WO2024041125A1 - 一种电池管理控制器系统 - Google Patents

一种电池管理控制器系统 Download PDF

Info

Publication number
WO2024041125A1
WO2024041125A1 PCT/CN2023/100837 CN2023100837W WO2024041125A1 WO 2024041125 A1 WO2024041125 A1 WO 2024041125A1 CN 2023100837 W CN2023100837 W CN 2023100837W WO 2024041125 A1 WO2024041125 A1 WO 2024041125A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
control module
sampling
board
module
Prior art date
Application number
PCT/CN2023/100837
Other languages
English (en)
French (fr)
Inventor
李强
邓昊
宋中奇
Original Assignee
联合汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合汽车电子有限公司 filed Critical 联合汽车电子有限公司
Publication of WO2024041125A1 publication Critical patent/WO2024041125A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller

Definitions

  • the present invention relates to the field of battery management, and in particular, to a battery management controller system used for high-voltage detection and high-voltage control of battery packs.
  • the battery management system mainly monitors the safety of battery cells, performs high-voltage relay control, charging control, etc.
  • battery management controllers were generally installed in the battery pack and were divided into main board controllers and slave board controllers.
  • the mainboard controller communicates with the vehicle controller (VCU) through CAN and with the slave board controller through the daisy chain.
  • VCU vehicle controller
  • the daisy chain There is a microprocessor inside the motherboard controller, and the software in the microprocessor controls the operation of functions.
  • the motherboard controller contains a low-voltage area with a microprocessor as the core. Since the traditional battery management controller has a microprocessor and mainly controls various functions through software in the microprocessor, the characteristics of this architecture are: the function of the low-voltage area needs to be designed, and the size of the controller is generally relatively large; it needs to be designed
  • the software in the microprocessor, the underlying software and the application layer software all need to be developed; if there is a problem with the software, it needs to be updated and maintained remotely; for different battery packs, the software needs to be redesigned and data matched; it needs to be controlled in the network of the entire vehicle Power on and off and CAN communication of the battery management controller; with the upgrade of electronic and electrical architecture and the development of battery packs, this architecture will have some problems.
  • battery packs are becoming more and more compact, allowing more and more space for installing the controller.
  • controllers There are great challenges in installing small and large-sized controllers; for another example, each battery pack needs to upgrade the software, which has a greater impact on the development cycle and production cost of the battery pack; for another example, if there is a problem with the software, the controller needs to be Upgrade, the more controllers there are, the more complex the upgrade becomes.
  • the present invention provides a battery management controller system for high-voltage detection and high-voltage control of battery packs.
  • the main feature of the battery management controller system is that there is no microprocessor on the controller. Without software, the battery management controller system can detect and control the sensors and actuators in the battery pack.
  • the external interface is very simple, which is conducive to the modular design of the battery pack and reduces the development workload and development cycle.
  • the battery management controller system does not include a microprocessor.
  • the battery management controller system includes:
  • the domain controller receives information from the high-voltage board through CAN communication and sends an instruction signal to the high-voltage board;
  • the high-voltage board communicates with the sampling board through a daisy chain and interacts with the domain controller through CAN communication. It is configured to perform high-voltage sampling, insulation detection, current detection, and high-voltage relay control on the battery pack. and active fuse control.
  • the high-voltage board includes: a high-voltage acquisition and control module and a CAN signal conversion module.
  • the high-voltage acquisition and control module is configured to collect the voltage on the high-voltage bus of the battery pack, perform insulation detection on the insulation resistance of the battery pack, and detect the current on the high-voltage bus of the battery pack via a current sensor, It communicates with the sampling board through a daisy chain, and the signals collected or detected by the high-voltage acquisition and control module are transmitted to the CAN signal conversion module through SPI transmission.
  • the CAN signal conversion module is configured to convert SPI signals into CAN signals to communicate with the domain controller.
  • the high-voltage board also includes: a relay control module, an active fuse control module and an insulation detection circuit;
  • the relay control module is configured to transmit signals with the high-voltage sampling and control module through SPI or PIN transmission, and configure the relay according to the instruction signal from the domain controller input by the high-voltage sampling and control module. Drive and feedback diagnostic results and relay status to the high voltage sampling and control module.
  • the active fuse control module is configured to transmit signals with the high-voltage sampling and control module through SPI or PIN transmission, and to communicate with the high-voltage sampling and control module according to the instruction signal from the domain controller input by the high-voltage sampling and control module.
  • the active fuse drives and feeds back diagnostic results and active fuse status to the high voltage sampling and control module.
  • the insulation detection circuit is configured to drive the insulation resistance according to the instruction signal from the domain controller input by the high-voltage sampling and control module and feed back the diagnosis result and insulation resistance status to the high-voltage sampling and control module. control module.
  • the sampling board includes a plurality of sampling units, each sampling unit samples its associated battery module and performs cell balancing.
  • the sampling of the respective associated battery modules includes voltage sampling and temperature sampling of the battery modules.
  • the high-voltage board and the sampling board communicate through a one-way daisy chain.
  • the high-voltage board and the sampling board communicate through a two-way daisy chain.
  • the system further includes a power supply module configured to supply power to the high voltage acquisition and control module, the relay control module, the active fuse control module and the CAN signal conversion module.
  • the power supply module The voltage comes from the domain controller.
  • the power module obtains 12V voltage from the domain controller.
  • the system further includes a current sensor for detecting the current on the high-voltage bus of the battery pack.
  • the high-voltage board of the present invention communicates with the domain controller through CAN signals.
  • the CAN signals have relatively strong anti-interference and reliable communication;
  • the present invention does not have a main chip and most low-voltage areas, and the size of the controller can be made very small, which is beneficial to installation in the battery pack;
  • the high-voltage plate controller has no software and does not require complex software development and maintenance work, nor does it require remote upgrades, which greatly reduces the development workload.
  • FIG. 1 shows a battery management controller system according to an embodiment of the present invention
  • Figure 2 shows a high-voltage board communication diagram according to an embodiment of the present invention
  • Figure 3 shows a schematic structural diagram of a high-voltage plate according to an embodiment of the present invention.
  • FIG. 4 shows a schematic structural diagram of a high-voltage board with a power module according to an embodiment of the present invention.
  • FIG. 1 shows a battery management controller system according to an embodiment of the present invention.
  • the entire battery management controller system includes a domain controller 101 outside the battery pack, a high-voltage board 102 inside the battery pack, and a sampling board (ie, sampling controller) 103.
  • the domain controller 101 serves as the main board of the high-voltage board 102 of the battery management controller system of the present invention, and the sampling board 103 serves as the slave board of the high-voltage board 102 .
  • the domain controller 101 communicates with the high voltage board 102 via CAN.
  • the high voltage board 102 communicates with the sampling board 103 through a daisy chain.
  • the domain controller 101 receives information from the high-voltage board through CAN and sends command signals to the high-voltage board.
  • the high-voltage board 102 receives signals from the sampling board 103 through a daisy chain, and interacts with the domain controller 101 through CAN.
  • the high-voltage board 102 has the functions of high-voltage sampling, insulation detection, current detection, high-voltage relay control, and active fuse control.
  • the sampling board 103 communicates with the high voltage board 102 via a daisy chain.
  • the sampling board 103 includes a plurality of sampling units (ie, sampling chips). Each sampling unit samples its associated battery module (ie, battery cell) and balances the battery cell. This sampling includes voltage sampling and temperature sampling of the battery module.
  • the sampling unit 1 samples the voltage and temperature of the battery module 1 .
  • the sampling unit 2 samples the voltage and temperature of the battery module 2 . And so on.
  • the high-voltage board 102 and the sampling board 103 can communicate through a one-way daisy chain or a two-way daisy chain.
  • Figure 2 shows a high voltage board communication diagram according to an embodiment of the present invention.
  • the high-voltage board 102 and the domain controller 101 communicate through CAN.
  • the high voltage board 102 and the sampling board 103 communicate through a two-way daisy chain.
  • Figure 3 shows a schematic structural diagram of a high voltage plate according to an embodiment of the present invention.
  • the high-voltage board of the present invention includes, but is not limited to, a CAN signal conversion module 301, a high-voltage acquisition and control module 302, a relay control module 303, an active fuse control module 304 and an insulation detection circuit 305.
  • the CAN signal conversion module 301 is used to convert SPI signals into CAN signals.
  • the CAN signal conversion module 301 communicates with the domain controller 101 through CAN.
  • the ADC signal collected by the high-voltage acquisition and control module 302 is transmitted through SPI, and the CAN signal conversion module 301 communicates with the high-voltage acquisition and control module through SPI.
  • the CAN signal conversion module 301 converts the SPI signal into a CAN signal and then transmits it to the domain controller 101 to improve communication quality and increase anti-interference performance.
  • the high-voltage sampling and control module 302 and the sampling board 103 communicate through a daisy chain, and transmit signals with the relay control module 303 and the active fuse control module 304 through SPI or PIN.
  • the high-voltage sampling and control module 302 collects the voltage on the high-voltage bus of the battery pack and performs insulation testing on the insulation resistance of the battery pack.
  • the current on the high-voltage bus of the battery pack is detected via a current sensor (SHUNT) and communicates with the sampling board through a daisy chain.
  • SHUNT current sensor
  • the relay control module 303 drives the relay according to the signal input by the high-voltage sampling and control module 302 and feeds back the diagnosis results and relay status to the high-voltage sampling and control module 302 .
  • the signal input by the high-voltage sampling and control module 302 is an instruction signal from the domain controller 101 .
  • the diagnosis results and relay status are fed back to the high-voltage sampling and control module 302 and then converted into CAN signals by the CAN signal conversion module 301 and then further fed back to the domain controller 101 .
  • the active fuse control module 304 drives the active fuse according to the signal input by the high-voltage sampling and control module 302 and feeds back the diagnosis result and active fuse status to the high-voltage sampling and control module 302 .
  • the diagnostic results and active fuse status are fed back to the high voltage sampling and control module 302 and then converted into CAN signals by the CAN signal conversion module 301 and then further fed back to the domain controller 101 .
  • the insulation detection module 304 drives the insulation resistance according to the signal input by the high-voltage sampling and control module 302 and feeds back the diagnosis results and the insulation resistance status to the high-voltage sampling and control module 302 .
  • the diagnosis results and insulation resistance status are fed back to the high-voltage sampling and control module 302 and then converted into CAN signals by the CAN signal conversion module 301 and further fed back to the domain controller 101 .
  • FIG. 4 shows a schematic structural diagram of a high-voltage board with a power module according to an embodiment of the present invention.
  • the system is powered by an external power supply.
  • power may be provided by voltage from a domain controller.
  • This voltage can be 12V.
  • the 12V voltage after the 12V voltage enters the battery management controller system, it supplies power to various modules through the power module, including high-voltage acquisition and control module 302, relay control module 303, active fuse control module 304 and CAN signal conversion module 301.
  • the high voltage board of the present invention includes, but is not limited to, CAN signal conversion module 301, high voltage acquisition and control module 302, relay control module 303, active fuse control module 304, insulation detection circuit 305 and power supply module 401 .
  • the power supply module 401 supplies power to the high voltage acquisition and control module 302, the relay control module 303, the active fuse control module 304 and the CAN signal conversion module 301.
  • the voltage of the power module 401 comes from the domain controller.
  • the CAN signal conversion module 301 is used to convert SPI signals into CAN signals.
  • the CAN signal conversion module 301 communicates with the domain controller 101 through CAN.
  • the ADC signal collected by the high-voltage acquisition and control module 302 is transmitted through SPI, and the CAN signal conversion module 301 communicates with the high-voltage acquisition and control module through SPI.
  • the CAN signal conversion module 301 converts the SPI signal into a CAN signal and then transmits it to the domain controller 101 to improve communication quality and increase anti-interference performance.
  • the high-voltage sampling and control module 302 and the sampling board 103 communicate through a daisy chain, and transmit signals with the relay control module 303 and the active fuse control module 304 through SPI or PIN.
  • the high-voltage sampling and control module 302 collects the voltage on the high-voltage bus of the battery pack, performs insulation detection on the insulation resistance of the battery pack, detects the current on the high-voltage bus of the battery pack through the current sensor (SHUNT), and communicates with the sampling board through Daisy chain communication.
  • the relay control module 303 drives the relay according to the signal input by the high-voltage sampling and control module 302 and feeds back the diagnosis results and relay status to the high-voltage sampling and control module 302 .
  • the diagnosis results and relay status are fed back to the high-voltage sampling and control module 302 and then converted into CAN signals by the CAN signal conversion module 301 and then further fed back to the domain controller 101 .
  • the active fuse control module 304 drives the active fuse according to the signal input by the high-voltage sampling and control module 302 and feeds back the diagnosis result and active fuse status to the high-voltage sampling and control module 302 .
  • the diagnostic results and active fuse status are fed back to the high voltage sampling and control module 302 and then converted into CAN signals by the CAN signal conversion module 301 and then further fed back to the domain controller 101 .
  • the insulation detection module 304 drives the insulation resistance according to the signal input by the high-voltage sampling and control module 302 and feeds back the diagnosis results and the insulation resistance status to the high-voltage sampling and control module 302 .
  • the diagnosis results and insulation resistance status are fed back to the high-voltage sampling and control module 302 and then converted into CAN signals by the CAN signal conversion module 301 and further fed back to the domain controller 101 .
  • the battery management controller system does not include a microprocessor.
  • the battery management controller system includes:
  • the domain controller receives information from the high-voltage board through CAN communication and sends an instruction signal to the high-voltage board;
  • the high-voltage board communicates with the sampling board through a daisy chain and interacts with the domain controller through CAN communication. It is configured to perform high-voltage sampling, insulation detection, current detection, and high-voltage relay control on the battery pack. and active fuse control.
  • the high-voltage board includes: a high-voltage acquisition and control module and a CAN signal conversion module.
  • the high-voltage acquisition and control module is configured to collect the voltage on the high-voltage bus of the battery pack, perform insulation detection on the insulation resistance of the battery pack, and detect the current on the high-voltage bus of the battery pack via a current sensor, It communicates with the sampling board through a daisy chain, and the signals collected or detected by the high-voltage acquisition and control module are transmitted to the CAN signal conversion module through SPI transmission.
  • the CAN signal conversion module is configured to convert SPI signals into CAN signals to communicate with the domain controller.
  • the high-voltage board also includes: a relay control module, an active fuse control module and an insulation detection circuit;
  • the relay control module is configured to transmit signals with the high-voltage sampling and control module through SPI or PIN transmission, and configure the relay according to the instruction signal from the domain controller input by the high-voltage sampling and control module. Drive and feedback diagnostic results and relay status to the high voltage sampling and control module.
  • the active fuse control module is configured to transmit signals with the high-voltage sampling and control module through SPI or PIN transmission, and to communicate with the high-voltage sampling and control module according to the instruction signal from the domain controller input by the high-voltage sampling and control module.
  • the active fuse drives and feeds back diagnostic results and active fuse status to the high voltage sampling and control module.
  • the insulation detection circuit is configured to drive the insulation resistance according to the instruction signal from the domain controller input by the high-voltage sampling and control module and feed back the diagnosis result and insulation resistance status to the high-voltage sampling and control module. control module.
  • the sampling board includes a plurality of sampling units, each sampling unit samples its associated battery module and performs cell balancing.
  • the sampling of the respective associated battery modules includes voltage sampling and temperature sampling of the battery modules.
  • the high-voltage board and the sampling board communicate through a one-way daisy chain.
  • the high-voltage board and the sampling board communicate through a two-way daisy chain.
  • the system further includes a power supply module configured to supply power to the high voltage acquisition and control module, the relay control module, the active fuse control module and the CAN signal conversion module.
  • the power supply module The voltage comes from the domain controller.
  • the power module obtains 12V voltage from the domain controller.
  • the system further includes a current sensor for detecting the current on the high-voltage bus of the battery pack.
  • the high-voltage board of the present invention communicates with the domain controller through CAN signals.
  • the CAN signals have relatively strong anti-interference and reliable communication;
  • the present invention does not have a main chip and most low-voltage areas, and the size of the controller can be made very small, which is beneficial to installation in the battery pack;
  • the high-voltage plate controller has no software and does not require complex software development and maintenance work, nor does it require remote upgrades, which greatly reduces the development workload.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” means a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. .
  • certain features, structures or characteristics in one or more embodiments of the present application may be appropriately combined.
  • aspects of the present application may be illustrated and described in several patentable categories or circumstances, including any new and useful process, machine, product, or combination of matter, or combination thereof. any new and useful improvements. Accordingly, various aspects of the present application may be executed entirely by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product including computer-readable program code located on one or more computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种电池管理控制器系统,所述系统不包括微处理器,所述系统包括:位于电池包外部的域控制器以及位于所述电池包内部的高压板以及采样板。所述域控制器通过CAN通信方式接收来自所述高压板的信息,并向所述高压板发出指令信号。所述高压板通过菊花链与所述采样板通信并通过CAN通信方式与所述域控制器进行信号交互,并被配置成对所述电池包进行高压采样、绝缘检测、电流检测、高压继电器控制以及主动保险丝控制。

Description

一种电池管理控制器系统 技术领域
本发明涉及电池管理领域,尤其涉及用于电池包高压检测和高压控制的电池管理控制器系统。
背景技术
电池管理系统主要是监控电芯安全,进行高压继电器控制,充电控制等,以往的电池管理控制器一般安装在电池包内,分为主板控制器和从板控制器。主板控制器通过CAN与整车控制器(VCU)通讯,同时通过菊花链与从板控制器通讯。主板控制器内部有微处理器,通过微处理器中的软件控制功能的运行。
传统的电池管理控制器架构中,主板控制器内部包含以微处理器为核心的低压区。由于传统的电池管理控制器有微处理器且主要通过微处理器中的软件来控制各种功能,因此,该架构的特点是:需要设计低压区的功能,控制器尺寸一般比较大;需要设计微处理器中的软件,底层软件和应用层软件都需要开发;如果软件出现问题,需要进行远程更新和维护;不同的电池包,软件需要重新设计和数据匹配;需要在整车的网络中控制电池管理控制器的上下电和CAN通讯;随着电子电气架构的升级和电池包的发展,这种架构会存在一些问题,例如,电池包越来越紧凑,允许安装控制器的空间越来越小,尺寸大的控制器安装存在较大挑战;再例如,每个电池包都升级软件,对电池包的开发周期和生产成本影响较大;又例如,如果软件出现问题,需要对控制器进行升级,控制器越多,升级越复杂。
因此,亟需一种新的电池管理控制器架构,以克服传统的电池管理控制器由于微处理器的存在及运行其上的软件而带来的诸多弊端。
发明内容
为了克服现有技术的缺陷,本发明提供了一种用于电池包高压检测和高压控制的电池管理控制器系统,该电池管理控制器系统的主要特点是,控制器上没有微处理器,也没有软件,该电池管理控制器系统可以检测和控制电池包内的传感器和执行器,对外的接口非常简单,有利于电池包的模块化设计,降低开发工作量和开发周期。
本发明提供的电池管理控制器系统不包括微处理器,所述电池管理控制器系统包括:
位于电池包外部的域控制器;
位于所述电池包内部的高压板以及采样板;
其中,所述域控制器通过CAN通信方式接收来自所述高压板的信息,并向所述高压板发出指令信号;
所述高压板通过菊花链与所述采样板通信并通过CAN通信方式与所述域控制器进行信号交互,并被配置成对所述电池包进行高压采样、绝缘检测、电流检测、高压继电器控制以及主动保险丝控制。
在一个实施例中,所述高压板包括:高压采集和控制模块以及CAN信号转换模块。
所述高压采集和控制模块,被配置成采集所述电池包的高压母线上的电压、对所述电池包的绝缘电阻进行绝缘检测、经由电流传感器检测所述电池包的高压母线上的电流,并与所述采样板通过菊花链通讯,所述高压采集和控制模块采集或检测到的信号通过SPI传输方式传输至所述CAN信号转换模块。
所述CAN信号转换模块,被配置成将SPI信号转换为CAN信号以与所述域控制器通信。
在一个实施例中,所述高压板还包括:继电器控制模块、主动保险丝控制模块以及绝缘检测电路;
所述继电器控制模块,被配置成与所述高压采样和控制模块通过SPI或PIN传输方式传输信号,并根据所述高压采样和控制模块输入的来自所述域控制器的所述指令信号对继电器进行驱动并将诊断结果和继电器状态反馈至所述高压采样和控制模块。
所述主动保险丝控制模块,被配置成与所述高压采样和控制模块通过SPI或PIN传输方式传输信号,并根据所述高压采样和控制模块输入的来自所述域控制器的所述指令信号对主动保险丝进行驱动并将诊断结果和主动保险丝状态反馈至所述高压采样和控制模块。
所述绝缘检测电路,被配置成根据所述高压采样和控制模块输入的来自所述域控制器的所述指令信号对绝缘电阻进行驱动并将诊断结果和绝缘电阻状态反馈至所述高压采样和控制模块。
在一个实施例中,所述采样板包括多个采样单元,每个采样单元对与各自相关联的电池模组进行采样并进行电芯均衡。
在一个实施例中,所述对与各自相关联的电池模组进行采样包括对所述电池模组进行电压采样以及温度采样。
在一个实施例中,所述高压板和所述采样板之间通过单向菊花链通讯。
在一个实施例中,所述高压板和所述采样板之间通过双向菊花链进行通讯。
在一个实施例中,所述系统还包括电源模块,被配置成为所述高压采集和控制模块、所述继电器控制模块、所述主动保险丝控制模块以及所述CAN信号转换模块供电,所述电源模块的电压来自所述域控制器。
在一个实施例中,所述电源模块获得来自所述域控制器的12V电压。
在一个实施例中,所述系统还包括电流传感器,用于检测所述电池包的高压母线上的电流。
本发明的电池管理控制器系统具有以下几大优点:
其一,本发明的高压板与域控制器通过CAN信号进行通讯,CAN信号抗干扰性比较强,通讯可靠;
其二,本发明的电池包内的大部分控制和检测信号都由高压板进行驱动和采集,对外的线束非常少,有利于简化电池包设计;
其三,本发明没有主芯片和大部分低压区,控制器尺寸可以做的很小,有利于电池包内的安装;
其四,高压板控制器没有软件,不需要复杂的软件开发和维护工作,也不需要进行远程升级,大大降低了开发工作量。
附图说明
本发明的以上发明内容以及下面的具体实施方式在结合附图阅读时会得到更好的理解。需要说明的是,附图仅作为所请求保护的发明的示例。在附图中,相同的附图标记代表相同或类似的元素。
图1示出根据本发明一实施例的电池管理控制器系统;
图2示出根据本发明一实施例的高压板通讯图;
图3示出根据本发明一实施例的高压板结构示意图;以及
图4示出根据本发明一实施例的具有电源模块的高压板结构示意图。
附图标记说明
101 域控制器
102 高压板
103 采样板
301 CAN信号转换模块
302 高压采集和控制模块
303 继电器控制模块
304 主动保险丝控制模块
305 绝缘检测电路
401 电源模块
具体实施方式
以下在具体实施方式中详细叙述本发明的详细特征以及优点,其内容足以 使任何本领域技术人员了解本发明的技术内容并据以实施,且根据本说明书所揭露的说明书、权利要求及附图,本领域技术人员可轻易地理解本发明相关的目的及优点。
图1示出根据本发明一实施例的电池管理控制器系统。如图1所示,整个电池管理控制器系统包括电池包外部的域控制器101、电池包内部的高压板102、采样板(即采样控制器)103。
域控制器101作为本发明的电池管理控制器系统的高压板102的主板,采样板103作为高压板102的从板。域控制器101通过CAN与高压板102通讯。高压板102通过菊花链与采样板103通讯。
域控制器101通过CAN接收高压板的信息,并向高压板发出指令信号。
高压板102通过菊花链接收采样板103的信号,通过CAN与域控制器101进行信号交互。高压板102具备高压采样、绝缘检测、电流检测、高压继电器控制、主动保险丝控制的功能。
采样板103通过菊花链与高压板102通讯。采样板103包括多个采样单元(即,采样芯片),每个采样单元对与各自相关联的电池模组(即电芯)进行采样并对电芯进行均衡。该采样包括对电池模组的电压采样、温度采样。
例如,采样单元1对电池模组1进行电压、温度采样。采样单元2对电池模组2进行电压、温度采样。以此类推。
进一步,高压板102和采样板103之间可以通过单向菊花链通讯,也可以通过双向菊花链进行通讯。
图2示出根据本发明一实施例的高压板通讯图。其中,高压板102和域控制器101之间通过CAN通讯。高压板102和采样板103之间通过双向菊花链进行通讯。
图3示出根据本发明一实施例的高压板结构示意图。
本发明的高压板内部包括,但不限于,CAN信号转换模块301、高压采集和控制模块302、继电器控制模块303、主动保险丝控制模块304以及绝缘检测电路305。
CAN信号转换模块301用于将SPI信号转换为CAN信号。CAN信号转换模块301与域控制器101通过CAN进行通讯。高压采集和控制模块302采集到的ADC信号是通过SPI传输的,所述CAN信号转换模块301与高压采集和控制模块通过SPI通讯。CAN信号转换模块301将SPI信号转换为CAN信号再传输给域控制器101以提高通讯质量,增加抗干扰性。
高压采样和控制模块302和采样板103通过菊花链通讯,与继电器控制模块303和主动保险丝控制模块304通过SPI或PIN传输信号。高压采样和控制模块302采集电池包的高压母线上的电压,对电池包的绝缘电阻进行绝缘检测, 经由电流传感器(SHUNT)检测电池包的高压母线上的电流,并与采样板通过菊花链通讯。
继电器控制模块303根据高压采样和控制模块302输入的信号对继电器进行驱动并将诊断结果和继电器状态反馈至高压采样和控制模块302。其中,高压采样和控制模块302输入的信号为来自域控制器101的指令信号。诊断结果和继电器状态反馈至高压采样和控制模块302后经过CAN信号转换模块301转换为CAN信号后进一步反馈至域控制器101。
主动保险丝控制模块304根据高压采样和控制模块302输入的信号对主动保险丝进行驱动并将诊断结果和主动保险丝状态反馈至高压采样和控制模块302。诊断结果和主动保险丝状态反馈至高压采样和控制模块302后经过CAN信号转换模块301转换为CAN信号后进一步反馈至域控制器101。
绝缘检测模块304根据高压采样和控制模块302输入的信号对绝缘电阻进行驱动并将诊断结果和绝缘电阻状态反馈至高压采样和控制模块302。诊断结果和绝缘电阻状态反馈至高压采样和控制模块302后经过CAN信号转换模块301转换为CAN信号后进一步反馈至域控制器101。
图4示出根据本发明一实施例的具有电源模块的高压板结构示意图。该系统通过外部电源进行供电。
在一个实施例中,可通过来自域控制器的电压进行供电。该电压可以为12V。如图4所示,12V电压进入电池管理控制器系统后,经过电源模块给各个模块进行供电,包括高压采集和控制模块302、继电器控制模块303、主动保险丝控制模块304以及CAN信号转换模块301。
在一个实施例中,本发明的高压板内部包括,但不限于,CAN信号转换模块301、高压采集和控制模块302、继电器控制模块303、主动保险丝控制模块304、绝缘检测电路305以及电源模块401。
电源模块401为高压采集和控制模块302、继电器控制模块303、主动保险丝控制模块304以及CAN信号转换模块301供电。电源模块401的电压来自域控制器。
CAN信号转换模块301用于将SPI信号转换为CAN信号。CAN信号转换模块301与域控制器101通过CAN进行通讯。高压采集和控制模块302采集到的ADC信号是通过SPI传输的,所述CAN信号转换模块301与高压采集和控制模块通过SPI通讯。CAN信号转换模块301将SPI信号转换为CAN信号再传输给域控制器101以提高通讯质量,增加抗干扰性。
高压采样和控制模块302和采样板103通过菊花链通讯,与继电器控制模块303和主动保险丝控制模块304通过SPI或PIN传输信号。高压采样和控制模块302采集电池包的高压母线上的电压,对电池包的绝缘电阻进行绝缘检测,经由电流传感器(SHUNT)检测电池包的高压母线上的电流,并与采样板通过 菊花链通讯。
继电器控制模块303根据高压采样和控制模块302输入的信号对继电器进行驱动并将诊断结果和继电器状态反馈至高压采样和控制模块302。诊断结果和继电器状态反馈至高压采样和控制模块302后经过CAN信号转换模块301转换为CAN信号后进一步反馈至域控制器101。
主动保险丝控制模块304根据高压采样和控制模块302输入的信号对主动保险丝进行驱动并将诊断结果和主动保险丝状态反馈至高压采样和控制模块302。诊断结果和主动保险丝状态反馈至高压采样和控制模块302后经过CAN信号转换模块301转换为CAN信号后进一步反馈至域控制器101。
绝缘检测模块304根据高压采样和控制模块302输入的信号对绝缘电阻进行驱动并将诊断结果和绝缘电阻状态反馈至高压采样和控制模块302。诊断结果和绝缘电阻状态反馈至高压采样和控制模块302后经过CAN信号转换模块301转换为CAN信号后进一步反馈至域控制器101。
本发明提供的电池管理控制器系统不包括微处理器,所述电池管理控制器系统包括:
位于电池包外部的域控制器;
位于所述电池包内部的高压板以及采样板;
其中,所述域控制器通过CAN通信方式接收来自所述高压板的信息,并向所述高压板发出指令信号;
所述高压板通过菊花链与所述采样板通信并通过CAN通信方式与所述域控制器进行信号交互,并被配置成对所述电池包进行高压采样、绝缘检测、电流检测、高压继电器控制以及主动保险丝控制。
在一个实施例中,所述高压板包括:高压采集和控制模块以及CAN信号转换模块。
所述高压采集和控制模块,被配置成采集所述电池包的高压母线上的电压、对所述电池包的绝缘电阻进行绝缘检测、经由电流传感器检测所述电池包的高压母线上的电流,并与所述采样板通过菊花链通讯,所述高压采集和控制模块采集或检测到的信号通过SPI传输方式传输至所述CAN信号转换模块。
所述CAN信号转换模块,被配置成将SPI信号转换为CAN信号以与所述域控制器通信。
在一个实施例中,所述高压板还包括:继电器控制模块、主动保险丝控制模块以及绝缘检测电路;
所述继电器控制模块,被配置成与所述高压采样和控制模块通过SPI或PIN传输方式传输信号,并根据所述高压采样和控制模块输入的来自所述域控制器的所述指令信号对继电器进行驱动并将诊断结果和继电器状态反馈至所述高压采样和控制模块。
所述主动保险丝控制模块,被配置成与所述高压采样和控制模块通过SPI或PIN传输方式传输信号,并根据所述高压采样和控制模块输入的来自所述域控制器的所述指令信号对主动保险丝进行驱动并将诊断结果和主动保险丝状态反馈至所述高压采样和控制模块。
所述绝缘检测电路,被配置成根据所述高压采样和控制模块输入的来自所述域控制器的所述指令信号对绝缘电阻进行驱动并将诊断结果和绝缘电阻状态反馈至所述高压采样和控制模块。
在一个实施例中,所述采样板包括多个采样单元,每个采样单元对与各自相关联的电池模组进行采样并进行电芯均衡。
在一个实施例中,所述对与各自相关联的电池模组进行采样包括对所述电池模组进行电压采样以及温度采样。
在一个实施例中,所述高压板和所述采样板之间通过单向菊花链通讯。
在一个实施例中,所述高压板和所述采样板之间通过双向菊花链进行通讯。
在一个实施例中,所述系统还包括电源模块,被配置成为所述高压采集和控制模块、所述继电器控制模块、所述主动保险丝控制模块以及所述CAN信号转换模块供电,所述电源模块的电压来自所述域控制器。
在一个实施例中,所述电源模块获得来自所述域控制器的12V电压。
在一个实施例中,所述系统还包括电流传感器,用于检测所述电池包的高压母线上的电流。
本发明具有以下几大优点:
其一,本发明的高压板与域控制器通过CAN信号进行通讯,CAN信号抗干扰性比较强,通讯可靠;
其二,本发明的电池包内的大部分控制和检测信号都由高压板进行驱动和采集,对外的线束非常少,有利于简化电池包设计;
其三,本发明没有主芯片和大部分低压区,控制器尺寸可以做的很小,有利于电池包内的安装;
其四,高压板控制器没有软件,不需要复杂的软件开发和维护工作,也不需要进行远程升级,大大降低了开发工作量。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,或将其他操作添加到这些过程中,或 从这些过程移除某一步或数步操作。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
这里采用的术语和表述方式只是用于描述,本发明并不应局限于这些术语和表述。使用这些术语和表述并不意味着排除任何示意和描述(或其中部分)的等效特征,应认识到可能存在的各种修改也应包含在权利要求范围内。其他修改、变化和替换也可能存在。相应的,权利要求应视为覆盖所有这些等效物。
同样,需要指出的是,虽然本发明已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可做出各种等效的变化或替换,因此, 只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (10)

  1. 一种电池管理控制器系统,其特征在于,所述系统不包括微处理器,所述系统包括:
    位于电池包外部的域控制器;
    位于所述电池包内部的高压板以及采样板;
    其中,所述域控制器通过CAN通信方式接收来自所述高压板的信息,并向所述高压板发出指令信号;
    所述高压板通过菊花链与所述采样板通信并通过CAN通信方式与所述域控制器进行信号交互,并被配置成对所述电池包进行高压采样、绝缘检测、电流检测、高压继电器控制以及主动保险丝控制。
  2. 如权利要求1所述的电池管理控制器系统,其特征在于,所述高压板包括:
    高压采集和控制模块以及CAN信号转换模块;
    其中,
    所述高压采集和控制模块,被配置成采集所述电池包的高压母线上的电压、对所述电池包的绝缘电阻进行绝缘检测、经由电流传感器检测所述电池包的高压母线上的电流,并与所述采样板通过菊花链通讯,所述高压采集和控制模块采集或检测到的信号通过SPI传输方式传输至所述CAN信号转换模块;
    所述CAN信号转换模块,被配置成将SPI信号转换为CAN信号以与所述域控制器通信。
  3. 如权利要求2所述的电池管理控制器系统,其特征在于,所述高压板还包括:
    继电器控制模块、主动保险丝控制模块以及绝缘检测电路;
    其中:
    所述继电器控制模块,被配置成与所述高压采样和控制模块通过SPI或PIN传输方式传输信号,并根据所述高压采样和控制模块输入的来自所述域控制器的所述指令信号对继电器进行驱动并将诊断结果和继电器状态反馈至所述高压采样和控制模块;
    所述主动保险丝控制模块,被配置成与所述高压采样和控制模块通过SPI或PIN传输方式传输信号,并根据所述高压采样和控制模块输入的来自所述域控制器的所述指令信号对主动保险丝进行驱动并将诊断结果和主动保险丝状态反馈至所述高压采样和控制模块;
    所述绝缘检测电路,被配置成根据所述高压采样和控制模块输入的来自所述域控制器的所述指令信号对绝缘电阻进行驱动并将诊断结果和绝缘电阻状态反馈至所述高压采样和控制模块。
  4. 如权利要求1所述的电池管理控制器系统,其特征在于,所述采样板包括多个采样单元,每个采样单元对与各自相关联的电池模组进行采样并进行电芯均衡。
  5. 如权利要求4所述的电池管理控制器系统,其特征在于,所述对与各自相关联的电池模组进行采样包括对所述电池模组进行电压采样以及温度采样。
  6. 如权利要求1所述的电池管理控制器系统,其特征在于,所述高压板和所述采样板之间通过单向菊花链通讯。
  7. 如权利要求1所述的电池管理控制器系统,其特征在于,所述高压板和所述采样板之间通过双向菊花链进行通讯。
  8. 如权利要求3所述的电池管理控制器系统,其特征在于,所述系统还包括电源模块,被配置成为所述高压采集和控制模块、所述继电器控制模块、所述主动保险丝控制模块以及所述CAN信号转换模块供电,所述电源模块的电压来自所述域控制器。
  9. 如权利要求8所述的电池管理控制器系统,其特征在于,所述电源模块获得来自所述域控制器的12V电压。
  10. 如权利要求1所述的电池管理控制器系统,其特征在于,所述系统还包括电流传感器,用于检测所述电池包的高压母线上的电流。
PCT/CN2023/100837 2022-08-26 2023-06-16 一种电池管理控制器系统 WO2024041125A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211033875.2A CN115275398A (zh) 2022-08-26 2022-08-26 一种电池管理控制器系统
CN202211033875.2 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024041125A1 true WO2024041125A1 (zh) 2024-02-29

Family

ID=83754759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100837 WO2024041125A1 (zh) 2022-08-26 2023-06-16 一种电池管理控制器系统

Country Status (2)

Country Link
CN (1) CN115275398A (zh)
WO (1) WO2024041125A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275398A (zh) * 2022-08-26 2022-11-01 联合汽车电子有限公司 一种电池管理控制器系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150102943A1 (en) * 2013-10-10 2015-04-16 Datang Nxp Semiconductors Co., Ltd. Daisy-chain communication bus and protocol
CN107317058A (zh) * 2017-06-16 2017-11-03 山东省科学院自动化研究所 一种可配置的电动汽车电池管理监控系统及实现方法
CN210927151U (zh) * 2019-11-06 2020-07-03 东风航盛(武汉)汽车控制系统有限公司 一种低成本bms一体机
CN211416974U (zh) * 2019-12-30 2020-09-04 东风航盛(武汉)汽车控制系统有限公司 整车及电池管理一体化系统
CN112550067A (zh) * 2020-12-10 2021-03-26 上海金脉电子科技有限公司 一种车辆bdu系统
CN114074576A (zh) * 2020-08-21 2022-02-22 广汽埃安新能源汽车有限公司 域控制电池管理系统
CN115275398A (zh) * 2022-08-26 2022-11-01 联合汽车电子有限公司 一种电池管理控制器系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683428B (zh) * 2013-12-20 2015-08-12 奇瑞新能源汽车技术有限公司 一种用于电动汽车的电池管理系统以及电动汽车
CN207311148U (zh) * 2017-08-18 2018-05-04 欣旺达电动汽车电池有限公司 一种电池管理装置
CN109823230A (zh) * 2019-02-20 2019-05-31 浙江吉利汽车研究院有限公司 一种电池管理系统及电动车
CN110254292B (zh) * 2019-07-01 2021-05-14 杭州云弘汽车技术有限公司 一种集成电池管理和整车控制功能的控制系统
CN112440904B (zh) * 2019-08-31 2022-10-18 比亚迪股份有限公司 域控制器、系统及车辆
CN110667436B (zh) * 2019-10-08 2022-10-21 天津易鼎丰动力科技有限公司 一种电动汽车用动力域控制系统及其控制方法
CN112803509A (zh) * 2019-11-13 2021-05-14 联合汽车电子有限公司 电池单体管理控制器及电池管理系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150102943A1 (en) * 2013-10-10 2015-04-16 Datang Nxp Semiconductors Co., Ltd. Daisy-chain communication bus and protocol
CN107317058A (zh) * 2017-06-16 2017-11-03 山东省科学院自动化研究所 一种可配置的电动汽车电池管理监控系统及实现方法
CN210927151U (zh) * 2019-11-06 2020-07-03 东风航盛(武汉)汽车控制系统有限公司 一种低成本bms一体机
CN211416974U (zh) * 2019-12-30 2020-09-04 东风航盛(武汉)汽车控制系统有限公司 整车及电池管理一体化系统
CN114074576A (zh) * 2020-08-21 2022-02-22 广汽埃安新能源汽车有限公司 域控制电池管理系统
CN112550067A (zh) * 2020-12-10 2021-03-26 上海金脉电子科技有限公司 一种车辆bdu系统
CN115275398A (zh) * 2022-08-26 2022-11-01 联合汽车电子有限公司 一种电池管理控制器系统

Also Published As

Publication number Publication date
CN115275398A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024041125A1 (zh) 一种电池管理控制器系统
CN101387887B (zh) 一种混合动力电机和控制器测试平台的测试方法
CN103149907B (zh) 基于双dsp的热冗余can总线高容错性控制终端及容错控制方法
CN103869781B (zh) 一种非相似三余度机载电气负载管理中心
CN100425966C (zh) 一种混合动力汽车动力总成实验装置
CN102623761B (zh) 一种电池组管理系统及其管理方法
WO2018044061A2 (ko) 공기구동 제어밸브의 온라인 진단 시스템 및 방법
CN201635769U (zh) 一种煤矿风机工作状态监测及故障预报系统
CN111361439B (zh) 一种用于防止充电枪锁死的控制方法及其装置
WO2024055659A1 (zh) 电池管理控制器及用于电池管理控制器的通讯方法
US20200080916A1 (en) Condition monitoring device for monitoring the condition of a mechanical machine component
CN110505200B (zh) 一种多协议菊花链接口转换芯片
WO2006016405A1 (ja) エレベータ監視システム
CN205862221U (zh) 一种基于can协议的电动汽车故障诊断系统及故障诊断仪
CN207304780U (zh) 基于图像采集设备的车载接触网运行状态信息采集装置
CN103368229B (zh) 一种电动汽车电池地面诊断设备及其诊断方法
WO2014029177A1 (zh) 用于电动汽车的控制装置
CN105059121A (zh) 一种太阳能电动车整车控制方法
CN1835322A (zh) 一种通信设备及其监控模块的供电方法
CN217259906U (zh) 一种用于bms的菊花链通信转换装置及汽车
CN201118853Y (zh) 一种用于给视频监控设备提供不间断电源的装置
CN114252719A (zh) 一种电助力自行车的故障检测方法、装置及系统
CN113253652A (zh) 一种机组的通信控制装置、方法和机组
CN208385571U (zh) 一种主控模块及电池管理装置
CN207089013U (zh) 电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856217

Country of ref document: EP

Kind code of ref document: A1