WO2024041101A1 - 逆变器数据处理方法、装置、设备和存储介质 - Google Patents

逆变器数据处理方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2024041101A1
WO2024041101A1 PCT/CN2023/099403 CN2023099403W WO2024041101A1 WO 2024041101 A1 WO2024041101 A1 WO 2024041101A1 CN 2023099403 W CN2023099403 W CN 2023099403W WO 2024041101 A1 WO2024041101 A1 WO 2024041101A1
Authority
WO
WIPO (PCT)
Prior art keywords
loss
inverter
equivalent model
efficiency
current
Prior art date
Application number
PCT/CN2023/099403
Other languages
English (en)
French (fr)
Inventor
李敏
赵永强
朱占山
林翰东
暴杰
咬皓程
许重斌
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024041101A1 publication Critical patent/WO2024041101A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]

Definitions

  • This application relates to the field of computers, for example, to inverter data processing methods, devices, equipment and storage media.
  • the inverter efficiency evaluation method mainly relies on physical samples, and the efficiency of the inverter is obtained through testing. This method results in a long performance evaluation period and high cost for the inverter.
  • This application provides an inverter data processing method, device, equipment and storage medium, which can improve the calculation speed of the inverter output efficiency and reduce the calculation cost.
  • an inverter data processing method including:
  • the loss parameters of the power switching device in the inverter system and the saturated conduction voltage drop of the power switching device wherein the loss parameters include the operating junction temperature, collector current, collector-emitter voltage, and inverse voltage of the power switching device. towards recovery loss, turn-off loss and turn-on loss;
  • an inverter data processing device which device includes:
  • a loss parameter acquisition module configured to acquire the loss parameters of the power switching device in the inverter system and the saturated conduction voltage drop of the power switching device; wherein the loss parameters include the operating junction temperature and collector current of the power switching device , collector-emitter current, diode reverse recovery loss, IGBT turn-off loss and Turn-on loss;
  • a system loss calculation module configured to calculate the system loss of the inverter system based on the loss parameters, the saturated conduction voltage drop, and the number of power switching devices;
  • the load equivalent model determination module is configured to construct the load equivalent model of the load motor based on the three-phase inductance equivalent model, the three-phase mutual inductance equivalent model and the three-phase resistance equivalent model of the load motor in the inverter system. Model;
  • a system simulation model building module configured to build a system simulation model of the inverter system based on the power switching device, the loss parameter, the system loss and the load equivalent model;
  • the power conversion efficiency determination module is configured to run the system simulation model based on the fixed modulation wave frequency to determine the inverter efficiency.
  • an electronic device including:
  • the memory stores a computer program that can be executed by the at least one processor, and the computer program is executed by the at least one processor, so that the at least one processor can execute the above-mentioned inverter data processing method.
  • a computer-readable storage medium stores computer instructions.
  • the computer instructions are used to implement the above-mentioned inverter data processing method when executed by a processor. .
  • Figure 1 is a flow chart of an inverter data processing method provided in Embodiment 1 of the present application;
  • Figure 2 is a flow chart of an inverter data processing method provided in Embodiment 2 of the present application.
  • Figure 3 is a flow chart of an inverter data processing method provided in Embodiment 3 of the present application.
  • Figure 4 is a schematic structural diagram of an inverter data processing device provided in Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic device provided in Embodiment 5 of the present application.
  • FIG 1 is a flow chart of an inverter data processing method provided in Embodiment 1 of the present application. This embodiment can be applied to processing inverter data, and is particularly suitable for processing inverter data to determine Inverter efficiency.
  • the method may be executed by an inverter data processing device, which may be implemented in the form of hardware and/or software, and which may be configured in an electronic device. As shown in Figure 1, the method includes:
  • the loss parameters include the operating junction temperature, collector current, collector-emitter voltage, reverse recovery loss, turn-off loss and turn-on loss of the power switching device.
  • Power switching devices are capable of controlling circuit on and off, ensuring reliable on or off of the circuit, able to withstand a certain voltage and current, have a high switching frequency, and have sufficiently short on-time and off-time during switching state transitions. power electronic devices.
  • Power switching devices include: Insulated Gate Bipolar Transistor (IGBT), diode, gate-turn-off thyristor (GTO), power transistor (Giant Transistor, GTR), power field effect Transistor (Perwer Metal-Oxide-Semiconductor Field-Effect Transistor, Perwer MOSFET), Integrated Gate-Commutated Thyristor (IGCT) and Symmetrical Gate Commutated Thyristor (SGCT).
  • the loss parameters of power switching devices are parameters that have an impact on the efficiency of the inverter system.
  • the saturation conduction voltage drop of the power switching device refers to the voltage across the power switching device after the positive electrode of the power switching device is connected to the high potential end and the negative electrode is connected to the low potential end to achieve forward conduction.
  • the saturated conduction voltage drop includes IGBT conduction voltage drop and diode forward voltage drop.
  • Junction temperature is the actual operating temperature of semiconductors in electronic devices.
  • the diode in an electronic circuit, if the anode of a diode is connected to a high potential end and the cathode is connected to a low potential end, the diode will conduct.
  • This connection method is called forward bias.
  • the forward voltage applied to both ends of the diode is very small, the diode still cannot conduct, and the forward current flowing through the diode is very weak. Only when the forward voltage reaches a certain value can the diode conduct forward. After the diode is turned on, the voltage across it remains basically unchanged. The voltage across the diode is called the saturated conduction voltage drop of the diode.
  • System loss refers to the turn-on loss and cut-off loss of the power switching device of the inverter system. Turn-on loss refers to the power loss generated when the power tube goes from OFF to ON; cut-off loss refers to the power loss generated when the power tube goes from ON to OFF.
  • diode positive Diode losses are determined from diode forward current and saturation, switching frequency, diode forward current and conduction voltage drop.
  • the duty cycle refers to the ratio of the energization time to the total energization time within a pulse cycle.
  • the system losses of the inverter system are calculated based on the diode losses, IGBT losses and the number of power switching devices.
  • the system loss of the inverter system can be calculated based on the insulated gate bipolar transistor loss, the diode loss and the number of power switching devices in the power switching device. This can be achieved through the following sub-steps:
  • P igbt is the insulated gate bipolar transistor loss
  • P cond_igbt is the turn-on loss of IGBT
  • P sw_igbt is the switching loss of IGBT.
  • d is the duty cycle
  • Vcesat is the IGBT conduction voltage drop
  • I c is the collector current.
  • f sw is the IGBT switching frequency
  • E on is the IGBT turn-on loss
  • E off is the IGBT turn-off. loss.
  • P diode is the diode loss
  • P cond_diode is the turn-on loss of the diode
  • P sw_diode is the switching loss of the diode.
  • V f is the diode forward voltage drop
  • If is the diode forward current
  • E rec is the diode reverse recovery loss and turn-off loss.
  • P chip is the loss value of a single power switching device in the inverter system.
  • P total is the system loss of the inverter system
  • n is the number of power switching devices.
  • the system loss of the inverter system can be calculated to obtain more accurate switching loss calculation results.
  • the load motor refers to the motor with load power, that is, the motor set to control power in the inverter system.
  • the three-phase inductance equivalent model refers to the three-phase equivalent circuit model of the inductance in the load motor; the three-phase mutual inductance equivalent model refers to the three-phase equivalent circuit model of the mutual inductance circuit in the load motor; the three-phase resistance equivalent model refers to the load Three-phase equivalent circuit model of the resistance in the motor.
  • Mutual inductance refers to the occurrence of current in a coil changes, causing induced electromotive force in other coils.
  • Mutual inductance circuit refers to a circuit that produces mutual inductance.
  • the three-phase inductance equivalent model in the load motor is determined; according to the current and electromotive force changes of the coil in the load motor, the mutual inductance circuit in the load motor is determined.
  • the mutual inductance circuit and the circuit connection mode in the load motor determine the three-phase mutual inductance equivalent model in the load motor; according to the resistance parameters of the resistor in the load motor and the circuit connection mode in the load motor, determine the three-phase resistance in the load motor, etc.
  • the three-phase inductance equivalent model, the three-phase mutual inductance equivalent model and the three-phase resistance equivalent model are connected to obtain the load equivalent model of the load motor.
  • the load equivalent model of the loaded motor can be constructed through the following sub-steps:
  • the speed range refers to the speed range of the load motor.
  • the speed of the load motor into segments to obtain at least two speed segments. For example, 0r/s to 500r/s, 501r/s to 1000r/s, and 1001r/s to 1005r/s can be used as rotation speed segments respectively.
  • the above setting of the speed section is only as an example. In actual applications, the speed section can be set according to actual needs. Determine the three-phase inductance equivalent model, the three-phase mutual inductance equivalent model and the three-phase resistance equivalent model when the load motor operates in each speed range.
  • any speed section determine the three-phase inductance equivalent model, three-phase mutual inductance equivalent model and three-phase resistance equivalent model under the speed section, and combine the three-phase inductance equivalent model, three-phase mutual inductance, etc. under the speed section.
  • the effective model and the three-phase resistance equivalent model are connected to obtain the equivalent model structure of the load motor in this speed range.
  • the equivalent model of the load motor in different speed ranges can be obtained.
  • the load equivalent model of the loaded motor can be obtained.
  • the load equivalent model contains at least two equivalent model structures.
  • the number of equivalent model structures is consistent with the number of speed sections.
  • the equivalent model structures corresponding to different speed sections are different.
  • Determining the load equivalent model of the load motor based on the equivalent model structure under each speed range can enable the load equivalent model to better simulate the working conditions of the load motor in the speed range above the inflection point speed. operating characteristics.
  • the inflection point refers to the torque output capability point corresponding to the speed at which the load motor reaches the limit of electric energy conversion capability, that is, the peak power point of the load motor. After the load motor reaches the peak power, the power cannot continue to increase, but the speed is still increasing, so the ability to output torque at the corresponding speed will decrease.
  • S140 Construct a system simulation model of the inverter system based on the power switching device, loss parameters, system loss and load equivalent model.
  • the system simulation model refers to the circuit simulation model constructed through simulation software and can be used to characterize the inverter system.
  • the system model structure of the inverter system is determined.
  • the loss parameters and system losses are used as model parameters of the circuit model structure, and the system simulation model of the inverter system is determined through the simulation software.
  • the bias voltage refers to the voltage that should be set between the base and the emitter and between the collector and the base in a transistor amplifier circuit when the transistor is in the amplified state.
  • the method of determining the efficiency of the inverter can be: based on a fixed modulation wave frequency, run the system simulation model to determine the output current and output frequency of the system simulation model; scan the bias voltage to determine the inverter at the output current and output frequency. converter efficiency.
  • the fixed modulation wave frequency can be set according to needs.
  • the fixed modulation wave frequency and bias voltage are used as input parameters of the system simulation model. Run the system simulation model and apply the fixed modulation wave frequency to the system simulation model to obtain the output current and output frequency of the system simulation model. By sweeping the bias voltage of the system simulation model, the inverter efficiency under the conditions of output current and output frequency can be obtained.
  • the acquisition speed of the inverter efficiency can be improved.
  • the technical solution provided by this embodiment is to obtain the loss parameters of the power switching devices and the saturated conduction voltage drop of the power switching devices in the inverter system; calculate the inverter based on the loss parameters, the saturated conduction voltage drop and the number of power switching devices.
  • the system loss of the inverter system; based on the three-phase inductance equivalent model, the three-phase mutual inductance equivalent model and the three-phase resistance equivalent model of the load motor in the inverter system, the load equivalent model of the load motor is constructed; based on the power switching device, Loss parameters, switching losses and load equivalent models are used to construct a system simulation model of the inverter system; based on a fixed modulation wave frequency, run the system simulation model to determine the inverter efficiency.
  • the above solution provides a system simulation model of the inverter system based on the system losses of the inverter system and the load equivalent model of the load motor, so as to determine the inverter based on the system simulation model. Efficient way. It solves the problem of low output efficiency calculation speed and high calculation cost caused by directly testing the output efficiency of the physical sample of the inverter system to obtain the output efficiency of the inverter system.
  • the inverter system Construct a system simulation model of the inverter system based on the loss parameters of the power switching device of the inverter system and the load equivalent model of the load motor, and then conduct simulation experiments based on the system simulation model to obtain the inverter efficiency and achieve the construction of accurate Simulation model of the inverter system, while improving the inverter efficiency calculation speed and reducing the inverter efficiency calculation cost.
  • the inverter system can also be evaluated based on the inverter efficiency, which improves the evaluation efficiency of the inverter system.
  • FIG. 2 is a flow chart of an inverter data processing method provided in Embodiment 2 of the present application. This embodiment is explained on the basis of the above embodiment and provides a method based on power switching devices, loss parameters, switches Loss and load equivalent models, an implementation plan to build a system simulation model of the inverter system. As shown in Figure 2, the method includes:
  • the loss parameters include the operating junction temperature, collector current, reverse recovery loss, turn-off loss and turn-on loss of the power switching device.
  • S240 Determine the intelligent power unit of the inverter system based on the power switching device, loss parameters and system loss.
  • the intelligent power unit of the inverter system refers to a model used to characterize the circuit connection status and loss status of the power switching device in the inverter system.
  • the intelligent power unit includes the power switching device, the loss parameters of the power switching device and the system loss.
  • the power switching devices of the inverter system determine the circuit components such as busbars, capacitors, drive circuits and IGBTs in the inverter system. Then according to the circuit components, loss parameters and system losses, the intelligent power unit of the inverter system is determined.
  • the constant voltage to frequency ratio algorithm refers to an algorithm that controls the ratio of modulation wave frequency and control voltage to a fixed value.
  • control The control voltage refers to the voltage that acts on the intelligent power unit to control the intelligent power unit.
  • the pulse width modulation algorithm namely Space Vector Pulse Width Modulation (SVPWM) algorithm, is a pulse width modulation wave generated by a specific switching mode composed of six power switching elements of a three-phase power inverter, which can make the output
  • the current waveform is as close as possible to an ideal sinusoidal waveform.
  • Clark transformation is to transform the physical quantities based on the three-axis two-dimensional stator stationary coordinate system into the two-axis stator stationary coordinate system.
  • the pulse width modulation algorithm is used to control the operation of the intelligent power unit in the voltage control system simulation model to obtain the three-phase alternating current that drives the load equivalent model operation, and uses the three-phase alternating current as the three-phase current that drives the load equivalent model operation.
  • the system circuit model of the system simulation model is constructed.
  • the control voltage and three-phase current are input into the system circuit model as the control voltage and three-phase current of the system circuit model, and the system simulation model of the inverter system is obtained.
  • the technical solution of this embodiment is to obtain the loss parameters of the power switching devices and the saturated conduction voltage drop of the power switching devices in the inverter system; calculate the inverter based on the loss parameters, the saturated conduction voltage drop and the number of power switching devices.
  • the system loss of the system; based on the three-phase inductance equivalent model, the three-phase mutual inductance equivalent model and the three-phase resistance equivalent model of the load motor in the inverter system, the load equivalent model of the load motor is constructed; according to the power switching device, loss parameters and switching losses to determine the intelligent power unit of the inverter system; input the modulated wave frequency signal into the system simulation model, use the constant voltage-to-frequency ratio algorithm, and determine the control voltage according to the modulated wave frequency signal; use the pulse width modulation algorithm to pass Control the operation of the intelligent power unit in the voltage control system simulation model to obtain the three-phase current that drives the operation of the load equivalent model; build a system simulation of the inverter system based on the intelligent power unit, control voltage, load equivalent model and
  • the efficiency MAP of the inverter efficiency can also be drawn based on the corresponding relationship between the inverter efficiency and the performance parameters of the load motor, which can be achieved through the following steps:
  • Step 1 Obtain the torque-current value correspondence between the load motor's torque and the current effective value of the three-phase current, the speed-current frequency correspondence between the load motor's motor speed and the current frequency of the three-phase current, and the inverse The efficiency-current parameter correspondence between the transformer efficiency and the current parameters of the three-phase current.
  • the current parameters include the current effective value and current frequency of the three-phase current.
  • the effective value of the current refers to the effective value of the phase current in the three-phase current.
  • the current parameters include the current effective value and current frequency of the three-phase current.
  • the torque-current value correspondence relationship between the torque of the load motor and the current effective value of the three-phase current can be determined according to the correspondence table between the torque of the load motor and the effective current value of the three-phase current.
  • Each set of coils of the load motor will produce N magnetic poles and S magnetic poles.
  • the number of magnetic poles contained in each phase of each load motor is the number of poles.
  • the magnetic poles appear in pairs, and each pair of magnetic poles is the motor pole pair.
  • the inverter efficiency determine the output current and output frequency corresponding to the inverter efficiency. Among them, the output current is the three-phase current, and the output frequency is the current frequency of the three-phase current.
  • the corresponding relationship between the inverter efficiency and the current effective value of the three-phase current and the corresponding relationship between the inverter efficiency and the current frequency of the three-phase current, determine the relationship between the inverter efficiency and the current parameters of the three-phase current.
  • the corresponding relationship between efficiency and current parameters determine the relationship between the inverter efficiency and the current parameters of the three-phase current.
  • Step 2 Determine the efficiency-performance parameter correspondence between the inverter efficiency and the performance parameters of the load motor based on the torque-current value correspondence, speed-current frequency correspondence and efficiency-current parameter correspondence.
  • the performance parameters of the load motor include the torque and motor speed of the load motor.
  • the efficiency-performance parameter correspondence between the inverter efficiency and the performance parameters of the load motor determine the correspondence between the inverter efficiency and the current effective value; according to the correspondence between the inverter efficiency and the current effective value , and the torque-current value correspondence relationship, determine the efficiency-torque correspondence relationship between the inverter efficiency and the torque of the load motor.
  • the efficiency-performance parameter correspondence between the inverter efficiency and the performance parameters of the load motor determine the correspondence between the inverter efficiency and the current frequency; according to the correspondence between the inverter efficiency and the current frequency, and The rotation speed-current frequency correspondence relationship determines the efficiency-speed correspondence relationship between the inverter efficiency and the motor speed of the load motor.
  • the efficiency-performance parameter correspondence between the inverter efficiency and the performance parameters of the load motor is determined.
  • Step 3 Draw the efficiency MAP of the inverter efficiency based on the correspondence between efficiency and performance parameters.
  • the abscissa is generally the speed of the load motor, and the ordinate is the torque of the load motor.
  • one speed point and one torque point correspond to one efficiency point.
  • the rotation speed-current frequency correspondence and the efficiency-current parameter correspondence determine the efficiency-performance parameter correspondence between the inverter efficiency and the performance parameters of the load motor, and according to the efficiency-performance parameter correspondence Relationship, plot the efficiency MAP of the inverter efficiency.
  • the efficiency MAP drawing efficiency of the inverter efficiency can be improved, and an accurate efficiency MAP can be obtained.
  • the conversion efficiency of the inverter system can be evaluated, which improves the evaluation efficiency.
  • FIG 3 is a flow chart of an inverter data processing method provided in Embodiment 3 of the present application. This embodiment is explained on the basis of the above embodiment and provides a method of running system simulation based on a fixed modulation wave frequency. Model, implementation to determine inverter efficiency. As shown in Figure 3, the method includes:
  • the loss parameters include the operating junction temperature, collector current, reverse recovery loss, turn-off loss and turn-on loss of the power switching device.
  • the control voltage of the system simulation model can be determined based on the constant voltage-to-frequency ratio algorithm and the fixed modulation wave frequency. According to the control voltage, the current parameters of the three-phase current that drive the load equivalent model operation are determined. According to the corresponding relationship between the current parameters and the performance parameters of the load motor, the performance parameters of the load motor are determined.
  • Performance parameters include load motor torque and motor speed. According to actual needs, the motor speed in the performance parameters is segmented to obtain at least two speed segments.
  • the speed segment can be a speed range or a fixed speed value used to characterize the speed range.
  • the rotation speed segment is a fixed rotation speed value.
  • the calculation formula of the speed section is as shown in formula (9):
  • the energy in the speed section refers to the energy generated by the load motor in the time range corresponding to the speed section.
  • the total energy of the rotational speed refers to the sum of the energy of all rotational speed segments.
  • Ti is the torque of the load motor at the i-th operating point; ⁇ t is a fixed coefficient.
  • k is the total number of speed segments.
  • the segmented efficiency of the inverter system is determined.
  • the equivalent torque refers to the torque of the load motor within the event range corresponding to the rotational speed range.
  • the calculation formula of equivalent torque is as shown in formula (12):
  • Equation (13) the calculation formula to determine the inverter efficiency is as shown in Equation (13):
  • eta is the inverter efficiency
  • eta i is the segment efficiency of the inverter system
  • D i is the weight.
  • the technical solution of this embodiment is to obtain the loss parameters of the power switching device and the saturated conduction voltage drop of the power switching device in the inverter system; according to the loss parameters, the saturated conduction voltage drop and the number of the power switching device Quantities are used to calculate the system losses of the inverter system; based on the three-phase inductance equivalent model, the three-phase mutual inductance equivalent model and the three-phase resistance equivalent model of the load motor in the inverter system, the load equivalent model of the load motor is constructed; Based on the power switching device, loss parameters, switching loss and load equivalent model, a system simulation model of the inverter system is constructed; based on the fixed modulation wave frequency, the system simulation model is run to obtain the performance parameters of the load motor; based on the performance parameters, the load The motor speed of the motor is processed in segments to obtain at least two speed segments; according to the speed segment energy corresponding to the speed segment and the total speed energy, the weight of the speed segment energy is determined; according to each weight and each speed segment, the inverse The segment efficiency of the
  • the above solution provides a method to determine the weight of the speed segment energy based on the speed segment energy corresponding to the speed segment of the load motor, and determine the inverter based on the weight of the speed segment energy and the segment efficiency corresponding to the speed segment.
  • the efficiency method not only improves the acquisition speed of the inverter efficiency, but also improves the calculation accuracy of the inverter efficiency.
  • FIG 4 is a schematic structural diagram of an inverter data processing device provided in Embodiment 4 of the present application. This embodiment can be applied to the situation of processing inverter data.
  • the inverter data processing device includes: a loss parameter acquisition module 410, a system loss calculation module 420, a load equivalent model determination module 430, a system simulation model construction module 440 and a power conversion efficiency determination module 450.
  • the loss parameter acquisition module 410 is configured to acquire the loss parameters of the power switching device in the inverter system and the saturated conduction voltage drop of the power switching device; wherein the loss parameters include the operating junction temperature, collector current, Collector-emitter voltage, reverse recovery loss, turn-off loss and turn-on loss;
  • the system loss calculation module 420 is configured to calculate the system loss of the inverter system based on the loss parameters, saturated conduction voltage drop and the number of power switching devices;
  • the load equivalent model determination module 430 is configured to construct a load equivalent model of the load motor based on the three-phase inductance equivalent model, the three-phase mutual inductance equivalent model and the three-phase resistance equivalent model of the load motor in the inverter system;
  • the system The simulation model building module 440 is configured to construct a system simulation model of the inverter system based on power switching devices, loss parameters, system losses and load equivalent models;
  • the power conversion efficiency determination module 450 is configured to operate based on a fixed modulation wave frequency. System simulation model to determine in
  • the technical solution provided by this embodiment is to obtain the loss parameters of the power switching devices and the saturated conduction voltage drop of the power switching devices in the inverter system; calculate the inverter based on the loss parameters, the saturated conduction voltage drop and the number of power switching devices.
  • the system loss of the inverter system; based on the three-phase inductance equivalent model, the three-phase mutual inductance equivalent model and the three-phase resistance equivalent model of the load motor in the inverter system, the load equivalent model of the load motor is constructed Model; build a system simulation model of the inverter system based on power switching devices, loss parameters, system losses and load equivalent models; based on a fixed modulation wave frequency, run the system simulation model to determine the inverter efficiency.
  • the above solution provides a way to construct a system simulation model of the inverter system based on the system losses of the inverter system and the load equivalent model of the load motor, so as to determine the inverter efficiency based on the system simulation model. It solves the problem of low output efficiency calculation speed and high calculation cost caused by directly testing the output efficiency of the physical sample of the inverter system to obtain the output efficiency of the inverter system.
  • the simulation model of the inverter system simultaneously improves the calculation speed of the inverter efficiency and reduces the cost of calculating the power conversion efficiency.
  • the inverter system can also be evaluated based on the inverter efficiency, which improves the evaluation efficiency of the inverter system.
  • system loss calculation module 420 is set to:
  • the turn-on loss of the power switching device based on the loss parameters, determine the insulated gate bipolar transistor loss and diode loss in the power switching device; take the sum of the insulated gate bipolar transistor loss and diode loss as the loss value of a single power switching device; Calculate the system loss of the inverter system based on the loss value of a single power switching device and the number of power switching devices.
  • the load equivalent model determination module 430 is configured as:
  • the three-phase inductance equivalent model, the three-phase mutual inductance equivalent model and the three-phase resistance equivalent model of the load motor in the inverter system under the speed range are constructed respectively; according to the three-phase inductance under the speed range Equivalent model, three-mutual inductance equivalent model and three-phase resistance equivalent model are used to construct the equivalent model structure of the load motor in this speed range; the equivalent model structure in multiple speed ranges is integrated to obtain the load Load equivalent model of the motor.
  • system simulation model building module 440 includes:
  • the intelligent power unit determination unit is configured to determine the intelligent power unit of the inverter system based on the power switching device, loss parameters and system loss;
  • the control voltage determination unit is configured to input the modulated wave frequency signal into the system simulation model, using a constant voltage
  • the frequency ratio algorithm determines the control voltage according to the modulated wave frequency signal;
  • the three-phase current acquisition unit is set to use the pulse width modulation algorithm to obtain the driving load equivalent model operation by controlling the operation of the intelligent power unit in the voltage control system simulation model.
  • Three-phase current the simulation model building unit is configured to build a system simulation model of the inverter system based on the intelligent power unit, control voltage, load equivalent model and three-phase current.
  • the above-mentioned inverter data processing device also includes:
  • the parameter relationship determination module is configured to obtain the torque-current value correspondence relationship between the torque of the load motor and the current effective value of the three-phase current, and the relationship between the motor speed of the load motor and the current frequency of the three-phase current.
  • the efficiency relationship determination module set to determine the efficiency-performance parameter correspondence between the inverter efficiency and the performance parameters of the load motor based on the torque-current value correspondence, speed-current frequency correspondence and efficiency-current parameter correspondence; where, the load motor
  • the performance parameters include the torque of the load motor and the motor speed;
  • the efficiency MAP drawing module is set to draw the efficiency MAP of the inverter efficiency based on the efficiency-performance parameter correspondence.
  • the power conversion efficiency determination module 450 is set to:
  • the power conversion efficiency determination module 450 is also configured to:
  • the inverter data processing device provided in this embodiment can be applied to the inverter data processing method provided in any of the above embodiments, and has corresponding functions and effects.
  • FIG. 5 shows a schematic structural diagram of an electronic device that can be used to implement embodiments of the present application.
  • Electronic device 10 is intended to represent many forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Electronic device 10 may also represent various forms of mobile devices, such as personal digital assistants, cellular phones, smart phones, wearable devices (eg, helmets, glasses, watches, etc.), and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are examples only and are not intended to limit the implementation of the present application as described and/or claimed herein.
  • the electronic device 10 includes at least one processor 11, and a memory communicatively connected to the at least one processor 11, such as a read-only memory (Read-Only Memory, ROM) 12, a random access memory (Random Access Memory, RAM) 13, etc., wherein the memory stores a computer program that can be executed by at least one processor.
  • the processor 11 can execute according to the computer program stored in the ROM 12 or the computer program loaded from the storage unit 18 into the RAM 13. A variety of appropriate actions and treatments.
  • various programs and data required for the operation of the electronic device 10 can also be stored.
  • the processor 11, the ROM 12 and the RAM 13 are connected to each other via the bus 14.
  • the interface 15 is also connected to the bus 14 .
  • the I/O interface 15 Multiple components in the electronic device 10 are connected to the I/O interface 15, including: an input unit 16, such as a keyboard, a mouse, etc.; an output unit 17, such as various types of displays, speakers, etc.; a storage unit 18, such as a magnetic disk, an optical disk, etc. etc.; and communication unit 19, such as network card, modem, wireless communication transceiver, etc.
  • the communication unit 19 allows the electronic device 10 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunications networks.
  • Processor 11 may be a variety of general and/or special purpose processing components having processing and computing capabilities. Some examples of the processor 11 include, but are not limited to, a central processing unit (Central Processing Unit, CPU), a graphics processing unit (GPU), a variety of dedicated artificial intelligence (Artificial Intelligence, AI) computing chips, a variety of running Machine learning model algorithm processor, digital signal processor (Digital Signal Processor, DSP), and any appropriate processor, controller, microcontroller, etc.
  • the processor 11 performs a plurality of methods and processes described above, such as inverter data processing methods.
  • the inverter data processing method may be implemented as a computer program, which is tangibly embodied in a computer-readable storage medium, such as the storage unit 18 .
  • part or all of the computer program may be loaded and/or installed onto the electronic device 10 via the ROM 12 and/or the communication unit 19.
  • the processor 11 may be configured to perform the inverter data processing method in any other suitable manner (eg, by means of firmware).
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSP Application Specific Standard Parts
  • SOC System on Chip
  • CPLD Complex Programming Logic Device
  • These various embodiments may include implementation in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor
  • the processor which may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • Computer programs for implementing the methods of the present application may be written in any combination of one or more programming languages. These computer programs may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the computer program, when executed by the processor, causes the flowcharts and/or blocks to The functions/operations specified in the diagram are implemented.
  • a computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a computer-readable storage medium may be a tangible medium that may contain or store a computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer-readable storage media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be a machine-readable signal medium.
  • machine-readable storage media examples include one or more wire-based electrical connections, laptop disks, hard drives, RAM, ROM, Erasable Programmable Read-Only Memory (EPROM), or flash memory ), optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • the systems and techniques described herein may be implemented on an electronic device having a display device (e.g., a cathode ray tube (CRT) or liquid crystal) configured to display information to a user.
  • a display device e.g., a cathode ray tube (CRT) or liquid crystal
  • a display Liquid Crystal Display, LCD monitor
  • a keyboard and pointing device e.g., a mouse or a trackball
  • Other kinds of devices may also be configured to provide interaction with the user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and may be provided in any form, including Acoustic input, voice input or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN), blockchain network, and the Internet.
  • Computing systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.
  • the server can be a cloud server, also known as a cloud computing server or cloud host. It is a host product in the cloud computing service system to solve It overcomes the shortcomings of difficult management and weak business scalability in traditional physical hosts and Virtual Private Server (VPS) services.
  • VPN Virtual Private Server
  • Steps can be reordered, added, or removed using various forms of the process shown above.
  • multiple steps described in this application can be executed in parallel, sequentially, or in different orders.
  • the desired results of the technical solution of this application can be achieved, there is no limitation here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)

Abstract

本申请公开了逆变器数据处理方法、装置、设备和存储介质。该逆变器数据处理方法包括:获取逆变器系统中功率开关器件的损耗参数和所述功率开关器件的饱和导通压降;根据所述损耗参数、所述饱和导通压降和所述功率开关器件的数量,计算逆变器系统的系统损耗;根据所述逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建所述负载电机的负载等效模型;基于所述功率开关器件、所述损耗参数、所述开关损耗和所述负载等效模型,构建所述逆变器系统的系统仿真模型;基于固定调制波频率,运行所述系统仿真模型,确定逆变器效率。

Description

逆变器数据处理方法、装置、设备和存储介质
本申请要求在2022年08月23日提交中国专利局、申请号为202211011381.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机领域,例如涉及逆变器数据处理方法、装置、设备和存储介质。
背景技术
随着电动车的发展,电动车逆变器的能量消耗情况,成为人们关注的重点。逆变器效率评估方式主要依赖物理样件,通过测试得到逆变器的效率,这种方式导致对逆变器的性能评估周期长,成本高。
发明内容
本申请提供了逆变器数据处理方法、装置、设备和存储介质,可以提高逆变器输出效率的计算速度,降低计算成本。
根据本申请的一方面,提供了一种逆变器数据处理方法,包括:
获取逆变器系统中功率开关器件的损耗参数和所述功率开关器件的饱和导通压降;其中,所述损耗参数包括功率开关器件的工作结温、集电极电流、集射极电压、反向恢复损耗、关断损耗和开通损耗;
根据所述损耗参数、所述饱和导通压降和所述功率开关器件的数量,计算逆变器系统的系统损耗;
根据所述逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建所述负载电机的负载等效模型;
基于所述功率开关器件、所述损耗参数、所述系统损耗和所述负载等效模型,构建所述逆变器系统的系统仿真模型;
基于固定调制波频率,运行所述系统仿真模型,确定逆变器效率;
根据本申请的另一方面,提供了一种逆变器数据处理装置,该装置包括:
损耗参数获取模块,设置为获取逆变器系统中功率开关器件的损耗参数和所述功率开关器件的饱和导通压降;其中,所述损耗参数包括功率开关器件的工作结温、集电极电流、集射极电流、二极管反向恢复损耗、IGBT关断损耗和 开通损耗;
系统损耗计算模块,设置为根据所述损耗参数、所述饱和导通压降和所述功率开关器件的数量,计算逆变器系统的系统损耗;
负载等效模型确定模块,设置为根据所述逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建所述负载电机的负载等效模型;
系统仿真模型构建模块,设置为基于所述功率开关器件、所述损耗参数、所述系统损耗和所述负载等效模型,构建所述逆变器系统的系统仿真模型;
功率转换效率确定模块,设置为基于固定调制波频率,运行所述系统仿真模型,确定逆变器效率。
根据本申请的另一方面,提供了一种电子设备,所述电子设备包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的逆变器数据处理方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现上述的逆变器数据处理方法。
附图说明
图1为本申请实施例一提供的一种逆变器数据处理方法的流程图;
图2为本申请实施例二提供的一种逆变器数据处理方法的流程图;
图3为本申请实施例三提供的一种逆变器数据处理方法的流程图;
图4为本申请实施例四提供的一种逆变器数据处理装置的结构示意图;
图5为本申请实施例五提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施例仅仅是本申请一部分的实施例。
本申请的说明书和权利要求书及上述附图中的术语“候选”和“目标”等 是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“等”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
图1为本申请实施例一提供了一种逆变器数据处理方法的流程图,本实施例可适用于对逆变器数据进行处理的情况,尤其适用于对逆变器数据进行处理,确定逆变器效率的情况。该方法可以由逆变器数据处理装置来执行,该逆变器数据处理装置可以采用硬件和/或软件的形式实现,该逆变器数据处理装置可配置于电子设备中。如图1所示,该方法包括:
S110、获取逆变器系统中功率开关器件的损耗参数和功率开关器件的饱和导通压降。
损耗参数包括功率开关器件的工作结温、集电极电流、集射极电压、反向恢复损耗、关断损耗和开通损耗。功率开关器件是指能够控制电路通断,确保电路的可靠导通或截止,能够承受一定的电压和电流,具有较高的开关频率,且在开关状态转换时导通时间与关断时间足够短的电力电子器件。功率开关器件包括:绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,IGBT)、二极管、门极可关断晶闸管(Gate-Turn-Off Thyristor,GTO)、电力晶体管(Giant Transistor,GTR)、电力场效应管(Perwer Metal-Oxide-Semiconductor Field-Effect Transistor,Perwer MOSFET)、集成门极换流晶闸管(Integrated Gate-Commutated Thyristor,IGCT)和对称门极换流晶闸管(Symmetrical Gate Commutated Thyristor,SGCT)。功率开关器件的损耗参数是对逆变器系统的效率有影响的参数。功率开关器件的饱和导通压降是指功率开关器件正极接在高电位端,负极接在低电位端,实现正向导通后,功率开关器件两端的电压。饱和导通压降包括IGBT导通压降和二极管正向压降。结温是电子设备中半导体的实际工作温度。
例如,电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到一数值以后,二极管才能正向导通。导通后二极管两端的电压基本上保持不变,二极管两端的电压称为二极管的饱和导通压降。
确定逆变器系统中的功率开关器件,测量并获取功率开器件中绝缘栅双极型晶体管的实际工作温度,并将实际工作温度作为功率开关器件的工作结温。 测量并获取集电极电流。将直流母线电压条件下的功率开关器件的开通损耗作为开通损耗。同时,获取直流母线电压条件下的功率开关器件的关断损耗,和功率开关器件中二极管的反向恢复损耗。将二极管的正极接在高电位端,负极接在低电位端,测量并获取二极管正向导通时二极管两段的电压,以获得二极管的饱和导通压降。
S120、根据损耗参数、饱和导通压降和功率开关器件的数量,计算逆变器系统的系统损耗。
系统损耗是指逆变器系统的功率开关器件的开通损耗和截止损耗。开通损耗指功率管从截止到导通时,所产生的功率损耗;截止损耗指功率管从导通到截止时,所产生的功率损耗。
根据占空比、集电极电流、开关频率、IGBT开通损耗、IGBT关断损耗和饱和导通压降中的IGBT导通压降,确定绝缘栅双极型晶体管损耗;根据占空比、二极管正向电流和饱、开关频率、二极管正向电流和导通压降中的二极管正向压降,确定二极管损耗。占空比是指在一个脉冲循环内,通电时间相对于通电的总时间所占的比例。根据二极管损耗、绝缘栅双极型晶体管损耗和功率开关器件的数量,计算逆变器系统的系统损耗。
示例性的,可以根据功率开关器件中绝缘栅双极型晶体管损耗、二极管损耗和功率开关器件的数量,计算逆变器系统的系统损耗。可以通过如下子步骤实现:
S1201、根据损耗参数的功率开关器件的开通损耗,确定功率开关器件中绝缘栅双极型晶体管损耗,以及二极管损耗。
绝缘栅双极型晶体管损耗的计算公式如公式(1)所示:
Pigbt=Pcond_igbt+Psw_igbt     (1)
其中,Pigbt为绝缘栅双极型晶体管损耗;Pcond_igbt为IGBT的开通损耗;Psw_igbt为IGBT的开关损耗。
IGBT的开通损耗的计算公式如公式(2)所示:
Pcond_igbt=d×Vcesat×Ic         (2)
其中,d为占空比;Vcesat为IGBT导通压降;Ic为集电极电流。
IGBT的开关损耗的计算公式如公式(3)所示:
Psw_igbt=fsw(Eon+Eoff)        (3)
其中,fsw为IGBT开关频率,Eon为IGBT开通损耗,Eoff为IGBT关断 损耗。
二极管损耗的计算公式如公式(4)所示:
Pdiode=Pcond_diode+Psw_diode       (4)
其中,Pdiode为二极管损耗;Pcond_diode为二极管的开通损耗;Psw_diode为二极管的开关损耗。
二极管的开通损耗的计算公式如公式(5)所示:
Pcond_diode=(1-d)VfIf        (5)
其中,Vf为二极管正向压降,If为二极管正向电流。
二极管的开关损耗的计算公式如公式(6)所示:
Psw_diode=fswErec         (6)
其中,Erec为二极管反向恢复损耗、关断损耗。
S1202、将绝缘栅双极型晶体管损耗和二极管损耗之和作为单个功率开关器件的损耗值。
逆变器系统中单个功率开关器件的损耗值的计算公式如公式(7)示:
Pchip=Pigbt+Pdiode          (7)
其中,Pchip为逆变器系统中单个功率开关器件的损耗值。
S1203、根据单个功率开关器件的损耗值和功率开关器件的数量,计算逆变器系统的系统损耗。
逆变器系统的系统损耗的计算公式如公式(8)所示:
Ptotal=n*Pchip         (8)
其中,Ptotal为逆变器系统的系统损耗,n为功率开关器件的数量。
根据功率开关器件中绝缘栅双极型晶体管损耗、二极管损耗和功率开关器件的数量,计算逆变器系统的系统损耗,可以获得更加精确的开关损耗计算结果。
S130、根据逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建负载电机的负载等效模型。
负载电机是指带有负荷功率的电机,即逆变器系统中设置为控制功率的电机。三相电感等效模型是指负载电机中的电感的三相等效电路模型;三相互感等效模型是指负载电机中的互感电路的三相等效电路模型;三相电阻等效模型是指负载电机中的电阻的三相等效电路模型。互感是指一个线圈中的电流发生 变化,而使其他线圈中产生感应电动势的现象。互感电路是指产生互感现象的电路。
根据负载电机中电感的电感参数和负载电机中的电路连接方式,确定负载电机中的三相电感等效模型;根据负载电机中的线圈的电流和电动势变化情况,确定负载电机中的互感电路,根据互感电路和负载电机中的电路连接方式,确定负载电机中的三相互感等效模型;根据负载电机中电阻的电阻参数和负载电机中的电路连接方式,确定负载电机中的三相电阻等效模型;将三相电感等效模型、三相互感等效模型和三相电阻等效模型进行连接,获得负载电机的负载等效模型。
示例性的,可以通过如下子步骤构建负载电机的负载等效模型:
S1301、针对每一转速段,构建该转速段下逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型。
转速段是指负载电机的转速范围。
将负载电机的转速进行分段处理,获得至少两个转速段。例如,可以将0r/s~500r/s、501r/s~1000r/s和1001r/s~1005r/s分别作为转速段。以上转速段的设置仅仅作为一个示例,在实际应用中,可以根据实际需要设置转速段。确定负载电机工作在每一个转速段下的三相电感等效模型、三相互感等效模型和三相电阻等效模型。
S1302、根据该转速段下的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建该转速段下,负载电机的等效模型组成结构。
针对任一转速段,确定该转速段下的三相电感等效模型、三相互感等效模型和三相电阻等效模型,将该转速段下的三相电感等效模型、三相互感等效模型和三相电阻等效模型进行连接,获得该转速段下,负载电机的等效模型组成结构。
S1303、对多个转速段下的等效模型组成结构进行整合,得到负载电机的负载等效模型。
根据不同转速段下,负载电机的等效模型组成结构,可以获得不同转速段下负载电机的等效模型。对多个转速段下的等效模型组成结构进行整合,可以得到负载电机的负载等效模型。该负载等效模型中包含至少两个等效模型组成结构,等效模型组成结构的个数和转速段的个数一致,不同转速段对应的等效模型组成结构不同。
根据每个转速段下的等效模型组成结构,确定负载电机的负载等效模型,可以使负载等效模型能够更好的模拟拐点转速以上的转速范围的负载电机的工 作特性。拐点是指负载电机达到电能转化极限能力的转速对应的扭矩输出能力点,即负载电机的峰值功率点。负载电机到达峰值功率后,功率无法继续上升,而转速仍然在增加,那么对应转速下输出扭矩的能力就要下降。
S140、基于功率开关器件、损耗参数、系统损耗和负载等效模型,构建逆变器系统的系统仿真模型。
系统仿真模型是指通过仿真软件构成的,可以用于表征逆变器系统的电路仿真模型。
根据功率开关器件和负载等效模型,确定逆变器系统的系统模型结构。将损耗参数和系统损耗,作为电路模型结构的模型参数,通过仿真软件,确定逆变器系统的系统仿真模型。
S150、基于固定调制波频率,运行系统仿真模型,确定逆变器效率。
确定逆变器系统的电路仿真模型后,确定电路仿真模型中的固定调制波频率和偏置电压,以获取固定调制波频率和偏执电压下的电路仿真模型的输出电流和输出频率。根据偏置电压、输出电流和输出频率,可以确定输出电流和输出频率条件下的逆变器效率。偏置电压是指晶体管放大电路中使晶体管处于放大状态时,基极-射极之间以及集电极-基极之间应该设置的电压。
示例性的,确定逆变器效率的方式可以是:基于固定调制波频率,运行系统仿真模型,确定系统仿真模型的输出电流和输出频率;扫描偏置电压,确定输出电流和输出频率下的逆变器效率。
固定调制波频率可以根据需求自行设置。将固定调制波频率和偏置电压作为系统仿真模型的输入参数。运行系统仿真模型,将固定调制波频率作用于系统仿真模型,以获得系统仿真模型的输出电流和输出频率。扫描系统仿真模型的偏置电压,可以获得输出电流和输出频率条件下的逆变器效率。
通过扫描固定调制波频率作用下系统仿真模型的偏置电压,确定逆变器效率,可以提高逆变器效率的获取速度。
本实施例提供的技术方案,获取逆变器系统中功率开关器件的损耗参数和功率开关器件的饱和导通压降;根据损耗参数、饱和导通压降和功率开关器件的数量,计算逆变器系统的系统损耗;根据逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建负载电机的负载等效模型;基于功率开关器件、损耗参数、开关损耗和负载等效模型,构建逆变器系统的系统仿真模型;基于固定调制波频率,运行系统仿真模型,确定逆变器效率。上述方案,提供了一种根据逆变器系统的系统损耗和负载电机的负载等效模型,构建逆变器系统的系统仿真模型,以根据系统仿真模型,确定逆变器 效率的方式。解决了直接对逆变器系统的物理样件的输出效率进行测试,以获取逆变器系统的输出效率,造成的输出效率计算速度低,计算成本高的问题。根据逆变器系统功率开关器件的损耗参数和负载电机的负载等效模型构建逆变器系统的系统仿真模型,再根据系统仿真模型进行仿真实验,以获取逆变器效率,实现了构建精确的逆变器系统的仿真模型,同时提高逆变器效率计算速度,降低逆变器效率计算成本的效果。还可以基于逆变器效率对逆变器系统进行评估,提高了逆变器系统的评估效率。
实施例二
图2为本申请实施例二提供的一种逆变器数据处理方法的流程图,本实施例在上述实施例的基础上进行了说明,给出了一种基于功率开关器件、损耗参数、开关损耗和负载等效模型,构建逆变器系统的系统仿真模型的实施方案。如图2所示,该方法包括:
S210、获取逆变器系统中功率开关器件的损耗参数和功率开关器件的饱和导通压降。
损耗参数包括功率开关器件的工作结温、集电极电流、反向恢复损耗、关断损耗和开通损耗。
S220、根据损耗参数、饱和导通压降和功率开关器件的数量,计算逆变器系统的系统损耗。
S230、根据逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建负载电机的负载等效模型。
S240、根据功率开关器件、损耗参数和系统损耗,确定逆变器系统的智能功率单元。
逆变器系统的智能功率单元是指用于表征逆变器系统中功率开关器件的电路连接状态和损耗状况的模型,智能功率单元中包含功率开关器件、功率开关器件的损耗参数和系统损耗。
根据逆变器系统的功率开关器件,确定逆变器系统中的母排、电容、驱动电路和IGBT等电路组成元件。再根据电路组成元件、损耗参数和系统损耗,确定逆变器系统的智能功率单元。
S250、向系统仿真模型中输入调制波频率信号,采用恒压频比算法,根据调制波频率信号,确定控制电压。
恒压频比算法是指控制调制波频率和控制电压的比值为固定值的算法。控 制电压是指作用于智能功率单元,以控制智能功率单元的电压
向系统仿真模型中输入调制波频率信号,确定控制电压和调制波频率的恒压频比比值。基于调制波频率信号和恒压频比比值,通过恒压频比算法,确定控制电压。
S260、采用脉宽调制算法,通过控制电压控制系统仿真模型中的智能功率单元运行,获得驱动负载等效模型运行的三相电流。
脉宽调制算法即空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)算法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。
由于三相系统中的电压、电流等状态变量存在不同程度的耦合,因此,在确定控制电压后,需要对控制电压进行克拉克变换,以使控制电压从三相坐标系变换至两相旋转坐标系中。克拉克变换是将基于三轴二维的定子静止坐标系的物理量变换到二轴的定子静止坐标系中。通过克拉克变换,可以将耦合的对称三相系统解耦为可以独立控制的两相系统,从而降低控制器设计的复杂程度。再采用脉宽调制算法,通过控制电压控制系统仿真模型中的智能功率单元运行,从而获得驱动负载等效模型运行的三相交流电,将三相交流电作为驱动负载等效模型运行的三相电流。
S270、根据智能功率单元、控制电压、负载等效模型和三相电流,构建逆变器系统的系统仿真模型。
根据智能功率单元和负载等效模型,构建系统仿真模型的系统电路模型。将控制电压和三相电流作为系统电路模型的控制电压和三相电流,输入至系统电路模型中,获得逆变器系统的系统仿真模型。
S280、基于固定调制波频率,运行系统仿真模型,确定逆变器效率。
本实施例的技术方案,获取逆变器系统中功率开关器件的损耗参数和功率开关器件的饱和导通压降;根据损耗参数、饱和导通压降和功率开关器件的数量,计算逆变器系统的系统损耗;根据逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建负载电机的负载等效模型;根据功率开关器件、损耗参数和开关损耗,确定逆变器系统的智能功率单元;向系统仿真模型中输入调制波频率信号,采用恒压频比算法,根据调制波频率信号,确定控制电压;采用脉宽调制算法,通过控制电压控制系统仿真模型中的智能功率单元运行,获得驱动负载等效模型运行的三相电流;根据智能功率单元、控制电压、负载等效模型和三相电流,构建逆变器系统的系统仿真模型;基于固定调制波频率,运行系统仿真模型,确定逆变器效率。
示例性的,在上述实施例的基础上,还可以根据逆变器效率与负载电机的性能参数之间的对应关系,绘制逆变器效率的效率MAP,可以通过如下步骤实现:
步骤1、获取负载电机的扭矩与三相电流的电流有效值之间的扭矩-电流值对应关系,负载电机的电机转速与三相电流的电流频率之间的转速-电流频率对应关系,以及逆变器效率与三相电流的电流参数之间的效率-电流参数对应关系。
电流参数包括三相电流的电流有效值和电流频率。电流有效值是指三相电流中相电流的有效值。电流参数包括三相电流的电流有效值和电流频率。
可以根据负载电机的扭矩与电流有效值之间的对应关系表,确定负载电机的扭矩与三相电流的电流有效值之间的扭矩-电流值对应关系。
示例性的,负载电机的扭矩与电流有效值之间的对应关系表如表1所示:
表1

负载电机的电机转速与三相电流的电流频率之间的转速-电流频率对应关系如公式(9)所示:
n为负载电机的电机转速;f为三相电流的电流频率;P为负载电机的电机极对数。负载电机每组线圈都会产生N磁极和S磁极,每个负载电机的每相含有的磁极个数为极数,磁极是成对出现的,每一对磁极即为电机极对。根据逆变器效率,确定逆变器效率对应的输出电流和输出频率。其中,输出电流即为三相电流,输出频率即为三相电流的电流频率。根据逆变器效率与三相电流的电流有效值之间的对应关系,以及逆变器效率与三相电流的电流频率之间的对应关系,确定逆变器效率与三相电流的电流参数之间的效率-电流参数对应关系。
步骤2、根据扭矩-电流值对应关系、转速-电流频率对应关系和效率-电流参数对应关系,确定逆变器效率与负载电机的性能参数之间的效率-性能参数对应关系。
负载电机的性能参数包括负载电机的扭矩和电机转速。
根据逆变器效率与负载电机的性能参数之间的效率-性能参数对应关系,确定逆变器效率与电流有效值之间的对应关系;根据逆变器效率与电流有效值之间的对应关系,以及扭矩-电流值对应关系,确定逆变器效率与负载电机的扭矩之间的效率-扭矩对应关系。根据逆变器效率与负载电机的性能参数之间的效率-性能参数对应关系,确定逆变器效率与电流频率之间的对应关系;根据逆变器效率与电流频率之间的对应关系,以及转速-电流频率对应关系,确定逆变器效率与负载电机的电机转速之间的效率-转速对应关系。根据效率-扭矩对应关系和效率-转速对应关系,确定逆变器效率与负载电机的性能参数之间的效率-性能参数对应关系。
步骤3、根据效率-性能参数对应关系,绘制逆变器效率的效率MAP。
效率MAP中,横坐标一般为负载电机的转速,纵坐标为负载电机的扭矩。效率MAP中,一个转速点和一个扭矩点对应一个效率点。
建立横坐标为负载电机转速,纵坐标为负载电机的扭矩的坐标系。根据效率-性能参数对应关系,在坐标系中标注逆变器效率对应的效率点,通过连接效率点,绘制逆变器效率的效率MAP。
根据扭矩-电流值对应关系、转速-电流频率对应关系和效率-电流参数对应关系,确定逆变器效率与负载电机的性能参数之间的效率-性能参数对应关系,并根据效率-性能参数对应关系,绘制逆变器效率的效率MAP。可以提高逆变器效率的效率MAP的绘制效率,并可以获得准确的效率MAP,基于效率MAP实现对逆变器系统的转换效率的评估,提高了评估效率。
实施例三
图3为本申请实施例三提供的一种逆变器数据处理方法的流程图,本实施例在上述实施例的基础上进行了说明,给出了一种基于固定调制波频率,运行系统仿真模型,确定逆变器效率的实施方式。如图3所示,该方法包括:
S310、获取逆变器系统中功率开关器件的损耗参数和功率开关器件的饱和导通压降。
损耗参数包括功率开关器件的工作结温、集电极电流、反向恢复损耗、关断损耗和开通损耗。
S320、根据损耗参数、饱和导通压降和功率开关器件的数量,计算逆变器系统的系统损耗。
S330、根据逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建负载电机的负载等效模型。
S340、基于功率开关器件、损耗参数、开关损耗和负载等效模型,构建逆变器系统的系统仿真模型。
S350、基于固定调制波频率,运行系统仿真模型,获得负载电机的性能参数。
将固定调制波频率作为输入系统仿真模型的信号,运行系统仿真模型,可以根据恒压频比算法和固定调制波频率,确定系统仿真模型的控制电压。根据控制电压,确定驱动负载等效模型运行的三相电流的电流参数,根据电流参数和负载电机的性能参数之间的对应关系,确定负载电机的性能参数。
S360、基于性能参数,对负载电机的电机转速进行分段处理,获得至少两 个转速段。
性能参数包含负载电机的扭矩和电机转速。根据实际需求,对性能参数中的电机转速进行分段处理,获得至少两个转速段。转速段可以是一个转速范围,也可以是一个用于表征转速范围的固定的转速值。在本实施例中,转速段为固定的转速值。转速段的计算公式如公式(9)所示:
ω为转速段;ωi为负载电机处于第i个工况点的转速;n为负载电机在转速段所对应的时间范围内工况点的个数。
S370、根据转速段对应的转速段能量,以及转速总能量,确定转速段能量的权值。
转速段能量是指负载电机在转速段所对应的时间范围内所产生的能量。转速总能量是指所有的转速段能量之和。
转速段能量的计算公式如公式(10)所示:
Ti为负载电机处于第i个工况点的扭矩;Δt为固定系数。
转速段能量的权值的计算公式如公式(11)所示:
k为转速段的总个数。
S380、根据每个权值和每个转速段下逆变器系统的分段效率,确定逆变器效率。
根据每个转速段对应的负载电机的转速值和等效扭矩,确定逆变器系统的分段效率。等效扭矩是指用于表征转速段所对应的事件范围内,负载电机的扭矩。等效扭矩的计算公式如公式(12)所示:
根据每个权值和每个转速段下逆变器系统的分段效率,确定逆变器效率的计算公式如公式(13)所示:
η为逆变器效率;ηi为逆变器系统的分段效率;Di为权值。
本实施例的技术方案,获取逆变器系统中功率开关器件的损耗参数和功率开关器件的饱和导通压降;根据损耗参数、饱和导通压降和功率开关器件的数 量,计算逆变器系统的系统损耗;根据逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建负载电机的负载等效模型;基于功率开关器件、损耗参数、开关损耗和负载等效模型,构建逆变器系统的系统仿真模型;基于固定调制波频率,运行系统仿真模型,获得负载电机的性能参数;基于性能参数,对负载电机的电机转速进行分段处理,获得至少两个转速段;根据转速段对应的转速段能量,以及转速总能量,确定转速段能量的权值;根据每个权值和每个转速段下逆变器系统的分段效率,确定逆变器效率。由于不同的转速段在计算逆变器效率的过程中所占权重不同,在计算逆变器效率的过程中,若不考虑转速段能量的权重,可能导致获得的逆变器效率存在误差。上述方案,提供了一种基于负载电机的转速段对应的转速段能量,确定转速段能量的权值,并根据转速段能量的权值,以及转速段所对应的分段效率,确定逆变器效率的方式,在提高逆变器效率的获取速度的同时,提高了逆变器效率的计算精确性。在基于逆变器效率对逆变器系统进行评估时,可以获得更加精确的评估结果。
实施例四
图4为本申请实施例四提供的一种逆变器数据处理装置的结构示意图。本实施例可适用于对逆变器数据进行处理的情况。如图4所示,该逆变器数据处理装置包括:损耗参数获取模块410、系统损耗计算模块420、负载等效模型确定模块430、系统仿真模型构建模块440和功率转换效率确定模块450。
损耗参数获取模块410,设置为获取逆变器系统中功率开关器件的损耗参数和功率开关器件的饱和导通压降;其中,所述损耗参数包括功率开关器件的工作结温、集电极电流、集射极电压、反向恢复损耗、关断损耗和开通损耗;系统损耗计算模块420,设置为根据损耗参数、饱和导通压降和功率开关器件的数量,计算逆变器系统的系统损耗;负载等效模型确定模块430,设置为根据逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建负载电机的负载等效模型;系统仿真模型构建模块440,设置为基于功率开关器件、损耗参数、系统损耗和负载等效模型,构建逆变器系统的系统仿真模型;功率转换效率确定模块450,设置为基于固定调制波频率,运行系统仿真模型,确定逆变器效率。
本实施例提供的技术方案,获取逆变器系统中功率开关器件的损耗参数和功率开关器件的饱和导通压降;根据损耗参数、饱和导通压降和功率开关器件的数量,计算逆变器系统的系统损耗;根据逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建负载电机的负载等效 模型;基于功率开关器件、损耗参数、系统损耗和负载等效模型,构建逆变器系统的系统仿真模型;基于固定调制波频率,运行系统仿真模型,确定逆变器效率。上述方案,提供了一种根据逆变器系统的系统损耗和负载电机的负载等效模型,构建逆变器系统的系统仿真模型,以根据系统仿真模型,确定逆变器效率的方式。解决了直接对逆变器系统的物理样件的输出效率进行测试,以获取逆变器系统的输出效率,造成的输出效率计算速度低,计算成本高的问题。根据逆变器系统功率开关器件的损耗参数和负载电机的负载等效模型构建逆变器系统的系统仿真模型,再根据系统仿真模型进行仿真实验,以获取逆变器效率,实现了构建精确的逆变器系统的仿真模型,同时提高逆变器效率计算速度,降低功率转换效率计算成本的效果。还可以基于逆变器效率对逆变器系统进行评估,提高了逆变器系统的评估效率。
示例性的,系统损耗计算模块420设置为:
根据损耗参数的功率开关器件的开通损耗,确定功率开关器件中绝缘栅双极型晶体管损耗,以及二极管损耗;将绝缘栅双极型晶体管损耗和二极管损耗之和作为单个功率开关器件的损耗值;根据单个功率开关器件的损耗值和功率开关器件的数量,计算逆变器系统的系统损耗。
示例性的,负载等效模型确定模块430设置为:
针对每一转速段,分别构建该转速段下逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型;根据该转速段下的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建该转速段下,负载电机的等效模型组成结构;对多个转速段下的等效模型组成结构进行整合,得到负载电机的负载等效模型。
示例性的,系统仿真模型构建模块440,包括:
智能功率单元确定单元,设置为根据功率开关器件、损耗参数和系统损耗,确定逆变器系统的智能功率单元;控制电压确定单元,设置为向系统仿真模型中输入调制波频率信号,采用恒压频比算法,根据调制波频率信号,确定控制电压;三相电流获取单元,设置为采用脉宽调制算法,通过控制电压控制系统仿真模型中的智能功率单元运行,获得驱动负载等效模型运行的三相电流;仿真模型构建单元,设置为根据智能功率单元、控制电压、负载等效模型和三相电流,构建逆变器系统的系统仿真模型。
示例性的,上述逆变器数据处理装置还包括:
参数关系确定模块,设置为获取负载电机的扭矩与三相电流的电流有效值之间的扭矩-电流值对应关系,负载电机的电机转速与三相电流的电流频率之间 的转速-电流频率对应关系,以及逆变器效率与三相电流的电流参数之间的效率-电流参数对应关系;其中,电流参数包括三相电流的电流有效值和电流频率;效率关系确定模块,设置为根据扭矩-电流值对应关系、转速-电流频率对应关系和效率-电流参数对应关系,确定逆变器效率与负载电机的性能参数之间的效率-性能参数对应关系;其中,负载电机的性能参数包括负载电机的扭矩和电机转速;效率MAP绘制模块,设置为根据效率-性能参数对应关系,绘制逆变器效率的效率MAP。
功率转换效率确定模块450设置为:
基于固定调制波频率,运行系统仿真模型,确定系统仿真模型的输出电流和输出频率;扫描偏置电压,确定输出电流和输出频率下的逆变器效率。
示例性的,功率转换效率确定模块450还设置为:
基于固定调制波频率,运行系统仿真模型,获得负载电机的性能参数;基于性能参数,对负载电机的电机转速进行分段处理,获得至少两个转速段;根据转速段对应的转速段能量,以及转速总能量,确定转速段能量的权值;根据每个权值和每个转速段下逆变器系统的分段效率,确定逆变器系统的工况效率。
本实施例提供的逆变器数据处理装置可适用于上述任意实施例提供的逆变器数据处理方法,具备相应的功能和效果。
实施例五
图5示出了可以用来实施本申请的实施例的电子设备的结构示意图。电子设备10旨在表示多种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备10还可以表示多种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备(如头盔、眼镜、手表等)和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图5所示,电子设备10包括至少一个处理器11,以及与至少一个处理器11通信连接的存储器,如只读存储器(Read-Only Memory,ROM)12、随机访问存储器(Random Access Memory,RAM)13等,其中,存储器存储有可被至少一个处理器执行的计算机程序,处理器11可以根据存储在ROM 12中的计算机程序或者从存储单元18加载到RAM 13中的计算机程序,来执行多种适当的动作和处理。在RAM 13中,还可存储电子设备10操作所需的多种程序和数据。处理器11、ROM 12以及RAM 13通过总线14彼此相连。输入/输出(Input/Output,I/O) 接口15也连接至总线14。
电子设备10中的多个部件连接至I/O接口15,包括:输入单元16,例如键盘、鼠标等;输出单元17,例如多种类型的显示器、扬声器等;存储单元18,例如磁盘、光盘等;以及通信单元19,例如网卡、调制解调器、无线通信收发机等。通信单元19允许电子设备10通过诸如因特网的计算机网络和/或多种电信网络与其他设备交换信息/数据。
处理器11可以是多种具有处理和计算能力的通用和/或专用处理组件。处理器11的一些示例包括但不限于中央处理单元(Central Processing Unit,CPU)、图形处理单元(Graphics Processing Unit,GPU)、多种专用的人工智能(Artificial Intelligence,AI)计算芯片、多种运行机器学习模型算法的处理器、数字信号处理器(Digital Signal Processor,DSP)、以及任何适当的处理器、控制器、微控制器等。处理器11执行上文所描述的多个方法和处理,例如逆变器数据处理方法。
在一些实施例中,逆变器数据处理方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元18。在一些实施例中,计算机程序的部分或者全部可以经由ROM 12和/或通信单元19而被载入和/或安装到电子设备10上。当计算机程序加载到RAM 13并由处理器11执行时,可以执行上文描述的逆变器数据处理方法的一个或多个步骤。在其他实施例中,处理器11可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行逆变器数据处理方法。
本文中以上描述的系统和技术的多种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Parts,ASSP)、芯片上的系统(System on Chip,SOC)、复杂可编程逻辑设备(Complex Programming Logic Device,CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些多种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的方法的计算机程序可以采用一个或多个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框 图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、RAM、ROM、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在电子设备上实施此处描述的系统和技术,该电子设备具有:设置为向用户显示信息的显示装置(例如,阴极射线管(Cathode Ray Tube,CRT)或者液晶显示器(Liquid Crystal Display,LCD)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以设置为提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(Local Area Network,LAN)、广域网(Wide Area Network,WAN)、区块链网络和互联网。
计算系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决 了传统物理主机与虚拟专用服务器(Virtual Private Server,VPS)服务中,存在的管理难度大,业务扩展性弱的缺陷。
可以使用上面所示的多种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的多个步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。

Claims (10)

  1. 一种逆变器数据处理方法,包括:
    获取逆变器系统中功率开关器件的损耗参数和所述功率开关器件的饱和导通压降;其中,所述损耗参数包括功率开关器件的工作结温、集电极电流、集射极电压、反向恢复损耗、关断损耗和开通损耗;
    根据所述损耗参数、所述饱和导通压降和所述功率开关器件的数量,计算所述逆变器系统的系统损耗;
    根据所述逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建所述负载电机的负载等效模型;
    基于所述功率开关器件、所述损耗参数、所述系统损耗和所述负载等效模型,构建所述逆变器系统的系统仿真模型;
    基于固定调制波频率,运行所述系统仿真模型,确定逆变器效率。
  2. 根据权利要求1所述的方法,其中,所述根据所述损耗参数、所述饱和导通压降和所述功率开关器件的数量,计算所述逆变器系统的系统损耗,包括:
    根据所述损耗参数的功率开关器件的开通损耗,确定所述功率开关器件中绝缘栅双极型晶体管损耗,以及二极管损耗;
    将所述绝缘栅双极型晶体管损耗和所述二极管损耗之和作为单个功率开关器件的损耗值;
    根据单个功率开关器件的损耗值和所述功率开关器件的数量,计算所述逆变器系统的系统损耗。
  3. 根据权利要求1所述的方法,其中,所述根据所述逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建所述负载电机的负载等效模型,包括:
    针对每一转速段,构建所述转速段下所述逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型;
    根据所述转速段下的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建所述转速段下,所述负载电机的等效模型组成结构;
    对多个转速段下的等效模型组成结构进行整合,得到所述负载电机的负载等效模型。
  4. 根据权利要求1所述的方法,其中,所述基于所述功率开关器件、所述损耗参数、所述系统损耗和所述负载等效模型,构建所述逆变器系统的系统仿真模型,包括:
    根据所述功率开关器件、所述损耗参数和所述系统损耗,确定所述逆变器系统的智能功率单元;
    向系统仿真模型中输入调制波频率信号,采用恒压频比算法,根据所述调制波频率信号,确定控制电压;
    采用脉宽调制算法,通过所述控制电压控制所述系统仿真模型中的智能功率单元运行,获得驱动所述负载等效模型运行的三相电流;
    根据所述智能功率单元、所述控制电压、所述负载等效模型和所述三相电流,构建所述逆变器系统的系统仿真模型。
  5. 根据权利要求4所述的方法,在所述确定逆变器效率之后,还包括:
    获取所述负载电机的扭矩与所述三相电流的电流有效值之间的扭矩-电流值对应关系,所述负载电机的电机转速与所述三相电流的电流频率之间的转速-电流频率对应关系,以及所述逆变器效率与所述三相电流的电流参数之间的效率-电流参数对应关系;其中,所述电流参数包括所述三相电流的电流有效值和电流频率;
    根据所述扭矩-电流值对应关系、所述转速-电流频率对应关系和所述效率-电流参数对应关系,确定所述逆变器效率与所述负载电机的性能参数之间的效率-性能参数对应关系;其中,所述负载电机的性能参数包括所述负载电机的扭矩和电机转速;
    根据所述效率-性能参数对应关系,绘制所述逆变器效率的效率MAP。
  6. 根据权利要求1所述的方法,其中,所述基于固定调制波频率,运行所述系统仿真模型,确定逆变器效率,包括:
    基于所述固定调制波频率,运行所述系统仿真模型,确定所述系统仿真模型的输出电流和输出频率;
    扫描偏置电压,确定所述输出电流和所述输出频率下的逆变器效率。
  7. 根据权利要求1所述的方法,其中,所述基于固定调制波频率,运行所述系统仿真模型,确定逆变器效率,包括:
    基于所述固定调制波频率,运行所述系统仿真模型,获得所述负载电机的性能参数;
    基于所述性能参数,对所述负载电机的电机转速进行分段处理,获得至少两个转速段;
    根据所述转速段对应的转速段能量,以及转速总能量,确定所述转速段能 量的权值;
    根据每个权值和每个转速段下所述逆变器系统的分段效率,确定所述逆变器系统的工况效率。
  8. 一种逆变器数据处理装置,包括:
    损耗参数获取模块,设置为获取逆变器系统中功率开关器件的损耗参数和所述功率开关器件的饱和导通压降;其中,所述损耗参数包括功率开关器件的工作结温、集电极电流、集射极电压、反向恢复损耗、关断损耗和开通损耗;
    系统损耗计算模块,设置为根据所述损耗参数、所述饱和导通压降和所述功率开关器件的数量,计算所述逆变器系统的系统损耗;
    负载等效模型确定模块,设置为根据所述逆变器系统中负载电机的三相电感等效模型、三相互感等效模型和三相电阻等效模型,构建所述负载电机的负载等效模型;
    系统仿真模型构建模块,设置为基于所述功率开关器件、所述损耗参数、所述系统损耗和所述负载等效模型,构建所述逆变器系统的系统仿真模型;
    功率转换效率确定模块,设置为基于固定调制波频率,运行所述系统仿真模型,确定逆变器效率。
  9. 一种电子设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7中任一项所述的逆变器数据处理方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-7中任一项所述的逆变器数据处理方法。
PCT/CN2023/099403 2022-08-23 2023-06-09 逆变器数据处理方法、装置、设备和存储介质 WO2024041101A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211011381.4 2022-08-23
CN202211011381.4A CN115329717A (zh) 2022-08-23 2022-08-23 一种逆变器数据处理方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024041101A1 true WO2024041101A1 (zh) 2024-02-29

Family

ID=83925978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099403 WO2024041101A1 (zh) 2022-08-23 2023-06-09 逆变器数据处理方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN115329717A (zh)
WO (1) WO2024041101A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117875095A (zh) * 2024-03-13 2024-04-12 西安航天动力研究所 一种发动机频域仿真模型的建模方法、装置及电子设备
CN118409922A (zh) * 2024-07-02 2024-07-30 浙江艾罗网络能源技术股份有限公司 功率开关器件的损耗计算方法、计算机设备及芯片系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115329717A (zh) * 2022-08-23 2022-11-11 中国第一汽车股份有限公司 一种逆变器数据处理方法、装置、设备和存储介质
CN117060595B (zh) * 2023-10-12 2024-01-26 江西恒能电力工程有限公司 电站节能控制方法、系统、可读存储介质及计算机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112836A (zh) * 2019-05-24 2019-08-09 上海电力学院 一种磁耦合谐振式无线输电系统及控制方法
CN110826170A (zh) * 2019-09-18 2020-02-21 中国东方电气集团有限公司 一种电力电子变流器功率器件损耗实时计算系统
CN112018806A (zh) * 2020-07-23 2020-12-01 大唐可再生能源试验研究院有限公司 一种逆变器效率测试方法
CN115329717A (zh) * 2022-08-23 2022-11-11 中国第一汽车股份有限公司 一种逆变器数据处理方法、装置、设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112836A (zh) * 2019-05-24 2019-08-09 上海电力学院 一种磁耦合谐振式无线输电系统及控制方法
CN110826170A (zh) * 2019-09-18 2020-02-21 中国东方电气集团有限公司 一种电力电子变流器功率器件损耗实时计算系统
CN112018806A (zh) * 2020-07-23 2020-12-01 大唐可再生能源试验研究院有限公司 一种逆变器效率测试方法
CN115329717A (zh) * 2022-08-23 2022-11-11 中国第一汽车股份有限公司 一种逆变器数据处理方法、装置、设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117875095A (zh) * 2024-03-13 2024-04-12 西安航天动力研究所 一种发动机频域仿真模型的建模方法、装置及电子设备
CN118409922A (zh) * 2024-07-02 2024-07-30 浙江艾罗网络能源技术股份有限公司 功率开关器件的损耗计算方法、计算机设备及芯片系统

Also Published As

Publication number Publication date
CN115329717A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2024041101A1 (zh) 逆变器数据处理方法、装置、设备和存储介质
Shi et al. Speed estimation of an induction motor drive using an optimized extended Kalman filter
Reddy et al. Efficiency improvement and torque ripple minimisation of four‐phase switched reluctance motor drive using new direct torque control strategy
CN108599549B (zh) 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN103036467B (zh) 基于免疫算法的逆变器多目标Pareto最优控制方法
CN112821795B (zh) 一种基于宽禁带器件和硅基器件的并联三相逆变器控制方法、电路、系统和可读存储介质
CN110929448B (zh) 一种永磁同步电机空载电流一致性仿真分析方法
WO2023173601A1 (zh) 基于离散空间矢量调制的永磁同步电机预测转矩控制方法
CN104539220A (zh) 一种三相四开关逆变器自适应脉宽调制方法
CN113131479B (zh) 一种脉冲宽度调制产生的超高次谐波预测方法及系统
Chen et al. Efficiency optimization strategy for switched reluctance generator system with position sensorless control
CN103956951B (zh) 低载波比在线计算多模式空间矢量脉宽调制软核
WO2021135249A1 (zh) 一种逆变电路控制方法及相关装置
Bai et al. Device‐level modelling and FPGA‐based real‐time simulation of the power electronic system in fuel cell electric vehicle
CN114759818A (zh) 一种十三段式载波脉宽调制方法、系统及相关组件
Xia et al. Direct self‐control strategy for brushless DC motor with reduced torque ripple<? show [AQ ID= Q1]?>
Cai et al. High efficiency single‐pulse controlled switched reluctance motor drive based on novel multilevel converter
US20240149748A1 (en) Battery self-heating method, and vehicle
CN116961512A (zh) 一种基于模型预测的电流控制方法、装置和存储介质
CN110768605B (zh) 一种svpwm调制方法、装置及系统
CN114429028A (zh) 一种计算功率半导体开关器件的损耗和结温的方法
Shi et al. VSP predictive torque control of PMSM
CN111835223B (zh) 一种基于Si/SiC混合开关的优化方法及系统
CN112467776B (zh) 电流源型变流器系统、控制方法及空间矢量调制方法
CN113726248A (zh) 一种电流补偿方法、装置、电机控制器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856193

Country of ref document: EP

Kind code of ref document: A1