  • every time data communication is established between the thermometer 10 and the smartphone 20, all body temperature data T measured and accumulated after the previous data communication and data from the last measurement timing are collected.
  • Elapsed time information TE indicating the elapsed time until communication is established is transmitted. Therefore, the sum of the measurement time information S for all body temperature data T at the time of data transmission and the elapsed time information TE until data transmission is the sum of the measurement time information S for all the body temperature data T at the time of data transmission.
  • the elapsed time is TT.
  • thermometer 10 is compared with the correct time difference TH of the measurement interval, and if the difference is large, it can be determined that the clock frequency of the reference clock 12 in the thermometer 10 is inaccurate.
  • this time information is calibrated by multiplying it by calibration data TK when converting body temperature data to measurement result data on the smartphone 20 side, without providing feedback to the thermometer 10. You can also do that.
  • the measurement timing data which is time information indicating the measurement time used in data processing inside the thermometer 10
  • the amount of measurement timing data indicating the measurement time in body temperature data can be reduced, the thermometer 10 can be made smaller and lighter, and the data communication time between the thermometer and the smartphone 20 can be shortened.
  • the thermometer 10 worn by the person to be measured 30 can be made smaller, and the connection interval for data transfer between the thermometer 10 and the smartphone 20 can be increased.
  • the burden on the person to be measured in body temperature measurement can be reduced.
  • thermometer which is the measurement terminal
  • smartphone which is the main device
  • the smartphone which is the main device
  • wireless communication based on other local rules or electromagnetic induction when placed in close proximity. It is possible to employ various methods that enable short-distance data communication between the terminal device and the main device, such as a data communication method using the above method.
  • the main device is not limited to the above-mentioned smartphone. If it satisfies the requirements that data communication with the thermometer is possible using a prescribed method, and that data processing that converts body temperature data sent from the thermometer into measurement result data is possible, various personal By using a computer or a tablet terminal and installing software for operating the body temperature measurement system according to this embodiment, it can be used as a main device. Furthermore, the present invention is not limited to these general-purpose devices, and a dedicated main body device that is specialized for use in the body temperature measurement system disclosed in this application can be used.
  • wireless or wired communication means such as carrier communication or connection to the internet line provided by each device can be used.
  • a cloud server that can be connected via the Internet environment and collect the measurement result data obtained by each main device as big data.
  • the collection of measurement result data collected in this way is accumulated as information indicating changes in the body temperature of the person to be measured, and the data is analyzed as appropriate to provide body temperature data for medical fields, sports fields, etc. It is used as collective data according to the purpose of collection.
  • the obtained big data can be used to provide various types of feedback on the body temperature data of individual subjects, such as current physical condition evaluation values in the medical field, warning displays regarding the risk of changes in physical condition, and sports-related In the field, it can be used to display the magnitude of the load based on the current practice menu, or to recommend canceling practice due to changes in physical condition.
  • the image display function and data processing function of smartphones it is possible to analyze the biological information of each measurement subject without using big data, which is a collection of measurement result data obtained from multiple measurement subjects. It is possible to feed back measurement information to a person to be measured, such as by displaying information measurement results and showing comparison data with past measurement results of the same person.
  • environmental data such as temperature data and humidity data that can be acquired by the main device such as a smartphone can be sent to a cloud server on the Internet together with measurement result data, or as feedback information to the person being measured. It is possible to reflect the feedback information, process the feedback information as appropriate based on this environmental information, or add various variations and notify the person to be measured.
  • the biological information measurement system disclosed in the present application exemplifies the case where body temperature is measured as biological information obtained from the measurement subject, but in addition to body temperature, other information such as heart rate and sweat amount can be measured. It can be a measurement system that continuously measures various biological information.
  • changes in the posture (body position) of the person to be measured which can be grasped by the measurement terminal being equipped with a three-dimensional acceleration sensor that detects the amount and speed of movement in three-dimensional directions, are also included in the biological information in this application. shall be.
  • measurement timing data which is time information indicating a measurement interval with a small amount of data compared to absolute time information, is used as measurement time information linked to the measured biometric information data.
  • a plate-shaped electrode when measuring heart rate, a plate-shaped electrode should be in contact with the body surface of the person being measured, and when measuring sweat amount, a predetermined length of electrode that can be used to apply a weak current should be used.
  • the measurement terminal should be equipped with various sensors that can suitably acquire biological information of the object to be measured, such as an electrode having the following characteristics.
  • the biological information measurement system disclosed in this application uses information representing the measurement interval time as time information representing the measurement timing, thereby making it possible to downsize the measurement terminal and reduce the amount of data communication, thereby reducing the burden on the person to be measured. It is useful as a small biological information measurement system.
  • Thermometer (measuring terminal) 12 Crystal oscillator (reference clock) 13 Body temperature data generation unit (biological data generation unit) 14 Measurement interval changing section 15 Control section 16 Storage section 17 Data transmission section 20 Smartphone (main device)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

測定対象者が装着した測定端末における測定結果を示すデータ量を削減して、測定端末自体の小型軽量化をより進めるとともに、測定端末と本体機器との間の迅速なデータ通信を可能とする生体情報測定システムを提供する。測定端末10と、測定端末と短距離通信手段により接続されて、測定対象者の生体情報の測定値と当該生体情報が測定された時間を示す測定タイミングデータとを含む生体データを受け取る本体機器20とを有し、測定端末は、生体データと測定対象者の生体情報を測定した直前の測定時からの経過時間を示す経過時間情報とを、本体機器へと送信する。

Description

生体情報測定システム、および測定端末
 本願は、測定対象者に小型の測定端末を装着して、一定の期間にわたって当該測定対象者の体温、心拍数、発汗量などの生体情報の変化を把握する際に用いられる生体情報測定システムと当該システムに用いられる測定端末に関し、特に、測定対象者に装着される測定端末でのデータ処理における情報量を低減して、データの記憶時や測定端末からのデータ送信時における機器の負荷を低減した生体情報測定システムと測定端末に関する。
 一定の期間、例えば数日間から2週間程度にわたって測定対象者に体温計を装着して、体温の変化を把握する体温測定システムが知られている。
 このような体温測定システムにおいては、体温計と、体温計との間の無線または有線の通信によってデータが転送される本体機器とを有していて、体温計での測定結果は、随時、または、一定の時間間隔でまとめて、若しくは、測定期間が終了した後に一度に、のいずれかのタイミングでこの本体機器に送信されて管理される。
 一定期間測定対象者の体表に密着して配置される必要があることから、体温計には小型軽量であることが強く求められる。このため、測定結果を記憶する記憶部の大きさ、すなわち容量に制限があり、また、測定の都度本体機器にデータを送信する方法では、送信部が頻繁に動作することとなって体温計での電力負荷が増大し、体温計が備える動作電源としての電池の容量を大きくする必要がある。
 従来、測定対象者に装着される体温計と、体温計での測定結果を無線通信で受け取る本体機器である体温表示装置とを有する体温測定システムにおいて、体温を測定する間隔を広げてデータ量を小さくする一方、体温計に測定対象者の心拍数を検出する機能を備えて、体温と心拍数とから測定対象者の体調が悪いと判断された場合には、体温を測定する間隔を短くするものが提案されている(特許文献1参照)。
特開2014- 64751号公報
 上記特許文献1に記載された従来の体温測定システムでは、測定対象者の心拍数を把握することで、体温の変化のみによる判断よりも正確に測定対象者の体調変化を検知でき、体温計での体温測定頻度を高くすることで、測定対象者の体温変化を正確に追跡することができる。
 しかし、上記従来の体温測定システムの場合、体温計で把握された測定対象者の体温データについては特に考慮されていない。このため、例えば測定対象者の体調が良くない状態が続けば、測定頻度が高い状態で体温を測定することとなり、測定結果を示す情報量が増大して体温計内部の記憶容量が圧迫されるとともに、体温計と体温表示装置との間での無線通信時のデータ量が大きくなってデータ送信時間が長くなってしまう。なお、このデータ容量に関する課題は、体温測定システムに限られたものではなく、心拍数や発汗量などの測定対象者の生体情報を継続して測定する生体情報測定システム全体に共通するものである。
 本願は、上記従来技術の有する課題を解決することを目的とするものであり、測定対象者が装着した測定端末における測定結果を示すデータ量を削減して、測定端末自体の小型軽量化をより進めるとともに、測定端末と本体機器との間の迅速なデータ通信を可能とする生体情報測定システムを提供することを目的とする。
 上記課題を解決するため、本願で開示する生体情報測定システムは、測定対象者の体に装着されて前記測定対象者の生体情報を測定する測定端末と、前記測定端末と短距離通信手段により接続されて、前記測定端末から、前記測定対象者の生体情報の測定値と当該生体情報が測定された時間を示す測定タイミングデータとを含む生体データを受け取る本体機器とを有し、前記測定端末は、前記測定端末の動作を制御する制御部と、時間情報を生成する基準クロックと、前記生体データを記憶する記憶部と、所定の時間間隔で前記測定対象者の生体情報を測定して前記生体データを生成する生体データ生成部と、前記生体情報の測定値に基づいて生体情報を測定する時間間隔を変更する測定間隔変更部と、前記本体機器との通信接続が成立した際に、前記記憶部に記憶された前回の通信接続成立時以降の全ての前記生体データと、前記測定対象者の生体情報を測定した直前の測定時からの経過時間を示す経過時間情報とを、前記本体機器へと送信するデータ送信部とを備え、前記測定タイミングデータが、前回生体情報を測定してからの測定間隔を示す時間情報であることを特徴とする。
 また、本願で開示する測定端末は、本願で開示するいずれかの生体情報取得システムに用いられ、測定対象者の体に装着されて前記測定対象者の生体情報を測定する測定端末であって、前記測定端末は、前記測定端末の動作を制御する制御部と、時間情報を生成する基準クロックと、前記生体データを記憶する記憶部と、所定の時間間隔で前記測定対象者の生体情報を測定して前記生体データを生成する生体データ生成部と、前記生体情報の測定値に基づいて生体情報を測定する時間間隔を変更する測定間隔変更部と、前記本体機器との通信接続が成立した際に、前記記憶部に記憶された前回の通信接続成立時以降の全ての前記生体データと、前記測定対象者の生体情報を測定した直前の測定時からの経過時間を示す経過時間情報とを、前記本体機器へと送信するデータ送信部とを備え、前記測定タイミングデータが、前回生体情報を測定してからの測定間隔を示す時間情報であることを特徴とする。
 上記構成により、本願で開示する生体情報測定システムは、測定端末で測定された生体情報と紐つけられて取り扱われる測定タイミングデータを、測定間隔を示す時間情報とすることで、取り扱うデータ量を削減することができる。このため、測定端末が備える記憶部の容量の増大を抑え、本体機器とのデータ通信におけるデータ量が小さくなるので、測定端末の小型軽量化や測定対象者を拘束する時間を短くすることができる。
 また、本願で開示する測定端末は、上記生体情報測定システムに用いられる測定端末として、小型、軽量化することができ、装着する測定対象者にかける負担を低減することができる。
図1は、本実施形態にかかる体温測定システムの各部の構成を示すブロック図である。 図2は、本実施形態にかかる体温測定システムに用いられる体温計の構成を示す分解斜視図である。 図3は、本実施形態にかかる体温測定システムに用いられる体温計の動作面に注目した各部材の関係を説明するための模式図である。 図4は、本実施形態にかかる体温測定システムの体温計を測定対象者が装着している状態を示すイメージ図である。
 本開示の生体情報測定システムは、測定対象者の体に装着されて前記測定対象者の生体情報を測定する測定端末と、前記測定端末と短距離通信手段により接続されて、前記測定端末から、前記測定対象者の生体情報の測定値と当該生体情報が測定された時間を示す測定タイミングデータとを含む生体データを受け取る本体機器とを有し、前記測定端末は、前記測定端末の動作を制御する制御部と、時間情報を生成する基準クロックと、前記生体データを記憶する記憶部と、所定の時間間隔で前記測定対象者の生体情報を測定して前記生体データを生成する生体データ生成部と、前記生体情報の測定値に基づいて生体情報を測定する時間間隔を変更する測定間隔変更部と、前記本体機器との通信接続が成立した際に、前記記憶部に記憶された前回の通信接続成立時以降の全ての前記生体データと、前記測定対象者の生体情報を測定した直前の測定時からの経過時間を示す経過時間情報とを、前記本体機器へと送信するデータ送信部とを備え、前記測定タイミングデータが、前回生体情報を測定してからの測定間隔を示す時間情報である。
 このようにすることで、本願で開示する生体情報測定システムでは、測定結果である生体情報とともに管理される当該生体情報を取得した測定タイミングデータを、前回の測定時からの測定間隔を示す時間情報として把握する。このため、時間情報を絶対時間として把握する場合と比較して、測定端末内で処理されるデータ情報量を効果的に低減でき、データを記憶する記憶部の容量の低減や、データ送信時の通信時間の短縮を行うことができる。
 本開示の生体情報測定システムにおいて、前記測定タイミングデータが、複数段階に区分された分単位の時間間隔であり、前記生体データは、前記測定タイミングデータを、前記区分を示す記号データに置き換えて含んでいることが好ましい。このようにすることで、生体データに含まれる測定タイミングデータのデータ量をさらに低減することができる。
 また、前記制御部は、前記本体機器との通信接続が成立し前記生体データの送信が完了した後に、前記記憶部に記憶されていた前記生体データを消去することが好ましい。このようにすることで、測定端末の記憶部の容量を小さく抑えることができ、測定端末の小型軽量化を行うことができる。
 さらに、前記測定端末が動作電源としてリチウム電池を備えることが好ましい。リチウム電池は放電電圧がおよそ2.8V以上高く、測定端末の作動電圧と適合させやすい。
 また、前記制御部は、前記リチウム電池の放電電圧が所定値まで低下したことを検出すると前記リチウム電池の残存容量が少ないことを前記本体機器に通知することが好ましい。このようにすることで、測定途中で電池容量が無くなって測定された生体情報が測定端末内に残ってしまう事態を防止することができる。酸化銀電池のように放電末まで一定電圧で放電が進行する電池では、放電電圧の低下を検出した後、残存容量が無くなるまでの期間が短いため、前記の通知を受け取ってから電池を交換するなどの対応を行うための時間が限られてしまう。一方、リチウム電池のように放電が進行すると放電電圧が低下する電池では、放電電圧の低下を検出した後、残存容量が無くなるまで一定以上の期間を確保することができるので、残存容量が少なくなってきたという通知を受け取ってから対応を行う時間を充分確保することができる。
 さらに、前記本体機器は、前記測定端末から送信された生体データについて、それぞれの生体データに含まれる前記測定タイミングデータを時刻データに変換し、前記生体情報の測定値と前記時刻データとを含む測定結果データを生成することが好ましい。このようにすることで、本体機器で取り扱われる測定結果データが、測定タイミングを明確に把握可能な時刻データとなって、生体情報の測定結果の管理が容易となる。
 さらにまた、前記本体機器は、前記測定端末との通信接続が成立した時に、一つ前の通信接続成立時からの経過時間と前記タイミングデータの積算値とを比較して前記測定端末での前記タイミングデータの較正を行うことが好ましい。このようにすることで、測定端末内の基準クロックデータが正確ではない場合でも、測定された生体情報の測定タイミングデータを正確なものとして把握することができる。
 なお、前記生体情報としては、測定対象者の体温のほか、心拍数、呼吸数、血糖値、血圧、血中酸素飽和度、発汗量などの情報を例示することができる。特に、体温は、様々な状況下で測定することが求められる生体情報であるので、本発明を適用することがより望ましい。
 本開示の測定端末は、上記下本開示の生体情報測定システムに用いられ、測定対象者の体に装着されて前記測定対象者の生体情報を測定する測定端末であって、前記測定端末は、前記測定端末の動作を制御する制御部と、時間情報を生成する基準クロックと、前記生体データを記憶する記憶部と、所定の時間間隔で前記測定対象者の生体情報を測定して前記生体データを生成する生体データ生成部と、前記生体情報の測定値に基づいて生体情報を測定する時間間隔を変更する測定間隔変更部と、前記本体機器との通信接続が成立した際に、前記記憶部に記憶された前回の通信接続成立時以降の全ての前記生体データと、前記測定対象者の生体情報を測定した直前の測定時からの経過時間を示す経過時間情報とを、前記本体機器へと送信するデータ送信部とを備え、前記測定タイミングデータが、前回生体情報を測定してからの測定間隔を示す時間情報である。
 このようにすることで、測定端末内部で取り扱われる生体データの情報量が低減されるため、長時間装着していても測定対象者にかける負担が小さな測定端末を実現することができる。
 以下、本願で開示する生体情報測定システムとこの生体情報システムで使用される測定端末について、具体的な実施形態を用いて説明する。
 なお、本発明により、例えば、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の目標3「すべての人に健康と福祉を」に寄与することができる。
 (実施の形態)
 本実施形態で例示して説明する生体情報測定システムは、測定対象者の生体情報として体温を測定する体温測定システムである。より具体的には、測定端末である体温計を測定対象者の体表に触れるように装着した状態で、所定の測定期間(一例として2週間)にわたって継続して測定対象者の体温の変化を生体データとして取得するシステムを例示する。
 図1は、本実施形態にかかる体温測定システムの各部の構成例を示すブロック図である。
 なお図1は、本実施形態にかかる体温測定システムの測定端末である体温計10と、本体機器であるスマートフォン20とについて、その動作内容や機能面の観点から構成部材を記載したものである。このため、図1に示すそれぞれのブロックは物理的な構成、例えば、それぞれの機能を実現する回路素子の構成をブロックとして示すものではない。このため、図1では、一つの構成部材として示されているブロックを複数の回路ブロックで、場合によっては異なる回路基板上に分散して構成されている場合があり、反対に、図1に示す複数のブロックを一つの回路素子で実現している場合もあり得る。
 本実施形態にかかる体温測定システムは、測定対象者の体表に装着されて体温を測定する測定端末である体温計10と、この体温計10と短距離無線通信で接続されて体温計10で測定された測定対象者の体温の情報を受け取る本体機器であるスマートフォン20とを有している。
 体温計10は、測定対象者の体温を計測する生体情報取得部11、体温計10内部での時間情報の基準となるクロック信号を出力する基準クロック12、生体情報取得部11で取得された測定対象者の体温の測定値と、その測定値が得られた測定タイミングを表す測定タイミングデータとを組み合わせて生体データを生成する生体データ生成部13、測定対象者の体温の変化に基づいて体温を測定する測定時間の間隔を変更する測定間隔変更部14、生体データ生成部13で生成された生体データを記憶する記憶部16、記憶部16に記憶された生体データを本体機器であるスマートフォン20へと送信するデータ送信部17、スマートフォン20から送信される測定タイミングデータの校正値などを受信するデータ受信部18、これら体温計10内の各部の動作を制御する制御部15を備えている。なお、図1での図示は省略するが、測定端末である体温計10は、上述した各部の他に動作電源としての電池を備えている。
 図2は、本実施形態にかかる体温測定システムの体温計の構成を説明するための分解斜視図である。
 また、図3は、本実施形態にかかる体温測定システムの体温計の特に動作面に注目した各部材の関係を説明するための模式図である。
 さらに、図4は、本実施形態にかかる体温測定システムの体温計を測定対象者が装着している状態を示すイメージ図である。
 本実施形態にかかる体温測定システムの体温計10は、測定対象者30の体表に密着して配置される。また、例えば2週間の測定期間の間、測定対象者30に装着された状態が続くことになるため、測定対象者30の負担にならないように、体温計10は小型軽量であることが強く求められる。さらに、測定対象者30が入浴したり、汗をかいたりすることにより、体温計10が水や水分に晒された場合でも、正常に動作して体温を測定することができるように、防水処置が施されている。
 図2に分解斜視図を示すように、体温計10は、ポリプロピレンなどの樹脂製の上側筐体1と下側筐体2とが外殻を構成していて、この外殻の内部に回路基板3や電池6が組み込まれた状態で、上側筐体1と下側筐体2との接続部分が超音波圧着されて内部を水密に保っている。なお、図2に示す体温計10の場合、その外径は22mm、厚さは4.5mmである。
 体温計10が備える生体情報取得部10である体温測定部は、基板3上に配置されたチップタイプの温度センサ4と、温度センサ4の温度感知部と測定対象者30の体表とを熱的に接続する金属端子5によって構成されている。金属端子5の図2中の下端側の部分は下側筐体2に形成された同径の開口部内に埋め込まれるようになっていて、金属端子5の下端面は下側筐体2の下面と同じ位置にあって、体温計10が測定対象者30の体表に装着された際に、金属端子5の下端面が測定対象者30の皮膚に直接触れるようになっている。また、金属端子5の温度を温度センサ4でより確実に検出することができるように、金属端子5と温度センサ4との間には伝熱グリスが塗布されている。
 体温計10で測定された測定対象者30の体温の測定値は、測定された時間を示す時間情報である測定タイミングデータと関連付けられる必要がある。体温計10における時間情報は、水晶振動子により構成された基準クロック12によって生成される。
 基準クロック12に用いられる水晶振動子としては、例えば、汎用されている32MHzタイプのものを好適に使用することができる。なお、後述のように、本実施形態の体温測定システムでは、体温計10とスマートフォン20との間の無線通信がブルートゥース(Bluetooth:登録商標、以下この注記は省略する)規格を用いて行われる。このため、基準クロック12としては、ブルートゥース規格に対応した±50ppm以内の精度を有するものを用いることが好ましい。
 生体データ生成部13は、生体情報取得部11で取得された生体情報である測定対象者30の体温の測定値と、その測定値が取得された時間を示す時間情報である測定タイミングデータとを結びつけて生体データである体温データを生成する。本実施形態にかかる体温測定システムでは、体温の測定値と結びつけられる時間情報として、コンピュータシステムで通常使用されているユニックス(UNIX)タイムを用いるのではなく、前回の体温測定時からの経過時間、すなわち、体温の測定間隔を表す時間情報を測定タイミングデータとして用いる。
 体温データは、測定対象者の体温が測定される度に、そのときの体温の測定値と前回の測定時との測定間隔、すなわち、一つ前の測定時からの経過時間であるタイミングデータとが結びつけられて生成されていく。生成された生体データは、記憶部16に順次記憶されていく。
 本実施形態にかかる体温測定システムでは、被測定者の体温を測定する間隔が予め定められている。基本的な体温の測定間隔は、一例として、30分、1時間、2時間等々の比較的長い間隔に設定されている。しかし、例えば、測定対象者の体調が悪くなった場合などは、体温の測定間隔を、15分、10分、5分、1分など、測定者の体温の変化を測定する当初目的に応じて、適宜より短い測定間隔に設定が変更される。測定間隔変更部14は、測定結果として得られる測定対象者の体温の変化、例えば、測定対象者の体温が高くなった場合には、測定間隔がより短くなるように変更する。また、測定対象者の体温が例えば36.8°を超えた場合には体温の測定間隔を第1段階短くし、さらに体温が37.5°を超えた場合にはさらにもう一段階測定間隔を短くするなど、必要に応じて閾値を複数個設けて体温の測定間隔を段階に分けて変更することができる。また、測定間隔変更部14は、測定対象者の体温が下がって閾値を下回った場合には、当初設定していた測定間隔に順次戻すなど、体温の測定間隔が長くなるように変更することもできる。
 制御部15は、体温計10に搭載された各回路部品の動作を制御する。制御部15は、ICチップ化されたマイコン(マイクロコンピュータ)や、各種演算回路素子の集合体として構成することができる。
 記憶部16は、生体データ生成部13で生成された体温データを記憶する。また、記憶部16は、生体情報取得部11が測定対象者の体温を測定する初期設定の測定間隔や、測定間隔変更部14において測定間隔を変更する基準となる閾値などの、体温計10が動作する際に制御部15やそれぞれの動作回路部が参照するデータが記憶される。なお、小型軽量であることが求められる体温計10に用いられる記憶部16としては、容量を大きくしすぎることはできず、例えば容量が64Kbit程度で消費電力の小さいメモリであるEEPROMを好適に使用することができ、フラッシュメモリを使用することもできる。また、記憶部16のデータ容量を小さく抑えるために、体温計10とスマートフォン20との間のデータ通信によって記憶部16内の体温データが送信された後には、送信された古い体温データを全て消去するような動作制御を行うことが好ましい。
 本実施形態にかかる体温測定システムの体温計10は、本体機器であるスマートフォン20との間の短距離無線通信の手段として、ブルートゥースを使用している。このため、体温計10のデータ送信部17とデータ受信部18とは、ブルートゥース規格に準じた送受信部である。
 スマートフォン20とのブルートゥース規格に基づく無線通信接続が成立すると、制御部15は、記憶部16で記憶されていた全ての体温データを、データ送信部17からスマートフォン20に送信する。このとき、制御部15は、基準クロック12の情報から、データ送信時点と、その直前における測定対象者の体温測定を行った測定時からの経過時間を把握して、同様にデータ送信部17からスマートフォン20へと送信する。
 なお、図2、図3に示すように、体温計10は、その動作電源としてボタン型(コイン型とも称される)の電池6を備えている。電池6としては、一次電池、空気電池、充放電可能な二次電池など各種の電池が使用可能である。ただし、空気電池の場合は、正極活物質として使用される酸素を取り入れる必要があるため、上下の筐体1、2が防水されてシーリングされている本実施形態の体温計の場合は、別途水分が侵入しないようにされた空気孔を設ける必要がある。また、二次電池を使用することで、体温計10を繰り返し使用することができるようになるが、小型の二次電池は容量が小さく頻繁に充電する必要性や充電時に発熱する可能性があるため、途切れなく継続して体温を測定する用途には一次電池が適している。
 電池の形状は、図2に例示したボタン型(コイン型)には限定されず、より薄い体温計を実現する観点ではシート状の電池も好適に使用することができる。さらに、電池種についても特に限定はされず、酸化銀電池、マンガン電池、アルカリマンガン電池などの水溶液系電池や、リチウム電池などの有機溶媒系の一次電池を好適に使用することができる。これら各種の電池種の中で、リチウム電池などの有機溶媒系の電池は電池電圧を高くして体温計の動作電圧との適合性を高めることができるため、特に好ましい。
 なお、体温データのデータ送信部17からスマートフォン20への送信時に電池からの放電が終了し、測定端末である体温計10内の測定データが取り出せなくなってしまう事態を回避するために、制御部15が電池寿命を把握して電池からの放電がまもなく終了することを検知した場合には、その旨を本体機器であるスマートフォン20へと送信するように設定されていることが好ましい。まもなく電池寿命が終了することが本体機器であるスマートフォン20へと通知されることで、別の新しい、または、電池寿命が十分残っている体温計に変更したり、体温計10の動作停止に併せて生体情報取得システムとしての動作を完了させたりすることが可能となる。
 電池寿命を把握する方法として、電池の放電電圧が所定の値よりも低くなったことを検知する方法があるが、この方法を採用する場合は、放電末期まで放電電圧がほぼ一定に維持されるものよりも、電池からの放電が進行し残存容量が少なくなった場合(例えば、DODが80%程度の状態となった場合)に放電電圧の変化が大きくなる電池を用いることにより、放電終了時期が近づいたことを時間的な余裕を持って検出することができ好ましい。この観点からは、放電終了近くまでほぼ一定の放電電圧が維持される酸化銀電池と比較して、電池の残存容量が少なくなるまで高い放電電圧を維持し、残存容量が少なくなると放電電圧低下の傾きが大きくなるリチウム電池を用いることが好ましい。
 なお、ここでリチウム電池とは、金属リチウムの負極を有する各種電池で、陽極がフッ化黒鉛のフッ化黒鉛リチウム電池(BR)、二酸化マンガンの二酸化マンガンリチウム電池(CR)、塩化チオニルの塩化チオニルリチウム電池(ER)などがあり、汎用されている二酸化マンガンリチウム電池(CR)が好適に使用できる。
 図3に示されているように、本実施形態にかかる体温計10は、上下の筐体1、2の内部にフォトトランジスタ7が配置されている。筐体1、2の少なくともいずれか一方を、上述のようにポリプロピレンなどの一定以上の透光性を有する樹脂部材で構成するとともに、内部にフォトトランジスタ7を備えることで、フォトトランジスタ7が光を検知したら体温計10内部の電気回路が動作を開始するようにする。また、製造後すぐに体温計10を、光を通さない部材であるラミネートフィルム50などの内部に密封して保管することで、使用開始時にラミネートフィルム50から取り出すまでの間体温計10の動作を最低限の維持動作のみに限定して、体温計10が実際に使用される前に電池6が消耗する事態を効果的に回避することができる。
 体温計10は、測定対象者30の皮膚に金属端子5が接触するように装着される。体温計10が所定の体温測定期間の間同じ状態で測定対象者の表皮に接触しているように維持するため、体温計10の全体を医療用のサージカルテープなどの粘着テープ40で覆って測定対象者30に貼り付けることが好ましい。なお、体温計10が直径22mmという所定の大きさを有しているため、測定対象者30の深部体温を測定することは困難であるが、なるべく体温計10が外気に晒されない部分に装着されることが好ましい。この観点から、体温計10の装着場所としては、測定対象者30の服内温度が検出でき、また、体温計10を装着していることによる違和感を、測定対象者が感じにくい場所であって、さらに、表皮の動きが比較的小さな場所として、胸から脇腹にかけての部分が好ましい。
 図4に、測定対象者が体温計を装着している状態のイメージ図を示す。
 図1に戻って、本実施形態の体温測定システムでは、測定端末である体温計10からのデータを受け取る本体機器としてスマートフォン20が用いられている。
 本体機器としてのスマートフォン20は、その携帯電話機としての機能から、現在時刻を取得する現在時刻取得部21、液晶パネルや有機ELパネルなどの画像表示デバイスと表示する画像のデータ処理を行う処理回路とを含む画像表示部24、使用されるアプリケーションソフトや写真や音声、メールなどでの通信記録などを記憶するRAMやCPUのキャッシュメモリなどの記憶部25、キャリア通信を行うデータ送信部26、データ受信部27とを備えている。なお、本実施形態の体温測定システムでは、測定端末である体温計10との間のデータの送受信をブルートゥース規格に基づいて行うが、ブルートゥース機器との接続を行うデータ送信部26とデータ受信部27も通常備えられている。
 測定結果データ生成部22は、体温計10とのデータ通信が成立したときに体温計10から送信された体温データのうち、体温が測定された時を示す時間情報である測定タイミングデータを、前回の測定時からの測定間隔を示す情報から、測定時を示す時刻情報に置き換えた測定結果データに変換する。体温データからの測定結果データへのデータ変換は、スマートフォン20にインストールされた本実施形態で示す体温測定システムを制御するアプリケーションソフトが行い、変換された測定結果データは順次スマートフォン20の記憶部25に記憶される。なお、体温データから測定結果データへのデータ変換の詳細については、後に詳述する。
 また、タイミングデータ較正部23は、測定結果データ生成部22により生成された測定結果データに基づいて、体温計10の基準クロック12のクロック周波数の検証を行う。そして、クロック周波数に誤差がある場合には、この誤差を較正する較正データが作成される。較正データは、データ送信部26からブルートゥース規格の通信を通じて体温計10のデータ受信部18に送信され、体温計10の制御部15は、以降得られた体温データに記録される時間情報としての測定タイミングデータを、較正データを用いて較正する。なお、タイミングデータ較正部23の機能も、本実施形態にかかる体温測定システムに対応するアプリケーションソフトによって実行される。また、タイミングデータの較正についての詳細については、後に詳述する。
 スマートフォン20は、体温計10との間のブルートゥース規格によるデータ通信が成立し、体温計10から記憶部16に記録されていた生体データの送受信が無事に行われたことを、スマートフォン20の画像表示部24で表示して、測定対象者30または、データ管理を行う監督者などに報知することができる。さらに、上述したように、体温計10の制御部15が体温計10の動作電源である電池の寿命が近いことを検出してスマートフォン20に伝達する機能を有する場合には、画像表示部24が体温計10から電池の寿命が近いという情報を受け取ったことを表示することによって、新しい体温計10に付け替えるなどの対応を行うように測定対象者10に指示することができる。
 次に、本実施形態にかかる体温測定システムにおける、測定結果データの処理について説明する。
 上述したように、体温計10の生体データ生成部13は、予め定められた所定の測定タイミング毎に測定対象者30の体温を読み取る。読み取られた体温の測定値は、その測定が行われた測定時間を示す時間情報である測定タイミングデータとして、前回の測定時からの経過時間、すなわち、体温の測定間隔を基準クロックのクロック信号に基づいて把握する。そして、体温の測定値と測定タイミングデータとを紐付けして一つの生体データである体温データが生成される。
 本実施形態の体温測定システムでは、測定対象者の体温データを一定の測定期間にわたって測定し続ける。また、作成された体温データは、体温計10の記憶部16に順次保管されていき、体温計10と本体機器であるスマートフォン20との間にデータ通信が成立したタイミングで、記憶部16に記憶されていた体温データがブルートゥース規格でのデータ通信によってスマートフォン20へと送信される。小型軽量化が強く求められるとともに、測定対象者の便宜を図るために本体機器であるスマートフォン20とのデータ通信の頻度を下げることを考えると、体温計10内で取り扱われる体温データのデータサイズは小さいほど好ましい。
 そこで、本実施形態の体温測定システムでは、温度センサから温度情報として出力される体温の測定値について、25℃~41℃の温度範囲に限定することで8bitのデータ(分解能:0.0625℃)にパッキングしている。これにより、例えば温度センサ4が有する、16bitの規格で±256℃、分解能が0.0078125℃という標準の設定と比較して、体温情報に必要なデータサイズを半分にできる。本実施形態のように、温度センサを体温測定の用途に特化した場合には、上記した温度範囲25℃~41℃、分解能0.0625℃での温度データが取得できれば実用上の問題は生じない。
 次に、測定タイミングを示す時間情報としては、標準クロック12のクロックデータから生成された、一例として8bitの測定タイミングデータを使用する。このようにして得られた、8bitの温度データと8bitの測定タイミングデータとをまとめて、一つが16bitの体温データが生成される。
 なお、測定タイミングデータについては、上述のように基準クロックのクロック周波数データから、前回の測定時のデータとの差を求めて得ることができるが、このデータを秒単位ではなく分単位のデータすることで、測定間隔データ自体を小さな値とすることができ、結果として体温データをさらに小さくすることができる。また、この測定間隔について、例えば、1分間隔、5分間隔、10分間隔など、複数の異なる測定間隔を段階的に設定しておき、さらに、1分間隔を「1」、5分間隔を「2」、10分間隔を「3」というように記号化することで、測定間隔を時間数そのもので示す場合に比べて、測定タイミングデータを表すデータ量を一層小さいものにすることができ、体温データをより少ないデータ量で表すことができるようになる。
 なお、上述したように、本実施形態の体温測定システムでは、測定間隔変更部14において、体温の測定結果に基づいて測定対象者の体調評価がなされて、体温を測定する間隔が変動する。このため、測定された体温の測定値とともに当該測定値が測定された時間の情報である測定タイミングデータとを紐付けして管理することが必要である。
 次に、前回の体温測定時との測定間隔の時間情報を測定タイミングデータとして有している体温データから、例えばUNIXデータとしての実際の測定時刻を表すデータを備えた測定結果データへと変換するデータ変換について説明する。
 体温計10の記憶部16でのデータ保管時や、体温計10とスマートフォン20との間の体温データの通信時における容量を低減するために、時間情報として測定間隔を使用されていた体温データは、標準的な時・分(・秒)形式の時間情報に変換することで、その後測定結果を示すデータとして一般的なデータ処理等を行うことができるようになる。
 上述したように、体温計10の制御部15は、本体機器であるスマートフォン20とのデータ通信が成立すると、記憶部16に記憶されていた全ての体温データと、直前の測定タイミングからデータ送信時までの経過時間情報である時間データとを送信する。
 以下では、測定結果データ生成部22での具体的なデータ変換例を説明する。なお、以下の例では、現在時刻は秒のデータを切り捨てた分単位のもので示す。
 まず、体温計10とスマートフォン20との間のデータ通信が行われた時刻(年・月・日・時・分)をTCとする。
 体温計10からは、複数の体温データTと、直前のタイミングで取得された最後の体温データ計測時からの経過時間情報TEが送信される。また、記憶部15に記憶されている体温データTについて、測定時間が新しい順にT(N)、T(N―1)、T(N-2)、・・・とし、さらに、それぞれの体温データTに含まれる測定間隔の時間情報である測定タイミングデータSを、それぞれS(N)、S(N-1)、S(N-2)、・・・と表すこととする。
 体温計10からのデータ通信時の直前に測定された体温データT(N)、すなわち送信された体温データTの内で最も新しい体温データの測定時刻J(N)は、J(N)=TC-TEである。
 その一つ前、すなわち、2番目に新しい体温データT(N-1)の測定時刻J(N-1)は、J(N-1)=J(N)-S(N)となる。もう一つ前、すなわち、3番目に新しい体温データT(N-2)の測定タイミングの測定時刻J(N-2)は、J(N-2)=J(N-1)-S(N-1)となる。以下、順次求められた体温データの体温測定時刻Jから、その体温データに含まれる一つ前の測定からの測定間隔を示す測定タイミングデータSを差し引くことで、順次一つ前の体温測定時刻Jが把握できる。
 このようにして、体温計10からまとめて送信された全ての体温データの測定時間情報を、一つ前の測定からの経過時間を表す情報から絶対的な時刻情報に変換することができ、これを測定期間の全体にわたって行うことで、測定対象者30の体温が、測定期間中にどのように変化したかをその測定時刻とともに把握することができる。
 本実施形態にかかる体温測定システムでは、体温計10の内部で取り扱われる体温測定結果を示す体温データにおいて、測定時間を表す測定タイミングデータを、このように前回の測定時からの測定間隔を表す時間情報とすることで、時間情報を最初から絶対的な時刻の情報として取り扱う場合と比較して、体温データの情報量(必要なbit数)を低減することができる。この時間情報の変換は、上記説明した方法によって、本体部であるスマートフォン20の測定結果データ生成部22で正しく行うことができる。このため、データの精度に影響を与えることなく、最初から時刻データとしての時間情報を持っている場合と比較して、体温計10内の記憶部16の容量を小さくすることができる。また、同じ容量の記憶部16内により多くの体温データを記憶することができる。さらに、複数の体温データをまとめてスマートフォン20へと送信する場合に、送信時間を短くすることができる。
 次に、本実施形態にかかる体温測定システムにおける、体温計10の基準クロック12からの時間データの較正について説明する。
 本実施形態の体温測定システムでは、体温計10とスマートフォン20との間のデータ通信が成立する度に、前回のデータ通信後に測定されて蓄積された体温データTの全てと、最後の測定タイミングからデータ通信の成立時までの経過時間を示す経過時間情報TEが送信される。このため、データ送信時の全ての体温データTにおける測定時間情報Sの総和ΣSとデータ送信までの経過時間情報TEとの和が、前回のデータ送信時から今回のデータ送信時までの体温計10内での経過時間TTとなる。
 一方で、スマートフォン側では、常に現在時刻データを把握していて、前回のデータ送信時刻TC(-1)と今回のデータ送信時刻TCとが判明している。このため、前回のデータ送信時と今回のデータ送信時の時間差TH=TC-TC(-1)を算出することができる。
 そして、体温計での経過時間TTと、測定間隔の正しい時間差THとを比較して、その差が大きい場合には、体温計10内の基準クロック12のクロック周波数が正確でないと判断することができる。
 体温計10での体温の測定間隔は、基準クロック12のクロック周波数に基づいて定められているため、基準クロック12のクロック周波数に誤差があると、特に、データ通信の間隔が大きくなった際に、最初の内に取得された体温データにおける測定タイミングデータに誤差が含まれることとなる。このため、本実施形態の体温測定システムでは、上記タイミングデータ較正部23で求められた、TTとTHとの値の差が一定以上に大きい場合には、所定の較正値TKとして、TK=TT/THを求め、体温計10の生体データ生成部13における測定間隔を示す測定タイミングデータTSDをTSD=TS(N)/TKとすることで、体温計10内での時間情報を較正する。
 なお、この時間情報の較正は、体温計10へのフィードバックを行わずに、スマートフォン20側で体温データを測定結果データに変換する際の時刻データへの変換時に、較正データTKを掛け合わせることによって行うこともできる。
 以上説明したように、本実施形態にかかる体温測定システムでは、体温計10内部におけるデータ処理で使用される測定時間を示す時間情報である測定タイミングデータを、前回の測定時からの測定間隔に基づく相対的なデータとして把握する。このことによって、体温データにおける測定時間を示す測定タイミングデータのデータ量を低減することができ、体温計10の小型軽量化、体温計とスマートフォン20とのデータ通信時間の短縮等を行うことができる。結果として、測定対象者30が装着する体温計10を小さくすることができ、また、体温計10とスマートフォン20とのデータ転送のための接続間隔を広げることができる。さらに、データ通信時間も短くなることで、測定対象者にかかる体温測定における負担を低減することができる。
 なお、測定端末である体温計と本体機器であるスマートフォンとのデータ通信は、上記例示したブルートゥース規格によるものには限られず、他のローカルルールでの無線通信や、近接配置した際の電磁誘導を利用したデータ通信方法など、端末機器と本体機器との間での短距離でのデータ通信が可能な各種の方法を採用することができる。
 また、本体機器は、上記例示したスマートフォンには限られない。体温計との間で所定の方式でのデータ通信が可能であること、さらに、体温計から送信された体温データを測定結果データに変換するデータ処理が可能であることの要件を満たせば、各種のパーソナルコンピュータ、タブレット端末を用いて、本実施形態にかかる体温測定システムを動作させるソフトウェアをインストールすることで、本体機器とすることができる。また、これらの汎用的な機器に限られず、本願で開示する体温測定システムに使用されるように特化された、専用の本体機器を用いることができる。
 なお、本体機器として、スマートフォンやパーソナルコンピュータ、タブレット端末を用いた場合には、それぞれの機器が備えるキャリア通信やネット回線への接続などの無線または有線の通信手段が利用できる。そして、例えばインターネット環境を経由して接続可能なクラウドサーバを別途配置して、それぞれの本体機器で取得された測定結果データをビッグデータとして集めることができる。このようにして集められた測定結果データの集合体は、測定対象者の体温の変化を示す情報として集積されて適宜データ解析されることにより、医療関係分野、スポーツ関係分野などのそれぞれの体温データ収集目的に応じた集合的データとして使用される。
 また、得られたビッグデータを用いて、個々の測定対象者の体温データに対する各種のフィードバック、例えば、医療関係分野であれば現在の体調評価値や、体調変化の危険度に対する警告表示、スポーツ関係分野であれば、現在の練習メニューによる負荷の大きさの表示や、体調変化による練習中止の勧告を行うことなどに用いることができる。
 また、スマートフォンの画像表示機能やデータ処理機能を使用することによって、複数の測定対象者から得られた測定結果データの集合体であるビッグデータを使用しなくても、それぞれの測定対象者の生体情報測定結果の表示や、同一の測定対象者の過去の測定結果との対比データを示すなどの、測定対象者への測定情報のフィードバックを行うことができる。
 これらの場合において、スマートフォンなどの本体機器が取得できる、気温データ、湿度データなどの環境データを、インターネット環境上のクラウドサーバに測定結果データと合わせて送信したり、測定対象者へのフィードバック情報に反映させたり、これらの環境情報に基づいてフィードバック情報を適宜加工したり、各種のバリエーションを付加して測定対象者に通知することができる。
 なお、上記実施形態では、本願で開示する生体情報測定システムとして、測定対象者から得られる生体情報として体温を測定する場合を例示したが、体温以外にも、心拍数や発汗量などの他の各種の生体情報を継続的に測定する測定システムとすることができる。また、測定端末が3次元方向の移動量と移動速度とを検出する3次元加速度センサを備えることで把握可能な、測定対象者の姿勢(体位)の変化も、本願における生体情報に含まれるものとする。これら各種の生体情報を取得する場合において、測定された生体情報データと紐つけられる測定時間情報として、絶対的な時刻情報と比較してデータ量が小さい測定間隔を示す時間情報である測定タイミングデータを用いることで、測定端末の小型化やデータ通信時間の短縮化などの、上記の体温測定システムと同様の効果が得られる。
 なお、心拍数を把握する場合は、測定者の体表に板状の電極が接触するようにすること、また、発汗量を測定する場合には、微弱な電流が印加可能な所定の長さを有する電極を備えることなど、測定端末として、測定対象の生体情報を好適に取得できる各種センサを備えるべきであることは言うまでもない。
 本願で開示する生体情報測定システムは、測定タイミングを示す時間情報として測定間隔時間を表す情報を用いることで、測定端末の小型化やデータ通信量の低減が実現でき、測定対象者に与える負担が小さい生体情報測定システムとして有用である。
  10  体温計(測定端末)
  12  水晶振動子(基準クロック)
  13  体温データ生成部(生体データ生成部)
  14  測定間隔変更部
  15  制御部
  16  記憶部
  17  データ送信部
  20  スマートフォン(本体機器)

Claims (9)

  1.  測定対象者の体に装着されて前記測定対象者の生体情報を測定する測定端末と、
     前記測定端末と短距離通信手段により接続されて、前記測定端末から、前記測定対象者の生体情報の測定値と当該生体情報が測定された時間を示す測定タイミングデータとを含む生体データを受け取る本体機器とを有し、
     前記測定端末は、
     前記測定端末の動作を制御する制御部と、
     時間情報を生成する基準クロックと、
     前記生体データを記憶する記憶部と、
     所定の時間間隔で前記測定対象者の生体情報を測定して前記生体データを生成する生体データ生成部と、
     前記生体情報の測定値に基づいて生体情報を測定する時間間隔を変更する測定間隔変更部と、
     前記本体機器との通信接続が成立した際に、前記記憶部に記憶された前回の通信接続成立時以降の全ての前記生体データと、前記測定対象者の生体情報を測定した直前の測定時からの経過時間を示す経過時間情報とを、前記本体機器へと送信するデータ送信部とを備え、
     前記測定タイミングデータが、前回生体情報を測定してからの測定間隔を示す時間情報であることを特徴とする、生体情報測定システム。
  2.  前記測定タイミングデータが、複数段階に区分された分単位の時間間隔であり、前記生体データは、前記測定タイミングデータを、前記区分を示す記号データに置き換えて含んでいる、請求項1に記載の生体情報測定システム。
  3.  前記制御部は、前記本体機器との通信接続が成立し前記生体データの送信が完了した後に、前記記憶部に記憶されていた前記生体データを消去する、請求項1または2に記載の生体情報測定システム。
  4.  前記測定端末が動作電源としてリチウム電池を備える、請求項1から3のいずれかに記載の生体情報システム。
  5.  前記制御部は、前記リチウム電池の放電電圧が所定値まで低下したことを検出すると前記リチウム電池の残存容量が少ないことを前記本体機器に通知する、請求項4に記載の生体情報測定システム
  6.  前記本体機器は、前記測定端末から送信された生体データについて、それぞれの生体データに含まれる前記測定タイミングデータを時刻データに変換し、前記生体情報の測定値と前記時刻データとを含む測定結果データを生成する、請求項1から5のいずれかに記載の生体情報測定システム。
  7.  前記本体機器は、前記測定端末との通信接続が成立した時に、一つ前の通信接続成立時からの経過時間と前記タイミングデータの積算値とを比較して前記測定端末での前記タイミングデータの較正を行う、請求項1から6のいずれかに記載の生体情報測定システム。
  8.  前記生体情報が前記測定対象者の体温である、請求項1から7のいずれかに記載の生体情報測定システム。
  9. 請求項1から8のいずれかに記載された生体情報取得システムに用いられ、測定対象者の体に装着されて前記測定対象者の生体情報を測定する測定端末であって、
     前記測定端末は、
     前記測定端末の動作を制御する制御部と、
     時間情報を生成する基準クロックと、
     前記生体データを記憶する記憶部と、
     所定の時間間隔で前記測定対象者の生体情報を測定して前記生体データを生成する生体データ生成部と、
     前記生体情報の測定値に基づいて生体情報を測定する時間間隔を変更する測定間隔変更部と、
     前記本体機器との通信接続が成立した際に、前記記憶部に記憶された前回の通信接続成立時以降の全ての前記生体データと、前記測定対象者の生体情報を測定した直前の測定時からの経過時間を示す経過時間情報とを、前記本体機器へと送信するデータ送信部とを備え、
     前記測定タイミングデータが、前回生体情報を測定してからの測定間隔を示す時間情報であることを特徴とする、測定端末。
PCT/JP2022/032234 2022-08-26 2022-08-26 生体情報測定システム、および測定端末 WO2024042711A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032234 WO2024042711A1 (ja) 2022-08-26 2022-08-26 生体情報測定システム、および測定端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032234 WO2024042711A1 (ja) 2022-08-26 2022-08-26 生体情報測定システム、および測定端末

Publications (1)

Publication Number Publication Date
WO2024042711A1 true WO2024042711A1 (ja) 2024-02-29

Family

ID=90012883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032234 WO2024042711A1 (ja) 2022-08-26 2022-08-26 生体情報測定システム、および測定端末

Country Status (1)

Country Link
WO (1) WO2024042711A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187316A (ja) * 2004-12-28 2006-07-20 Medical Electronic Science Inst Co Ltd 遠隔センシングシステム及びセンサユニット
JP2008183082A (ja) * 2007-01-29 2008-08-14 Seiko Epson Corp 生体情報管理システム、中継装置、生体情報計測装置、中継装置の制御方法、生体情報計測装置の制御方法、中継装置の制御プログラム、及び、生体情報計測装置の制御プログラム
JP2008204396A (ja) * 2007-02-22 2008-09-04 Sharp Corp 情報測定装置、情報管理サーバ、情報管理システム、情報測定装置の制御方法、情報管理サーバの制御方法、情報管理プログラムおよびこれを記録したコンピュータ読み取り可能な記録媒体
JP2009237667A (ja) * 2008-03-26 2009-10-15 Dainippon Printing Co Ltd 行動分析システム
JP2010230330A (ja) * 2009-03-25 2010-10-14 Panasonic Electric Works Co Ltd 物理量データ処理装置、物理量計測装置、及び物理量データ処理システム
JP2012252698A (ja) * 2011-05-31 2012-12-20 Radiometer Medical Aps 患者に関するデータを取得するための方法およびシステム
JP2021142242A (ja) * 2020-03-13 2021-09-24 セイコーホールディングス株式会社 口腔内センシングシステム、及び口腔内センシング方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187316A (ja) * 2004-12-28 2006-07-20 Medical Electronic Science Inst Co Ltd 遠隔センシングシステム及びセンサユニット
JP2008183082A (ja) * 2007-01-29 2008-08-14 Seiko Epson Corp 生体情報管理システム、中継装置、生体情報計測装置、中継装置の制御方法、生体情報計測装置の制御方法、中継装置の制御プログラム、及び、生体情報計測装置の制御プログラム
JP2008204396A (ja) * 2007-02-22 2008-09-04 Sharp Corp 情報測定装置、情報管理サーバ、情報管理システム、情報測定装置の制御方法、情報管理サーバの制御方法、情報管理プログラムおよびこれを記録したコンピュータ読み取り可能な記録媒体
JP2009237667A (ja) * 2008-03-26 2009-10-15 Dainippon Printing Co Ltd 行動分析システム
JP2010230330A (ja) * 2009-03-25 2010-10-14 Panasonic Electric Works Co Ltd 物理量データ処理装置、物理量計測装置、及び物理量データ処理システム
JP2012252698A (ja) * 2011-05-31 2012-12-20 Radiometer Medical Aps 患者に関するデータを取得するための方法およびシステム
JP2021142242A (ja) * 2020-03-13 2021-09-24 セイコーホールディングス株式会社 口腔内センシングシステム、及び口腔内センシング方法

Similar Documents

Publication Publication Date Title
KR101861608B1 (ko) 의류 및 위치 정보 시스템
US10893825B2 (en) System and method of monitoring respiratory parameters
EP2531100B1 (en) Portable eeg monitor system with wireless communication
US10413218B2 (en) Wristband-type arm movement determination device and wristband-type activity tracker
US20080208009A1 (en) Wearable Device, System and Method for Measuring Vital Parameters
US10772518B2 (en) System and method for heart rate monitoring of an object
US10028660B2 (en) Physiological parameter measuring system
KR20170122908A (ko) 스마트 체온 패치
US20230014216A1 (en) State Of Health Determination Of A Battery
US10251598B2 (en) Waistband monitoring analysis for a user
WO2024042711A1 (ja) 生体情報測定システム、および測定端末
US20150161342A1 (en) Information processing system, electronic apparatus, method and storage medium
CN111700604A (zh) 检测腕表及其检测方法
US20200345281A1 (en) Personalized bio-information correcting apparatus and method
RU147501U1 (ru) Персональное устройство для автоматизированного мониторинга параметров сердечно-сосудистой системы с возможностью экстренного оповещения в случае возникновения критических ситуаций
JP2022191761A (ja) 生体情報測定システム、および測定端末
JP2024083994A (ja) 測定端末、および測定システム
CN104545846A (zh) 生理量测绑带监视看护系统
JP2023156111A (ja) 生体情報測定システム
JP2024085219A (ja) 測定端末、および測定システム
CN204428016U (zh) 生理量测绑带监视看护系统
JP2023115827A (ja) 生体情報測定システム
WO2019182096A1 (ja) 体温測定装置
CN219594591U (zh) 一种体压测量装置及系统
JP7251263B2 (ja) 測定機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956537

Country of ref document: EP

Kind code of ref document: A1