WO2024041143A1 - 一种钛合金热轧无缝管生产系统及其生产工艺 - Google Patents
一种钛合金热轧无缝管生产系统及其生产工艺 Download PDFInfo
- Publication number
- WO2024041143A1 WO2024041143A1 PCT/CN2023/101405 CN2023101405W WO2024041143A1 WO 2024041143 A1 WO2024041143 A1 WO 2024041143A1 CN 2023101405 W CN2023101405 W CN 2023101405W WO 2024041143 A1 WO2024041143 A1 WO 2024041143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- machine
- titanium alloy
- tube
- rolled seamless
- Prior art date
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000001514 detection method Methods 0.000 claims abstract description 48
- 230000007246 mechanism Effects 0.000 claims abstract description 41
- 238000005422 blasting Methods 0.000 claims abstract description 25
- 238000005520 cutting process Methods 0.000 claims abstract description 17
- 238000004140 cleaning Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims description 28
- 238000005554 pickling Methods 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 17
- 239000003638 chemical reducing agent Substances 0.000 claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- 238000007689 inspection Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 238000005096 rolling process Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000004381 surface treatment Methods 0.000 claims description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000004080 punching Methods 0.000 claims description 3
- 238000003303 reheating Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 abstract 4
- 238000012372 quality testing Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000002180 anti-stress Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- RSMUVYRMZCOLBH-UHFFFAOYSA-N metsulfuron methyl Chemical compound COC(=O)C1=CC=CC=C1S(=O)(=O)NC(=O)NC1=NC(C)=NC(OC)=N1 RSMUVYRMZCOLBH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/08—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
- B24C1/086—Descaling; Removing coating films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C3/00—Abrasive blasting machines or devices; Plants
- B24C3/08—Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces
- B24C3/10—Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces for treating external surfaces
- B24C3/14—Apparatus using impellers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/72—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
- G01N27/82—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
- G01N27/90—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/041—Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/27—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
Definitions
- the invention relates to the technical field of titanium alloy hot-rolled seamless pipe production, specifically a titanium alloy hot-rolled seamless pipe production system and its production process.
- Titanium and titanium alloys have the advantages of low density, high specific strength, good high temperature performance and corrosion resistance. They are widely used in aerospace, shipbuilding industry, etc. Titanium alloy seamless pipes have broad application prospects. Titanium is processed by hot rolling. Alloy seamless pipes have the advantages of high production efficiency, simple process, low energy consumption, short process, etc., and have strong economic benefits. However, due to the small hot melt of titanium alloy during the thermal processing, the temperature drops quickly, and the temperature control during the rolling process is difficult. This makes processing more difficult.
- the outer wall of the pipe is usually inspected during the rolling process of titanium alloy hot-rolled seamless pipes.
- the length of the pipe limits the detection effect of the inner wall quality of the pipe, thus affecting the actual The safety of use, and the lack of shot blasting treatment for hot-rolled pipes makes manual treatment unable to achieve high-strength compression resistance.
- the purpose of the present invention is to provide a titanium alloy hot-rolled seamless pipe production system and its production process to solve the problem that the length of the pipe proposed by the above background technology limits the detection effect of the inner wall quality of the pipe, and the pipe cannot achieve high strength through manual processing.
- the problem of anti-stress effect is to provide a titanium alloy hot-rolled seamless pipe production system and its production process to solve the problem that the length of the pipe proposed by the above background technology limits the detection effect of the inner wall quality of the pipe, and the pipe cannot achieve high strength through manual processing.
- the problem of anti-stress effect is to provide a titanium alloy hot-rolled seamless pipe production system and its production process to solve the problem that the length of the pipe proposed by the above background technology limits the detection effect of the inner wall quality of the pipe, and the pipe cannot achieve high strength through manual processing.
- a titanium alloy hot-rolled seamless pipe production system including a blanking machine, a tension reducing machine and a straightening machine, a caliper, a shot blasting machine and an in-pipe detection mechanism.
- An industrial camera is provided above the cutting end of the blanking machine.
- the blanking machine is connected to the inlet end of one end of the grinding machine.
- the grinding machine is connected to the inlet end of the first heating furnace.
- a punch is provided at the outlet end, the end of the punch is connected to a second heating furnace, and the outlet end of the second heating furnace is docked with the front end of the tension reducer;
- One end of the tension reducer is provided with a straightening machine, the output end of the straightening machine is provided with a caliper, one side of the caliper is provided with a shot blasting machine, and the end of the said shot blasting machine is provided with a caliper.
- In-pipe detection mechanism the end of the ultrasonic flaw detector of the in-pipe detection mechanism is connected to the cutting machine, pickling pool and warehouse in sequence.
- the in-pipe detection mechanism includes a transmission wheel, a motor, a hydraulic cylinder, a cleaning brush and an eddy current detector.
- the transmission wheel is symmetrically installed below the in-pipe detection mechanism.
- One side of the in-pipe detection mechanism is equipped with a transmission device. The wheel is connected to the motor connected to the shaft.
- a hydraulic cylinder is installed symmetrically on the side of the in-pipe detection mechanism, cleaning brushes are installed around the side of the in-pipe detection mechanism, and an eddy current detector is connected to the middle of the side of the in-pipe detection mechanism.
- a production process of a titanium alloy hot-rolled seamless pipe production system includes the following steps:
- Step 1 Check the quality and weight of the purchased titanium alloy tube blank materials
- Step 2 Use a blanking machine to blank the titanium alloy tube blank according to the set standards
- Step 3 Use the industrial camera installed at the end of the blanking machine to take real-time video recording of the incision position of the cut tube blank, and conduct quality inspection of the blanking section through the remote monitoring terminal;
- Step 4 Start the grinding machine to automatically grind and trim the surface and cutting edge of the finished tube blank
- Step 5 The ground tube blank is introduced into the first heating furnace through the conveying equipment for segmented heating of the tube blank;
- Step 6 Export the tube blank that has been heated to the specified temperature and punch it through a punching machine
- Step 7 Send the perforated titanium alloy pipe into the second heating furnace for reheating
- Step 8 The heated titanium alloy seamless pipe is transported to the tension reducer with a three-roller structure for rolling;
- Step 9 Introduce the pipe along the input end of the straightening machine, and straighten the bent part of the pipe through the straightening machine;
- Step 10 Use a caliper to measure the inner wall diameter and outer wall diameter of the straightened titanium alloy hot-rolled seamless pipe;
- Step 11 Send the pipe after inspection to the shot blasting machine along the transfer roller for surface treatment
- Step 12 By placing the pipe on the in-pipe detection mechanism, the inner wall of the pipe can be completely detected for cracks by the eddy current detector by rotating the pipe;
- Step 13 Send the pipe to the ultrasonic flaw detector through the conveying equipment, so that the ultrasonic flaw detector can perform damage detection on the outer surface of the pipe wall;
- Step 14 Transport the pipe to the cutting machine, and cut the pipe to a quantitative length according to the length required for production;
- Step 15 Send the cut pipe into the pickling tank for pickling chemical treatment
- Step 16 Dry the finished titanium alloy hot-rolled seamless pipes, and store the pipes on designated storage racks in the warehouse through lifting equipment.
- the internal temperature of the second heating furnace is set to 945°C-1150°C.
- the shot blasting machine uses steel shots thrown by a high-efficiency shot blasting device to treat the outer pipe wall, thereby crushing the oxide scale, rust layer and other debris on the surface of the steel pipe.
- the pickling tank uses the pipe as an electrode, and current is passed into the inside of the pickling tank to perform the pickling operation.
- the titanium alloy hot-rolled seamless pipe production system and its production process use a motor to drive the transmission wheel to rotate, so that the transmission wheel drives the pipe to rotate at a constant speed, and the cleaning brushes are distributed at equal angles on one side of the detection mechanism inside the pipe. Brush off the debris and burrs adhering to the inner wall of the pipe.
- the rotating pipe can be completely inspected for cracks on the inner wall of the pipe through an eddy current detector.
- the pipe is pushed out through two sets of hydraulic cylinders on the inner pipe detection mechanism, and the pipe is moved out through the conveying equipment. Send it to an ultrasonic flaw detector so that the ultrasonic flaw detector can detect damage on the outer surface of the pipe wall, thereby realizing quality inspection of the inner and outer walls of the titanium alloy hot-rolled seamless pipe to ensure the safety of the pipe during actual use;
- the titanium alloy hot-rolled seamless pipe production system and its production process by feeding the titanium alloy hot-rolled seamless pipe into the shot blasting machine for surface treatment, make the steel thrown by the shot blasting machine through the high-efficiency shot blasting device
- the pellets process the outer pipe wall to crush the oxide scale, rust layer and other debris on the surface of the steel pipe to obtain a fine bright surface, improve the tensile and compressive strength of the workpiece, and add additional paint protection to the inner surface. Focus on ensuring that the pipe has a high-strength pressure-resistant effect during actual use and is convenient for painting protection operations.
- Figure 1 is a schematic diagram of the system of the present invention
- Figure 2 is a schematic diagram of the process flow of the present invention.
- Figure 3 is a schematic front structural view of the in-pipe detection mechanism of the present invention.
- Figure 4 is a right structural schematic diagram of the in-pipe detection mechanism of the present invention.
- a titanium alloy hot-rolled seamless pipe production system including a blanking machine 1, a tension reducing machine 7, a straightening machine 8, a diameter measuring instrument 9, and a shot blasting machine. machine 10 and an in-tube detection mechanism 11.
- An industrial camera 2 is provided above the cutting end of the unloading machine 1.
- the unloading machine 1 is connected to the inlet end of one end of the grinding machine 4.
- the grinding machine 4 is connected to the first
- the inlet end of the heating furnace 3 is connected.
- the outlet end of the first heating furnace 3 is provided with a punch 5.
- the end of the punch 5 is connected to the second heating furnace 6.
- the outlet end of the second heating furnace 6 is connected to the tension
- the front end of the reducer 7 is docked;
- One end of the tension reducer 7 is provided with a straightening machine 8, the output end of the straightening machine 8 is provided with a caliper 9, and one side of the caliper 9 is provided with a shot blasting machine 10.
- An in-pipe detection mechanism 11 is provided at the end of the shot blasting machine 10. The end of the ultrasonic flaw detector 12 of the in-pipe detection mechanism 11 is connected to the cutting machine 13, the pickling tank 14 and the warehouse 15 in sequence.
- the in-pipe detection mechanism 11 includes a transmission wheel 1101, a motor 1102, a hydraulic cylinder 1103, a cleaning brush 1104 and an eddy current detector 1105.
- the transmission wheel 1101 is symmetrically installed below the in-pipe detection mechanism 11.
- a motor 1102 is installed on one side and is connected to the connecting shaft of the transmission wheel 1101;
- a hydraulic cylinder 1103 is symmetrically installed on the side of the in-pipe detection mechanism 11, and a cleaning brush 1104 is installed around the side of the in-pipe detection mechanism 11.
- An eddy current detector 1105 is connected to the middle side of 11.
- the motor 1102 drives the transmission wheel 1101 to rotate, so that the transmission wheel 1101 drives the pipe to rotate at a constant speed, and the impurities adhered to the inner wall of the pipe are brushed away by the cleaning brushes 1104 distributed at equal angles on one side of the detection mechanism 11 in the pipe.
- the rotating pipe can conduct complete crack detection on the inner wall of the pipe through the eddy current detector 1105, push the pipe out through the two sets of hydraulic cylinders 1103 on the inner pipe detection mechanism 11, and send the pipe to the ultrasonic flaw detector through the conveying equipment 12, allowing the ultrasonic flaw detector 12 to perform damage detection on the outer surface of the pipe wall, thereby achieving quality inspection of the inner and outer walls of the titanium alloy hot-rolled seamless pipe to ensure the safety of the pipe during actual use.
- a production process of a titanium alloy hot-rolled seamless pipe production system includes the following steps:
- Step 1 Check the quality and weight of the purchased titanium alloy tube blank materials
- Step 2 According to the set standards, use the blanking machine 1 to blank the titanium alloy tube blank;
- Step 3 Use the industrial camera 2 installed at the end of the blanking machine 1 to take real-time video recording of the incision position of the cut tube blank, and conduct quality inspection of the blanking section through the remote monitoring terminal;
- Step 4 Start the grinding machine 4 to automatically grind and trim the surface and cutting edge of the finished tube blank
- Step 5 The ground pipe blank is introduced into the first heating furnace 3 through the conveying equipment for segmented heating of the pipe blank, and the segmented heating is divided into a preheating section, a heating section and a heat preservation section;
- Step 6 Export the tube blank that has been heated to the specified temperature, and perform perforation processing through the puncher 5. The integrity of the inner wall of the tube blank is ensured by using the puncher 5 with a three-roller structure;
- Step 7 Send the perforated titanium alloy pipe to the inside of the second heating furnace 6 for reheating.
- the internal temperature of the second heating furnace 6 is set to 945°C-1150°C;
- Step 8 The heated titanium alloy seamless pipe is transported to the tension reducer 7 with a three-roller structure for rolling. Through the multi-stand continuous rolling of the tension reducer 7, the rolled steel pipe is radially compressed and longitudinal stretching;
- Step 9 Introduce the pipe along the input end of the straightening machine 8, and straighten the bent part of the pipe through the straightening machine 8;
- Step 10 Use the caliper 9 to measure the inner wall diameter and outer wall diameter of the straightened titanium alloy hot-rolled seamless pipe, and calculate the thickness of each position of the pipe wall by continuously measuring the inner and outer diameters of the pipe wall;
- Step 11 After the pipe is inspected, it is sent to the shot blasting machine 10 along the conveying roller for surface treatment.
- the shot blasting machine 10 treats the outer pipe wall with the steel shot thrown by the high-efficiency shot blasting device, thereby crushing it. Remove the oxide scale, rust layer and other debris on the surface of the steel pipe to obtain a fine bright surface, improve the tensile and compressive strength of the workpiece, and increase adhesion for paint protection on the inner surface;
- Step 12 Place the pipe on the in-pipe detection mechanism 11, and drive the transmission wheel 1101 to rotate through the motor 1102, so that the transmission wheel 1101 drives the pipe to rotate at a constant speed, and is distributed at equal angles on one side of the in-pipe detection mechanism 11
- the cleaning brush 1104 brushes away the debris and burrs adhered to the inner wall of the pipe, and the rotating pipe can conduct a complete crack detection on the inner wall of the pipe through the eddy current detector 1105;
- Step 13 Push the pipe to exit through the two sets of hydraulic cylinders 1103 on the inner pipe detection mechanism 11, and send the pipe to the ultrasonic flaw detector 12 through the conveying equipment, so that the ultrasonic flaw detector 12 performs damage detection on the outer surface of the pipe wall;
- Step 14 Transport the pipe to the cutting machine 13, and cut the pipe to a quantitative length according to the length required for production;
- Step 15 Send the cut pipe into the pickling tank 14 for pickling chemical treatment.
- the pickling tank 14 uses the pipe as an electrode, and passes electric current into the inside of the pickling tank 14 to perform the pickling operation, thereby increasing the current.
- Step 16 Dry the finished titanium alloy hot-rolled seamless pipes, and store the pipes on designated storage racks in the warehouse 15 through lifting equipment.
- the purchased titanium alloy tube blank materials are inspected, the titanium alloy tube blanks are blanked through the blanking machine 1, and the surface and cutting edge of the finished tube blank raw materials are processed through the grinding machine 4 Automatic grinding and trimming is performed, and the tube blank is perforated after being heated by the first heating furnace 3. After perforation, it is reheated and adjusted by the tension reducer 7, and then the tube size is processed through straightening and diameter detection. , surface treatment is carried out through shot blasting of the pipe. After treatment, the quality of the pipe is ensured by inspection inside and outside the pipe. Then the pipe is cut to a quantitative length according to the length required for production, and the cut pipe is subjected to pickling chemical treatment. Finally , the finished titanium alloy hot-rolled seamless pipes are dried, packaged and stored in the warehouse. Contents not described in detail in this description belong to the prior art known to those skilled in the art.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
一种钛合金热轧无缝管生产系统,包括下料机(1)、张力减径机(7)、校直机(8)、测径仪(9)、抛丸机(10)和管内检测机构(11),下料机的裁切端上方设置有工业相机(2),通过电机(1102)带动传动轮(1101)旋转,使得传动轮带动管材以恒定的速度转动,并且通过管内检测机构一侧呈等夹角分布的清洁刷(1104)刷去管材内壁粘附的杂物和毛刺,旋转的管材可以通过涡流检测仪(1105)对管材的内壁进行完整的裂纹检测,通过管内检测机构上的两组液压缸(1103)推动管材退出,并且通过输送设备将管材送给超声波探伤仪(12),使得超声波探伤仪对管壁的外侧表面进行损伤检测。以及一种钛合金热轧无缝管生产系统的生产工艺。该生产系统能够实现对钛合金热轧无缝管进行内外壁质量检测,保证管材在实际使用时的安全性。
Description
本发明涉及钛合金热轧无缝管生产技术领域,具体为一种钛合金热轧无缝管生产系统及其生产工艺。
钛及钛合金具有密度小、比强度高、高温性能好和耐腐蚀等优点,广泛应用于航空航天、舰船工业等方面,钛合金无缝管的应用前景很广阔,用热轧方式加工钛合金无缝管具有生产效率高、工序简单、能耗低、流程短等优点,有很强的经济效益,但是由于热加工过程钛合金热熔小温降快、轧制过程温度控制困难等原因导致加工难度较大。
随着钛合金无缝钢管的市场需求越来越大,钛合金热轧无缝管的轧制过程中一般常对管材外壁进行检测,但是管材长度限制了管材内壁质量的检测效果,从而影响实际使用的安全性,并且热轧加工后的管材缺乏抛丸处理,使得人工处理达不到高强度的抗压效果。
本发明的目的在于提供一种钛合金热轧无缝管生产系统及其生产工艺,以解决上述背景技术提出的管材长度限制了管材内壁质量的检测效果,并且管材通过人工处理达不到高强度的抗压效果的问题。
为实现上述目的,本发明提供如下技术方案:一种钛合金热轧无缝管生产系统,包括下料机、张力减径机校直机、测径仪、抛丸机和管内检测机构,所述下料机的裁切端上方设置有工业相机,所述下料机连接在修磨机的一端进口端,所述修磨机与第一加热炉的进口端连接,所述第一加热炉的出口端设置有穿孔机,所述穿孔机的末端连接第二加热炉,所述第二加热炉的出口端与张力减径机的前端对接;
所述张力减径机的一端设置有校直机,所述校直机的输出端设置有测径仪,所述测径仪的一侧设置有抛丸机,所述抛丸机的末端设置管内检测机构,所述管内检测机构的超声波探伤仪的末端依次连接切割机、酸洗池和库房。
优选的,所述管内检测机构包括有传动轮、电机、液压缸、清洁刷和涡流检测仪,所述传动轮对称安装在管内检测机构的下方,所述管内检测机构的一侧安装有与传动轮连接轴对接的电机。
优选的,所述管内检测机构的侧面对称安装有液压缸,所述管内检测机构的侧面四周安装有清洁刷,所述管内检测机构的侧面中部连接有涡流检测仪。
一种钛合金热轧无缝管生产系统的生产工艺,包括以下步骤:
步骤一、根据对采购的钛合金管坯材料进行质量和重量检查;
步骤二、根据设定标准并采用下料机对钛合金管坯进行下料加工;
步骤三、通过下料机末端位置安装的工业相机对切断管坯的切口位置进行实时拍摄录像,通过远程监控终端对下料段进行质检;
步骤四、通过启动修磨机将下料完成的管坯原料进行表面和切断口边缘进行自动打磨修整;
步骤五、修磨完成的管坯件通过输送设备导入到第一加热炉中进行分段加热管坯;
步骤六、将完成加热到指定温度的管坯导出,并且通过穿孔机进行穿孔加工;
步骤七、将完成穿孔的钛合金管材再送入到第二加热炉的内部进行再加热;
步骤八、经过加热的钛合金无缝管输送给三辊结构的张力减径机进行轧制;
步骤九、将管材沿着校直机的输入端导入,并且通过校直机对管材的弯曲部位进行调直;
步骤十、采用测径仪对校直后的钛合金热轧无缝管内壁直径和外壁直径进行测量;
步骤十一、将管材检测完成沿着传输辊道送入到抛丸机中进行表面处理;
步骤十二、通过将管材摆放在管内检测机构上,通过旋转管材可以通过涡流检测仪对管材的内壁进行完整的裂纹检测;
步骤十三、通过输送设备将管材送给超声波探伤仪,使得超声波探伤仪对管壁的外侧表面进行损伤检测;
步骤十四、将管材输送到切割机上,根据生产需要的长度对管材进行定量长度切断;
步骤十五、将切断后的管材送入到酸洗池内进行酸洗化学处理;
步骤十六、将生产完成的钛合金热轧无缝管进行干燥处理,并且通过吊运设备将管材存放在库房的指定整理架上进行存放。
优选的,所述第二加热炉设定内部的温度为945℃-1150℃。
优选的,所述抛丸机通过高效抛丸器抛出的钢丸对外管壁进行处理,从而击碎钢管表面上的氧化皮、锈层及其他杂物。
优选的,所述酸洗池将管材作为电极,并且向酸洗池内部通入电流进行酸洗操作。
与现有技术相比,本发明的有益效果是:
1、该钛合金热轧无缝管生产系统及其生产工艺,通过电机带动传动轮旋转,使得传动轮带动管材以恒定的速度转动,并且通过管内检测机构一侧呈等夹角分布的清洁刷刷去管材内壁粘附的杂物和毛刺,旋转的管材可以通过涡流检测仪对管材的内壁进行完整的裂纹检测,通过管内检测机构上的两组液压缸推动管材退出,并且通过输送设备将管材送给超声波探伤仪,使得超声波探伤仪对管壁的外侧表面进行损伤检测,从而实现对钛合金热轧无缝管进行内外壁质量检测,保证管材在实际使用时的安全性;
2、该钛合金热轧无缝管生产系统及其生产工艺,通过将钛合金热轧无缝管送入到抛丸机中进行表面处理,使得抛丸机通过高效抛丸器抛出的钢丸对外管壁进行处理,从而击碎钢管表面上的氧化皮、锈层及其他杂物,使之获得精细的光亮表面,提高工件的抗拉和抗压强度,为内表面涂漆保护增加附着力,从而保证管材在进行实际使用时具有高强度的抗压效果,并且方便进行涂漆保护操作。
图1为本发明系统示意图;
图2为本发明工艺流程示意图;
图3为本发明管内检测机构主视结构示意图;
图4为本发明管内检测机构右视结构示意图。
图中:1、下料机;2、工业相机;3、第一加热炉;4、修磨机;5、穿孔机;6、第二加热炉;7、张力减径机;8、校直机;9、测径仪;10、抛丸机;11、管内检测机构;1101、传动轮;1102、电机;1103、液压缸;1104、清洁刷;1105、涡流检测仪;12、超声波探伤仪;13、切割机;14、酸洗池;15、库房。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-4,本发明提供一种技术方案:一种钛合金热轧无缝管生产系统,包括下料机1、张力减径机7校直机8、测径仪9、抛丸机10和管内检测机构11,所述下料机1的裁切端上方设置有工业相机2,所述下料机1连接在修磨机4的一端进口端,所述修磨机4与第一加热炉3的进口端连接,所述第一加热炉3的出口端设置有穿孔机5,所述穿孔机5的末端连接第二加热炉6,所述第二加热炉6的出口端与张力减径机7的前端对接;
所述张力减径机7的一端设置有校直机8,所述校直机8的输出端设置有测径仪9,所述测径仪9的一侧设置有抛丸机10,所述抛丸机10的末端设置管内检测机构11,所述管内检测机构11的超声波探伤仪12的末端依次连接切割机13、酸洗池14和库房15。
所述管内检测机构11包括有传动轮1101、电机1102、液压缸1103、清洁刷1104和涡流检测仪1105,所述传动轮1101对称安装在管内检测机构11的下方,所述管内检测机构11的一侧安装有与传动轮1101连接轴对接的电机1102;所述管内检测机构11的侧面对称安装有液压缸1103,所述管内检测机构11的侧面四周安装有清洁刷1104,所述管内检测机构11的侧面中部连接有涡流检测仪1105。
具体实施时,通过电机1102带动传动轮1101旋转,使得传动轮1101带动管材以恒定的速度转动,并且通过管内检测机构11一侧呈等夹角分布的清洁刷1104刷去管材内壁粘附的杂物和毛刺,旋转的管材可以通过涡流检测仪1105对管材的内壁进行完整的裂纹检测,通过管内检测机构11上的两组液压缸1103推动管材退出,并且通过输送设备将管材送给超声波探伤仪12,使得超声波探伤仪12对管壁的外侧表面进行损伤检测,从而实现对钛合金热轧无缝管进行内外壁质量检测,保证管材在实际使用时的安全性。
一种钛合金热轧无缝管生产系统的生产工艺,包括以下步骤:
步骤一、根据对采购的钛合金管坯材料进行质量和重量检查;
步骤二、根据设定标准并采用下料机1对钛合金管坯进行下料加工;
步骤三、通过下料机1末端位置安装的工业相机2对切断管坯的切口位置进行实时拍摄录像,通过远程监控终端对下料段进行质检;
步骤四、通过启动修磨机4将下料完成的管坯原料进行表面和切断口边缘进行自动打磨修整;
步骤五、修磨完成的管坯件通过输送设备导入到第一加热炉3中进行分段加热管坯,并且分段加热分为预热段、加热段和保温段;
步骤六、将完成加热到指定温度的管坯导出,并且通过穿孔机5进行穿孔加工,通过设采用三辊式结构的穿孔机5保证管坯内壁的完整性;
步骤七、将完成穿孔的钛合金管材再送入到第二加热炉6的内部进行再加热,第二加热炉6设定内部的温度为945℃-1150℃;
步骤八、经过加热的钛合金无缝管输送给三辊结构的张力减径机7进行轧制,通过张力减径机7的多机架连轧,使得被轧制的钢管进行径向压缩和纵向拉伸;
步骤九、将管材沿着校直机8的输入端导入,并且通过校直机8对管材的弯曲部位进行调直;
步骤十、采用测径仪9对校直后的钛合金热轧无缝管内壁直径和外壁直径进行测量,通过连续测量管壁的内外径,从而计算出管壁各个位置的厚度;
步骤十一、将管材检测完成沿着传输辊道送入到抛丸机10中进行表面处理,所述抛丸机10通过高效抛丸器抛出的钢丸对外管壁进行处理,从而击碎钢管表面上的氧化皮、锈层及其他杂物,使之获得精细的光亮表面,提高工件的抗拉和抗压强度,为内表面涂漆保护增加附着力;
步骤十二、通过将管材摆放在管内检测机构11上,通过电机1102带动传动轮1101旋转,使得传动轮1101带动管材以恒定的速度转动,并且通过管内检测机构11一侧呈等夹角分布的清洁刷1104刷去管材内壁粘附的杂物和毛刺,旋转的管材可以通过涡流检测仪1105对管材的内壁进行完整的裂纹检测;
步骤十三、通过管内检测机构11上的两组液压缸1103推动管材退出,并且通过输送设备将管材送给超声波探伤仪12,使得超声波探伤仪12对管壁的外侧表面进行损伤检测;
步骤十四、将管材输送到切割机13上,根据生产需要的长度对管材进行定量长度切断;
步骤十五、将切断后的管材送入到酸洗池14内进行酸洗化学处理,酸洗池14将管材作为电极,并且向酸洗池14内部通入电流进行酸洗操作,从而电流提高酸洗的质量和酸洗的速度;
步骤十六、将生产完成的钛合金热轧无缝管进行干燥处理,并且通过吊运设备将管材存放在库房15的指定整理架上进行存放。
综上所述,将采购的钛合金管坯材料进行检查,通过下料机1对钛合金管坯进行下料加工,通过修磨机4将下料完成的管坯原料进行表面和切断口边缘进行自动打磨修整,在经过第一加热炉3的加热后对管坯进行穿孔,穿孔完之后通过再加热并通过张力减径机7进行调整,之后通过校直处理和直径检测进行管材尺寸进行处理,通过管材抛丸进行表面处理,处理后通过对管内检测和管外检测来确保管材质量,随后根据生产需要的长度对管材进行定量长度切断,并将切断后的管材进行酸洗化学处理,最后,将生产完成的钛合金热轧无缝管进行干燥处理和打包入库处理,本说明中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (7)
- 一种钛合金热轧无缝管生产系统,包括下料机(1)、张力减径机(7)校直机(8)、测径仪(9)、抛丸机(10)和管内检测机构(11),其特征在于:所述下料机(1)的裁切端上方设置有工业相机(2),所述下料机(1)连接在修磨机(4)的一端进口端,所述修磨机(4)与第一加热炉(3)的进口端连接,所述第一加热炉(3)的出口端设置有穿孔机(5),所述穿孔机(5)的末端连接第二加热炉(6),所述第二加热炉(6)的出口端与张力减径机(7)的前端对接;所述张力减径机(7)的一端设置有校直机(8),所述校直机(8)的输出端设置有测径仪(9),所述测径仪(9)的一侧设置有抛丸机(10),所述抛丸机(10)的末端设置管内检测机构(11),所述管内检测机构(11)的超声波探伤仪(12)的末端依次连接切割机(13)、酸洗池(14)和库房(15)。
- 根据权利要求1所述的一种钛合金热轧无缝管生产系统,其特征在于:所述管内检测机构(11)包括有传动轮(1101)、电机(1102)、液压缸(1103)、清洁刷(1104)和涡流检测仪(1105),所述传动轮(1101)对称安装在管内检测机构(11)的下方,所述管内检测机构(11)的一侧安装有与传动轮(1101)连接轴对接的电机(1102)。
- 根据权利要求2所述的一种钛合金热轧无缝管生产系统,其特征在于:所述管内检测机构(11)的侧面对称安装有液压缸(1103),所述管内检测机构(11)的侧面四周安装有清洁刷(1104),所述管内检测机构(11)的侧面中部连接有涡流检测仪(1105)。
- 一种钛合金热轧无缝管生产系统的生产工艺,其特征在于,包括以下步骤:步骤一、根据对采购的钛合金管坯材料进行质量和重量检查;步骤二、根据设定标准并采用下料机(1)对钛合金管坯进行下料加工;步骤三、通过下料机(1)末端位置安装的工业相机(2)对切断管坯的切口位置进行实时拍摄录像,通过远程监控终端对下料段进行质检;步骤四、通过启动修磨机(4)将下料完成的管坯原料进行表面和切断口边缘进行自动打磨修整;步骤五、修磨完成的管坯件通过输送设备导入到第一加热炉(3)中进行分段加热管坯;步骤六、将完成加热到指定温度的管坯导出,并且通过穿孔机(5)进行穿孔加工;步骤七、将完成穿孔的钛合金管材再送入到第二加热炉(6)的内部进行再加热;步骤八、经过加热的钛合金无缝管输送给三辊结构的张力减径机(7)进行轧制;步骤九、将管材沿着校直机(8)的输入端导入,并且通过校直机(8)对管材的弯曲部位进行调直;步骤十、采用测径仪(9)对校直后的钛合金热轧无缝管内壁直径和外壁直径进行测量;步骤十一、将管材检测完成沿着传输辊道送入到抛丸机(10)中进行表面处理;步骤十二、通过将管材摆放在管内检测机构(11)上,通过旋转管材可以通过涡流检测仪(1105)对管材的内壁进行完整的裂纹检测;步骤十三、通过输送设备将管材送给超声波探伤仪(12),使得超声波探伤仪(12)对管壁的外侧表面进行损伤检测;步骤十四、将管材输送到切割机(13)上,根据生产需要的长度对管材进行定量长度切断;步骤十五、将切断后的管材送入到酸洗池(14)内进行酸洗化学处理;步骤十六、将生产完成的钛合金热轧无缝管进行干燥处理,并且通过吊运设备将管材存放在库房(15)的指定整理架上进行存放。
- 根据权利要求4所述的一种钛合金热轧无缝管生产系统的生产工艺,其特征在于:所述第二加热炉(6)设定内部的温度为945℃-1150℃。
- 根据权利要求4所述的一种钛合金热轧无缝管生产系统的生产工艺,其特征在于:所述抛丸机(10)通过高效抛丸器抛出的钢丸对外管壁进行处理,从而击碎钢管表面上的氧化皮、锈层及其他杂物。
- 根据权利要求4所述的一种钛合金热轧无缝管生产系统的生产工艺,其特征在于:所述酸洗池(14)将管材作为电极,并且向酸洗池(14)内部通入电流进行酸洗操作。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA2023/10426A ZA202310426B (en) | 2022-08-25 | 2023-11-08 | Titanium alloy hot-rolled seamless tube production system and production process thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211022967.0A CN115463997A (zh) | 2022-08-25 | 2022-08-25 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
CN202211022967.0 | 2022-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024041143A1 true WO2024041143A1 (zh) | 2024-02-29 |
Family
ID=84368921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/101405 WO2024041143A1 (zh) | 2022-08-25 | 2023-06-20 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN115463997A (zh) |
WO (1) | WO2024041143A1 (zh) |
ZA (1) | ZA202310426B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115463997A (zh) * | 2022-08-25 | 2022-12-13 | 鑫鹏源智能装备集团有限公司 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4991419A (en) * | 1988-11-18 | 1991-02-12 | Sumitomo Metal Industries, Ltd. | Method of manufacturing seamless tube formed of titanium material |
CN103894430A (zh) * | 2014-03-31 | 2014-07-02 | 宝山钢铁股份有限公司 | 一种用于清除金属管内壁鳞皮的射流除鳞装置及方法 |
CN108160709A (zh) * | 2018-01-26 | 2018-06-15 | 张国庆 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
CN110935729A (zh) * | 2019-10-26 | 2020-03-31 | 鑫鹏源智能装备集团有限公司 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
CN112845654A (zh) * | 2019-11-12 | 2021-05-28 | 新疆大学 | 一种钛及钛合金大规格无缝管材的制备方法 |
CN115463997A (zh) * | 2022-08-25 | 2022-12-13 | 鑫鹏源智能装备集团有限公司 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
CN116116903A (zh) * | 2022-12-28 | 2023-05-16 | 鑫鹏源(聊城)智能科技有限公司 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
-
2022
- 2022-08-25 CN CN202211022967.0A patent/CN115463997A/zh active Pending
-
2023
- 2023-06-20 WO PCT/CN2023/101405 patent/WO2024041143A1/zh unknown
- 2023-11-08 ZA ZA2023/10426A patent/ZA202310426B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4991419A (en) * | 1988-11-18 | 1991-02-12 | Sumitomo Metal Industries, Ltd. | Method of manufacturing seamless tube formed of titanium material |
CN103894430A (zh) * | 2014-03-31 | 2014-07-02 | 宝山钢铁股份有限公司 | 一种用于清除金属管内壁鳞皮的射流除鳞装置及方法 |
CN108160709A (zh) * | 2018-01-26 | 2018-06-15 | 张国庆 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
CN110935729A (zh) * | 2019-10-26 | 2020-03-31 | 鑫鹏源智能装备集团有限公司 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
CN112845654A (zh) * | 2019-11-12 | 2021-05-28 | 新疆大学 | 一种钛及钛合金大规格无缝管材的制备方法 |
CN115463997A (zh) * | 2022-08-25 | 2022-12-13 | 鑫鹏源智能装备集团有限公司 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
CN116116903A (zh) * | 2022-12-28 | 2023-05-16 | 鑫鹏源(聊城)智能科技有限公司 | 一种钛合金热轧无缝管生产系统及其生产工艺 |
Also Published As
Publication number | Publication date |
---|---|
ZA202310426B (en) | 2024-05-30 |
CN115463997A (zh) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024041143A1 (zh) | 一种钛合金热轧无缝管生产系统及其生产工艺 | |
CN101934302A (zh) | 一种飞机发动机用无缝钛合金管材的制备方法 | |
JPS58221611A (ja) | 線材の乾式連続伸線装置 | |
CN104001752B (zh) | 一种钢制管件生产工艺 | |
CN101691630B (zh) | 无缝钢管的制造方法 | |
CN109317518B (zh) | 一种钛板热连轧规模化制备方法 | |
CN106112389B (zh) | 一种双金属复合钢板制弯头制造工艺方法 | |
CN108405608A (zh) | 一种不锈钢冷轧生产机组及其生产方法 | |
CN101444881A (zh) | 超大型船舶柴油机活塞杆堆焊修复技术 | |
CN105965212A (zh) | 一种双金属复合钢板制三通制造工艺方法 | |
CN102632094A (zh) | 一种提高钛及钛合金管材表面质量的方法及拉拔模具 | |
CN102560057A (zh) | 一种热轧无缝钢管的热处理工艺方法及系统 | |
CN103710715A (zh) | 一种不锈钢无缝钢管冷拔、冷轧混合成型加工方法 | |
CN101551040A (zh) | 一种大口径不锈钢无缝钢管及其加工方法 | |
US11679429B2 (en) | Processing method of NPR steel rebar coil | |
CN117139395B (zh) | 一种合金铜带生产用表面清理工艺及清理装置 | |
CN212598017U (zh) | 大口径高性能不锈钢无缝管的生产线 | |
TW201811456A (zh) | 複合式冷軋線 | |
CN116116903A (zh) | 一种钛合金热轧无缝管生产系统及其生产工艺 | |
CN107838221A (zh) | 一种钢管无缝化处理工艺 | |
WO2002053301A1 (fr) | Procede de laminage a chaud et train de laminoirs a chaud | |
CN103464458A (zh) | 一种l型钛合金型材生产方法 | |
CN113245394B (zh) | 不锈钢无缝盘拉盘管和不锈钢无缝直管对接盘管的生产线 | |
CN111304494B (zh) | 一种锆合金柔性连续管及其制造方法 | |
JP2639001B2 (ja) | 圧延設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23856235 Country of ref document: EP Kind code of ref document: A1 |