WO2022068223A1 - 基于蓄热释热共用回路的压缩空气储能系统及方法 - Google Patents

基于蓄热释热共用回路的压缩空气储能系统及方法 Download PDF

Info

Publication number
WO2022068223A1
WO2022068223A1 PCT/CN2021/095229 CN2021095229W WO2022068223A1 WO 2022068223 A1 WO2022068223 A1 WO 2022068223A1 CN 2021095229 W CN2021095229 W CN 2021095229W WO 2022068223 A1 WO2022068223 A1 WO 2022068223A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
storage
packed bed
release
Prior art date
Application number
PCT/CN2021/095229
Other languages
English (en)
French (fr)
Inventor
谢宁宁
孙长平
尹立坤
蔺新星
张翼
毕然
Original Assignee
中国长江三峡集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110331953.6A external-priority patent/CN113027734A/zh
Priority claimed from CN202120629811.3U external-priority patent/CN214660744U/zh
Application filed by 中国长江三峡集团有限公司 filed Critical 中国长江三峡集团有限公司
Priority to GB2304021.5A priority Critical patent/GB2613990A/en
Publication of WO2022068223A1 publication Critical patent/WO2022068223A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/08Use of accumulators and the plant being specially adapted for a specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/42Storage of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the invention belongs to the technical field of energy storage, and relates to a compressed air energy storage system and method based on a heat storage and heat release shared circuit.
  • Compressed air energy storage is a large-scale physical energy storage technology - air is used as the energy storage medium, and when the electricity consumption is low, the abundant electricity can be converted through the conversion path of electrical energy-mechanical energy-molecular energy to realize the large-scale electrical energy in the form of high-pressure air.
  • Large-scale physical storage converts the stored high-pressure air into electrical energy for external output through the conversion path of intramolecular energy-mechanical energy-electrical energy at the peak of electricity consumption.
  • Compressed air energy storage technology has the advantages of environmental friendliness, long service life, large capacity and safe operation.
  • compressed air energy storage technology can be divided into two types: supplementary combustion and non-supplementary combustion.
  • the supplementary combustion type started in the 1970s and was developed on the basis of gas-fired power generation. This technical route is derived from the traditional supercharging theory of internal combustion engines, and decouples the continuous process of traditional gas turbine supercharging and expansion into two processes of air supercharging and turbo expansion.
  • Supplementary combustion energy storage system has high installed power and good economy. At the time of gas turbine technology, its cycle efficiency can reach 42-55%, and its cycle efficiency is only about 20% after supplementary combustion.
  • the non-supplementary combustion type is based on independent high-performance compressed air energy storage and is developed on the basis of improving the thermal efficiency of the aerodynamic cycle.
  • This technical route abandons the combination with gas turbine technology, and adopts a dedicated air turbine technology system; and does not rely on the supplementary heat of fossil fuels, by fully recovering and storing the heat of compression, it is used for gas supplementary heat in the power generation process to heat up, reducing extra heat heat demand, thereby increasing the overall operating efficiency of the system.
  • the installed power of the non-supplementary combustion compressed air energy storage technology is moderate, the economy is moderate, and the cycle efficiency can reach 50-65%.
  • Patents CN 105370408 A, CN 105370408 and CN 107299891 B are all compressed air energy storage methods that use non-supplementary combustion.
  • CN 105370408 A proposes a compact thermal storage system, the thermal storage range of the thermal storage subsystem is relatively low. , using water as the heat transfer medium and heat storage medium, although the investment cost can be reduced, but because the considered heat storage temperature and heat release temperature are not high, the heat transferred to the air entering the turbine during the energy release process is low, The overall efficiency of thermoelectric conversion needs to be improved.
  • a high-temperature heat storage subsystem is used, which can increase the temperature of the air entering the turbine to a higher temperature during the energy release process, thereby improving the thermoelectric conversion efficiency of the system, but the patent uses heat transfer oil.
  • the initial investment cost is high.
  • the technical problem to be solved by the present invention is to provide a compressed air energy storage system and method based on a heat storage and heat release shared circuit, which has a simple structure, and adopts a packed bed heat storage device, a liquid storage tank and a shield pump in series to form a heat storage and release circuit.
  • the heat exchanger is located in the heat storage and release circuit between the packed bed heat storage device of the heat storage and release circuit and the canned pump.
  • the side is connected to the high-pressure gas storage chamber
  • the expander is connected to the pipeline between the compressor and the heat exchanger, the heat storage and heat release share a circuit
  • the solid heat storage material and the liquid heat transfer medium jointly complete the heat storage and heat release , high heat storage efficiency, compact structure, less auxiliary and component equipment required, and low cost.
  • the technical scheme adopted in the present invention is: a compressed air energy storage system based on a heat storage and heat release shared circuit, which is characterized in that: it includes a compressor, a heat exchanger, a packed bed heat storage device, A liquid storage tank, a shielded pump, a high-pressure gas storage chamber and an expander; the packed bed heat storage device, the liquid storage tank and the shielded pump are connected in series to form a heat storage and release circuit, and the heat exchanger is located in the packed bed heat storage of the heat storage and release circuit.
  • the side of the heat exchanger close to the packed bed heat storage device is connected to the compressor, the side of the heat exchanger close to the canned pump is connected to the high-pressure gas storage chamber, and the expander is connected to the compressor. in the piping between the heat exchanger.
  • the inside of the packed bed heat storage device is solid heat storage material.
  • the packed bed heat storage device is a spray-type or split-flow packed bed.
  • a voltage stabilization system is arranged in the heat storage and release circuit, and the packed bed heat storage device is located between the voltage stabilization system and the liquid storage tank.
  • the pressure-stabilizing system comprises a pressure-stabilizing device and a gas flow regulating valve sequentially connected in the pressure-stabilizing pipeline, and one end of the gas flow regulating valve is connected to the heat storage and release circuit.
  • An expansion tank is arranged in the heat storage and release circuit, and the expansion tank is located between the packed bed heat storage device and the heat exchanger and is connected to the heat storage and release circuit.
  • the packed bed heat storage device is filled with solid heat storage material; the liquid heat transfer medium is stored in the liquid storage tank.
  • a three-way reversing valve is arranged in the pipeline between the compressor and the heat exchanger, and the expander is connected with the three-way reversing valve.
  • the inside of the packed bed heat storage device adopts a unit cell channel, a shower head, a porous plate, or a combination of the two, and a solid heat storage material is arranged inside and outside the cell channel.
  • filler the solid heat storage material of heat storage ball or stone with high heat storage density per unit volume is put into the packed bed heat storage device and sealed;
  • S5 energy storage stage, use low valley electricity or renewable energy to drive the compressor to compress the air, convert the high temperature and high pressure air into low temperature and high pressure air and store it in the high pressure air storage chamber;
  • the compressor and the canned pump are started, the high-temperature and high-pressure air discharged from the compressor enters the heat exchanger, and the heat exchanger absorbs heat and conducts heat conversion with the low-temperature liquid heat transfer medium discharged from the canned pump; in this process, the three-way exchange The valve prevents the high temperature and high pressure air from entering the expander;
  • the low temperature liquid heat transfer medium absorbs heat and enters the packed bed heat storage device, heats the solid heat storage material, and then returns to the liquid storage tank; the high temperature and high pressure air is cooled to form low temperature and high pressure air and enters the high pressure storage tank storage in the gas chamber;
  • the shielding pump starts, the high-temperature liquid heat transfer medium in the liquid storage tank enters the heat exchanger, and the heat exchanger absorbs heat and conducts heat conversion with the low-temperature and high-pressure air discharged from the high-pressure gas storage chamber;
  • the high temperature liquid heat transfer medium releases heat to the low temperature and high pressure air through the heat exchanger and then enters the packed bed heat storage device and exchanges heat with the internal high temperature solid heat storage material, absorbs heat and returns to the liquid storage tank;
  • the invention effectively optimizes the circulation loop of the original heat storage system in the stage of energy storage and heat storage and the loop loop of the heat release stage during energy release and power generation into one circulation loop.
  • Thermal complexity increases operability while further reducing initial system investment.
  • the invention combines spraying and shunt combined with high-efficiency heat exchange technology and heat storage and release circuit to further improve the heat storage and heat release efficiency of the packed bed, and further improve the overall efficiency of the compressed air energy storage system.
  • the heat storage adopts spraying combined with shunt heat storage
  • the packed bed is equipped with heat storage material
  • the heat transfer medium adopts a liquid medium with good fluidity, strong thermal conductivity and high specific heat capacity
  • the heat storage material adopts unit volume heat storage High-density, low-cost heat storage balls and stone materials.
  • the upper end of the packed bed is equipped with a spray device, and the lower end of the spray device is equipped with a diverter device, which uniformly sprays the liquid heat transfer medium and then distributes it to the heat storage material. Under the action of gravity, the liquid heat transfer medium seeps from top to bottom. into the heat storage medium and exchange heat with the heat storage medium in the process.
  • Positive or staggered cell channels are used inside the packed bed.
  • the distribution uniformity of the heat transfer fluid inside the packed bed is improved, thereby improving the heat transfer fluid and packing.
  • the heat exchange intensity and uniformity between the heat storage media inside the bed improve the heat storage efficiency of the packed bed heat storage device.
  • the cost can be reduced by more than 70%.
  • this technology can save 20% of the heat transfer medium consumption and further reduce the output. cost of investment.
  • the working temperature range is from normal temperature to 400 °C, and the pressure range is from normal pressure to 10MPa. It has the advantages of wide working temperature, wide working pressure, compact structure, high thermal efficiency, stable performance, low cost, long life, simple operation, safety and reliability. It is especially suitable for a large-scale physical energy storage technology as a core energy storage technology solution in renewable energy.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic diagram of another structure of the present invention.
  • FIG. 3 is a schematic diagram of another structure of the present invention.
  • FIG. 4 is a schematic diagram of another structure of the present invention.
  • FIG. 5 is a schematic diagram of another structure of the present invention.
  • FIG. 6 is a schematic structural diagram of the packed bed heat storage device of the present invention.
  • compressor 101 heat exchanger 102, pressure stabilization system 103, expansion tank 104, assembly 105, packed bed heat storage device 106, solid heat storage material 107, liquid storage tank 108, canned pump 109, high-pressure gas storage Chamber 110 , expander 111 , three-way reversing valve 112 .
  • a compressed air energy storage system based on a shared circuit for heat storage and heat release includes a compressor 101 , a heat exchanger 102 , a packed bed heat storage device 106 , a liquid storage tank 108 , and a shielded pump 109 , high-pressure gas storage chamber 110 and expander 111; the packed bed heat storage device 106, liquid storage tank 108 and canned pump 109 are connected in series to form a heat storage and release circuit, and the heat exchanger 102 is located in the packed bed heat storage of the heat storage and release circuit.
  • the side of the heat exchanger 102 close to the packed bed heat storage device 106 is connected to the compressor 101, and the side of the heat exchanger 102 close to the canned pump 109 is connected to the high-pressure gas storage chamber 110.
  • the expander 111 is connected in the pipeline between the compressor 101 and the heat exchanger 102 .
  • the system has a common circuit for heat storage and heat release.
  • the solid heat storage material and the liquid heat transfer medium jointly complete the heat storage and heat release. The structure is compact, the required auxiliary and component equipment is reduced, and the cost is low.
  • the inside of the packed bed heat storage device 106 is a solid heat storage material.
  • the packed bed heat storage device 106 is a spray-type or split-flow packed bed.
  • a voltage stabilization system 103 is set in the heat storage and release circuit, and the packed bed heat storage device 106 is located between the voltage stabilization system 103 and the liquid storage tank 108 .
  • the structure is simple. When in use, the heat storage and release circuit circulates in a clockwise direction to store and release heat.
  • the pressure-stabilizing system 103 includes a pressure-stabilizing device and a gas flow regulating valve sequentially connected in the pressure-stabilizing pipeline, and one end of the gas-flow regulating valve is connected to the heat storage and release circuit.
  • the structure is simple. Before the liquid heat transfer medium is injected into the packed bed heat storage device 106, the gas flow regulating valve is opened to exhaust the air in the heat release circuit, and then the size of the gas flow regulating valve is adjusted to set the pressure value of the voltage stabilizer.
  • the stabilizing gas in the stabilizing system is air, nitrogen, helium or argon.
  • an expansion tank 104 is provided in the heat storage and release circuit, and the expansion tank 104 is located between the packed bed heat storage device 106 and the heat exchanger 102 and is connected to the heat storage and release circuit.
  • the structure is simple, and the expansion tank 104 is used for injecting the liquid heat transfer medium into the heat release circuit, and prevents the volume expansion from affecting the pipeline during the temperature rise of the liquid heat transfer medium.
  • the packed bed heat storage device 106 is filled with a solid heat storage material 107 ; the liquid storage tank 108 stores a liquid heat transfer medium.
  • the packed bed heat storage device 106 is filled with solid heat storage materials, and the solid heat storage materials are granular or porous rocks, ore, slag, concrete, refractory bricks, ceramic balls or metals, which have high thermal conductivity and heat storage density per unit volume. large and low cost.
  • the heat storage temperature is from room temperature to 400°C, and the working pressure is from normal pressure to 10Mpa.
  • a three-way reversing valve 112 is provided in the pipeline between the compressor 101 and the heat exchanger 102 , and the expander 111 is connected to the three-way reversing valve 112 .
  • the high-temperature and low-pressure air discharged from the high-pressure gas storage chamber 110 is heated by the heat exchanger 102 to form high-temperature and high-pressure air and enters the expander 111 to drive the expander 111 to do work.
  • the high-pressure gas storage chamber 110 is connected to the heat exchanger 102, the compressor 101 and the expander 111 are connected to the heat exchanger 102 on both sides of the compressor 101, and a solenoid valve is provided at the outlet end of the high-pressure gas storage chamber 110, which is controlled by the solenoid valve
  • the high-pressure gas storage chamber 110 stores and exhausts gas.
  • two sets of compressors 101 and expanders 111 connected in series are respectively connected to two sets of heat exchangers 102 .
  • the number of high-pressure gas storage chambers 110 is multiple, and is connected to any one of the heat exchangers 102 .
  • the number of the packed bed heat storage devices 106 is two groups, which are connected in parallel with the heat storage and release circuit in series.
  • the inside of the packed bed heat storage device 106 adopts a unit cell channel and a shower head, a perforated plate, or a combination 105 of the two, and a solid heat storage material 107 is arranged inside and outside the cell channel.
  • solid heat storage material is used inside the packed bed to improve heat exchange efficiency and reduce the amount of heat transfer medium, and at the same time, the inside of the packed bed adopts normal or staggered cell channels.
  • the distribution uniformity of the heat transfer fluid in the packed bed can be improved, thereby improving the heat exchange intensity and uniformity between the heat transfer fluid and the heat storage medium in the packed bed, and improving the storage capacity of the packed bed.
  • the thermal storage efficiency of the thermal device is not limited to improve heat exchange efficiency and reduce the amount of heat transfer medium, and at the same time, the inside of the packed bed adopts normal or staggered cell channels.
  • the above-mentioned energy storage method for the compressed air energy storage system based on the heat storage and heat release shared circuit it comprises the following steps:
  • the compressor 101 in the energy storage stage, the compressor 101 is electrically driven by low valley electricity or renewable energy to compress the air, and the high-temperature and high-pressure air is converted into low-temperature high-pressure air and stored in the high-pressure air storage chamber 110;
  • the compressor 101 and the canned pump 109 are started, the high-temperature and high-pressure air discharged from the compressor 101 enters the heat exchanger 102, and the heat exchanger 102 absorbs heat and performs heat conversion with the low-temperature liquid heat transfer medium discharged from the canned pump 109; this During the process, the three-way reversing valve 112 prevents the high temperature and high pressure air from entering the expander 111;
  • the low temperature liquid heat transfer medium enters the packed bed heat storage device 106 after absorbing heat, heats the solid heat storage material 107, and then returns to the liquid storage tank 108; the high temperature and high pressure air is cooled to form low temperature and high pressure air Enter the high-pressure gas storage chamber 110 for storage;
  • the energy release stage during the peak period of electricity consumption, the low-temperature and high-pressure air in the high-pressure gas storage chamber 110 is converted into high-temperature and high-pressure air and sent to the expander 111 to do work;
  • the shielding pump 109 is started, the high-temperature liquid heat transfer medium in the liquid storage tank 108 enters the heat exchanger 102, and the heat exchanger 102 absorbs heat and performs heat conversion with the low-temperature and high-pressure air discharged from the high-pressure gas storage chamber 110;
  • the high temperature liquid heat transfer medium releases heat to the low temperature and high pressure air through the heat exchanger and then enters the packed bed heat storage device 106 and exchanges heat with the high temperature solid heat storage material inside, absorbs heat and returns to the liquid storage tank 108 middle; the high temperature and high pressure air formed after the conversion of the low temperature and high pressure air enters the expander 111 to do work; during this process, the three-way reversing valve 112 prevents the low temperature and high pressure air from entering the compressor 101;

Abstract

一种基于蓄热释热共用回路的压缩空气储能系统及方法,通过填充床蓄热装置(106)、储液罐(108)和屏蔽泵(109)依次串联形成蓄释热回路,换热器(102)位于蓄释热回路的流式填充床蓄热装置(106)和屏蔽泵(109)之间的蓄释热回路中,换热器(102)靠近流式填充床蓄热装置(106)一侧与压缩机(101)连接,换热器(102)靠近屏蔽泵(109)一侧与高压储气室(110)连接,膨胀机(111)连接于压缩机(101)和换热器(102)之间的管路中,克服了原系统中两个回路完成蓄热和释热使系统投入成本过高的问题,结构简单,蓄热和释热共用一个回路,蓄热效率高,结构紧凑,所需辅助及组成设备减少,成本低。

Description

基于蓄热释热共用回路的压缩空气储能系统及方法 技术领域
本发明属于储能技术领域,涉及一种基于蓄热释热共用回路的压缩空气储能系统及方法。
背景技术
压缩空气储能是一种大规模物理储能技术—采用空气作为储能介质,在用电低谷时可将富裕的电通过电能-机械能-分子内能的转化路径实现电能以高压空气的形式大规模物理存储,在用电高峰时通过分子内能-机械能-电能的转化路径,把储存起来的高压空气转化为电能对外输出。压缩空气储能技术具有环境友好、使用寿命长、容量大及操作安全等优点。
压缩空气储能技术目前可以分为补燃式和非补燃式两类。补燃式是始于20世纪70年代,是以燃气发电为基础展开的。该技术路线脱胎于传统的内燃机增压理论,将传统燃气轮机增压膨胀的连续过程进行解耦变为空气增压和透平膨胀两个过程。补燃式储能系统装机功率大,经济性好,以当时的燃气轮机技术水平其循环效率可达42-55%,除去补燃其循环效率只有20%左右。而非补燃式是以独立的高性能压缩空气储能为出发点,以提高针对空气动力循环热效率为基础展开的。该技术路线摒弃与燃气轮机技术的结合,采用专用的空气透平技术体系;并且不依赖化石燃料的补热,通过充分回收压缩热并进行储存,在发电过程中为气体补热升温所用,减少额外热量需求,从而提高系统整体的运行效率。非补燃式压缩空气储能技术装机功率适中,经济性适中,循环效率可达50-65%。
专利CN 105370408 A、CN 105370408及专利CN 107299891 B都是采用非补燃方式的压缩空气储能方式,其中CN 105370408 A虽然提出了紧凑型蓄热系统,但蓄热子系统的蓄热范围较低,采用水作为传热介质和蓄热介质,虽然可以降低出投资成本,但是因为考虑的蓄热温度和释热温度不高,在释能过程中传递给进入透平的空气的热量较低,热电转化的整体效率有待提高。而专利CN105370408、CN 107299891B中是采用高温蓄热子系统,能够在释能过程中使进入透平的空气提高到更高的温度,从而提高系统的热电转化效率,但是该专利中是采用导热油作为传热介质和蓄热介质,而且在储能过程和释能过程中蓄热系统中是两个独立循环回路,初投资成本高昂。
发明内容
本发明所要解决的技术问题是提供一种基于蓄热释热共用回路的压缩空气储能系统及方法,结构简单,采用填充床蓄热装置、储液罐和屏蔽泵依次串联形成蓄释热回路,换热 器位于蓄释热回路的填充床蓄热装置和屏蔽泵之间的蓄释热回路中,换热器靠近填充床蓄热装置一侧与压缩机连接,换热器靠近屏蔽泵一侧与高压储气室连接,膨胀机连接于压缩机和换热器之间的管路中,蓄热和释热共用一个回路,固体蓄热材料和液态传热介质共同完成蓄热和释热,蓄热效率高,结构紧凑,所需辅助及组成设备减少,成本低。
为解决上述技术问题,本发明所采用的技术方案是:一种基于蓄热释热共用回路的压缩空气储能系统,其特征是:它包括压缩机、换热器、填充床蓄热装置、储液罐、屏蔽泵、高压储气室和膨胀机;所述填充床蓄热装置、储液罐和屏蔽泵依次串联形成蓄释热回路,换热器位于蓄释热回路的填充床蓄热装置和屏蔽泵之间的蓄释热回路中,换热器靠近填充床蓄热装置一侧与压缩机连接,换热器靠近屏蔽泵一侧与高压储气室连接,膨胀机连接于压缩机和换热器之间的管路中。
所述填充床蓄热装置内部为固体蓄热材料。
所述填充床蓄热装置为喷淋式或分流式填充床。
所述蓄释热回路中设置稳压系统,填充床蓄热装置位于稳压系统和储液罐之间。
所述稳压系统包括稳压管路中依次连接的稳压装置和气体流量调节阀,体流量调节阀一端与蓄释热回路连接。
所述蓄释热回路中设置膨胀槽,膨胀槽位于填充床蓄热装置和换热器之间与蓄释热回路连接。
所述填充床蓄热装置内填充固体蓄热材料;储液罐内储存液态传热介。
所述压缩机和换热器之间的管路中设置三通换向阀,膨胀机与三通换向阀连接。
所述填充床蓄热装置内部的采用单元格通道与喷淋头、多孔板、或两者的组合体,单元格通道内外设置固体蓄热材料。
如上所述的基于蓄热释热共用回路的压缩空气储能系统的储能方法,它包括如下步骤:
S1,填料,将单位体积蓄热密度大的蓄热球或石子的固体蓄热材料装入填充床蓄热装置内密封;
S2,除气,打开气体流量调节阀,利用稳压系统的稳压装置对蓄释热回路除气,将蓄释热回路中的空气排尽;
S3,注入传热介质,将液态传热介质直接注入储液罐内;
S4,压力调节,调节气体流量调节阀,对子填充床蓄热装置进行加压至设定工作压力;
S5,储能阶段,利用低谷电或可再生能源电驱动压缩机对空气进行压缩,将高温高压空气转 换成低温高压空气储存于高压储气室中;
S5-1,压缩机和屏蔽泵启动,压缩机排出的高温高压空气进入换热器,换热器吸收热量后与屏蔽泵排出的低温液态传热介质进行热量转换;此过程中,三通换向阀阻止高温高压空气进入膨胀机;
S5-2,低温液态传热介质吸收热量后进入填充床蓄热装置内,对固体蓄热材料进行加温,之后再回流至储液罐中;高温高压空气降温后形成低温高压空气进入高压储气室内储存;
S5-3,当填充床蓄热装置内部的固体蓄热材料全部蓄热完毕,或者高压储气室内的低温高压空气达到设定容量及压力值时,储能过程结束;压缩机、屏蔽泵和三通换向阀关闭;
S6,释能阶段,在用电高峰期,高压储气室内的低温高压空气转换成高温高压空气输送给膨胀机做功;
S6-1,屏蔽泵启动,储液罐里面的高温液态传热介质进入换热器,换热器吸收热量后与高压储气室排出的低温高压空气进行热量转换;
S6-2,高温液态传热介质通过换热器释放热量给低温高压空气后进入填充床蓄热装置内并与内部的高温固体蓄热材料进行热交换,吸收热量再回流至储液罐中;低温高压空气转换后形成的高温高压空气进入膨胀机做功;此过程中,三通换向阀阻止低温高压空气进入压缩机;
S6-3,当填充床蓄热装置内部的固体蓄热材料全部释热完毕或高压储气室内的低温高压空气释放达到设定值时,释能过程结束。
本发明同时把原蓄热系统中在储能蓄热阶段的循环回路和释能发电时释热阶段的循环回路有效的优化为一个循环回路,在同样满足性能需求的前提下,大大缩减了蓄热的复杂性,增加了可操作性的同时进一步降低系统的初投资。
本发明将喷淋和分流结合高效换热技术与蓄释热回路相结合,进一步提高填充床的储热释热效率,进一步提高压缩空气储能系统的整体效率。
本发明中蓄热采用喷淋结合分流方式蓄热,填充床内部装有蓄热材料,传热介质采用具有流动性好、导热性能强、高比热容的液态介质,蓄热材料采用单位体积蓄热密度大、价格低廉的蓄热球、石子材料。
填充床内部上端设制喷淋装置,喷淋装置下端设置分流装置,均匀的把液态传热介质喷射后再分流至蓄热材料上面,液态传热介质在重力的作用下,自上而下渗流入蓄热介质中,并在此过程中与蓄热介质进行热交换。
在填充床内部采用正排列式或交错排列式的单元格通道,当传热流体流入填充床内部通过单元格通道时,提高填充床内部传热流体的分布均匀性,从而提高传热流体与填充床 内部蓄热介质之间的热交换强度与均匀性,提升填充床蓄热装置的蓄热效率。
相比传统双罐或单罐导热油蓄热系统,成本可降低70%以上,相比液体传热介质全部充满填充床而言,本技术可以节省20%的传热介质用量,进一步降低了出投资成本。
工作温度范围为常温至400℃,压力范围为常压至10MPa,具有宽工作温度、宽工作压力、结构紧凑、热效率高、性能稳定、成本低、寿命长、操作简单并安全可靠的优点。特别适用于可再生能源中作为核心储能技术方案的一种大规模物理储能技术。
附图说明
下面结合附图和实施例对本发明作进一步说明:
图1为本发明的结构示意图。
图2为本发明另一种的结构示意图。
图3为本发明另一种的结构示意图。
图4为本发明另一种的结构示意图。
图5为本发明另一种的结构示意图。
图6为本发明填充床蓄热装置的结构示意图。
图中:压缩机101,换热器102,稳压系统103,膨胀槽104,组合体105,填充床蓄热装置106,固体蓄热材料107,储液罐108,屏蔽泵109,高压储气室110,膨胀机111,三通换向阀112。
具体实施方式
如图1~图6中,一种基于蓄热释热共用回路的压缩空气储能系统,它包括压缩机101、换热器102、填充床蓄热装置106、储液罐108、屏蔽泵109、高压储气室110和膨胀机111;所述填充床蓄热装置106、储液罐108和屏蔽泵109依次串联形成蓄释热回路,换热器102位于蓄释热回路的填充床蓄热装置106和屏蔽泵109之间的蓄释热回路中,换热器102靠近填充床蓄热装置106一侧与压缩机101连接,换热器102靠近屏蔽泵109一侧与高压储气室110连接,膨胀机111连接于压缩机101和换热器102之间的管路中。该系统具备蓄热和释热共用一个回路,固体蓄热材料和液态传热介质共同完成蓄热和释热,结构紧凑,所需辅助及组成设备减少,成本低。
优选的方案中,所述填充床蓄热装置106内部为固体蓄热材料。
优选的方案中,所述填充床蓄热装置106为喷淋式或分流式填充床。
优选的方案中,所述蓄释热回路中设置稳压系统103,填充床蓄热装置106位于稳压系统103和储液罐108之间。结构简单,使用时,蓄释热回路按顺时针方向循环流动蓄热和 释热。
优选的方案中,所述稳压系统103包括稳压管路中依次连接的稳压装置和气体流量调节阀,体流量调节阀一端与蓄释热回路连接。结构简单,在液态传热介质注入填充床蓄热装置106前,打开气体流量调节阀,将释热回路中的空气排尽,再调节气体流量调节阀大小,设定稳压装置的压力值。
优选地,稳压系统中的稳压气体为空气、氮气、氦气或氩气。
优选的方案中,所述蓄释热回路中设置膨胀槽104,膨胀槽104位于填充床蓄热装置106和换热器102之间与蓄释热回路连接。结构简单,膨胀槽104用于向释热回路注入液态传热介质,且防止在液态传热介质温度上升过程中体积膨胀对管道带来影响。
优选的方案中,所述填充床蓄热装置106内填充固体蓄热材料107;储液罐108内储存液态传热介。填充床蓄热装置106内填充固体蓄热材料,固体蓄热材料为颗粒状或多孔状的岩石、矿石、矿渣、混凝土、耐火砖、陶瓷球或金属,具有导热性能高、单位体积蓄热密度大、成本低的特点。
优选地,蓄热温度为室温至400℃,工作压力为常压至10Mpa。
优选的方案中,所述压缩机101和换热器102之间的管路中设置三通换向阀112,膨胀机111与三通换向阀112连接。使用时,从高压储气室110排出的高温低压空气经过换热器102加热后形成高温高压空气进入膨胀机111,驱动膨胀机111做功。
优选地,高压储气室110与换热器102连接,压缩机101和膨胀机111位于压缩机101两侧与换热器102连接,高压储气室110出口端设置电磁阀,由电磁阀控制高压储气室110储气和排气。
优选地,两组串联的压缩机101和膨胀机111分别与两组换热器102连接。
优选地,高压储气室110的数量为多个,与其中任一个换热器102连接。
优选地,填充床蓄热装置106的数量为两组,并联后与蓄释热回路串联。
优选的方案中,所述填充床蓄热装置106内部的采用单元格通道与喷淋头、多孔板、或两者的组合体105,单元格通道内外设置固体蓄热材料107。
优选地,填充床蓄热装置,填充床内部采用固体蓄热材料,提高换热效率并减少传热介质的用量,同时填充床内部采用正排列式或交错排列式的单元格通道,当传热流体流入填充床内部通过单元格通道时,可以提高填充床内部传热流体的分布均匀性,从而提高传热流体与填充床内部蓄热介质之间的热交换强度与均匀性,提升填充床蓄热装置的蓄热效率。
优选的方案中,如上所述的基于蓄热释热共用回路的压缩空气储能系统的储能方 法,它包括如下步骤:
S1,填料,将单位体积蓄热密度大的蓄热球或石子的固体蓄热材料107装入填充床蓄热装置106内密封;
S2,除气,打开气体流量调节阀,利用稳压系统103的稳压装置对蓄释热回路除气,将蓄释热回路中的空气排尽;
S3,注入传热介质,将液态传热介质直接注入储液罐108内;
S4,压力调节,调节气体流量调节阀,对子填充床蓄热装置106进行加压至设定工作压力;
S5,储能阶段,利用低谷电或可再生能源电驱动压缩机101对空气进行压缩,将高温高压空气转换成低温高压空气储存于高压储气室110中;
S5-1,压缩机101和屏蔽泵109启动,压缩机101排出的高温高压空气进入换热器102,换热器102吸收热量后与屏蔽泵109排出的低温液态传热介质进行热量转换;此过程中,三通换向阀112阻止高温高压空气进入膨胀机111;
S5-2,低温液态传热介质吸收热量后进入填充床蓄热装置106内,对固体蓄热材料107进行加温,之后再回流至储液罐108中;高温高压空气降温后形成低温高压空气进入高压储气室110内储存;
S5-3,当填充床蓄热装置106内部的固体蓄热材料107全部蓄热完毕,或者高压储气室110内的低温高压空气达到设定容量及压力值时,储能过程结束;压缩机101、屏蔽泵109和三通换向阀112关闭;
S6,释能阶段,在用电高峰期,高压储气室110内的低温高压空气转换成高温高压空气输送给膨胀机111做功;
S6-1,屏蔽泵109启动,储液罐108里面的高温液态传热介质进入换热器102,换热器102吸收热量后与高压储气室110排出的低温高压空气进行热量转换;
S6-2,高温液态传热介质通过换热器释放热量给低温高压空气后进入填充床蓄热装置106内并与内部的高温固体蓄热材料进行热交换,吸收热量再回流至储液罐108中;低温高压空气转换后形成的高温高压空气进入膨胀机111做功;此过程中,三通换向阀112阻止低温高压空气进入压缩机101;
S6-3,当填充床蓄热装置106内部的固体蓄热材料107全部释热完毕或高压储气室110内的低温高压空气释放达到设定值时,释能过程结束。
上述的实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本申请中的实施例及实施例中的特征在不冲突的情况下,可以相互任意组合。本发明的保护范围应 以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围。即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (10)

  1. 一种基于蓄热释热共用回路的压缩空气储能系统,其特征是:它包括压缩机(101)、换热器(102)、填充床蓄热装置(106)、储液罐(108)、屏蔽泵(109)、高压储气室(110)和膨胀机(111);所述填充床蓄热装置(106)、储液罐(108)和屏蔽泵(109)依次串联形成蓄释热回路,换热器(102)位于蓄释热回路的填充床蓄热装置(106)和屏蔽泵(109)之间的蓄释热回路中,换热器(102)靠近填充床蓄热装置(106)一侧与压缩机(101)连接,换热器(102)靠近屏蔽泵(109)一侧与高压储气室(110)连接,膨胀机(111)连接于压缩机(101)和换热器(102)之间的管路中。
  2. 根据权利要求1所述的基于蓄热释热共用回路的压缩空气储能系统,其特征是:所述填充床蓄热装置(106)内部为固体蓄热材料。
  3. 根据权利要求1所述的基于蓄热释热共用回路的压缩空气储能系统,其特征是:所述填充床蓄热装置(106)为喷淋式或分流式填充床。
  4. 根据权利要求1所述的基于蓄热释热共用回路的压缩空气储能系统,其特征是:所述蓄释热回路中设置稳压系统(103),填充床蓄热装置(106)位于稳压系统(103)和储液罐(108)之间。
  5. 根据权利要求4所述的基于蓄热释热共用回路的压缩空气储能系统,其特征是:所述稳压系统(103)包括稳压管路中依次连接的稳压装置和气体流量调节阀,气体流量调节阀一端与蓄释热回路连接。
  6. 根据权利要求1所述的基于蓄热释热共用回路的压缩空气储能系统,其特征是:所述蓄释热回路中设置膨胀槽(104),膨胀槽(104)位于填充床蓄热装置(106)和换热器(102)之间与蓄释热回路连接。
  7. 根据权利要求1所述的基于蓄热释热共用回路的压缩空气储能系统,其特征是:所述填充床蓄热装置(106)内填充固体蓄热材料(107);储液罐(108)内储存液态传热介。
  8. 根据权利要求1所述的基于蓄热释热共用回路的压缩空气储能系统,其特征是:所述压缩机(101)和换热器(102)之间的管路中设置三通换向阀(112),膨胀机(111)与三通换向阀(112)连接。
  9. 根据权利要求3所述的基于蓄热释热共用回路的压缩空气储能系统,其特征是:所述填充床蓄热装置(106)内部的采用单元格通道与喷淋头、多孔板、或两者的组合体(105),单元格通道内外设置固体蓄热材料(107)。
  10. 根据权利要求1~9任一项所述的基于蓄热释热共用回路的压缩空气储能系统的储能方法,其特征是,它包括如下步骤:
    S1,填料,将单位体积蓄热密度大的蓄热球或石子的固体蓄热材料(107)装入填充床蓄热装置(106)内密封;
    S2,除气,打开气体流量调节阀,利用稳压系统(103)的稳压装置对蓄释热回路除气,将蓄释热回路中的空气排尽;
    S3,注入传热介质,将液态传热介质直接注入储液罐(108)内;
    S4,压力调节,调节气体流量调节阀,对子填充床蓄热装置(106)进行加压至设定工作压力;
    S5,储能阶段,利用低谷电或可再生能源电驱动压缩机(101)对空气进行压缩,将高温高压空气转换成低温高压空气储存于高压储气室(110)中;
    S5-1,压缩机(101)和屏蔽泵(109)启动,压缩机(101)排出的高温高压空气进入换热器(102),换热器(102)吸收热量后与屏蔽泵(109)排出的低温液态传热介质进行热量转换;此过程中,三通换向阀(112)阻止高温高压空气进入膨胀机(111);
    S5-2,低温液态传热介质吸收热量后进入填充床蓄热装置(106)内,将热量传递给固体蓄热材料(107)使之升温,之后再回流至储液罐(108)中;高温高压空气降温后形成低温高压空气进入高压储气室(110)内储存;
    S5-3,当填充床蓄热装置(106)内部的固体蓄热材料(107)全部蓄热完毕,或者高压储气室(110)内的低温高压空气达到设定容量及压力值时,储能过程结束;压缩机(101)、屏蔽泵(109)和三通换向阀(112)关闭;
    S6,释能阶段,在用电高峰期,高压储气室(110)内的低温高压空气转换成高温高压空气输送给膨胀机(111)做功;
    S6-1,屏蔽泵(109)启动,储液罐(108)里面的高温液态传热介质进入换热器(102),换热器(102)吸收热量后与高压储气室(110)排出的低温高压空气进行热量转换;
    S6-2,高温液态传热介质通过换热器释放热量给低温高压空气后进入填充床蓄热装置(106)内并与内部的高温固体蓄热材料进行热交换,吸收热量再回流至储液罐(108)中;低温高压空气转换后形成的高温高压空气进入膨胀机(111)做功;此过程中,三通换向阀(112)阻止低温高压空气进入压缩机(101);
    S6-3,当填充床蓄热装置(106)内部的固体蓄热材料(107)全部释热完毕或高压储气室(110)内的低温高压空气释放达到设定值时,释能过程结束。
PCT/CN2021/095229 2021-03-29 2021-05-21 基于蓄热释热共用回路的压缩空气储能系统及方法 WO2022068223A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2304021.5A GB2613990A (en) 2021-03-29 2021-05-21 Compressed air energy storage system and method based on common heat storage and release loop

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110331953.6A CN113027734A (zh) 2021-03-29 2021-03-29 基于蓄热释热共用回路的压缩空气储能系统及方法
CN202110331953.6 2021-03-29
CN202120629811.3 2021-03-29
CN202120629811.3U CN214660744U (zh) 2021-03-29 2021-03-29 基于蓄热释热共用回路的压缩空气储能系统

Publications (1)

Publication Number Publication Date
WO2022068223A1 true WO2022068223A1 (zh) 2022-04-07

Family

ID=80950918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095229 WO2022068223A1 (zh) 2021-03-29 2021-05-21 基于蓄热释热共用回路的压缩空气储能系统及方法

Country Status (2)

Country Link
GB (1) GB2613990A (zh)
WO (1) WO2022068223A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592938A (zh) * 2022-04-11 2022-06-07 中国科学院工程热物理研究所 一种热泵储电耦合液化空气储能综合系统及储能方法
CN114962223A (zh) * 2022-05-05 2022-08-30 中能建数字科技有限公司 熔盐介质的压缩空气储能系统及其操作方法
CN115234329A (zh) * 2022-08-24 2022-10-25 哈电发电设备国家工程研究中心有限公司 一种闭式循环压缩储能发电系统及其运行方法
CN115313667A (zh) * 2022-07-28 2022-11-08 北京百度网讯科技有限公司 耦合蒸汽循环的储能系统及储能系统控制方法
CN116430924A (zh) * 2023-06-13 2023-07-14 百穰新能源科技(深圳)有限公司 温度控制方法、装置、计算机设备及计算机可读存储介质
CN117308663A (zh) * 2023-10-18 2023-12-29 浙江大学 压缩空气储能系统及其运行方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100126171A1 (en) * 2008-09-18 2010-05-27 Smith Douglas W P Method and apparatus for generating electricity
CN102758690A (zh) * 2012-07-29 2012-10-31 中国科学院工程热物理研究所 高效高压液态空气储能/释能系统
CN106437874A (zh) * 2016-08-30 2017-02-22 南京工业大学 一种利用相变储能的新型液态空气储能系统
CN110578559A (zh) * 2018-06-08 2019-12-17 清华大学 一种压缩空气储能回热系统及方法
KR20200033649A (ko) * 2018-09-20 2020-03-30 삼성중공업 주식회사 액체공기를 이용한 가스터빈 발전 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100126171A1 (en) * 2008-09-18 2010-05-27 Smith Douglas W P Method and apparatus for generating electricity
CN102758690A (zh) * 2012-07-29 2012-10-31 中国科学院工程热物理研究所 高效高压液态空气储能/释能系统
CN106437874A (zh) * 2016-08-30 2017-02-22 南京工业大学 一种利用相变储能的新型液态空气储能系统
CN110578559A (zh) * 2018-06-08 2019-12-17 清华大学 一种压缩空气储能回热系统及方法
KR20200033649A (ko) * 2018-09-20 2020-03-30 삼성중공업 주식회사 액체공기를 이용한 가스터빈 발전 시스템

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592938A (zh) * 2022-04-11 2022-06-07 中国科学院工程热物理研究所 一种热泵储电耦合液化空气储能综合系统及储能方法
CN114592938B (zh) * 2022-04-11 2023-07-04 中国科学院工程热物理研究所 一种热泵储电耦合液化空气储能综合系统及储能方法
CN114962223A (zh) * 2022-05-05 2022-08-30 中能建数字科技有限公司 熔盐介质的压缩空气储能系统及其操作方法
CN114962223B (zh) * 2022-05-05 2024-04-12 吉能国际能源有限公司 熔盐介质的压缩空气储能系统及其操作方法
CN115313667A (zh) * 2022-07-28 2022-11-08 北京百度网讯科技有限公司 耦合蒸汽循环的储能系统及储能系统控制方法
CN115234329A (zh) * 2022-08-24 2022-10-25 哈电发电设备国家工程研究中心有限公司 一种闭式循环压缩储能发电系统及其运行方法
CN116430924A (zh) * 2023-06-13 2023-07-14 百穰新能源科技(深圳)有限公司 温度控制方法、装置、计算机设备及计算机可读存储介质
CN116430924B (zh) * 2023-06-13 2023-09-08 百穰新能源科技(深圳)有限公司 温度控制方法、装置、计算机设备及计算机可读存储介质
CN117308663A (zh) * 2023-10-18 2023-12-29 浙江大学 压缩空气储能系统及其运行方法

Also Published As

Publication number Publication date
GB2613990A (en) 2023-06-21

Similar Documents

Publication Publication Date Title
WO2022068223A1 (zh) 基于蓄热释热共用回路的压缩空气储能系统及方法
CN109059318B (zh) 一种喷淋式填充床储热系统及其运行方法
CN214660744U (zh) 基于蓄热释热共用回路的压缩空气储能系统
CN113027734A (zh) 基于蓄热释热共用回路的压缩空气储能系统及方法
CN112796981A (zh) 具有高效储热性能的非补燃压缩空气储能系统及方法
CN108640082B (zh) 一种利用金属氢化物梯级回收余热的装置和方法
WO2023193486A1 (zh) 一种常温液态压缩二氧化碳混合工质储能系统及方法
CN109372657B (zh) 一种新型预冷空气组合发动机
CN112901299A (zh) 一种带电热储能的超临界co2布雷顿循环发电系统及方法
CN112412561B (zh) 压缩空气储能系统和火力发电厂控制系统耦合控制方法
CN109084498A (zh) 一种绝热压缩空气-高温差热泵耦合系统
CN105715518A (zh) 一种夏供冷冬供热冷热电三联供装置及方法
CN114856744B (zh) 一种基于油气井的跨临界二氧化碳的储能系统及方法
CN115263477A (zh) 耦合储能和布雷顿循环的气冷微堆能量转换系统及方法
CN113540504B (zh) 热泵式-氢能复合储能发电方法及装置
WO2022166031A1 (zh) 基于填充床的压缩空气储能系统及方法
CN109944757B (zh) 一种应用在太空环境中的太阳能热发电系统及工作方法
CN112796980A (zh) 基于高效储热性能的压缩空气储能系统及方法
WO2022257856A1 (zh) 一种朗肯循环系统及朗肯循环方法
WO2022222219A1 (zh) 多源蓄热式压缩空气储能综合利用系统及方法
CN214660402U (zh) 一种带电热储能的超临界co2布雷顿循环发电系统
CN114837760A (zh) 一种基于小型氟盐冷却高温堆的高效制氢与发电耦合系统
CN214403914U (zh) 基于改进型高效储热装置的压缩空气储能系统
CN214403913U (zh) 基于高效储热性能的压缩空气储能系统
CN112901462A (zh) 基于改进型高效储热装置的压缩空气储能系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202304021

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210521

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873885

Country of ref document: EP

Kind code of ref document: A1