CN105863753A - 一种闭式冷电联供储能系统 - Google Patents
一种闭式冷电联供储能系统 Download PDFInfo
- Publication number
- CN105863753A CN105863753A CN201610343977.2A CN201610343977A CN105863753A CN 105863753 A CN105863753 A CN 105863753A CN 201610343977 A CN201610343977 A CN 201610343977A CN 105863753 A CN105863753 A CN 105863753A
- Authority
- CN
- China
- Prior art keywords
- stage
- air
- compressor
- exhaust port
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 47
- 238000001816 cooling Methods 0.000 title claims abstract description 23
- 238000011084 recovery Methods 0.000 claims abstract description 16
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 15
- 230000001105 regulatory effect Effects 0.000 claims abstract description 15
- 238000005338 heat storage Methods 0.000 claims description 5
- 230000008929 regeneration Effects 0.000 claims description 3
- 238000011069 regeneration method Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 11
- 238000007605 air drying Methods 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 11
- 238000010248 power generation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/22—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/08—Adaptations for driving, or combinations with, pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B27/00—Machines, plants or systems, using particular sources of energy
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本发明提供的闭式冷电联供储能系统,包括:储能单元,回热单元和释能单元,所述储能单元包括空气囊,压缩机组,空气储罐;所述回热单元包括各级压缩机级间冷却器,冷油箱,热油箱,各级透平膨胀机级间回热器;所述释能单元包括调速阀,透平膨胀机组,减速器,发电机,并网控制柜和冷风空调,整个系统是一个闭式循环系统,不需要外界补给空气,减少了空气干燥净化的流程,设备投资和能耗,同时对外输出冷量,充分利用了膨胀后乏气的冷火用,实现了冷电联供,提高了系统的效率,实现了将不稳定和间歇性的风能转化成稳定的电能和冷量输出。
Description
技术领域
本发明涉及能源转换与存储领域,特别涉及一种闭式冷电联供储能系统。
背景技术
在全球所有的可再生能源中,风能占到了其中的42%。同时,风力发电技术在技术成熟度和经济效益方面,也在各种可再生能源分布式发电技术中占有较大优势,因此它是世界范围内发展速度最快的新能源分布式发电技术。据中国可再生能源工业协会预测,到2020年底,中国风电总装机将超过300GW。
然而,由于风能受自然条件如天气、地理位置和气流变化等因素影响,具有很大的不确定性、随机性及间歇性等特点,对电网的调度、运行方式、可靠性、电能品质和运行成本都带来巨大的冲击。随着风电规模的日益增大,风电与电网的相容性问题将越发突出,迫切需要可行的解决方案以促进风电的大规模利用。在诸多解决风电并网的方法中,储能技术被公认为是根本解决风电大规模并网问题的主要途径。目前国内工业技术中储能技术主要包括抽水蓄能,压缩空气储能(CAES),飞轮储能,电磁储能和电化学储能等。其中,压缩空气储能作为一种新型的储能技术,得到了国内外学者越来越广泛的关注。
压缩空气储能技术利用间歇性可再生能源生产的电能驱动压缩机组压缩空气,将电能以高压空气的方式储存起来,当需要电能时,释放高压空气驱动膨胀机做功发电。自从1949年Stal Laval提出利用地下洞穴实现压缩空气储能以来,国内外学者对此开展了大量的研究和实践工作,并已有两座大型电站分别在德国(Huntorf)和美国(McIntosh)投入商业运行。另外日本、意大利、以色列等国也分别有压缩空气储能电站项目正在建设过程中。然而,目前已有的压缩空气储能技术多为开式循环,且不能提供冷量,系统循环效率不高。
发明内容
有鉴于此,有必要提供一种将不稳定和间歇性的风能转化成稳定的电能和冷量输出的闭式冷电联供储能系统。
为实现上述目的,本申请采用下述技术方案:
一种闭式冷电联供储能系统,包括:储能单元,回热单元和释能单元;
所述储能单元包括空气囊(21)、一级压缩机(1)、二级压缩机(2)、三级压缩机(3)和空气储罐(9);
所述回热单元包括一级冷却器(4)、二级冷却器(5)、三级冷却器(6)、冷油箱(8)、热油箱(7)、一级回热器(10)、二级回热器(11)及三级回热器(12);
所述释能单元包括调速阀(13)、一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)、减速器(17)、发电机(18)、并网控制柜(19)和冷风空调(20);
所述空气囊(21)的排气口和所述一级压缩机(1)的进气口相连,所述一级压缩机(1)的排气口和所述一级冷却器(4)的进气口相连,所述一级冷却器(4)的排气口和所述二级压缩机(2)的进气口相连,所述二级压缩机(2)的排气口和所述二级冷却器(5)的进气口相连,所述二级冷却器(4)的排气口和所述三级压缩机(3)的进气口相连,所述三级压缩机(3)的排气口和所述三级冷却器(6)的进气口相连,所述三级冷却器(6)的排气口和所述空气储罐(9)的进气口相连,以构成储能阶段的闭式流道;
所述空气储罐(9)的排气口和所述调速阀(13)的进气口相连,所述调速阀(13)的排气口和所述一级透平膨胀机(14)的进气口相连,所述一级透平膨胀机(14)的排气口与所述一级回热器(10)的进气口相连,所述一级回热器(10)的排气口与所述二级回热器(11)的进气口相连,所述二级回热器(11)的排气口与所述二级透平膨胀机(15)的进气口相连,所述二级透平膨胀机(15)的排气口与所述三级回热器(12)的进气口相连,所述三级回热器(12)的排气口和冷风空调(20)的进气口相连,所述冷风空调(20)的排气口和所述空气囊(21)的进气口相连,以上空气流道构成释能阶段的闭式流道;
所述冷油箱(8)和热油箱(7)中的导热油在所述一级冷却器(4)、二级冷却器(5)和三级冷却器(6)形成的管程及所述一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)形成的管程中做内循环往复流动;
所述一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)的输出轴通过联轴器和所述减速器(17)的高速轴连接,所述发电机(18)的输入轴通过联轴器和所述减速器(17)的低速输出轴连接,所述发电机(18)发出的电能通过并网控制柜19输入电网。
在一些实施例中,所述空气囊为常压常温储气囊,用以储存干燥洁净的空气。
在一些实施例中,所述一级压缩机(1)、二级压缩机(2)、三级压缩机构成的压缩机组为多级离心式压缩机、或者多级轴流式压缩机、或者上述两种结构的任意组合。
在一些实施例中,所述一级冷却器(4)、二级冷却器(5)、三级冷却器(6)、一级回热器(10)、二级回热器(11)及三级回热器(12)为管壳式换热器、套管式换热器,板翅式换热器中的任何一种。
在一些实施例中,所述冷油箱(8)和热油箱(7)均为常压油箱,内存有储热介质导热油。
在一些实施例中,所述调速阀为单个节流阀或者由多个节流阀并联。
在一些实施例中,所述一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)构成的透平膨胀机组为多级径轴流式膨胀机、或者多级轴流式膨胀机、或者上述两种结构的任意组合。
在一些实施例中,所述减速器(17)为多级平行轴结构或者多级行星齿轮结构。
在一些实施例中,所述冷风空调(20)中的换热结构是绕管式、或者翅片式;介质是风—风式、或者风—水式、或者上述两种结构的任意组合。
在一些实施例中,所述空气储罐(9)中的高压空气压力为3~10MPa,排气流量为6000~100000Nm3/h,每一级膨胀气体回热后温度为80~120℃,末级排气温度为-5~10℃;系统装机发电量为0.5~10MW,输出冷量为20~400KW。
本发明采用上述技术方案,其有益效果在于:
本发明提供的闭式冷电联供储能系统,包括:储能单元,回热单元和释能单元,所述储能单元包括空气囊,压缩机组,空气储罐;所述回热单元包括各级压缩机级间冷却器,冷油箱,热油箱,各级透平膨胀机级间回热器;所述释能单元包括调速阀,透平膨胀机组,减速器,发电机,并网控制柜和冷风空调,整个系统是一个闭式循环系统,不需要外界补给空气,减少了空气干燥净化的流程,设备投资和能耗,同时对外输出冷量,充分利用了膨胀后乏气的冷火用,实现了冷电联供,提高了系统的效率,实现了将不稳定和间歇性的风能转化成稳定的电能和冷量输出。
附图说明
图1为本发明提供的闭式冷电联供储能系统的结构示意图。
其中:一级压缩机(1)、二级压缩机(2)、三级压缩机(3)、一级冷却器(4)、二级冷却器(5)、三级冷却器(6)、热油箱(7)、冷油箱(8)、空气储罐(9)、三级回热器(10)、二级回热器(11)、一级回热器(12)、调速阀(13)、一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)、减速器(17)、发电机(18)、并网控制柜(19)、冷风空调(20)、空气囊(21)。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
请参阅图1,为本发明提供的闭式冷电联供储能系统100的结构示意图,包括:储能单元,回热单元和释能单元。
所述储能单元包括空气囊(21)、一级压缩机(1)、二级压缩机(2)、三级压缩机(3)和空气储罐(9)。
所述回热单元包括一级冷却器(4)、二级冷却器(5)、三级冷却器(6)、冷油箱(8)、热油箱(7)、一级回热器(10)、二级回热器(11)及三级回热器(12)。
所述释能单元包括调速阀(13)、一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)、减速器(17)、发电机(18)、并网控制柜(19)和冷风空调(20)。
其中,
所述空气囊(21)的排气口和所述一级压缩机(1)的进气口相连,所述一级压缩机(1)的排气口和所述一级冷却器(4)的进气口相连,所述一级冷却器(4)的排气口和所述二级压缩机(2)的进气口相连,所述二级压缩机(2)的排气口和所述二级冷却器(5)的进气口相连,所述二级冷却器(4)的排气口和所述三级压缩机(3)的进气口相连,所述三级压缩机(3)的排气口和所述三级冷却器(6)的进气口相连,所述三级冷却器(6)的排气口和所述空气储罐(9)的进气口相连,以构成储能阶段的闭式流道;
所述空气储罐(9)的排气口和所述调速阀(13)的进气口相连,所述调速阀(13)的排气口和所述一级透平膨胀机(14)的进气口相连,所述一级透平膨胀机(14)的排气口与所述一级回热器(10)的进气口相连,所述一级回热器(10)的排气口与所述二级回热器(11)的进气口相连,所述二级回热器(11)的排气口与所述二级透平膨胀机(15)的进气口相连,所述二级透平膨胀机(15)的排气口与所述三级回热器(12)的进气口相连,所述三级回热器(12)的排气口和冷风空调(20)的进气口相连,所述冷风空调(20)的排气口和所述空气囊(21)的进气口相连,以上空气流道构成释能阶段的闭式流道;
所述冷油箱(8)和热油箱(7)中的导热油在所述一级冷却器(4)、二级冷却器(5)和三级冷却器(6)形成的管程及所述一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)形成的管程中做内循环往复流动;
所述一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)的输出轴通过联轴器和所述减速器(17)的高速轴连接,所述发电机(18)的输入轴通过联轴器和所述减速器(17)的低速输出轴连接,所述发电机(18)发出的电能通过并网控制柜19输入电网。
可以理解,上述闭式冷电联供储能系统在储能过程中,一级压缩机(1)、二级压缩机(2)、三级压缩机(3)形成的压缩机组利用风能,太阳能等可再生间歇能源,将空气囊(21)中经过处理后的干燥洁净的常压空气压缩成高压空气储存在空气储罐(9)中。同时,由于储能过程和释能过程并非同时进行,在压缩机组进行级间冷却时,为了提高系统的发电效率,需将每一级压缩机出口气体的压缩热以导热油为蓄热介质储存在热油箱(7)中;释能过程中,空气储罐(9)释放高压空气,通过调速阀(13)节流减压将空气压力降至一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)入口设计压力,同时维持气体流量不变。然后,气体在每一级回热器中与来自热油箱(7)的高温导热油进行充分的换热,提高每一级膨胀机的入口温度和焓值,进行膨胀做功。高温导热油完成换热后回流至冷油,等待下一次储能过程蓄热。膨胀后的常压低温气体流经冷风空调(20),为室内提供冷气或者为冷库提供冷量。最后,空气回流至空气囊。因此,整体流程是一个闭式循环,不需要外界补给空气,减少了空气干燥净化的流程,同时将不稳定和间歇性的风能和太阳能转化成了稳定的电能和冷量输出,实现了冷电联供型储能装置。
优选地,所述空气囊(21)为常压常温储气囊,用以储存干燥洁净的空气。
优选地,所述一级压缩机(1)、二级压缩机(2)、三级压缩机构成的压缩机组为多级离心式压缩机、或者多级轴流式压缩机、或者上述两种结构的任意组合。
优选地,所述一级冷却器(4)、二级冷却器(5)、三级冷却器(6)、一级回热器(10)、二级回热器(11)及三级回热器(12)为管壳式换热器、套管式换热器,板翅式换热器中的任何一种。
优选地,所述冷油箱(8)和热油箱(7)均为常压油箱,内存有储热介质导热油。
优选地,所述调速阀(13)为单个节流阀或者由多个节流阀并联。
优选地,所述一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)构成的透平膨胀机组为多级径轴流式膨胀机、或者多级轴流式膨胀机、或者上述两种结构的任意组合。
优选地,所述减速器(17)为多级平行轴结构或者多级行星齿轮结构。
优选地,所述冷风空调(20)中的换热结构是绕管式、或者翅片式;介质是风—风式、或者风—水式、或者上述两种结构的任意组合。
优选地,所述空气储罐(9)中的高压空气压力为3~10MPa,排气流量为6000~100000Nm3/h,每一级膨胀气体回热后温度为80~120℃,末级排气温度为-5~10℃;系统装机发电量为0.5~10MW,输出冷量为20~400KW。
本发明提供的闭式冷电联供储能系统是一个闭式循环系统,不需要外界补给空气,减少了空气干燥净化的流程,设备投资和能耗,同时对外输出冷量,充分利用了膨胀后乏气的冷火用,实现了冷电联供,提高了系统的效率,实现了将不稳定和间歇性的风能转化成稳定的电能和冷量输出。
虽然本发明参照当前的较佳实施方式进行了描述,但本领域的技术人员应能理解,上述较佳实施方式仅用来说明本发明,并非用来限定本发明的保护范围,任何在本发明的精神和原则范围之内,所做的任何修饰、等效替换、改进等,均应包含在本发明的权利保护范围之内。
Claims (10)
1.一种闭式冷电联供储能系统,其特征在于,包括:储能单元,回热单元和释能单元;
所述储能单元包括空气囊(21)、一级压缩机(1)、二级压缩机(2)、三级压缩机(3)和空气储罐(9);
所述回热单元包括一级冷却器(4)、二级冷却器(5)、三级冷却器(6)、冷油箱(8)、热油箱(7)、一级回热器(10)、二级回热器(11)及三级回热器(12);
所述释能单元包括调速阀(13)、一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)、减速器(17)、发电机(18)、并网控制柜(19)和冷风空调(20);
所述空气囊(21)的排气口和所述一级压缩机(1)的进气口相连,所述一级压缩机(1)的排气口和所述一级冷却器(4)的进气口相连,所述一级冷却器(4)的排气口和所述二级压缩机(2)的进气口相连,所述二级压缩机(2)的排气口和所述二级冷却器(5)的进气口相连,所述二级冷却器(4)的排气口和所述三级压缩机(3)的进气口相连,所述三级压缩机(3)的排气口和所述三级冷却器(6)的进气口相连,所述三级冷却器(6)的排气口和所述空气储罐(9)的进气口相连,以构成储能阶段的闭式流道;
所述空气储罐(9)的排气口和所述调速阀(13)的进气口相连,所述调速阀(13)的排气口和所述一级透平膨胀机(14)的进气口相连,所述一级透平膨胀机(14)的排气口与所述一级回热器(10)的进气口相连,所述一级回热器(10)的排气口与所述二级回热器(11)的进气口相连,所述二级回热器(11)的排气口与所述二级透平膨胀机(15)的进气口相连,所述二级透平膨胀机(15)的排气口与所述三级回热器(12)的进气口相连,所述三级回热器(12)的排气口和冷风空调(20)的进气口相连,所述冷风空调(20)的排气口和所述空气囊(21)的进气口相连,以上空气流道构成释能阶段的闭式流道;
所述冷油箱(8)和热油箱(7)中的导热油在所述一级冷却器(4)、二级冷却器(5)和三级冷却器(6)形成的管程及所述一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)形成的管程中做内循环往复流动;
所述一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)的输出轴通过联轴器和所述减速器(17)的高速轴连接,所述发电机(18)的输入轴通过联轴器和所述减速器(17)的低速输出轴连接,所述发电机(18)发出的电能通过并网控制柜19输入电网。
2.如权利要求1所述的闭式冷电联供储能系统,其特征在于,所述空气囊为常压常温储气囊,用以储存干燥洁净的空气。
3.如权利要求1所述的闭式冷电联供储能系统,其特征在于,所述一级压缩机(1)、二级压缩机(2)、三级压缩机构成的压缩机组为多级离心式压缩机、或者多级轴流式压缩机、或者上述两种结构的任意组合。
4.如权利要求1所述的闭式冷电联供储能系统,其特征在于,所述一级冷却器(4)、二级冷却器(5)、三级冷却器(6)、一级回热器(10)、二级回热器(11)及三级回热器(12)为管壳式换热器、套管式换热器,板翅式换热器中的任何一种。
5.如权利要求1所述的闭式冷电联供储能系统,其特征在于,所述冷油箱(8)和热油箱(7)均为常压油箱,内存有储热介质导热油。
6.如权利要求1所述的闭式冷电联供储能系统,其特征在于,所述调速阀为单个节流阀或者由多个节流阀并联。
7.如权利要求1所述的闭式冷电联供储能系统,其特征在于,所述一级透平膨胀机(14)、二级透平膨胀机(15)、三级透平膨胀机(16)构成的透平膨胀机组为多级径轴流式膨胀机、或者多级轴流式膨胀机、或者上述两种结构的任意组合。
8.如权利要求1所述的闭式冷电联供储能系统,其特征在于,所述减速器(17)为多级平行轴结构或者多级行星齿轮结构。
9.如权利要求1所述的闭式冷电联供储能系统,其特征在于,所述冷风空调(20)中的换热结构是绕管式、或者翅片式;介质是风—风式、或者风—水式、或者上述两种结构的任意组合。
10.根据权利要求1-9任一项所述的闭式冷电联供储能系统,其特征在于,所述空气储罐(9)中的高压空气压力为3~10MPa,排气流量为6000~100000Nm3/h,每一级膨胀气体回热后温度为80~120℃,末级排气温度为-5~10℃;系统装机发电量为0.5~10MW,输出冷量为20~400KW。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610343977.2A CN105863753A (zh) | 2016-05-23 | 2016-05-23 | 一种闭式冷电联供储能系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610343977.2A CN105863753A (zh) | 2016-05-23 | 2016-05-23 | 一种闭式冷电联供储能系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105863753A true CN105863753A (zh) | 2016-08-17 |
Family
ID=56635668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610343977.2A Pending CN105863753A (zh) | 2016-05-23 | 2016-05-23 | 一种闭式冷电联供储能系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105863753A (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106437885A (zh) * | 2016-11-29 | 2017-02-22 | 中国科学院理化技术研究所 | 一种压缩空气储能系统 |
CN106762420A (zh) * | 2016-11-28 | 2017-05-31 | 哈尔滨工程大学 | 海上风电非补燃压缩空气恒压储能装置 |
CN107299891A (zh) * | 2016-10-12 | 2017-10-27 | 清华大学 | 一种非补燃式压缩空气储能系统 |
CN107762579A (zh) * | 2017-11-20 | 2018-03-06 | 清华大学 | 一种高温复式回热绝热压缩空气储能系统 |
CN108151364A (zh) * | 2017-12-22 | 2018-06-12 | 中国科学院上海应用物理研究所 | 热泵式储能供电供热方法及装置 |
CN109944773A (zh) * | 2019-04-17 | 2019-06-28 | 西安交通大学 | 一种小区复合供能系统及方法 |
CN110454246A (zh) * | 2019-08-09 | 2019-11-15 | 江苏正丹化学工业股份有限公司 | 一种偏苯三酸酐连续生产尾气透平能量回收方法 |
CN110700999A (zh) * | 2019-11-14 | 2020-01-17 | 西安热工研究院有限公司 | 海上风电间冷再热式换热器及运行方法 |
CN111271143A (zh) * | 2020-03-20 | 2020-06-12 | 西安西热节能技术有限公司 | 一种提高电力灵活性的系统及方法 |
CN112901461A (zh) * | 2021-02-01 | 2021-06-04 | 国网江苏省电力有限公司镇江供电分公司 | 一种深度供能压缩空气储能系统的分级储能方法 |
WO2023116654A1 (zh) * | 2021-12-22 | 2023-06-29 | 江苏友诚数控科技有限公司 | 一种节能高效智能多级气体压缩系统 |
WO2024040666A1 (zh) * | 2022-08-24 | 2024-02-29 | 哈电发电设备国家工程研究中心有限公司 | 一种闭式循环压缩储能发电系统及其运行方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102661175A (zh) * | 2012-05-17 | 2012-09-12 | 西安交通大学 | 压缩空气的储能系统 |
CN103114971A (zh) * | 2013-02-06 | 2013-05-22 | 西安交通大学 | 用于平抑集群化风电场功率输出波动的混合储能系统 |
CN103352830A (zh) * | 2013-07-25 | 2013-10-16 | 中国科学院理化技术研究所 | 一种采用非稳态压缩流程的压缩空气储能发电系统 |
CN205779057U (zh) * | 2016-05-23 | 2016-12-07 | 中国科学院理化技术研究所 | 一种闭式冷电联供储能系统 |
-
2016
- 2016-05-23 CN CN201610343977.2A patent/CN105863753A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102661175A (zh) * | 2012-05-17 | 2012-09-12 | 西安交通大学 | 压缩空气的储能系统 |
CN103114971A (zh) * | 2013-02-06 | 2013-05-22 | 西安交通大学 | 用于平抑集群化风电场功率输出波动的混合储能系统 |
CN103352830A (zh) * | 2013-07-25 | 2013-10-16 | 中国科学院理化技术研究所 | 一种采用非稳态压缩流程的压缩空气储能发电系统 |
CN205779057U (zh) * | 2016-05-23 | 2016-12-07 | 中国科学院理化技术研究所 | 一种闭式冷电联供储能系统 |
Non-Patent Citations (1)
Title |
---|
吴毅 等: "一种新型的跨临界CO2储能系统", 《西安交通大学学报》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107299891B (zh) * | 2016-10-12 | 2019-10-18 | 清华大学 | 一种非补燃式压缩空气储能系统 |
CN107299891A (zh) * | 2016-10-12 | 2017-10-27 | 清华大学 | 一种非补燃式压缩空气储能系统 |
CN106762420A (zh) * | 2016-11-28 | 2017-05-31 | 哈尔滨工程大学 | 海上风电非补燃压缩空气恒压储能装置 |
CN106762420B (zh) * | 2016-11-28 | 2019-11-12 | 哈尔滨工程大学 | 海上风电非补燃压缩空气恒压储能装置 |
CN106437885B (zh) * | 2016-11-29 | 2018-04-17 | 中国科学院理化技术研究所 | 一种压缩空气储能系统 |
CN106437885A (zh) * | 2016-11-29 | 2017-02-22 | 中国科学院理化技术研究所 | 一种压缩空气储能系统 |
CN107762579A (zh) * | 2017-11-20 | 2018-03-06 | 清华大学 | 一种高温复式回热绝热压缩空气储能系统 |
CN108151364A (zh) * | 2017-12-22 | 2018-06-12 | 中国科学院上海应用物理研究所 | 热泵式储能供电供热方法及装置 |
CN108151364B (zh) * | 2017-12-22 | 2019-01-01 | 中国科学院上海应用物理研究所 | 热泵式储能供电供热方法及装置 |
CN109944773A (zh) * | 2019-04-17 | 2019-06-28 | 西安交通大学 | 一种小区复合供能系统及方法 |
CN110454246A (zh) * | 2019-08-09 | 2019-11-15 | 江苏正丹化学工业股份有限公司 | 一种偏苯三酸酐连续生产尾气透平能量回收方法 |
CN110700999A (zh) * | 2019-11-14 | 2020-01-17 | 西安热工研究院有限公司 | 海上风电间冷再热式换热器及运行方法 |
CN111271143A (zh) * | 2020-03-20 | 2020-06-12 | 西安西热节能技术有限公司 | 一种提高电力灵活性的系统及方法 |
CN112901461A (zh) * | 2021-02-01 | 2021-06-04 | 国网江苏省电力有限公司镇江供电分公司 | 一种深度供能压缩空气储能系统的分级储能方法 |
WO2023116654A1 (zh) * | 2021-12-22 | 2023-06-29 | 江苏友诚数控科技有限公司 | 一种节能高效智能多级气体压缩系统 |
WO2024040666A1 (zh) * | 2022-08-24 | 2024-02-29 | 哈电发电设备国家工程研究中心有限公司 | 一种闭式循环压缩储能发电系统及其运行方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN205779057U (zh) | 一种闭式冷电联供储能系统 | |
CN105863753A (zh) | 一种闭式冷电联供储能系统 | |
CN110374838B (zh) | 一种基于lng冷量利用的跨临界二氧化碳储能系统及方法 | |
CN108533476B (zh) | 一种热泵超临界空气储能系统 | |
JP5508540B2 (ja) | 超臨界空気蓄エネルギーシステム | |
CN111075671B (zh) | 一种耦合集成太阳能、超临界二氧化碳和压缩空气储能的发电系统 | |
CN111255720B (zh) | 一种基于蓄热式压缩空气储能的温控变工况运行系统 | |
WO2022027844A1 (zh) | 基于压缩机中间吸气的液化空气储能调峰系统和方法 | |
CN111305918A (zh) | 一种无冷源损失的汽驱空气储能调峰系统及方法 | |
CN111305920B (zh) | 一种汽驱空气储能调峰系统及方法 | |
CN116247700B (zh) | 一种基于lng冷能利用的液态空气储能系统 | |
CN114033517B (zh) | 一种基于二氧化碳压缩储能的地热发电和冷热供应系统及运行方法 | |
CN105736056B (zh) | 液态空气储能系统 | |
CN106704126B (zh) | 基于压缩超临界co2气体蓄能的塔式太阳能热发电系统 | |
CN216381532U (zh) | 一种压缩空气储能系统 | |
CN203892021U (zh) | 一种集成吸收式制冷的压缩空气蓄能系统 | |
CN113700628A (zh) | 一种多联供液化空气储能系统及优化控制方法 | |
CN217652793U (zh) | 一种压缩空气储能电站组合式储换热系统 | |
CN105715377B (zh) | 分布式发电供热与分散式制冷耦合系统 | |
CN106677988B (zh) | 一种风光储能系统 | |
CN113309612B (zh) | 耦合压力能、压缩空气储能和太阳能的冷热电联供系统 | |
CN103266952B (zh) | 基于超临界空气的能源综合利用系统 | |
CN214944466U (zh) | 压缩空气-燃气双工质联合循环发电系统 | |
CN102162397A (zh) | 压水堆核动力燃汽轮机循环发电系统 | |
CN216044241U (zh) | 一种多联供液化空气储能系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160817 |
|
RJ01 | Rejection of invention patent application after publication |