WO2024055659A1 - 电池管理控制器及用于电池管理控制器的通讯方法 - Google Patents

电池管理控制器及用于电池管理控制器的通讯方法 Download PDF

Info

Publication number
WO2024055659A1
WO2024055659A1 PCT/CN2023/100847 CN2023100847W WO2024055659A1 WO 2024055659 A1 WO2024055659 A1 WO 2024055659A1 CN 2023100847 W CN2023100847 W CN 2023100847W WO 2024055659 A1 WO2024055659 A1 WO 2024055659A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain controller
board
daisy chain
sampling
voltage
Prior art date
Application number
PCT/CN2023/100847
Other languages
English (en)
French (fr)
Inventor
李强
邓昊
Original Assignee
联合汽车电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联合汽车电子有限公司 filed Critical 联合汽车电子有限公司
Publication of WO2024055659A1 publication Critical patent/WO2024055659A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing

Definitions

  • the present invention relates to battery management, and in particular to a method for improving communication reliability of a battery management controller.
  • the daisy chain fails, for example, a certain daisy chain is disconnected, although the two-way daisy chain guarantees a certain degree of reliability, during the disconnection process, the daisy chain needs to be reset or re-addressed, and the daisy chain needs to be interrupted for a period. time, this time will also affect the entire loop, causing abnormal sampling or voltage and current detection.
  • the present invention provides a communication method for the battery management controller, which can greatly improve the reliability of the communication between the high-voltage board, the sampling board and the domain controller. It has good performance, robustness and anti-interference, and can also support higher daisy chain communication rate, obtain better high-voltage sampling and current detection performance, and avoid the problem of communication failure due to too high daisy chain load.
  • the communication method for the battery management controller includes but is not limited to the following steps:
  • the high voltage board communicates with the domain controller through the first daisy chain
  • the sampling board communicates with the domain controller through a second daisy chain
  • the high-voltage relay communicates with the domain controller through PIN;
  • the first daisy chain and the second daisy chain are independent of each other; the instruction signal to control the sampling board is directly sent by the domain controller; the instruction signal to control the high voltage board is directly sent by the domain controller. Send; the driving instructions for controlling the high-voltage relay are directly sent by the domain controller.
  • the step of the high-voltage board communicating with the domain controller through the first daisy chain includes: the high-voltage board communicating with the first bridge chip in the domain controller through the first daisy chain.
  • the first daisy chain and the second daisy chain are bidirectional daisy chains.
  • the first bridge chip parses the signal sent by the high voltage board through the first daisy chain and sends it to the processor in the domain controller, and the first bridge chip receives the signal.
  • the instruction signal of the processor is sent to the high voltage board through the first daisy chain.
  • the step of the sampling board communicating with the domain controller through a second daisy chain includes: the sampling board communicating with a second bridge chip in the domain controller through the second daisy chain.
  • the second bridge chip parses the daisy chain signal from the sampling board and sends it to the processor in the domain controller, and the second bridge chip receives the instruction signal of the processor and sent to the sampling board.
  • each sampling unit in the sampling board is connected through a daisy chain, and the first sampling unit and the last sampling unit are connected to the second bridge chip through a daisy chain.
  • the communication between the high-voltage board and the domain controller fails, the communication between the sampling board and the domain controller is not affected; when the communication between the sampling board and the domain controller fails, , does not affect the communication between the sampling board and the domain controller.
  • the present invention also provides a communication method for a battery management controller.
  • the communication method includes but is not limited to the following steps:
  • the high voltage board communicates with the domain controller through the first daisy chain
  • the sampling board communicates with the domain controller through a second daisy chain
  • the high-voltage relay communicates with the high-voltage board through PIN;
  • the first daisy chain and the second daisy chain are independent of each other; the instruction signal to control the sampling board is directly sent by the domain controller; the instruction signal to control the high voltage board is directly sent by the domain controller. Send; the driving instructions for controlling the high-voltage relay are sent by the domain controller to the high-voltage board through the first daisy chain, and are sent by the high-voltage board to the high-voltage relay through the PIN method.
  • the step of the high-voltage board communicating with the domain controller through the first daisy chain includes: the high-voltage board communicating with the first bridge chip in the domain controller through the first daisy chain.
  • the first daisy chain is a two-way daisy chain.
  • the first bridge chip parses the signal sent by the high voltage board through the first daisy chain and sends it to the processor in the domain controller, and the first bridge chip receives the signal.
  • the instruction signal of the processor is sent to the high voltage board through the first daisy chain.
  • the step of the sampling board communicating with the domain controller through a second daisy chain includes: the sampling board communicating with a second bridge chip in the domain controller through the second daisy chain.
  • the second bridge chip parses the daisy chain signal from the sampling board and sends it to the processor in the domain controller, and the second bridge chip receives the instruction signal of the processor and sent to the sampling board.
  • each sampling unit in the sampling board is connected through a daisy chain, and the first sampling unit and the last sampling unit are connected to the second bridge chip through a daisy chain.
  • the communication between the high-voltage board and the domain controller fails, the communication between the sampling board and the domain controller is not affected; when the communication between the sampling board and the domain controller fails, , does not affect the communication between the sampling board and the domain controller.
  • the present invention also provides a battery management controller.
  • the battery management controller includes: a domain controller located in a battery pack, a high-voltage board located in the battery pack, and the domain controller through a first daisy chain. Communication; the sampling board located in the battery pack communicates with the domain controller through the second daisy chain; the high-voltage relay located in the battery pack is connected to the domain controller through a PIN or with the high-voltage board connected through PIN; wherein, the first daisy chain and the second daisy chain are independent of each other; the instruction signal to control the sampling board is directly sent by the domain controller; the instruction signal to control the high voltage board is sent by the The domain controller directly sends; when the high-voltage relay and the domain controller are connected through a PIN, the driving instructions for controlling the high-voltage relay are directly sent by the domain controller; when the high-voltage relay and the high-voltage board pass through When the PIN is connected, the driving instructions for controlling the high-voltage relay are sent by the domain controller to the high
  • the domain controller includes: a first bridge chip, a second bridge chip and a processor; the first bridge chip parses the signal sent by the high voltage board through the first daisy chain and sends to the processor in the domain controller, and the first bridge chip receives the instruction signal from the processor and sends it to the high voltage board through the first daisy chain; the second bridge chip analyzes the instruction signal from the The daisy chain signal of the sampling board is sent to the processor in the domain controller, and the second bridge chip receives the instruction signal of the processor and is sent to the sampling board.
  • each sampling unit in the sampling board is connected through a daisy chain, and the first sampling unit and the last sampling unit are connected to the second bridge chip through a daisy chain.
  • the first daisy chain and the second daisy chain are two-way daisy chains.
  • the communication between the high-voltage board and the domain controller fails, the communication between the sampling board and the domain controller is not affected; when the communication between the sampling board and the domain controller fails, , does not affect the communication between the sampling board and the domain controller.
  • the battery management controller system of the present invention can ensure the reliability of communication between the high-voltage board, the sampling board and the domain controller through a two-way daisy chain.
  • the high-voltage board and the sampling board communicate using two sets of daisy chain networks and are not affected by each other. . Because when the daisy chain receives interference, the system will reset the daisy chain. During this period, all daisy chain nodes will be interfered and cannot communicate. If two daisy chain networks are used, if one of them is interfered, the other one can still communicate normally. , thus improving the robustness of the system.
  • Figure 1 shows a battery management controller architecture according to an embodiment of the present invention
  • FIG. 2 shows a battery management controller architecture according to yet another embodiment of the present invention
  • Figure 3 shows a schematic diagram of the connection method between the domain controller, the high-voltage board and the sampling board according to an embodiment of the present invention
  • FIG. 4 shows the working process of the battery management controller according to an embodiment of the present invention.
  • the present invention provides a battery management controller architecture and a method for improving the communication reliability of the battery management controller.
  • FIG. 1 shows a battery management controller architecture according to an embodiment of the present invention.
  • the battery management controller includes a domain controller 101 located outside the battery pack, n battery modules 105-1...105-n located within the battery pack, a high-voltage relay 102, a high-voltage board 103, and a sampling board 104.
  • the domain controller 101 is a controller that collects and sends instructions. It communicates with the high-voltage board 103 and the sampling board 104 through the bridge chip on the domain controller.
  • the domain controller can parse the daisy chain signals from the high-voltage board 103 and the sampling board 104. At the same time, control instructions can be sent to the high voltage board 103 and the sampling board 104 through the bridge chip.
  • the high voltage board 103 is used for high voltage detection, current detection and insulation detection of the battery pack. Among them, current detection can be obtained through shunt sampling, which requires high-frequency sampling to ensure the signal update rate.
  • the insulation detection is implemented by the domain controller sending instructions to the high voltage board 103.
  • the sampling board 104 is used to sample the battery cell voltage and battery module temperature, and to balance the battery cells at the same time.
  • sampling board 104 includes a plurality of sampling units (ie, sampling chips). Each sampling unit samples its associated battery module (ie, battery cell) and balances the battery cell. This sampling includes voltage sampling and temperature sampling of the battery module.
  • the communication method within the battery management controller is as follows:
  • the domain controller 101 and the high voltage board 103 are individually connected through a first daisy chain.
  • the domain controller 101 and the sampling board 104 are individually connected through a second daisy chain.
  • the first daisy chain and the second daisy chain are independent.
  • the domain controller 101 and the high-voltage relay 102 are connected through PIN communication. Specifically, the domain controller 101 sends a relay driving signal to control the operation of the high-voltage relay 102 through the wiring harness.
  • the present invention in order to minimize the wiring harness connecting the battery pack to the outside, also provides another battery management controller architecture, as shown in Figure 2.
  • FIG. 2 shows a battery management controller architecture according to yet another embodiment of the present invention.
  • the battery management controller includes a domain controller 201 located outside the battery pack, n battery modules 205-1...205-n located inside the battery pack, a high-voltage relay 202, a high-voltage board 203, and a sampling board 204.
  • the domain controller 201 is a controller that collects and sends instructions. It communicates with the high-voltage board 203 and the sampling board 204 through the bridge chip on the domain controller.
  • the domain controller 201 can parse the daisy chain signals from the high-voltage board 203 and the sampling board 204. , at the same time, control instructions can be sent to the high voltage board 203 and the sampling board 204 through the bridge chip.
  • the high voltage board 203 is used for high voltage detection, current detection and insulation detection of the battery pack. Among them, current detection can be obtained through shunt sampling, which requires high-frequency sampling to ensure the signal update rate. Insulation detection is implemented by sending instructions to the high-voltage board from the domain controller.
  • the sampling board 204 is used to sample the battery cell voltage and battery module temperature, and to balance the battery cells at the same time.
  • sampling board 204 includes a plurality of sampling units (ie, sampling chips). Each sampling unit samples its associated battery module (ie, battery cell) and balances the battery cell. This sampling includes voltage sampling and temperature sampling of the battery module.
  • the communication method within the battery management controller is as follows:
  • the domain controller 201 and the high voltage board 203 are individually connected through a first daisy chain.
  • the domain controller 201 and the sampling board 204 are individually connected through a second daisy chain.
  • the first daisy chain and the second daisy chain are independent.
  • the difference between the embodiment shown in Figure 2 and the embodiment shown in Figure 1 lies in the communication connection method and the high-voltage relay driving method.
  • the high-voltage relay 202 is connected to the high-voltage board 203 through PIN communication.
  • the domain controller 201 sends the relay driving instructions to the high-voltage board 203 through the first daisy chain, and controls the driver chip on the high-voltage board 203 to send the driving instructions to the high-voltage relay, so that the high-voltage relay works as required.
  • Figure 3 shows a schematic diagram of the connection method between the domain controller, the high-voltage board and the sampling board according to an embodiment of the present invention.
  • the domain controller 301 includes a first bridge chip 311 , a second bridge chip 312 and a processor 313 .
  • the high voltage board 303 communicates with the first bridge chip 311 of the domain controller 301 through the first daisy chain.
  • the connecting chip 311 is connected to and communicates with the processor 313 in the domain controller 301.
  • the processor 313 of the domain controller 301 sends control instructions to the first bridge chip 311, and the first bridge chip 311 sends the control instructions to the high voltage board 303 through the first daisy chain.
  • the first bridge chip 311 receives the signal sent from the high voltage board through the first daisy chain and sends it to the processor 313 .
  • Each sampling unit is connected through a daisy chain.
  • the first sampling unit and the last sampling unit are connected to the second bridge chip 312 through the daisy chain.
  • the second bridge chip 312 is connected to and communicates with the processor of the domain controller 301.
  • first daisy chain and the second daisy chain are bidirectional daisy chains.
  • the purpose of the two-way daisy chain is to communicate in different directions when the line is disconnected, maintaining normal communication between the domain controller and the high-voltage board or the sampling board.
  • the wiring harness between the domain controller and the high-voltage board in Figure 3 the wiring harness is the daisy chain
  • the default daisy chain direction communication is used, that is, the upper daisy chain wiring harness between the domain controller and the high-voltage board is used for communication.
  • this time can be called forward daisy chain communication.
  • the daisy chain communication between the domain controller and the high voltage board must go through the lower daisy chain harness communication.
  • the direction of communication is opposite to the previous one, which can be called reverse daisy chain communication.
  • the default daisy chain direction communication is used, that is, domain controller-sampling board 1-sampling board 2-sampling board 3-sampling board 4-domain Controller direction communication
  • the default daisy chain direction communication at this time can be called forward daisy chain communication; when the wiring harness between the domain controller and the sampling board is broken, or the wiring harness between the sampling unit and the sampling unit is broken, For example, if the wiring harness between sampling board 1 and sampling board 2 is broken, the default forward daisy chain communication direction is still used between the domain controller and sampling board 1, and the reverse daisy chain communication direction is used between sampling board 2 and the domain controller.
  • Communication that is, domain controller-sampling board 4-sampling board
  • FIG. 4 shows the working process of the battery management controller according to an embodiment of the present invention.
  • Step 401 After the domain controller is powered on, the domain controller initializes.
  • Step 402 Wake up the high-voltage board through the daisy chain, and initialize the high-voltage board.
  • Step 403 Wake up the sampling board through the daisy chain, and initialize the sampling board.
  • Step 404 Determine whether the high-voltage board initialization fails. If it fails, continue to try to initialize the high-voltage board (i.e., wake up), but it will not affect the work of the sampling board; if it does not fail, the high-voltage board communicates with the domain controller through the daisy chain.
  • Step 405 Determine whether the initialization of the sampling board fails. If it fails, continue to try to initialize the sampling board (ie, wake up), but it will not affect the work of the high-voltage board. If it does not fail, the sampling board communicates with the domain controller through the daisy chain.
  • the invention provides a communication method for a battery management controller.
  • the communication methods include but are not limited to the following steps:
  • the high voltage board communicates with the domain controller through the first daisy chain
  • the sampling board communicates with the domain controller through a second daisy chain
  • the high-voltage relay communicates with the domain controller through PIN;
  • the first daisy chain and the second daisy chain are independent of each other, the instruction signal to control the sampling board is directly sent by the domain controller; the instruction signal to control the high voltage board is directly sent by the domain controller. Send; the driving instructions for controlling the high-voltage relay are directly sent by the domain controller.
  • the step of the high-voltage board communicating with the domain controller through the first daisy chain includes: the high-voltage board communicating with the first bridge chip in the domain controller through the first daisy chain.
  • the first daisy chain and the second daisy chain are bidirectional daisy chains.
  • the first bridge chip parses the signal sent by the high voltage board through the first daisy chain and sends it to the processor in the domain controller, and the first bridge chip receives the signal.
  • the instruction signal of the processor is sent to the high voltage board through the first daisy chain.
  • the step of the sampling board communicating with the domain controller through a second daisy chain includes: the sampling board communicating with a second bridge chip in the domain controller through the second daisy chain.
  • the second bridge chip parses the daisy chain signal from the sampling board and sends it to the processor in the domain controller, and the second bridge chip receives the instruction signal of the processor and sent to the sampling board.
  • each sampling unit in the sampling board is connected through a daisy chain, and the first sampling unit and the last sampling unit are connected to the second bridge chip through a daisy chain.
  • the communication between the high-voltage board and the domain controller fails, the communication between the sampling board and the domain controller is not affected; when the communication between the sampling board and the domain controller fails, , does not affect the communication between the sampling board and the domain controller.
  • the present invention also provides a communication method for a battery management controller.
  • the communication method includes but is not limited to the following steps:
  • the high voltage board communicates with the domain controller through the first daisy chain
  • the sampling board communicates with the domain controller through a second daisy chain
  • the high-voltage relay communicates with the high-voltage board through PIN;
  • the first daisy chain and the second daisy chain are independent of each other, and the command signal for controlling the sampling board is directly sent by the domain controller; the command signal for controlling the high-voltage board is directly sent by the domain controller; the drive instruction for controlling the high-voltage relay is sent by the domain controller to the high-voltage board through the first daisy chain and sent by the high-voltage board to the high-voltage relay through a PIN method.
  • the step of the high-voltage board communicating with the domain controller through the first daisy chain includes: the high-voltage board communicating with the first bridge chip in the domain controller through the first daisy chain.
  • the first daisy chain and the second daisy chain are bidirectional daisy chains.
  • the first bridge chip parses the signal sent by the high voltage board through the first daisy chain and sends it to the processor in the domain controller, and the first bridge chip receives the signal.
  • the instruction signal of the processor is sent to the high voltage board through the first daisy chain.
  • the step of the sampling board communicating with the domain controller through a second daisy chain includes: the sampling board communicating with a second bridge chip in the domain controller through the second daisy chain.
  • the second bridge chip parses the daisy chain signal from the sampling board and sends it to the processor in the domain controller, and the second bridge chip receives the instruction signal of the processor and sent to the sampling board.
  • each sampling unit in the sampling board is connected through a daisy chain, and the first sampling unit and the last sampling unit are connected to the second bridge chip through a daisy chain.
  • the communication between the high-voltage board and the domain controller fails, the communication between the sampling board and the domain controller is not affected; when the communication between the sampling board and the domain controller fails, , does not affect the communication between the sampling board and the domain controller.
  • the present invention also provides a battery management controller.
  • the battery management controller includes: a domain controller, a high-voltage board located in the battery pack, communicating with the domain controller through a first daisy chain; located in the battery pack.
  • the sampling board in the battery pack communicates with the domain controller through a second daisy chain; the high-voltage relay located in the battery pack is connected to the domain controller through a PIN or is connected to the high-voltage board through a PIN; wherein , the first daisy chain and the second daisy chain are independent of each other, the instruction signal to control the sampling board is directly sent by the domain controller; the instruction signal to control the high voltage board is directly sent by the domain controller ;
  • the high-voltage relay is connected to the domain controller through PIN, the driving instructions to control the high-voltage relay are directly sent by the domain controller; when the high-voltage relay and the high-voltage board are connected through PIN, the control The driving instruction of the high-voltage relay is sent by the domain controller to the high
  • the domain controller includes: a first bridge chip, a second bridge chip and a processor; the first bridge chip parses the signal sent by the high voltage board through the first daisy chain and sends to the processor in the domain controller, and the first bridge chip receives the instruction signal from the processor and sends it to the high voltage board through the first daisy chain; the second bridge chip analyzes the instruction signal from the The daisy chain signal of the sampling board is sent to the processor in the domain controller, and the second bridge chip receives the instruction signal of the processor and is sent to the sampling board.
  • each sampling unit in the sampling board is connected through a daisy chain, the first sampling unit and the last sampling unit are connected to the second bridge chip through a daisy chain, and each sampling unit contributes to the battery pack The associated battery module inside is sampled.
  • the first daisy chain and the second daisy chain are bidirectional daisy chains.
  • the communication between the high-voltage board and the domain controller fails, the communication between the sampling board and the domain controller is not affected; when the communication between the sampling board and the domain controller fails, , does not affect the communication between the sampling board and the domain controller.
  • the battery management controller system of the present invention can ensure the reliability of communication between the high-voltage board, the sampling board and the domain controller through a two-way daisy chain.
  • the high-voltage board and the sampling board communicate using two sets of daisy chain networks and are not affected by each other. . Because when the daisy chain receives interference, the system will reset the daisy chain. During this period, all daisy chain nodes will be interfered and cannot communicate. If two daisy chain networks are used, if When one of them is interfered, the other one can still communicate normally, which improves the robustness of the system.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” means a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. .
  • certain features, structures or characteristics in one or more embodiments of the present application may be appropriately combined.
  • aspects of the present application may be illustrated and described in several patentable categories or circumstances, including any new and useful process, machine, product, or combination of matter, or combination thereof. any new and useful improvements. Accordingly, various aspects of the present application may be executed entirely by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product including computer-readable program code located on one or more computer-readable media.

Abstract

一种电池管理控制器及用于电池管理控制器的通讯方法。通讯方法包括:高压板(103)通过第一菊花链与域控制器(101)通信;采样板(104)通过第二菊花链与域控制器(101)通信;以及高压继电器(102)通过PIN方式与域控制器(101)通信;其中,第一菊花链与第二菊花链互相独立,控制采样板(104)的指令信号由域控制器(101)直接发送;控制高压板(103)的指令信号由域控制器(101)直接发送;控制高压继电器(102)的驱动指令由域控制器(101)直接发送。

Description

电池管理控制器及用于电池管理控制器的通讯方法 技术领域
本发明涉及电池管理,尤其涉及提高电池管理控制器通讯可靠性的方法。
背景技术
随着汽车电子电气架构的不断升级,中央计算控制器和域控制器的架构越来越成熟,目前,很多主机厂都开始设计自己的域控制器,并且减少其他控制器的数量,把大量的功能转移到域控制器上,对于电池管理控制器系统,大部分主机厂把电池管理控制器的高压板和采样板通过菊花链连接后,连到了域控制器,形成了域控制器-高压板-采样板-域控制器的环形菊花链。
虽然这种方案在菊花链负荷不大的时候,或者通讯的速率要求不高的时候,是可以使用的,但是一旦通讯输入速率要求高、传输数据大,则菊花链的更新频率将不能满足要求,特别是当前800伏电池包系统应用越来越多,一般要求的单芯片达到15个以上,如果再串联高压板,并且高压板上有一些采样速率要求比较高的功能,例如分流器的采集,将大大影响通讯的速率,导致不能满足设计的要求。
另外,如果菊花链发生故障,例如某个菊花链发生断路,虽然由双向菊花链保证一定的可靠性,但是在发生断线的过程中,菊花链需要复位或重新编址,菊花链需要中断一段时间,这个时间也将影响整个环路,导致采样或者电压、电流检测异常。
因此,亟需一种能提高电池管理控制器通讯可靠性的方法。
发明内容
为了解决高压板和采样板通讯不可靠、通讯频率低的问题,本发明提供了一种用于电池管理控制器的通讯方法,能大大提高高压板、采样板与域控制器之间通讯的可靠性、鲁棒性以及抗干扰性,还能支持更高的菊花链通讯速率,获得更好的高压采样和电流检测的性能,避免因为菊花链负载太高导致通讯失败的问题。
所述用于电池管理控制器的通讯方法包括但不限于以下步骤:
高压板通过第一菊花链与域控制器通信;
采样板通过第二菊花链与所述域控制器通信;以及
高压继电器通过PIN方式与所述域控制器通信;
其中,所述第一菊花链与所述第二菊花链互相独立;控制所述采样板的指令信号由所述域控制器直接发送;控制所述高压板的指令信号由所述域控制器直接发送;控制所述高压继电器的驱动指令由所述域控制器直接发送。
在一个实施例中,所述高压板通过第一菊花链与域控制器通信的步骤包括:所述高压板通过第一菊花链与所述域控制器内的第一桥接芯片通信。
在一个实施例中,所述第一菊花链和第二菊花链为双向菊花链。
在一个实施例中,所述第一桥接芯片解析所述高压板通过所述第一菊花链发送过来的信号并发送给所述域控制器内的处理器,且所述第一桥接芯片接收所述处理器的指令信号并通过所述第一菊花链发送给所述高压板。
在一个实施例中,所述采样板通过第二菊花链与所述域控制器通信的步骤包括:所述采样板通过第二菊花链与所述域控制器内的第二桥接芯片通信。
在一个实施例中,所述第二桥接芯片解析来自所述采样板的菊花链信号并发送给所述域控制器内的处理器,且所述第二桥接芯片接收所述处理器的指令信号并发送给所述采样板。
在一个实施例中,所述采样板中的各个采样单元之间通过菊花链连接,第一个采样单元和最后一个采样单元通过菊花链与第二桥接芯片连接。
在一个实施例中,当所述高压板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯;当所述采样板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯。
本发明还提供了一种用于电池管理控制器的通讯方法,所述通讯方法包括但不限于以下步骤:
高压板通过第一菊花链与域控制器通信;
采样板通过第二菊花链与所述域控制器通信;以及
高压继电器通过PIN方式与所述高压板通信;
其中,所述第一菊花链与所述第二菊花链互相独立;控制所述采样板的指令信号由所述域控制器直接发送;控制所述高压板的指令信号由所述域控制器直接发送;控制所述高压继电器的驱动指令由所述域控制器通过所述第一菊花链发送至所述高压板并由所述高压板通过PIN方式发送至所述高压继电器。
在一个实施例中,所述高压板通过第一菊花链与域控制器通信的步骤包括:所述高压板通过第一菊花链与所述域控制器内的第一桥接芯片通信。
在一个实施例中,所述第一菊花链为双向菊花链。
在一个实施例中,所述第一桥接芯片解析所述高压板通过所述第一菊花链发送过来的信号并发送给所述域控制器内的处理器,且所述第一桥接芯片接收所述处理器的指令信号并通过所述第一菊花链发送给所述高压板。
在一个实施例中,所述采样板通过第二菊花链与所述域控制器通信的步骤包括:所述采样板通过第二菊花链与所述域控制器内的第二桥接芯片通信。
在一个实施例中,所述第二桥接芯片解析来自所述采样板的菊花链信号并发送给所述域控制器内的处理器,且所述第二桥接芯片接收所述处理器的指令信号并发送给所述采样板。
在一个实施例中,所述采样板中的各个采样单元之间通过菊花链连接,第一个采样单元和最后一个采样单元通过菊花链与第二桥接芯片连接。
在一个实施例中,当所述高压板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯;当所述采样板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯。
本发明还提供了一种电池管理控制器,所述电池管理控制器包括:位于电池包内的域控制器、位于所述电池包内的高压板,与所述域控制器通过第一菊花链通信;位于所述电池包内的采样板,与所述域控制器通过第二菊花链通信;位于所述电池包内的高压继电器,与所述域控制器通过PIN连接或者与所述高压板通过PIN连接;其中,所述第一菊花链与所述第二菊花链互相独立;控制所述采样板的指令信号由所述域控制器直接发送;控制所述高压板的指令信号由所述域控制器直接发送;当所述高压继电器与所述域控制器通过PIN连接时,控制所述高压继电器的驱动指令由所述域控制器直接发送;当所述高压继电器与所述高压板通过PIN连接时,控制所述高压继电器的驱动指令由所述域控制器通过所述第一菊花链发送至所述高压板并由所述高压板通过PIN方式发送至所述高压继电器。
在一个实施例中,所述域控制器包括:第一桥接芯片、第二桥接芯片和处理器;所述第一桥接芯片解析所述高压板通过所述第一菊花链发送过来的信号并发送给所述域控制器内的处理器,且所述第一桥接芯片接收所述处理器的指令信号并通过所述第一菊花链发送给所述高压板;所述第二桥接芯片解析来自所述采样板的菊花链信号并发送给所述域控制器内的处理器,且所述第二桥接芯片接收所述处理器的指令信号并发送给所述采样板。
在一个实施例中,所述采样板中的各个采样单元之间通过菊花链连接,第一个采样单元和最后一个采样单元通过菊花链和第二桥接芯片连接。所述第一菊花链和第二菊花链为双向菊花链。
在一个实施例中,当所述高压板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯;当所述采样板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯。
本发明的电池管理控制器系统通过双向菊花链,可以保证高压板、采样板与域控制器之间通讯的可靠性,同时,高压板和采样板使用两套菊花链网络通讯,相互不受影响。因为菊花链在收到干扰时,系统会对菊花链进行复位处理,期间所有菊花链节点都受到干扰而不能通讯,如果采用两个菊花链网络,如果其中一个受到干扰,另外一个还是可以正常通讯,这样就提高了系统的鲁棒性。
除此之外,由于菊花链负载降低,允许更高的频率进行通讯,获得更好的高压采样和电流检测的性能,避免因为菊花链负载太高导致通讯失败的问题。例如进行电流检测的分流器,如果所有芯片连成一个环,其最高更新速率不低 于100ms,而把高压板单独使用一个菊花链环与域控制器通讯,其通讯的速率可以达到10ms甚至更高,有利于提高系统的电流检测性能。
附图说明
本发明的以上发明内容以及下面的具体实施方式在结合附图阅读时会得到更好的理解。需要说明的是,附图仅作为所请求保护的发明的示例。在附图中,相同的附图标记代表相同或类似的元素。
图1示出根据本发明一实施例的电池管理控制器架构;
图2示出根据本发明又一实施例的电池管理控制器架构;
图3示出根据本发明一实施例的域控制器与高压板、采样板之间的连接方式示意图;
图4示出根据本发明一实施例的电池管理控制器的工作过程。
具体实施方式
以下在具体实施方式中详细叙述本发明的详细特征以及优点,其内容足以使任何本领域技术人员了解本发明的技术内容并据以实施,且根据本说明书所揭露的说明书、权利要求及附图,本领域技术人员可轻易地理解本发明相关的目的及优点。
为了解决高压板和采样板通讯不可靠、通讯频率低的技术问题,本发明提供了一种电池管理控制器架构以及提高电池管理控制器通讯可靠性的方法。
图1示出根据本发明一实施例的电池管理控制器架构。该电池管理控制器包括位于电池包外的域控制器101、位于电池包内的n个电池模组105-1...105-n、高压继电器102、高压板103、采样板104。
域控制器101是收集和发送指令的控制器,通过域控制器上的桥接芯片,与高压板103和采样板104通讯,域控制器可以解析来自高压板103和采样板104的菊花链信号,同时,通过桥接芯片可以向高压板103和采样板104发送控制指令。
高压板103用于进行电池包的高压检测、电流检测和绝缘检测。其中,电流检测可以通过分流器采样得到,分流器需要高频采样才能保证信号的更新速率。绝缘检测通过域控制器向高压板103发送指令实现。
采样板104用于对电芯电压和电池模组温度进行采样,同时对电芯进行均衡。
进一步,采样板104包括多个采样单元(即,采样芯片),每个采样单元对与各自相关联的电池模组(即电芯)进行采样并对电芯进行均衡。该采样包括对电池模组的电压采样、温度采样。
该电池管理控制器内的通讯方式如下:
域控制器101与高压板103通过第一菊花链单独连接。
域控制器101与采样板104通过第二菊花链单独连接。
其中,第一菊花链与第二菊花链独立。
域控制器101与高压继电器102通过PIN通信方式连接。具体而言,域控制器101发出继电器驱动信号,通过线束控制高压继电器102工作。
在又一实施例中,为了尽量减少电池包与外部连接的线束,本发明还提供了又一电池管理控制器架构,如图2所示。
图2示出根据本发明又一实施例的电池管理控制器架构。该电池管理控制器包括位于电池包外的域控制器201、位于电池包内的n个电池模组205-1...205-n、高压继电器202、高压板203、采样板204。
域控制器201是收集和发送指令的控制器,通过域控制器上的桥接芯片,与高压板203和采样板204通讯,域控制器201可以解析来自高压板203和采样板204的菊花链信号,同时,通过桥接芯片可以向高压板203和采样板204发送控制指令。
高压板203用于进行电池包的高压检测、电流检测和绝缘检测。其中,电流检测可以通过分流器采样得到,分流器需要高频采样才能保证信号的更新速率。绝缘检测通过域控制器向高压板发送指令实现。
采样板204用于对电芯电压和电池模组温度进行采样,同时对电芯进行均衡。
进一步,采样板204包括多个采样单元(即,采样芯片),每个采样单元对与各自相关联的电池模组(即电芯)进行采样并对电芯进行均衡。该采样包括对电池模组的电压采样、温度采样。
该电池管理控制器内的通讯方式如下:
域控制器201与高压板203通过第一菊花链单独连接。
域控制器201与采样板204通过第二菊花链单独连接。
其中,第一菊花链与第二菊花链独立。
图2所示的实施例与图1所示的实施例区别在于通讯连接方式以及高压继电器驱动方式。在图2所示的实施例中,高压继电器202通过PIN通信方式与高压板203连接。域控制器201通过第一菊花链将继电器驱动指令发送至高压板203,控制高压板203上的驱动芯片发出驱动指令给高压继电器,让高压继电器按照要求工作。
图3示出根据本发明一实施例的域控制器与高压板、采样板之间的连接方式示意图。
域控制器301包括第一桥接芯片311、第二桥接芯片312以及处理器313。高压板303通过第一菊花链与域控制器301的第一桥接芯片311通信,第一桥 接芯片311与域控制器301内的处理器313连接并通讯。域控制器301的处理器313发送控制指令至第一桥接芯片311,第一桥接芯片311通过第一菊花链将控制指令发送至高压板303。第一桥接芯片311接收高压板通过第一菊花链发来的信号,并发送给处理器313。
各个采样单元之间通过菊花链相连,第一个采样单元和最后一个采样单元通过菊花链和第二桥接芯片312连接,第二桥接芯片312与域控制器301的处理器连接并通讯。
需要指出的是,此处的第一菊花链和第二菊花链为双向菊花链。双向菊花链的目的是在断线的时候,可以按照不同方向通讯,维持域控制器与高压板或与采样板之间的正常通讯。例如,图3的域控制器与高压板之间的线束(线束即为菊花链)连接正常时,使用默认的菊花链方向通讯即域控制器与高压板之间的上面的菊花链线束进行通讯,此时可称为正向菊花链通讯。当菊花链线束断了,域控制器与高压板之间的菊花链通讯必须走下面的菊花链线束通讯,这样,通讯的方向与之前相反,可称为反向菊花链通讯。又如,图3的域控制器与采样板之间的线束连接正常时,使用默认的菊花链方向通讯,即域控制器-采样板1-采样板2-采样板3-采样板4-域控制器方向通讯,此时该默认的菊花链方向通讯可称为正向菊花链通讯;当域控制器与采样板之间的线束断了,或者采样单元与采样单元之间的线束断了,例如采样板1与采样板2之间的线束断了,则域控制器与采样板1之间仍然为默认的正向菊花链通讯方向,采样板2与域控制器之间采用反向菊花链通讯,即域控制器-采样板4-采样板3-采样板2。
图4示出根据本发明一实施例的电池管理控制器的工作过程。
步骤401:域控制器上电后,域控制器初始化。
步骤402:通过菊花链唤醒高压板,高压板初始化。
步骤403:通过菊花链唤醒采样板,采样板初始化。
步骤404:判断高压板初始化是否失败,若失败,则继续尝试高压板初始化(即唤醒),但不会影响采样板的工作;若未失败,则高压板通过菊花链与域控制器通讯。
步骤405:判断采样板初始化是否失败,若失败,则继续尝试采样板初始化(即唤醒),但不会影响高压板的工作;若未失败,则采样板通过菊花链与域控制器通讯。
本发明提供了一种用于电池管理控制器的通讯方法。所述通讯方法包括但不限于以下步骤:
高压板通过第一菊花链与域控制器通信;
采样板通过第二菊花链与所述域控制器通信;以及
高压继电器通过PIN方式与所述域控制器通信;
其中,所述第一菊花链与所述第二菊花链互相独立,控制所述采样板的指令信号由所述域控制器直接发送;控制所述高压板的指令信号由所述域控制器直接发送;控制所述高压继电器的驱动指令由所述域控制器直接发送。
在一个实施例中,所述高压板通过第一菊花链与域控制器通信的步骤包括:所述高压板通过第一菊花链与所述域控制器内的第一桥接芯片通信。
在一个实施例中,所述第一菊花链和所述第二菊花链为双向菊花链。
在一个实施例中,所述第一桥接芯片解析所述高压板通过所述第一菊花链发送过来的信号并发送给所述域控制器内的处理器,且所述第一桥接芯片接收所述处理器的指令信号并通过所述第一菊花链发送给所述高压板。
在一个实施例中,所述采样板通过第二菊花链与所述域控制器通信的步骤包括:所述采样板通过第二菊花链与所述域控制器内的第二桥接芯片通信。
在一个实施例中,所述第二桥接芯片解析来自所述采样板的菊花链信号并发送给所述域控制器内的处理器,且所述第二桥接芯片接收所述处理器的指令信号并发送给所述采样板。
在一个实施例中,所述采样板中的各个采样单元之间通过菊花链连接,第一个采样单元和最后一个采样单元通过菊花链和第二桥接芯片连接。
在一个实施例中,当所述高压板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯;当所述采样板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯。
本发明还提供了一种用于电池管理控制器的通讯方法,所述通讯方法包括但不限于以下步骤:
高压板通过第一菊花链与域控制器通信;
采样板通过第二菊花链与所述域控制器通信;以及
高压继电器通过PIN方式与所述高压板通信;
其中,所述第一菊花链与所述第二菊花链互相独立,控制所述采样板的指令信号由所述域控制器直接发送;控制所述高压板的指令信号由所述域控制器直接发送;控制所述高压继电器的驱动指令由所述域控制器通过所述第一菊花链发送至所述高压板并由所述高压板通过PIN方式发送至所述高压继电器。
在一个实施例中,所述高压板通过第一菊花链与域控制器通信的步骤包括:所述高压板通过第一菊花链与所述域控制器内的第一桥接芯片通信。
在一个实施例中,所述第一菊花链和所述第二菊花链为双向菊花链。
在一个实施例中,所述第一桥接芯片解析所述高压板通过所述第一菊花链发送过来的信号并发送给所述域控制器内的处理器,且所述第一桥接芯片接收所述处理器的指令信号并通过所述第一菊花链发送给所述高压板。
在一个实施例中,所述采样板通过第二菊花链与所述域控制器通信的步骤包括:所述采样板通过第二菊花链与所述域控制器内的第二桥接芯片通信。
在一个实施例中,所述第二桥接芯片解析来自所述采样板的菊花链信号并发送给所述域控制器内的处理器,且所述第二桥接芯片接收所述处理器的指令信号并发送给所述采样板。
在一个实施例中,所述采样板中的各个采样单元之间通过菊花链连接,第一个采样单元和最后一个采样单元通过菊花链和第二桥接芯片连接。
在一个实施例中,当所述高压板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯;当所述采样板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯。
本发明还提供了一种电池管理控制器,所述电池管理控制器包括:域控制器、位于所述电池包内的高压板,与所述域控制器通过第一菊花链通信;位于所述电池包内的采样板,与所述域控制器通过第二菊花链通信;位于所述电池包内的高压继电器,与所述域控制器通过PIN连接或者与所述高压板通过PIN连接;其中,所述第一菊花链与所述第二菊花链互相独立,控制所述采样板的指令信号由所述域控制器直接发送;控制所述高压板的指令信号由所述域控制器直接发送;当所述高压继电器与所述域控制器通过PIN连接时,控制所述高压继电器的驱动指令由所述域控制器直接发送;当所述高压继电器与所述高压板通过PIN连接时,控制所述高压继电器的驱动指令由所述域控制器通过所述第一菊花链发送至所述高压板并由所述高压板通过PIN方式发送至所述高压继电器。
在一个实施例中,所述域控制器包括:第一桥接芯片、第二桥接芯片和处理器;所述第一桥接芯片解析所述高压板通过所述第一菊花链发送过来的信号并发送给所述域控制器内的处理器,且所述第一桥接芯片接收所述处理器的指令信号并通过所述第一菊花链发送给所述高压板;所述第二桥接芯片解析来自所述采样板的菊花链信号并发送给所述域控制器内的处理器,且所述第二桥接芯片接收所述处理器的指令信号并发送给所述采样板。
在一个实施例中,所述采样板中的各个采样单元之间通过菊花链连接,第一个采样单元和最后一个采样单元通过菊花链和第二桥接芯片连接,所述各采样单元对电池包内的相关联的电池模组进行采样。
在一个实施例中,所述第一菊花链和所述第二菊花链为双向菊花链。
在一个实施例中,当所述高压板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯;当所述采样板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯。
本发明的电池管理控制器系统通过双向菊花链,可以保证高压板、采样板与域控制器之间通讯的可靠性,同时,高压板和采样板使用两套菊花链网络通讯,相互不受影响。因为菊花链在收到干扰时,系统会对菊花链进行复位处理,期间所有菊花链节点都受到干扰而不能通讯,如果采用两个菊花链网络,如果 其中一个受到干扰,另外一个还是可以正常通讯,这样就提高了系统的鲁棒性。
除此之外,由于菊花链负载降低,允许更高的频率进行通讯,获得更好的高压采样和电流检测的性能,避免因为菊花链负载太高导致通讯失败的问题。例如进行电流检测的分流器,如果所有芯片连成一个环,其最高更新速率不低于100ms,而把高压板单独使用一个菊花链环与域控制器通讯,其通讯的速率可以达到10ms甚至更高,有利于提高系统的电流检测性能。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,或将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描 述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
这里采用的术语和表述方式只是用于描述,本发明并不应局限于这些术语和表述。使用这些术语和表述并不意味着排除任何示意和描述(或其中部分)的等效特征,应认识到可能存在的各种修改也应包含在权利要求范围内。其他修改、变化和替换也可能存在。相应的,权利要求应视为覆盖所有这些等效物。
同样,需要指出的是,虽然本发明已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可做出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (20)

  1. 一种用于电池管理控制器的通讯方法,其特征在于,所述电池管理控制器具有高压板、采样板、高压继电器以及域控制器,所述通讯方法包括:
    所述高压板通过第一菊花链与所述域控制器通信;
    所述采样板通过第二菊花链与所述域控制器通信;以及
    所述高压继电器通过PIN方式与所述域控制器通信;
    其中,所述第一菊花链与所述第二菊花链互相独立;控制所述采样板的指令信号由所述域控制器直接发送;控制所述高压板的指令信号由所述域控制器直接发送;控制所述高压继电器的驱动指令由所述域控制器直接发送。
  2. 如权利要求1所述的通讯方法,其特征在于,所述高压板通过第一菊花链与域控制器通信的步骤包括:所述高压板通过第一菊花链与所述域控制器内的第一桥接芯片通信。
  3. 如权利要求1所述的通讯方法,其特征在于,所述第一菊花链和所述第二菊花链为双向菊花链。
  4. 如权利要求2所述的通讯方法,其特征在于,所述第一桥接芯片解析所述高压板通过所述第一菊花链发送过来的信号并发送给所述域控制器内的处理器,且所述第一桥接芯片接收所述处理器的指令信号并通过所述第一菊花链发送给所述高压板。
  5. 如权利要求1所述的通讯方法,其特征在于,所述采样板通过第二菊花链与所述域控制器通信的步骤包括:所述采样板通过第二菊花链与所述域控制器内的第二桥接芯片通信。
  6. 如权利要求5所述的通讯方法,其特征在于,所述第二桥接芯片解析来自所述采样板的菊花链信号并发送给所述域控制器内的处理器,且所述第二桥接芯片接收所述处理器的指令信号并发送给所述采样板。
  7. 如权利要求5所述的通讯方法,其特征在于,所述采样板中的各个采样单元之间通过菊花链连接,第一个采样单元和最后一个采样单元通过菊花链与第二桥接芯片连接。
  8. 如权利要求1所述的通讯方法,其特征在于,当所述高压板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯;当所述采样板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯。
  9. 一种用于电池管理控制器的通讯方法,其特征在于,所述电池管理控制器具有高压板、采样板、高压继电器以及域控制器,所述通讯方法包括:
    所述高压板通过第一菊花链与所述域控制器通信;
    所述采样板通过第二菊花链与所述域控制器通信;以及
    所述高压继电器通过PIN方式与所述高压板通信;
    其中,所述第一菊花链与所述第二菊花链互相独立;控制所述采样板的指令信号由所述域控制器直接发送;控制所述高压板的指令信号由所述域控制器直接发送;控制所述高压继电器的驱动指令由所述域控制器通过所述第一菊花链发送至所述高压板并由所述高压板通过PIN方式发送至所述高压继电器。
  10. 如权利要求9所述的通讯方法,其特征在于,所述高压板通过第一菊花链与域控制器通信的步骤包括:所述高压板通过第一菊花链与所述域控制器内的第一桥接芯片通信。
  11. 如权利要求9所述的通讯方法,其特征在于,所述第一菊花链和所述第二菊花链为双向菊花链。
  12. 如权利要求10所述的通讯方法,其特征在于,所述第一桥接芯片解析所述高压板通过所述第一菊花链发送过来的信号并发送给所述域控制器内的处理器,且所述第一桥接芯片接收所述处理器的指令信号并通过所述第一菊花链发送给所述高压板。
  13. 如权利要求9所述的通讯方法,其特征在于,所述采样板通过第二菊花链与所述域控制器通信的步骤包括:所述采样板通过第二菊花链与所述域控制器内的第二桥接芯片通信。
  14. 如权利要求13所述的通讯方法,其特征在于,所述第二桥接芯片解析来自所述采样板的菊花链信号并发送给所述域控制器内的处理器,且所述第二桥接芯片接收所述处理器的指令信号并发送给所述采样板。
  15. 如权利要求13所述的通讯方法,其特征在于,所述采样板中的各个采样单元之间通过菊花链连接,第一个采样单元和最后一个采样单元通过菊花链 与第二桥接芯片连接。
  16. 如权利要求9所述的通讯方法,其特征在于,当所述高压板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯;当所述采样板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯。
  17. 一种电池管理控制器,其特征在于,所述电池管理控制器包括:
    位于电池包外的域控制器;
    位于所述电池包内的高压板,与所述域控制器通过第一菊花链通信;
    位于所述电池包内的采样板,与所述域控制器通过第二菊花链通信;
    位于所述电池包内的高压继电器,与所述域控制器通过PIN连接或者与所述高压板通过PIN连接;
    所述第一菊花链与所述第二菊花链互相独立;控制所述采样板的指令信号由所述域控制器直接发送;控制所述高压板的指令信号由所述域控制器直接发送;当所述高压继电器与所述域控制器通过PIN连接时,控制所述高压继电器的驱动指令由所述域控制器直接发送;当所述高压继电器与所述高压板通过PIN连接时,控制所述高压继电器的驱动指令由所述域控制器通过所述第一菊花链发送至所述高压板并由所述高压板通过PIN方式发送至所述高压继电器。
  18. 如权利要求17所述的电池管理控制器,其特征在于,所述域控制器包括:第一桥接芯片、第二桥接芯片和处理器;
    所述第一桥接芯片解析所述高压板通过所述第一菊花链发送过来的信号并发送给所述域控制器内的处理器,且所述第一桥接芯片接收所述处理器的指令信号并通过所述第一菊花链发送给所述高压板;
    所述第二桥接芯片解析来自所述采样板的菊花链信号并发送给所述域控制器内的处理器,且所述第二桥接芯片接收所述处理器的指令信号并发送给所述采样板。
  19. 如权利要求18所述的电池管理控制器,其特征在于,所述采样板中的各个采样单元对所述电池包内的相关联的电池模组进行采样,所述各个采样单元之间通过菊花链连接,第一个采样单元和最后一个采样单元通过菊花链与第二桥接芯片连接;所述第一菊花链和所述第二菊花链为双向菊花链。
  20. 如权利要求17所述的电池管理控制器,其特征在于,当所述高压板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯;当所述 采样板与所述域控制器通讯失败时,不影响所述采样板与所述域控制器的通讯。
PCT/CN2023/100847 2022-09-16 2023-06-16 电池管理控制器及用于电池管理控制器的通讯方法 WO2024055659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211129461.XA CN115610356A (zh) 2022-09-16 2022-09-16 电池管理控制器及用于电池管理控制器的通讯方法
CN202211129461.X 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055659A1 true WO2024055659A1 (zh) 2024-03-21

Family

ID=84859093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100847 WO2024055659A1 (zh) 2022-09-16 2023-06-16 电池管理控制器及用于电池管理控制器的通讯方法

Country Status (2)

Country Link
CN (1) CN115610356A (zh)
WO (1) WO2024055659A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115610356A (zh) * 2022-09-16 2023-01-17 联合汽车电子有限公司 电池管理控制器及用于电池管理控制器的通讯方法
CN116471720B (zh) * 2023-04-23 2024-01-02 钰泰半导体股份有限公司 Led驱动芯片、led自适应余量控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118228A (ko) * 2009-04-28 2010-11-05 이승철 절체장비반을 구비한 비상발전 배수펌프 배전반
CN109031111A (zh) * 2018-08-10 2018-12-18 宁波吉利汽车研究开发有限公司 继电器状态诊断电路及电源
CN110154826A (zh) * 2019-05-31 2019-08-23 山东交通学院 一种电力机车蓄电池智能专家管理系统及方法
CN114074576A (zh) * 2020-08-21 2022-02-22 广汽埃安新能源汽车有限公司 域控制电池管理系统
CN115610356A (zh) * 2022-09-16 2023-01-17 联合汽车电子有限公司 电池管理控制器及用于电池管理控制器的通讯方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118228A (ko) * 2009-04-28 2010-11-05 이승철 절체장비반을 구비한 비상발전 배수펌프 배전반
CN109031111A (zh) * 2018-08-10 2018-12-18 宁波吉利汽车研究开发有限公司 继电器状态诊断电路及电源
CN110154826A (zh) * 2019-05-31 2019-08-23 山东交通学院 一种电力机车蓄电池智能专家管理系统及方法
CN114074576A (zh) * 2020-08-21 2022-02-22 广汽埃安新能源汽车有限公司 域控制电池管理系统
CN115610356A (zh) * 2022-09-16 2023-01-17 联合汽车电子有限公司 电池管理控制器及用于电池管理控制器的通讯方法

Also Published As

Publication number Publication date
CN115610356A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2024055659A1 (zh) 电池管理控制器及用于电池管理控制器的通讯方法
JP7114753B2 (ja) 光学モジュール異常のリアルタイム監視機能を有するマルチモジュール光ファイバレーザ
KR100449010B1 (ko) 게이트웨이의 바이패스 장치
US9647879B2 (en) Network backup device and network system
CN109882439B (zh) 一种风扇控制系统、方法及服务器
EP2701024A2 (en) Portable device maintenance support apparatus, system, and method
CN102315966B (zh) 一种业务单板、以及故障检测及上报方法和系统
CN103941625B (zh) Can总线数据传输监控系统
CN110708227A (zh) 一种现场总线中自动化重放攻击测试方法
JP2001103062A (ja) 障害検出通知方法
WO2024041125A1 (zh) 一种电池管理控制器系统
CN110474299B (zh) 一种功率单元的旁路状态循环报告方法及拓扑结构
US10956269B2 (en) Electronic data-distribution control unit and method for operating such a control unit
CN116149301A (zh) 一种故障诊断的装置、方法及车辆
US20210119406A1 (en) Multi-module fiber laser capable of monitoring abnormalities of optical modules in real time
CN210142986U (zh) 电机控制系统
CN113883078B (zh) 一种风扇控制装置及方法
CN111942306B (zh) 一种汽车电子执行器控制方法及系统
CN108811221B (zh) 一种led驱动装置、驱动方法及led灯具
CN218585208U (zh) 一种车辆功能检测设备工作状态远程监控器
JP2002217919A (ja) 監視制御システム
CN115037190B (zh) 具有电源监测功能的多轴伺服驱动系统
JP2001320391A (ja) 通信制御装置
CN113949313A (zh) 一种多电机并联运行的主控自主裁决方法及装置
CN105743927A (zh) 一种CANopen与DP协议数据转换器及转换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864398

Country of ref document: EP

Kind code of ref document: A1