WO2024040666A1 - 一种闭式循环压缩储能发电系统及其运行方法 - Google Patents

一种闭式循环压缩储能发电系统及其运行方法 Download PDF

Info

Publication number
WO2024040666A1
WO2024040666A1 PCT/CN2022/120401 CN2022120401W WO2024040666A1 WO 2024040666 A1 WO2024040666 A1 WO 2024040666A1 CN 2022120401 W CN2022120401 W CN 2022120401W WO 2024040666 A1 WO2024040666 A1 WO 2024040666A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystem
inlet
outlet
compression
gas storage
Prior art date
Application number
PCT/CN2022/120401
Other languages
English (en)
French (fr)
Inventor
郭鹏飞
张春梅
刘海旭
王辉
孙涛
冯永志
姜东坡
王丽红
Original Assignee
哈电发电设备国家工程研究中心有限公司
哈尔滨汽轮机厂有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈电发电设备国家工程研究中心有限公司, 哈尔滨汽轮机厂有限责任公司 filed Critical 哈电发电设备国家工程研究中心有限公司
Publication of WO2024040666A1 publication Critical patent/WO2024040666A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/006Accumulators and steam compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/02Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of multiple-expansion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention relates to a closed cycle compression energy storage power generation system, belonging to the technical field of compression energy storage power generation.
  • Traditional compressed air energy storage uses compressed air through a compressor to store excess electrical energy in natural underground salt caves and other gas storage devices when electricity consumption is low.
  • the compressed heat is stored in a heat storage tank.
  • the gas storage and heat storage tank exchange liquid medium for heat exchange or use fuel to heat the high-pressure gas storage before entering the turbine expander.
  • the high-temperature and high-pressure air drives the turbine expander to generate power.
  • natural underground salt cavern gas storage is large-scale and low-cost, it relies heavily on special geographical locations and is difficult to promote and apply on a large scale.
  • Traditional compressed air energy storage uses compressed air through a compressor to store excess electrical energy in natural underground salt caves and other gas storage devices when electricity consumption is low.
  • the compressed heat is stored in a heat storage tank.
  • the gas storage and heat storage tank exchange liquid medium for heat exchange or use fuel to heat the high-pressure gas storage before entering the turbine expander.
  • the high-temperature and high-pressure air drives the turbine expander to generate power.
  • natural underground salt cavern gas storage is large-scale and low-cost, it relies heavily on special geographical locations and is difficult to promote and apply on a large scale.
  • a closed cycle compression energy storage power generation system including a compression subsystem, a compression heat collection subsystem, a gas storage subsystem, a compression heat feedback subsystem and an expansion subsystem;
  • the outlet of the compression subsystem is connected to the first collection inlet of the compression heat collection subsystem, the first collection outlet of the compression heat collection subsystem is connected to the first gas storage inlet of the gas storage subsystem, and the third gas storage inlet of the compression heat collection subsystem is connected.
  • the second collection inlet is connected to the first feedback outlet of the compression heat feedback subsystem
  • the second collection outlet of the compression heat collection subsystem is connected to the first feedback inlet of the compression heat feedback subsystem
  • the second feedback inlet of the compression heat feedback subsystem is connected to The first gas storage outlet of the gas storage subsystem is connected
  • the second feedback outlet of the compression heat feedback subsystem is connected with the inlet of the expansion subsystem
  • the outlet of the expansion subsystem is connected with the second gas storage inlet of the gas storage subsystem
  • the gas storage The second gas storage outlet of the subsystem is connected with the inlet of the compression subsystem.
  • the gas storage subsystem includes a low-pressure gas storage chamber and a high-pressure gas storage chamber, the inlet of the low-pressure gas storage chamber is connected to the outlet of the high-pressure gas storage chamber, and the low-pressure gas storage chamber has a second gas storage inlet and a second gas storage outlet.
  • the high-pressure gas storage chamber has a first gas storage inlet and a first gas storage outlet, and the low-pressure gas storage chamber is connected to a vacuum pump and an inflation module.
  • the compression subsystem includes a compression motor and a compressor, and the compression motor and the compressor are electrically connected;
  • the compression heat collection subsystem includes a cooler and a high-temperature heat storage tank.
  • the outlet of the cooler is connected to the inlet of the high-temperature heat storage tank.
  • the cooler has a first collection inlet, a first collection outlet and a second collection inlet.
  • the high-temperature heat storage tank has a third Two collection exits.
  • the compression heat feedback subsystem includes a low-temperature heat storage tank and a heat exchanger, the inlet of the low-temperature heat storage tank is connected to the heat exchanger outlet, the low-temperature heat storage tank has a first feedback outlet, and the heat exchanger has a first feedback outlet. entrance, a second feedback inlet and a second feedback outlet.
  • the expansion subsystem includes a turboexpander and a generator, and the turboexpander and the generator are electrically connected.
  • Solution 2 A closed cycle compression energy storage power generation system, including a compression subsystem, a compression heat collection subsystem, a gas storage subsystem, a compression heat feedback subsystem and an expansion subsystem;
  • the outlet of the compression subsystem is connected to the first collection inlet of the compression heat collection subsystem, the first collection outlet of the compression heat collection subsystem is connected to the first gas storage inlet of the gas storage subsystem, and the third gas storage inlet of the compression heat collection subsystem is connected.
  • the second collection inlet is connected to the first feedback outlet of the compression heat feedback subsystem
  • the second collection outlet of the compression heat collection subsystem is connected to the first feedback inlet of the compression heat feedback subsystem
  • the second feedback inlet of the compression heat feedback subsystem is connected to The first gas storage outlet of the gas storage subsystem is connected
  • the second feedback outlet of the compression heat feedback subsystem is connected with the inlet of the expansion subsystem
  • the outlet of the expansion subsystem is connected with the second gas storage inlet of the gas storage subsystem
  • the gas storage The second gas storage outlet of the subsystem is connected with the inlet of the compression subsystem.
  • the compression subsystem includes a first electric motor, a first compressor and a second compressor;
  • the compression heat collection subsystem includes a first cooler, a second cooler and a first high-temperature heat storage tank;
  • the first electric motor, the first compressor and the second compressor are connected in series in sequence, the outlet of the first compressor is connected to the first collection inlet of the first cooler, and the inlet of the first compressor is connected to the second inlet of the low-pressure air storage chamber.
  • the gas storage outlet is connected, the outlet of the second compressor is connected to the left inlet of the second cooler, the inlet of the second compressor is connected to the right outlet of the first cooler; the first collection outlet of the second cooler is connected to the high-pressure storage outlet.
  • the right inlet of the first cooler and the second collection inlet of the second cooler are both connected to the first feedback outlet of the compression heat feedback subsystem, and the left outlets of both the first cooler and the second cooler are connected to the first feedback outlet of the compression heat feedback subsystem.
  • the compression heat feedback subsystem includes a first low-temperature heat storage tank, a first heat exchanger and a second heat exchanger;
  • the expansion subsystem includes a first turboexpander, a second turboexpander and a first generator, and the first generator, the first turboexpander and the second turboexpander are connected in series;
  • the left inlets of the first heat exchanger and the second heat exchanger merge to form a first feedback inlet.
  • the first feedback inlet is connected to the second collection outlet of the first high-temperature heat storage tank.
  • the second feedback outlet of the first heat exchanger Connected to the inlet of the first turboexpander, the right outlets of both the first heat exchanger and the second heat exchanger are connected to the inlet of the first low-temperature heat storage tank, and the first low-temperature heat storage tank has a first feedback outlet
  • the second feedback inlet of the second heat exchanger is connected to the first gas storage outlet of the high-pressure gas storage chamber
  • the outlet of the second turbine expander is connected to the right inlet of the first heat exchanger
  • the second turbine expansion The inlet of the machine is connected to the left outlet of the second heat exchanger.
  • a first self-operated regulating valve and a second stop valve are installed on the connecting pipeline between the first compressor and the second gas storage outlet, and a first self-operated regulating valve and a second stop valve are installed on the connecting pipeline between the second gas storage inlet and the first turbine expander.
  • a first stop valve There is a first stop valve, a seventh stop valve is installed at the inlet of the first high-temperature heat storage tank, a second circulating water pump and an eighth stop valve are installed at the outlet of the first high-temperature heat storage tank.
  • a second self-operated regulating valve is installed at the inlet, a fifth stop valve is installed at the inlet of the first low-temperature heat storage tank, and a first circulating water pump and a sixth stop valve are installed at the first feedback outlet of the first low-temperature heat storage tank.
  • the first gas storage inlet and the first gas storage outlet of the high-pressure gas storage chamber are respectively equipped with a third stop valve and a fourth stop valve
  • the connecting pipeline between the second gas storage inlet and the first turbine expander is installed with A first check valve, and a second check valve installed at the outlet of the second compressor.
  • the vacuum pump is connected to the low-pressure air storage chamber through an air extraction check valve and an air extraction cut-off valve;
  • the inflation module includes a charging bottle group and a filter; the charging bottle group is connected to the filter through a charging cut-off valve; the filter Connected to the low pressure air storage chamber.
  • Option 2 a method of operating a closed cycle compression energy storage power generation system, is implemented based on the closed cycle compression energy storage power generation system described in Option 2, including:
  • Step 1 Open the exhaust stop valve, start the vacuum pump, drain the air in the closed circulation loop, and then close the vacuum pump and exhaust stop valve;
  • Step 2 Open the charging stop valve and inject the circulating working fluid to be operated into the low-pressure air storage chamber.
  • the circulating working fluid fills the closed circulation loop. After reaching the operating pressure, close the charging stop valve;
  • Step 3 The low-pressure gas storage chamber stores the circulating gas working fluid, the first low-temperature heat storage tank stores low-temperature liquid heat energy, and the first high-temperature heat storage tank stores high-temperature liquid heat energy;
  • Step 4 the first compressor, the second compressor, the first turboexpander and the second turboexpander control the equipment inlet pressure and temperature;
  • Step 5 When storing energy, open the second stop valve and the third stop valve, and adjust the first self-standing regulating valve to control the first compressor inlet pressure and temperature;
  • Step 6 When releasing energy, open the first stop valve and the fourth stop valve, and adjust the second self-supporting regulating valve to control the inlet temperature and pressure of the first turboexpander and the second turboexpander;
  • the circulating working fluid becomes a high-temperature and high-pressure working fluid after exchanging heat in the first heat exchanger and the second heat exchanger, and enters the first turbine expander and the second turbine expander to perform work, driving the first generator to generate electricity, completing the exchange process.
  • the heat exchange liquid medium of the thermal process enters the first low-temperature heat storage tank for storage, completes the energy release process, and closes the first stop valve, the fourth stop valve, the fifth stop valve, and the eighth stop valve.
  • the present invention proposes a closed cycle compressed energy storage power generation system with fast response speed
  • the circulating working fluid of the present invention uses helium-xenon mixed gas, which can perfectly utilize the safety and compactness of the helium-xenon closed Brayton cycle power generation system. Under the same power level, it greatly reduces the impact of traditional compressed air energy storage systems on high-pressure storage. gas volume requirements;
  • the invention occupies small space, does not rely on special geographical environment, has large energy storage capacity, strong site adaptability, and has broad development prospects.
  • Figure 1 is a system diagram of specific embodiment 1
  • Figure 2 is a system diagram of specific implementation mode 2
  • Figure 3 is a control diagram of the second specific embodiment
  • connection mentioned in the present invention is divided into fixed connection and detachable connection.
  • the fixed connection is a non-detachable connection, including but not limited to conventional fixed connection methods such as flange connection, rivet connection, adhesive connection and welding connection.
  • Detachable connections include but are not limited to conventional disassembly methods such as threaded connections, snap connections, pin connections, and hinge connections.
  • the specific connection method is not clearly defined, the default is that at least one connection method can always be found among the existing connection methods to achieve it.
  • Those skilled in the art can choose this function according to their needs. For example: choose welding connection for fixed connection and hinge connection for detachable connection.
  • a closed cycle compression energy storage power generation system in this embodiment includes a compression subsystem 1, a compression heat collection subsystem 2, a gas storage subsystem 3, and compression heat feedback. Subsystem 4 and expansion subsystem 5;
  • the compression heat feedback subsystem 4 includes a low-temperature heat storage tank 4-1 and a heat exchanger 4-2.
  • the inlet of the low-temperature heat storage tank 4-1 is connected to the outlet of the heat exchanger 4-2.
  • the compression heat feedback subsystem 4 uses In heating high-pressure circulating liquid working medium, the heat is stored in the low-temperature storage tank 4-1;
  • the compression subsystem 1 includes a compression motor 1-1 and a compressor 1-2.
  • the compression motor 1-1 and the compressor 1-2 are electrically connected; the compression subsystem 1 is used to compress the closed cycle working fluid;
  • the compression heat collection subsystem 2 includes a cooler 2-1 and a high-temperature heat storage tank 2-2.
  • the outlet of the cooler 2-1 is connected to the inlet of the high-temperature heat storage tank 2-2 for cooling the compression of the compressor 1-2.
  • the heat of the high-temperature and high-pressure liquid working fluid is stored in the high-temperature heat storage tank 2-2;
  • the gas storage subsystem 3 includes a low-pressure gas storage chamber 3-1 and a high-pressure gas storage chamber 3-2.
  • the low-pressure gas storage chamber 31 is connected to a vacuum pump 3-3 and an inflation module 3-4.
  • the low-pressure gas storage chamber 3-1 The inlet is connected to the 3-2 outlet of the high-pressure gas storage chamber, which is used to store high-pressure gas or low-pressure gas working fluid;
  • the expansion subsystem 5 includes a turboexpander 5-1 and a generator 5-2.
  • the turboexpander 5-1 and the generator 5-2 are electrically connected to perform expansion and drive the generator 5-2 to generate electricity. .
  • the outlet of the compression motor 1-1 is connected to the first collection inlet 21 of the cooler 2-1, and the first collection outlet 22 of the cooler 2-1 is connected to the first gas storage inlet 31 of the high-pressure gas storage chamber 3-2.
  • the second collection inlet 23 of the cooler 2-1 is connected to the first feedback outlet 41 of the low-temperature heat storage tank 4-1, and the second collection outlet 24 of the cooler 2-1 is connected to the first feedback outlet of the heat exchanger 4-2.
  • the inlet 42 is connected, the second feedback inlet 43 of the heat exchanger 4-2 is connected with the first gas storage outlet 32 of the high-pressure gas storage chamber 3-2, and the second feedback outlet 44 of the heat exchanger 4-2 is connected with the flat expander 5 -1 is connected to the inlet, the outlet of the flat expander 5-1 is connected to the second gas storage inlet 33 of the low-pressure gas storage chamber 3-1, and the second gas storage outlet 34 of the low-pressure gas storage chamber 3-1 is connected to the compressor 1- 2 entrance connections.
  • the circulating working fluid of the closed cycle compression energy storage power generation system is a helium-xenon mixed gas with high specific heat and good compressibility; the heat exchange liquid medium is water or oil with good thermal conductivity.
  • the compression motor 1-1 After the compression motor 1-1 is energized, it drives the compressor 1-2 to rotate and compress the working fluid.
  • the compression process is a nearly adiabatic compression process.
  • the low-temperature and low-pressure gas working fluid becomes a high-temperature and high-pressure gas working fluid after compression.
  • the compressed high-temperature and high-pressure gas The working fluid enters the cooler 2-1 and exchanges heat with the heat exchange liquid medium and then enters the high-pressure air storage chamber 3-2.
  • the liquid heat energy collected by the heat exchange liquid medium in the cooler 2-1 enters the high-temperature heat storage tank 2-2 for storage.
  • the gas storage chamber 3-1 stores the low-pressure gas working fluid that has been expanded by the turbine expander 5-1.
  • the high-pressure gas working fluid enters the heat exchanger 4-2 and exchanges heat with the liquid medium in the high-temperature heat storage tank 2-2. It enters the turbine expander 5-1 to do work and drives the generator 5-2 to generate electricity.
  • the power expansion process is an approximate adiabatic expansion process. After expansion, the high-temperature and high-pressure gas working fluid becomes a low-temperature and low-pressure gas working fluid and enters the low-pressure gas storage chamber 3-1. , the heat energy of the heat exchange liquid medium after being exchanged by the heat exchanger 4-2 enters the low-temperature heat storage tank 4-1 for storage.
  • Embodiment 2 This embodiment is described with reference to Figures 2 and 3, a closed cycle compression energy storage power generation system, including a compression subsystem 1, a compression heat collection subsystem 2, a gas storage subsystem 3, and a compression heat feedback subsystem.
  • the compression subsystem 1 includes a first electric motor 101, a first compressor 102 and a second compressor 103, and the first electric motor 101, the first compressor 102 and the second compressor 103 are connected in series in sequence;
  • the compression heat collection subsystem 2 includes a first cooler 201, a second cooler 202 and a first high-temperature heat storage tank 203;
  • the gas storage subsystem 3 includes a low-pressure gas storage chamber 3-1 and a high-pressure gas storage chamber 3-2.
  • the inlet of the low-pressure gas storage chamber 3-1 is connected to the outlet of the high-pressure gas storage chamber 3-2.
  • the low-pressure gas storage chamber 31 is connected.
  • the compression heat feedback subsystem 4 includes a first low-temperature heat storage tank 401, a first heat exchanger 402 and a second heat exchanger 403;
  • the expansion subsystem 5 includes a first turboexpander 501, a second turboexpander 503, and a first generator 502.
  • the outlet of the first compressor 102 is connected to the first collection inlet 21 of the first cooler 201 , the inlet of the first compressor 102 is connected to the second gas storage outlet 34 of the low-pressure gas storage chamber 31 , and the outlet of the second compressor 103 It is connected with the left inlet of the second cooler 202, and the inlet of the second compressor 103 is connected with the right outlet of the first cooler 201; the first collection outlet 22 of the second cooler 202 is connected with the high pressure air storage chamber 3-2.
  • the first gas storage inlet 31 is connected;
  • the right inlet of the first cooler 201 and the second collection inlet 23 of the second cooler 202 are both connected to the first feedback outlet 41 of the first low-temperature heat storage tank 401.
  • the first cooler 201 and the second cooler 202 The left outlets of both are connected with the inlet of the first high-temperature heat storage tank 203.
  • the first feedback inlet 42 is connected to the second collection outlet 24 of the first high-temperature heat storage tank 203.
  • the second feedback outlet 44 of the reactor 402 is connected to the inlet of the first turboexpander 501, and the right outlet of both the first heat exchanger 402 and the second heat exchanger 403 is connected to the inlet of the first low-temperature heat storage tank 401.
  • the first low-temperature heat storage tank 401 has a first feedback outlet 41
  • the second feedback inlet 43 of the second heat exchanger 403 is connected to the first gas storage outlet 32 of the high-pressure gas storage chamber 3-2
  • the second turbine expands
  • the outlet of the machine 503 is connected to the right inlet of the first heat exchanger 402
  • the inlet of the second turboexpander 503 is connected to the left outlet of the second heat exchanger 403.
  • a first self-operated regulating valve 61 and a second stop valve 62 are installed on the connecting pipeline between the first compressor 102 and the second gas storage outlet 34, and the connection between the second gas storage inlet 33 and the first turboexpander 501
  • a first stop valve 63 is installed on the pipeline
  • a seventh stop valve 65 is installed at the inlet of the first high temperature heat storage tank 203
  • a second circulating water pump 71 and an eighth stop valve are installed at the outlet of the first high temperature heat storage tank 203.
  • the second self-operated regulating valve 67 is installed at the inlet of the second turboexpander 503
  • the fifth stop valve 68 is installed at the inlet of the first low-temperature heat storage tank 401.
  • the feedback outlet 41 is equipped with a first circulating water pump 72 and a sixth stop valve 69 in sequence.
  • the first gas storage inlet 31 and the first gas storage outlet 32 of the high-pressure gas storage chamber 3-2 are respectively equipped with a third stop valve 610 and a fourth stop valve 610.
  • Stop valve 611, a first check valve 64 is installed on the connecting pipeline between the second gas storage inlet 33 and the first turboexpander 501, and a second check valve 612 is installed at the outlet of the second compressor 103, Avoid backflow of circulating gas working fluid.
  • the vacuum pump 3-3 is connected to the low-pressure air storage chamber 3-1 through the exhaust check valve 613 and the exhaust stop valve 614.
  • the inflation module 3-4 includes an inflation bottle group 3-41 and a filter 3-42.
  • the inflatable bottle group 3-41 is connected to the filter 3-42 through the inflatable stop valve 615, and the filter 3-42 is connected to the low-pressure air storage chamber 3-1.
  • the circulating working fluid of the closed cycle compression energy storage power generation system is a helium-xenon mixed gas with high specific heat and good compressibility; the heat exchange liquid medium is water or oil with good thermal conductivity.
  • the operation method of a closed cycle compression energy storage power generation system in this embodiment includes:
  • Step 1 open the air extraction stop valve 614, start the vacuum pump 3-3, drain the air in the closed circulation loop, and then close the vacuum pump 3-3 and the air extraction stop valve 614;
  • Step 2 Open the charging stop valve 615 and inject the circulating working fluid to be operated into the low-pressure gas storage chamber 3-1.
  • the circulating working fluid is a helium-xenon mixed gas.
  • the circulating working fluid fills the closed circulation loop. When the operating pressure is reached, the charging is closed. Stop valve 615;
  • Step 3 the low-pressure gas storage chamber 3-1 stores the circulating gas working fluid, the first low-temperature heat storage tank 401 stores low-temperature liquid heat energy, and the first high-temperature heat storage tank 203 stores high-temperature liquid heat energy;
  • Step 4 the first compressor 102, the second compressor 103, the first turboexpander 501 and the second turboexpander 503 control the equipment inlet pressure and temperature;
  • Step 5 When storing energy, open the second stop valve 62 and the third stop valve 610, and adjust the first self-supporting regulating valve 61 to control the inlet pressure and temperature of the first compressor 102;
  • Step 6 When releasing energy, open the first stop valve 63 and the fourth stop valve 611, adjust the second self-supporting regulating valve 67 to control the inlet temperature and pressure of the first turboexpander 501 and the second turboexpander 503;
  • the circulating working fluid becomes a high-temperature and high-pressure working fluid after being exchanged by the first heat exchanger 402 and the second heat exchanger 403, and then enters the first turboexpander 501 and the second turboexpander 503 to perform work and drive the first generator.
  • 502 generates electricity
  • the heat exchange liquid medium that has completed the heat exchange process enters the first low-temperature heat storage tank 401 for storage, completes the energy release process, and closes the first stop valve 63, the fourth stop valve 611, the fifth stop valve 68, and the eighth stop valve. 66.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the exemplary term “over” may include both orientations “above” and “below.”
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种闭式循环压缩储能发电系统及其运行方法,属于压缩储能发电技术领域,其包括压缩子系统、压缩热收集子系统、储气子系统、压缩热回馈子系统和膨胀子系统,压缩子系统与压缩热收集子系统连接,压缩热收集子系统与储气子系统连接,压缩热收集子系统与压缩热回馈子系统连接,压缩热收集子系统与压缩热回馈子系统连接,压缩热回馈子系统与储气子系统连接,压缩热回馈子系统与膨胀子系统连接,膨胀子系统与储气子系统连接,储气子系统与压缩子系统连接,其目的是为了解决现有的压缩空气储能需依赖天然地下盐穴等储气装置,对地理环境和高压储气容积均有很高的限制的问题,本发明占用空间小,不依赖特殊地理环境、储能容量大、场地适应性强。

Description

一种闭式循环压缩储能发电系统及其运行方法 技术领域
本发明涉及一种闭式循环压缩储能发电系统,属于压缩储能发电技术领域。
背景技术
随着我国“碳达峰、碳中和”目标的提出,构建以风能、太阳能、光伏等新能源发电将成为未来电力供应的重要组成部分,但间歇性、波动性、不可预测性是可再生能源亟待解决的关键难题,而先进的大规模的储能技术是解决可再生能源电力并网接入问题的有效途径。其中,压缩空气储能具有规模大、寿命长、清洁环保、安全可靠等优点,是未来最具有发展前景的大规模储能技术之一。
传统的压缩空气储能是在用电低谷时,将多余电能通过压缩机压缩空气,存储在天然地下盐穴等储气装置中,压缩热存储在储热罐中,用电高峰时,利用高压储气与储热罐换热液体介质进行换热或利用燃料对进入透平膨胀机前的高压储气进行加热,高温高压空气带动透平膨胀机做功发电。虽然天然地下盐穴储气规模大、成本低,但严重依赖特殊地理位置,难以大规模推广应用。
因此,亟需提出一种新型的闭式循环压缩储能发电系统,摆脱地理环境对压缩空气储能的限制。
技术问题
随着我国“碳达峰、碳中和”目标的提出,构建以风能、太阳能、光伏等新能源发电将成为未来电力供应的重要组成部分,但间歇性、波动性、不可预测性是可再生能源亟待解决的关键难题,而先进的大规模的储能技术是解决可再生能源电力并网接入问题的有效途径。其中,压缩空气储能具有规模大、寿命长、清洁环保、安全可靠等优点,是未来最具有发展前景的大规模储能技术之一。
传统的压缩空气储能是在用电低谷时,将多余电能通过压缩机压缩空气,存储在天然地下盐穴等储气装置中,压缩热存储在储热罐中,用电高峰时,利用高压储气与储热罐换热液体介质进行换热或利用燃料对进入透平膨胀机前的高压储气进行加热,高温高压空气带动透平膨胀机做功发电。虽然天然地下盐穴储气规模大、成本低,但严重依赖特殊地理位置,难以大规模推广应用。
因此,亟需提出一种新型的闭式循环压缩储能发电系统,摆脱地理环境对压缩空气储能的限制。
技术解决方案
本发明的技术方案:
方案一、一种闭式循环压缩储能发电系统,包括压缩子系统、压缩热收集子系统、储气子系统、压缩热回馈子系统和膨胀子系统;
所述压缩子系统的出口与压缩热收集子系统的第一收集入口连接,压缩热收集子系统的第一收集出口与储气子系统的第一储气入口连接,压缩热收集子系统的第二收集入口与压缩热回馈子系统的第一回馈出口连接,压缩热收集子系统的第二收集出口与压缩热回馈子系统的第一回馈入口连接,压缩热回馈子系统的第二回馈入口与储气子系统的第一储气出口连接,压缩热回馈子系统的第二回馈出口与膨胀子系统的入口连接,膨胀子系统的出口与储气子系统的第二储气入口连接,储气子系统的第二储气出口与压缩子系统的入口连接。
优选的:所述储气子系统包括低压储气室和高压储气室,低压储气室的入口和高压储气室出口连接,低压储气室具有第二储气入口和第二储气出口,高压储气室具有第一储气入口和第一储气出口,低压储气室连接有真空泵和充气模块。
优选的:所述压缩子系统包括压缩电动机和压缩机,压缩电动机和压缩机电性连接;
压缩热收集子系统包括冷却器和高温储热罐,冷却器的出口与高温储热罐入口连接,冷却器具有第一收集入口、第一收集出口和第二收集入口,高温储热罐具有第二收集出口。
优选的:所述压缩热回馈子系统包括低温储热罐和换热器,低温储热罐的入口和换热器出口连接,低温储热罐具有第一回馈出口,换热器具有第一回馈入口、第二回馈入口和第二回馈出口。
优选的:所述膨胀子系统包括透平膨胀机和发电机,透平膨胀机和发电机电性连接。
方案二、一种闭式循环压缩储能发电系统,包括包括压缩子系统、压缩热收集子系统、储气子系统、压缩热回馈子系统和膨胀子系统;
所述压缩子系统的出口与压缩热收集子系统的第一收集入口连接,压缩热收集子系统的第一收集出口与储气子系统的第一储气入口连接,压缩热收集子系统的第二收集入口与压缩热回馈子系统的第一回馈出口连接,压缩热收集子系统的第二收集出口与压缩热回馈子系统的第一回馈入口连接,压缩热回馈子系统的第二回馈入口与储气子系统的第一储气出口连接,压缩热回馈子系统的第二回馈出口与膨胀子系统的入口连接,膨胀子系统的出口与储气子系统的第二储气入口连接,储气子系统的第二储气出口与压缩子系统的入口连接。
优选的:所述压缩子系统包括第一电动机、第一压缩机和第二压缩机;
压缩热收集子系统包括第一冷却器、第二冷却器和第一高温储热罐;
所述第一电动机、第一压缩机和第二压缩机依次串联,第一压缩机的出口与第一冷却器的第一收集入口连接,第一压缩机的入口与低压储气室的第二储气出口连接,第二压缩机的出口与第二冷却器的左侧入口连接,第二压缩机的入口与第一冷却器右侧出口连接;第二冷却器的第一收集出口与高压储气室的第一储气入口连接;
第一冷却器的右侧入口和第二冷却器的第二收集入口均与压缩热回馈子系统的第一回馈出口连接,第一冷却器和第二冷却器二者的左侧出口均与第一高温储热罐的入口连接。
优选的:所述压缩热回馈子系统包括第一低温储热罐、第一换热器和第二换热器;
所述膨胀子系统包括第一透平膨胀机、第二透平膨胀机和第一发电机,第一发电机、第一透平膨胀机和第二透平膨胀机依次串联;
第一换热器和第二换热器的左侧入口汇合形成第一回馈入口,第一回馈入口与第一高温储热罐的第二收集出口连接,第一换热器的第二回馈出口与第一透平膨胀机的入口连接,第一换热器和第二换热器二者的右侧出口均与第一低温储热罐的入口连接,第一低温储热罐具有第一回馈出口,第二换热器的第二回馈入口与高压储气室的第一储气出口连接,第二透平膨胀机的出口与第一换热器的右侧入口连接,第二透平膨胀机的入口第二换热器左侧出口连接。
优选的:所述第一压缩机和第二储气出口的连接管路上安装有第一自力式调节阀和第二截止阀,第二储气入口和第一透平膨胀机的连接管路上安装有第一截止阀,第一高温储热罐的入口处安装有第七截止阀,第一高温储热罐出口处依次安装有第二循环水泵和第八截止阀,第二透平膨胀机的入口处安装有第二自力式调节阀,第一低温储热罐的入口处安装有第五截止阀,第一低温储热罐的第一回馈出口依次安装有第一循环水泵和第六截止阀,高压储气室的第一储气入口和第一储气出口分别安装有第三截止阀和第四截止阀,所述第二储气入口和第一透平膨胀机的连接管路上安装有第一止回阀,第二压缩机的出口处安装有第二止回阀。
优选的:所述真空泵通过抽气止回阀和抽气截止阀与低压储气室连接,所述充气模块包括充气瓶组和过滤器,充气瓶组通过充气截止阀和过滤器连接,过滤器和低压储气室连接。
方案二、一种闭式循环压缩储能发电系统的运行方法,是基于方案二所述的一种闭式循环压缩储能发电系统实现的,包括:
步骤1,打开抽气截止阀,启动真空泵,排清闭式循环回路中的空气后关闭真空泵及抽气截止阀;
步骤2,打开充气截止阀,向低压储气室中注入待运行循环工质,循环工质充满闭式循环回路中,达到运行压力后关闭充气截止阀;
步骤3,低压储气室存储循环气体工质,第一低温储热罐存储低温液体热能,第一高温储热罐存储高温液体热能;
步骤4,第一压缩机、第二压缩机、第一透平膨胀机和第二透平膨胀机控制设备进口压力和温度;
步骤5,储能时,打开第二截止阀和第三截止阀,调节第一自立式调节阀控制第一压缩机进口压力和温度;
打开第六截止阀和第七截止阀,启动第一循环泵;按照设定运行转速启动第一电动机,带动第一压缩机和第二压缩机旋转压缩循环工质,压缩后的高温高压循环工质经第一换热器和第二换热器换热后进入高压储气室,获得热能的换热液体介质进入第一高温储热罐,完成储能过程,关闭第二截止阀、第三截止阀、第六截止阀、第七截止阀和第一电动机;
步骤6,释能时,打开第一截止阀和第四截止阀,调节第二自立式调节阀控制第一透平膨胀机和第二透平膨胀机进口温度和压力;
打开第五截止阀和第八截止阀,启动第二循环泵;
循环工质经过第一换热器和第二换热器换热后变成高温高压工质,进入第一透平膨胀机和第二透平膨胀机做功,带动第一发电机发电,完成换热过程的换热液体介质进入第一低温储热罐储存,完成释能过程,关闭第一截止阀、第四截止阀、第五截止阀和第八截止阀。
有益效果
本发明具有以下有益效果:
1.本发明与现有的开式循环的压缩空气储能系统不同,提出了一种闭式循环的压缩储能发电系统,响应速度快;
2.本发明循环工质采用氦氙混合气,可以完美发挥氦氙闭式布雷顿循环发电系统安全、紧凑等特点,同功率等级条件下极大的缩小了传统压缩空气储能系统对高压储气容积的需求;
3.本发明占用空间小,不依赖特殊地理环境、储能容量大、场地适应性强,具有广阔的发展前景。
附图说明
图1是具体实施方式一的系统图;
图2是具体实施方式二的系统图;
图3是具体实施方式二的控制图;
图中1-压缩子系统,2-压缩热收集子系统,3-储气子系统,4-压缩热回馈子系统,5-膨胀子系统,21-第一收集入口,22-第一收集出口,23-第二收集入口,24-第二收集出口,31-低压储气室,32-第一储气出口,33-第二储气入口,34-第二储气出口,41-第一回馈出口,42-第一回馈入口,43-第二回馈入口,44-第二回馈出口,1-1-压缩电动机,1-2-压缩机,2-1-冷却器,2-2-高温储热罐,3-1-低压储气室,3-2-高压储气室,3-3-真空泵,3-4-充气模块,3-41-充气瓶组,3-42-过滤器,4-1-低温储热罐,4-2-换热器,5-1-透平膨胀机,5-2-发电机,101-第一电动机,102-第一压缩机,103-第二压缩机,201-第一冷却器,202-第二冷却器,203-第一高温储热罐,401-第一低温储热罐,402-第一换热器,403-第二换热器,501-第一透平膨胀机,502-第一发电机,503-第二透平膨胀机,61-第一自力式调节阀,62-第二截止阀,63-第一截止阀,64-第一止回阀,65-第七截止阀,66-第八截止阀,67-第二自力式调节阀,68-第五截止阀,69-第六截止阀,610-第三截止阀,611-第四截止阀,612-第二止回阀,613-抽气止回阀,614-抽气截止阀,615-充气截止阀,71-第二循环水泵,72-第一循环水泵。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明所提到的连接分为固定连接和可拆卸连接,所述固定连接即为不可拆卸连接包括但不限于折边连接、铆钉连接、粘结连接和焊接连接等常规固定连接方式,所述可拆卸连接包括但不限于螺纹连接、卡扣连接、销钉连接和铰链连接等常规拆卸方式,未明确限定具体连接方式时,默认为总能在现有连接方式中找到至少一种连接方式能够实现该功能,本领域技术人员可根据需要自行选择。例如:固定连接选择焊接连接,可拆卸连接选择铰链连接。
具体实施方式一:结合图1说明本实施方式,本实施方式的一种闭式循环压缩储能发电系统,包括压缩子系统1、压缩热收集子系统2、储气子系统3、压缩热回馈子系统4和膨胀子系统5;
所述压缩热回馈子系统4包括低温储热罐4-1和换热器4-2,低温储热罐4-1的入口和换热器4-2出口连接,压缩热回馈子系统4用于加热高压循环液体工质,热量储存低温储罐4-1内;
所述压缩子系统1包括压缩电动机1-1和压缩机1-2,压缩电动机1-1和压缩机1-2电性连接;压缩子系统1用于压缩闭式循环工质;
所述压缩热收集子系统2包括冷却器2-1和高温储热罐2-2,冷却器2-1的出口与高温储热罐2-2入口连接,用于冷却压缩机1-2压缩后的高温高压液体工质,热量储存在高温储热罐2-2内;
所述储气子系统3包括低压储气室3-1和高压储气室3-2,低压储气室31连接有真空泵3-3和充气模块3-4,低压储气室3-1的入口和高压储气室3-2出口连接,用于储存高压气体或低压气体工质;
所述膨胀子系统5包括透平膨胀机5-1和发电机5-2,透平膨胀机5-1和发电机5-2电性连接,用于膨胀做功,带动发电机5-2发电。
所述压缩电动机1-1的出口与冷却器2-1的第一收集入口21连接,冷却器2-1的第一收集出口22与高压储气室3-2的第一储气入口31连接,冷却器2-1的第二收集入口23与低温储热罐4-1的第一回馈出口41连接,冷却器2-1的第二收集出口24与换热器4-2的第一回馈入口42连接,换热器4-2的第二回馈入口43与高压储气室3-2的第一储气出口32连接,换热器4-2的第二回馈出口44与平膨胀机5-1的入口连接,平膨胀机5-1的出口与低压储气室3-1的第二储气入口33连接,低压储气室3-1的第二储气出口34与压缩机1-2的入口连接。
所述闭式循环压缩储能发电系统循环工质为比热大、可压缩性好的氦氙混合气体;所述换热液体介质为水或导热性好的油等。
工作原理如下:
所述压缩电动机1-1通电后带动压缩机1-2旋转压缩工质,压缩过程为近似绝热压缩过程,低温低压气体工质经过压缩后变成高温高压气体工质,压缩后的高温高压气体工质进入冷却器2-1与换热液体介质换热后进入高压储气室3-2,经过冷却器2-1换热液体介质收集的液体热能进入高温储热罐2-2储存,低压储气室3-1储存经过透平膨胀机5-1膨胀做功后的低压气体工质,高压气体工质进入换热器4-2与高温储热罐2-2换热液体介质换热后进入透平膨胀机5-1做功,带动发电机5-2发电,做功膨胀过程为近似绝热膨胀过程,高温高压气体工质经过膨胀后变成低温低压气体工质进入低压储气室3-1,经过换热器4-2换热后的换热液体介质热能进入低温储热罐4-1储存。
具体实施方式二:结合图2和图3说明本实施方式,一种闭式循环压缩储能发电系统,包括压缩子系统1、压缩热收集子系统2、储气子系统3、压缩热回馈子系统4和膨胀子系统5;
所述压缩子系统1包括第一电动机101、第一压缩机102和第二压缩机103,所述第一电动机101、第一压缩机102和第二压缩机103依次串联;
压缩热收集子系统2包括第一冷却器201、第二冷却器202和第一高温储热罐203;
所述储气子系统3包括低压储气室3-1和高压储气室3-2,低压储气室3-1的入口和高压储气室3-2出口连接,低压储气室31连接有真空泵3-3和充气模块3-4。
所述压缩热回馈子系统4包括第一低温储热罐401、第一换热器402和第二换热器403;
所述膨胀子系统5包括第一透平膨胀机501、第二透平膨胀机503和第一发电机502,第一发电机502、第一透平膨胀机501和第二透平膨胀机503依次串联;
第一压缩机102的出口与第一冷却器201的第一收集入口21连接,第一压缩机102的入口与低压储气室31的第二储气出口34连接,第二压缩机103的出口与第二冷却器202的左侧入口连接,第二压缩机103的入口与第一冷却器201右侧出口连接;第二冷却器202的第一收集出口22与高压储气室3-2的第一储气入口31连接;
第一冷却器201的右侧入口和第二冷却器202的第二收集入口23均与第一低温储热罐401的第一回馈出口41连接,第一冷却器201和第二冷却器202二者的左侧出口均与第一高温储热罐203的入口连接。
第一换热器402和第二换热器403的左侧入口汇合形成第一回馈入口42,第一回馈入口42与第一高温储热罐203的第二收集出口24连接,第一换热器402的第二回馈出口44与第一透平膨胀机501的入口连接,第一换热器402和第二换热器403二者的右侧出口均与第一低温储热罐401的入口连接,第一低温储热罐401具有第一回馈出口41,第二换热器403的第二回馈入口43与高压储气室3-2的第一储气出口32连接,第二透平膨胀机503的出口与第一换热器402的右侧入口连接,第二透平膨胀机503的入口第二换热器403左侧出口连接。
所述第一压缩机102和第二储气出口34的连接管路上安装有第一自力式调节阀61和第二截止阀62,第二储气入口33和第一透平膨胀机501的连接管路上安装有第一截止阀63,第一高温储热罐203的入口处安装有第七截止阀65,第一高温储热罐203出口处依次安装有第二循环水泵71和第八截止阀66,第二透平膨胀机503的入口处安装有第二自力式调节阀67,第一低温储热罐401的入口处安装有第五截止阀68,第一低温储热罐401的第一回馈出口41依次安装有第一循环水泵72和第六截止阀69,高压储气室3-2的第一储气入口31和第一储气出口32分别安装有第三截止阀610和第四截止阀611,所述第二储气入口33和第一透平膨胀机501的连接管路上安装有第一止回阀64,第二压缩机103的出口处安装有第二止回阀612,避免循环气体工质回流。
所述真空泵3-3通过抽气止回阀613和抽气截止阀614与低压储气室3-1连接,所述充气模块3-4包括充气瓶组3-41和过滤器3-42,充气瓶组3-41通过充气截止阀615和过滤器3-42连接,过滤器3-42和低压储气室3-1连接。
所述闭式循环压缩储能发电系统循环工质为比热大、可压缩性好的氦氙混合气体;所述换热液体介质为水或导热性好的油等。
具体实施方式三:结合图2和图3说明本实施方式,基于具体实施方式二,本实施方式的一种闭式循环压缩储能发电系统的运行方法,包括:
步骤1,打开抽气截止阀614,启动真空泵3-3,排清闭式循环回路中的空气后关闭真空泵3-3及抽气截止阀614;
步骤2,打开充气截止阀615,向低压储气室3-1中注入待运行循环工质,循环工质为氦氙混合气,循环工质充满闭式循环回路中,达到运行压力后关闭充气截止阀615;
步骤3,低压储气室3-1存储循环气体工质,第一低温储热罐401存储低温液体热能,第一高温储热罐203存储高温液体热能;
步骤4,第一压缩机102、第二压缩机103、第一透平膨胀机501和第二透平膨胀机503控制设备进口压力和温度;
步骤5,储能时,打开第二截止阀62和第三截止阀610,调节第一自立式调节阀61控制第一压缩机102进口压力和温度;
打开第六截止阀69和第七截止阀65,启动第一循环泵72;按照设定运行转速启动第一电动机101,带动第一压缩机102和第二压缩机103旋转压缩循环工质,压缩后的高温高压气体循环工质经第一换热器402和第二换热器403换热后进入高压储气室3-2,获得热能的换热液体介质进入第一高温储热罐203,完成储能过程,关闭第二截止阀62、第三截止阀610、第六截止阀69、第七截止阀65和第一电动机101;
步骤6,释能时,打开第一截止阀63和第四截止阀611,调节第二自立式调节阀67控制第一透平膨胀机501和第二透平膨胀机503进口温度和压力;
打开第五截止阀68和第八截止阀66,启动第二循环泵71;
循环工质经过第一换热器402和第二换热器403换热后变成高温高压工质,进入第一透平膨胀机501和第二透平膨胀机503做功,带动第一发电机502发电,完成换热过程的换热液体介质进入第一低温储热罐401储存,完成释能过程,关闭第一截止阀63、第四截止阀611、第五截止阀68和第八截止阀66。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
需要说明的是,在以上实施例中,只要不矛盾的技术方案都能够进行排列组合,本领域技术人员能够根据排列组合的数学知识穷尽所有可能,因此本发明不再对排列组合后的技术方案进行一一说明,但应该理解为排列组合后的技术方案已经被本发明所公开。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种闭式循环压缩储能发电系统,其特征在于:包括压缩子系统(1)、压缩热收集子系统(2)、储气子系统(3)、压缩热回馈子系统(4)和膨胀子系统(5);
    所述压缩子系统(1)的出口与压缩热收集子系统(2)的第一收集入口(21)连接,压缩热收集子系统(2)的第一收集出口(22)与储气子系统(3)的第一储气入口(31)连接,压缩热收集子系统(2)的第二收集入口(23)与压缩热回馈子系统(4)的第一回馈出口(41)连接,压缩热收集子系统(2)的第二收集出口(24)与压缩热回馈子系统(4)的第一回馈入口(42)连接,压缩热回馈子系统(4)的第二回馈入口(43)与储气子系统(3)的第一储气出口(32)连接,压缩热回馈子系统(4)的第二回馈出口(44)与膨胀子系统(5)的入口连接,膨胀子系统(5)的出口与储气子系统(3)的第二储气入口(33)连接,储气子系统(3)的第二储气出口(34)与压缩子系统(1)的入口连接。
  2. 根据权利要求1任意一项所述的一种闭式循环压缩储能发电系统,其特征在于:所述储气子系统(3)包括低压储气室(3-1)和高压储气室(3-2),低压储气室(3-1)的入口和高压储气室(3-2)出口连接,低压储气室(3-1)具有第二储气入口(33)和第二储气出口(34),高压储气室(3-2)具有第一储气入口(31)和第一储气出口(32),低压储气室(31)连接有真空泵(3-3)和充气模块(3-4)。
  3. 根据权利要求2所述的一种闭式循环压缩储能发电系统,其特征在于:所述压缩子系统(1)包括压缩电动机(1-1)和压缩机(1-2),压缩电动机(1-1)和压缩机(1-2)电性连接;
    压缩热收集子系统(2)包括冷却器(2-1)和高温储热罐(2-2),冷却器(2-1)的出口与高温储热罐(2-2)入口连接,冷却器(2-1)具有第一收集入口(21)、第一收集出口(22)和第二收集入口(23),高温储热罐(2-2)具有第二收集出口(24)。
  4. 根据权利要求3任意一项所述的一种闭式循环压缩储能发电系统,其特征在于:所述压缩热回馈子系统(4)包括低温储热罐(4-1)和换热器(4-2),低温储热罐(4-1)的入口和换热器(4-2)出口连接,低温储热罐(4-1)具有第一回馈出口(41),换热器(4-2)具有第一回馈入口(42)、第二回馈入口(43)和第二回馈出口(44)。
  5. 根据权利要求4任意一项所述的一种闭式循环压缩储能发电系统,其特征在于:所述膨胀子系统(5)包括透平膨胀机(5-1)和发电机(5-2),透平膨胀机(5-1)和发电机(5-2)电性连接。
  6. 根据权利要求2所述的一种闭式循环压缩储能发电系统,其特征在于:所述压缩子系统(1)包括第一电动机(101)、第一压缩机(102)和第二压缩机(103);
    压缩热收集子系统(2)包括第一冷却器(201)、第二冷却器(202)和第一高温储热罐(203);
    所述第一电动机(101)、第一压缩机(102)和第二压缩机(103)依次串联,第一压缩机(102)的出口与第一冷却器(201)的第一收集入口(21)连接,第一压缩机(102)的入口与低压储气室(31)的第二储气出口(34)连接,第二压缩机(103)的出口与第二冷却器(202)的左侧入口连接,第二压缩机(103)的入口与第一冷却器(201)右侧出口连接;第二冷却器(202)的第一收集出口(22)与高压储气室(3-2)的第一储气入口(31)连接;
    第一冷却器(201)的右侧入口和第二冷却器(202)的第二收集入口(23)均与压缩热回馈子系统(4)的第一回馈出口(41)连接,第一冷却器(201)和第二冷却器(202)二者的左侧出口均与第一高温储热罐(203)的入口连接。
  7. 根据权利要求6所述的一种闭式循环压缩储能发电系统,其特征在于:所述压缩热回馈子系统(4)包括第一低温储热罐(401)、第一换热器(402)和第二换热器(403);
    所述膨胀子系统(5)包括第一透平膨胀机(501)、第二透平膨胀机(503)和第一发电机(502),第一发电机(502)、第一透平膨胀机(501)和第二透平膨胀机(503)依次串联;
    第一换热器(402)和第二换热器(403)的左侧入口汇合形成第一回馈入口(42),第一回馈入口(42)与第一高温储热罐(203)的第二收集出口(24)连接,第一换热器(402)的第二回馈出口(44)与第一透平膨胀机(501)的入口连接,第一换热器(402)和第二换热器(403)二者的右侧出口均与第一低温储热罐(401)的入口连接,第一低温储热罐(401)具有第一回馈出口(41),第二换热器(403)的第二回馈入口(43)与高压储气室(3-2)的第一储气出口(32)连接,第二透平膨胀机(503)的出口与第一换热器(402)的右侧入口连接,第二透平膨胀机(503)的入口第二换热器(403)左侧出口连接。
  8. 根据权利要求7所述的一种闭式循环压缩储能发电系统,其特征在于:所述第一压缩机(102)和第二储气出口(34)的连接管路上安装有第一自力式调节阀(61)和第二截止阀(62),第二储气入口(33)和第一透平膨胀机(501)的连接管路上安装有第一截止阀(63),第一高温储热罐(203)的入口处安装有第七截止阀(65),第一高温储热罐(203)出口处依次安装有第二循环水泵(71)和第八截止阀(66),第二透平膨胀机(503)的入口处安装有第二自力式调节阀(67),第一低温储热罐(401)的入口处安装有第五截止阀(68),第一低温储热罐(401)的第一回馈出口(41)依次安装有第一循环水泵(72)和第六截止阀(69),高压储气室(3-2)的第一储气入口(31)和第一储气出口(32)分别安装有第三截止阀(610)和第四截止阀(611),所述第二储气入口(33)和第一透平膨胀机(501)的连接管路上安装有第一止回阀(64),第二压缩机(103)的出口处安装有第二止回阀(612)。
  9. 根据权利要求8所述的一种闭式循环压缩储能发电系统,其特征在于:所述真空泵(3-3)通过抽气止回阀(613)和抽气截止阀(614)与低压储气室(3-1)连接,所述充气模块(3-4)包括充气瓶组(3-41)和过滤器(3-42),充气瓶组(3-41)通过充气截止阀(615)和过滤器(3-42)连接,过滤器(3-42)和低压储气室(3-1)连接。
  10. 一种闭式循环压缩储能发电系统的运行方法,是基于权利要求9所述的一种闭式循环压缩储能发电系统实现的,其特征在于,包括:
    步骤1,打开抽气截止阀(614),启动真空泵(3-3),排清闭式循环回路中的空气后关闭真空泵(3-3)及抽气截止阀(614);
    步骤2,打开充气截止阀(615),向低压储气室(3-1)中注入待运行循环工质,循环工质为氦氙混合气,循环工质充满闭式循环回路中,达到运行压力后关闭充气截止阀(615);
    步骤3,低压储气室(3-1)存储循环气体工质,第一低温储热罐(401)存储低温液体热能,第一高温储热罐(203)存储高温液体热能;
    步骤4,第一压缩机(102)、第二压缩机(103)、第一透平膨胀机(501)和第二透平膨胀机(503)控制设备进口压力和温度;
    步骤5,储能时,打开第二截止阀(62)和第三截止阀(610),调节第一自立式调节阀(61)控制第一压缩机(102)进口压力和温度;
    打开第六截止阀(69)和第七截止阀(65),启动第一循环泵(72);按照设定运行转速启动第一电动机(101),带动第一压缩机(102)和第二压缩机(103)旋转压缩循环工质,压缩后的高温高压气体循环工质经第一换热器(402)和第二换热器(403)换热后进入高压储气室(3-2),获得热能的换热液体介质进入第一高温储热罐(203),完成储能过程,关闭第二截止阀(62)、第三截止阀(610)、第六截止阀(69)、第七截止阀(65)和第一电动机(101);
    步骤6,释能时,打开第一截止阀(63)和第四截止阀(611),调节第二自立式调节阀(67)控制第一透平膨胀机(501)和第二透平膨胀机(503)进口温度和压力;
    打开第五截止阀(68)和第八截止阀(66),启动第二循环泵(71);
    循环工质经过第一换热器(402)和第二换热器(403)换热后变成高温高压工质,进入第一透平膨胀机(501)和第二透平膨胀机(503)做功,带动第一发电机(502)发电,完成换热过程的换热液体介质进入第一低温储热罐(401)储存,完成释能过程,关闭第一截止阀(63)、第四截止阀(611)、第五截止阀(68)和第八截止阀(66)。
PCT/CN2022/120401 2022-08-24 2022-09-22 一种闭式循环压缩储能发电系统及其运行方法 WO2024040666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211018186.4 2022-08-24
CN202211018186.4A CN115234329A (zh) 2022-08-24 2022-08-24 一种闭式循环压缩储能发电系统及其运行方法

Publications (1)

Publication Number Publication Date
WO2024040666A1 true WO2024040666A1 (zh) 2024-02-29

Family

ID=83680621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120401 WO2024040666A1 (zh) 2022-08-24 2022-09-22 一种闭式循环压缩储能发电系统及其运行方法

Country Status (2)

Country Link
CN (1) CN115234329A (zh)
WO (1) WO2024040666A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061980A (ja) * 2000-08-22 2002-02-28 Tokyo Gas Co Ltd 圧縮式ヒートポンプ空調装置及びその運転方法
CN105863753A (zh) * 2016-05-23 2016-08-17 中国科学院理化技术研究所 一种闭式冷电联供储能系统
CN108592518A (zh) * 2018-04-09 2018-09-28 华北电力科学研究院有限责任公司 深冷液化空气储能发电系统及其启停控制方法
CN111396162A (zh) * 2020-04-20 2020-07-10 贵州电网有限责任公司 一种高效率的先进压缩空气储能系统及方法
CN114483232A (zh) * 2022-02-09 2022-05-13 西安交通大学 一种基于有机闪蒸循环的压缩空气储能系统及控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105863751B (zh) * 2016-06-01 2017-09-22 中国科学院工程热物理研究所 一种闭式低温压缩空气储能系统和方法
CN110206599B (zh) * 2019-06-04 2022-03-29 中国科学院工程热物理研究所 一种冷热电联储联供系统
CN110345044A (zh) * 2019-07-05 2019-10-18 华北电力大学 一种双地下储气室带储热循环的压缩二氧化碳储能系统
WO2022068223A1 (zh) * 2021-03-29 2022-04-07 中国长江三峡集团有限公司 基于蓄热释热共用回路的压缩空气储能系统及方法
CN113006889B (zh) * 2021-04-14 2022-05-20 西安交通大学 一种绝热的近等温压缩空气储能系统及其运行方法
CN114111413B (zh) * 2021-11-25 2023-10-27 青岛科技大学 一种采用二氧化碳混合工质的压缩储能系统及其工作方法
CN218407556U (zh) * 2022-08-24 2023-01-31 哈电发电设备国家工程研究中心有限公司 一种闭式循环压缩储能发电系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061980A (ja) * 2000-08-22 2002-02-28 Tokyo Gas Co Ltd 圧縮式ヒートポンプ空調装置及びその運転方法
CN105863753A (zh) * 2016-05-23 2016-08-17 中国科学院理化技术研究所 一种闭式冷电联供储能系统
CN108592518A (zh) * 2018-04-09 2018-09-28 华北电力科学研究院有限责任公司 深冷液化空气储能发电系统及其启停控制方法
CN111396162A (zh) * 2020-04-20 2020-07-10 贵州电网有限责任公司 一种高效率的先进压缩空气储能系统及方法
CN114483232A (zh) * 2022-02-09 2022-05-13 西安交通大学 一种基于有机闪蒸循环的压缩空气储能系统及控制方法

Also Published As

Publication number Publication date
CN115234329A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN110206599B (zh) 一种冷热电联储联供系统
CN103016152B (zh) 一种新型流程的超临界空气储能系统
US8122718B2 (en) Systems and methods for combined thermal and compressed gas energy conversion systems
CN106677848B (zh) 一种以空气及水为储能工质的联合储能系统及方法
CN106567748B (zh) 非绝热气体膨胀的压缩空气储能系统
CN108930627A (zh) 一种定压抽水压缩气体储能系统及储能方法
CN105863751A (zh) 一种闭式低温压缩空气储能系统和方法
CN112554984B (zh) 一种带有储热的恒压型抽水压缩空气储能系统及运行方法
CN111022139A (zh) 一种燃煤发电机组耦合液化空气储能发电系统
CN112524001A (zh) 一种基于跨临界朗肯循环的热泵储电系统
CN204388452U (zh) Lng能量回收系统
CN201943904U (zh) 太阳能回热再热中冷燃气轮机循环的热力发电系统
WO2024040666A1 (zh) 一种闭式循环压缩储能发电系统及其运行方法
CN104295328A (zh) 一种介质能发动机装置及其做功方式
CN218407556U (zh) 一种闭式循环压缩储能发电系统
CN114109547B (zh) 一种基于超临界二氧化碳储能的燃煤电厂调峰系统及运行方法
JPH0354327A (ja) 余剰電力利用システム
CN206054019U (zh) 一种电热储能发电系统
CN210977618U (zh) 一种燃煤发电机组耦合液化空气储能发电系统
CN203432079U (zh) 一种高水温热泵机组
CN212337385U (zh) 一种空气发电装置
CN114738069B (zh) 一种储能发电系统及储能发电方法
CN218065396U (zh) 气体余压能量回收系统
CN218439487U (zh) 一种压缩空气储能电站亚临界水储热及定压系统
CN219081667U (zh) 卡诺电池储能与co2超-跨临界动力循环联合发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956210

Country of ref document: EP

Kind code of ref document: A1