WO2024040810A1 - 一种超声波振动辅助焊接装置及焊接设备 - Google Patents

一种超声波振动辅助焊接装置及焊接设备 Download PDF

Info

Publication number
WO2024040810A1
WO2024040810A1 PCT/CN2022/139632 CN2022139632W WO2024040810A1 WO 2024040810 A1 WO2024040810 A1 WO 2024040810A1 CN 2022139632 W CN2022139632 W CN 2022139632W WO 2024040810 A1 WO2024040810 A1 WO 2024040810A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic vibration
vibration
welding
horn
welding device
Prior art date
Application number
PCT/CN2022/139632
Other languages
English (en)
French (fr)
Inventor
卢其辉
范鹏
陈政铭
Original Assignee
广东利元亨智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东利元亨智能装备股份有限公司 filed Critical 广东利元亨智能装备股份有限公司
Publication of WO2024040810A1 publication Critical patent/WO2024040810A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B3/02Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency involving a change of amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/72Welding, joining, soldering

Definitions

  • the present application relates to the field of welding technology, and in particular to an ultrasonic vibration-assisted welding device and welding equipment.
  • Welding is a localized, uneven heating and cooling process.
  • the metal expands and is restricted by the surroundings, resulting in compression plastic deformation; when cooled, the metal shrinks and is also restricted by the surroundings, resulting in tensile plastic deformation.
  • it cools to room temperature, there will often be a certain residual stress in the welded workpiece, which will affect the welding workpiece.
  • the easy formation of pores is also one of the problems that easily occur in welded workpieces.
  • the parts to be welded easily absorb gas at high temperatures, but after cooling, it does not precipitate and then gathers at the welding point to form pores, which affects the welding. final product quality.
  • the purpose of this application is to provide an ultrasonic vibration-assisted welding device and welding equipment.
  • the technical solution provided by this application is used to solve the technical problem that in the existing welding process, the workpiece to be welded is easily affected by pores and welding stress problems that affect the welding quality.
  • this application provides an ultrasonic vibration-assisted welding device and welding equipment.
  • this application provides an ultrasonic vibration-assisted welding device, including a vibrating table and an ultrasonic vibration mechanism; the ultrasonic vibration mechanism includes a transducer transducer and the horn located at the output end of the transducer;
  • the ultrasonic vibration mechanism drives the vibrating table to vibrate through the horn;
  • the vibration table can be used to install the mounting block, mounting seat or fixture that carries the parts to be welded.
  • the mounting block is assembled on the vibration table, and the parts to be welded are placed on the mounting block for welding. ;
  • the output energy of the transducer is converted into vibration through the horn and finally drives the vibration table to vibrate.
  • This vibration can accelerate the escape of gas in the molten pool of the parts to be welded, thereby effectively slowing down the appearance of pores, suppressing pore defects, and reducing the Welding residual stress and welding deformation, improve welding quality and product processing quality.
  • this solution found through research that by opening through holes or grooves on the vibrating table and/or the horn, the final vibrating table will exhibit a better vibration shape effect and the vibrating table will have a longer service life.
  • the output end of the horn is fixedly connected to the vibration table;
  • the output end of the horn is fixedly connected to the vibrating table, that is, the two are connected in a fixed manner, such as threaded connection, etc.; and the connection position should be unlimited, and it can be connected to the vibrating table.
  • the bearing surface can also be connected to the side wall of the vibration table or the bottom surface of the vibration table.
  • the output end of the horn is in contact with the outer wall of the vibrating table
  • the output end of the horn is in contact with the side wall of the vibrating table, which can be understood as there is no substantial connection between the two.
  • the output end of the horn is placed on the side wall of the vibrating table.
  • the load-bearing surface of the vibration table in other embodiments, the output end of the horn is in contact with the side wall of the vibration table, but the horn and the vibration table are not substantially connected, and are only in contact with the wall.
  • the output end of the horn is spaced apart from the vibrating table, and drives the vibrating table to vibrate by outputting ultrasonic vibration;
  • the vibration table has a columnar structure and its cross-section is rectangular or circular;
  • the vibration table has a columnar structure and its cross-section is square;
  • this plan found through further research that the vibration table with a square structure has better vibration shape effect in the finite element analysis and the service life of the structure is also longer.
  • it also includes a water cooling mechanism provided on the transducer;
  • the water cooling mechanism includes a water cooling ring arranged around the transducer; a water flow groove is formed on the inner wall of the water cooling ring, and a water inlet and a water outlet connected to the water flow groove are provided on the water cooling ring;
  • the water-cooling ring is sleeved on the transducer, and the cooling liquid (which can also be water) is introduced from the inlet of the water-cooling ring into the water flow groove.
  • the water flow groove cooperates with the outer wall of the transducer to form a closed space.
  • the horn is columnar and its cross-section is circular;
  • the horn with a cylindrical shape and a circular cross-section also has a better vibration shape effect in the finite element analysis, which is more conducive to improving the welding quality of the parts to be welded.
  • a support base is provided on the bottom surface of the vibration table, and the support base includes a first support block and a second support block; the first support block is suitable for supporting the second support block, and the second support block A block is provided between the vibration table and the first support block, and the second support block is made of flexible or elastic material;
  • the first support block mainly plays a fixed supporting role for the second support block and the vibration table as a whole, and the second support block is located between the first support block and the vibration table, and is made of flexible material or elastic material. It can provide a certain amount of deformation to assist the vibration of the vibrating table.
  • this application provides a welding equipment, including a laser welding mechanism and an ultrasonic vibration-assisted welding device as described in any of the above;
  • a mounting block or fixture for carrying the parts to be welded is provided on the bearing surface of the vibration table;
  • the parts to be welded are placed on the mounting block or fixture, and the laser welding mechanism is used to realize the welding.
  • the ultrasonic vibration-assisted welding device With the cooperation of the ultrasonic vibration-assisted welding device, the appearance of welding pores in the parts to be welded is effectively slowed down, and the occurrence of welding pores in the parts to be welded is effectively reduced. Reduce welding residual stress and welding deformation and improve welding quality.
  • this solution uses an ultrasonic vibration mechanism and a vibration table to form an auxiliary mechanism that can assist in completing the welding, which can be used to install the installation block or fixture that carries the parts to be welded. Then, in the subsequent welding process, ultrasonic vibration is used to accelerate the escape of gas in the molten pool of the parts to be welded, thereby effectively slowing down the appearance of pores, suppressing pore defects, while reducing welding residual stress and welding deformation, and improving welding quality.
  • Figure 1 is a schematic diagram of the overall structure of one embodiment of the present application.
  • Figure 2 is a schematic diagram of the overall structure of one embodiment of the present application.
  • Figure 3 is a schematic diagram of the overall structure of one embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an ultrasonic vibration mechanism according to one embodiment of the present application.
  • Figure 5 is a schematic cross-sectional structural diagram of an ultrasonic vibration mechanism according to one embodiment of the present application.
  • Figure 6 is an enlarged schematic diagram of the structure of part A in Figure 5;
  • Figure 7 is a schematic diagram of the arrangement of the vibration table and ultrasonic vibration mechanism according to one embodiment of the present application.
  • Figure 8 is a schematic diagram of the arrangement of the vibration table and ultrasonic vibration mechanism according to one embodiment of the present application.
  • Figure 9 is a finite element analysis diagram of a vibration table according to one embodiment of the present application.
  • Figure 10 is a finite element analysis diagram of a vibration table according to one embodiment of the present application.
  • Figure 11 is a finite element analysis diagram of a vibration table according to one embodiment of the present application.
  • Figure 12 is a finite element analysis diagram of a vibration table according to one embodiment of the present application.
  • Vibration table 11. Through hole; 12. Mounting block; 20. Ultrasonic vibration mechanism; 21. Horn; 22. Transducer; 30. Support seat; 31. First support block; 32. Two support blocks; 40. Water-cooling mechanism; 41. Water-cooling ring; 411. Water flow groove; 412. Sealing ring; 42. Water inlet; 43. Water outlet; 50. Air-cooling mechanism; 51. Outer shell; 52. Installation ring; 53. Air inlet; 54. Air outlet.
  • first and second are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of the described features. In the description of this application, “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integrated connection.
  • Ground connection can be a mechanical connection, an electrical connection, or mutual communication; it can be a direct connection, or an indirect connection through an intermediate medium, or an internal connection between two components or an interaction between two components.
  • this embodiment provides the following technical solutions:
  • This embodiment provides an ultrasonic vibration-assisted welding device, which includes a vibration table 10 and an ultrasonic vibration mechanism 20; the ultrasonic vibration mechanism 20 includes a transducer 22 and a welding device located at the output end of the transducer 22. Horn 21;
  • the ultrasonic vibration mechanism 20 drives the vibrating table 10 to vibrate through the horn 21;
  • the moving table can be used to install the mounting block 12, mounting seat or fixture used to carry the parts to be welded.
  • the mounting block 12 is assembled on the vibrating table 10, and the parts to be welded are placed on the mounting block. 12 for welding; during welding, the energy output by the transducer 22 is converted into vibration through the horn 21 and finally drives the vibration table 10 to vibrate.
  • This vibration can accelerate the escape of gas in the molten pool of the parts to be welded, thereby effectively slowing down the occurrence of pores. , suppress pore defects, while reducing welding residual stress and welding deformation, improving welding quality and product processing quality.
  • Figure 9 is a finite element analysis diagram when multiple through holes 11 are provided on the vibrating table 10, and Figure 10 is a case where there is only a single through hole 11 for connecting the horn 21 on the vibrating table 10.
  • the finite element analysis diagram below, Figure 11 is the finite element analysis diagram without opening the through hole 11.
  • the through hole 11 can be in the form of penetrating the vibration table 10 , or it can be in the form of a non-penetrating tank, wherein the form of penetrating the vibration table 10 is preferred;
  • the shape of the through hole 11 can be It is round, square or other shapes, among which circular holes are preferred;
  • the arrangement between the plurality of through holes 11 can be uniform or non-uniform, among which uniform arrangement is preferred;
  • the size of the through hole 11 is not limited, and through holes 11 with different diameters can be matched;
  • the penetration direction of the through hole 11 is not limited, and the preferred are transverse penetration and longitudinal penetration, that is, avoidance of penetration perpendicular to the vibration table 10;
  • the through holes 11 penetrating in different directions may be connected to each other or not, and preferably they are connected to each other.
  • the output end of the horn 21 is fixedly connected to the vibration table 10;
  • the output end of the horn 21 is fixedly connected to the vibrating table 10, that is, the two are connected in a fixed way, such as threaded connection, etc.; and the connection position should be unlimited, and it can be connected to the vibration
  • the bearing surface of the table 10 can also be connected to the side wall of the vibration table 10 or the bottom surface of the vibration table 10 .
  • an external thread is formed on the end of the horn 21
  • an internal thread is formed on the vibrating table 10 to match the end of the horn 21 .
  • the horn 21 is connected to the vibrating table. 10. Extend one end of the horn 21 into the vibrating table 10 through a threaded connection.
  • the output end of the horn 21 is in contact with the outer wall of the vibration table 10;
  • the output end of the horn 21 is in contact with the side wall of the vibrating table 10, which can be understood as there is no substantial connection between the two.
  • the output end of the horn 21 is placed on the bearing surface of the vibration table 10; in other embodiments, the output end of the horn 21 is in contact with the side wall or bottom surface of the vibration table 10, but the horn 21 has no substantial connection with the vibrating table 10, but is only in contact with the wall;
  • the output end of the horn 21 is spaced apart from the vibrating table 10, and drives the vibrating table 10 to vibrate by outputting ultrasonic vibration;
  • this application further found that the shape of the vibration table 10 has a certain influence on the final vibration shape. For this reason, this application further improved the shape of the vibration table 10 .
  • the vibration table 10 has a columnar structure, and its cross-section is rectangular or circular;
  • the vibration table 10 has a columnar structure and its cross-section is square;
  • the above-mentioned square should be understood as a square, but it is not limited to a square with four right angles, and its four corners can be rounded; further, its cross-sectional shape should have four symmetry lines like a square, that is Even in the case of rounded corners or other shapes, it should have roughly the same state as a square, and even the rounded corners should be symmetrical; of course, what is described in this paragraph is only the preferred way, and the specific application The method is not limited to this.
  • Figure 9 is a square vibration table 10
  • Figure 11 is a circular vibration table 10
  • Figure 12 is a strip-shaped (rectangular interface) vibration table 10. From their respective It can be seen from the finite element analysis diagram that the vibration shape of the square vibration table 10 in Figure 9 is better than that in Figures 11 and 12.
  • this embodiment provides the following technical solutions:
  • Figure 4-5 also includes a water cooling mechanism 40 provided on the transducer 22;
  • the water cooling mechanism 40 includes a water cooling ring 41 surrounding the transducer 22; a water flow groove 411 is formed on the inner wall of the water cooling ring 41, and a water inlet 42 and a water outlet connected to the water flow groove 411 are provided on the water cooling ring 41. 43;
  • the water-cooling ring 41 is sleeved on the transducer 22, and the cooling liquid (which can also be water) is introduced from the inlet of the water-cooling ring 41 into the water flow groove 411.
  • the water flow groove 411 is connected to the outer wall of the transducer 22.
  • the water inlet 42 and the water outlet 43 are located on opposite sides of the water cooling ring 41, that is, the angle between the two is 180°;
  • sealing rings 412 are provided on the inner wall of the water cooling ring 41 on both sides of the water flow channel 411.
  • the sealing rings 412 can further enhance the water cooling ring 41. The airtightness can effectively prevent water seepage from occurring.
  • this embodiment provides the following technical solutions:
  • the air-cooling mechanism 50 provided on the transducer 22;
  • the air-cooling mechanism 50 includes an outer shell 51, an outer shell 51 and a mounting ring 52 provided on the outer shell 51;
  • the outer shell 51 is formed to accommodate the transducer.
  • the transducer 22 is partially installed in the outer shell 51 and is fixedly connected to the outer shell 51.
  • An air inlet 53 is provided at one end of the outer shell 51 away from the horn 21, and an air inlet 53 is provided on the mounting ring 52.
  • There is an air outlet 54, and a vent is provided on the outer shell 51 in the part surrounding the mounting ring 52.
  • the cooling gas enters the accommodation space through the air inlet 53, enters the inner cavity of the mounting ring 52 through the vent, and finally exits from the outlet.
  • the gas port 54 is led out to take away the heat generated by the transducer 22 during the gas flow process.
  • the positions of the air inlet 53 and the air outlet 54 can be reversed with each other;
  • a sealing ring is also provided on the inner wall of the mounting ring 52 to ensure the sealing of the mounting ring 52;
  • a sealing ring is also provided at the connection part between the outer shell 51 and the transducer 22 to ensure the sealing of the accommodation space.
  • the horn 21 is columnar and its cross-section is circular;
  • the horn 21 which is cylindrical and has a circular cross-section also has better vibration shape effect in the finite element analysis, which is more conducive to improving the welding quality of the parts to be welded.
  • a support base 30 is provided on the bottom surface of the vibration table 10.
  • the support base 30 includes a first support block 31 and a second support block 32; the first support block 31 is suitable for supporting the second support block 32, and the second support block 32 is provided. between the vibration table 10 and the first support block 31, and the second support block 32 is made of flexible or elastic material;
  • the first support block 31 mainly plays a fixed supporting role for the second support block 32 and the vibration table 10 as a whole, and the second support block 32 is located between the first support block 31 and the vibration table 10. It is made of flexible material or elastic material, which can provide a certain amount of deformation to assist the vibrating table 10 in vibrating.
  • This embodiment also provides a welding equipment, including a laser welding mechanism and any of the above-mentioned ultrasonic vibration auxiliary welding devices;
  • a mounting block 12 or a clamp for carrying the parts to be welded is provided on the bearing surface of the vibration table 10;
  • the parts to be welded are placed on the mounting block 12 or the fixture, and the laser welding mechanism is used to realize the welding.
  • the ultrasonic vibration-assisted welding device With the cooperation of the ultrasonic vibration-assisted welding device, the occurrence of welding pores in the parts to be welded is effectively slowed down, and the occurrence of welding pores in the parts to be welded is effectively reduced. Reduce welding residual stress and welding deformation and improve welding quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本申请公开一种超声波振动辅助焊接装置,涉及焊接技术领域;包括振动台及超声波振动机构;所述超声波振动机构包括换能器及设于换能器输出端的变幅杆;所述超声波振动机构通过所述变幅杆驱使所述振动台振动;本申请还公开一种焊接设备,其包括激光焊接机构及如上述所述的超声波振动辅助焊接装置;采用本申请提供的技术方案解决了现有的焊接过程中,待焊工件易因气孔及焊接应力问题影响焊接质量的技术问题。

Description

一种超声波振动辅助焊接装置及焊接设备 技术领域
本申请涉及焊接技术领域,尤其涉及一种超声波振动辅助焊接装置及焊接设备。
背景技术
焊接是一种局部、不均匀的加热和冷却过程。加热时金属膨胀,受到周围的限制而产生压缩塑性变形;冷却时金属收缩,也受到周围的限制而产生拉伸塑性变形,当其冷却至室温后,焊接工件往往会存在一定的残留应力进而影响着产品的质量;除此之外,容易形成气孔也是焊接工件容易出现的问题之一,待焊件容易在高温下吸收气体,但在冷却后来不及析出进而聚集在焊接点位形成气孔,影响焊后产品质量。
发明内容
本申请目的在于提供一种超声波振动辅助焊接装置及焊接设备,采用本申请提供的技术方案解决了现有的焊接过程中,待焊工件易因气孔及焊接应力问题影响焊接质量的技术问题。
为了解决上述技术问题,本申请提供一种超声波振动辅助焊接装置及焊接设备,第一方面,本申请提供一种超声波振动辅助焊接装置,包括振动台及超声波振动机构;所述超声波振动机构包括换能器及设于换能器输出端的变幅杆;
所述超声波振动机构通过所述变幅杆驱使所述振动台振动;
在上述实现过程中,振动台可供用于承载待焊件的安装块、安装座或夹具进行安装,以安装块为例,安装块装配于振动台上,待焊件放置于安装块上进行焊接;在焊接时,换能器输出能量通过变幅杆转化为振动并最终驱使振动台振动,该振动可加速待焊件熔池内气体的逸出,进而有效减缓气孔出现,抑制气孔缺陷,同时降低焊接残余应力和焊接变形,提升焊接质量,提升产品加工质量。
优选的,在所述振动台和/或所述变幅杆上形成有若干通孔或凹槽;
在上述实现过程中,本方案通过研究发现通过在振动台和/或变幅杆上开设通孔或凹槽,最终振动台呈现出的振型效果更好,振动台的使用寿命也更长。
优选的,所述变幅杆的输出端与所述振动台固定连接;
在上述实现过程中,变幅杆的输出端与振动台固定连接,即二者采用固定连接的方式实现连接,如采用螺纹连接等;而且连接位置应是不限的,其可连接于振动台的承载面,也可连接于振动台的侧壁又或是振动台的底面。
优选的,所述变幅杆的输出端抵接于所述振动台的外壁上;
在上述实现过程中,变幅杆的输出端抵接于振动台的侧壁上,其可理解为二者并无实质性的连接,如在一些实施方式中,变幅杆的输出端置于振动台的承载面上;又如在另一些实施方式中,变幅杆的输出端抵接于振动台的侧壁,但变幅杆与振动台并没有实质连接,仅是壁面的接触。
优选的,所述变幅杆的输出端与所述振动台间隔设置,并通过输出超声波振动驱使所述振动台振动;
在上述实现过程中,在本方案中,变幅杆的输出端与振动台之间存在一定间隔,但超声波振动的扩散可通过空气介质传输,进而在存在一定间隙的情况下,变幅杆的振动依然可传输至振动台,令振动台产生振动。
优选的,所述振动台呈柱状结构,且其横截面呈矩形或圆形;
进一步优选的,所述振动台呈柱状结构,且其横截面呈方形;
在上述实现过程中,本方案通过进一步研究发现,呈方形结构的振动台其在限元分析中振型效果更好,结构的使用寿命也更长。
优选的,还包括设于所述换能器上的水冷机构;
所述水冷机构包括环绕设置于所述换能器上的水冷环;所述水冷环内侧壁形成有水流槽,在所述水冷环上设置有与水流槽连通的进水口及出水口;
在上述实现过程中,水冷环套设于换能器上,冷却液(也可为水)从水冷环的进入口导入进入到水流槽内,水流槽与换能器其外壁配合形成一密闭空间,冷却液从入水口进入从出水口导出的过程中,液体流动带走换能器产生的热量,进而对换能器起到降温作用;采用水冷的方式冷却效果好,且液体可进行回流,又或是热量回收。
优选的,所述变幅杆呈柱状,且其横截面为圆形;
在上述实现过程中,呈柱状且截面为圆形的变幅杆其在限元分析中振型效果也更好,更有利于提升待焊件的焊接质量。
优选的,在所述振动台底面设置有支撑座,所述支撑座包括第一支撑块及第二支撑块;所述第一支撑块适于支撑所述第二支撑块,所述第二支撑块设于所述振动台与所述第一支撑块之间,且所述第二支撑块由柔性或弹性材料制成;
在上述实现过程中,第一支撑块主要起到对第二支撑块及振动台整体的固定支撑作用,而第二支撑块位于第一支撑块与振动台之间,其由柔性材料或弹性材料制成,其能够提供一定的变形量辅助振动台振动。
第二方面,本申请提供一种焊接设备,包括激光焊接机构及如上述任意所述的超声波振动辅助焊接装置;
在所述振动台的承载面上设置有用于承载待焊件的安装块或夹具;
在上述实现过程中,待焊件放置于安装块或夹具上,激光焊接机构用于实现待焊接的焊接,在超声波振动辅助焊接装置的配合下,有效减缓待焊件焊接气孔的出现,并有效降低焊接残余应力和焊接变形,提升焊接质量。
与现有技术相比,本申请的有益效果在于:本方案通过超声波振动机构与振动台配合构成一可辅助完成焊接的辅助机构,其可供用于承载待焊件的安装块或夹具进行安装,进而在后续的焊接过程中,通过超声波振动的方式,加速待焊件熔池内气体的逸出,进而有效减缓气孔出现,抑制气孔缺陷,同时降低焊接残余应力和焊接变形,提升焊接质量。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请其中一实施例的整体结构示意图;
图2是本申请其中一实施例的整体结构示意图;
图3是本申请其中一实施例的整体结构示意图;
图4是本申请其中一实施例的超声波振动机构的结构示意图;
图5是本申请其中一实施例的超声波振动机构的剖面结构示意图;
图6是图5中A部分的结构放大示意图;
图7是本申请其中一实施例的振动台与超声波振动机构设置方式示意图;
图8是本申请其中一实施例的振动台与超声波振动机构设置方式示意图;
图9是本申请其中一实施例的振动台的限元分析图;
图10是本申请其中一实施例的振动台的限元分析图;
图11是本申请其中一实施例的振动台的限元分析图;
图12是本申请其中一实施例的振动台的限元分析图;
其中:10、振动台;11、通孔;12、安装块;20、超声波振动机构;21、变幅杆;22、换能器;30、支撑座;31、第一支撑块;32、第二支撑块;40、水冷机构;41、水冷环;411、水流槽;412、密封圈;42、进水口;43、出水口;50、气冷机构;51、外壳体;52、安装环;53、进气口;54、出气口。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,需要理解的是,术语“上”、“下”、“侧”、“前”、“后”等指示的方位或位置关系为基于安装的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
还需说明的是,本申请实施例中以同一附图标记表示同一组成部分或同一零部件,对于本申请实施例中相同的零部件,图中可能仅以其中一个零件或部件为例标注了附图标记,应理解的是,对于其他相同的零件或部件,附图标记同样适用。
为能进一步了解本申请的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
实施例
在焊接过程中,焊接气孔的产生及焊后应力对产品的焊接质量存在影响;为了解决该技术问题,本实施例提供以下技术方案:
具体的,请参见图1-8,本实施例提供一种超声波振动辅助焊接装置,包括振动台10及超声波振动机构20;超声波振动机构20包括换能器22及设于换能器22输出端的变幅杆21;
进一步的,超声波振动机构20通过变幅杆21驱使振动台10振动;
在上述方案中,动台可供用于承载待焊件的安装块12、安装座或夹具进行安装,以安装块12为例,安装块12装配于振动台10上,待焊件放置于安装块12上进行焊接;在焊接时,换能器22输出能量通过变幅杆21转化为振动并最终驱使振动台10振动,该振动可加速待焊件熔池内气体的逸出,进而有效减缓气孔出现,抑制气孔缺陷,同时降低焊接残余应力和焊接变形,提升焊接质量,提升产品加工质量。
进一步的,请参见图1及图9-11,在振动台10和/或变幅杆21上形成有若干通孔11或凹槽;
在上述方案中,其中图9为振动台10上开设有多个通孔11情况下的限元分析图,图10为振动台10上仅开设有用于连接变幅杆21的单个通孔11情况下的限元分析图,图11为没有开设通孔11情况下的限元分析图,通过观察对比图9-11,发现通过在振动台10和/或变幅杆21上开设通孔11或凹槽,最终振动台10呈现出的振型效果更好,振动台10的使用寿命也更长。
进一步的需要说明的是,在本方案中通孔11可以为贯穿振动台10的形式,也可以为非贯穿呈槽体的形式,其中优选为贯穿振动台10的形式;通孔11的形状可以为圆形、方形又或是其他形状,其中优选为圆形孔;若干通孔11之间的排布方式可以为均匀排布又可以为非均匀排布,其中优选为均匀排布;
进一步的,通孔11的大小不限,进一步可由孔径不同的通孔11进行搭配;
进一步的,通孔11的贯穿方向不限,其中优选为横向贯穿与纵向贯穿,即垂直于振动台10的避免贯穿;
进一步的,在一些实施方式中,不同方向贯穿的通孔11可相互连通又或不连通,其中优选为相互连通。
具体的,请参见图1-2,在一些实施方式中,变幅杆21的输出端与振动台10固定连接;
在上述方案中,变幅杆21的输出端与振动台10固定连接,即二者采用固定连接的方式实现连接,如采用螺纹连接等;而且连接位置应是不限的,其可连接于振动台10的承载面,也可连接于振动台10的侧壁又或是振动台10的底面。
进一步的,在一些实施方式中,在变幅杆21端部形成有外螺纹,在振动台10上形成有与所述变幅杆21端部适配的内螺纹,变幅杆21与振动台10通过螺纹连接令变幅杆21一端部分伸入至振动台10内。
具体的,请参见图7,在一些实施方式中,变幅杆21的输出端抵接于振动台10的外壁上;
在上述方案中,变幅杆21的输出端抵接于振动台10的侧壁上,其可理解为二者并无实质性的连接,如在一些实施方式中,如图7中所示,变幅杆21的输出端置于振动台10的承载面上;又如在另一些实施方式中,变幅杆21的输出端抵接于振动台10的侧壁或底面上,但变幅杆21与振动台10并没有实质连接,仅是壁面的接触;
具体的,请参见图8,在一些实施方式中,变幅杆21的输出端与振动台10间隔设置,并通过输出超声波振动驱使所述振动台10振动;
在上述实现过程中,变幅杆21的输出端与振动台10之间存在一定间隔,但超声波振动的扩散可通过空气介质传输,进而在存在一定间隙的情况下,变幅杆21的振动依然可传输至振动台10,令振动台10产生振动。
进一步的,本申请进一步发现振动台10的形状对最终产生的振型存在一定影响, 为此本申请对振动台10形状进行进一步改进。
具体的,振动台10呈柱状结构,且其横截面呈矩形或圆形;
进一步优选的,振动台10呈柱状结构,且其横截面呈方形;
需要说明的是,上述所述的方形应理解为正方形,但不局限于四角都为直角的正方形,其四角可为倒圆角;进一步的,其截面形状应与正方形一样具有四条对称线,即即使是倒圆角或其他形状的情况下,其应具备与正方形大致相同的状态,即使是倒圆角也应为对称;当然,在本段中所描述的仅为其中优选的方式,具体应用方式并不局限于此。
具体可参见图9、图11及图12,其中图9为方形的振动台10,图11为圆形的振动台10,图12为长条形(界面为长方形)的振动台10,从各自的限元分析图中可看出,图9中方形振动台10的振型优于图11及图12。
在换能器22工作过程中,其容易产生大量热量,若该热量无法得到及时有效的散出,则容易损坏换能器22,影响其使用寿命,同时对换能器22正常工作也可能造成一定影响;为了解决该技术问题,本实施例提供以下技术方案:
具体的,请参见图4-5,还包括设于换能器22上的水冷机构40;
进一步的,水冷机构40包括环绕设置于换能器22上的水冷环41;水冷环41内侧壁形成有水流槽411,在水冷环41上设置有与水流槽411连通的进水口42及出水口43;
在上述方案中,水冷环41套设于换能器22上,冷却液(也可为水)从水冷环41的进入口导入进入到水流槽411内,水流槽411与换能器22其外壁配合形成一密闭空间,冷却液从入水口进入从出水口43导出的过程中,液体流动带走换能器22产生的热量,进而对换能器22起到降温作用;采用水冷的方式冷却效果好,且液体可进行回流,又或是热量回收。
进一步的,在其中一实施方式中,进水口42与出水口43位于水冷环41的相对两侧,即二者之间的夹角为180°;
在上述方案中,通过进一步合理排布进水口42与出水口43的位置,可一定程度上 提升冷却效果。
进一步的,为了保证水流槽411的密闭性,避免水体冲水流槽411渗出,在水冷环41内侧壁于水流槽411的两侧设置有密封圈412,通过密封圈412可进一步提升水冷环41的密闭性,进而有效避免水体渗出的现象发生。
为了进一步提升冷却效果,本实施例提供以下技术方案:
具体的,还包括设于换能器22上的气冷机构50;气冷机构50包括外壳体51、在外壳体51及设于外壳体51上的安装环52;外壳体51形成有容纳换能器22的容纳空间,换能器22部分装入外壳体51内并与外壳体51固定连接,于外壳体51远离变幅杆21的一端设置有进气口53,在安装环52上设置有出气口54,且与安装环52环绕的部分在外壳体51上开设有通气口,冷却气体通过进气口53进入到容纳空间内,通过通气口进入到安装环52内腔并最终由出气口54导出,在气体流动过程中带走换能器22所产生的热量。
其中需要说明的是,在一些实施方式中,进气口53与出气口54的位置可相互对调;
进一步的,在安装环52内壁上也设置有密封圈,用于保证安装环52的密闭性;
进一步的,在外壳体51与换能器22的连接部分也设置有密封圈,以保证容纳空间的密闭性。
具体的,变幅杆21呈柱状,且其横截面为圆形;
在上述方案中,呈柱状且截面为圆形的变幅杆21其在限元分析中振型效果也更好,更有利于提升待焊件的焊接质量。
具体的,在振动台10底面设置有支撑座30,支撑座30包括第一支撑块31及第二支撑块32;第一支撑块31适于支撑第二支撑块32,第二支撑块32设于振动台10与第一支撑块31之间,且第二支撑块32由柔性或弹性材料制成;
在上述方案中,第一支撑块31主要起到对第二支撑块32及振动台10整体的固定支撑作用,而第二支撑块32位于第一支撑块31与振动台10之间,其由柔性材料或弹 性材料制成,其能够提供一定的变形量辅助振动台10振动。
本实施例还提供一种焊接设备,包括激光焊接机构及如上述任意的超声波振动辅助焊接装置;
进一步的,在振动台10的承载面上设置有用于承载待焊件的安装块12或夹具;
在上述方案中,待焊件放置于安装块12或夹具上,激光焊接机构用于实现待焊接的焊接,在超声波振动辅助焊接装置的配合下,有效减缓待焊件焊接气孔的出现,并有效降低焊接残余应力和焊接变形,提升焊接质量。
需要说明的是,激光焊接机构属于现有技术中成熟的技术,故本方案对其具体结构不作赘述。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上所述仅是对本申请的较佳实施例而已,并非对本申请作任何形式上的限制,凡是依据本申请的技术实质对以上实施例所做的任何简单修改,等同变化与修饰,均属于本申请技术方案的范围。

Claims (10)

  1. 一种超声波振动辅助焊接装置,其特征在于:包括振动台及超声波振动机构;所述超声波振动机构包括换能器及设于换能器输出端的变幅杆;
    所述超声波振动机构通过所述变幅杆驱使所述振动台振动。
  2. 根据权利要求1所述的超声波振动辅助焊接装置,其特征在于:在所述振动台和/或所述变幅杆上形成有若干通孔或凹槽。
  3. 根据权利要求2所述的超声波振动辅助焊接装置,其特征在于:所述变幅杆的输出端与所述振动台固定连接。
  4. 根据权利要求2所述的超声波振动辅助焊接装置,其特征在于:所述变幅杆的输出端抵接于所述振动台的外壁上。
  5. 根据权利要求2所述的超声波振动辅助焊接装置,其特征在于:所述变幅杆的输出端与所述振动台间隔设置,并通过输出超声波振动驱使所述振动台振动。
  6. 根据权利要求2所述的超声波振动辅助焊接装置,其特征在于:所述振动台呈柱状结构,且其横截面呈矩形或圆形。
  7. 根据权利要求2所述的超声波振动辅助焊接装置,其特征在于:还包括设于所述换能器上的水冷机构;
    所述水冷机构包括环绕设置于所述换能器上的水冷环;所述水冷环内侧壁形成有水流槽,在所述水冷环上设置有与水流槽连通的进水口及出水口。
  8. 根据权利要求2所述的超声波振动辅助焊接装置,其特征在于:所述变幅杆呈柱状,且其横截面为圆形。
  9. 根据权利要求1-8任一项所述的超声波振动辅助焊接装置,其特征在于:在所述振动台底面设置有支撑座,所述支撑座包括第一支撑块及第二支撑块;所述第一支撑块适于支撑所述第二支撑块,所述第二支撑块设于所述振动台与所述第一支撑块之间,且所述第二支撑块由柔性或弹性材料制成。
  10. 一种焊接设备,其特征在于:包括激光焊接机构及如权利要求1-9任一项所述的超声波振动辅助焊接装置;
    在所述振动台的承载面上设置有用于承载待焊件的安装块或夹具。
PCT/CN2022/139632 2022-08-26 2022-12-16 一种超声波振动辅助焊接装置及焊接设备 WO2024040810A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211033750.XA CN115365103A (zh) 2022-08-26 2022-08-26 一种超声波振动辅助焊接装置及焊接设备
CN202211033750.X 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024040810A1 true WO2024040810A1 (zh) 2024-02-29

Family

ID=84068347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139632 WO2024040810A1 (zh) 2022-08-26 2022-12-16 一种超声波振动辅助焊接装置及焊接设备

Country Status (2)

Country Link
CN (1) CN115365103A (zh)
WO (1) WO2024040810A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115365103A (zh) * 2022-08-26 2022-11-22 广东利元亨智能装备股份有限公司 一种超声波振动辅助焊接装置及焊接设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066776A (ja) * 2000-08-30 2002-03-05 Showa Denko Kk レーザビーム溶接法
CN106917086A (zh) * 2017-05-10 2017-07-04 江苏理工学院 超声振动辅助激光熔覆的方法和装置
CN112570882A (zh) * 2020-12-09 2021-03-30 湖南大学 一种抑制激光焊接变形的装置
CN113182946A (zh) * 2021-04-13 2021-07-30 南京航空航天大学 一种带有可调夹具的单向超声振动平台及其操作方法
CN216291965U (zh) * 2021-10-28 2022-04-12 广东利元亨智能装备股份有限公司 一种换能器
CN115365103A (zh) * 2022-08-26 2022-11-22 广东利元亨智能装备股份有限公司 一种超声波振动辅助焊接装置及焊接设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693323B (zh) * 2009-10-14 2011-11-09 重庆理工大学 镁及镁合金的超声波辅助真空电子束焊接方法
CN103495541B (zh) * 2013-10-14 2016-03-16 中国地质大学(武汉) 多孔矩形六面体超声变幅器
CN110293321A (zh) * 2019-06-25 2019-10-01 中车青岛四方机车车辆股份有限公司 激光cmt复合焊接系统、焊接方法及铝合金车体焊接构件
CN110682001B (zh) * 2019-10-18 2021-09-21 长春理工大学 机械振动辅助减少气孔的高氮钢复合焊接装置及方法
CN212123757U (zh) * 2019-11-28 2020-12-11 汇专科技集团股份有限公司 一种超声波振动台及包含其的超声波夹具
CN111036758A (zh) * 2020-01-03 2020-04-21 成都理工大学 R-l纵弯复合振动异形孔冲削系统
CN111482347B (zh) * 2020-04-15 2021-08-10 南京航空航天大学 一种用于大型零件加工的超声振动平台及其操作工艺
CN212702846U (zh) * 2020-06-24 2021-03-16 无锡市和森超声科技有限公司 一种高效的超声波换能器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002066776A (ja) * 2000-08-30 2002-03-05 Showa Denko Kk レーザビーム溶接法
CN106917086A (zh) * 2017-05-10 2017-07-04 江苏理工学院 超声振动辅助激光熔覆的方法和装置
CN112570882A (zh) * 2020-12-09 2021-03-30 湖南大学 一种抑制激光焊接变形的装置
CN113182946A (zh) * 2021-04-13 2021-07-30 南京航空航天大学 一种带有可调夹具的单向超声振动平台及其操作方法
CN216291965U (zh) * 2021-10-28 2022-04-12 广东利元亨智能装备股份有限公司 一种换能器
CN115365103A (zh) * 2022-08-26 2022-11-22 广东利元亨智能装备股份有限公司 一种超声波振动辅助焊接装置及焊接设备

Also Published As

Publication number Publication date
CN115365103A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024040810A1 (zh) 一种超声波振动辅助焊接装置及焊接设备
CN103132071A (zh) 一种激光修复用超声振动耦合装置
TWM627592U (zh) 一種用於芯片焊接的快速冷卻的真空共晶爐
CN201975677U (zh) 激光输出窗口和激光器
CN206277670U (zh) 一种超声波焊头快速冷却系统
CN106365160A (zh) 一种超声波剥离氧化石墨装置
CN212206969U (zh) 一种基于磁制冷的高低温实验装置
CN207873078U (zh) 镁合金压铸铸件快速冷却装置
CN203863215U (zh) 一种带有冷却装置的激光焊接头
CN203144513U (zh) 一种激光修复用超声振动耦合装置
CN202123243U (zh) 一种连续保护浇铸通道快速更换装置
CN212890670U (zh) 一种连接稳定的金属铸造用转运装置
CN211331779U (zh) 一种薄壁电机壳体的搅拌摩擦焊接工装
CN209050013U (zh) 一种硬质管材在线扩口装置
CN208840692U (zh) 用于车身零件凸焊的带水冷却与吹气的下电极座装置
CN212329587U (zh) 一种铝合金铸造装置
CN206924981U (zh) 用于超声波设备的带冷却部件的防爆结构
CN206313088U (zh) 散热电池模组
CN205958388U (zh) 一种橡胶低温脆性实验装置
CN216068330U (zh) 一种新型硅胶模具
CN218097300U (zh) 具备风机稳定装置的冷却塔
CN209753769U (zh) 一种快速镁合金板材冲压机械设备
CN211842816U (zh) 一种压敏胶生产用快速固化冷却装置
CN215090502U (zh) 一种冷却装置
CN217351481U (zh) 一种板式换热器板片用去应力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956343

Country of ref document: EP

Kind code of ref document: A1