WO2024041118A1 - 一种集成环境参数的电化学传感智能舱 - Google Patents

一种集成环境参数的电化学传感智能舱 Download PDF

Info

Publication number
WO2024041118A1
WO2024041118A1 PCT/CN2023/100090 CN2023100090W WO2024041118A1 WO 2024041118 A1 WO2024041118 A1 WO 2024041118A1 CN 2023100090 W CN2023100090 W CN 2023100090W WO 2024041118 A1 WO2024041118 A1 WO 2024041118A1
Authority
WO
WIPO (PCT)
Prior art keywords
cabin
electrochemical
piston
syringe
electrochemical sensing
Prior art date
Application number
PCT/CN2023/100090
Other languages
English (en)
French (fr)
Inventor
李爽
付杰
白永昌
明东
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US18/448,984 priority Critical patent/US20240068975A1/en
Publication of WO2024041118A1 publication Critical patent/WO2024041118A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the invention belongs to the technical field of electrochemical sensing experimental cabin improvement, especially an electrochemical sensing intelligent cabin integrating environmental parameters.
  • Electrochemical detection technology can be found in many fields of modern analytical science and has become one of the main and commonly used sensor detection methods. For example, it has a wide range of applications in the fields of analysis and detection such as environmental monitoring, medical diagnosis, and food supervision. Compared with other detection technologies, electrochemical detection technology can convert biological data into electrical signals that are easy to process. Its characteristics of high sensitivity, low cost, and miniaturization make it have broad application prospects. However, electrochemical sensing detection systems commonly used in laboratories are expensive, not portable, and have cumbersome operating procedures.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide a cabin equipped with a program control terminal, a communication control unit, a temperature monitoring unit, a gas detection unit and an electrochemical sensing detection unit.
  • the program control terminal can communicate with Control unit communication, after the program control end sets the temperature in the cabin, the temperature monitoring unit can automatically adjust the temperature in the cabin under the control of the communication control unit, and the gas detection unit can transmit the CO 2 concentration in the cabin to the communication control unit And transmitted to the program control end by the communication control unit.
  • the communication control unit can receive the operation instructions of the program control end and send them to the electrochemical sensing and detection unit.
  • the electrochemical sensing and detection unit completes the electrochemical detection, realizing remote control from the program control end.
  • An electrochemical sensing smart cabin integrating environmental parameters that controls and can automatically complete the electrochemical detection process.
  • An intelligent cabin for electrochemical sensing detection which includes a cabin body.
  • the cabin body is provided with a communication control unit, a temperature monitoring unit, a gas detection unit and an electrochemical sensing detection unit.
  • the communication control unit can communicate with a program control terminal. Communication, the temperature monitoring unit can automatically adjust the temperature in the cabin, the gas detection unit can detect the carbon dioxide concentration in the cabin and transmit it to the program control end through the communication control unit, the electrochemical sensing detection unit can control the The electrochemical detection process is automatically completed under the control of the unit.
  • the electrochemical sensing detection unit includes a pipetting module, a reagent bottle transfer module and a sensor carrying module.
  • the pipetting module includes a mechanical arm.
  • a syringe is provided on the mechanical arm.
  • the reagent bottle transfer module includes a module for carrying the reagent bottle.
  • the indexing plate and the rotary driving component used to drive the indexing plate to rotate, the sensor carrying module includes a trough-shaped container, and an electrode holder is arranged above the trough-shaped container.
  • the mechanical arm includes a traversing component and a lifting component.
  • a syringe is provided on the lifting component.
  • a piston that can be lifted is provided in the syringe.
  • a piston driving motor and a laser range finder are provided on the side of the syringe.
  • the laser range finder is connected to The syringe is connected.
  • the piston drive motor can drive the piston and a reflective plate connected to the piston to rise and fall.
  • the laser rangefinder is connected to the reflector. The plates work together to measure the position and distance of the plunger within the syringe.
  • the reagent bottle transfer module includes an indexing plate, a tray and a rotary drive component.
  • a tray is arranged concentrically and spaced apart from the indexing disc below, and a rotating drive component is arranged below the tray.
  • the rotating component can drive the indexing disc. It can rotate concentrically with the tray.
  • a suction head storage tank, an ultrapure water storage tank and a waste liquid storage tank are arranged in sequence in the trough-shaped container of the sensor carrying module, and a suction head disengagement device is provided above the suction head storage tank near one end of the trough-shaped container.
  • An electrode holder is provided above the waste liquid storage tank near the other end of the tank-shaped container.
  • the traversing component includes a traversing track, the traversing track is provided with a lifting component that can move laterally along the traversing track, a traversing drive motor is provided on one side of the traversing track, and the traverse drive motor can drive a through
  • the traversing screw installed at the lower end of the lifting component rotates so that the lifting component moves laterally along the traversing track;
  • the lifting component includes a vertical sliding platform, and a slide block that can move vertically up and down along the sliding platform is provided on the sliding platform.
  • a lift drive motor is provided on the upper end of the slide table. The lift drive motor can drive a lift screw installed in the slide block to rotate so that the slide block moves vertically up and down along the slide table.
  • the syringe is fixedly connected to the slider, and the piston of the syringe extends above the slider.
  • the slider is provided with a piston drive motor, and the piston drive motor can drive a piston drive screw connected to the upper end of the piston to rotate.
  • the piston rises and falls in the syringe to absorb or squeeze out the liquid in the syringe;
  • a laser rangefinder is provided next to the slider, and a reflective plate is provided next to the upper end of the piston aligned with the laser rangefinder, and the reflective plate can Used with a laser rangefinder to measure the position and distance of movement of the piston within the syringe.
  • a plurality of reagent storage stations are evenly spaced on the indexing plate, and a suction head storage station is provided between every two adjacent reagent storage stations. Each suction head storage station is adjacent to the suction head storage station. The distance between two adjacent reagent storage stations is the same.
  • a plurality of slits are evenly spaced on the outer edge of the tray. The number of slits is equal to the sum of the number of reagent storage stations and suction tip storage stations. Beside the tray A groove-shaped photoelectric switch is provided on the side and aligned with the slit. The groove-shaped photoelectric switch can calculate the angle of rotation of the index plate by identifying the number of passing slits.
  • a deflection drive motor is provided on the side of the electrode holder, the deflection drive motor is connected to the electrode holder through a rotation shaft, and the deflection drive motor can drive the electrode holder to deflect at a certain angle through the rotation shaft;
  • a glass tube is arranged above the electrode holder, and a dry air flow is passed into the glass tube. The air outlet of the glass tube is aligned with the electrode held by the electrode holder so that the dry air flow blown out of the glass tube can dry the electrode.
  • the cabin is provided with a platform
  • the rear end of the upper surface of the platform is provided with the traversing track
  • the upper end of the platform located at the front end of one side of the traversing track is provided with a tray
  • a pallet is provided on the platform below the tray.
  • a rotary drive component is provided
  • a trough-shaped container is provided on the upper surface of the platen at the front end of the other side of the traversing track
  • a gas detection unit is provided on the upper surface of the platen at the front end of the trough-shaped container
  • a gas detection unit is provided on the other side of the trough-shaped container.
  • a temperature monitoring unit is provided on the platform.
  • the temperature monitoring unit includes two heat sinks respectively positioned on the upper and lower end surfaces of the platform and a semiconductor refrigeration fin located between the two heat sinks.
  • An intelligent control system for electrochemical sensing detection which includes a program control end.
  • the program control end can communicate with the communication control unit as described above. After the user sets the temperature in the cabin at the program control end, the program control end communicates with the program control end.
  • the control unit issues instructions and controls the temperature monitoring unit to adjust the temperature in the cabin.
  • the program control end can receive the carbon dioxide concentration in the cabin transmitted from the gas detection unit to the communication control unit.
  • the program control end can Send instructions to the communication control unit and control the electrochemical sensing detection unit to automatically complete the electrochemical detection process.
  • an electrochemical detection unit is set up in a sealed cabin, and an environmental parameter monitoring unit that can monitor temperature and monitor gas is integrated in the cabin. All monitored environmental variables will be uploaded to a smart phone for the user to view.
  • the temperature monitoring unit uses a semiconductor refrigeration chip combined with an H-bridge drive module whose output voltage and polarity are adjustable to form a closed-loop negative feedback temperature control system.
  • the semiconductor refrigeration chip can be used for one-sided cooling or heating when fixed. And the speed of cooling or heating is adjustable, which prevents circuit burnout caused by excessive circuit current when the initial deviation is too large, and also avoids large oscillations in the temperature inside the cabin.
  • the electrochemical detection unit uses stepper motors as motion actuators.
  • the precise and controllable movement of the stepper motor greatly reduces the possibility of errors in the electrochemical detection unit.
  • the lead screw stepper motor drives the precise movement of the syringe piston, and the laser rangefinder is used to determine the position of the piston, thus avoiding measurement errors caused by the target analyte solution entering the inside of the syringe.
  • Setting up multiple stations on the indexing plate can load 12 reagent bottles and 12 tips at one time, avoiding the cumbersome steps of "test once, load once", and is especially suitable for the detection of similar reagents with different concentrations.
  • Electrochemical sensing detection in a sealed cabin has fewer requirements for use conditions, is easy to operate, has good operational stability, is highly versatile, and is easy to promote and use.
  • Figure 1 is a schematic structural diagram of the present invention
  • Figure 2 is a left view of Figure 1;
  • Figure 3 is a top view of Figure 1;
  • Figure 4 is a schematic diagram of the electrochemical detection process of the present invention.
  • Figure 5 is a display operation interface of the WeChat applet of the present invention.
  • the invention provides an electrochemical sensing intelligent cabin integrating environmental parameters, which includes an electrochemical sensing intelligent cabin capable of controlling environmental parameters and an electrochemical sensing intelligent control system capable of communicating with the intelligent cabin.
  • An intelligent cabin for electrochemical sensing detection as shown in Figures 1, 2, and 3.
  • the innovation of the present invention is that it includes a cabin, which can be sealed.
  • the cabin is equipped with a communication control unit, a temperature monitoring unit, and a gas detection unit.
  • the communication control unit can communicate with the program control terminal
  • the temperature monitoring unit can automatically adjust the temperature in the cabin
  • the gas detection unit can detect the carbon dioxide concentration in the cabin and transmit it to the program control terminal through the communication control unit
  • the electrochemical sensing detection unit can automatically complete the electrochemical detection process under the control of the communication control unit.
  • a platform 28 is provided in the cabin, and the temperature monitoring unit, the gas detection unit and the electrochemical sensing detection unit are all arranged on the platform.
  • the electrochemical sensing detection unit includes a pipetting module, a reagent bottle transfer module and a sensor carrying module.
  • the pipetting module includes a mechanical arm arranged on the upper surface of the platen.
  • the mechanical arm is a two-degree-of-freedom mechanical arm, and a syringe is provided on the mechanical arm.
  • the robotic arm can carry the syringe to load and unload the suction head and absorb and drip the reagent;
  • the reagent bottle transfer module includes an index plate for carrying the reagent bottle and a rotary drive component for driving the index plate to rotate.
  • the sensor carrying module includes A trough-shaped container, an electrode holder 45 is provided above the trough-shaped container 23 .
  • the trough-shaped container is used to accommodate used tips and waste liquid after electrochemical detection, and the electrode holder is used to hold electrodes for electrochemical sensing detection.
  • the mechanical arm includes a traversing component and a lifting component.
  • the traversing component includes a traversing track 46.
  • the traversing track is arranged on the table. The rear side on the top surface of the board.
  • Vertical lifting components are provided on the traversing track, and baffles 33 are provided at both ends of the traversing track.
  • the lifting components can move laterally along the traversing track between the baffles.
  • One end of the traversing track is provided with a traversing drive motor 36.
  • the output shaft of the traversing drive motor is connected to a traversing screw 19 arranged above the traversing track.
  • the traversing screw is installed at the lower end of the lifting component and connected with the lifting component.
  • the internal threads provided at the lower end of the component or the nut provided at the lower end of the lifting component cooperate with each other.
  • the traversing drive motor drives the traversing screw to rotate, thus driving the lifting component to move laterally along the traversing track.
  • the lower end of the lifting component can be spaced apart from the screw.
  • Parallel guide posts can be used to make the lifting parts move smoothly.
  • Other parts such as limit grooves and limit blocks that can make the lifting parts move smoothly are also possible.
  • the traverse drive motor can use a stepper motor, so that the distance of the lifting component moving laterally on the traverse track can be accurately controlled.
  • the lifting component includes a vertical sliding table 9.
  • the upper and lower ends of the sliding table are respectively provided with a top plate 5 and a bottom plate.
  • the bottom plate at the lower end of the sliding table is equipped with the above-mentioned transverse screw or is connected to the above-mentioned screw nut and is laterally limited to move. Move on track.
  • the slide is provided with a slide block that can move up and down along the vertical limit of the slide.
  • a lift drive motor 3 is provided on the top plate of the slide.
  • the output shaft of the lift drive motor is connected to a lift screw 12 provided on the front side of the slide.
  • the lifting screw is installed in the slider and cooperates with the internal thread (such as a nut) in the slider. It is also possible to provide a screw nut on the slider.
  • the lifting drive motor drives the lifting screw to rotate, thereby driving the slide block to move up and down along the vertical limit of the slide table.
  • a lift limit track 40 is provided on the front side of the slide table between the slide table and the lift screw.
  • the lift limit rail can limit the slide block to keep the slide block stable when it moves vertically.
  • the lifting drive motor can use a stepper motor, so that the vertical movement distance of the slider can be accurately controlled.
  • both the traverse drive motor and the lifting drive motor use a screw stepper motor with a step angle of 1.8°, a lead of 1mm, and a resolution of 0.005mm.
  • Setting travel switches at the extreme positions of the traversing track and the sliding table can eliminate the cumulative error, ensuring that the syringe carried by the robotic arm can accurately perform a series of operations.
  • the front end of the slider is provided with a connecting plate, and the connecting plate is provided with a fixed seat 41.
  • the fixed seat is of a hollow cubic shape, and a syringe is provided in the fixed seat.
  • the opening of the barrel 10 of the syringe faces upward and is located at the upper end of the fixed seat.
  • the lower end of the barrel of the syringe extends below the fixed seat.
  • the bottom of the barrel of the syringe is provided with a suction tip seat, which can be installed for suction.
  • a piston is provided in the upward opening of the syringe, and the lifting and lowering of the piston in the syringe enables the syringe to absorb or squeeze out the reagent liquid.
  • the piston is connected to the lower end of a piston rod 43, and the upper end of the piston rod is connected to a lifting plate 42.
  • the upper end of the fixed seat is provided with a plurality of guide posts 2.
  • the lifting plate is sleeved on the guide posts and moves vertically along the guide posts. .
  • a piston drive motor 8 is provided in the fixed seat on the front side of the syringe.
  • the output shaft of the piston drive motor is connected to a piston screw 4.
  • the piston screw is installed in the lifting plate and connected with the internal thread (such as a nut) in the lifting plate. Or the screw nut cooperates with each other, the piston drive motor drives the piston screw to rotate, thereby driving the lifting plate to move vertically.
  • the vertical movement of the lifting plate can drive the piston to rise and fall in the needle barrel through the piston rod, and the guide post can limit the lifting plate at the same time.
  • the piston moves up and down in the syringe more smoothly.
  • the piston drive motor can use a stepper motor, so that the distance the piston moves in the syringe can be accurately controlled to control the amount of reagent liquid absorbed by the syringe.
  • the piston driving motor adopts a stepper motor.
  • the other end of the fixed base is provided with a mounting plate 7.
  • the upper end surface of the mounting plate is provided with a laser range finder 6.
  • the other end of the lifting plate is provided with a reflecting plate 1 aligned with the laser range finder.
  • the reflecting plate can be moved along with the lifting plate. Lift, laser rangefinder and reflective plate can work together to measure the position and movement distance of the piston in the syringe barrel, thereby measuring the amount of reagent liquid absorbed or squeezed out by the syringe.
  • the reagent bottle transfer module includes an indexing plate 37, a tray 35 and a rotary drive component.
  • the indexing plate and the tray are arranged above the upper surface of the platen on the front side of one end of the traversing track (the left side in Figure 1).
  • the indexing plate A rotating drive component is provided on the platform below the tray.
  • a tray is provided at intervals below the indexing plate.
  • a gasket 38 is provided between the indexing plate and the tray to maintain a gap between them.
  • a driven gear 13 is provided on the lower end of the tray, and an upper shaft support is provided at the lower end of the driven gear.
  • Lower shaft supports 29 are arranged at intervals below the upper shaft support, and the lower shaft support is fixed on the upper end surface of the table through fixed feet 27.
  • the index plate, the tray, the driven gear, the upper shaft support and the lower shaft support are sleeved on the same rotating shaft 26 from top to bottom.
  • a bearing 30 is provided between the upper shaft support and the lower shaft support.
  • the lower shaft support is fixed on Above the table, the upper shaft support can support the driven gear to rotate freely above the lower shaft support under the bearing of the bearing.
  • the driven gear can drive the pallet to rotate synchronously.
  • the indexing plate is fixedly installed above the pallet through multiple positioning posts 39. The rotation of the pallet can drive the indexing plate to rotate synchronously.
  • the rotary drive component includes a rotary drive motor 25 fixedly mounted on the upper surface of the platen through a motor holder 24.
  • a driving gear 14 is provided on the output shaft of the rotary drive motor.
  • the driving gear meshes with the driven gear, and the rotary drive motor drives the active gear. When the gear rotates, it can drive the driven gear to rotate, and the driven gear can drive the index plate and the tray to rotate synchronously.
  • the rotary drive motor uses a stepper motor (28 series), but a stepper motor with a step angle of 1.8° cannot complete the conversion of the reagent storage station every 30° without subdivision, so this
  • the transmission characteristics are changed to: the rotary drive motor only rotates 1° every time the rotary drive motor rotates one step. At this time, the rotary drive motor rotates every 30 pulses. In this case, the indexing plate can complete the conversion of the reagent storage station.
  • reagent storage stations 51 There are multiple reagent storage stations 51 evenly spaced on the indexing plate.
  • the reagent storage stations are larger round holes.
  • a suction head storage station 52 is provided between every two adjacent reagent storage stations.
  • the suction tip storage stations are small round holes, and the distance between each suction tip storage station and the two adjacent reagent storage stations next to it is the same.
  • 12 reagent storage stations are evenly spaced on the indexing plate, and each reagent storage station can accommodate one reagent bottle.
  • 12 suction tip storage stations are provided on the indexing plate. Tip storage stations and reagent storage stations are set up alternately.
  • the 24 stations are arranged at equal intervals around the circle. There are two tip storage stations next to each reagent storage station.
  • each tip storage station There are two reagent storage stations on both sides, and the intervals between the reagent storage stations and the tip storage stations are the same.
  • the reagent storage stations are arranged in an orderly manner on the circumference of the indexing plate according to serial numbers 1 to 12, which facilitates users to identify the corresponding reagent bottles, thus achieving "one load, 12 measurements" and greatly improving space utilization.
  • a plurality of slits 50 are provided at even intervals on the outer edge of the tray.
  • the number of slits is equal to the sum of the number of reagent storage stations and suction tip storage stations.
  • a slot-shaped photoelectric switch 34 is arranged on the side of the tray and aligned with the slits.
  • the type photoelectric switch is arranged on the upper end surface of the table through a support 32.
  • the slotted photoelectric switch can calculate the angle of rotation of the index plate by identifying the number of passing slits.
  • the number of slits is 24, and the slit width is 1 mm.
  • Each slit is aligned with a reagent storage station or a suction tip storage station.
  • the slits and the groove-shaped photoelectric switch cooperate with each other to enable Each reagent storage station or tip storage station can be identified by passing through the slot-shaped photoelectric switch through a slit.
  • the trough-shaped container 23 of the sensor carrying module is arranged on the upper surface of the platen on the front side of the other end of the traversing track.
  • the trough-shaped container 23 is a transverse rectangular parallelepiped with multiple grooves provided on the upper end of the rectangular parallelepiped.
  • a suction tip storage tank 49, an ultrapure water storage tank 48 and a waste liquid storage tank 47 are provided on the upper end surface of the trough-shaped container in sequence.
  • a suction head is provided above the suction head storage tank near one end of the trough-shaped container.
  • an electrode holder 45 is provided above the waste liquid storage tank near the other end of the tank-shaped container.
  • the suction tip detacher is provided with a V-shaped bayonet with an opening facing the other end of the grooved container. After the suction head is inserted into the V-shaped bayonet, it can be detached from the syringe. The detached suction head falls into the suction head storage tank.
  • the electrode holder is used to hold sensor electrodes for electrochemical detection.
  • the trough-shaped container located above the waste liquid storage tank is provided with a rotating shaft seat.
  • a rotating shaft 44 is penetrated in the rotating shaft seat.
  • the rotating shaft is connected to the lower end of the electrode holder.
  • An electrochemical sensor is provided in the electrode holder. Electrochemical sensing for detection device electrode.
  • a mounting bracket 16 is provided on the upper surface of the platen in front of the waste liquid storage tank.
  • a deflection drive motor 18 is provided on the mounting rack.
  • the output shaft of the deflection drive motor is connected to the rotation shaft.
  • the deflection drive motor can drive the rotation shaft to rotate.
  • a certain angle drives the electrode holder to deflect at a certain angle. After the electrode holder is deflected, the waste liquid on the electrode and in the electrode holder can be dumped into the waste liquid storage tank below it.
  • the deflection drive motor in this embodiment adopts a stepper motor.
  • a glass tube 17 is passed through the mounting frame, and a dry air flow is passed through the glass tube.
  • the air outlet of the glass tube is located above the electrode holder and aligned with the electrode held by the electrode holder. The dry air blown out of the glass tube The air flow can dry the electrode.
  • the limit position or target position of each moving part is equipped with a corresponding travel switch or slot-type photoelectric switch. By continuously detecting the triggering or triggering of these switches within a given period of time, There is no trigger to determine whether there is an error in the operation of the smart cabin, thereby determining whether the system executes the emergency braking procedure.
  • An alarm device can be installed on the cabin. When emergency braking occurs, the alarm device can prompt the operator to cut off the power or manually reset the electrochemical detection unit through the alarm light and buzzer.
  • a gas detection unit is provided on the upper surface of the platen on the front side of the trough container.
  • the gas detection unit includes a microcontroller and a carbon dioxide concentration sensor 22 .
  • the carbon dioxide concentration sensor in this embodiment uses an SGP30 metal oxide gas sensor. SGP30 mainly detects the CO 2 concentration in the workspace and transmits the data to the microcontroller.
  • the microcontroller is connected to the SGP30 metal oxide gas sensor through the IIC bus. The microcontroller converts the returned raw data and obtains the CO 2 concentration. The real value is transmitted to the communication control module.
  • a temperature monitoring unit is provided on the platen on the other side of the trough container.
  • the temperature monitoring unit includes a 12V lithium battery, a microcontroller, a semiconductor refrigeration chip 20, a voltage adjustment module and a temperature and humidity sensor.
  • the temperature and humidity sensor in this embodiment adopts SHT40 digital temperature and humidity sensor.
  • the 12V lithium battery is connected to the voltage regulation module
  • the PWM signal line of the microcontroller is also connected to the voltage regulation module
  • the voltage regulation module is connected to the semiconductor refrigeration chip
  • the SHT40 sensor is connected to the microcontroller.
  • the semiconductor refrigeration piece is embedded in the platen on the other side of the trough-shaped container, and two heat sinks 21 are respectively arranged on the upper and lower end surfaces of the semiconductor refrigeration piece.
  • the voltage regulation module can output a variable voltage from -12V to 12V under the control of the microcontroller PWM signal.
  • the user first needs to set a target temperature, measure the real temperature and humidity through the SHT40 digital temperature and humidity sensor, and feedback the real temperature and humidity to the microcontroller.
  • the microcontroller calculates and processes the deviation between the real temperature and the target temperature and outputs it to the actuator. (semiconductor refrigeration chip and voltage regulation module) to control the temperature in the entire smart cabin. This deviation will cause the actuator to operate until the system's true temperature reaches the target temperature value and fluctuates with a small amplitude.
  • the cabin is also equipped with a communication control unit.
  • the communication control unit includes a microcontroller based on STM32F415RGT6 and a Bluetooth module.
  • the Bluetooth module receives control instructions and transmits them to the microcontroller.
  • the microcontroller serves as a control and data processing unit to each executive element. Sending control signals and receiving data returned from each sensor ultimately enables the coordinated operation of all moving parts in the smart cabin.
  • the communication control unit may be arranged on the inner wall of the cabin or on the platform. In this embodiment, the communication control unit is arranged on the platform.
  • An intelligent control system for electrochemical sensing and detection includes a program control end, and the program control end can communicate with the communication control unit in the above-mentioned intelligent cabin for electrochemical sensing and detection.
  • the preferred communication method in this embodiment is Bluetooth connection, other wireless communication methods such as WIFI, or wired communication. etc. can also be selected according to the actual environment.
  • the preferred program control terminal in this embodiment is mounted on a smartphone and runs in the form of a WeChat applet, which is convenient and fast.
  • the communication control unit can display the data detected by the electrochemical sensor in the WeChat applet in real time.
  • the WeChat applet includes a communication establishment interface, parameter setting and control interface, drawing and data display interface.
  • the communication establishment interface includes "Turn on Bluetooth” and “Turn off Bluetooth” switch buttons, with the function of pulling down to refresh Bluetooth devices.
  • a Bluetooth signal strength mark is designed in the Bluetooth device display list, which is divided into four strength levels. A full grid indicates the signal. The strongest; after Bluetooth is connected, the "Disconnect Bluetooth" button is displayed, which is convenient for users to use flexibly.
  • the parameter setting and control interface includes the numerical display of the temperature, humidity, and carbon dioxide concentration in the smart cabin, as well as the input box for manually setting the target temperature of the smart cabin.
  • the drawing and data display interface includes the upper drawing area, which displays the curve of current with respect to potential; the lower part is provided with two areas, the receiving area and the sending area, as well as related buttons.
  • the sending area allows the user to manually input command codes and send them to the lower computer for installation.
  • the receiving area is the data display area. Users can see the specific values of the electrochemical test in real time.
  • the program control terminal can set the temperature in the smart cabin. After setting, the program control terminal sends instructions to the communication control unit.
  • the communication control unit controls the temperature monitoring unit to adjust the temperature in the cabin to the set value.
  • the gas detection unit can transmit the detected concentration of carbon dioxide in the cabin to the communication control unit, and then the communication control unit transmits it to the program control terminal.
  • the user can view the gas environment in the cabin at the program control terminal.
  • the temperature and gas environment are used to determine whether the electrochemical detection results are accurate.
  • the errors of the electrochemical detection can be controlled or adjusted based on the environmental values to make the detection results more accurate.
  • the program control end After the user selects electrochemical testing on the program control end, he presses the "START" button. At this time, the program control end sends instructions to the communication control unit, and the program control end controls the electrochemical sensing and detection unit to automatically complete the electrochemical detection process.
  • the electrochemical detection process in the present invention is:
  • the lift drive motor drives the syringe down, the suction tip holder at the bottom of the syringe is inserted into the suction tip on the index plate, and the lift drive motor drives the syringe carrying the suction tip up;
  • the rotary drive motor drives the indexing plate to rotate one station (i.e. from the current slit to the next slit), the lifting motor drives the syringe to descend, and the suction tip carried by the syringe is inserted into the reagent solution in the reagent bottle;
  • the piston drive motor drives the piston up, the syringe absorbs the reagent liquid, and the laser rangefinder determines the amount of reagent liquid absorbed;
  • the lifting motor drives the syringe to rise, and the traverse drive motor drives the slide table and syringe to move above the electrode holder;
  • the piston drive motor drives the piston down, and the reagent liquid in the syringe is completely dripped onto the electrode holder. On the electrochemical sensor electrode, electrochemical detection is performed;
  • the traverse drive motor drives the slide table and syringe to move above the tip detacher.
  • the lift drive motor drives the syringe down. After the suction tip of the syringe drops and is inserted into the V-shaped bayonet of the tip detacher, the traverse drive The motor drives the slide table and the syringe to move toward the tip of the V-shaped bayonet so that the suction tip is clamped by the suction tip detacher.
  • the lift drive motor drives the syringe to rise to detach the suction tip from the syringe;
  • the traverse drive motor drives the slide table and syringe to move above the ultrapure water storage tank.
  • the lift drive motor drives the syringe down and inserts the bottom end of the syringe into the ultrapure water storage tank.
  • the piston drive motor drives the piston up, and the syringe absorbs the water. Ultrapure water in the ultrapure water storage tank;
  • the lift drive motor drives the syringe up
  • the traverse drive motor drives the slide table and syringe to move above the electrode holder
  • the piston drive motor drives the piston down
  • the ultrapure water in the syringe is dripped onto the electrode to rinse the electrode.
  • the deflection drive motor drives the electrode holder to deflect. After the waste liquid in the electrode holder is discharged, the deflection drive motor drives the electrode holder to reset, and the glass tube blows dry airflow to dry the electrode;
  • the rotary drive motor drives the indexing plate to rotate one station, and repeat the above steps 5 to 13 until all the reagent bottles on the indexing plate are used and enter the standby state. You can reload the reagents to continue electrochemical detection, or turn off the Power on, open and clean the smart cabin.
  • Electrochemical sensing detection and analysis that integrates detection process automation and data image analysis on a smartphone platform has far-reaching significance.
  • This technology can be applied in the detection process of electrochemical sensors using screen-printed electrodes. It has the advantages of good device stability and convenient operation, and can adapt to the detection requirements of most electrochemical sensors.
  • an electrochemical detection unit is set up in a sealed cabin, and an environmental parameter monitoring unit that can monitor temperature and monitor gas is integrated in the cabin. All monitored environmental variables will be uploaded to a smart phone for the user to view.
  • the temperature monitoring unit uses a semiconductor refrigeration chip combined with an H-bridge drive module whose output voltage and polarity are adjustable to form a closed-loop negative feedback temperature control system.
  • the semiconductor refrigeration chip can be used for one-sided cooling or heating when fixed. And the speed of cooling or heating is adjustable, which prevents circuit burnout caused by excessive circuit current when the initial deviation is too large, and also avoids large oscillations in the temperature inside the cabin.
  • the electrochemical detection unit uses stepper motors as motion actuators.
  • the precise and controllable movement of the stepper motor greatly reduces the possibility of errors in the electrochemical detection unit.
  • the lead screw stepper motor drives the precise movement of the syringe piston, and the laser rangefinder is used to determine the position of the piston, thus avoiding measurement errors caused by the target analyte solution entering the inside of the syringe.
  • Setting up multiple stations on the indexing plate can load 12 reagent bottles and 12 tips at one time, avoiding the cumbersome steps of "test once, load once", and is especially suitable for testing reagents of the same type and different concentrations.
  • Electrochemical sensing detection in a sealed cabin has fewer requirements for use conditions, is easy to operate, has good operational stability, is highly versatile, and is easy to promote and use.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种集成环境参数的电化学传感智能舱,包括电化学传感检测用智能舱的舱体,舱体内设置有通信控制单元、温度监控单元、气体检测单元和电化学传感检测单元,通信控制单元能与电化学传感检测智能控制系统的程序控制端通信,温度监控单元能自动调节舱体内的温度,气体检测单元能检测舱体内的二氧化碳浓度并通过通信控制单元传输至程序控制端,电化学传感检测单元能在通信控制单元的控制下自动完成电化学检测过程。集成了可监控温度和可监测气体的环境参数监测单元,所有监测到的环境变量都会上传至智能手机供用户查看,以便于后续的标准化环境变量。在舱体内进行的电化学传感器测量过程中的操作步骤全部自动化,极大地提高了检测效率。

Description

一种集成环境参数的电化学传感智能舱 技术领域
本发明属于电化学传感实验舱改进技术领域,尤其是一种集成环境参数的电化学传感智能舱。
背景技术
电化学检测技术遍布于现代分析科学的许多领域,已然成为主要且常用的传感器检测方法之一。例如在环境监测、医学诊断和食品监管等分析检测领域都具有广泛的应用。与其他检测技术相比,电化学检测技术能将生物数据转换为易于处理的电信号,具有高灵敏度、低成本、可小型化等特点使其拥有广阔的应用前景。但一般实验室用的电化学传感检测系统价格昂贵、无法便携、操作步骤繁琐。
此外,我们在研究电化学传感器时往往强调传感器电极修饰却忽略了外界的环境因素对测量过程是否存在影响。事实上,温度会影响被测溶液的酸碱度值或直接影响电极表面修饰物的活性,从而改变了传感器电极的灵敏度。在严格的测量过程中,外界环境因素不可忽略。
发明内容
本发明的目的在于克服现有技术的不足,提供了一种在舱体内设置有程序控制端、通信控制单元、温度监控单元、气体检测单元和电化学传感检测单元,程序控制端能与通信控制单元通信,在程序控制端设定舱体内的温度后,温度监控单元能在通信控制单元的控制下自动调节舱体内的温度,气体检测单元能将舱体内的CO2浓度传输至通信控制单元并由通信控制单元传输至程序控制端,通信控制单元能接收程序控制端的操作指令并发送至电化学传感检测单元,由电化学传感检测单元完成电化学检测,实现了由程序控制端远程控制并能自动完成电化学检测过程的一种集成环境参数的电化学传感智能舱。
本发明采取的技术方案是:
一种电化学传感检测用智能舱,其中,包括舱体,舱体内设置有通信控制单元、温度监控单元、气体检测单元和电化学传感检测单元,所述通信控制单元能与程序控制端通信,所述温度监控单元能自动调节舱体内的温度,所述气体检测单元能检测舱体内的二氧化碳浓度并通过通信控制单元传输至程序控制端,所述电化学传感检测单元能在通信控制单元的控制下自动完成电化学检测过程。
其中,所述电化学传感检测单元包括移液模块、试剂瓶传送模块和传感器承载模块,所述移液模块包括机械臂,机械臂上设置有注射器,试剂瓶传送模块包括用于承载试剂瓶的分度盘和用于驱动分度盘转动的旋转驱动部件,传感器承载模块包括槽型容器,槽形容器的上方设置有电极夹持器。
其中,所述机械臂包括横移部件和升降部件,升降部件上设置有注射器,注射器内设置有能升降的活塞,注射器的旁侧设置有活塞驱动电机和激光测距器,激光测距器与注射器连接,活塞驱动电机能驱动活塞和一个与活塞连接的反射板升降,激光测距器与反射 板能协同工作测量活塞在注射器内的位置和移动的距离。
其中,所述试剂瓶传送模块包括分度盘、托盘和旋转驱动部件,分度盘的下方与分度盘同心且间隔设置有托盘,托盘下方设置有旋转驱动部件,旋转部件能带动分度盘和托盘能同心转动。
其中,所述传感器承载模块的槽形容器内依次设置有吸头存放槽、超纯水存放槽和废液存放槽,靠近槽形容器一端的吸头存放槽的上方设置有吸头脱离器,靠近槽形容器另一端的废液存放槽的上方设置有电极夹持器。
其中,所述横移部件包括横移轨道,横移轨道上设置有能沿横移轨道横向移动的升降部件,横移轨道的一侧设置有横移驱动电机,横移驱动电机能驱动一个穿装在升降部件下端的横移丝杠转动从而使升降部件沿横移轨道横向移动;所述升降部件包括竖向的滑台,滑台上设置有能沿滑台竖向升降移动的滑块,滑台上端设置有升降驱动电机,升降驱动电机能驱动一个穿装在滑块中的升降丝杠转动从而使滑块沿滑台竖向升降移动。
其中,所述注射器固定连接在滑块上,注射器的活塞向滑块上方延伸,所述滑块上设置有活塞驱动电机,活塞驱动电机能驱动一个与活塞上端连接的活塞驱动丝杠转动从而使活塞在注射器中升降以吸取或挤出注射器内的液体;滑块旁侧设置有一个激光测距器,与该激光测距器对位的活塞上端的旁侧设置有一个反射板,反射板能与激光测距器配合测量活塞在注射器内的位置和移动的距离。
其中,所述分度盘上均匀间隔设置有多个试剂存放工位,每两个相邻的试剂存放工位之间均设置有一个吸头存放工位,每个吸头存放工位与其旁侧相邻的两个试剂存放工位的距离相同,所述托盘的外缘均匀间隔设置有多个狭缝,狭缝的数量等于试剂存放工位和吸头存放工位数量的总和,托盘旁侧与狭缝对位设置有槽型光电开关,槽形光电开关能通过识别掠过的狭缝数量从而计算分度盘转过的角度。
其中,所述电极夹持器的旁侧设置有一个偏转驱动电机,偏转驱动电机通过一个旋转轴与电极夹持器连接,偏转驱动电机能通过旋转轴带动电极夹持器偏转一定角度;所述电极夹持器的上方设置有一根玻璃管,玻璃管内通入干燥气流,玻璃管的出气口与电极夹持器所夹持的电极对位使玻璃管中吹出的干燥气流能将电极风干。
其中,所述舱体内设置有台板,台板上端面的后端设置有所述横移轨道,位于横移轨道一侧的前端的台板上端面上方设置有托盘,托盘下方的台板上设置有旋转驱动部件,位于横移轨道另一侧的前端的台板上端面上设置有槽形容器,槽形容器前端的台板上端面上设置有气体检测单元,槽形容器另一侧的台板上设置有温度监控单元,温度监控单元包括两个分别对位设置在台板上端面和下端面的散热片和位于两个散热片之间的半导体制冷片。
一种电化学传感检测智能控制系统,其中,包括程序控制端,程序控制端能与如上所述的通信控制单元通信,用户在程序控制端设定舱体内的温度后由程序控制端向通信控制单元发出指令并控制温度监控单元调节舱体内的温度,程序控制端能接收气体检测单元传输至通信控制单元的舱体内二氧化碳浓度,用户在程序控制端选择并开始电化学测试时程序控制端能向通信控制单元发出指令并控制电化学传感检测单元自动完成电化学检测过程。
本发明的优点和积极效果是:
本发明中,在一个密封的舱体内设置电化学检测单元,在舱体内集成了包括可监控温度和可监测气体的环境参数监测单元,所有监测到的环境变量都会上传至智能手机供用户查看,以便于后续的标准化环境变量。温度监控单元利用半导体制冷片与输出电压大小、极性都可调的H桥驱动模块结合,构成了闭环负反馈的温控系统,半导体制冷片在固定的情况下可单面制冷或制热,且制冷或制热的速度可调,防止了因初始偏差过大时电路电流也过大而造成的电路烧坏,同时也避免了舱体内的温度出现大幅振荡。在舱体内进行的电化学传感器测量过程中需要的一系列操作步骤全部自动化,极大地提高了工作人员的检测效率。电化学检测单元中采用步进电机作为运动执行元件,步进电机精准可控的运动使电化学检测单元出现错误的可能大大减小。通过丝杠步进电机驱动注射器活塞的精准运动,配合激光测距仪判断活塞所处位置,避免了因目标分析物溶液进入注射器内部而造成的测量误差。在分度盘上设置多个工位可以一次性装载12只试剂瓶与12只吸头,避免了“测一次,装一次”的繁琐步骤,尤其适用于同类不同浓度的试剂检测。在密封的舱体内进行电化学传感检测对使用条件要求较少,操作简便、运行稳定性好、通用性强、易于推广使用。
附图说明
图1是本发明的结构示意图;
图2是图1的左视图;
图3是图1的俯视图;
图4是本发明的电化学检测流程示意图;
图5是本发明微信小程序的显示操作界面。
具体实施方式
下面结合实施例,对本发明进一步说明,下述实施例是说明性的,不是限定性的,不能以下述实施例来限定本发明的保护范围。
本发明提供的一种集成环境参数的电化学传感智能舱,包括一种能控制环境参数的电化学传感检测用智能舱和与能该智能舱通信的电化学传感检测智能控制系统。
一种电化学传感检测用智能舱,如图1、2、3所示,本发明的创新在于:包括舱体,舱体可以密封,舱体内设置有通信控制单元、温度监控单元、气体检测单元和电化学传感检测单元,通信控制单元能与程序控制端通信,温度监控单元能自动调节舱体内的温度,气体检测单元能检测舱体内的二氧化碳浓度并通过通信控制单元传输至程序控制端,电化学传感检测单元能在通信控制单元的控制下自动完成电化学检测过程。
舱体内设置有一个台板28,温度监控单元、气体检测单元和电化学传感检测单元均设置在台板上。电化学传感检测单元包括移液模块、试剂瓶传送模块和传感器承载模块,移液模块包括设置在台板上端面上的机械臂,机械臂为两自由度机械臂,机械臂上设置有注射器,机械臂能携带注射器进行吸头的装卸以及试剂的吸取、滴加;试剂瓶传送模块包括用于承载试剂瓶的分度盘和用于驱动分度盘转动的旋转驱动部件,传感器承载模块包括槽型容器,槽形容器23的上方设置有电极夹持器45。槽形容器用于容纳使用后的吸头和电化学检测后的废液,电极夹持器用于夹持电化学传感检测用的电极。
机械臂包括横移部件和升降部件,横移部件包括横移轨道46,横移轨道设置在台 板上端面上的后侧。横移轨道上设置有竖向的升降部件,横移轨道的两端均分别设置有挡板33,升降部件能沿横移轨道在上述挡板之间横向限位移动。横移轨道的一端设置有横移驱动电机36,横移驱动电机的输出轴与一个设置在横移轨道上方的横移丝杠19连接,横移丝杠穿装在升降部件的下端并与升降部件下端设置的内螺纹或升降部件下端设置的丝母相互配合,横移驱动电机带动横移丝杠转动从而驱动升降部件沿横移轨道横向限位移动,升降部件下端可以穿设与丝杠间隔且平行的导柱,以使升降部件平稳移动,其他如限位槽、限位块等能够使升降部件平稳移动的部件也是可以的。横移驱动电机可以采用步进电机,这样就能精准的控制升降部件在横移轨道上横向移动的距离。
升降部件包括竖向的滑台9,滑台的上下两端分别设置有顶板5和底板,滑台下端的底板穿装上述横移丝杠或连接上述丝母并横向限位移动的设置在横移轨道上。滑台上设置有能沿滑台竖向限位升降移动的滑块,滑台的顶板上设置有升降驱动电机3,升降驱动电机的输出轴与一个设置在滑台前侧的升降丝杠12连接,升降丝杠穿装在滑块内并与滑块内的内螺纹(例如螺母)相互配合,滑块上设置丝母也是可以的。升降驱动电机驱动升降丝杠转动从而带动滑块沿滑台竖向限位升降移动。位于滑台和升降丝杠之间的滑台前侧设置有升降限位轨道40,升降限位轨道能将滑块限位使滑块在竖向升降移动时保持平稳。升降驱动电机可以采用步进电机,这样就能精准的控制滑块竖向移动的距离。
本发明中,横移驱动电机和升降驱动电机均使用步距角为1.8°,导程为1mm的丝杠步进电机,其分辨率为0.005mm。在横移轨道和滑台的极限位置处均设置行程开关可以使其累计误差得以消除,保证了机械臂携带的注射器能够准确无误的进行一系列操作。
滑块的前端设置有连接板,连接板上设置有固定座41,固定座为空心立方体型,固定座内设置有注射器。注射器的针筒10的开口朝上且位于固定座的上端,注射器的针筒的下端向固定座的下方延伸,注射器的针筒的底部设置有吸头座,吸头座上可以安装用于吸取试剂液的吸头11。针筒朝上的开口内设置有活塞,活塞在针筒内的升降能使注射器吸取或挤出试剂液。活塞与一个活塞杆43的下端连接,活塞杆的上端与一个升降板42连接,固定座的上端设置有多个导柱2,升降板套设在导柱上并沿导柱竖向限位移动。
本实施例中的导柱为三个,升降板通过三个导柱在固定座的上方竖向限位移动。针筒前侧的固定座内设置有活塞驱动电机8,活塞驱动电机的输出轴与一个活塞丝杠4连接,活塞丝杠穿装在升降板内并与升降板内的内螺纹(例如螺母)或丝母相互配合,活塞驱动电机驱动活塞丝杠转动从而带动升降板竖向移动,升降板竖向移动能通过活塞杆带动活塞在针筒内升降,导柱在限位升降板的同时能使活塞在针筒内的升降更加平稳。活塞驱动电机可以采用步进电机,这样就能精准的控制活塞在针筒内移动的距离从而控制注射器吸取的试剂液量。本发明中,活塞驱动电机采用步进电机。
固定座的另一端设置有安装板7,安装板的上端面上设置有激光测距器6,升降板的另一端与激光测距器对位设置有反射板1,反射板能随升降板一同升降,激光测距器与反射板能协同工作测量活塞在注射器针筒内的位置和移动的距离,从而测量注射器吸取或挤出的试剂液量。
试剂瓶传送模块包括分度盘37、托盘35和旋转驱动部件,分度盘和托盘设置在横移轨道一端(图1中的左侧)的前侧的台板上端面的上方,分度盘和托盘下方的台板上设置有旋转驱动部件。
分度盘的下方间隔设置有托盘,分度盘和托盘之间设置有垫片38使二者保持间隙,托盘的下端面上设置有从动齿轮13,从动齿轮的下端设置有上轴托31,上轴托的下方间隔设置有下轴托29,下轴托通过固定脚27固定设置在台板的上端面上。分度盘、托盘、从动齿轮、上轴托和下轴托从上到下依次套设在同一个转轴26上,上轴托和下轴托之间设置有轴承30,下轴托固定在台板上方,上轴托能在轴承的承载下在下轴托上方托住从动齿轮自由旋转,从动齿轮能带动托盘同步旋转,分度盘通过多个定位柱39固定设置在托盘的上方,托盘的旋转能带动分度盘同步旋转。
本实施例中的定位柱为四个。旋转驱动部件包括通过电机固定座24固定设置在台板上端面上的旋转驱动电机25,旋转驱动电机的输出轴上设置有一个主动齿轮14,主动齿轮与从动齿轮啮合,旋转驱动电机驱动主动齿轮转动时能带动从动齿轮转动,从动齿轮能带动分度盘和托盘同步转动。本实施例中,旋转驱动电机采用步进电机(28系列),但步距角为1.8°的步进电机在无细分的情况下无法完成每转30°转换一次试剂存放工位,因此此处通过一对传动比为1.8的主动齿轮和从动齿轮将其传动特征改为:旋转驱动电机每转一个步距角分度盘只转动1°,此时旋转驱动电机在每输入30个脉冲的情况下分度盘可完成一次试剂存放工位的转换。
分度盘上均匀间隔设置有多个试剂存放工位51,试剂存放工位为较大的圆孔,每两个相邻的试剂存放工位之间均设置有一个吸头存放工位52,吸头存放工位为较小的圆孔,每个吸头存放工位与其旁侧相邻的两个试剂存放工位的距离相同。本实施例中,分度盘上均匀间隔设置有12个试剂存放工位,每个试剂存放工位均能容纳一个试剂瓶,相应的,分度盘上设置有12个吸头存放工位,吸头存放工位与试剂存放工位依次交替设置,24个工位按圆周等间距排列,每个试剂存放工位旁侧均有两个吸头存放工位,每个吸头存放工位旁侧均有两个试剂存放工位,试剂存放工位与吸头存放工位之间的间隔均相同。试剂存放工位按序号1~12有序排列在分度盘的圆周上,方便用户识别对应试剂瓶,即可实现“一次装载,12次测量”,且大大提高了空间利用率。
托盘的外缘均匀间隔设置有多个狭缝50,狭缝的数量等于试剂存放工位和吸头存放工位数量的总和,托盘旁侧与狭缝对位设置有槽型光电开关34,槽型光电开关通过一个支柱32设置在台板的上端面上。槽形光电开关能通过识别掠过的狭缝数量从而计算分度盘转过的角度。本实施例中,狭缝的数量为24个,狭缝宽度为1mm,每个狭缝均对位一个试剂存放工位或一个吸头存放工位,狭缝与槽形光电开关相互配合能使每个试剂存放工位或吸头存放工位转过时均能通过狭缝掠过槽形光电开关而被识别。
传感器承载模块的槽形容器23设置在横移轨道另一端的前侧的台板上端面上,槽形容器为一横向的长方体,长方体的上端面上开设有多个槽。本实施例中,槽形容器的上端面上依次开设有吸头存放槽49、超纯水存放槽48和废液存放槽47,靠近槽形容器一端的吸头存放槽的上方设置有吸头脱离器15,靠近槽形容器另一端的废液存放槽的上方设置有电极夹持器45。吸头脱离器上设置有开口朝向槽形容器另一端的V字型卡口,吸头卡入V字型卡口后可以从注射器上脱离,脱离后的吸头掉入吸头存放槽中,电极夹持器用于夹持电化学检测用的传感器电极。
位于废液存放槽上方的槽形容器上设置有旋转轴座,旋转轴座中穿设有一个旋转轴44,旋转轴与电极夹持器的下端连接,在电极夹持器内设置有电化学检测的电化学传感 器电极。位于废液存放槽前侧的台板上端面上设置有一个安装架16,安装架上设置有一个偏转驱动电机18,偏转驱动电机的输出轴与旋转轴连接,偏转驱动电机能驱动旋转轴转动一定角度从而带动电极夹持器偏转一定角度,电极夹持器偏转后能将电极上和电极夹持器内的废液倾倒至其下方的废液存放槽内。本实施例中的偏转驱动电机采用步进电机。
安装架上穿设有一根玻璃管17,玻璃管内通有干燥气流,玻璃管的出气口位于电极夹持器的上方且与电极夹持器所夹持的电极对位,玻璃管中吹出的干燥气流能将电极风干。
为使各运动部件运行出现错误时能紧急制动,每个运动部件的极限位置或目标位置处都具有相应的行程开关或槽型光电开关,通过在给定的时间内不断检测这些开关触发或无触发来判断智能舱运行是否出现错误,从而决定系统是否执行紧急制动程序。在舱体上可以设置警报装置,在出现紧急制动时警报装置能通过警报灯与蜂鸣器提示操作人员紧急断电或对电化学检测单元进行手动复位。
槽形容器前侧的台板上端面上设置有气体检测单元,气体检测单元包括微控制器和二氧化碳浓度传感器22。本实施例中的二氧化碳浓度传感器采用SGP30金属氧化物气体传感器。SGP30主要检测工作空间中CO2浓度并将数据传输至微控制器,微控制器通过IIC总线与SGP30金属氧化物气体传感器连接,微控制器对回传的原始数据进行换算后得到CO2浓度的真实值并传输至通信控制模块。
槽形容器另一侧的台板上设置有温度监控单元,温度监控单元包括12V锂电池、微控制器、半导体制冷片20、电压调节模块和温湿度传感器,本实施例中的温湿度传感器采用SHT40数字温湿度传感器。12V锂电池与电压调节模块连接,微控制器的PWM信号线也与电压调节模块连接,电压调节模块与半导体制冷片连接,SHT40传感器与微控制器连接。半导体制冷片嵌设在槽形容器另一侧的台板内,在半导体制冷片的上端面和下端面分别对位设置有两个散热片21。电压调节模块在微控制器PWM信号的控制下可以输出-12V至12V的可变电压。用户首先需要设定一个目标温度,通过SHT40数字温湿度传感器测量真实温度和湿度并将真实温度和湿度反馈给微控制器,微控制器经过计算处理真实温度和目标温度的偏差后输出给执行机构(半导体制冷片和电压调节模块)进而控制整个智能舱内的温度,这个偏差会导致执行机构一直作用直到系统真实温度达到目标温度值附近以小幅度波动。
舱体内还设置有通信控制单元,通信控制单元包括基于STM32F415RGT6的微控制器和蓝牙模块,蓝牙模块接收控制指令后将其传输至微控制器,微控制器作为控制和数据处理单元向各执行元件发出控制信号且接收各传感器回传数据最终使智能舱内各运动部件协调运行。通信控制单元可以设置在舱体内壁或台板上,本实施例中,通信控制单元设置在台板上。
一种电化学传感检测智能控制系统,包括程序控制端,程序控制端能与如上述的电化学传感检测用智能舱中的通信控制单元通信。
由于电化学传感检测用智能舱工作时不是完全自动,试剂和吸头的装载需要人工进行,因此在本实施例中优选的通信方式是蓝牙连接,其他无线通信方式例如WIFI,或有线通信方式等也可以根据实际环境选用。本实施例中优选的程序控制端搭载在智能手机上运行,以微信小程序的形式,方便快捷,通信控制单元能将电化学传感器检测的数据实时显示在微信小程序中。
如图5所示,微信小程序包括通信建立界面、参数设定与控制界面、绘图和数据显示界面。通信建立界面中包括“打开蓝牙”和“关闭蓝牙”的开关按钮,具有下拉刷新蓝牙设备的功能,在蓝牙设备显示列表里设计蓝牙信号强度的标志,分为四个强度等级,满格表示信号最强;蓝牙连接后,显示“断开蓝牙”的按钮,方便用户灵活使用。
参数设定与控制界面包括智能舱内温度、湿度、二氧化碳浓度的数值显示以及手动设置智能舱目标温度的输入框,界面下方设置有电化学测试方法的选择器;当选择好电化学测试方法后将跳转到电化学测试参数设置界面,参数设置完成后点击“OK”按钮退出该界面,点击“START”按钮开始电化学测试过程,点击后自动进入数据显示和绘图界面。
绘图和数据显示界面包括上方的绘图区域,显示的是电流关于电位的曲线;下方设置有接收区和发送区两个区域以及相关按钮,发送区使用户可以手动输入命令代码发送给下位机进行装置的测试,接收区为数据显示区域,用户可实时看到电化学测试的具体数值,同样在数据显示区域的下方设有“清除数据”的按钮,方便用户进行相关操作。
程序控制端可以对智能舱内的温度进行设定,设定后由程序控制端向通信控制单元发出指令,通信控制单元控制温度监控单元将舱体内的温度调节至设定值。气体检测单元能将检测到的舱体内的二氧化碳的浓度传输至通信控制单元,再由通信控制单元传输至程序控制端,用户可以在程序控制端查看舱体内的气体环境。通过温度和气体环境判断电化学检测的结果是否准确,可以根据环境值对电化学检测的误差进行控制或调整,使检测结果更加准确。
用户在程序控制端选择电化学测试后,按下“START”按钮,此时程序控制端向通信控制单元发出指令,程序控制端控制电化学传感检测单元自动完成电化学检测过程。
如图4所示,本发明中的电化学检测过程是:
1.打开舱体,将装有事先配置好的标准试剂的试剂瓶与吸头有序(试剂瓶-吸头-试剂瓶-吸头)放置在分度盘上,并检查舱体内各部件有无损坏或异常情况;
2.关闭舱体,将智能手机与智能舱建立蓝牙连接,通过微信小程序查看舱体内的环境参数;
3.在微信小程序中设定舱体内的温度为25℃,选择电化学检测方法为DPV,输入电化学检测方法所需参数:起始基准电压-0.4V、终止基准电压0.4V、增量0.005V、振幅0.05V、脉宽0.05s、周期0.5s;
4.按下“START”按钮,检查电化学检测单元的各部件是否复位,复位后开始电化学检测过程;
5.升降驱动电机带动注射器下降,注射器底部的吸头座插入分度盘上的吸头中,升降驱动电机带动注射器携带吸头上升;
6.旋转驱动电机带动分度盘转动一个工位(即当前狭缝至下一个狭缝),升降电机带动注射器下降,注射器携带的吸头插入试剂瓶内的试剂液中;
7.活塞驱动电机带动活塞上升,注射器吸取试剂液并通过激光测距仪判断吸取的试剂液量;
8.升降电机带动注射器上升,横移驱动电机带动滑台和注射器移动至电极夹持器的上方;
9.活塞驱动电机带动活塞下降,注射器中的试剂液完全滴加在电极夹持器夹持的 电化学传感器电极上,进行电化学检测;
10.横移驱动电机带动滑台和注射器移动至吸头脱离器的上方,升降驱动电机带动注射器下降,注射器的吸头下降并插入吸头脱离器的V字型卡口中后,横移驱动电机带动滑台和注射器向V字型卡口的尖端移动使吸头被吸头脱离器卡紧,升降驱动电机带动注射器上升使吸头从注射器上脱离;
11.横移驱动电机带动滑台和注射器移动至超纯水存放槽的上方,升降驱动电机带动注射器下降并将注射器的底端插入超纯水存放槽内,活塞驱动电机带动活塞上升,注射器吸取超纯水存放槽内的超纯水;
12.升降驱动电机带动注射器上升,横移驱动电机带动滑台和注射器移动至电极夹持器的上方,活塞驱动电机带动活塞下降,注射器中的超纯水被滴加在电极上对电极进行冲洗;
13.偏转驱动电机带动电极夹持器偏转,待电极夹持器中的废液排出后,偏转驱动电机带动电极夹持器复位,玻璃管吹出干燥气流对电极进行风干;
14.旋转驱动电机带动分度盘转动一个工位,重复上述步骤5至步骤13,直至分度盘上所有试剂瓶全部被使用,进入待机状态,可以重新装载试剂继续进行电化学检测,或关闭电源、打开并清理智能舱。
上述过程是一种基于DPV方法的电化学检测,仅为举例说明。在智能手机平台上检测流程自动化和数据图像分析一体化的电化学传感检测分析具有深远的意义。该技术可以应用于以丝网印刷电极为电化学传感器的检测过程中,具有装置稳定性好、操作便捷等优点,能够适应大部分电化学传感器检测的要求。
本发明中,在一个密封的舱体内设置电化学检测单元,在舱体内集成了包括可监控温度和可监测气体的环境参数监测单元,所有监测到的环境变量都会上传至智能手机供用户查看,以便于后续的标准化环境变量。温度监控单元利用半导体制冷片与输出电压大小、极性都可调的H桥驱动模块结合,构成了闭环负反馈的温控系统,半导体制冷片在固定的情况下可单面制冷或制热,且制冷或制热的速度可调,防止了因初始偏差过大时电路电流也过大而造成的电路烧坏,同时也避免了舱体内的温度出现大幅振荡。在舱体内进行的电化学传感器测量过程中需要的一系列操作步骤全部自动化,极大地提高了工作人员的检测效率。电化学检测单元中采用步进电机作为运动执行元件,步进电机精准可控的运动使电化学检测单元出现错误的可能大大减小。通过丝杠步进电机驱动注射器活塞的精准运动,配合激光测距仪判断活塞所处位置,避免了因目标分析物溶液进入注射器内部而造成的测量误差。在分度盘上设置多个工位可以一次性装载12只试剂瓶与12只吸头,避免了“测一次,装一次”的繁琐步骤,尤其适用于同类不同浓度的试剂检测。在密封的舱体内进行电化学传感检测对使用条件要求较少,操作简便、运行稳定性好、通用性强、易于推广使用。

Claims (10)

  1. 一种电化学传感检测用智能舱,其特征在于:包括舱体,舱体内设置有通信控制单元、温度监控单元、气体检测单元和电化学传感检测单元,所述通信控制单元能与程序控制端通信,所述温度监控单元能自动调节舱体内的温度,所述气体检测单元能检测舱体内的二氧化碳浓度并通过通信控制单元传输至程序控制端,所述电化学传感检测单元能在通信控制单元的控制下自动完成电化学检测过程。
  2. 根据权利要求1所述的一种电化学传感检测用智能舱,其特征在于:所述电化学传感检测单元包括移液模块、试剂瓶传送模块和传感器承载模块,所述移液模块包括机械臂,机械臂上设置有注射器,试剂瓶传送模块包括用于承载试剂瓶的分度盘和用于驱动分度盘转动的旋转驱动部件,传感器承载模块包括槽型容器,槽形容器的上方设置有电极夹持器。
  3. 根据权利要求2所述的一种电化学传感检测用智能舱,其特征在于:所述机械臂包括横移部件和升降部件,升降部件上设置有注射器,注射器内设置有能升降的活塞,注射器的旁侧设置有活塞驱动电机和激光测距器,激光测距器与注射器连接,活塞驱动电机能驱动活塞和一个与活塞连接的反射板升降,激光测距器与反射板能协同工作测量活塞在注射器内的位置和移动的距离。
  4. 根据权利要求2所述的一种电化学传感检测用智能舱,其特征在于:所述试剂瓶传送模块包括分度盘、托盘和旋转驱动部件,分度盘的下方与分度盘同心且间隔设置有托盘,托盘下方设置有旋转驱动部件,旋转部件能带动分度盘和托盘能同心转动。
  5. 根据权利要求2所述的一种电化学传感检测用智能舱,其特征在于:所述传感器承载模块的槽形容器内依次设置有吸头存放槽、超纯水存放槽和废液存放槽,靠近槽形容器一端的吸头存放槽的上方设置有吸头脱离器,靠近槽形容器另一端的废液存放槽的上方设置有电极夹持器。
  6. 根据权利要求3所述的一种电化学传感检测用智能舱,其特征在于:所述横移部件包括横移轨道,横移轨道上设置有能沿横移轨道横向移动的升降部件,横移轨道的一侧设置有横移驱动电机,横移驱动电机能驱动一个穿装在升降部件下端的横移丝杠转动从而使升降部件沿横移轨道横向移动;所述升降部件包括竖向的滑台,滑台上设置有能沿滑台竖向升降移动的滑块,滑台上端设置有升降驱动电机,升降驱动电机能驱动一个穿装在滑块中的升降丝杠转动从而使滑块沿滑台竖向升降移动;所述注射器固定连接在滑块上,注射器的活塞向滑块上方延伸,所述滑块上设置有活塞驱动电机,活塞驱动电机能驱动一个与活塞上端连接的活塞驱动丝杠转动从而使活塞在注射器中升降以吸取或挤出注射器内的液体;滑块旁侧设置有一个激光测距器,与该激光测距器对位的活塞上端的旁侧设置有一个反射板,反射板能与激光测距器配合测量活塞在注射器内的位置和移动的距离。
  7. 根据权利要求4所述的一种电化学传感检测用智能舱,其特征在于:所述分度盘上均匀间隔设置有多个试剂存放工位,每两个相邻的试剂存放工位之间均设置有一个吸头存放工位,每个吸头存放工位与其旁侧相邻的两个试剂存放工位的距离相同,所述托盘的外缘均匀间隔设置有多个狭缝,狭缝的数量等于试剂存放工位和吸头存放工位数量的总和,托盘旁侧与狭缝对位设置有槽型光电开关,槽形光电开关能通过识别掠过的狭缝数量从而计算分度盘转过的角度。
  8. 根据权利要求5所述的一种电化学传感检测用智能舱,其特征在于:所述电极夹持器的旁侧设置有一个偏转驱动电机,偏转驱动电机通过一个旋转轴与电极夹持器连接,偏转 驱动电机能通过旋转轴带动电极夹持器偏转一定角度;所述电极夹持器的上方设置有一根玻璃管,玻璃管内通入干燥气流,玻璃管的出气口与电极夹持器所夹持的电极对位使玻璃管中吹出的干燥气流能将电极风干。
  9. 根据权利要求6或7或8所述的一种电化学传感检测用智能舱,其特征在于:所述舱体内设置有台板,台板上端面的后端设置有所述横移轨道,位于横移轨道一侧的前端的台板上端面上方设置有托盘,托盘下方的台板上设置有旋转驱动部件,位于横移轨道另一侧的前端的台板上端面上设置有槽形容器,槽形容器前端的台板上端面上设置有气体检测单元,槽形容器另一侧的台板上设置有温度监控单元,温度监控单元包括两个分别对位设置在台板上端面和下端面的散热片和位于两个散热片之间的半导体制冷片。
  10. 一种电化学传感检测智能控制系统,其特征在于:包括程序控制端,程序控制端能与如权利要求1-9中所述的通信控制单元通信,用户在程序控制端设定舱体内的温度后由程序控制端向通信控制单元发出指令并控制温度监控单元调节舱体内的温度,程序控制端能接收气体检测单元传输至通信控制单元的舱体内二氧化碳浓度,用户在程序控制端选择并开始电化学测试时程序控制端能向通信控制单元发出指令并控制电化学传感检测单元自动完成电化学检测过程。
PCT/CN2023/100090 2022-08-24 2023-06-14 一种集成环境参数的电化学传感智能舱 WO2024041118A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/448,984 US20240068975A1 (en) 2022-08-24 2023-08-14 Electrochemical sensing intelligent chamber with integrated environmental parameters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211015596.3 2022-08-24
CN202211015596.3A CN115479974A (zh) 2022-08-24 2022-08-24 一种集成环境参数的电化学传感智能舱

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/448,984 Continuation US20240068975A1 (en) 2022-08-24 2023-08-14 Electrochemical sensing intelligent chamber with integrated environmental parameters

Publications (1)

Publication Number Publication Date
WO2024041118A1 true WO2024041118A1 (zh) 2024-02-29

Family

ID=84421890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100090 WO2024041118A1 (zh) 2022-08-24 2023-06-14 一种集成环境参数的电化学传感智能舱

Country Status (2)

Country Link
CN (1) CN115479974A (zh)
WO (1) WO2024041118A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115479974A (zh) * 2022-08-24 2022-12-16 天津大学 一种集成环境参数的电化学传感智能舱
CN116660569B (zh) * 2023-07-17 2023-11-21 中国科学技术大学 一种多功能定量滴液工作站

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399256A (en) * 1994-01-07 1995-03-21 Bioanalytical Systems, Inc. Electrochemical detector cell
KR20000075081A (ko) * 1999-05-28 2000-12-15 권석명 초미세 구조전극을 이용한 유기물 농도의 측정방법과 이를 이용한 장치
CN106896046A (zh) * 2017-01-25 2017-06-27 杭州电子科技大学 跨尺度运动狭缝的液滴渗流特性监测方法及装置
CN207908420U (zh) * 2018-02-02 2018-09-25 检易(厦门)科技有限公司 一种电化学传感器甲醛检测设备
US20180325432A1 (en) * 2015-11-19 2018-11-15 Roche Diabetes Care, Inc. Sensor assembly for detecting at least one analyte in a body fluid and method of assembling a sensor assembly
CN109612931A (zh) * 2018-10-11 2019-04-12 上海安杰环保科技股份有限公司 一种气相分子吸收光谱仪
CN113218857A (zh) * 2021-05-14 2021-08-06 北京科技大学 一种电子产品电化学迁移微区电化学分析装置及方法
CN115479974A (zh) * 2022-08-24 2022-12-16 天津大学 一种集成环境参数的电化学传感智能舱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661015A (zh) * 2009-09-09 2010-03-03 上海睿兴实业有限公司 电化学生物传感器通用便携式检测仪
CN105182889A (zh) * 2015-08-07 2015-12-23 深圳市西宝船舶电子有限公司 多功能环境模拟舱
CN105241925B (zh) * 2015-10-29 2017-11-07 四川农业大学 一种恒温可替换电极及敏感元件的传感检测装置
CN205067408U (zh) * 2015-10-29 2016-03-02 四川农业大学 一种恒温可替换电极及敏感元件的传感检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399256A (en) * 1994-01-07 1995-03-21 Bioanalytical Systems, Inc. Electrochemical detector cell
KR20000075081A (ko) * 1999-05-28 2000-12-15 권석명 초미세 구조전극을 이용한 유기물 농도의 측정방법과 이를 이용한 장치
US20180325432A1 (en) * 2015-11-19 2018-11-15 Roche Diabetes Care, Inc. Sensor assembly for detecting at least one analyte in a body fluid and method of assembling a sensor assembly
CN106896046A (zh) * 2017-01-25 2017-06-27 杭州电子科技大学 跨尺度运动狭缝的液滴渗流特性监测方法及装置
CN207908420U (zh) * 2018-02-02 2018-09-25 检易(厦门)科技有限公司 一种电化学传感器甲醛检测设备
CN109612931A (zh) * 2018-10-11 2019-04-12 上海安杰环保科技股份有限公司 一种气相分子吸收光谱仪
CN113218857A (zh) * 2021-05-14 2021-08-06 北京科技大学 一种电子产品电化学迁移微区电化学分析装置及方法
CN115479974A (zh) * 2022-08-24 2022-12-16 天津大学 一种集成环境参数的电化学传感智能舱

Also Published As

Publication number Publication date
CN115479974A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2024041118A1 (zh) 一种集成环境参数的电化学传感智能舱
CN109342408B (zh) 基于图像颜色信息提取的工业化学智能滴定方法及系统
CN116148027B (zh) 样本制备仪
CN112269027A (zh) 一种自动化取样处理装置
CN110849256A (zh) 一种活塞杆行程实时检测装置
US20240068975A1 (en) Electrochemical sensing intelligent chamber with integrated environmental parameters
CN116855372A (zh) 一种深海海参来源的超氧化物歧化酶活性检测装置
CN218297931U (zh) 一种在线式接触角测试仪
CN114152308B (zh) 一种液位测量逻辑控制电路及液位测量装置
CN202547979U (zh) 一种自动采样装置
CN109724547A (zh) 一种光伏组件错位在线检测装置
CN216560872U (zh) 一种半导体芯片高低温测试装置
CN213714588U (zh) 一种粉盘组件的电机扭矩测试装置
CN210119271U (zh) 一种流量表测试架
CN111189820B (zh) 适用于比色法检测的机器人自动操作平台
CN209246979U (zh) 一种光伏组件错位在线检测装置
CN114136396A (zh) 一种逻辑控制电路及液位测量装置
CN219319848U (zh) 一种样品全自动取样装置
CN219879963U (zh) 一种可自动吸样的移液器
CN210742220U (zh) 一种用于二硫化钼质量检测的自动电位滴定仪
CN215276829U (zh) 一种包合物制备检测装置
CN217997177U (zh) 用于核酸提取扩增的检测装置
CN220508948U (zh) 一种凝血分析仪用样本处理装置
CN216622414U (zh) 一种适用于卷染机的线速度检测调控装置
CN220729810U (zh) 一种腐蚀高度可调控的金相自动腐蚀装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856210

Country of ref document: EP

Kind code of ref document: A1