WO2024041240A1 - 一种磁控拉晶装置及换热器 - Google Patents

一种磁控拉晶装置及换热器 Download PDF

Info

Publication number
WO2024041240A1
WO2024041240A1 PCT/CN2023/106352 CN2023106352W WO2024041240A1 WO 2024041240 A1 WO2024041240 A1 WO 2024041240A1 CN 2023106352 W CN2023106352 W CN 2023106352W WO 2024041240 A1 WO2024041240 A1 WO 2024041240A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
heat exchanger
magnet
magnetic
crystal pulling
Prior art date
Application number
PCT/CN2023/106352
Other languages
English (en)
French (fr)
Inventor
陈永康
李侨
杜婷婷
朱永刚
张朝光
任伟康
刘阳
牛彩鹤
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222214385.4U external-priority patent/CN218596568U/zh
Priority claimed from CN202222210865.3U external-priority patent/CN218436017U/zh
Priority claimed from CN202211010551.7A external-priority patent/CN115478318A/zh
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2024041240A1 publication Critical patent/WO2024041240A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Definitions

  • This application relates to the field of photovoltaic technology, and specifically to a magnetically controlled crystal pulling device and a heat exchanger.
  • MZ Magnetic Field Applied Czochralski Method
  • a magnetic field generating device is provided in a magnetron pulling device.
  • the magnetic field generated by the magnetic field generating device passes through the silicon liquid in the crucible, causing the silicon liquid to interact with the magnetic field to generate a Lorentz force, thereby inhibiting the silicon liquid from flowing.
  • the thermal convection and the erosion of the crucible wall by the silicon liquid reduce the impact of uneven crystal pulling and the impurities in the silicon liquid. Therefore, the magnetically controlled crystal pulling device has an important impact on the production of single crystal silicon.
  • the inventor found that the magnetic field generating device can only inhibit the thermal convection of silicon liquid in a single longitudinal or transverse direction, and the inhibitory effect is relatively limited.
  • the existing magnetic field generating equipment is mostly installed outside the furnace. The structure is complex and large. It requires major modifications to the original crystal pulling device. The amount of work is large and the cycle is long, which greatly increases the production cost.
  • Embodiments of the present application provide a magnetically controlled crystal pulling device and a heat exchanger to solve the problem that the existing single crystal silicon rod pulling device has low crystal pulling quality and is difficult to modify the magnetically controlled device.
  • Embodiments of the present application provide a magnetically controlled crystal pulling device, which includes a single crystal furnace, a crucible and a magnetically controlled component;
  • the crucible is arranged in the single crystal furnace for holding silicon liquid, and the magnetic control component is arranged above the silicon liquid;
  • the magnet control assembly includes an annular magnet, and a crystal pulling channel for a single crystal silicon rod to pass through is provided in the annular magnet.
  • the annular magnet is arranged close to the silicon liquid to form a hook shape in the silicon liquid. magnetic field;
  • the magnetic field strength of the hook-shaped magnetic field at the liquid surface of the silicon liquid is greater than or equal to 0.1 millitr.
  • the annular magnet is an integrally formed structure.
  • the annular magnet has a split structure, and the annular magnet includes a plurality of magnetic pieces, and the plurality of magnetic pieces are sequentially distributed along the circumferential direction to form the crystal pulling channel.
  • two adjacent magnetic pieces are in contact with each other, or two adjacent magnetic pieces are spaced apart.
  • the magnetic pole distribution of each magnetic component is the same.
  • the annular magnet includes an inner wall and an outer wall arranged oppositely, and a top surface and a bottom surface respectively connected to the inner wall and the outer wall;
  • the magnetic poles of the ring magnet include a first magnetic pole and a second magnetic pole, the first magnetic pole being opposite to the second magnetic pole;
  • the first magnetic pole is disposed on the inner wall, and the second magnetic pole is disposed on the outer wall, or the first magnetic pole is disposed on the top surface, and the second magnetic pole is disposed on the bottom surface.
  • a heat exchanger is provided in the single crystal furnace, the heat exchanger is arranged above the crucible, and the magnetic control assembly is connected to the heat exchanger.
  • the distance between the inner wall of the ring magnet and the outer wall of the single crystal silicon rod includes Any value between 2 and 10 centimeters is included.
  • the magnetron assembly also includes a cooling layer and a heat insulation layer;
  • the cooling layer covers the annular magnet, the heat insulation layer covers the cooling layer, and a cooling medium flows through the cooling layer.
  • This application also provides a magnetically controlled crystal pulling device, including:
  • the crucible is arranged in the single crystal furnace and is used to hold silicon liquid to grow single crystal silicon rods from the silicon liquid;
  • a heat exchanger the heat exchanger is arranged in the single crystal furnace and located above the crucible;
  • a heat shield which is set outside the heat exchanger and forms a gap with the heat exchanger
  • a magnetic control component the magnetic control component is embedded in the gap between the heat exchanger and the heat shield, and is placed close to the silicon liquid to form a magnetic field in the silicon liquid, the
  • the magnetic control assembly includes a ring magnet.
  • the magnetic control assembly includes an annular housing
  • the shell is embedded in the gap between the heat exchanger and the heat shield and is connected to the heat exchanger;
  • a first annular cavity is provided in the housing, and the annular magnet is disposed in the first annular cavity.
  • the housing is provided with a first liquid inlet and a first liquid outlet, both of which are connected to the first annular cavity; in,
  • the first liquid inlet is used to introduce the cooling medium into the first annular cavity
  • the first liquid outlet is used to lead out the cooling medium in the first annular cavity
  • the heat exchanger is provided with a second liquid inlet and a second liquid outlet, the second liquid inlet is used to introduce cooling medium into the heat exchanger, and the second liquid outlet The port is used to lead out the cooling medium in the heat exchanger;
  • the first liquid inlet is connected to the second liquid inlet, and the first liquid outlet is connected to the third liquid inlet.
  • the two liquid outlets are connected.
  • a first gap exists between the outer wall of the annular magnet and the inner wall of the first annular cavity, and the cooling medium is filled in the first gap.
  • the bottom of the first annular cavity is provided with a plurality of first support blocks arranged at intervals, and the first support blocks are connected to the bottom of the annular magnet, so that the annular magnet and the The first annular cavity forms the first gap;
  • the inner wall of the first annular cavity is provided with a plurality of first bosses distributed at intervals, and the first bosses extend toward the annular magnet, and the annular magnet is in contact with the plurality of first bosses.
  • a plurality of second bosses are provided at positions corresponding to each first boss, and one second boss cooperates with one first boss, so that the annular magnet and the first annular cavity form a the first gap.
  • the inner diameter of the magnetron assembly is larger than the outer diameter of the single crystal silicon rod, and the outer diameter of the magnetron assembly is smaller than the inner diameter of the crucible.
  • the difference between the inner diameter of the magnetron component and the outer diameter of the single crystal silicon rod is greater than or equal to 4 cm and less than or equal to 20 cm.
  • the ring magnet is a ferromagnetic piece
  • the ferromagnetic part is an annular one-piece structure
  • the ferromagnetic component has a split structure, and the ferromagnetic component includes a plurality of magnet blocks, and the plurality of magnet blocks are sequentially distributed along the circumferential direction to form an annular structure.
  • the ring magnet is an electromagnetic coil
  • the axial direction of the electromagnetic coil is perpendicular to the axial direction of the first annular cavity, and the electromagnetic coil is used to form a transverse magnetic field;
  • the axial direction of the electromagnetic coil is parallel to the axial direction of the first annular cavity, and the electromagnetic coil is used to form a vertical magnetic field.
  • the ring magnet is an electromagnetic coil
  • the axial direction of the electromagnetic coil and the axial direction of the first annular cavity are arranged at a preset angle, and the preset angle is an angle other than a right angle.
  • the magnetic field strength of the hook-shaped magnetic field at the liquid surface of the silicon liquid is greater than or equal to 0.1 mT.
  • An embodiment of the present application provides a heat exchanger for use in a magnetically controlled crystal pulling device.
  • the magnetically controlled crystal pulling device includes a single crystal furnace and a crucible disposed in the single crystal furnace.
  • the heat exchanger is located at the Above the crucible, the heat exchanger includes:
  • annular body An annular body, a second annular cavity is provided in the annular body, and the second annular cavity is used to accommodate the cooling medium;
  • a water inlet pipe, the water inlet pipe is connected to the second annular cavity, and the water inlet pipe is used to pass the cooling medium into the second annular cavity;
  • a water outlet pipe, the water outlet pipe is connected to the second annular cavity, and the water outlet pipe is used to lead out the cooling medium in the second annular cavity;
  • annular magnet the annular magnet is connected to the side of the annular body close to the crucible.
  • the annular magnet is disposed in the second annular cavity.
  • the heat exchanger further includes a shell, a closed accommodation cavity is provided in the shell, and the annular magnet is located in the accommodation cavity.
  • a second gap exists between the outer wall of the housing and the inner wall of the second annular cavity, and the cooling medium is filled in the second gap.
  • the bottom of the second annular cavity is provided with a plurality of second support blocks arranged at intervals, and the second support blocks are connected to the bottom of the housing, so that the housing and the The second annular cavity forms the second gap;
  • the inner wall of the second annular cavity is provided with a plurality of third bosses distributed at intervals, the third bosses extend toward the housing, and the housing is in contact with the plurality of third bosses.
  • a plurality of fourth bosses are provided at corresponding positions of each third boss, and one fourth boss cooperates with one third boss, so that the housing and the second annular cavity form a The gap is the second gap.
  • the housing includes a housing body and an upper cover connected to the housing body, and the housing body and the upper cover are enclosed to form the accommodation cavity.
  • connection method between the housing body and the upper cover includes welding, riveting, and bonding. connection or threaded connection through fasteners; where,
  • the housing further includes a sealing ring, and the sealing ring is disposed between the housing body and the upper cover. between.
  • the ring magnet is an electromagnetic coil
  • the axial direction of the electromagnetic coil is perpendicular to the axial direction of the annular body, and the electromagnetic coil is used to form a transverse magnetic field;
  • the axial direction of the electromagnetic coil is parallel to the axial direction of the annular body, and the electromagnetic coil is used to form a vertical magnetic field.
  • the number of the electromagnetic coils is multiple, and the plurality of electromagnetic coils are distributed at intervals along the circumferential direction;
  • the number of the electromagnetic coils is one or more, and the plurality of electromagnetic coils are spaced apart along the circumferential direction of the annular body. distributed.
  • the ring magnet is an electromagnetic coil
  • the axial direction of the electromagnetic coil and the axial direction of the annular body are arranged at a preset angle, and the preset angle is an angle other than a right angle.
  • the magnetically controlled crystal pulling device includes a single crystal furnace, a crucible and a magnetically controlled component; the crucible is disposed in the single crystal furnace for holding silicon liquid, and the magnetically controlled component is disposed in Above the silicon liquid; the magnetron assembly includes an annular magnet, a crystal pulling channel for a single crystal silicon rod to pass through is provided in the annular magnet, and the annular magnet is arranged close to the silicon liquid for use in the A hook-shaped magnetic field is formed in the silicon liquid.
  • the magnetic control assembly is provided with the magnetic control crystal pulling device described in this application.
  • the magnetic control assembly is connected to the heat exchanger.
  • the ring magnet is provided in the magnetic control assembly.
  • the ring magnet is At least partially located in the crucible, so that the ring magnet can be placed close to the silicon liquid in the crucible, and form the hook-shaped magnetic field in the silicon liquid, and the hook-shaped magnetic field inside the silicon liquid It can effectively suppress the longitudinal heat convection, transverse heat convection and heat convection in other directions of the silicon liquid, and inhibit the silicon liquid from flowing in multiple directions. thermal convection. In this way, the erosion of the crucible wall by the silicon liquid can be reduced, the impurity content in the silicon liquid can be reduced, and the crystal pulling quality can be improved. Moreover, the magnetron-controlled crystal pulling device has a simple structure, can be implemented with only a small amount of improvements on the existing crystal pulling device, has a wide range of applications and is low in cost.
  • Figure 1 is a schematic structural diagram of a magnetically controlled crystal pulling device according to the embodiment of the present application.
  • Figure 2 is a partial schematic diagram of the magnetic field lines of a magnetron crystal pulling device according to the embodiment of the present application
  • Figure 3 is a partial structural schematic diagram of a magnetron crystal pulling device according to the embodiment of the present application.
  • Figure 4 is one of the structural schematic diagrams of a ring magnet according to the embodiment of the present application.
  • Figure 5 is the second structural schematic diagram of a ring magnet according to the embodiment of the present application.
  • Figure 6 is the third structural schematic diagram of a ring magnet according to the embodiment of the present application.
  • Figure 7 is the fourth structural schematic diagram of a ring magnet according to the embodiment of the present application.
  • Figure 8 is the fifth structural schematic diagram of a ring magnet according to the embodiment of the present application.
  • Figure 9 is the sixth structural schematic diagram of a ring magnet according to the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a magnetic control assembly according to the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another magnetron crystal pulling device according to the embodiment of the present application.
  • Figure 12 is one of the schematic diagrams of the layout of the electromagnetic coil in another magnetically controlled crystal pulling device according to the embodiment of the present application.
  • Figure 13 is a schematic diagram of the magnetic field generated by the electromagnetic coil shown in Figure 12;
  • Figure 14 is the second schematic diagram of the layout of the electromagnetic coil in another magnetically controlled crystal pulling device according to the embodiment of the present application.
  • Figure 15 is a schematic diagram of the magnetic field generated by the electromagnetic coil shown in Figure 14;
  • Figure 16 is a schematic structural diagram of yet another magnetically controlled crystal pulling device according to the embodiment of the present application.
  • Figure 17 is a schematic structural diagram of a heat exchanger according to the embodiment of the present application.
  • Figure 18 is a schematic top structural view of the heat exchanger shown in Figure 17;
  • Figure 19 is a schematic cross-sectional structural diagram of the heat exchanger AA section shown in Figure 18;
  • FIG 20 is a detailed structural diagram of the position of heat exchanger B shown in Figure 19;
  • Figure 21 is a schematic lateral structural view of the heat exchanger shown in Figure 17;
  • Figure 22 is a schematic cross-sectional structural diagram of the CC section of the heat exchanger shown in Figure 21;
  • Figure 23 is one of the schematic diagrams of the layout of the electromagnetic coil in a heat exchanger according to the embodiment of the present application.
  • Figure 24 is the second schematic diagram of the layout of the electromagnetic coil in the heat exchanger described in the embodiment of the present application.
  • first and second features in the description and claims of this application may include one or more of these features, either explicitly or implicitly.
  • plural means two or more.
  • instructions and in the claims, “and/or” means at least one of the connected objects. The character “/” generally indicates that the related objects are in an “or” relationship.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the production of single crystal silicon generally uses the Czochralski method in a single crystal furnace 10 to obtain single crystal silicon rods 22 .
  • the crystal is generally pulled by a magnetically controlled crystal pulling method. Specifically, a magnetron crystal pulling device is used to apply a magnetic field to the molten silicon liquid 21 during the Czochralski process, and the magnetic field lines 311 generated by the magnetic field are cut by thermal convection of the silicon liquid 21 to generate Lorentz force and suppress the silicon liquid. 21 thermal convection.
  • a single crystal silicon rod 22 with lower impurity content and more uniform distribution is prepared.
  • FIG. 1 to 10 there is shown a schematic structural diagram of a magnetically controlled crystal pulling device according to an embodiment of the present application, which may specifically include: a single crystal furnace 10, a crucible 20 and a magnetically controlled component 30; the crucible 20 is disposed on a single crystal
  • the furnace 10 is used to hold silicon liquid 21, and the magnetic control assembly 30 is arranged above the silicon liquid 21; the magnetic control assembly 30 includes an annular magnet 31, and a crystal pulling channel for the single crystal silicon rod 22 to pass through is provided in the annular magnet 31.
  • the ring magnet 31 is placed close to the silicon liquid 21 to form a hook-shaped magnetic field in the silicon liquid 21 .
  • the magnetic control crystal pulling device is provided with a magnetic control assembly 30.
  • the magnetic control assembly 30 is connected to the heat exchanger 11.
  • the magnetic control assembly 30 is provided with an annular magnet 31. At least part of the annular magnet 31 is located inside the crucible 20 so that the ring magnet 31 can be close to the silicon inside the crucible 20
  • the liquid 21 is set, and a hook-shaped magnetic field 311 is formed in the silicon liquid 21 .
  • the magnetic field at the liquid surface of the silicon liquid 21 has the maximum magnetic field intensity, so that the ring magnet 31 has a good thermal convection suppression effect on all silicon liquid 21 , to avoid that the magnetic field formed by the ring magnet 31 on the silicon liquid 21 far away is weak, and it is difficult to have a significant inhibitory effect and lose economy.
  • the hook-shaped magnetic field inside the silicon liquid 21 can effectively suppress the longitudinal heat convection, the transverse heat convection, and the heat convection in other directions of the silicon liquid 21 , thus inhibiting the heat convection of the silicon liquid 21 in multiple directions.
  • the magnetron-controlled crystal pulling device has a simple structure, can be implemented with only a small amount of improvements on the existing crystal pulling device, has a wide range of applications and is low in cost.
  • the magnetic field strength of the ring magnet 31 refers to its "remanence” (Remanence), symbol Br; the magnetic field strength at the liquid surface of the silicon liquid 21 refers to the “magnetic flux density” there, Is a vector, and the so-called size refers to the size of its absolute value, which is commonly represented by the symbol B.
  • the international unit for both is Tesla (symbol T).
  • the crystal pulling device usually consists of a single crystal furnace 10, a heater 12, a heat exchanger 11, a crucible 20 and a support rod 13.
  • the heater 12 is disposed close to the crucible 20 to heat the silicon material in the crucible 20 into the silicon liquid 21 and keep the silicon liquid 21 at a temperature suitable for growing crystal rods.
  • the supporting rod 13 is connected to the bottom of the crucible 20 to support the crucible 20 .
  • the crucible 20 may specifically include at least one of a quartz crucible and a graphite crucible. The embodiments of the present application may not limit the specific material of the crucible 20 .
  • FIG. 2 a schematic diagram of the magnetic field lines of a hook-type magnetic field described in the embodiment of the present application is shown.
  • the magnetic field lines 311 of the hook-shaped magnetic field in the silicon liquid 21 are arc-shaped magnetic field lines 311 .
  • some of the magnetic flux lines 311 can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 .
  • another part of the magnetic field lines 311 can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 .
  • the magnetic flux lines 311 can also cut the heat convection in other directions besides the longitudinal and transverse directions to generate Lorentz force.
  • the other directions The inclination angle to the transverse direction can be 45°, 60°, etc.
  • the effect of the magnetic control assembly 30 on the thermal convection in the silicon liquid 21 is improved. Inhibitory effect.
  • the heat exchanger 11 includes a top end and a bottom end arranged away from each other, and the magnetic control assembly 30 can be connected to the bottom end of the heat exchanger 11 .
  • the magnetic control assembly 30 can be positioned closest to the liquid surface without adding other installation structures, so that the magnetic control assembly 30 has a better inhibitory effect on the heat convection of the silicone liquid 21 .
  • the magnetic control assembly 30 can be installed inside the heat exchanger 11 or outside the heat exchanger 11.
  • the specific installation method of the magnetic control assembly 30 in the embodiment of the present application does not need to be done. limited.
  • the magnetic control assembly 30 may include a heat exchanger 11 and an annular magnet 31; the heat exchanger 11 includes an annular body 301, a water inlet pipe 302, and a water outlet pipe 303.
  • An annular cavity is provided inside the annular body 301, and the annular cavity is used to accommodate the cooling medium.
  • the water inlet pipe 302 is connected with the annular cavity, and the water inlet pipe 302 is used to pass the cooling medium into the annular cavity.
  • the water outlet pipe 303 is connected with the annular cavity, and is used to lead out the cooling medium in the annular cavity.
  • the annular magnet 31 is connected to the side of the annular body 301 close to the crucible 20 .
  • the annular body 301 can be made of a metal material with a certain strength.
  • a channel is provided in the annular body 301, and the channel is connected with the crystal pulling channel 23, and is used to allow the single crystal silicon rod 22 to pass along the crystal pulling channel 23. Since the circulating cooling medium can continuously flow into the annular cavity of the annular body 301, when the single crystal silicon rod 22 passes through the channel of the annular body 301 and the crystal pulling channel 23, it can interact with the cooling medium in the annular cavity. Heat exchange occurs, which quickly removes the latent heat of crystallization of the single crystal silicon rod 22 and increases the drawing speed of the single crystal silicon rod 22 .
  • the water inlet pipe 302 can be connected to the bottom of the annular cavity, and the water outlet pipe 303 can be connected to the top of the annular cavity.
  • the cooling medium can be discharged from the annular cavity through the water inlet pipe 302 It enters from the bottom, flows through the annular cavity, and then flows out from the water outlet pipe 303 at the top to realize heat conduction.
  • the annular magnet 31 can be disposed on a side of the annular cavity close to the crucible 20 , and at least part of the annular magnet 31 can extend into the crucible 20 , so that the annular magnet 31 can be close to the silicon in the crucible 20
  • the liquid 21 is set, and a hook-shaped magnetic field is formed in the silicon liquid 21.
  • the ring magnet 31 can be a permanent magnet, such as an iron-boron magnet, or an electromagnet, or a combination of a permanent magnet and an electromagnet, etc.
  • the embodiment of the present application is for the ring magnet 31 The specific form of may not be limited.
  • the ring magnet 31 is an integrally formed structure, so that the ring magnet 31 can be easily processed, reducing material loss and manufacturing processes, and allowing the ring magnet 31 to have Strong magnetic field.
  • the ring magnet 31 may have a split structure.
  • the annular magnet 31 may include a plurality of magnetic parts 32 , and the plurality of magnetic parts 32 are sequentially distributed along the circumferential direction to form the crystal pulling channel 23 .
  • the arrangement position of the ring magnet 31 can be flexibly set, which is suitable for single crystal furnaces 10 with various structures, and can also avoid partial structural distribution in the single crystal furnace 10 .
  • the magnetic component 32 may be a ferromagnetic component or an electromagnetic coil module.
  • the embodiment of the present application does not limit the specific type of the magnetic component 32 .
  • FIGS. 4 to 7 different distribution situations in which the magnetic parts 32 are ferromagnetic parts are shown.
  • the ferromagnetic component may include but is not limited to any one of samarium cobalt magnets, neodymium iron boron magnets, and iron oxide magnets. Since the structure of the ferromagnetic component is simple and the cost is low, when the magnetic component 32 is a ferromagnetic component, the structure of the magnetic component 32 can be correspondingly simpler and the cost is lower.
  • the magnetic component 32 is an electromagnetic coil module
  • the electromagnetic coil module can generate a magnetic field when energized, and each electromagnetic coil module is similar to a magnetic block.
  • two adjacent magnetic members 32 are in contact with each other, or two adjacent magnetic members 32 are spaced apart.
  • the plurality of magnetic components 32 two adjacent magnetic parts 32 are in contact with each other.
  • the plurality of magnetic members 32 can be easily enclosed to form a complete circular ring shape, which has better stability, so that the ring magnet 31 can generate a strong magnetic field.
  • two adjacent magnetic members 32 are spaced apart. In this way, it can be applied to single crystal furnaces 10 with various structures, and it is convenient to avoid partial structural distribution in the single crystal furnace 10 that may cause interference during installation.
  • the material of the ring magnet 31 can also be saved and the production cost can be reduced.
  • the cross-section of the magnetic member 32 includes at least one of an arc surface and a rectangular surface, so as to facilitate application in different application scenarios and improve the compatibility of the magnetic control assembly 30 .
  • the cross-section of the magnetic component 32 includes an arc-shaped surface. Multiple magnetic components 32 with arc-shaped surfaces are enclosed to form a circular ring magnet. The magnetic components 32 with arc-shaped surfaces can better form an annular shape with a smaller number.
  • Magnet 31 As shown in FIG. 7 , the cross-section of the magnetic component 32 includes a rectangular surface, and multiple rectangular-surface magnetic components 32 are enclosed to form a circular magnet, which has a more flexible distribution method and is suitable for single crystal furnaces 10 with various structures.
  • the ring magnet 31 may also include a combination of an arc-shaped surface magnetic component 32 and a rectangular surface magnetic component 32, which may not be limited in the embodiment of the present application.
  • the magnetic pole distribution of each magnetic component 32 is the same.
  • the annular magnet 31 formed by the plurality of magnetic members 32 distributed around the axial direction has a larger magnetic field intensity, so that the magnetic assembly has a better inhibitory effect on the heat convection effect of the silicon liquid 21 .
  • the same magnetic pole distribution of each magnetic member 32 means that if the magnetic pole of one end of a magnetic member 32 close to the crystal pulling channel 23 is N pole, the magnetic pole of the end far away from the crystal pulling channel 23 is S pole. , then the magnetic pole of the other magnetic member 32 close to the crystal pulling channel 23 is also N pole, and the magnetic pole of the end far away from the crystal pulling channel 23 is also S pole. If the magnetic pole of one magnetic member 32 close to the crystal pulling channel 23 is S pole and the magnetic pole far away from the crystal pulling channel 23 is N pole, then the magnetic pole of the other magnetic member 32 close to the crystal pulling channel 23 is also S pole and is far away from the crystal pulling channel 23 . The magnetic pole at one end of channel 23 is also N pole.
  • the magnetic poles at one end of each magnetic component 32 close to the crystal pulling channel 23 are all N poles, and the magnetic poles at the end far away from the crystal pulling channel 23 are all S poles.
  • the magnetic poles at one end of each magnetic component 32 close to the crystal pulling channel 23 are all N poles.
  • S pole, the magnetic pole at one end away from the crystal pulling channel 23 is N pole.
  • the embodiment of the present application may not limit the specific magnetic pole distribution of each magnetic component 32 .
  • the magnetic pole distribution of each magnetic component 32 may also be different. That is, the magnetic pole of one magnetic member 32 close to the crystal pulling channel 23 can be N pole, and the magnetic pole of the end far away from the crystal pulling channel 23 can be S pole; the magnetic pole of the other magnetic member 32 close to the crystal pulling channel 23 can be S pole, and the magnetic pole far away from the crystal pulling channel 23 can be S pole.
  • the magnetic pole at one end of the crystal channel 23 can be an N pole.
  • the annular magnet 31 includes an inner side wall 33 and an outer side wall 34 arranged oppositely, and a top surface 35 and a bottom surface 36 connected to the inner side wall 33 and the outer side wall 34 respectively.
  • the magnetic poles of the ring magnet 31 include a first magnetic pole and a second magnetic pole, the first magnetic pole being opposite to the second magnetic pole.
  • the first magnetic pole is provided on the inner wall 33
  • the second magnetic pole is provided on the outer wall 34 .
  • the first magnetic pole is provided on the top surface 35 and the second magnetic pole is provided on the bottom surface 36 .
  • the inner wall 33 when the first magnetic pole is N pole and the second magnetic pole is S pole, the inner wall 33 can be set as N pole and the outer wall 34 can be set as S pole, forming a radially distributed magnetic field.
  • the top surface 35 can be set as the N pole and the bottom surface 36 can be set as the S pole to form a longitudinally distributed magnetic field.
  • the inner wall 33 can be set as S pole and the outer wall 34 can be set as N pole to form a radially distributed magnetic field.
  • the top surface 35 can be set as the S pole and the bottom surface 36 can be set as the N pole to form a longitudinally distributed magnetic field.
  • the first magnetic pole can be set to N pole
  • the second magnetic pole can be set to S pole
  • the first magnetic pole can be set to S pole
  • the second magnetic pole can be set to N pole.
  • the embodiments of the present application may not limit this.
  • the ring magnet 31 can also be tilted at a certain angle, such as 45°, 60°, etc., to form magnetic field distribution in various directions.
  • the embodiment of the present application may not limit the inclination angle of the ring magnet 31 .
  • the magnetic field distribution was set to a radial distributed magnetic field, a longitudinal distributed magnetic field, a magnetic field distributed with an annular magnet 31 with an inclination angle of 45°, and a magnetic control group was not set. Part 30, conduct a control experiment.
  • the magnetic field intensity is set to 1.2T (Tesla, Tesla, referred to as Tesla)
  • the maximum flow velocity of the silicon liquid 21 in the radially distributed magnetic field is 0.013m/s.
  • the maximum flow velocity of the silicon liquid 21 in the magnetic field is 0.027m/s
  • the maximum flow velocity of the silicon liquid 21 in the magnetic field distribution with the annular magnet 31 having an inclination angle of 45° is 0.034m/s
  • the maximum flow velocity of the silicon liquid 21 when there is no magnetic field distribution is 0.055m/s.
  • the above three magnetic field distribution conditions can better inhibit the thermal convection of the silicon liquid 21 .
  • the radially distributed magnetic field is better for thermal convection of the silicon liquid 21 . That is, the inner wall 33 of the ring magnet 31 is set as the N pole and the outer wall 34 is set as the S pole, or the inner wall 33 of the ring magnet 31 is set as the S pole and the outer wall 34 is set as the N pole. The magnetic field effect is better.
  • the magnetic field distribution was set to a radially distributed magnetic field, and the magnetic field intensity was set to 100mT, 500mT, 800mT, 1200mT and no magnetic field respectively, and a control experiment was conducted.
  • the maximum flow rate of the silicon liquid 21 is 0.050m/s.
  • the maximum flow rate of the silicon liquid 21 is 0.042 m/s
  • the maximum flow velocity of the silicon liquid 21 is 0.025m/s.
  • the maximum flow rate of the silicon liquid 21 is obtained.
  • the flow velocity is 0.013m/s, and the maximum flow velocity of the silicon liquid 21 when there is no magnetic field distribution is 0.055m/s.
  • the distance between the inner wall of the ring magnet 31 and the outer wall of the single crystal silicon rod 22 includes any value between 2 and 10 centimeters. That is, if the inner diameter of the ring magnet 31 is D1 and the outer diameter of the single crystal silicon rod 22 is D2, then 4cm ⁇ D2-D1 ⁇ 20cm, so that the ring magnet 31 can absorb the heat of the silicon liquid 21 without affecting the crystal pulling. Convection has a good inhibitory effect. This prevents the small distance between the inner wall of the ring magnet 31 and the outer wall of the single crystal silicon rod 22 from hindering the flow of protective gas along the crystal pulling channel 23 and preventing the observation of the solid-liquid growth interface during crystal growth. It also avoids that the distance between the inner wall of the ring magnet 31 and the outer wall of the single crystal silicon rod 22 is large, thereby weakening the inhibitory effect of the magnetron assembly 30 on the thermal convection of the silicon liquid 21 .
  • the ring magnet 31 can be located in the crucible 20 close to the liquid surface of the silicon liquid 21, so that The magnetic field generated by the magnetic control assembly 30 is relatively strong.
  • the distance between the ring magnet 31 and the liquid level of the silicon liquid 21 includes 2-10 cm (symbol is cm ).
  • the ring magnet 31 has a better crystal pulling effect on the single crystal silicon rod 22 without affecting the growth of the single crystal silicon rod 22 .
  • the magnet control assembly 30 also includes a cooling layer 37 and a heat insulation layer 38.
  • the cooling layer 37 covers the annular magnet 31, and the heat insulation layer 38 covers the cooling layer 37.
  • the cooling layer 37 There is a cooling medium flowing inside to avoid the magnetic failure of the ring magnet 31 and improve the service life of the magnetically controlled crystal pulling device.
  • the silicon liquid 21 is in a molten state and has a higher temperature.
  • the single crystal furnace 10 can generate a high temperature exceeding 1400°C, which is easy to
  • the magnetic control assembly 30 causes damage. For example, the energized coil is burned, the permanent magnet is demagnetized, etc. Therefore, the impact of the high temperature generated by the silicon liquid 21 on the ring magnet 31 is blocked by the heat insulation layer 38 , and the temperature of the ring magnet 31 is reduced by the cooling medium in the cooling layer 37 to avoid magnetic failure of the ring magnet 31 .
  • the material of the heat insulation layer 38 may include at least one of metal, ceramics, low thermal conductivity refractory materials, etc., its thermal conductivity may be lower than 50w/(m*k), and its withstand temperature may be higher than 1000°C. , has better high temperature resistance.
  • the heat insulation layer 38 may be entirely made of any one of the above materials, or may be any combination of the above materials, which is not limited in the embodiments of the present application.
  • a flowing cooling medium or a stagnant cooling medium can be introduced into the cooling layer 37 and replaced regularly.
  • the material of the cooling medium may include water, gas or other liquids, etc., to cool the annular magnet 31 so that the temperature of the annular magnet 31 is less than or equal to 300°C and does not affect the magnetic field generated by it.
  • the magnetically controlled crystal pulling device may specifically include: a single crystal furnace 10 (in the figure (not shown); Crucible 20, the crucible 20 is arranged in the single crystal furnace 10, used to accommodate the silicon liquid 21 to grow the single crystal silicon rod 22 from the silicon liquid 21; the heat exchanger 11, the heat exchanger 11 is arranged in the single crystal furnace 10.
  • the heat shield 15 is set outside the heat exchanger 11 and forms a gap with the heat exchanger 11; and the magnetic control assembly 30, the magnetic control assembly 30 Embedded in the gap between the heat exchanger 11 and the heat screen 15 and placed close to the silicon liquid 21 to form a magnetic field in the silicon liquid 21, the magnetic control component 30 Includes ring magnet 31.
  • the heat exchanger 11 can be used to quickly take away the heat released when the single crystal silicon rod 22 is crystallized, thereby increasing the drawing speed of the single crystal silicon rod 22.
  • the magnetron assembly 30 can form a magnetic field in the silicon liquid 21 of the crucible 20 , and the magnetic field can be used to suppress thermal convection inside the silicon liquid 21 , reduce the erosion of the wall of the crucible 21 by the silicon liquid 21 , and reduce the heat in the silicon liquid 21 .
  • the impurity content thereby improves the crystal pulling quality of the single crystal silicon rod 22.
  • the existing single crystal silicon rod device can be implemented without changing the original components, and the versatility is better and the implementation cost is reduced. lower.
  • the magnetron crystal pulling device may be a single crystal furnace.
  • the single crystal furnace 10 can accommodate and fix the crucible 20, the heat exchanger 11, the heat shield 15, etc.
  • the crucible 20 can be a single crucible, a double crucible, etc., and the crucible 20 can be used to accommodate silicon material. After the heater heats the silicon material in the crucible 20 into the silicon liquid 21, a single crystal silicon rod 22 can be grown at the single crystal growth interface of the silicon liquid 21.
  • a crystal pulling channel for the single crystal silicon rod 22 to pass through may be provided inside the heat exchanger 11 .
  • the heat exchanger 11 can be placed outside the single crystal silicon rod 22
  • the heat shield 15 can be placed outside the heat exchanger 11 with a gap formed between it and the heat exchanger 11 .
  • the heat exchanger 11 can absorb the heat radiated by the single crystal silicon rod 22 during crystallization, and transfer the absorbed heat to the outside of the single crystal furnace 10, thereby increasing the longitudinal temperature gradient of the single crystal silicon rod 22 and improving the single crystal silicon rod 22.
  • the heat screen 15 can guide the gas in the single crystal furnace 10 and provide a stable thermal field environment.
  • the heat exchanger 11 can be any one of a water-cooled heat exchanger or an air-cooled heat exchanger.
  • the embodiment of this application only takes the heat exchanger 11 as a water-cooled heat exchanger as an example for description.
  • Other types of heat exchangers Just refer to the implementer 11 for execution.
  • an annular magnetic control assembly 30 can be provided in the gap between the heat exchanger 11 and the heat shield 15. Specifically, the magnetic control assembly 30 can be set outside the heat exchanger 11 and exchange heat with the heat exchanger 11. A certain gap is formed between the devices 11. As shown in FIG. 11 , the magnetic control assembly 30 can be disposed close to the crucible 20 , and at least part of the magnetic control assembly 30 can extend into the crucible 20 , so that the magnetic control assembly 30 can be disposed close to the silicon liquid 21 in the crucible 20 , and A hook-type magnetic field is formed in the silicon liquid 21 .
  • the hook-shaped magnetic field inside the silicon liquid 21 can be used to suppress the longitudinal heat convection, the transverse heat convection, and the heat convection in other directions of the silicon liquid 21 . In this way, the impurity content in the silicon liquid 21 can be reduced, thereby improving the quality of the single crystal silicon rod 22.
  • FIG. 2 a schematic diagram of the hook-shaped magnetic field formed by the magnetic component in the silicon liquid according to the embodiment of the present application is shown.
  • the magnetic field lines of the hook-shaped magnetic field in the silicon liquid 21 are arc-shaped magnetic field lines. In this way, some magnetic flux lines can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 .
  • another part of the magnetic field lines can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 .
  • magnetic field lines can also cut thermal convection in directions other than longitudinal and transverse directions to generate Lorentz forces.
  • the other directions may be directions with an inclination angle of 45°, 60°, etc. from the transverse direction.
  • the magnetic control component 30 can be added during the development stage of the magnetic control crystal pulling device, or the existing magnetic control crystal pulling device can be modified to obtain a magnetic control crystal pulling device with the magnetic control component 30 device.
  • the magnet control assembly 30 may specifically include an annular housing 131 and an annular magnet 31 ; the housing 131 is embedded in the gap between the heat exchanger 11 and the heat shield 15 inside, and connected to the heat shield 15; the housing 131 is provided with an annular cavity, and the annular magnet 31 is arranged in the annular cavity.
  • the housing 131 can be used to support and protect the ring magnet 31 and improve the service life of the ring magnet 31 .
  • the heat shield 15 may include side walls and a bottom wall, and the housing 131 may be connected to the bottom wall of the heat shield 15 . Since the crucible 20 is usually placed below the heat shield 15, by placing the housing 131 on The bottom wall of the heat shield 15 can enable the ring magnet 31 to be placed as close as possible to the crucible 20 and reduce the distance between the ring magnet 31 and the silicon liquid 21 in the crucible 20 .
  • a support boss 121 can be provided at the bottom of the heat screen 15 , and the bottom of the housing 131 is connected to the support boss 121 to realize the connection between the magnetic control assembly 30 and the heat screen 15 .
  • the connection method between the housing 131 and the support boss 121 may include but is not limited to at least one of fastener connection and welding connection, which is not limited in the embodiment of the present application.
  • the housing 131 is provided with a first liquid inlet 133 and a first liquid outlet 134, both of which are connected to the annular cavity; wherein, the first liquid inlet 133 and the first liquid outlet 134 are both connected to the annular cavity;
  • a liquid inlet 133 can be used to introduce the cooling medium into the annular cavity, and a first liquid outlet 134 is used to lead out the cooling medium in the annular cavity, so as to realize the cooling medium in the annular cavity.
  • the circulation in the annular cavity cools the annular magnet 31 in the annular cavity.
  • a sealing member is provided on the outer wall of the annular magnet 31 to prevent direct contact between the cooling medium and the magnetic member.
  • the cooling medium may include but is not limited to cooling water, cooling gas, etc., and the embodiments of this application do not specifically limit the cooling medium.
  • the heat exchanger 11 is provided with a second liquid inlet 111 and a second liquid outlet 112.
  • the second liquid inlet 111 can be used to introduce the cooling medium into the heat exchanger 11, and the second liquid outlet 112 It can be used to lead out the cooling medium in the heat exchanger 11 to achieve circulation of the cooling medium inside the heat exchanger 11 .
  • the first liquid inlet 133 can be connected with the second liquid inlet 111
  • the first liquid outlet 134 can be connected with the second liquid outlet 112 , that is, the magnetic control assembly 30 can share cooling with the heat exchanger 11 system. In this way, it is possible to avoid providing an additional cooling device to cool the magnetic control assembly 30 and simplify the structure of the magnetic control assembly 30, thereby simplifying the overall structure of the magnetic control crystal pulling device.
  • the cooling medium is filled in the gap to take away the heat of the annular magnet 31 so that the heat in the housing 131
  • the ring magnet 31 can work at a suitable temperature, thereby increasing the service life of the ring magnet 31 .
  • the material of the housing 131 can be copper, iron, aluminum or an alloy of copper, iron, and aluminum.
  • the materials of each part of the housing 131 can be the same or different.
  • the entire housing 131 can be made of copper with high thermal conductivity.
  • the housing 131 can be made of stainless steel as a whole.
  • the bottom plate close to the heat source (crucible 20) can be made of copper with high thermal conductivity, and the remaining parts can be made of stainless steel.
  • the shape of the housing 131 and the annular magnet 31 may be annular.
  • the minimum inner diameter of the annular cavity may be larger than the inner diameter of the annular magnet 31
  • the maximum outer diameter of the annular magnet 31 may be smaller than the outer diameter of the annular cavity, so that the distance between the annular magnet 31 and the annular cavity is A gap can be formed between the sides.
  • the bottom of the annular cavity is provided with a plurality of first support blocks 135 arranged at intervals, and the first support blocks 135 are connected to the bottom of the housing 131 so that the annular magnet 31 is in contact with the annular cavity.
  • the gap is formed so that the cooling medium can be filled at the bottom of the annular magnet 31 to achieve cooling of the bottom of the annular magnet 31 .
  • a plurality of first bosses distributed at intervals are provided on the inner wall of the annular cavity, and the first bosses extend toward the annular magnet 31 , and the annular magnet 31 is in contact with the plurality of first bosses.
  • a plurality of second bosses are provided at corresponding positions of the platform. One of the second bosses cooperates with one of the first bosses so that a gap is formed between the side of the annular magnet 31 and the annular cavity, which facilitates the The cooling medium is filled on the side of the annular magnet 31 to achieve cooling of the side of the annular magnet 31 .
  • the plurality of first support blocks 135 and the plurality of first bosses need to be distributed at intervals, that is, a space between the first support blocks 135 and the first bosses needs to be formed.
  • the cooling medium circulates through channels so that the cooling medium can flow along the outside of the annular magnet 31 to achieve cooling of the annular magnet 31 .
  • more than 90% of the outer surface of the ring magnet 31 needs to be in contact with the cooling medium, that is, the first support block 135 and the second The boss is on the surface of the ring magnet 31 The surface area cannot exceed 10%.
  • the ring magnet 31 is a ferromagnetic component, which may include but is not limited to any one of samarium cobalt magnets, neodymium iron boron magnets, and iron oxide magnets. Since the structure of ferromagnetic parts is simple and the cost is low, when the ring magnet 31 is a ferromagnetic part, the structure of the ring magnet 31 can be correspondingly simpler and the cost is lower.
  • the ferromagnetic component may be an annular one-piece structure, that is, the ferromagnetic component may be an integral structure, which has a simple structure and a relatively simple assembly process.
  • the ferromagnetic part has a split structure, and the ferromagnetic part includes a plurality of magnet blocks, and the plurality of magnet blocks are sequentially distributed along the circumferential direction of the annular cavity to form an annular structure.
  • the shape and position of the plurality of magnet blocks and the spacing between two adjacent magnet blocks can be set according to the actual situation. In this way, the layout flexibility of the ring magnet 31 can be greatly improved.
  • the ferromagnetic component may include a first magnetic pole and a second magnetic pole, and the first magnetic pole and the second magnetic pole have opposite polarities.
  • the first magnetic pole may be disposed at the top of the ferromagnetic component
  • the second magnetic pole may be disposed at the bottom of the ferromagnetic component
  • the first magnetic pole may be disposed at the bottom of the ferromagnetic component.
  • the second magnetic pole is arranged on the inside of the ferromagnetic part.
  • the embodiments of the present application may not limit the specific positions of the first magnetic pole and the second magnetic pole.
  • the first magnetic pole may be one of N pole and S pole
  • the second magnetic pole may be the other one of N pole and S pole.
  • the ring magnet 31 can also be an electromagnetic coil, which can generate a magnetic field when energized to suppress magnetic convection inside the silicon liquid 21 .
  • FIG. 12 a schematic diagram of the layout of the electromagnetic coil in another magnetron-controlled crystal pulling device described in the embodiment of the present application is shown.
  • FIG. 13 a schematic diagram of the magnetic field generated by the electromagnetic coil shown in FIG. 12 is shown.
  • the axial direction of the electromagnetic coil can be perpendicular to the axial direction of the annular cavity, that is, the axial direction of the annular cavity is the vertical direction, and the axial direction of the electromagnetic coil is transverse (i.e., the annular cavity (radial direction of the cavity), the current incident direction D of the electromagnetic coil may be located above, and the current exit direction E may be located below.
  • the electromagnetic coil can be used to form a transverse magnetic field as shown in Figure 13.
  • the magnetic field lines of the transverse magnetic field in the crucible 20 and the silicon liquid 21 are arc-shaped. Magnetic field lines. In this way, some magnetic flux lines can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 . At the same time, another part of the magnetic field lines can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 . Moreover, magnetic field lines can also cut thermal convection in directions other than longitudinal and transverse directions to generate Lorentz forces.
  • the thermal convection in multiple directions in the silicon liquid 21 can be suppressed, the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, the impurity content in the silicon liquid 21 can be reduced, and the quality of the single crystal silicon rod 22 can be improved.
  • FIG. 14 a second schematic diagram of the layout of the electromagnetic coil in another magnetron-controlled crystal pulling device according to the embodiment of the present application is shown.
  • FIG. 15 a schematic diagram of the magnetic field generated by the electromagnetic coil shown in FIG. 14 is shown.
  • the axial direction of the electromagnetic coil is parallel to the axial direction of the annular cavity, that is, the axial direction of the annular cavity is a vertical direction, and the axial direction of the electromagnetic coil is also a vertical direction.
  • the current incident direction D of the electromagnetic coil can be located on the outside, and the current exit direction E can be located on the inside.
  • the electromagnetic coil can be used to form the vertical magnetic field shown in Figure 6.
  • the magnetic flux lines of the vertical magnetic field in the silicon liquid 21 of the crucible 20 are arc-shaped magnetic flux lines. In this way, some magnetic flux lines can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 . At the same time, another part of the magnetic field lines can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 . Moreover, magnetic field lines can also cut thermal convection in directions other than longitudinal and transverse directions to generate Lorentz forces.
  • the thermal convection in multiple directions in the silicon liquid 21 can be suppressed, the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, the impurity content in the silicon liquid 21 can be reduced, and the strength of the single crystal silicon rod 22 can be improved. quality.
  • the number of the electromagnetic coils may be multiple, and multiple electromagnetic coils are arranged along the annular cavity.
  • the bodies are spaced apart in the circumferential direction to form an annular ring magnet 31 .
  • the magnetic fields generated by the plurality of electromagnetic coils can overlap to suppress thermal convection inside the silicon liquid 21 from more directions and further reduce the impact of the silicon liquid 21 on the wall of the crucible 20 .
  • the number of the electromagnetic coils is one or more.
  • the electromagnetic coil can be distributed in an annular shape and set outside the crystal pulling channel of the heat exchanger 11 .
  • the plurality of electromagnetic coils are spaced apart along the circumferential direction to form an annular ring magnet 31 .
  • the magnetic fields generated by the plurality of electromagnetic coils can overlap to suppress thermal convection inside the silicon liquid 21 from more directions and further reduce the impact of the silicon liquid 21 on the wall of the crucible 20 .
  • the annular magnet 31 may be an electromagnetic coil, and the axial direction of the electromagnetic coil and the axial direction of the annular cavity are arranged at a preset angle. is an angle other than a right angle, so that the electromagnetic coil can generate an intermediate magnetic field between the transverse magnetic field shown in FIG. 13 and the vertical magnetic field shown in FIG. 15 .
  • the magnetic field lines of the intermediate magnetic field in the crucible 20 and the silicon liquid 21 are arc-shaped magnetic field lines. In this way, some magnetic flux lines can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 . At the same time, another part of the magnetic field lines can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 . Moreover, magnetic field lines can also cut thermal convection in directions other than longitudinal and transverse directions to generate Lorentz forces.
  • the thermal convection in multiple directions in the silicon liquid 21 can be suppressed, the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, the impurity content in the silicon liquid 21 can be reduced, and the strength of the single crystal silicon rod 22 can be improved. quality.
  • the value of the preset included angle can be set according to the actual situation.
  • the preset included angle can be 30 degrees, 50 degrees, 85 degrees or 140 degrees, etc. This method The application embodiment may not limit the specific value of the preset angle.
  • the inner diameter of the magnetron assembly 30 can be larger than the outer diameter of the single crystal silicon rod 22, so that a certain gap can be formed between the magnetron assembly 30 and the single crystal silicon rod 22 to facilitate working gases such as argon.
  • the flow passes through the gap between the magnetron assembly 30 and the single crystal silicon rod 22 and takes away the latent heat of crystallization of the single crystal silicon rod 22 .
  • the outer diameter of the magnetron assembly 30 may be smaller than the inner diameter of the crucible 20 .
  • a certain gap can be formed between the side wall of the magnetron assembly 30 and the inner wall of the crucible 20 to avoid collision between the magnetron assembly 30 and the crucible 20 .
  • the difference between the inner diameter of the magnetron assembly 30 and the outer diameter of the single crystal silicon rod 22 is greater than or equal to 4 cm and less than or equal to 20 cm, so that the working gas can flow through at a suitable speed.
  • the gap between the magnetron assembly 30 and the single crystal silicon rod 22 takes away the latent heat of crystallization of the single crystal silicon rod 22 and prevents the working gas from disturbing the surface of the silicon liquid 21 in the crucible 20, thereby improving the stability of the surface of the silicon liquid 21.
  • the quality of the single crystal silicon rod 22 can be improved.
  • the difference between the inner diameter of the magnetron assembly 30 and the outer diameter of the single crystal silicon rod 22 may be 4 cm, 6 cm, 9 cm, 14 cm, 20 cm or 22 cm, etc., the embodiment of the present application is No restrictions.
  • the ferromagnetic component may be an annular one-piece structure, that is, the ferromagnetic component may be an integral structure, which has a simple structure and a relatively simple assembly process.
  • the ferromagnetic component has a split structure, and the ferromagnetic component includes a plurality of magnet blocks, which are sequentially distributed along the circumferential direction to form an annular structure.
  • the multiple magnet blocks The shape and position of the blocks and the spacing between two adjacent magnet blocks can be set according to the actual situation. In this way, the layout flexibility of the ring magnet 31 can be greatly improved.
  • the axial direction of the electromagnetic coil can be perpendicular to the axial direction of the annular body 301, that is, the axial direction of the annular body 301 is the vertical direction, and the axial direction of the electromagnetic coil is transverse (that is, the radial direction of the annular body 301) , the current incident direction D of the electromagnetic coil can be located above, and the current exit direction E can be located below.
  • the electromagnetic coil can be used to form a transverse magnetic field as shown in Figure 13.
  • the magnetic field lines 311 of the transverse magnetic field in the silicon liquid 21 of the crucible 20 are arc-shaped magnetic field lines 311 .
  • some magnetic flux lines 311 can cut the longitudinal heat convection in the silicon liquid 21, Lorentz force is generated to inhibit longitudinal heat convection in the silicon liquid 21 .
  • another part of the magnetic field lines 311 can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 .
  • the magnetic flux lines 311 can also cut the heat convection in other directions besides the longitudinal and transverse directions to generate Lorentz force. In this way, the thermal convection in multiple directions in the silicon liquid 21 can be suppressed, the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, and the impurity content in the silicon liquid 21 can be reduced.
  • FIG. 15 a schematic diagram of the magnetic field generated by the electromagnetic coil can be shown.
  • the axial direction of the electromagnetic coil is parallel to the axial direction of the annular body 301, that is, the axial direction of the annular body 301 is vertical, and the axial direction of the electromagnetic coil is also vertical.
  • the current incident direction D of the electromagnetic coil can be located on the outside, and the current exit direction E can be located on the inside.
  • the electromagnetic coil can be used to form the vertical magnetic field shown in Figure 11.
  • the magnetic field lines 311 of the vertical magnetic field in the silicon liquid 21 of the crucible 20 are arc-shaped magnetic field lines 311 .
  • some of the magnetic flux lines 311 can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 .
  • another part of the magnetic field lines 311 can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 .
  • the magnetic flux lines 311 can also cut the heat convection in other directions besides the longitudinal and transverse directions to generate Lorentz force. In this way, the thermal convection in multiple directions in the silicon liquid 21 can be suppressed, the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, and the impurity content in the silicon liquid 21 can be reduced.
  • the number of the electromagnetic coils may be multiple, and the plurality of electromagnetic coils are arranged along the circumferential direction of the annular body 301. Distributed at intervals to form an annular ring magnet 31 .
  • the magnetic fields generated by the plurality of electromagnetic coils can overlap to suppress thermal convection inside the silicon liquid 21 from more directions and further reduce the impact of the silicon liquid 21 on the wall of the crucible 20 .
  • the number of the electromagnetic coils is one or more.
  • the electromagnetic coil may be distributed in an annular shape and set outside the crystal pulling channel 100 of the heat exchanger.
  • the plurality of electromagnetic coils are spaced apart along the circumferential direction to form an annular ring magnet 31 .
  • the magnetic fields generated by the plurality of electromagnetic coils can overlap to suppress thermal convection inside the silicon liquid 21 from more directions and further reduce the impact of the silicon liquid 21 on the wall of the crucible 20 .
  • the magnetic component is an electromagnetic coil
  • the axial direction of the electromagnetic coil and the axial direction of the annular body 301 are arranged at a preset angle, and the preset angle is a right angle. such that the electromagnetic coil can generate an intermediate magnetic field between the transverse magnetic field shown in FIG. 13 and the vertical magnetic field shown in FIG. 15 .
  • the magnetic field lines 311 of the intermediate magnetic field in the silicon liquid 21 of the crucible 20 are arc-shaped magnetic field lines 311.
  • some of the magnetic flux lines 311 can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 .
  • another part of the magnetic field lines 311 can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 .
  • the magnetic flux lines 311 can also cut the heat convection in other directions besides the longitudinal and transverse directions to generate Lorentz force. In this way, the thermal convection in multiple directions in the silicon liquid 21 can be suppressed, the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, and the impurity content in the silicon liquid 21 can be reduced.
  • the value of the preset included angle can be set according to the actual situation.
  • the preset included angle can be 30 degrees, 50 degrees, 85 degrees or 140 degrees, etc. This method The application embodiment may not limit the specific value of the preset angle.
  • the magnetic field strength of the hook-shaped magnetic field at the liquid surface of the silicon liquid is greater than or equal to 0.1 millitr.
  • the ring magnet 31 is equally sensitive to all the silicon liquid 21 It has a better thermal convection suppression effect and avoids that the magnetic field formed by the ring magnet 31 on the silicon liquid 21 far away is weak and difficult to play a significant inhibitory effect, so that the ring magnet has better economy.
  • the magnetron crystal pulling device described in the embodiments of the present application can at least include the following advantages:
  • the magnetically controlled crystal pulling device includes a single crystal furnace, a crucible and a magnetically controlled component; the crucible is provided in the single crystal furnace for holding silicon liquid, and the magnetically controlled component is provided with Above the silicon liquid; the magnetron assembly includes an annular magnet, a crystal pulling channel for a single crystal silicon rod to pass through is provided in the annular magnet, and the annular magnet is arranged close to the silicon liquid for use in the A hook-shaped magnetic field is formed in the silicon liquid.
  • the magnetic control assembly is provided with the magnetic control crystal pulling device described in this application.
  • the magnetic control assembly is connected to the heat exchanger.
  • the ring magnet is provided in the magnetic control assembly.
  • the ring magnet is It is at least partially located in the crucible, so that the ring magnet can be placed close to the silicon liquid in the crucible, and form the hook-shaped magnetic field in the silicon liquid, effectively suppressing the longitudinal heat of the silicon liquid.
  • Convection, lateral thermal convection and thermal convection in other directions inhibit the thermal convection of the silicon liquid in multiple directions. In this way, the erosion of the crucible wall by the silicon liquid can be reduced, the impurity content in the silicon liquid can be reduced, and the crystal pulling quality can be improved.
  • the magnetron-controlled crystal pulling device has a simple structure, can be implemented with only a small amount of improvements on the existing crystal pulling device, has a wide range of applications and is low in cost.
  • the embodiment of the present application also provides a heat exchanger, which can be used in a magnetically controlled crystal pulling device.
  • the magnetron crystal pulling device may include a single crystal furnace 10 and a crucible disposed in the single crystal furnace 10.
  • the crucible may be used to contain silicon liquid, and the heat exchanger is located above the crucible.
  • the heat exchanger can be set outside the single crystal silicon rod.
  • the heat exchanger can absorb the heat radiated by the single crystal silicon rod during crystallization and transfer the absorbed heat to the single crystal furnace. 10, thereby increasing the longitudinal temperature gradient of the single crystal silicon rod and increasing the crystal growth rate of the single crystal silicon rod.
  • the heat exchanger can be either a water-cooled heat exchanger or an air-cooled heat exchanger.
  • the embodiment of this application only takes the heat exchanger as a water-cooled heat exchanger as an example. For an air-cooled heat exchanger, refer to Just execute.
  • FIG. 17 a schematic structural diagram of a heat exchanger according to the embodiment of the present application is shown.
  • Fig. 18 a schematic top structural diagram of the heat exchanger shown in Fig. 17 is shown.
  • Fig. 19 a schematic structural diagram of a heat exchanger is shown.
  • picture The cross-sectional structural diagram of the heat exchanger A-A section shown in Figure 18 is shown.
  • Figure 20 a detailed structural diagram of the heat exchanger B position shown in Figure 19 is shown.
  • Figure 21 a detailed structural diagram of the heat exchanger B position shown in Figure 17 is shown.
  • Figure 22 for a schematic lateral structural view of the heat exchanger, which shows a schematic cross-sectional structural view of the CC section of the heat exchanger shown in Figure 21.
  • the heat exchanger may include: an annular body 301, a second annular cavity 101 is provided in the annular body 301, and the second annular cavity 101 may be used to accommodate the cooling medium; a water inlet pipe 11, The water inlet pipe 11 is connected with the second annular cavity 101, and the water inlet pipe 11 can be used to pass the cooling medium into the second annular cavity 101; the water outlet pipe 303, the water outlet pipe 303 and the second annular cavity 101 The water outlet pipe 303 can be used to lead out the cooling medium in the second annular cavity 101; and the annular annular magnet 31 is connected to the side of the annular body 301 close to the crucible 20.
  • the heat exchanger may include an annular body 301, a second annular cavity 101 for containing the cooling medium is provided in the annular body 301, and the annular magnet 31 is disposed in the annular body 301 close to the crucible 20 side.
  • the ring magnet 31 can form a magnetic field in the silicon liquid 21 of the crucible 20 , and the magnetic field can be used to suppress thermal convection inside the silicon liquid 21 , reduce the erosion of the crucible 20 wall by the silicon liquid 21 , and reduce impurities in the silicon liquid 21 content, thereby improving the crystal pulling quality of single crystal silicon rods. That is to say, the heat exchanger described in the embodiment of the present application can take into account the pulling speed and crystal pulling quality of the single crystal silicon rod.
  • the annular body 301 as the structural main body of the heat exchanger, can be made of a metal material with a certain strength.
  • the annular body 301 is provided with a crystal pulling channel 100 for the passage of single crystal silicon rods. Since the circulating cooling medium can be continuously introduced into the second annular cavity 101 of the annular body 301, when the single crystal silicon rod passes through the crystal pulling channel 100, it can be connected with the second annular cavity 101 of the second annular cavity 101.
  • the cooling medium exchanges heat, quickly takes away the latent heat of crystallization of the single crystal silicon rod, and increases the drawing speed of the single crystal silicon rod.
  • the water inlet pipe 11 can be connected to the bottom of the second annular cavity 101
  • the water outlet pipe 303 can be connected to the top of the second annular cavity 101 .
  • the cooling medium can pass through the water inlet pipe 302 from The water enters from the bottom of the second annular cavity 101, flows through the second annular cavity 101, and then flows out from the water outlet pipe 303 at the top to achieve heat conduction.
  • the cooling medium may include water, cooling liquid, etc., and the embodiment of the present application may not limit the specific type of the cooling medium.
  • an annular ring magnet 31 can be provided on the side of the heat exchanger close to the crucible 20 , and at least part of the annular magnet 31 can extend into the crucible 20 , so that the annular magnet 31 can be close to the crucible 20
  • the silicon liquid 21 is arranged in the silicon liquid 21, and a hook-shaped magnetic field is formed in the silicon liquid 21.
  • the hook-shaped magnetic field inside the silicon liquid 21 can be used to suppress longitudinal heat convection, transverse heat convection, and heat convection in other directions of the silicon liquid 21 . In this way, the impurity content in the silicon liquid 21 can be reduced, thereby improving the quality of the single crystal silicon rod.
  • FIG. 2 there is shown a schematic diagram of the hook-shaped magnetic field formed by the magnetic components in the heat exchanger according to the embodiment of the present application in the silicon liquid.
  • the magnetic field lines 311 of the hook-shaped magnetic field in the silicon liquid 21 of the crucible 20 are arc-shaped magnetic field lines 311 .
  • some of the magnetic flux lines 311 can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 .
  • another part of the magnetic field lines 311 can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 .
  • the magnetic flux lines 311 can also cut the heat convection in other directions besides the longitudinal and transverse directions to generate Lorentz force.
  • the other directions may be directions with an inclination angle of 45°, 60°, etc. from the transverse direction. In this way, by suppressing heat convection in multiple directions in the silicon liquid 21 , the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, and the impurity content in the silicon liquid 21 can be reduced.
  • the annular magnet 31 can be disposed in the second annular cavity 101 , and the cooling medium in the second annular cavity 101 can cool the annular magnet 31 to avoid the silicone liquid 21
  • the high temperature causes the ring magnet 31 to be demagnetized or damaged, thereby allowing the ring magnet 31 to work at a suitable temperature and improving the service life of the ring magnet 31 .
  • the annular magnet 31 may be disposed at the bottom of the second annular cavity 101 . Since the crucible 20 is usually disposed below the annular body 301, by disposing the annular magnet 31 at the bottom of the second annular cavity 101, the annular magnet 31 can be disposed as close as possible to the crucible 20, reducing the distance between the annular magnet 31 and the crucible 20. The distance between the silicon liquid 21.
  • the heat exchanger may also include a shell 131, a closed accommodation cavity is provided in the shell 131, and the annular magnet 31 is located in the accommodation cavity.
  • the housing 131 can be used to protect the annular magnet 31 to avoid corrosion caused by direct contact between the annular magnet 31 and the cooling medium, thereby further increasing the service life of the annular magnet 31 .
  • the housing 131 may specifically include a housing body 141 and an upper cover 142 connected to the housing body 141 .
  • the housing body 141 and the upper cover 142 are enclosed to form the accommodation cavity.
  • the housing 131 by arranging the housing 131 into a detachable housing body 141 and an upper cover 142, not only the processing of the housing 131 can be facilitated, but also the annular magnet 31 can be easily accommodated in the housing 131. cavity, or take out the annular magnet 31 from the accommodation cavity of the housing 131 to achieve maintenance or replacement of the housing 131 and/or the annular magnet 31 .
  • connection method between the housing body 141 and the upper cover 142 may include but is not limited to at least one of welding, riveting, bonding, or threaded connection through fasteners 143.
  • the embodiment of the present application is for
  • the connection method between the housing body 141 and the upper cover 142 is not specifically limited.
  • the housing body 141 and the upper cover 142 can be made of solid materials with a magnetic permeability of 0.9-1.1, such as metal, polyethylene, and epoxy resin.
  • the materials of the housing body 141 and the upper cover 142 can be the same or different. This application implements This example does not limit this.
  • the housing 131 when the housing body 141 and the upper cover 142 are threadedly connected through fasteners 143, the housing 131 also includes a sealing ring 144, and the sealing ring 144 is disposed between the housing body 141 and the upper cover. 142 to achieve a sealed connection between the housing body 141 and the upper cover 142 to prevent the cooling medium from entering the inside of the accommodation cavity from the gap between the housing body 141 and the upper cover 142 to achieve an annular magnet.
  • 31 is waterproof, further improving the safety of the ring magnet 31.
  • the material of the sealing ring 144 may include but is not limited to any flexible material such as foam, silicone, etc.
  • the embodiment of the present application does not specifically limit the material of the sealing ring 144 .
  • the fasteners 143 may include but are not limited to at least one of bolts, screws, and studs, and the embodiment of the present application may not limit the specific type of the fasteners 143 .
  • the amount is such that the annular magnet 31 in the housing 131 can operate at a suitable temperature and the service life of the annular magnet 31 is improved.
  • the annular body 301 may include an outer wall 102, a bottom plate 103, a first inner wall 104 and a second inner wall 105.
  • the outer wall 102, the bottom plate 103, the first inner wall 104 and the second inner wall 105 may be welded and connected in sequence, and surrounded by The second annular cavity 101 is combined to form a second annular cavity 101.
  • the second annular cavity 101 can be used to accommodate the cooling medium, and the housing 131 can be disposed at the bottom of the second annular cavity 101.
  • the water inlet pipe 11, the water outlet pipe 303, the outer wall 102, the bottom plate 103, the first inner wall 104 and the second inner wall 105 can be made of copper, iron, aluminum or an alloy of copper, iron, and aluminum.
  • the materials can be the same or different.
  • all parts can be made of copper with high thermal conductivity.
  • all parts can be made of stainless steel.
  • the bottom plate 103 and the first inner wall 104 close to the heat source (crucible 20) can be made of copper with high thermal conductivity, and the remaining parts can be made of stainless steel.
  • the outer wall 102 may be at least one of a straight wall, an inclined wall, or an arc wall.
  • the first inner wall 104 and the second inner wall 105 may also be at least one of a straight wall, an inclined wall or an arc wall. This embodiment of the present application does not specifically limit the shapes of the outer wall 102, the first inner wall 104, and the second inner wall 105.
  • the shape of the housing 131 may be annular.
  • the minimum inner diameter of the housing 131 may be greater than the inner diameter of the second annular cavity 101 , and the maximum outer diameter of the housing 131 may be less than the outer diameter of the second annular cavity 101 , so that the shell 131 is in contact with the side of the annular body 301 Gaps can be formed between parts.
  • the bottom of the second annular cavity 101 is provided with a plurality of support blocks arranged at intervals, and the support blocks are connected to the bottom of the housing 131 so that the housing 131 and the second annular cavity 101 form a The gap is formed so that the cooling medium can be filled in the bottom of the housing 131 to achieve cooling of the bottom of the housing 131 .
  • the support block may be a metal block, and the metal block may be welded to the base plate 103 .
  • the plurality of metal blocks can be arranged at any position at intervals as required.
  • a plurality of third bosses 106 distributed at intervals are provided on the inner wall of the second annular cavity 101 .
  • the third bosses 106 extend toward the housing 131 , and the housing 131 is in contact with the housing 131 .
  • a plurality of fourth bosses 145 are provided at corresponding positions of the plurality of third bosses 106.
  • One fourth boss 145 cooperates with one third boss 106 to form a gap between the housing 131 and the second annular cavity 101. , so that the cooling medium can be filled on the side of the housing 131 to achieve cooling of the side of the housing 131 .
  • the plurality of third bosses 106 need to be distributed at intervals, that is, channels for the cooling medium to circulate need to be formed between the third bosses 106 so that the cooling medium can flow along the surface of the housing 131
  • the outside flow realizes cooling of the housing 131 .
  • more than 90% of the outer surface of the housing 131 needs to be in contact with the cooling medium, that is, the fourth boss 145 is on the outer surface of the housing 131 .
  • the outer surface may not occupy more than 10% of the area.
  • the ferromagnetic component may include a first magnetic pole and a second magnetic pole, and the first magnetic pole and the second magnetic pole have opposite polarities.
  • the first magnetic pole may be disposed at the top of the ferromagnetic component
  • the second magnetic pole may be disposed at the bottom of the ferromagnetic component
  • the first magnetic pole may be disposed at the bottom of the ferromagnetic component.
  • the second magnetic pole is arranged on the inside of the ferromagnetic part.
  • the embodiments of the present application may not limit the specific positions of the first magnetic pole and the second magnetic pole.
  • the first magnetic pole may be one of N pole and S pole
  • the second magnetic pole may be the other one of N pole and S pole.
  • FIG. 23 one of the schematic diagrams of the layout of the electromagnetic coil in the heat exchanger according to the embodiment of the present application is shown.
  • Fig. 13 it can also be shown a schematic diagram of the magnetic field generated by the electromagnetic coil shown in Fig. 23.
  • the axial direction of the electromagnetic coil can be perpendicular to the axial direction of the annular body 301, that is, the axial direction of the annular body 301 is the vertical direction, and the axial direction of the electromagnetic coil is transverse (i.e., the annular body (radial direction of the body 301), the current incident direction D of the electromagnetic coil may be located above, and the current exit direction E may be located below.
  • the electromagnetic coil can be used to form a transverse magnetic field as shown in Figure 13.
  • the magnetic field lines 311 of the transverse magnetic field in the silicon liquid 21 of the crucible 20 are arc-shaped magnetic field lines 311 .
  • some of the magnetic flux lines 311 can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 .
  • another part of the magnetic field lines 311 can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 .
  • the magnetic flux lines 311 can also cut the heat convection in other directions besides the longitudinal and transverse directions to generate Lorentz force. In this way, the thermal convection in multiple directions in the silicon liquid 21 can be suppressed, the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, and the impurity content in the silicon liquid 21 can be reduced.
  • FIG. 24 a second schematic diagram of the layout of the electromagnetic coil in the heat exchanger according to the embodiment of the present application is shown.
  • Fig. 15 a schematic diagram of the magnetic field generated by the electromagnetic coil shown in Fig. 24 can also be shown.
  • the axial direction of the electromagnetic coil is parallel to the axial direction of the annular body 301, that is, the axial direction of the annular body 301 is vertical, and the axial direction of the electromagnetic coil is also vertical.
  • the current incident direction D of the electromagnetic coil can be located on the outside, and the current exit direction E can be located on the inside.
  • the electromagnetic coil can be used to form the vertical magnetic field shown in Figure 11.
  • the magnetic field lines 311 of the vertical magnetic field in the silicon liquid 21 of the crucible 20 are arc-shaped magnetic field lines 311 .
  • some of the magnetic flux lines 311 can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 .
  • another part of the magnetic field lines 311 can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 .
  • the magnetic flux lines 311 can also cut the heat convection in other directions besides the longitudinal and transverse directions to generate Lorentz force. In this way, the thermal convection in multiple directions in the silicon liquid 21 can be suppressed, the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, and the impurity content in the silicon liquid 21 can be reduced.
  • the number of the electromagnetic coils may be multiple, and the plurality of electromagnetic coils are arranged along the circumferential direction of the annular body 301. Distributed at intervals to form an annular ring magnet 31 .
  • the magnetic fields generated by the plurality of electromagnetic coils can overlap to suppress thermal convection inside the silicon liquid 21 from more directions and further reduce the impact of the silicon liquid 21 on the wall of the crucible 20 .
  • the number of the electromagnetic coils is one or more.
  • the electromagnetic coil may be distributed in an annular shape and set outside the crystal pulling channel 100 of the heat exchanger.
  • the plurality of electromagnetic coils are spaced apart along the circumferential direction to form an annular ring magnet 31 .
  • the magnetic fields generated by the plurality of electromagnetic coils can overlap to suppress thermal convection inside the silicon liquid 21 from more directions and further reduce the impact of the silicon liquid 21 on the wall of the crucible 20 .
  • the magnetic component is an electromagnetic coil
  • the axial direction of the electromagnetic coil and the axial direction of the annular body 301 are arranged at a preset angle, and the preset angle is a right angle. such that the electromagnetic coil can generate an intermediate magnetic field between the transverse magnetic field shown in FIG. 13 and the vertical magnetic field shown in FIG. 15 .
  • the magnetic field lines 311 of the intermediate magnetic field in the silicon liquid 21 of the crucible 20 are arc-shaped magnetic field lines 311.
  • some of the magnetic flux lines 311 can cut the longitudinal heat convection in the silicon liquid 21 , generate Lorentz force, and inhibit the longitudinal heat convection in the silicon liquid 21 .
  • another part of the magnetic field lines 311 can cut the lateral heat convection in the silicon liquid 21 and generate Lorentz force, thereby inhibiting the lateral heat convection in the silicon liquid 21 .
  • the magnetic flux lines 311 can also cut the heat convection in other directions besides the longitudinal and transverse directions to generate Lorentz force. In this way, the thermal convection in multiple directions in the silicon liquid 21 can be suppressed, the erosion of the crucible 20 wall by the silicon liquid 21 can be reduced, and the impurity content in the silicon liquid 21 can be reduced.
  • the value of the preset included angle can be set according to the actual situation.
  • the preset included angle can be 30 degrees, 50 degrees, 85 degrees or 140 degrees. Degree, etc., the embodiment of the present application may not limit the specific value of the preset included angle.
  • the heat exchanger described in the embodiment of the present application can at least include the following advantages:
  • the heat exchanger may include an annular body, an annular cavity for containing a cooling medium is disposed inside the annular body, and the magnetic member is disposed on an end of the annular body close to the crucible. side.
  • the magnetic component can form a magnetic field in the silicon liquid in the crucible, and the magnetic field can be used to suppress thermal convection inside the silicon liquid, reduce the erosion of the crucible wall by the silicon liquid, and reduce the The impurity content in the silicon liquid improves the crystal pulling quality of single crystal silicon rods. That is to say, the heat exchanger described in the embodiment of the present application can take into account the pulling speed and crystal pulling quality of the single crystal silicon rod.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种磁控拉晶装置及换热器。磁控拉晶装置包括单晶炉、坩埚以及磁控组件;坩埚设置于单晶炉内,用于盛放硅液,所述磁控组件设置于所述硅液上方。磁控组件包括环形磁体,环形磁体内设置有用于单晶硅棒穿设的拉晶通道,环形磁体靠近硅液设置,用于在硅液内形成勾型磁场。

Description

一种磁控拉晶装置及换热器
相关申请的交叉引用
本申请要求在2022年08月22日提交中国专利局、申请号为202211010551.7,名称为“一种磁控拉晶装置”的中国专利申请的优先权,以及在2022年08月22日提交中国专利局、申请号为202222210865.3,名称为“一种换热器和单晶硅棒拉制装置”的中国专利申请的优先权,以及在2022年08月22日提交中国专利局、申请号为202222214385.4,名称为“一种单晶硅棒拉制装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏技术领域,具体涉及一种磁控拉晶装置及换热器。
背景技术
在光伏技术领域中,为了提高单晶硅生产过程中晶体的品质,通常采用磁控拉晶装置通过磁控拉晶法(Magnetic Field Applied Czochralski Method,MCZ)进行拉晶。
现有技术中,在磁控拉晶装置中设置磁场发生设备,通过磁场发生设备产生的磁场穿过坩埚内的硅液,使得硅液与磁场相作用而产生洛仑兹力,从而抑制硅液的热对流以及硅液对坩埚壁的冲刷,从而降低拉晶不均产生的影响,以及降低硅液中的杂质。因此,磁控拉晶装置对于单晶硅的生产有着重要影响。
然而,发明人在研究现有技术的过程中发现,磁场发生设备只能对纵向或者横向单一方向的硅液热对流进行抑制,抑制作用较为有限。且现有磁场发生设备多安装于炉体外,结构复杂且庞大,需要对原有的拉晶装置进行较大改造,工程量大,周期长,大大增加了生产成本。
发明内容
本申请实施例提供了一种磁控拉晶装置及换热器,以解决现有的单晶硅棒拉制装置拉晶品质低且难以进行磁控装置的改制的问题。
为了解决上述技术问题,本申请是这样实现的:
本申请实施例提供了一种磁控拉晶装置,所述磁控拉晶装置包括单晶炉、坩埚以及磁控组件;
所述坩埚设置于所述单晶炉内,用于盛放硅液,所述磁控组件设置于所述硅液上方;
所述磁控组件包括环形磁体,所述环形磁体内设置有用于单晶硅棒穿设的拉晶通道,所述环形磁体靠近所述硅液设置,用于在所述硅液内形成勾型磁场;
所述勾型磁场在所述硅液的液面的磁场强度大于或者等于0.1毫特。
可选地,所述环形磁体为一体成型结构。
可选地,所述环形磁体为分体结构,所述环形磁体包括多个磁性件,所述多个磁性件沿周向依次分布以形成所述拉晶通道。
可选地,所述多个磁性件中,相邻两个所述磁性件之间抵接,或相邻两个所述磁性件间隔设置。
可选地,所述多个磁性件中,每个所述磁性件的磁极分布相同。
可选地,所述环形磁体包括相对设置的内侧壁和外侧壁,以及分别与所述内侧壁和所述外侧壁连接的顶面和底面;
所述环形磁体的磁极包括第一磁极和第二磁极,所述第一磁极与所述第二磁极相反;
其中,所述第一磁极设置于所述内侧壁,所述第二磁极设置于所述外侧壁,或者,所述第一磁极设置于所述顶面,所述第二磁极设置于所述底面。
可选地,所述单晶炉内设有换热器,所述换热器设置于所述坩埚上方,所述磁控组件连接于所述换热器。
可选地,所述环形磁体的内壁与所述单晶硅棒的外壁之间的间距包 括2-10厘米中的任一数值。
可选地,所述磁控组件还包括冷却层和隔热层;
所述冷却层包覆于所述环形磁体,所述隔热层包覆于所述冷却层,所述冷却层内通有冷却介质。
本申请还提供了一种磁控拉晶装置,包括:
单晶炉;
坩埚,所述坩埚设置于所述单晶炉内,用于盛放硅液,以从所述硅液中生长单晶硅棒;
换热器,所述换热器设置在所述单晶炉内,且位于所述坩埚的上方;
热屏,所述热屏套设在所述换热器外,且与所述换热器之间形成间隙;
以及,磁控组件,所述磁控组件嵌设于所述换热器与所述热屏之间的间隙内,且靠近所述硅液设置,以在所述硅液内形成磁场,所述磁控组件包括环形磁体。
可选地,所述磁控组件包括环状的壳体;
所述壳体嵌设于所述换热器与所述热屏之间的间隙内,且与所述换热器连接;
所述壳体内设有第一环状腔体,所述环形磁体设置于所述第一环状腔体内。
可选地,所述壳体上设置有第一进液口和第一出液口,所述第一进液口和所述第一出液口皆与所述第一环状腔体连通;其中,
所述第一进液口用于将冷却介质导入所述第一环状腔体内,所述第一出液口用于将所述第一环状腔体内的所述冷却介质导出。
可选地,所述换热器上设置有第二进液口和第二出液口,所述第二进液口用于将冷却介质导入所述换热器内,所述第二出液口用于将所述换热器内的所述冷却介质导出;其中,
所述第一进液口与所述第二进液口连通,所述第一出液口与所述第 二出液口连通。
可选地,所述环形磁体的外壁与所述第一环状腔体的内壁之间存在第一间隙,所述冷却介质填充于所述第一间隙。
可选地,所述第一环状腔体的底部设置有多个间隔设置的第一支撑块,所述第一支撑块连接在所述环形磁体的底部,以使所述环形磁体与所述第一环状腔体形成所述第一间隙;
和/或,所述第一环状腔体的内侧壁上设置有多个间隔分布的第一凸台,所述第一凸台朝向所述环形磁体延伸,所述环形磁体在与所述多个第一凸台对应的位置设置有多个第二凸台,一个所述第二凸台与一个所述第一凸台配合,以使所述环形磁体与所述第一环状腔体形成所述第一间隙。
可选地,所述磁控组件的内径大于所述单晶硅棒的外径,所述磁控组件的外径小于所述坩埚的内径。
可选地,所述磁控组件的内径与所述单晶硅棒的外径之间的差值大于或者等于4厘米,且小于或者等于20厘米。
可选地,所述环形磁体为铁磁件;其中,
所述铁磁件为环状的一体成型结构;
或者,所述铁磁件为分体结构,所述铁磁件包括多个磁块,所述多个磁块沿周向依次分布以形成环状结构。
可选地,所述环形磁体为电磁线圈;其中,
所述电磁线圈的轴向与所述第一环状腔体的轴向垂直,所述电磁线圈用于形成横向磁场;
或者,所述电磁线圈的轴向与所述第一环状腔体的轴向平行,所述电磁线圈用于形成竖向磁场。
可选地,所述环形磁体为电磁线圈;其中,
所述电磁线圈的轴向与所述第一环状腔体的轴向呈预设夹角设置,所述预设夹角为直角之外的夹角。
可选地,所述勾型磁场在所述硅液的液面的磁场强度大于或者等于0.1毫特。
本申请实施例提供了一种换热器,用于磁控拉晶装置,所述磁控拉晶装置包括单晶炉以及设置于所述单晶炉内的坩埚,所述换热器位于所述坩埚上方,所述换热器包括:
环状本体,所述环状本体内设置有第二环状腔体,所述第二环状腔体用于容纳冷却介质;
进水管,所述进水管与所述第二环状腔体连通,所述进水管用于将所述冷却介质通入所述第二环状腔体内;
出水管,所述出水管与所述第二环状腔体连通,所述出水管用于将所述第二环状腔体内的所述冷却介质导出;以及
环形磁体,所述环形磁体连接于所述环状本体靠近所述坩埚的一侧。
可选地,所述环形磁体设置于所述第二环状腔体内。
可选地,所述换热器还包括壳体,所述壳体内设置有封闭的容纳腔,所述环形磁体位于所述容纳腔内。
可选地,所述壳体的外壁与所述第二环状腔体的内壁之间存在第二间隙,所述冷却介质填充于所述第二间隙。
可选地,所述第二环状腔体的底部设置有多个间隔设置的第二支撑块,所述第二支撑块连接在所述壳体的底部,以使所述壳体与所述第二环状腔体形成所述第二间隙;
和/或,所述第二环状腔体的内侧壁上设置有多个间隔分布的第三凸台,所述第三凸台朝向所述壳体延伸,所述壳体在与所述多个第三凸台对应的位置设置有多个第四凸台,一个所述第四凸台与一个所述第三凸台配合,以使所述壳体与所述第二环状腔体形成所述间隙第二间隙。
可选地,所述壳体包括壳体本体以及与所述壳体本体连接的上盖,所述壳体本体与所述上盖围合形成所述容纳腔。
可选地,所述壳体本体与上盖之间的连接方式包括焊接、铆接、粘 接或者通过紧固件实现螺纹连接;其中,
在所述壳体本体与上盖之间通过所述紧固件实现螺纹连接的情况下,所述壳体还包括密封圈,所述密封圈设置于所述壳体本体与所述上盖之间。
可选地,所述环形磁体为电磁线圈;其中,
所述电磁线圈的轴向与所述环状本体的轴向垂直,所述电磁线圈用于形成横向磁场;
或者,所述电磁线圈的轴向与所述环状本体的轴向平行,所述电磁线圈用于形成竖向磁场。
可选地,在所述电磁线圈的轴向与所述环状本体的轴向垂直的情况下,所述电磁线圈的数量为多个,多个所述电磁线圈沿周向间隔分布;
在所述电磁线圈的轴向与所述环状本体的轴向平行的情况下,所述电磁线圈的数量为一个或者多个,多个所述电磁线圈沿所述环状本体的周向间隔分布。
可选地,所述环形磁体为电磁线圈;其中,
所述电磁线圈的轴向与所述环状本体的轴向呈预设夹角设置,所述预设夹角为直角之外的夹角。
本申请实施例中,所述磁控拉晶装置包括单晶炉、坩埚以及磁控组件;所述坩埚设置于所述单晶炉内,用于盛放硅液,所述磁控组件设置于所述硅液上方;所述磁控组件包括环形磁体,所述环形磁体内设置有用于单晶硅棒穿设的拉晶通道,所述环形磁体靠近所述硅液设置,用于在所述硅液内形成勾型磁场。通过本申请中所述磁控拉晶装置设置有所述磁控组件,所述磁控组件连接于所述换热器,所述磁控组件中设置有所述环形磁体,所述环形磁体的至少部分位于所述坩埚内,以使得所述环形磁体可以靠近所述坩埚内的所述硅液设置,并在所述硅液内形成所述勾型磁场,所述硅液内部的勾型磁场可以有效抑制所述硅液的纵向热对流、横向热对流以及其他方向的热对流,抑制了所述硅液在多个方向 的热对流。这样,就可以减少所述硅液对所述坩埚壁的冲刷,降低所述硅液中的杂质含量,提高了拉晶质量。而且,所述磁控拉晶装置的结构简单,在现有的拉晶装置的基础上仅需进行少量的改进即可实施,适用范围广泛且成本较低。
附图说明
图1是本申请实施例所述的一种磁控拉晶装置的结构示意图;
图2是本申请实施例所述的一种磁控拉晶装置的磁感线的部分示意图;
图3是本申请实施例所述的一种磁控拉晶装置的部分结构示意图;
图4是本申请实施例所述的一种环形磁体的结构示意图之一;
图5是本申请实施例所述的一种环形磁体的结构示意图之二;
图6是本申请实施例所述的一种环形磁体的结构示意图之三;
图7是本申请实施例所述的一种环形磁体的结构示意图之四;
图8是本申请实施例所述的一种环形磁体的结构示意图之五;
图9是本申请实施例所述的一种环形磁体的结构示意图之六;
图10是本申请实施例所述的一种磁控组件的结构示意图;
图11是本申请实施例所述的另一种磁控拉晶装置的结构示意图;
图12是本申请实施例所述的另一种磁控拉晶装置中电磁线圈布局示意图之一;
图13是图12所示的电磁线圈产生的磁场示意图;
图14是本申请实施例所述的另一种磁控拉晶装置中电磁线圈布局示意图之二;
图15是图14所示的电磁线圈产生的磁场示意图;
图16是本申请实施例所述的再一种磁控拉晶装置的结构示意图;
图17是本申请实施例所述的一种换热器的结构示意图;
图18是图17所示的换热器的俯视结构示意图;
图19是图18所示的换热器A-A截面的剖面结构示意图;
图20是图19所示的换热器B位置的详细结构示意图;
图21是图17所示的换热器的侧向结构示意图;
图22是图21所示的换热器C-C截面的剖视结构示意图;
图23是本申请实施例所述的一种换热器中电磁线圈布局示意图之一;
图24是本申请实施例所述的一种换热器中电磁线圈布局示意图之二。
附图标记:
10-单晶炉,20-坩埚,30-磁控组件,11-换热器,12-加热器,13-
托杆,31-环形磁体,311-磁感线,21-硅液,22-单晶硅棒,23-拉晶通道,32-磁性件,33-内侧壁,34-外侧壁,35-顶面,36-底面,37-冷却层,38-隔热层,301-环状本体,302-进水管,303-出水管;
111-第二进液口,112-第二出液口,15-热屏,121-支撑凸台,131-
壳体,133-第一进液口,134-第一出液口,135-第一支撑块,D-电流入射方向,E-电流出射方向;
100-拉晶通道,101-第二环状腔体,102-外壁,103-底板,104-第
一内壁,105-第二内壁,106-第三凸台,141-壳体本体,142-上盖,143-紧固件,144-密封圈,145-第四凸台。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及 权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
单晶硅的生产一般在单晶炉10内采用直拉法得到单晶硅棒22。为了提高单晶硅生产过程中单晶硅棒22的品质,避免出现杂质含量高、分布不均匀等不良效果,一般通过磁控拉晶法进行拉晶。具体地,采用磁控拉晶装置在直拉法过程中,在熔融的硅液21部分施加磁场,通过硅液21热对流切割磁场产生的磁感线311,产生洛伦兹力,抑制硅液21的热对流。制备得到杂质含量较低、分布较为均匀的单晶硅棒22。
参照图1至10,示出了本申请实施例所述的一种磁控拉晶装置的结构示意图,具体可以包括:单晶炉10、坩埚20以及磁控组件30;坩埚20设置于单晶炉10内,用于盛放硅液21,磁控组件30设置于硅液21上方;磁控组件30包括环形磁体31,环形磁体31内设置有用于单晶硅棒22穿设的拉晶通道23,环形磁体31靠近硅液21设置,用于在硅液21内形成勾型磁场。
在本申请实施例中,所述磁控拉晶装置设置有磁控组件30,磁控组件30连接于换热器11,磁控组件30中设置有环形磁体31,环形磁体31的至少部分位于坩埚20内,以使得环形磁体31可以靠近坩埚20内的硅 液21设置,并在硅液21内形成勾型磁场311。具体地,环形磁体31在硅液21内产生的磁场中,在硅液21的液面位置处的磁场具有最大磁场强度,使得环形磁体31对所有硅液21均具有较好的热对流抑制效果,避免距离环形磁体31对较远处的硅液21形成的磁场较弱,而很难起到显著的抑制作用,丧失经济性。这样,硅液21内部的勾型磁场可以有效抑制硅液21的纵向热对流、横向热对流以及其他方向的热对流,抑制了硅液21在多个方向的热对流。从而可以减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量,提高了拉晶质量。而且,所述磁控拉晶装置的结构简单,在现有的拉晶装置的基础上仅需进行少量的改进即可实施,适用范围广泛且成本较低。
具体地,在本申请实施例中,环形磁体31的磁场强度指其“剩余磁化强度”(Remanence),符号Br;硅液21的液面处的磁场强度指该处的“磁通密度”,是矢量,所谓大小指其绝对值的大小,常用符号B表示,这两者国际通用单位均为特斯拉(符号为T)。
在实际应用中,拉晶装置通常可以由单晶炉10、加热器12、换热器11、坩埚20以及托杆13组成。加热器12靠近坩埚20设置,以将坩埚20内的硅料加热成硅液21,并使得硅液21保持在适合生长晶棒的温度。托杆13连接于坩埚20的底部,以对坩埚20进行承托。示例地,坩埚20具体可以包括石英坩埚、石墨坩埚中的至少一种,本申请实施例对于坩埚20的具体材质可以不做限定。
参照图2,示出了本申请实施例中所述的一种勾型磁场的磁感线示意图。如图2所示,所述勾型磁场在硅液21内的磁感线311为圆弧状的磁感线311。这样,部分磁感线311能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线311能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线311还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。示例的,所述其他方向 可以为与横向之间的倾角为45°、60°等方向。这样,实现对硅液21中的多个方向的热对流均可进行抑制的作用,对磁场的利用率几乎恒定,具有较高的利用率,提升磁控组件30对硅液21中热对流的抑制效果。
在本申请的一些可选实施例中,换热器11包括背离设置的顶端和底端,磁控组件30可以连接于换热器11的底端。这样,能够在不增加其他安装结构的基础上,使得磁控组件30位于与液面最近的位置,使得磁控组件30对硅液21热对流具有较佳的抑制效果。
具体地,在本申请实施例中,磁控组件30可以安装于换热器11的内部,也可以安装于换热器11的外部,本申请实施例磁控组件30的具体安装方式可以不做限定。
示例地,磁控组件30的具体结构如图3所示,磁控组件30可以包括换热器11和环形磁体31;换热器11包括环状本体301、进水管302,以及出水管303。环状本体301内设置有环状腔体,所述环状腔体用于容纳冷却介质。进水管302与所述环状腔体连通,进水管302用于将所述冷却介质通入所述环状腔体内。出水管303与所述环状腔体连通,出水管303用于将所述环状腔体内的所述冷却介质导出。环形磁体31连接于所述环状本体301靠近所述坩埚20的一侧。
在单晶硅棒22的拉制过程中,通过所述冷却介质在环状腔体内的循环,可以将单晶硅棒22结晶时释放的热量快速带走,提高单晶硅棒22的拉制速度。具体的,环状本体301可以采用具有一定强度的金属材料制成。环状本体301内设置有通道,所述通道与拉晶通道23贯通,用于使单晶硅棒22沿拉晶通道23通过。由于环状本体301的环状腔体内可以持续通入循环的冷却介质,在单晶硅棒22通过环状本体301的通道和拉晶通道23时,可以与环状腔体内的所述冷却介质发生热交换,迅速地带走单晶硅棒22的结晶潜热,提高单晶硅棒22的拉制速度。
具体的,进水管302可以连接于环状腔体的底部,出水管303可以连接于环状腔体的顶部。这样,冷却介质可以经进水管302从环状腔体 的底部进入,流经环状腔体后从顶部的出水管303流出,实现热量的传导。
本申请实施例中,环形磁体31可以设置在环状腔体靠近坩埚20的一侧,并且,环形磁体31的至少部分可以伸入坩埚20内,以使得环形磁体31可以靠近坩埚20内的硅液21设置,并在硅液21内形成勾型磁场。
示例地,在本申请实施例中,环形磁体31可以为永磁体,例如铁硼磁体,也可以为电磁体,还可以是永磁体和电磁体的组合等等,本申请实施例对环形磁体31的具体形式可以不做限定。
可选地,在本申请实施例中,如图4所示,环形磁体31为一体成型结构,以便于对环形磁体31进行加工制得,减少了物料损耗和制造工序,并且使得环形磁体31具有较强的磁场。
在本申请的一些可选实施例中,如图5至7所示,环形磁体31可以为分体结构。具体的,环形磁体31可以包括多个磁性件32,多个磁性件32沿周向依次分布以形成所述拉晶通道23。这样,能够实现环形磁体31布置位置的灵活设置,适用于各种不同结构的单晶炉10,还能够避开单晶炉10内的部分结构分布。
具体地,磁性件32可以为铁磁件,也可以为电磁线圈模块,本申请实施例对磁性件32的具体类型可以不做限定。如图4至7所示,示出了磁性件32为铁磁件的不同分布情况。在磁性件32为铁磁件的情况下,所述铁磁件可以包括但不局限于钐钴磁铁、钕铁硼磁铁以及氧化铁磁铁中的任意一种。由于铁磁件的结构简单且成本较低,在磁性件32为铁磁件的情况下,可以使得磁性件32的结构相应较为简单,且成本较低。在磁性件32为电磁线圈模块的情况下,所述电磁线圈模块在通电的情况下可以产生磁场,每个电磁线圈类模块似于一个磁块。
可选地,在本申请实施例中,多个磁性件32中,相邻两个磁性件32之间抵接,或相邻两个磁性件32间隔设置。如图5所示,多个磁性件32 中,相邻两个磁性件32之间抵接。这样,便于使得多个磁性件32围合形成完整的圆环形,具有较好的稳定性,使得环形磁体31能够产生较强的磁场。如图6至7所示,相邻两个磁性件32间隔设置。这样,可以适用于各种不同结构的单晶炉10,便于在安装时避开单晶炉10内的可能会造成干涉的部分结构分布。此外,还可以节省环形磁体31的用料,降低生产成本。
示例地,在本申请实施例中,磁性件32的截面包括弧形面和矩形面中的至少一种,便于适用不同的应用场景,提升磁控组件30的兼容性。如图6所示,磁性件32的截面包括弧形面,多个弧形面的磁性件32围合形成圆环磁体,弧形面的磁性件32能够以较少的数量更好地形成环形磁体31。如图7所示,磁性件32的截面包括矩形面,多个矩形面的磁性件32围合形成圆环磁体,具有更灵活的分布方式,便于适用于各种不同结构的单晶炉10。此外,环形磁体31还可以包括弧形面磁性件32和矩形面磁性件32的组合,本申请实施例对此可以不做限定。
可选地,在本申请实施例中,多个磁性件32中,每个磁性件32的磁极分布相同。这样,使得多个磁性件32绕轴向分布形成的环形磁体31具有较大的磁场强度,使得磁性组件对硅液21的热对流效果有较好的抑制作用。
具体地,在本申请实施例中,每个磁性件32的磁极分布相同指的是,若一个磁性件32靠近拉晶通道23的一端磁极为N极,远离拉晶通道23一端磁极为S极,则另一个磁性件32靠近拉晶通道23的一端磁极也为N极,远离拉晶通道23一端磁极也为S极。若一个磁性件32靠近拉晶通道23的一端磁极为S极,远离拉晶通道23一端磁极为N极,则另一个磁性件32靠近拉晶通道23的一端磁极也为S极,远离拉晶通道23一端磁极也为N极。依次类推,每个磁性件32靠近拉晶通道23的一端磁极皆为N极,远离拉晶通道23一端磁极皆为S极,或者,每个磁性件32靠近拉晶通道23的一端磁极皆为S极,远离拉晶通道23一端磁极皆为N 极。本申请实施例对每个磁性件32的具体磁极分布可以不做限定。
需要说明的是,每个磁性件32的磁极分布也可以不相同。也即,一个磁性件32靠近拉晶通道23的一端磁极为N极,远离拉晶通道23一端磁极为S极;另一个磁性件32靠近拉晶通道23的一端磁极可以为S极,远离拉晶通道23一端磁极可以为N极。
可选地,在本申请实施例中,环形磁体31包括相对设置的内侧壁33和外侧壁34,以及分别与内侧壁33和外侧壁34连接的顶面35和底面36。环形磁体31的磁极包括第一磁极和第二磁极,所述第一磁极与所述第二磁极相反。其中,如图9所示,所述第一磁极设置于内侧壁33,所述第二磁极设置于外侧壁34。或者,如图8所示,所述第一磁极设置于顶面35,所述第二磁极设置于底面36。这样,在本申请实施例中,可以采用不同的磁极分布的环形磁体31,应用于不同的实际使用场景中,提升磁控组件30的兼容性。
示例地,在本申请实施例中,在第一磁极为N极的情况下,第二磁极则为S极,可以设置内侧壁33为N极,外侧壁34为S极,形成径向分布的磁场。或者,可以设置顶面35为N极,底面36为S极,形成纵向分布的磁场。在第一磁极为S极的情况下,第二磁极则为N极,可以设置内侧壁33为S极,外侧壁34为N极,形成径向分布的磁场。或者,可以设置顶面35为S极,底面36为N极,形成纵向分布的磁场。
在本申请实施例中,具体地,可以设置第一磁极为N极,第二磁极为S极,也可以设置第一磁极为S极,第二磁极为N极。本申请实施例对此可以不做限定。
此外,还可以将环形磁体31倾斜一定角度设置,例如45°、60°等等,以形成各种不同方向的磁场分布。本申请实施例对环形磁体31倾斜的倾角可以不做限定。
参照下表1,在模拟实验中,分别将磁场分布设置为径向分布磁场、纵向分布磁场、环形磁体31倾角为45°分布的磁场,以及不设置磁控组 件30,进行对照实验。如表1所示,在设置磁场强度均为1.2T(Tesla,特斯拉,简称特)的情况下,得到在径向分布磁场中硅液21的最高流速为0.013m/s,在纵向分布磁场中硅液21的最高流速为0.027m/s,在环形磁体31倾角为45°的磁场分布中硅液21的最高流速为0.034m/s,以及在无磁场分布时硅液21的最高流速为0.055m/s。
表1
由此可得,上述三种磁场分布情况均可对硅液21的热对流起到较好的抑制作用。其中,径向分布的磁场对硅液21的热对流相比而言更优。也即,将环形磁体31的内侧壁33设为N极,外侧壁34设为S极,或者将环形磁体31的内侧壁33设为S极,外侧壁34设为N极所形成的的径向磁场效果较好。
参照下表2,在模拟实验中,将磁场分布设置为径向分布的磁场,分别将磁场强度设置成100mT、500mT、800mT、1200mT以及无磁场,进行对照实验。如表2所示,在设置磁场强度均为100mT的情况下,得到硅液21的最高流速为0.050m/s,在设置磁场强度均为500mT的情况下,得到硅液21的最高流速为0.042m/s,在设置磁场强度均为800mT的情况下,得到硅液21的最高流速为0.025m/s,在设置磁场强度均为1200mT,也即1.2T的情况下,得到硅液21的最高流速为0.013m/s,以及在无磁场分布时硅液21的最高流速为0.055m/s。
表2
由此可得,在磁场分布一致的情况下,磁场强度越大,磁场对硅液21的热对流抑制作用越好。
在本申请实施例中,可选地,环形磁体31的内壁与单晶硅棒22的外壁之间的间距包括2-10厘米中的任一数值。也即,若环形磁体31的内径为D1,单晶硅棒22的外径为D2,则4cm≤D2-D1≤20cm,使得环形磁体31能够在不影响拉晶的同时对硅液21的热对流具有较好的抑制效果。避免环形磁体31的内壁与单晶硅棒22的外壁之间的间距较小,而阻碍保护性气体沿拉晶通道23的流动,妨碍操作晶体生长时观察固液生长界面。也避免了环形磁体31的内壁与单晶硅棒22的外壁之间的间距较大,而削弱了磁控组件30对硅液21热对流的抑制效果。
在本申请实施例中,若环形磁体31的外径为D3,坩埚20的内径为D4,设置D3<D4,可以使得环形磁体31位于坩埚20内以靠近硅液21的液面上方设置,使得磁控组件30的产生的磁场较强。
具体地,在本申请实施例中,在环形磁体31安装于换热器11底端的外部的情况下,环形磁体31与硅液21的液面之间的间距包括2-10厘米(符号为cm)中的任一数值。这样,使得环形磁体31对单晶硅棒22具有较好的拉晶效果,不影响单晶硅棒22的生长。避免环形磁体31与硅液21液面之间的间距较小,而阻碍保护性气体沿拉晶通道23的流动,妨碍操作晶体生长时观察固液生长界面。也避免了环形磁体31与硅液21液面之间的间距较大,而削弱了磁控组件30对硅液21热对流的抑制效果。
可选地,在本申请实施例中,磁控组件30还包括冷却层37和隔热层38,冷却层37包覆于环形磁体31,隔热层38包覆于冷却层37,冷却层37内通有冷却介质,避免环形磁体31的磁性失效,提升所述磁控拉晶装置的使用寿命。
在实际应用中,在拉晶过程中单晶炉10内需要施加较高的温度,硅液21为熔融状态也具有较高的温度,单晶炉10内可产生超过1400℃的高温,容易对磁控组件30造成损伤。例如使得通电线圈被烧毁、永磁体消磁等等。因此,通过隔热层38阻隔硅液21产生的高温对环形磁体31的影响,并通过冷却层37内的冷却介质降低环形磁体31的温度,以避免环形磁体31的磁性失效。
示例地,隔热层38的材质可以包括金属、陶瓷以及低导热率的耐火材料等等中的至少一种,其导热系数可以低于50w/(m*k),耐受温度高于1000℃,具有较好的耐高温性能。隔热层38可以全部为上述材料中任一种,也可以是上述材质的任意组合,本申请实施例对此可以不做限定。
具体地,冷却层37内可以通入流动的冷却介质,也可以通入不流动的冷却介质,进行定期更换,本申请实施例对此也可以不做限定。示例地,冷却介质的材质可以包括水、气体或其他液体等等,以对环形磁体31进行冷却降温,使得环形磁体31的温度小于或者等于300℃,不影响其产生的磁场。
参照图11,示出了本申请实施例所述的另一种磁控拉晶装置的结构示意图,如图11所示,所述磁控拉晶装置具体可以包括:单晶炉10(图中未示出);坩埚20,坩埚20设置于单晶炉10内,用于容纳硅液21,以从硅液21中生长单晶硅棒22;换热器11,换热器11设置在单晶炉10内,且位于坩埚20的上方;热屏15,热屏15套设在换热器11外,且与换热器11之间形成间隙;以及,磁控组件30,磁控组件30嵌设于换热器11与热屏15之间的间隙内,且靠近硅液21设置,以在硅液21内形成磁场,磁控组件30 包括环形磁体31。
本申请实施例中,在单晶硅棒22的拉制过程中,换热器11可以用于将单晶硅棒22结晶时释放的热量快速带走,提高单晶硅棒22的拉制速度。同时,磁控组件30可以在坩埚20的硅液21内形成磁场,所述磁场可以用于抑制硅液21内部的热对流,减少硅液21对坩埚21壁的冲刷,降低硅液21中的杂质含量,从而,提高了单晶硅棒22的拉晶品质。而且,通过将磁控组件30嵌设于换热器11与热屏15之间的间隙内,无需改变现有的单晶硅棒装置的原有部件即可实施,通用性较好,实施成本较低。
具体的,所述磁控拉晶装置可以为单晶炉。单晶炉10作为所述磁控拉晶装置的主结构件,可以容纳并固定坩埚20、换热器11以及热屏15等。示例的,坩埚20可以为单坩埚、双坩埚等,坩埚20可以用于容纳硅料。在加热器将坩埚20内的硅料加热成硅液21后,可以在硅液21的单晶生长界面生长出单晶硅棒22。
如图11所示,换热器11的内部可以设置有用于单晶硅棒22穿设的拉晶通道。换热器11可以套设在单晶硅棒22外,热屏15可以套设在换热器11外,且与换热器11之间形成间隙。在实际应用中,换热器11可以吸收单晶硅棒22结晶时辐射出的热量,并将吸收的热量传输至单晶炉10外,从而提升单晶硅棒22的纵向温度梯度并提高单晶硅棒22的晶体生长速度,热屏15则可以对单晶炉10内的气体进行导流,并提供稳定的热场环境。示例地,换热器11可以为水冷换热器或者风冷换热器中的任意一种,本申请实施例仅以换热器11为水冷换热器为例进行说明,其他类型的换热器11参照执行即可。
本申请实施例中,可以在换热器11与热屏15之间的间隙内设置环状的磁控组件30,具体的,磁控组件30可以套设在换热器11外且与换热器11之间形成一定的间隙。如图11所示,磁控组件30可以靠近坩埚20设置,并且,磁控组件30的至少部分可以伸入坩埚20内,以使得磁控组件30可以靠近坩埚20内的硅液21设置,并在硅液21内形成勾型磁场。在具体的 应用中,硅液21内部的勾形磁场可以用于抑制硅液21的纵向热对流、横向热对流以及其他方向的热对流。这样,就可以降低硅液21中的杂质含量,从而,提高了单晶硅棒22的品质。
参照图2,示出了本申请实施例所述的磁性组件在硅液中形成的勾形磁场示意图。如图2所示,所述勾型磁场在硅液21内的磁感线为圆弧状的磁感线。这样,部分磁感线能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。示例的,所述其他方向可以为与横向之间的倾角为45°、60°等方向。这样,通过对硅液21中的多个方向的热对流均进行抑制,可以减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量,从而,提升所述单晶硅棒22的品质。
在实际应用中,可以在所述磁控拉晶装置的开发阶段增加磁控组件30,也可以对现有的磁控拉晶装置进行改制,以得到带有磁控组件30的磁控拉晶装置。
具体的,在对现有的磁控拉晶装置进行改制的过程中,仅需将环状的磁控组件30嵌设在换热器11和热屏15之间的间隙即可,无需对现有的换热器11、热屏15的结构和位置进行更改即可实施本申请的技术方案,易于实施且通用性较好,实施成本较低。
在本申请的一些可选实施例中,磁控组件30具体可以包括环状的壳体131以及环状的环形磁体31;壳体131嵌设于换热器11与热屏15之间的间隙内,且与热屏15连接;壳体131内设有环状腔体,环形磁体31设置于所述环状腔体内。壳体131可以用于支撑和保护环形磁体31,提升环形磁体31的使用寿命。
具体的,热屏15可以包括侧壁和底壁,壳体131可以连接在所述热屏15的底壁。由于坩埚20通常设置在热屏15的下方,通过将壳体131设置于 热屏15的底壁,可以使得环形磁体31尽量靠近坩埚20设置,减小环形磁体31与坩埚20内的硅液21之间的距离。
示例的,可以在热屏15的底部设置支撑凸台121,并将壳体131的底部连接在支撑凸台121上,以实现磁控组件30与热屏15之间的连接。具体的,壳体131与支撑凸台121之间的连接方式可以包括但不局限与紧固件连接、焊接连接中的至少一种,本申请实施例对此不做限定。
可选地,壳体131上设置有第一进液口133和第一出液口134,第一进液口133和第一出液口134皆与所述环状腔体连通;其中,第一进液口133可以用于将冷却介质导入所述环状腔体内,第一出液口134用于将所述环状腔体内的所述冷却介质导出,以实现所述冷却介质在所述环状腔体内的循环,冷却所述环状腔体内的环形磁体31。从而,避免硅液21的高温导致环形磁体31消磁或者损坏,从而,可以使得环形磁体31在适合的温度下工作,提高环形磁体31的使用寿命。本实施例,在环形磁体31的外壁设置有密封件,用以避免冷却介质与磁性件直接接触。
示例的,所述冷却介质可以包括但不局限于冷却水、冷却气体等,本申请实施例对于所述冷却介质不做具体限定。
可选地,换热器11上设置有第二进液口111和第二出液口112,第二进液口111可以用于将冷却介质导入换热器11内,第二出液口112可以用于将换热器11内的所述冷却介质导出,以实现冷却介质在换热器11内部的循环。如图11所示,第一进液口133可以与第二进液口111连通,第一出液口134与第二出液口112连通,即磁控组件30可以与换热器11共用冷却系统。这样,就可以避免额外设置冷却装置来实现磁控组件30的冷却,简化磁控组件30的结构,从而,可以简化所述磁控拉晶装置整体结构。
本申请实施例中,环形磁体31的外壁与所述环状腔体的内壁之间存在间隙,所述冷却介质填充于所述间隙以带走环形磁体31的热量,以使壳体131内的环形磁体31得以在合适的温度下工作,提高环形磁体31的使用寿命。
具体的应用中,壳体131的材质可以为铜、铁、铝或铜、铁、铝的合金,而且,壳体131各部分的材质可相同也可不同。例如,为了达到最佳的冷却效果,壳体131可以整体选用高导热率的铜材质。又如,为了达到低的加工成本,壳体131可以整体选用不锈钢材质。再如,为了兼顾降温效果与经济性,靠近热源(坩埚20)的底板可以使用高导热的铜材质,其余部分选取不锈钢材质。
在具体的应用中,壳体131和环形磁体31的形状皆可以为环状。所述环状腔体的最小内径可以大于环形磁体31的内径,环形磁体31的最大外径可以小于于所述环状腔体的外径,以使得环形磁体31与所述环状腔体的侧部之间能够形成间隙。而且,环形磁体31的底部与所述环状腔体的底部之间也可以存在间隙。这样,就可以使得所述冷却介质能够充分的填充在环形磁体31侧面以及底部的间隙内,以快速地环形磁体31表面的热量。
可选地,所述环状腔体的底部设置有多个间隔设置的第一支撑块135,第一支撑块135连接在壳体131的底部,以使环形磁体31与所述环状腔体形成间隙,以便于冷却介质填充在环形磁体31的底部,实现对于环形磁体31底部的冷却。
和/或,所述环状腔体的内侧壁上设置有多个间隔分布的第一凸台,所述第一凸台朝向环形磁体31延伸,环形磁体31在与所述多个第一凸台对应的位置设置有多个第二凸台,一个所述第二凸台与一个所述第一凸台配合,以使环形磁体31的侧面与所述环状腔体形成间隙,便于所述冷却介质填充在环形磁体31的侧面,实现对于环形磁体31侧面的冷却。
在实际应用中,多个第一支撑块135以及多个所述第一凸台需要间隔分布,即,第一支撑块135之间,以及所述第一凸台之间需要形成能够供所述冷却介质流通的通道,以使得所述冷却介质能够沿环形磁体31的外侧流动,实现对于环形磁体31的冷却。在实际应用中,为了提升所述冷却介质对于环形磁体31的冷却效果,环形磁体31的外表面90%的以上的面积需要与所述冷却介质接触,即第一支撑块135和所述第二凸台在环形磁体31的外表 面所占的面积不能超过10%。
在本申请的一些可选实施例中,环形磁体31为铁磁件,所述铁磁件可以包括但不局限于钐钴磁铁、钕铁硼磁铁以及氧化铁磁铁中的任意一种。由于铁磁件的结构简单且成本较低,在环形磁体31为铁磁件的情况下,可以使得环形磁体31的结构相应较为简单,且成本较低。
可选地,所述铁磁件可以为环状的一体成型结构,即所述铁磁件可以为整体式结构,结构简单且装配工艺较为简单。或者,所述铁磁件为分体结构,所述铁磁件包括多个磁块,所述多个磁块沿环状腔体的周向依次分布以形成环状结构,在实际应用中,所述多个磁块的形状、位置以及相邻的两个磁块之间的间隔可以根据实际情况进行设定,这样,就可以极大的提高环形磁体31的布局灵活性。
具体的,所述铁磁件可以包括第一磁极和第二磁极,所述第一磁极和所述第二磁极的极性相反。在实际应用中,所述第一磁极可以设置在所述铁磁件的顶部,所述第二磁极可以设置在所述铁磁件的底部,或者,所述第一磁极设置在所述铁磁件的外侧,所述第二磁极设置在所述铁磁件的内侧。本申请实施例对于所述第一磁极和所述第二磁极的具体位置可以不做限定。
示例地,所述第一磁极可以为N极和S极中的其中之一,所述第二磁极可以为N极和S极中的其中另一。
在本申请的一些可选实施例中,环形磁体31还可以为电磁线圈,所述电磁线圈在通电的情况下可以产生磁场,抑制硅液21内部的磁对流。
参照图12,示出了本申请实施例所述的另一种磁控拉晶装置中电磁线圈布局示意图之一,参照图13,示出了图12所示的电磁线圈产生的磁场示意图。如图12所示,所述电磁线圈的轴向可以与环状腔体的轴向垂直,即环状腔体的轴向为竖直方向,所述电磁线圈的轴向为横向(即环状腔体的径向),所述电磁线圈的电流入射方向D可以位于上方,电流出射方向E可以位于下方。所述电磁线圈可以用于形成如图13所示的横向磁场。
如图13所示,所述横向磁场在坩埚20硅液21内的磁感线为圆弧状的 磁感线。这样,部分磁感线能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。这样,就可以对硅液21中的多个方向的热对流均进行抑制,减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量,提高所述单晶硅棒22的品质。
参照图14,示出了本申请实施例所述的另一种磁控拉晶装置中电磁线圈布局示意图之二,参照图15,示出了图14所示的电磁线圈产生的磁场示意图。如图14所示,所述电磁线圈的轴向与所述环状腔体的轴向平行,即环状腔体的轴向为竖直方向,所述电磁线圈的轴向也为竖直方向,所述电磁线圈的电流入射方向D可以位于外侧,电流出射方向E可以位于里侧。所述电磁线圈可以用于形成图6所示的竖向磁场。
如图15所示,所述竖向磁场在坩埚20硅液21内的磁感线为圆弧状的磁感线。这样,部分磁感线能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。这样,就可以对硅液21中的多个方向的热对流均进行抑制,可以减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量,提高所述单晶硅棒22的品质。
需要说明的是,在实际应用中,在环形磁体31为电磁线圈的情况下,本领域技术人员可以将所述电磁线圈按照图12所示的方式布局,也可以按照图14所示的方式布局,本申请实施例对此不做限定。但是,通过对比图12和图14所示的磁场示意图,可以得到,在同等条件下,图12所示的磁场更加有利于从多个方向实现对硅液21的热对流,因此,可以优选图12所示的布局方式。
可选地,在所述电磁线圈的轴向与所述环状腔体的轴向垂直的情况下,所述电磁线圈的数量可以为多个,多个所述电磁线圈沿所述环状腔体的周向间隔分布,以形成环状的环形磁体31。在实际应用中,所述多个电磁线圈产生的磁场可以交叠,以从更多的方向抑制硅液21内部的热对流,进一步减小硅液21对坩埚20壁的冲击。
可选地,在所述电磁线圈的轴向与所述环状腔体的轴向平行的情况下,所述电磁线圈的数量为一个或者多个。其中,在所述电磁线圈为一个的情况下,所述电磁线圈可以呈环状分布,且套设在换热器11的拉晶通道外。在所述电磁线圈为多个的情况下,多个所述电磁现状沿周向间隔分布,以形成环状的环形磁体31。在实际应用中,所述多个电磁线圈产生的磁场可以交叠,以从更多的方向抑制硅液21内部的热对流,进一步减小硅液21对坩埚20壁的冲击。
在本申请的另一些可选实施例中,环形磁体31可以为电磁线圈,所述电磁线圈的轴向与所述环状腔体的轴向呈预设夹角设置,所述预设夹角为直角之外的夹角,以使得所述电磁线圈可以产生介于图13所示的横向磁场和图15所示的竖向磁场之间的中间磁场。
在具体的应用中,所述中间磁场在坩埚20硅液21内的磁感线为圆弧状的磁感线。这样,部分磁感线能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。这样,就可以对硅液21中的多个方向的热对流均进行抑制,可以减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量,提高所述单晶硅棒22的品质。
需要说明的是,在实际应用中,所述预设夹角的值可以根据实际情况进行设定,例如,所述预设夹角可以为30度、50度、85度或者140度等,本申请实施例对于预设夹角的具体值可以不做限定。
本申请实施例中,磁控组件30的内径可以大于单晶硅棒22的外径,以使得磁控组件30与单晶硅棒22之间能够形成一定的间隙,以便于氩气等工作气体流经磁控组件30与单晶硅棒22之间的间隙,带走单晶硅棒22的结晶潜热。而且,磁控组件30的外径可以小于坩埚20的内径。在磁控组件30部分延伸至坩埚20内的情况下,磁控组件30的侧壁与坩埚20的内壁之间可以形成一定的间隙,避免磁控组件30与坩埚20之间发生碰撞。
可选地,磁控组件30的内径与单晶硅棒22的外径之间的差值大于或者等于4厘米,且小于或者等于20厘米,这样,就可以使得工作气体以合适的速度流经磁控组件30与单晶硅棒22之间的间隙,带走单晶硅棒22的结晶潜热,又可以避免工作气体扰动坩埚20内硅液21的表面,提高硅液21表面的平稳性,进而,可以提升单晶硅棒22的品质。
示例地,磁控组件30的内径与单晶硅棒22的外径之间的差值可以为4厘米、6厘米、9厘米、14厘米、20厘米或者22厘米等,本申请实施例对此不做限定。
可选地,所述铁磁件可以为环状的一体成型结构,即所述铁磁件可以为整体式结构,结构简单且装配工艺较为简单。或者,所述铁磁件为分体结构,所述铁磁件包括多个磁块,所述多个磁块沿周向依次分布以形成环状结构,在实际应用中,所述多个磁块的形状、位置以及相邻的两个磁块之间的间隔可以根据实际情况进行设定,这样,就可以极大的提高环形磁体31的布局灵活性。
参照图13,可以表示电磁线圈产生的磁场示意图。所述电磁线圈的轴向可以与环状本体301的轴向垂直,即环状本体301的轴向为竖直方向,所述电磁线圈的轴向为横向(即环状本体301的径向),所述电磁线圈的电流入射方向D可以位于上方,电流出射方向E可以位于下方。所述电磁线圈可以用于形成如图13所示的横向磁场。
如图13所示,所述横向磁场在坩埚20硅液21内的磁感线311为圆弧状的磁感线311。这样,部分磁感线311能够切割硅液21中的纵向热对流, 产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线311能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线311还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。这样,就可以对硅液21中的多个方向的热对流均进行抑制,减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量。
参照图15,可以表示电磁线圈产生的磁场示意图。如图24所示,所述电磁线圈的轴向与所述与环状本体301的轴向平行,即环状本体301的轴向为竖直方向,所述电磁线圈的轴向也为竖直方向,所述电磁线圈的电流入射方向D可以位于外侧,电流出射方向E可以位于里侧。所述电磁线圈可以用于形成图11所示的竖向磁场。
如图15所示,所述竖向磁场在坩埚20硅液21内的磁感线311为圆弧状的磁感线311。这样,部分磁感线311能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线311能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线311还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。这样,就可以对硅液21中的多个方向的热对流均进行抑制,可以减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量。
需要说明的是,在实际应用中,在环形磁体31为电磁线圈的情况下,本领域技术人员可以将所述电磁线圈按照图23所示的方式布局,也可以按照图24所示的方式布局,本申请实施例对此不做限定。但是,通过对比图13和图15所示的磁场示意图,可以得到,在同等条件下,图13所示的磁场更加有利于从多个方向实现对硅液21的热对流,因此,可以优选图13所示的布局方式。
可选地,在所述电磁线圈的轴向与环状本体301的轴向垂直的情况下,所述电磁线圈的数量可以为多个,多个所述电磁线圈沿环状本体301的周向 间隔分布,以形成环状的环形磁体31。在实际应用中,所述多个电磁线圈产生的磁场可以交叠,以从更多的方向抑制硅液21内部的热对流,进一步减小硅液21对坩埚20壁的冲击。
可选地,在所述电磁线圈的轴向与环状本体301的轴向平行的情况下,所述电磁线圈的数量为一个或者多个。其中,在所述电磁线圈为一个的情况下,所述电磁线圈可以呈环状分布,且套设在换热器的拉晶通道100外。在所述电磁线圈为多个的情况下,多个所述电磁现状沿周向间隔分布,以形成环状的环形磁体31。在实际应用中,所述多个电磁线圈产生的磁场可以交叠,以从更多的方向抑制硅液21内部的热对流,进一步减小硅液21对坩埚20壁的冲击。
在本申请的另一些可选实施例中,所述磁性件为电磁线圈,所述电磁线圈的轴向与环状本体301的轴向呈预设夹角设置,所述预设夹角为直角之外的夹角,以使得所述电磁线圈可以产生介于图13所示的横向磁场和图15所示的竖向磁场之间的中间磁场。
在具体的应用中,所述中间磁场在坩埚20硅液21内的磁感线311为圆弧状的磁感线311。这样,部分磁感线311能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线311能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线311还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。这样,就可以对硅液21中的多个方向的热对流均进行抑制,可以减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量。
需要说明的是,在实际应用中,所述预设夹角的值可以根据实际情况进行设定,例如,所述预设夹角可以为30度、50度、85度或者140度等,本申请实施例对于预设夹角的具体值可以不做限定。
示例地,在本申请实施例中,所述勾型磁场在所述硅液的液面的磁场强度大于或者等于0.1毫特。这样,使得环形磁体31对所有硅液21均 具有较好的热对流抑制效果,避免距离环形磁体31对较远处的硅液21形成的磁场较弱,而很难起到显著的抑制作用,使得环形磁体具有较好的经济性。
综上,本申请实施例所述的磁控拉晶装置至少可以包括以下优点:
在本申请实施例中,所述磁控拉晶装置包括单晶炉、坩埚以及磁控组件;所述坩埚设置于所述单晶炉内,用于盛放硅液,所述磁控组件设置于所述硅液上方;所述磁控组件包括环形磁体,所述环形磁体内设置有用于单晶硅棒穿设的拉晶通道,所述环形磁体靠近所述硅液设置,用于在所述硅液内形成勾型磁场。通过本申请中所述磁控拉晶装置设置有所述磁控组件,所述磁控组件连接于所述换热器,所述磁控组件中设置有所述环形磁体,所述环形磁体的至少部分位于所述坩埚内,以使得所述环形磁体可以靠近所述坩埚内的所述硅液设置,并在所述硅液内形成所述勾型磁场,有效抑制所述硅液的纵向热对流、横向热对流以及其他方向的热对流,抑制了所述硅液在多个方向的热对流。这样,就可以减少所述硅液对所述坩埚壁的冲刷,降低所述硅液中的杂质含量,提高了拉晶质量。而且,所述磁控拉晶装置的结构简单,在现有的拉晶装置的基础上仅需进行少量的改进即可实施,适用范围广泛且成本较低。
本申请实施例还提供了一种换热器,所述换热器可以用于磁控拉晶装置。所述磁控拉晶装置可以包括单晶炉10以及设置于所述单晶炉10内的坩埚,所述坩埚可以用于容纳硅液,所述换热器位于所述坩埚上方。具体的,所述换热器可以套设在单晶硅棒外,所述换热器可以吸收所述单晶硅棒结晶时辐射出的热量,并将吸收的热量传输至所述单晶炉10外,从而提升所述单晶硅棒的纵向温度梯度并提高所述单晶硅棒的晶体生长速度。所述换热器可以为水冷换热器或者风冷换热器中的任意一种,本申请实施例仅以所述换热器为水冷换热器为例进行说明,风冷换热器参照执行即可。
参照图17,示出了本申请实施例所述的一种换热器的结构示意图,参照图18,示出了图17所示的换热器的俯视结构示意图,参照图19,示出了图 18所示的换热器A-A截面的剖面结构示意图,参照图20,示出了图19所示的换热器B位置的详细结构示意图,参照图21,示出了图17所示的换热器的侧向结构示意图,参照图22,示出了图21所示的换热器C-C截面的剖视结构示意图。
具体的,所述换热器具体可以包括:环状本体301,环状本体301内设置有第二环状腔体101,第二环状腔体101可以用于容纳冷却介质;进水管11,进水管11与第二环状腔体101连通,进水管11可以用于将所述冷却介质通入第二环状腔体101内;出水管303,出水管303与第二环状腔体101连通,出水管303可以用于将第二环状腔体101内的所述冷却介质导出;以及环状的环形磁体31,环形磁体31连接于环状本体301靠近坩埚20的一侧。
本申请实施例中,所述换热器可以包括环状本体301,环状本体301内设置有用于容纳冷却介质的第二环状腔体101,环形磁体31设置于环状本体301靠近坩埚20的一侧。在单晶硅棒的拉制过程中,通过所述冷却介质在第二环状腔体101内的循环,可以将所述单晶硅棒结晶时释放的热量快速带走,提高所述单晶硅棒的拉制速度。同时,环形磁体31可以在坩埚20的硅液21内形成磁场,所述磁场可以用于抑制硅液21内部的热对流,减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量,从而,提高了单晶硅棒的拉晶品质。也即,本申请实施例所述的换热器,可以兼顾所述单晶硅棒的拉制速度和拉晶品质。
具体的,环状本体301作为所述换热器的结构主体,可以采用具有一定强度的金属材料制成。环状本体301内设置有用于单晶硅棒通过的拉晶通道100。由于环状本体301的第二环状腔体101内可以持续通入循环的冷却介质,在所述单晶硅棒通过拉晶通道100时,可以与第二环状腔体101内的所述冷却介质发生热交换,迅速地带走所述单晶硅棒的结晶潜热,提高所述单晶硅棒的拉制速度。
具体的,进水管11可以连接于第二环状腔体101的底部,出水管303可以连接于第二环状腔体101的顶部。这样,冷却介质可以经进水管302从 第二环状腔体101的底部进入,流经第二环状腔体101后从顶部的出水管303流出,实现热量的传导。示例的,所述冷却介质可以包括水、冷却液等,本申请实施例对于所述冷却介质的具体类型可以不做限定。
本申请实施例中,可以在所述换热器靠近坩埚20的一侧设置环形的环形磁体31,并且,环形磁体31的至少部分可以伸入坩埚20内,以使得环形磁体31可以靠近坩埚20内的硅液21设置,并在硅液21内形成勾型磁场。在具体的应用中,硅液21内部的勾形磁场可以用于抑制硅液21的纵向热对流、横向热对流以及其他方向的热对流。这样,就可以降低硅液21中的杂质含量,从而,提高了单晶硅棒的品质。
参照图2,示出了本申请实施例所述的换热器中的磁性件在硅液中形成的勾形磁场示意图。如图2所示,所述勾型磁场在坩埚20硅液21内的磁感线311为圆弧状的磁感线311。这样,部分磁感线311能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线311能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线311还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。示例的,所述其他方向可以为与横向之间的倾角为45°、60°等方向。这样,通过对硅液21中的多个方向的热对流均进行抑制,可以减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量。
在本申请的一种可选实施例中,环形磁体31可以设置于第二环状腔体101内,第二环状腔体101内的所述冷却介质可以冷却环形磁体31,避免硅液21的高温导致环形磁体31消磁或者损坏,从而,可以使得环形磁体31在适合的温度下工作,提高环形磁体31的使用寿命。
示例的,环形磁体31可以设置在第二环状腔体101的底部。由于坩埚20通常设置在环状本体301的下方,通过将环形磁体31设置于第二环状腔体101的底部,可以使得环形磁体31尽量靠近坩埚20设置,减小环形磁体31与坩埚20内的硅液21之间的距离。
可选地,所述换热器还可以包括壳体131,壳体131内设置有封闭的容纳腔,环形磁体31位于所述容纳腔内。壳体131可以用于实现对于环形磁体31的保护,避免环形磁体31与所述冷却介质直接接触造成的锈蚀,进一步提升环形磁体31的使用寿命。
如图19所示,壳体131具体可以包括壳体本体141以及与壳体本体141连接的上盖142,壳体本体141与上盖142围合形成所述容纳腔。在具体的应用中,通过将壳体131设置成可拆分的壳体本体141和上盖142,不仅可以便于壳体131的加工,而且,还便于将环形磁体31装入壳体131的容纳腔内,或者,将环形磁体31从壳体131的容纳腔内取出,实现壳体131和/或环形磁体31的维修或者更换。
在具体的应用中,壳体本体141与上盖142之间的连接方式可以包括但不限于焊接、铆接、粘接或者通过紧固件143实现螺纹连接中的至少一种,本申请实施例对于壳体本体141与上盖142之间的连接方式不做具体限定。壳体本体141和上盖142可以采用金属、聚乙烯以及环氧树脂等磁导率为0.9-1.1的固体材料制成,壳体本体141与上盖142的材料可以相同或者不同,本申请实施例对此不做限定。
如图20所示,在壳体本体141与上盖142之间通过紧固件143实现螺纹连接的情况下,壳体131还包括密封圈144,密封圈144设置于壳体本体141与上盖142之间,以实现壳体本体141与上盖142之间的密封连接,避免所述冷却介质从壳体本体141与上盖142之间的缝隙进入所述容纳腔的内部,以实现环形磁体31的防水,进一步提升环形磁体31的使用安全。
示例的,密封圈144的材质可以包括但不局限于泡棉、硅胶等柔性材料中的任意一种,本申请实施例对于密封圈144的材质不做具体限定。紧固件143可以包括但不限于螺栓、螺钉以及螺柱中的至少一种,本申请实施例对于紧固件143的具体类型可以不做限定。
在本申请的一些可选实施例中,壳体131的外壁与第二环状腔体101的内壁之间存在间隙,所述冷却介质可以填充于所述间隙以带走壳体131的热 量,以使壳体131内的环形磁体31得以在合适的温度下工作,提高环形磁体31的使用寿命。
如图19所示,环状本体301可以包括外壁102、底板103、第一内壁104和第二内壁105,外壁102、底板103、第一内壁104和第二内壁105可以依次焊接连接,并围合形成第二环状腔体101,第二环状腔体101可以用于容纳冷却介质,壳体131可以设置于所述第二环状腔体101的底部。
在具体的应用中,进水管11、出水管303、外壁102、底板103、第一内壁104和第二内壁105的材质可以为铜、铁、铝或铜、铁、铝的合金,各零件的材质可相同也可不同。例如,为了达到最佳的冷却效果,各零件可以全部选用高导热率的铜材质。又如,为了达到低的加工成本,各零件可以整体选用不锈钢材质。再如,为了兼顾降温效果与经济性,靠近热源(坩埚20)的底板103和第一内壁104可以使用高导热的铜材质,其余部分选取不锈钢材质。
需要说明的是,在具体的应用中,外壁102可以为直壁、斜壁或者弧形壁中的至少一种。相应的,第一内壁104和第二内壁105也可以为直壁、斜壁或者弧形壁中的至少一种。本申请实施例对于外壁102、第一内壁104和第二内壁105的形状不做具体限定。
在具体的应用中,壳体131的形状可以为环状。壳体131的最小内径可以大于第二环状腔体101的内径,壳体131的最大外径可以小于第二环状腔体101的外径,以使得壳体131与环状本体301的侧部之间能够形成间隙。而且,壳体131的底部与第二环状腔体101的底部(底板103)之间也可以存在间隙。这样,就可以使得所述冷却介质能够充分的填充在壳体131侧面以及底部的间隙内,以快速地带走壳体131表面的热量。
可选地,第二环状腔体101的底部设置有多个间隔设置的支撑块,所述支撑块连接在壳体131的底部,以使壳体131与第二环状腔体101形成所述间隙,以便于冷却介质填充在壳体131的底部,实现对于壳体131底部的冷却。
具体的,所述支撑块可以为金属块,所述金属块可以焊接在底板103上。为了实现对于壳体131的可靠支撑,所述多个金属块可以根据需要间隔设置在任意位置。
和/或,如图20所示,第二环状腔体101的内侧壁上设置有多个间隔分布的第三凸台106,第三凸台106朝向壳体131延伸,壳体131在与多个第三凸台106对应的位置设置有多个第四凸台145,一个第四凸台145与一个第三凸台106配合,以使壳体131与第二环状腔体101形成间隙,便于所述冷却介质填充在壳体131的侧面,实现对于壳体131侧面的冷却。
如图22所示,多个第三凸台106需要间隔分布,即,第三凸台106之间需要形成能够供所述冷却介质流通的通道,以使得所述冷却介质能够沿壳体131的外侧流动,实现对于壳体131的冷却。在实际应用中,为了提升所述冷却介质对于壳体131的冷却效果,壳体131的外表面90%的以上的面积需要与所述冷却介质接触,即第四凸台145在壳体131的外表面所占的面积不能超过10%。
具体的,所述铁磁件可以包括第一磁极和第二磁极,所述第一磁极和所述第二磁极的极性相反。在实际应用中,所述第一磁极可以设置在所述铁磁件的顶部,所述第二磁极可以设置在所述铁磁件的底部,或者,所述第一磁极设置在所述铁磁件的外侧,所述第二磁极设置在所述铁磁件的内侧。本申请实施例对于所述第一磁极和所述第二磁极的具体位置可以不做限定。
示例地,所述第一磁极可以为N极和S极中的其中之一,所述第二磁极可以为N极和S极中的其中另一。
参照图23,示出了本申请实施例所述的一种换热器中电磁线圈布局示意图之一,参照图13,也可以表示图23所示的电磁线圈产生的磁场示意图。如图23所示,所述电磁线圈的轴向可以与环状本体301的轴向垂直,即环状本体301的轴向为竖直方向,所述电磁线圈的轴向为横向(即环状本体301的径向),所述电磁线圈的电流入射方向D可以位于上方,电流出射方向E可以位于下方。所述电磁线圈可以用于形成如图13所示的横向磁场。
如图13所示,所述横向磁场在坩埚20硅液21内的磁感线311为圆弧状的磁感线311。这样,部分磁感线311能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线311能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线311还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。这样,就可以对硅液21中的多个方向的热对流均进行抑制,减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量。
参照图24示出了本申请实施例所述的一种换热器中电磁线圈布局示意图之二,参照图15,也可以表示图24所示的电磁线圈产生的磁场示意图。如图24所示,所述电磁线圈的轴向与所述与环状本体301的轴向平行,即环状本体301的轴向为竖直方向,所述电磁线圈的轴向也为竖直方向,所述电磁线圈的电流入射方向D可以位于外侧,电流出射方向E可以位于里侧。所述电磁线圈可以用于形成图11所示的竖向磁场。
如图15所示,所述竖向磁场在坩埚20硅液21内的磁感线311为圆弧状的磁感线311。这样,部分磁感线311能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线311能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线311还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。这样,就可以对硅液21中的多个方向的热对流均进行抑制,可以减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量。
需要说明的是,在实际应用中,在环形磁体31为电磁线圈的情况下,本领域技术人员可以将所述电磁线圈按照图23所示的方式布局,也可以按照图24所示的方式布局,本申请实施例对此不做限定。但是,通过对比图13和图15所示的磁场示意图,可以得到,在同等条件下,图13所示的磁场更加有利于从多个方向实现对硅液21的热对流,因此,可以优选图23所示 的布局方式。
可选地,在所述电磁线圈的轴向与环状本体301的轴向垂直的情况下,所述电磁线圈的数量可以为多个,多个所述电磁线圈沿环状本体301的周向间隔分布,以形成环状的环形磁体31。在实际应用中,所述多个电磁线圈产生的磁场可以交叠,以从更多的方向抑制硅液21内部的热对流,进一步减小硅液21对坩埚20壁的冲击。
可选地,在所述电磁线圈的轴向与环状本体301的轴向平行的情况下,所述电磁线圈的数量为一个或者多个。其中,在所述电磁线圈为一个的情况下,所述电磁线圈可以呈环状分布,且套设在换热器的拉晶通道100外。在所述电磁线圈为多个的情况下,多个所述电磁现状沿周向间隔分布,以形成环状的环形磁体31。在实际应用中,所述多个电磁线圈产生的磁场可以交叠,以从更多的方向抑制硅液21内部的热对流,进一步减小硅液21对坩埚20壁的冲击。
在本申请的另一些可选实施例中,所述磁性件为电磁线圈,所述电磁线圈的轴向与环状本体301的轴向呈预设夹角设置,所述预设夹角为直角之外的夹角,以使得所述电磁线圈可以产生介于图13所示的横向磁场和图15所示的竖向磁场之间的中间磁场。
在具体的应用中,所述中间磁场在坩埚20硅液21内的磁感线311为圆弧状的磁感线311。这样,部分磁感线311能够切割硅液21中的纵向热对流,产生洛伦兹力,对硅液21中的纵向热对流实现抑制作用。同时,其中另一部分磁感线311能够切割硅液21中的横向热对流,产生洛伦兹力,对硅液21中的横向热对流实现抑制作用。而且,磁感线311还能够切割纵向和横向之外的其他方向的热对流产生洛伦兹力。这样,就可以对硅液21中的多个方向的热对流均进行抑制,可以减少硅液21对坩埚20壁的冲刷,降低硅液21中的杂质含量。
需要说明的是,在实际应用中,所述预设夹角的值可以根据实际情况进行设定,例如,所述预设夹角可以为30度、50度、85度或者140 度等,本申请实施例对于预设夹角的具体值可以不做限定。
综上,本申请实施例所述的换热器至少可以包括以下优点:
本申请实施例中,所述换热器可以包括环状本体,所述环状本体内设置有用于容纳冷却介质的环状腔体,所述磁性件设置于所述环状本体靠近坩埚的一侧。在单晶硅棒的拉制过程中,通过所述冷却介质在所述环状腔体内的循环,可以将所述单晶硅棒结晶时释放的热量快速带走,提高所述单晶硅棒的拉制速度。同时,所述磁性件可以在所述坩埚的硅液内形成磁场,所述磁场可以用于抑制所述硅液内部的热对流,减少所述硅液对所述坩埚壁的冲刷,降低所述硅液中的杂质含量,从而,提高了单晶硅棒的拉晶品质。也即,本申请实施例所述的换热器,可以兼顾所述单晶硅棒的拉制速度和拉晶品质。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体与另一个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的技术方案进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,同时,对于本领域的一般技术人员,依据本申请的原理及实现方式,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (33)

  1. 一种磁控拉晶装置,其特征在于,所述磁控拉晶装置包括单晶炉、坩埚以及磁控组件;
    所述坩埚设置于所述单晶炉内,用于盛放硅液,所述磁控组件设置于所述硅液上方;
    所述磁控组件包括环形磁体,所述环形磁体内设置有用于单晶硅棒穿设的拉晶通道,所述环形磁体靠近所述硅液设置,用于在所述硅液内形成勾型磁场。
  2. 根据权利要求1所述的磁控拉晶装置,其特征在于,所述环形磁体为一体成型结构。
  3. 根据权利要求1所述的磁控拉晶装置,其特征在于,所述环形磁体为分体结构,所述环形磁体包括多个磁性件,所述多个磁性件沿周向依次分布以形成所述拉晶通道。
  4. 根据权利要求3所述的磁控拉晶装置,其特征在于,所述多个磁性件中,相邻两个所述磁性件之间抵接,或相邻两个所述磁性件间隔设置。
  5. 根据权利要求4所述的磁控拉晶装置,其特征在于,所述多个磁性件中,每个所述磁性件的磁极分布相同。
  6. 根据权利要求1所述的磁控拉晶装置,其特征在于,所述环形磁体包括相对设置的内侧壁和外侧壁,以及分别与所述内侧壁和所述外侧壁连接的顶面和底面;
    所述环形磁体的磁极包括第一磁极和第二磁极,所述第一磁极与所述第二磁极相反;
    其中,所述第一磁极设置于所述内侧壁,所述第二磁极设置于所述外侧壁,或者,所述第一磁极设置于所述顶面,所述第二磁极设置于所述底面。
  7. 根据权利要求1所述的磁控拉晶装置,其特征在于,所述单晶炉 内设有换热器,所述换热器设置于所述坩埚上方,所述磁控组件连接于所述换热器靠近坩埚的一侧。
  8. 根据权利要求1所述的磁控拉晶装置,其特征在于,所述环形磁体的内壁与所述单晶硅棒的外壁之间的间距包括2-10厘米中的任一数值。
  9. 根据权利要求1所述的磁控拉晶装置,其特征在于,所述磁控组件还包括冷却层和隔热层;
    所述冷却层包覆于所述环形磁体,所述隔热层包覆于所述冷却层,所述冷却层内通有冷却介质。
  10. 一种磁控拉晶装置,其特征在于,所述磁控拉晶装置包括:
    单晶炉;
    坩埚,所述坩埚设置于所述单晶炉内,用于盛放硅液,以从所述硅液中生长单晶硅棒;
    换热器,所述换热器设置在所述单晶炉内,且位于所述坩埚的上方;
    热屏,所述热屏套设在所述换热器外,且与所述换热器之间形成间隙;
    以及,磁控组件,所述磁控组件嵌设于所述换热器与所述热屏之间的间隙内,且靠近所述硅液设置,以在所述硅液内形成勾型磁场,所述磁控组件包括环形磁体。
  11. 根据权利要求10所述的磁控拉晶装置,其特征在于,所述磁控组件包括环状的壳体;
    所述壳体嵌设于所述换热器与所述热屏之间的间隙内,且与所述换热器连接;
    所述壳体内设有第一环状腔体,所述环形磁体设置于所述第一环状腔体内。
  12. 根据权利要求11所述的磁控拉晶装置,其特征在于,所述壳体上设置有第一进液口和第一出液口,所述第一进液口和所述第一出液口 皆与所述第一环状腔体连通;其中,
    所述第一进液口用于将冷却介质导入所述第一环状腔体内,所述第一出液口用于将所述第一环状腔体内的所述冷却介质导出。
  13. 根据权利要求12所述的磁控拉晶装置,其特征在于,所述换热器上设置有第二进液口和第二出液口,所述第二进液口用于将冷却介质导入所述换热器内,所述第二出液口用于将所述换热器内的所述冷却介质导出;其中,
    所述第一进液口与所述第二进液口连通,所述第一出液口与所述第二出液口连通。
  14. 根据权利要求12所述的磁控拉晶装置,其特征在于,所述环形磁体的外壁与所述第一环状腔体的内壁之间存在第一间隙,所述冷却介质填充于所述第一间隙。
  15. 根据权利要求14所述的磁控拉晶装置,其特征在于,所述第一环状腔体的底部设置有多个间隔设置的第一支撑块,所述第一支撑块连接在所述环形磁体的底部,以使所述环形磁体与所述第一环状腔体形成所述第一间隙;
    和/或,所述第一环状腔体的内侧壁上设置有多个间隔分布的第一凸台,所述第一凸台朝向所述环形磁体延伸,所述环形磁体在与所述多个第一凸台对应的位置设置有多个第二凸台,一个所述第二凸台与一个所述第一凸台配合,以使所述环形磁体与所述第一环状腔体形成所述第一间隙。
  16. 根据权利要求1或10所述的磁控拉晶装置,其特征在于,所述磁控组件的内径大于所述单晶硅棒的外径,所述磁控组件的外径小于所述坩埚的内径。
  17. 根据权利要求1或10所述的磁控拉晶装置,其特征在于,所述磁控组件的内径与所述单晶硅棒的外径之间的差值大于或者等于4厘米,且小于或者等于20厘米。
  18. 根据权利要求1或10所述的磁控拉晶装置,其特征在于,所述环形磁体为铁磁件;其中,
    所述铁磁件为环状的一体成型结构;
    或者,所述铁磁件为分体结构,所述铁磁件包括多个磁块,所述多个磁块沿周向依次分布以形成环状结构。
  19. 根据权利要求10所述的磁控拉晶装置,其特征在于,所述环形磁体为电磁线圈;所述换热器包括环状本体;其中,
    所述电磁线圈的轴向与所述环状本体的轴向垂直,所述电磁线圈用于形成横向磁场;
    或者,所述电磁线圈的轴向与所述环状本体的轴向平行,所述电磁线圈用于形成竖向磁场。
  20. 根据权利要求19所述的磁控拉晶装置,其特征在于,在所述电磁线圈的轴向与所述环状本体的轴向垂直的情况下,所述电磁线圈的数量为多个,多个所述电磁线圈沿周向间隔分布;
    在所述电磁线圈的轴向与所述环状本体的轴向平行的情况下,所述电磁线圈的数量为一个或者多个,多个所述电磁线圈沿所述环状本体的周向间隔分布。
  21. 根据权利要求10所述的磁控拉晶装置,其特征在于,所述环形磁体为电磁线圈;其中,
    所述电磁线圈的轴向与所述环状本体的轴向呈预设夹角设置,所述预设夹角为直角之外的夹角。
  22. 根据权利要求1或10所述的磁控拉晶装置,其特征在于,所述勾型磁场在所述硅液的液面的磁场强度大于或者等于0.1毫特。
  23. 一种换热器,用于磁控拉晶装置,所述磁控拉晶装置包括单晶炉以及设置于所述单晶炉内的坩埚,所述换热器位于所述坩埚上方,其特征在于,所述换热器包括:
    环状本体,所述环状本体内设置有第二环状腔体,所述第二环状腔 体用于容纳冷却介质;
    进水管,所述进水管与所述第二环状腔体连通,所述进水管用于将所述冷却介质通入所述第二环状腔体内;
    出水管,所述出水管与所述第二环状腔体连通,所述出水管用于将所述第二环状腔体内的所述冷却介质导出;以及
    环形磁体,所述环形磁体连接于所述环状本体靠近所述坩埚的一侧。
  24. 根据权利要求23所述的换热器,其特征在于,所述环形磁体设置于所述第二环状腔体内。
  25. 根据权利要求23所述的换热器,其特征在于,所述换热器还包括壳体,所述壳体内设置有封闭的容纳腔,所述环形磁体位于所述容纳腔内。
  26. 根据权利要求25所述的换热器,其特征在于,所述壳体的外壁与所述第二环状腔体的内壁之间存在第二间隙,所述冷却介质填充于所述第二间隙。
  27. 根据权利要求26所述的换热器,其特征在于,所述第二环状腔体的底部设置有多个间隔设置的第二支撑块,所述第二支撑块连接在所述壳体的底部,以使所述壳体与所述第二环状腔体形成所述第二间隙;
    和/或,所述第二环状腔体的内侧壁上设置有多个间隔分布的第三凸台,所述第三凸台朝向所述壳体延伸,所述壳体在与所述多个第三凸台对应的位置设置有多个第四凸台,一个所述第四凸台与一个所述第三凸台配合,以使所述壳体与所述第二环状腔体形成所述间隙第二间隙。
  28. 根据权利要求25所述的换热器,其特征在于,所述壳体包括壳体本体以及与所述壳体本体连接的上盖,所述壳体本体与所述上盖围合形成所述容纳腔。
  29. 根据权利要求28所述的换热器,其特征在于,所述壳体本体与上盖之间的连接方式包括焊接、铆接、粘接或者通过紧固件实现螺纹连接;其中,
    在所述壳体本体与上盖之间通过所述紧固件实现螺纹连接的情况下,所述壳体还包括密封圈,所述密封圈设置于所述壳体本体与所述上盖之间。
  30. 根据权利要求18所述的换热器,其特征在于,所述环形磁体为铁磁件;其中,
    所述铁磁件为环状的一体成型结构;
    或者,所述铁磁件为分体结构,所述铁磁件包括多个磁块,所述多个磁块沿所述环状本体的周向依次分布以形成环状结构。
  31. 根据权利要求18所述的换热器,其特征在于,所述环形磁体为电磁线圈;所述换热器包括环状本体;其中,
    所述电磁线圈的轴向与所述环状本体的轴向垂直,所述电磁线圈用于形成横向磁场;
    或者,所述电磁线圈的轴向与所述环状本体的轴向平行,所述电磁线圈用于形成竖向磁场。
  32. 根据权利要求18所述的换热器,其特征在于,在所述电磁线圈的轴向与所述环状本体的轴向垂直的情况下,所述电磁线圈的数量为多个,多个所述电磁线圈沿周向间隔分布;
    在所述电磁线圈的轴向与所述环状本体的轴向平行的情况下,所述电磁线圈的数量为一个或者多个,多个所述电磁线圈沿所述环状本体的周向间隔分布。
  33. 根据权利要求18所述的换热器,其特征在于,所述环形磁体为电磁线圈;其中,
    所述电磁线圈的轴向与所述环状本体的轴向呈预设夹角设置,所述预设夹角为直角之外的夹角。
PCT/CN2023/106352 2022-08-22 2023-07-07 一种磁控拉晶装置及换热器 WO2024041240A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202222214385.4U CN218596568U (zh) 2022-08-22 2022-08-22 一种单晶硅棒拉制装置
CN202211010551.7 2022-08-22
CN202222214385.4 2022-08-22
CN202222210865.3U CN218436017U (zh) 2022-08-22 2022-08-22 一种换热器和单晶硅棒拉制装置
CN202222210865.3 2022-08-22
CN202211010551.7A CN115478318A (zh) 2022-08-22 2022-08-22 一种磁控拉晶装置

Publications (1)

Publication Number Publication Date
WO2024041240A1 true WO2024041240A1 (zh) 2024-02-29

Family

ID=90012383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106352 WO2024041240A1 (zh) 2022-08-22 2023-07-07 一种磁控拉晶装置及换热器

Country Status (1)

Country Link
WO (1) WO2024041240A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287488A (ja) * 1997-04-07 1998-10-27 Sumitomo Sitix Corp 単結晶引き上げ方法
JP2003002782A (ja) * 2001-06-15 2003-01-08 Toshiba Ceramics Co Ltd シリコン単結晶引上方法およびその装置
CN201626999U (zh) * 2010-02-04 2010-11-10 西安理工大学 单晶炉勾形磁场装置
CN202000022U (zh) * 2011-01-26 2011-10-05 西安理工大学 单晶炉勾形磁场冷却水路系统
CN211972497U (zh) * 2020-02-13 2020-11-20 沈阳隆基电磁科技股份有限公司 硅单晶生长用勾形磁场装置
CN115478318A (zh) * 2022-08-22 2022-12-16 隆基绿能科技股份有限公司 一种磁控拉晶装置
CN218291175U (zh) * 2022-08-22 2023-01-13 隆基绿能科技股份有限公司 一种磁控拉晶装置
CN218436017U (zh) * 2022-08-22 2023-02-03 隆基绿能科技股份有限公司 一种换热器和单晶硅棒拉制装置
CN218596568U (zh) * 2022-08-22 2023-03-10 隆基绿能科技股份有限公司 一种单晶硅棒拉制装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10287488A (ja) * 1997-04-07 1998-10-27 Sumitomo Sitix Corp 単結晶引き上げ方法
JP2003002782A (ja) * 2001-06-15 2003-01-08 Toshiba Ceramics Co Ltd シリコン単結晶引上方法およびその装置
CN201626999U (zh) * 2010-02-04 2010-11-10 西安理工大学 单晶炉勾形磁场装置
CN202000022U (zh) * 2011-01-26 2011-10-05 西安理工大学 单晶炉勾形磁场冷却水路系统
CN211972497U (zh) * 2020-02-13 2020-11-20 沈阳隆基电磁科技股份有限公司 硅单晶生长用勾形磁场装置
CN115478318A (zh) * 2022-08-22 2022-12-16 隆基绿能科技股份有限公司 一种磁控拉晶装置
CN218291175U (zh) * 2022-08-22 2023-01-13 隆基绿能科技股份有限公司 一种磁控拉晶装置
CN218436017U (zh) * 2022-08-22 2023-02-03 隆基绿能科技股份有限公司 一种换热器和单晶硅棒拉制装置
CN218596568U (zh) * 2022-08-22 2023-03-10 隆基绿能科技股份有限公司 一种单晶硅棒拉制装置

Similar Documents

Publication Publication Date Title
CN108026660B (zh) 单晶拉制装置以及单晶拉制方法
US11578423B2 (en) Magnet coil for magnetic czochralski single crystal growth and magnetic czochralski single crystal growth method
Shiraishi et al. Growth of silicon crystal with a diameter of 400 mm and weight of 400 kg
CN112616303B (zh) 一种hrs法定向凝固过程中屏蔽磁场的结构
CN109161643B (zh) 一种磁场热处理炉
CN218291175U (zh) 一种磁控拉晶装置
JP2020522457A (ja) 単結晶の磁場印加引き上げに用いられる磁性体、および単結晶の磁場印加引き上げ方法
WO2024041240A1 (zh) 一种磁控拉晶装置及换热器
US20230175166A1 (en) Single-crystal pulling apparatus and single-crystal pulling method
CN218596568U (zh) 一种单晶硅棒拉制装置
CN115478318A (zh) 一种磁控拉晶装置
CN218436017U (zh) 一种换热器和单晶硅棒拉制装置
CN211972497U (zh) 硅单晶生长用勾形磁场装置
CN210636089U (zh) 一种适用于大尺寸单晶提拉速及散热的装置
TWI751726B (zh) 一種半導體晶體生長裝置
CN220887762U (zh) 一种保温筒和单晶硅棒拉制装置
CN220665512U (zh) 一种热场部件和单晶硅棒拉制装置
CN1243854C (zh) 磁场炉和一种使用磁场炉制造半导体衬底的方法
CN219861679U (zh) 一种应用于单晶炉的磁环水冷热屏
CN221028764U (zh) 一种单晶硅棒拉制装置
US20220136771A1 (en) Cold crucible
CN210385765U (zh) 适用于熔体制备的永磁体搅拌设备
JP2021080112A (ja) 単結晶引き上げ装置及び単結晶引き上げ方法
CN218600371U (zh) 一种换热器和单晶硅棒拉制装置
CN219861677U (zh) 一种应用于单晶炉的磁环换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856330

Country of ref document: EP

Kind code of ref document: A1