WO2024040537A1 - 功率变换器及电源 - Google Patents

功率变换器及电源 Download PDF

Info

Publication number
WO2024040537A1
WO2024040537A1 PCT/CN2022/114925 CN2022114925W WO2024040537A1 WO 2024040537 A1 WO2024040537 A1 WO 2024040537A1 CN 2022114925 W CN2022114925 W CN 2022114925W WO 2024040537 A1 WO2024040537 A1 WO 2024040537A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
switch
conversion circuit
rectifier device
primary winding
Prior art date
Application number
PCT/CN2022/114925
Other languages
English (en)
French (fr)
Inventor
何正言
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2022/114925 priority Critical patent/WO2024040537A1/zh
Priority to CN202280035700.7A priority patent/CN117356023A/zh
Publication of WO2024040537A1 publication Critical patent/WO2024040537A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present application relates to the field of power supplies, and in particular, to a power converter and a power supply.
  • a transformer In a DC-DC (Direct Current-Direct Current) converter, a transformer is usually used to achieve the input and output isolation function.
  • the energy transmission of the DC-DC converter includes converting the input DC voltage into an AC voltage, and the AC voltage is converted into a DC voltage output through transformer coupling.
  • a correction capacitor can be connected in series to the transformer to avoid the problem of bias excitation of the transformer under the excitation of two different input voltages.
  • This application provides a power converter and a power supply, which can improve the voltage regulation flexibility of the power converter.
  • a power converter in a first aspect, includes a DC-AC conversion circuit, a transformer and a first AC-DC conversion circuit. Wherein, the DC-AC conversion circuit is coupled with the first AC-DC conversion circuit through a transformer.
  • the primary winding of the transformer includes at least two sub-primary windings, and the at least two sub-primary windings include at least three primary winding connection terminals, wherein at least two sub-primary windings share one primary winding connection terminal, and at least three primary side windings are connected to each other.
  • the side winding connection terminals are connected to at least three output connection terminals of the DC-AC conversion circuit in one-to-one correspondence. The number of turns of the sub-primary winding is adjusted accordingly according to the change of the corresponding connected excitation voltage.
  • the DC-AC conversion circuit is used to generate at least two different excitation voltages in a time-sharing manner.
  • One excitation voltage is correspondingly output to a sub-primary winding, and the number of turns of the sub-primary winding changes according to the change of the input excitation voltage. Adjust accordingly.
  • the power converter further includes a capacitor, and the capacitor is connected in series with the transformer.
  • setting a capacitor in series with the transformer can solve the bias excitation problem caused by at least two different excitation voltages input to the transformer.
  • the DC-AC conversion circuit includes a first switch, a second switch, a third switch and a fourth switch.
  • the first switch and the third switch are connected in series and then connected to the second DC source.
  • One end of the second switch is connected to the first DC source, and the other end of the second switch serves as the output connection end of the DC-AC conversion circuit and is connected to one end of the first sub-primary winding of at least two sub-primary windings.
  • One end of the fourth switch is connected to one end of the second sub-primary winding of at least two sub-primary windings, and the other end of the fourth switch is connected to ground.
  • the common connection end of the first sub-primary winding and the second sub-primary winding is connected to the series connection end of the first switch and the third switch through a capacitor.
  • the first switch to the fourth switch are set to realize the time sharing of the first DC source and the second DC source as different power supplies, and the different power supplies provide two different excitation voltages after voltage division.
  • the DC-AC conversion circuit includes a first switch, a second switch, a third switch and a fourth switch.
  • the first switch and the third switch are connected in series and connected to the first DC source.
  • One end of the second switch is connected to the first DC source, and the other end of the second switch serves as the output connection end of the DC-AC conversion circuit and is connected to one end of the first sub-primary winding of at least two sub-primary windings.
  • One end of the fourth switch is connected to one end of the second sub-primary winding of at least two sub-primary windings, and the other end of the fourth switch is connected to ground.
  • the common connection end of the first sub-primary winding and the second sub-primary winding is connected to the series connection end of the first switch and the third switch through a capacitor.
  • the duty ratios of the first switch and the fourth switch are different from the duty ratios of the second switch and the third switch.
  • the first DC source is used as the power supply, and the duty ratios of the first switch to the fourth switch are controlled to be different to provide two different excitation voltages.
  • the DC-AC conversion circuit includes a first switch and a second switch.
  • One end of the first switch is connected to the first DC source, and the other end of the first switch serves as the output connection end of the DC-AC conversion circuit and is connected to one end of the first sub-primary winding of at least two sub-primary windings.
  • One end of the second switch is connected to one end of the second sub-primary winding of at least two sub-primary windings, and the other end of the second switch is connected to ground.
  • the common connection end of the first sub-primary winding and the second sub-primary winding is grounded through a capacitor.
  • the first DC source and capacitor are used as different power supplies, and two different excitation voltages are provided after voltage division.
  • the first AC-DC conversion circuit includes a first rectification device, a second rectification device, a third rectification device and a fourth rectification device.
  • the first rectifier device and the third rectifier device are connected in series and then in parallel to the output end of the first AC-DC conversion circuit.
  • the second rectifier device and the fourth rectifier device are connected in series and then in parallel to the output end of the first AC-DC conversion circuit.
  • the secondary winding of the transformer is connected in parallel between the series connection terminal of the first rectifier device and the third rectifier device, and the series connection terminal of the second rectifier device and the fourth rectifier device.
  • a first rectifier device to a fourth rectifier device are provided to rectify currents in different current flow directions output by the transformer.
  • the secondary winding of the power transformer includes at least two sub-secondary windings, and the at least two sub-secondary windings include at least three secondary winding connection terminals, wherein the at least two sub-secondary windings share A secondary winding connection.
  • At least two sub-secondary windings correspond to at least two sub-primary windings, and the number of turns of any sub-secondary winding is adjusted accordingly according to changes in the excitation voltage connected to any corresponding sub-primary winding.
  • the first AC-DC conversion circuit includes at least three input connection terminals, and the at least three input connection terminals are connected to at least three secondary winding connection terminals in one-to-one correspondence.
  • the number of turns of the primary winding and the number of turns of the secondary winding that play a transforming role can be adjusted simultaneously to adjust the current input to the transformer for different excitation voltages. and energy size, which can improve the voltage regulation flexibility of the power converter.
  • the first AC-DC conversion circuit includes a first rectification device, a second rectification device, a third rectification device and a fourth rectification device.
  • the first rectifier device and the third rectifier device are connected in series and then in parallel to the output end of the first AC-DC conversion circuit.
  • One end of the second rectifier device is connected to one end of the first sub-secondary winding of the at least two sub-secondary windings, and the other end of the second rectifier device is connected to the output end of the first AC-DC conversion circuit.
  • One end of the fourth rectifier device is connected to one end of the second sub-secondary winding of the at least two sub-secondary windings, and the other end of the fourth rectifier device is connected to the output end of the first AC-DC conversion circuit.
  • the common connection end of the first sub-secondary winding and the second sub-secondary winding is connected to the series connection end of the first rectifier device and the third rectifier device.
  • the number of turns of the secondary winding of the transformer can also be adjusted to match the excitation voltage of the input transformer.
  • the first AC-DC conversion circuit may be provided with first to fourth rectifier devices to rectify currents in different current flow directions output by the transformer.
  • the power converter further includes an inductor connected in series with the transformer.
  • an inductor is set up in series with the transformer to achieve voltage stability.
  • this application also provides a power converter.
  • the power converter includes a DC-AC conversion circuit, a transformer and a first AC-DC conversion circuit.
  • the DC-AC conversion circuit is coupled to the first AC-DC conversion circuit through the transformer.
  • the DC-AC conversion circuit is used to generate at least two different excitation voltages in a time-sharing manner.
  • the secondary winding of the transformer includes at least two sub-secondary windings, and the at least two sub-secondary windings include at least three secondary winding connection terminals, wherein at least two sub-secondary windings share one secondary winding connection terminal, and one sub-secondary winding The number of turns is adjusted accordingly according to changes in the excitation voltage connected to the primary winding of the transformer.
  • the first AC-DC conversion circuit includes at least three input connection terminals, and the at least three input connection terminals are connected to at least three secondary winding connection terminals in one-to-one correspondence.
  • the number of turns of the secondary winding that acts as a transformer is adjusted according to the different excitation voltages connected to the primary winding, so as to adjust the current input to the transformer for different excitation voltages. and energy size, which can improve the voltage regulation flexibility of the power converter.
  • the first AC-DC conversion circuit includes a first rectification device, a second rectification device, a third rectification device and a fourth rectification device.
  • the first rectifier device and the third rectifier device are connected in series and then in parallel to the output end of the first AC-DC conversion circuit.
  • One end of the second rectifier device is connected to one end of the first sub-secondary winding of the at least two sub-secondary windings, and the other end of the second rectifier device is connected to the output end of the first AC-DC conversion circuit.
  • One end of the fourth rectifier device is connected to one end of the second sub-secondary winding of the at least two sub-secondary windings, and the other end of the fourth rectifier device is connected to the output end of the first AC-DC conversion circuit.
  • the common connection end of the first sub-secondary winding and the second sub-secondary winding is connected to the series connection end of the first rectifier device and the third rectifier device.
  • the number of turns of the secondary winding of the transformer is adjusted to match the excitation voltage of the primary winding of the input transformer.
  • the first AC-DC conversion circuit can set the first rectifier device to the fourth rectifier. components to rectify the currents in different current flow directions output by the transformer.
  • the power converter further includes a capacitor connected in series with the transformer and/or an inductor connected in series with the transformer.
  • a capacitor in series with the transformer can solve the bias excitation problem caused by at least two different excitation voltages input to the transformer.
  • an inductor is set up in series with the transformer to achieve voltage stability.
  • this application also provides a power supply, including a DC source and a power converter.
  • the power converter includes a DC-AC conversion circuit, a transformer, and a first AC-DC conversion circuit.
  • the DC source is used to power the DC-AC conversion circuit, and the DC-AC conversion circuit is coupled to the first AC-DC conversion circuit through a transformer.
  • the DC-AC conversion circuit includes at least three output connection terminals.
  • the primary winding of the transformer includes at least two sub-primary windings, and the at least two sub-primary windings include at least three primary winding connection terminals. At least two adjacent sub-primary windings share a primary winding connection end, and at least three primary winding connection ends are connected to at least three output connection ends of the DC-AC conversion circuit in one-to-one correspondence.
  • the DC-AC conversion circuit is used to generate at least two different excitation voltages in a time-sharing manner. One excitation voltage is output to a sub-primary winding, and the number of turns of the sub-primary winding is adjusted accordingly according to changes in the input excitation voltage. .
  • the DC source includes a DC-DC conversion circuit
  • the DC-DC conversion circuit includes at least one of the following: Boost circuit, Buck circuit, positive output type Buck-Boost circuit, single-ended primary Inductive converter SEPIC circuit, dual SEPIC circuit.
  • the DC source includes an AC source and a second AC-DC conversion circuit; the second AC-DC conversion circuit is used to convert the AC power provided by the AC source into DC power to provide DC-AC conversion. circuit power supply.
  • this application also provides a power supply, including a DC source and a power converter.
  • the power converter includes a DC-AC conversion circuit, a transformer, and a first AC-DC conversion circuit.
  • the DC source is used to power the DC-AC conversion circuit, and the DC-AC conversion circuit is coupled to the first AC-DC conversion circuit through a transformer.
  • the DC-AC conversion circuit is used to generate at least two different excitation voltages in a time-sharing manner.
  • the secondary winding of the transformer includes at least two sub-secondary windings, and the at least two sub-secondary windings include at least three secondary winding connection terminals, wherein at least two sub-secondary windings share one secondary winding connection terminal, and one sub-secondary winding
  • the number of turns is adjusted accordingly according to changes in an excitation voltage connected to the primary winding of the transformer.
  • the first AC-DC conversion circuit includes at least three input connection terminals, and the at least three input connection terminals are connected to at least three secondary winding connection terminals in one-to-one correspondence.
  • the DC source includes a DC-DC conversion circuit
  • the DC-DC conversion circuit includes at least one of the following: Boost circuit, Buck circuit, positive output type Buck-Boost circuit, single-ended primary Inductive converter SEPIC circuit, dual SEPIC circuit.
  • the DC source includes an AC source and a second AC-DC conversion circuit; the second AC-DC conversion circuit is used to convert the AC power provided by the AC source into DC power to provide DC-AC conversion. circuit power supply.
  • Figure 1 is a schematic structural diagram of a power supply provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a power converter provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 4a is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 4b is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 5a is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 5b is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 5c is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a power supply provided by an embodiment of the present application.
  • At least one mentioned in the embodiments of this application means one or more, and “multiple” means two or more. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can represent: a, b, c, (a and b), (a and c), (b and c), or (a and b and c), where a, b, c can be single or multiple.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships. For example, A and/or B can mean: A alone exists, A and B exist simultaneously, and B exists alone, where A and B can be singular or plural. The character "/" generally indicates that the related objects are in an "or” relationship.
  • first and second in the embodiments of this application is used to distinguish multiple objects and is not used to limit the order, timing, priority or importance of multiple objects. degree.
  • first circuit and the second circuit are only for convenience of description and do not indicate the difference in structure, importance, etc. of the first circuit and the second circuit.
  • the first circuit and the second circuit It can also be the same circuit.
  • the DC-DC converter has low voltage regulation flexibility. Based on this, this application provides a power converter that can effectively improve the voltage regulation flexibility of the power converter.
  • FIG. 1 is a schematic structural diagram of a power supply provided by an embodiment of the present application.
  • the power supply includes a DC source 101 and a power converter 102.
  • the DC source 101 is used to supply power to the power converter 102.
  • the power converter 102 includes a DC-AC conversion circuit 103, a transformer 104, and a first AC-DC conversion circuit 105.
  • the DC-AC conversion circuit 103 is used to generate at least two different excitation voltages in time division.
  • the DC-AC conversion circuit 103 is coupled to the first AC-DC conversion circuit 105 through the transformer 104.
  • the output end of the first AC-DC conversion circuit 105 serves as the output end of the power converter 102, which can be connected to other circuits or loads to provide power for other circuits or loads.
  • the DC source 101 is used to power the DC-AC conversion circuit 103 .
  • transformer 104 includes a primary winding and a secondary winding.
  • the power converter 102 further includes a capacitor, which is connected in series with the transformer 104 .
  • the capacitor may be directly connected in series with the transformer 104, or the capacitor may be connected in series with the transformer 104 through other devices.
  • the capacitor may be connected in series to the primary winding side of the transformer 104 or to the secondary winding side of the transformer 104 .
  • the capacitor can be called a bias-correcting capacitor.
  • the DC-AC conversion circuit 103 is coupled with the transformer 104 through the correction capacitor.
  • the transformer 104 is coupled with the first AC-DC conversion circuit through the correction capacitor.
  • the primary windings are matched according to different excitation voltages generated by the DC-AC conversion circuit 103. Windings with different numbers of turns are used for excitation in order to adjust the current and energy input to the transformer with different excitation voltages, which can improve the voltage regulation flexibility of the power converter 102 .
  • the DC-AC conversion circuit 103 includes at least three output connection terminals, and the primary winding of the transformer 104 includes at least two sub-primary windings, and the at least two sub-primary windings include at least three primary winding connection terminals, wherein at least The two sub-primary windings share one primary winding connection end, and at least three primary winding connection ends are used to divide the primary winding into at least two sub-primary windings.
  • the sub-primary winding is all or part of the primary winding.
  • An excitation voltage of the DC-AC conversion circuit 103 is output to a sub-primary winding, and the number of turns of the sub-primary winding is adjusted accordingly according to changes in the corresponding connected excitation voltage.
  • at least three output connection terminals of the DC-AC conversion circuit 103 are connected to at least three primary winding connection terminals in one-to-one correspondence.
  • the solution of the embodiment of the present application will be specifically explained by taking the DC-AC conversion circuit to generate two different excitation voltages and the primary winding being divided into two sub-primary windings as an example.
  • the solution of the embodiment of the present application is also applicable, and two different excitation voltages can be referred to The relevant descriptions will not be repeated.
  • FIG. 2 is a schematic structural diagram of a power converter provided by an embodiment of the present application.
  • the DC-AC conversion circuit 103 includes a first switch Q1 and a second switch Q2.
  • the primary winding of the transformer T1 has three primary winding connection terminals A, B, and C.
  • the winding between the primary winding connection terminal A and the primary winding connection terminal C serves as the third of at least two sub-primary windings.
  • One sub-primary winding, and the winding between the primary winding connecting end B and the primary winding connecting end C serves as the second sub-primary winding of at least two sub-primary windings, the first sub-primary winding and the second sub-primary winding.
  • the common connection end of the primary winding is the primary winding connection end C.
  • One end of the first switch Q1 is connected to the first DC source Vin1
  • the other end of the first switch Q1 is connected to the primary winding connection terminal A
  • one end of the second switch Q2 is connected to the primary winding connection terminal B
  • the other end of the second switch Q2 is connected to the primary winding connection terminal A.
  • One end is grounded.
  • the primary winding connection terminal C is grounded through the correction capacitor C1.
  • the first DC source Vin1 divides the voltage through the first switch Q1 and inputs the first excitation voltage to the transformer T1, and the current of the first DC source Vin1 passes through The first switch Q1 and the entire primary winding (that is, from the primary winding connection terminal A to the primary winding connection terminal C) flow into the correction capacitor C1. At this time, the correction capacitor C1 is charged.
  • the correction capacitor C1 begins to discharge to generate the second excitation voltage.
  • the discharge current at this time passes through the primary winding connection terminal C, the primary winding connection terminal B, and the second excitation voltage. After switching Q2, it flows back to the correction capacitor C1.
  • winding tap i.e., primary winding connection end B
  • the number of winding taps can also be increased, for example, adding one between primary winding connection end A and primary winding connection end B.
  • the new tap is used as the primary winding connection end D.
  • the winding between the primary winding connection end D and the primary winding connection end C can be used as the first sub-primary winding, and the primary side winding connection end B to The winding between the primary winding connection terminals C serves as the second sub-primary winding.
  • the primary winding connection terminal C serves as the common connection terminal of the first sub-primary winding and the second sub-primary winding.
  • the primary winding connection terminal D For another example, add a new tap between the primary winding connection terminal B and the primary winding connection terminal C as the primary winding connection terminal D. You can connect the primary winding connection terminal A to the primary winding connection terminal D according to actual needs.
  • the winding between is the first sub-primary winding
  • the winding between the primary winding connection end B and the primary winding connection end D is the second sub-primary winding.
  • the primary winding connection end D is the first sub-primary winding.
  • the first AC-DC conversion circuit 105 includes a first rectification device D1, a second rectification device D2, a third rectification device D3 and a fourth rectification device D4.
  • the first rectification device D1 to The fourth rectifier device D4 implements rectification processing, that is, converts alternating current into direct current.
  • the first rectifier device D1 and the third rectifier device D3 are connected in series and then in parallel to the output terminals OUT1 and OUT2 of the first AC-DC conversion circuit 105 .
  • the second rectifier device D2 and the fourth rectifier device D4 are connected in series and then in parallel to the output terminals OUT1 and OUT2 of the first AC-DC conversion circuit 105 .
  • the secondary winding connection end D and the secondary winding connection end E of the transformer T1 are connected in parallel to the series connection end of the first rectification device D1 and the third rectification device D3, and the series connection end of the second rectification device D2 and the fourth rectification device D4 between.
  • the first switch Q1 When the first switch Q1 is turned on and the second switch Q2 is turned off, the current of the first DC source Vin1 will flow from the primary winding connection terminal A to the primary winding connection terminal C. At this time, the second rectifier device D2 is used and the third rectifier device D3 to rectify the output current of the secondary winding of the transformer T1.
  • the first switch Q1 When the first switch Q1 is turned off and the second switch Q2 is turned on, the discharge current of the correction capacitor C1 will flow from the primary winding connection terminal C to the primary winding connection terminal B. At this time, the first rectifier device D1 and the second rectifier device D1 are used.
  • the four rectifier devices D4 rectify the output current of the secondary winding of the transformer T1. It can be seen that in the embodiment of the present application, by arranging the first to fourth rectifier devices, it is possible to rectify currents with different current flow directions output by the transformer.
  • At least one of the first rectifier device, the second rectifier device, the third rectifier device and the fourth rectifier device can be implemented by using at least one of a diode, a switch tube, etc.
  • the above-mentioned switch tube includes at least one of a triode, a metal-oxide-semiconductor field-effect transistor (MOSFET, referred to as MOS) tube, and the like.
  • Transistors include PNP transistors and NPN transistors; MOS transistors include NMOS transistors and PMOS transistors.
  • the first to fourth rectifier devices in FIG. 2 are implemented using diodes.
  • FIG. 3 is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • the DC-AC conversion circuit 103 includes a first switch Q1, a second switch Q2, a third switch Q3 and a fourth switch Q4.
  • the primary winding of transformer T1 in Figure 3 has three primary winding connection terminals A, B, and C.
  • the winding between the primary winding terminal A and the primary winding terminal C is as The first sub-primary winding of at least two sub-primary windings
  • the winding between the primary winding connecting end B and the primary winding connecting end C serves as the second sub-primary winding of at least two sub-primary windings
  • the common connection end of the first sub-primary winding and the second sub-primary winding is the primary winding connection end C.
  • the first switch Q1 and the third switch Q3 are connected in series and then connected to the second DC source Vin2.
  • One end of the second switch Q2 is connected to the first DC source Vin1, and the other end of the second switch Q2 serves as the output connection end of the DC-AC conversion circuit 103 and is connected to the primary winding connection end A of the first sub-primary winding.
  • One end of the fourth switch Q4 is connected to the primary winding connection terminal B of the second sub-primary winding, and the other end of the fourth switch Q4 is connected to ground.
  • the primary winding connection terminal C is connected to the series connection terminals of the first switch Q1 and the third switch Q3 through the correction capacitor C1.
  • the first DC source Vin1 is divided by the second switch Q2 and then inputs the first voltage to the transformer T1. excitation voltage, the current of the first DC source Vin1 flows through the second switch Q2 and the entire primary winding (that is, from the primary winding connection terminal A to the primary winding connection terminal C), then flows into the correction capacitor C1, and then passes through the third switch Q3 then flows into the ground wire.
  • the second DC source Vin2 divides the voltage through the first switch Q1 and the correction capacitor C1 and then inputs the third voltage to the transformer T1.
  • Two excitation voltages, the current of the second DC source Vin2 passes through the first switch Q1, the correction capacitor C1, the primary winding connection terminal C, the primary winding connection terminal B, and the fourth switch Q4 and then flows into the ground wire.
  • the first switch to the fourth switch are set to realize the time sharing of the first DC source Vin1 and the second DC source Vin2 as different power supplies. Different power supplies can provide two different voltages after voltage division. excitation voltage.
  • the first AC-DC conversion circuit 105 in FIG. 3 has the same structure as the first AC-DC conversion circuit shown in FIG. 2 and will not be described again.
  • At least one of the first switch, the second switch, the third switch and the fourth switch can be implemented by at least one of a manual switch, a relay, a switch tube, etc., wherein the switch tube includes a triode, At least one of MOS tubes, etc.
  • Transistors include PNP transistors and NPN transistors.
  • MOS tubes include NMOS tubes and PMOS tubes.
  • the switches in Figures 2 and 3 are implemented using NMOS tubes, where VgM, VgH, VgS, and VgL are the base control signals of their corresponding NMOS tubes.
  • Figure 4a is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • the DC-AC conversion circuit 103 includes a first switch Q1, a second switch Q2, a third switch Q3 and a fourth switch Q4.
  • the primary winding of the transformer T1 in Figure 4a has three primary winding connection terminals A, B, and C.
  • the winding between the primary winding terminal A and the primary winding terminal C is as The first sub-primary winding of at least two sub-primary windings
  • the winding between the primary winding connecting end B and the primary winding connecting end C serves as the second sub-primary winding of at least two sub-primary windings
  • the common connection end of the first sub-primary winding and the second sub-primary winding is the primary winding connection end C.
  • the first switch Q1 and the third switch Q3 are connected in series and then connected to the first DC source Vin1.
  • One end of the second switch Q2 is connected to the first DC source Vin1, and the other end of the second switch Q2 serves as the output connection end of the DC-AC conversion circuit 103 and is connected to the primary winding connection end A of the first sub-primary winding.
  • One end of the fourth switch Q4 is connected to the primary winding connection terminal B of the second sub-primary winding, and the other end of the fourth switch Q4 is connected to ground.
  • the primary winding connection terminal C is connected to the series connection terminals of the first switch Q1 and the third switch Q3 through a correction capacitor.
  • the duty ratios of the first switch Q1 and the fourth switch Q4 are different from the duty ratios of the second switch Q2 and the third switch Q3. It can be understood that in the working sequence, the duty ratios of the two switches are asymmetric.
  • the duty cycle of the first switch Q1 and the fourth switch Q4 refers to the first time when the first switch Q1 and the fourth switch Q4 are turned on at the same time.
  • the duty cycle of the second switch Q2 and the third switch Q3 refers to the first time when the first switch Q1 and the fourth switch Q4 are turned on at the same time.
  • the first time when Q2 and the third switch Q3 are turned on at the same time.
  • Different duty ratios means that the first switch Q1 to the fourth switch Q4 are not turned on at the same time, and the first time is different from the first time, which can be that the time length of the first time is greater than the time length of the second time, or The length of the second time is greater than the length of the first time and can be set according to actual needs.
  • the working logic of the DC-AC conversion circuit 103 shown in Figure 4a is similar to the working logic of the DC-AC conversion circuit 103 shown in Figure 3.
  • the first switch Q1 and the fourth switch Q4 are controlled to be turned off, and the second switch Q2 and the When the three switches Q3 are turned on, the first DC source Vin1 is divided by the second switch Q2 and then inputs the first excitation voltage to the transformer T1.
  • the current of the first DC source Vin1 passes through the second switch Q2 and the entire primary winding ( That is, from the primary winding connection terminal A to the primary winding connection terminal C), it flows into the correction capacitor C1, and then passes through the third switch Q3 and then flows into the ground wire.
  • the first switch Q1 and the fourth switch Q4 are controlled to be turned on, and the second switch Q2 and the third switch Q3 are turned off, the first DC source Vin1 is divided by the first switch Q1 and the correction capacitor C1 and then input to the transformer T1
  • the second excitation voltage, the current of the first DC source Vin1 flows into the ground wire through the first switch Q1, the correction capacitor C1, the primary winding connection terminal C, the primary winding connection terminal B, and the fourth switch Q4.
  • the first DC source Vin1 is used as the power supply, the duty ratios of the first switch to the fourth switch are controlled to be different, and two different excitation voltages are provided after voltage division.
  • the first AC-DC conversion circuit 105 in Figure 4a has the same structure as the first AC-DC conversion circuit shown in Figure 2, and will not be described again.
  • FIG. 4b is a schematic structural diagram of another power converter provided by an embodiment of the present application; wherein, one end of the second switch Q2 is connected to the first DC source Vin1, and the other end of the second switch Q2 is connected to the first DC source Vin1.
  • One end of the fourth switch Q4 is connected to the primary winding connection terminal A, and the other end of the fourth switch Q4 is connected to ground.
  • the primary winding connection end C serves as a common connection end and is connected to the series connection end of the first switch Q1 and the third switch Q3.
  • the secondary winding of the transformer 104 includes at least two sub-secondary windings, and the at least two sub-secondary windings include at least three secondary winding connection terminals, wherein at least two sub-secondary windings share one secondary winding connection terminal, and at least three A secondary winding connection terminal is used to divide the secondary winding into at least two sub-secondary windings, and the number of turns of a sub-secondary winding is adjusted accordingly according to changes in an excitation voltage connected to the primary winding of the transformer.
  • the sub-secondary winding is all or part of the secondary winding.
  • the first AC-DC conversion circuit includes at least three input connection terminals, and the at least three input connection terminals are connected to at least three secondary winding connection terminals in one-to-one correspondence.
  • Figure 5a is a schematic structural diagram of another power converter provided by an embodiment of the present application; exemplarily, in Figure 5a, the first AC-DC conversion circuit 105 includes a first rectifier device D1, a second rectifier device D2, a third Rectifier device D3 and fourth rectifier device D4.
  • the secondary winding of the transformer T1 has three secondary winding connection terminals C, D, and E.
  • the winding between the secondary winding connection terminal C and the secondary winding connection terminal E serves as the third of at least two sub-secondary windings.
  • One sub-secondary winding, and the winding between the secondary winding connection end D and the secondary winding connection end E serves as the second sub-secondary winding of at least two sub-secondary windings, the first sub-secondary winding and the second sub-secondary winding.
  • the common connection end of the secondary winding is the secondary winding connection end E.
  • the first rectifier device D1 and the third rectifier device D3 are connected in series and then in parallel to the output terminals OUT1 and OUT2 of the first AC-DC conversion circuit 105 .
  • One end of the second rectifier device D2 is connected to the secondary winding connection terminal C of the first sub-secondary winding, and the other end of the second rectifier device D2 is connected to the output terminal OUT1 of the first AC-DC conversion circuit 105 .
  • One end of the fourth rectifier device D4 is connected to the secondary winding connection end D of the second sub-secondary winding, and the other end of the fourth rectifier device D4 is connected to the output end OUT2 of the first AC-DC conversion circuit 105 .
  • the secondary winding connection terminal E is connected to the series connection terminals of the first rectifier device D1 and the third rectifier device D3.
  • the DC-AC conversion circuit 103 in Figure 5a includes a first switch Q1 and a second switch Q2.
  • the first switch Q1 and the second switch Q2 are connected in series and then in parallel to the first DC source Vin1 and the primary winding connection end of the transformer T1.
  • A is connected to the series connection end of the first switch Q1 and the second switch Q2, and the primary winding connection end B is connected to the ground through the correction capacitor C1.
  • the current flows through the primary winding and the second switch Q2 and then flows back to the correction capacitor C1.
  • the voltage transformation process is performed through the second sub-secondary winding, and the rectification process is performed through the first rectifier device D1 and the fourth rectifier device D4.
  • different excitation voltages input to the primary winding can be matched, and sub-secondary windings with different numbers of turns are used for voltage transformation, which effectively improves the voltage regulation flexibility of the power converter.
  • Figure 5b is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 5b provides an example of another DC-AC conversion circuit 103, wherein the DC-AC conversion circuit 103 includes a first Switch Q1, second switch Q2, third switch Q3 and fourth switch Q4.
  • the first switch Q1 and the third switch Q3 are connected in series and then connected to the second DC source Vin2.
  • the second switch Q2 and the fourth switch Q4 are connected in series and connected to the first DC source Vin1.
  • the primary winding connection terminal A is connected to the series connection terminal of the second switch Q2 and the fourth switch Q4.
  • the primary winding connection terminal B passes through the correction capacitor C1. Connect the series connection terminals of the first switch Q1 and the third switch Q3.
  • the first DC source Vin1 is divided by the second switch Q2 and then inputs the first voltage to the transformer T1.
  • the current of the first DC source Vin1 flows into the correction capacitor C1 after passing through the second switch Q2 and the primary winding, and then flows into the ground wire after passing through the third switch Q3.
  • the voltage transformation process is performed through the first sub-secondary winding, and the rectification process is performed through the second rectifier device D2 and the third rectifier device D3.
  • the second DC source Vin2 divides the voltage through the first switch Q1 and the correction capacitor C1 and then inputs the third voltage to the transformer T1.
  • Two excitation voltages, the current of the second DC source Vin2 passes through the first switch Q1, the correction capacitor C1, the primary winding, and the fourth switch Q4 and then flows into the ground wire.
  • the voltage transformation process is performed through the second sub-secondary winding, and the rectification process is performed through the first rectifier device D1 and the fourth rectifier device D4.
  • Figure 5c is a schematic structural diagram of another power converter provided by an embodiment of the present application.
  • Figure 5c provides an example of another DC-AC conversion circuit 103, wherein the DC-AC conversion circuit 103 includes a first Switch Q1, second switch Q2, third switch Q3 and fourth switch Q4.
  • the first switch Q1 and the third switch Q3 are connected in series and then connected to the first DC source Vin1.
  • the second switch Q2 and the fourth switch Q4 are connected in series and then connected to the first DC source Vin1.
  • the primary winding connection terminal A is connected to the series connection terminals of the second switch Q2 and the fourth switch Q4, and the primary winding connection terminal B is connected to the series connection terminals of the first switch Q1 and the third switch Q3 through the correction capacitor C1.
  • the duty cycle of the first switch Q1 and the fourth switch Q4 is different from the duty cycle of the second switch Q2 and the third switch Q3, so as to output two different excitation voltages.
  • the first DC source Vin1 is divided by the second switch Q2 and then inputs the first voltage to the transformer T1.
  • the current of the first DC source Vin1 flows into the correction capacitor C1 after passing through the second switch Q2 and the primary winding, and then flows into the ground wire after passing through the third switch Q3.
  • the voltage transformation process is performed through the first sub-secondary winding, and the rectification process is performed through the second rectifier device D2 and the third rectifier device D3.
  • the first DC source Vin1 is divided by the first switch Q1 and the correction capacitor C1 and then input to the transformer T1
  • the second excitation voltage, the current of the first DC source Vin1 flows into the ground wire through the first switch Q1, the correction capacitor C1, the primary winding, and the fourth switch Q4.
  • the voltage transformation process is performed through the second sub-secondary winding, and the rectification process is performed through the first rectifier device D1 and the fourth rectifier device D4.
  • the number of turns of the primary winding and the number of turns of the secondary winding that function as transformers can also be adjusted simultaneously according to different excitation voltages to adjust different excitation voltages input to the transformer.
  • the amount of current and energy can improve the voltage regulation flexibility of the power converter 102.
  • the primary winding of the transformer 104 includes at least two sub-primary windings, and the at least two sub-primary windings include at least three primary winding connection terminals, wherein at least two sub-primary windings share one primary winding connection terminal, and at least three A primary winding connection end is used to divide the primary winding into at least two sub-primary windings.
  • An excitation voltage of the DC-AC conversion circuit 103 is output to a sub-primary winding, and the DC-AC conversion circuit 103 includes at least three output connection terminals, and the at least three output connection terminals are connected to at least three primary windings one by one. Winding connection terminal.
  • the secondary winding of the power transformer includes at least two sub-secondary windings, and the at least two sub-secondary windings include at least three secondary winding connection terminals, wherein at least two sub-secondary windings share one secondary winding connection terminal, and at least three
  • the secondary winding connection end is used to divide the secondary winding into at least two sub-secondary windings; at least two sub-secondary windings correspond to at least two sub-primary windings, and the turns of the sub-primary winding and the corresponding sub-secondary winding
  • the number is adjusted accordingly according to the change of the excitation voltage connected to the corresponding sub-primary winding;
  • the first AC-DC conversion circuit includes at least three input connection terminals, and the at least three input connection terminals are connected to at least three secondary windings one by one. Winding connection terminal.
  • FIG. 6 is a schematic structural diagram of another power converter provided by an embodiment of the present application; exemplarily, the DC-AC conversion circuit 103 in FIG. 6 includes a first switch Q1, a second switch Q2, a third switch Q3 and a fourth switch. Switch Q4.
  • the primary winding of transformer T1 has three primary winding connection terminals A, B, and C. The winding between primary winding connection terminal A and primary winding connection terminal C serves as the first of at least two sub-primary windings.
  • One sub-primary winding, and the winding between the primary winding connecting end B and the primary winding connecting end C serves as the second sub-primary winding of at least two sub-primary windings, the first sub-primary winding and the second sub-primary winding.
  • the common connection end of the primary winding is the primary winding connection end C.
  • the first switch Q1 and the third switch Q3 are connected in series and then connected to the second DC source Vin2.
  • One end of the second switch Q2 is connected to the first DC source Vin1, and the other end of the second switch Q2 serves as the output connection end of the DC-AC conversion circuit 103 and is connected to the primary winding connection end A of the first sub-primary winding.
  • One end of the fourth switch Q4 is connected to the primary winding connection terminal B of the second sub-primary winding, and the other end of the fourth switch Q4 is connected to ground.
  • the primary winding connection terminal C is connected to the series connection terminals of the first switch Q1 and the third switch Q3 through the correction capacitor C1.
  • the secondary winding of the transformer T1 has three secondary winding connection terminals D, E, and F.
  • the winding between the secondary winding connection terminal D and the secondary winding connection terminal F serves as the first of at least two sub-secondary windings.
  • sub-secondary winding, and the winding between the secondary winding connection end E and the secondary winding connection end F serves as the second sub-secondary winding of at least two sub-secondary windings, the first sub-secondary winding and the second sub-secondary winding.
  • the common connection end of the side winding is the secondary winding connection end F.
  • the first rectifier device D1 and the third rectifier device D3 are connected in series and then in parallel to the output terminals OUT1 and OUT2 of the first AC-DC conversion circuit 105 .
  • One end of the second rectifier device D2 is connected to the secondary winding connection end D of the first sub-secondary winding, and the other end of the second rectifier device D2 is connected to the output end OUT1 of the first AC-DC conversion circuit 105.
  • One end of the fourth rectifier device D4 is connected to the secondary winding connection end E of the second sub-secondary winding, and the other end of the fourth rectifier device D4 is connected to the output end OUT2 of the first AC-DC conversion circuit 105 .
  • the secondary winding connection terminal F is connected to the series connection terminals of the first rectifier device D1 and the third rectifier device D3.
  • the power converter further includes an inductor connected in series with the transformer.
  • the number of capacitors and/or inductors connected in series with the transformer is not particularly limited. Set up as required.
  • Figure 7, is a schematic structural diagram of another power converter provided by an embodiment of the present application; the correction capacitor C1 is connected in series with the inductor L1, and the DC-AC conversion circuit communicates with the transformer T1 through the correction capacitor C1 and the inductor L1. Coupling; wherein, the DC-AC conversion circuit includes a first switch Q1, a second switch Q2, a third switch Q3 and a fourth switch Q4.
  • setting the correction capacitor C1 and the inductor L1 can reduce the switching loss of the switching devices (such as at least one of the first switch to the fourth switch) in the DC-AC conversion circuit, and help reduce the DC-AC conversion. circuit losses and achieve voltage stability.
  • the capacitor C2 and the inductor L2 are connected in series, and the transformer T1 is also coupled with the first AC-DC conversion circuit through the capacitor C2 and the inductor L2; wherein the first AC-DC conversion circuit includes a first rectifier The device D1, the second rectifier device D2, the third rectifier device D3 and the fourth rectifier device D4.
  • setting the capacitor C2 and the inductor L2 can adjust the output voltage of the first AC-DC conversion circuit and stabilize the output voltage.
  • the power converter further includes an output capacitor connected in parallel with the first AC-DC conversion circuit, and the output capacitor is configured to stabilize the output voltage of the first AC-DC conversion circuit.
  • the first AC-DC conversion circuit includes a first rectification device D1 , a second rectification device D2 , a third rectification device D3 and a fourth rectification device D4 .
  • the first AC-DC conversion circuit is connected in parallel with the output capacitor C3 to stabilize its output voltage.
  • the DC source includes a DC-DC conversion circuit
  • the DC-DC conversion circuit includes at least one of the following: Boost circuit, Buck circuit, positive output type Buck-Boost circuit, single-ended primary inductive type Converter (Single Ended Primary Inductor Converter, SEPIC) circuit, dual SEPIC circuit.
  • the Boost circuit is a switching DC boost circuit, which can make the output voltage higher than the input voltage.
  • a Buck circuit is a step-down chopper whose output voltage is less than the input voltage.
  • the output voltage of the Buck-Boost circuit can be either lower or higher than the input voltage, but the polarity of the output voltage is opposite to the input voltage.
  • the SEPIC circuit is a DC-DC circuit that allows the output voltage to be greater than, less than, or equal to the input voltage. Its output voltage is controlled by the duty cycle of the switch (transistor or MOS tube, etc.); in the SEPIC circuit, both the power supply current and the load current are continuous. , which is beneficial to input and output filtering.
  • the dual SEPIC circuit is also called the Zeta circuit.
  • the Zeta circuit is a DC-DC circuit that allows the output voltage to be greater than, less than, or equal to the input voltage.
  • the input and output currents of the Zeta circuit are intermittent.
  • the first DC source Vin1 can be implemented by any of the following: Boost circuit, Buck circuit, positive output type Buck-Boost circuit, SEPIC circuit, dual SEPIC circuit .
  • the first DC source Vin1 can be implemented by any of the following: Boost circuit, Buck circuit, positive output type Buck-Boost circuit, SEPIC circuit, dual SEPIC circuit;
  • the second The DC source Vin2 can be implemented by any of the following: Boost circuit, Buck circuit, positive output type Buck-Boost circuit, SEPIC circuit, dual SEPIC circuit.
  • FIG 8 is a schematic structural diagram of a power supply provided by an embodiment of the present application, using a Boost circuit as the second DC source Vin2.
  • the Boost circuit is implemented using the fifth switching tube Q5, the sixth switching tube Q6, the inductor L1 and the capacitor C2.
  • the fifth switching tube Q5 and the sixth switching tube Q6 are implemented using NMOS tubes as an example.
  • VgN, VgP are the base control signals of their corresponding NMOS tubes.
  • the DC source Vin directly serves as the first DC source Vin1, and provides the first excitation voltage to the transformer T1 after being divided by the second switch Q2.
  • the Boost circuit serves as the second DC source Vin2. After being processed by the Boost circuit, the DC source Vin is divided by the first switch Q1 and the correction capacitor C1 and then provides the second excitation voltage to the transformer T1.
  • the DC source includes an AC source and a second AC-DC conversion circuit.
  • the second AC-DC conversion circuit is used to convert the alternating current provided by the AC source into direct current to power the DC-AC conversion circuit.
  • the specific circuit structure of the second AC-DC conversion circuit is not particularly limited, as long as it can realize AC-DC conversion.
  • the DC source includes an AC source, a second AC-DC conversion circuit and a DC-DC conversion circuit.
  • the second AC-DC conversion circuit is used to convert the AC power provided by the AC source into DC power.
  • the DC-DC conversion circuit is used to convert the direct current output from the second AC-DC conversion circuit into another direct current to power the DC-AC conversion circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本申请提供一种功率变换器及电源。该功率变换器包括DC-AC变换电路、变压器和第一AC-DC变换电路。DC-AC变换电路通过变压器和第一AC-DC变换电路耦合。变压器的原边绕组包括至少两个子原边绕组,该至少两个子原边绕组具有至少三个原边绕组连接端,子原边绕组的匝数根据对应接入的励磁电压的变化而相应调整。DC-AC变换电路用于分时产生至少两种不同的励磁电压,一种励磁电压对应输出至一个子原边绕组。本案中,在变压器的原边绕组这一侧,根据DC-AC变换电路产生的不同的励磁电压对应匹配对原边绕组中不同的匝数绕组进行励磁,可以提升功率变换器的调压灵活性。

Description

功率变换器及电源 技术领域
本申请涉及电源领域,尤其涉及一种功率变换器及电源。
背景技术
在直流转直流(DC-DC,Direct Current-Direct Current)变换器中,通常使用变压器实现输入输出隔离功能。DC-DC变换器的能量传输包括将输入的DC电压转成AC电压,AC电压通过变压器耦合转成DC电压输出。当DC-DC变换器具有两种不同的输入电压时,可以在变压器上串联一个纠偏电容来避免变压器在两种不同的输入电压的励磁下出现偏励磁的问题。然而,对于带纠偏电容的DC-DC变换器,假设具有两个不相等的输入电压V1和V2、且V1大于V2,则基于对称励磁原理可知,此时DC-DC变换器的等效输入电压等于(V1+V2)/2,DC-DC变换器的调压灵活性低。
发明内容
本申请提供一种功率变换器及电源,可以提升功率变换器的调压灵活性。
第一方面,提供一种功率变换器。该功率变换器包括直流DC-交流AC变换电路、变压器和第一AC-DC变换电路。其中,DC-AC变换电路通过变压器和第一AC-DC变换电路耦合。而变压器的原边绕组包括至少两个子原边绕组,该至少两个子原边绕组包括至少三个原边绕组连接端,其中至少两个子原边绕组共用一个原边绕组连接端,至少三个原边绕组连接端一一对应连接DC-AC变换电路的至少三个输出连接端。子原边绕组的匝数根据对应接入的励磁电压的变化而相应调整。
另外,DC-AC变换电路用于分时产生至少两种不同的励磁电压,其中,一种励磁电压对应输出至一个子原边绕组,子原边绕组的匝数根据输入的励磁电压的变化而相应调整。
本案中,在变压器的原边绕组这一侧,根据DC-AC变换电路产生的不同的励磁电压对应匹配对原边绕组中不同的匝数绕组进行励磁,即一种励磁电压对应输入一个子原边绕组,子原边绕组的匝数根据对应接入的励磁电压的变化进行调整,可以实现调整不同的励磁电压输入变压器的电流及能量大小,可以提升功率变换器的调压灵活性。
在第一方面的一些可能的实施例中,功率变换器还包括电容,电容与变压器串联。
本案中,设置与变压器串联的电容可以解决由于至少两种不同励磁电压输入变压器导致的偏励磁问题。
在第一方面的一些可能的实施例中,DC-AC变换电路包括第一开关、第二开关、第三开关和第四开关。第一开关和第三开关串联后连接第二直流源。第二开关的一端连接第一直流源,第二开关的另一端作为DC-AC变换电路的输出连接端连接至少两个子原边绕组中第一子原边绕组的一端。第四开关的一端连接至少两个子原边绕组中第二子原边绕组的一端,第四开关的另一端接地。第一子原边绕组和第二子原边绕组的公共连接端通过电容连接第一开关和第三开关的串联连接端。
本方案中,设置第一开关至第四开关以实现第一直流源和第二直流源分时作为不同的供电源,不同的供电源经过分压后提供两种不同的励磁电压。
在第一方面的一些可能的实施例中,DC-AC变换电路包括第一开关、第二开关、第三开 关和第四开关。第一开关和第三开关串联后连接第一直流源。第二开关的一端连接第一直流源,第二开关的另一端作为DC-AC变换电路的输出连接端连接至少两个子原边绕组中第一子原边绕组的一端。第四开关的一端连接至少两个子原边绕组中第二子原边绕组的一端,第四开关的另一端接地。第一子原边绕组和第二子原边绕组的公共连接端通过电容连接第一开关和第三开关的串联连接端。第一开关、第四开关的占空比与第二开关、第三开关的占空比不同。
本方案中,将第一直流源作为供电源,并控制第一开关至第四开关的占空比不同以提供两种不同的励磁电压。
在第一方面的一些可能的实施例中,DC-AC变换电路包括第一开关和第二开关。第一开关的一端与第一直流源连接,第一开关的另一端作为DC-AC变换电路的输出连接端连接至少两个子原边绕组中第一子原边绕组的一端。第二开关的一端连接至少两个子原边绕组中第二子原边绕组的一端,第二开关的另一端接地。第一子原边绕组和第二子原边绕组的公共连接端通过电容接地。
本方案中,将第一直流源和电容作为不同的供电源,经过分压后提供两种不同的励磁电压。
在第一方面的一些可能的实施例中,第一AC-DC变换电路包括第一整流器件、第二整流器件、第三整流器件和第四整流器件。第一整流器件和第三整流器件串联后并联到第一AC-DC变换电路的输出端。第二整流器件和第四整流器件串联后并联到第一AC-DC变换电路的输出端。变压器的副边绕组并联在第一整流器件和第三整流器件的串联连接端、和第二整流器件和第四整流器件的串联连接端之间。
本方案中,设置第一整流器件至第四整流器件,以实现对变压器输出的不同电流流向的电流进行整流处理。
在第一方面的一些可能的实施例中,功率变压器的副边绕组包括至少两个子副边绕组,至少两个子副边绕组包括至少三个副边绕组连接端,其中至少两个子副边绕组共用一个副边绕组连接端。至少两个子副边绕组与至少两个子原边绕组一一对应,且任一子副边绕组的匝数根据对应的任一子原边绕组接入的励磁电压的变化而相应调整。第一AC-DC变换电路包括至少三个输入连接端,至少三个输入连接端一一对应连接至少三个副边绕组连接端。
本方案中,还可以根据DC-AC变换电路输入的不同的励磁电压,同时调整起变压作用的原边绕组的匝数和副边绕组的匝数,以调整不同的励磁电压输入变压器的电流及能量大小,可以提升功率变换器的调压灵活性。
在第一方面的一些可能的实施例中,第一AC-DC变换电路包括第一整流器件、第二整流器件、第三整流器件和第四整流器件。第一整流器件和第三整流器件串联后并联到第一AC-DC变换电路的输出端。第二整流器件的一端与至少两个子副边绕组中的第一子副边绕组的一端连接,第二整流器件的另一端连接第一AC-DC变换电路的输出端。第四整流器件的一端与至少两个子副边绕组中的第二子副边绕组的一端连接,第四整流器件的另一端连接第一AC-DC变换电路的输出端。第一子副边绕组和第二子副边绕组的公共连接端连接第一整流器件和第三整流器件的串联连接端。
本方案中,除了匹配输入变压器的励磁电压调节起变压作用的原边绕组的匝数之外,还可以调节变压器的副边绕组的匝数以匹配输入变压器的励磁电压,当励磁电压为两种时,第一AC-DC变换电路可以设置第一整流器件至第四整流器件,以实现对变压器输出的不同电流流向的电流进行整流处理。
在第一方面的一些可能的实施例中,功率变换器还包括与变压器串联的电感。
本方案中,设置与变压器串联的电感,以实现电压稳定。
第二方面,本申请还提供一种功率变换器。该功率变换器包括直流DC-交流AC变换电路、变压器和第一AC-DC变换电路,DC-AC变换电路通过变压器和第一AC-DC变换电路耦合。DC-AC变换电路用于分时产生至少两种不同的励磁电压。变压器的副边绕组包括至少两个子副边绕组,该至少两个子副边绕组包括至少三个副边绕组连接端,其中至少两个子副边绕组共用一个副边绕组连接端,一个子副边绕组的匝数根据变压器的原边绕组接入的一种励磁电压的变化而相应调整。第一AC-DC变换电路包括至少三个输入连接端,至少三个输入连接端一一对应连接至少三个副边绕组连接端。
本方案中,在变压器的副边绕组这一侧,根据原边绕组接入的不同的励磁电压来调整起变压作用的副边绕组的匝数,以实现调整不同的励磁电压输入变压器的电流及能量大小,可以提升功率变换器的调压灵活性。
在第二方面的一些可能的实施例中,第一AC-DC变换电路包括第一整流器件、第二整流器件、第三整流器件和第四整流器件。第一整流器件和第三整流器件串联后并联到第一AC-DC变换电路的输出端。第二整流器件的一端与至少两个子副边绕组中的第一子副边绕组的一端连接,第二整流器件的另一端连接第一AC-DC变换电路的输出端。第四整流器件的一端与至少两个子副边绕组中的第二子副边绕组的一端连接,第四整流器件的另一端连接第一AC-DC变换电路的输出端。第一子副边绕组和第二子副边绕组的公共连接端连接第一整流器件和第三整流器件的串联连接端。
本方案中,调节变压器的副边绕组的匝数以匹配输入变压器的原边绕组的励磁电压,当励磁电压为两种时,第一AC-DC变换电路可以设置第一整流器件至第四整流器件,以实现对变压器输出的不同电流流向的电流进行整流处理。
在第二方面的一些可能的实施例中,功率变换器还包括与变压器串联的电容和/或与变压器串联的电感。
本案中,设置与变压器串联的电容可以解决由于至少两种不同励磁电压输入变压器导致的偏励磁问题。另外,本方案中,设置与变压器串联的电感,以实现电压稳定。
第三方面,本申请还提供一种电源,包括直流源和功率变换器。功率变换器包括直流DC-交流AC变换电路、变压器和第一AC-DC变换电路。直流源用于为DC-AC变换电路供电,DC-AC变换电路通过变压器和第一AC-DC变换电路耦合。
DC-AC变换电路包括至少三个输出连接端。变压器的原边绕组包括至少两个子原边绕组,至少两个子原边绕组包括至少三个原边绕组连接端。其中至少相邻两个子原边绕组共用一个原边绕组连接端,至少三个原边绕组连接端一一对应连接DC-AC变换电路的至少三个输出连接端。DC-AC变换电路用于分时产生至少两种不同的励磁电压,其中,一种励磁电压对应输出至一个子原边绕组,子原边绕组的匝数根据输入的励磁电压的变化而相应调整。
在第三方面的一些可能的实施例中,直流源包括DC-DC变换电路,DC-DC变换电路包括以下至少一项:Boost电路、Buck电路、正输出类型的Buck-Boost电路、单端初级电感式转换器SEPIC电路、双SEPIC电路。
在第三方面的一些可能的实施例中,直流源包括交流源和第二AC-DC变换电路;第二AC-DC变换电路用于将交流源提供的交流电变换为直流电,以为DC-AC变换电路供电。
第四方面,本申请还提供一种电源,包括直流源和功率变换器。功率变换器包括直流DC-交流AC变换电路、变压器和第一AC-DC变换电路。直流源用于为DC-AC变换电路供电, DC-AC变换电路通过变压器和第一AC-DC变换电路耦合。
DC-AC变换电路用于分时产生至少两种不同的励磁电压。变压器的副边绕组包括至少两个子副边绕组,至少两个子副边绕组包括至少三个副边绕组连接端,其中至少两个子副边绕组共用一个副边绕组连接端,一个子副边绕组的匝数根据变压器的原边绕组接入的一种励磁电压的变化而相应调整。第一AC-DC变换电路包括至少三个输入连接端,至少三个输入连接端一一对应连接至少三个副边绕组连接端。
在第四方面的一些可能的实施例中,直流源包括DC-DC变换电路,DC-DC变换电路包括以下至少一项:Boost电路、Buck电路、正输出类型的Buck-Boost电路、单端初级电感式转换器SEPIC电路、双SEPIC电路。
在第四方面的一些可能的实施例中,直流源包括交流源和第二AC-DC变换电路;第二AC-DC变换电路用于将交流源提供的交流电变换为直流电,以为DC-AC变换电路供电。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种电源的结构示意图;
图2是本申请实施例提供的一种功率变换器的结构示意图;
图3是本申请实施例提供的另一种功率变换器的结构示意图;
图4a是本申请实施例提供的另一种功率变换器的结构示意图;
图4b是本申请实施例提供的另一种功率变换器的结构示意图;
图5a是本申请实施例提供的另一种功率变换器的结构示意图;
图5b是本申请实施例提供的另一种功率变换器的结构示意图;
图5c是本申请实施例提供的另一种功率变换器的结构示意图;
图6是本申请实施例提供的另一种功率变换器的结构示意图;
图7是本申请实施例提供的另一种功率变换器的结构示意图;
图8是本申请实施例提供的一种电源的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中实施例提到的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b、或c中的至少一项(个),可以表示:a、b、c、(a和b)、(a和c)、(b和c)、或(a和b和c),其中a、b、c可以是单个,也可以是多个。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例使用“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一电路和第二电路,只是为了便于描述,而并不是表示这第一电路和第二电路的结构、重要程度 等的不同,在某些实施例中,第一电路和第二电路还可以是同样的电路。
上述实施例中所用,根据上下文,术语“当……时”可以被解释为意思是“如果……”或“在……后”或“响应于确定……”或“响应于检测到……”。以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
现有技术中,DC-DC变换器的调压灵活性低,基于此,本申请提供一种功率变换器,可以有效提升功率变换器的调压灵活性。
下面对本申请中的电源做具体说明。
图1是本申请实施例提供的一种电源的结构示意图。本申请实施例中,电源包括直流源101和功率变换器102,直流源101用于为功率变换器102供电。
示例性地,功率变换器102包括DC-AC变换电路103、变压器104和第一AC-DC变换电路105。DC-AC变换电路103用于分时产生至少两种不同的励磁电压。DC-AC变换电路103通过变压器104与第一AC-DC变换电路105耦合。第一AC-DC变换电路105的输出端作为功率变换器102的输出端,其可以与其他电路或负载进行连接,以为其他电路或负载进行供电。直流源101用于为DC-AC变换电路103供电。示例性地,变压器104包括一个原边绕组和一个副边绕组。
进一步地,功率变换器102还包括电容,该电容与变压器104串联。该电容可以直接与变压器104串联,该电容也可以是通过其他器件与变压器104串联。示例性地,该电容可以串联在变压器104的原边绕组侧,或者串联在变压器104的副边绕组侧。示例性地,通过设置与变压器104串联的电容,可以解决至少两种不同励磁电压导致的偏励磁问题,此时,该电容可以叫做纠偏电容。
进一步示例性地,当纠偏电容串联在变压器104的原边绕组侧时,DC-AC变换电路103通过纠偏电容与变压器104耦合。而纠偏电容串联在变压器104的副边绕组侧时,变压器104通过纠偏电容与第一AC-DC变换电路耦合。
在一种示例中,为了解决功率变换器的调压灵活性低下的问题,在变压器104的原边绕组这一侧,根据DC-AC变换电路103产生的不同的励磁电压对应匹配对原边绕组中不同的匝数绕组进行励磁,以实现调整不同的励磁电压输入变压器的电流及能量大小,可以提升功率变换器102的调压灵活性。
具体地,DC-AC变换电路103包括至少三个输出连接端,变压器104的原边绕组包括至少两个子原边绕组,该至少两个子原边绕组包括至少三个原边绕组连接端,其中至少两个子原边绕组共用一个原边绕组连接端,至少三个原边绕组连接端用于将原边绕组分成至少两个子原边绕组。其中,子原边绕组为全部或部分的原边绕组。DC-AC变换电路103的一种励磁电压对应输出至一个子原边绕组,子原边绕组的匝数根据对应接入的励磁电压的变化进行相应调整。而且DC-AC变换电路103的至少三个输出连接端一一对应连接至少三个原边绕组连接端。
下文的各种描述中,将以DC-AC变换电路产生两种不同的励磁电压,以及原边绕组被分为两个子原边绕组为例对本申请实施例的方案进行具体说明。对于DC-AC变换电路产生三种以上不同的励磁电压,以及原边绕组被分为三个以上的子原边绕组的情形,本申请实施例的方案同样适用,可以参考两种不同的励磁电压的相关描述,不再赘述。
图2是本申请实施例提供的一种功率变换器的结构示意图。示例性地,本申请实施例中,DC-AC变换电路103包括第一开关Q1和第二开关Q2。
具体地,变压器T1的原边绕组具有A、B、C三个原边绕组连接端,原边绕组连接端A到原边绕组连接端C之间的绕组作为至少两个子原边绕组中的第一子原边绕组,而原边绕组连接端B到原边绕组连接端C之间的绕组作为至少两个子原边绕组中的第二子原边绕组,第一子原边绕组和第二子原边绕组的公共连接端为原边绕组连接端C。第一开关Q1的一端与第一直流源Vin1连接,第一开关Q1的另一端连接原边绕组连接端A,第二开关Q2的一端连接原边绕组连接端B,第二开关Q2的另一端接地。原边绕组连接端C通过纠偏电容C1接地。
其中,第一开关Q1导通,第二开关Q2断开时,第一直流源Vin1通过第一开关Q1分压后向变压器T1输入第一种励磁电压,第一直流源Vin1的电流经过第一开关Q1、整个原边绕组(即从原边绕组连接端A到原边绕组连接端C)后流入纠偏电容C1,此时,对纠偏电容C1进行充电。
而第一开关Q1断开,第二开关Q2导通时,纠偏电容C1开始放电产生第二种励磁电压,此时的放电电流通过原边绕组连接端C、原边绕组连接端B、第二开关Q2后流回纠偏电容C1。
可见,图2中,由第一直流源Vin1和纠偏电容C1(理解为储能电容)作为不同的供电源,经过分压后提供两种不同的励磁电压。
另外,虽然图2中仅仅示意了一个绕组抽头(即原边绕组连接端B),也可以增加绕组抽头的个数,例如,在原边绕组连接端A和原边绕组连接端B之间增加一个新的抽头,作为原边绕组连接端D,可以根据实际需求将原边绕组连接端D到原边绕组连接端C之间的绕组作为第一子原边绕组,而原边绕组连接端B到原边绕组连接端C之间的绕组作为第二子原边绕组,此时,原边绕组连接端C作为第一子原边绕组和第二子原边绕组的公共连接端。又例如,在原边绕组连接端B和原边绕组连接端C之间增加一个新的抽头,作为原边绕组连接端D,可以根据实际需求将原边绕组连接端A到原边绕组连接端D之间的绕组作为第一子原边绕组,而原边绕组连接端B到原边绕组连接端D之间的绕组作为第二子原边绕组,此时,原边绕组连接端D作为第一子原边绕组和第二子原边绕组的公共连接端。
继续参考图2,本实施例中,第一AC-DC变换电路105包括第一整流器件D1、第二整流器件D2、第三整流器件D3和第四整流器件D4,利用第一整流器件D1至第四整流器件D4实现整流处理,即将交流电变换成直流电。
其中,第一整流器件D1和第三整流器件D3串联后并联到第一AC-DC变换电路105的输出端OUT1和OUT2。第二整流器件D2和第四整流器件D4串联后并联到第一AC-DC变换电路105的输出端OUT1和OUT2。变压器T1的副边绕组连接端D和副边绕组连接端E并联在第一整流器件D1和第三整流器件D3的串联连接端、和第二整流器件D2和第四整流器件D4的串联连接端之间。
当第一开关Q1导通,第二开关Q2断开时,第一直流源Vin1的电流会从原边绕组连接端A流到原边绕组连接端C,此时,利用第二整流器件D2和第三整流器件D3进行对变压器T1的副边绕组的输出电流进行整流处理。而第一开关Q1断开,第二开关Q2导通时,纠偏电容C1的放电电流会从原边绕组连接端C流到原边绕组连接端B,此时,利用第一整流器件D1和第四整流器件D4对变压器T1的副边绕组的输出电流进行整流处理。可见,本申请实施例中,设置第一整流器件至第四整流器件,可以实现对变压器输出的不同电流流向的电流进行整流处理。
本申请的描述中,第一整流器件、第二整流器件、第三整流器件和第四整流器件中的至少一项可以采用二极管、开关管等中的至少一种来实现。其中,上述开关管包括三极管、金 氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET,简称MOS)管等中的至少一项。而三极管包括PNP型三极管、NPN型三极管;MOS管包括NMOS管、PMOS管。示例性地,图2中第一整流器件至第四整流器件采用二极管来实现。
图3是本申请实施例提供的另一种功率变换器的结构示意图。示例性地,图3中,DC-AC变换电路103包括第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4。
具体地,与图2相同的,图3中变压器T1的原边绕组具有A、B、C三个原边绕组连接端,原边绕组连接端A到原边绕组连接端C之间的绕组作为至少两个子原边绕组中的第一子原边绕组,而原边绕组连接端B到原边绕组连接端C之间的绕组作为至少两个子原边绕组中的第二子原边绕组,第一子原边绕组和第二子原边绕组的公共连接端为原边绕组连接端C。
第一开关Q1和第三开关Q3串联后连接第二直流源Vin2。第二开关Q2的一端连接第一直流源Vin1,第二开关Q2的另一端作为DC-AC变换电路103的输出连接端连接第一子原边绕组的原边绕组连接端A。第四开关Q4的一端连接第二子原边绕组的原边绕组连接端B,第四开关Q4的另一端接地。原边绕组连接端C通过纠偏电容C1连接第一开关Q1和第三开关Q3的串联连接端。
其中,当控制第一开关Q1和第四开关Q4断开,且第二开关Q2和第三开关Q3导通时,第一直流源Vin1经过第二开关Q2分压后向变压器T1输入第一种励磁电压,第一直流源Vin1的电流经过第二开关Q2、整个原边绕组(即从原边绕组连接端A到原边绕组连接端C)后流入纠偏电容C1,再经过第三开关Q3后流入地线。
当控制第一开关Q1和第四开关Q4导通,且第二开关Q2和第三开关Q3断开时,第二直流源Vin2经过第一开关Q1、纠偏电容C1分压后向变压器T1输入第二种励磁电压,第二直流源Vin2的电流通过第一开关Q1、纠偏电容C1、原边绕组连接端C、原边绕组连接端B、第四开关Q4后流入地线。
可见,图3中,设置第一开关至第四开关以实现第一直流源Vin1和第二直流源Vin2分时作为不同的供电源,不同的供电源经过分压后可以提供两种不同的励磁电压。另外,图3中的第一AC-DC变换电路105与图2所示的第一AC-DC变换电路结构相同,不再赘述。
本申请的描述中,第一开关、第二开关、第三开关和第四开关中至少一项可以采用手动开关、继电器、开关管等中的至少一种来实现,其中,开关管包括三极管、MOS管等中的至少一项。三极管包括PNP型三极管、NPN型三极管。MOS管包括NMOS管、PMOS管。图2和图3中的开关采用NMOS管来实现,其中,VgM、VgH、VgS、VgL为各自对应的NMOS管的基极控制信号。
图4a是本申请实施例提供的另一种功率变换器的结构示意图。示例性地,图4a中,DC-AC变换电路103包括第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4。
具体地,与图2相同的,图4a中变压器T1的原边绕组具有A、B、C三个原边绕组连接端,原边绕组连接端A到原边绕组连接端C之间的绕组作为至少两个子原边绕组中的第一子原边绕组,而原边绕组连接端B到原边绕组连接端C之间的绕组作为至少两个子原边绕组中的第二子原边绕组,第一子原边绕组和第二子原边绕组的公共连接端为原边绕组连接端C。第一开关Q1和第三开关Q3串联后连接第一直流源Vin1。第二开关Q2的一端连接第一直流源Vin1,第二开关Q2的另一端作为DC-AC变换电路103的输出连接端连接第一子原边绕组的原边绕组连接端A。第四开关Q4的一端连接第二子原边绕组的原边绕组连接端B,第四开关Q4的另一端接地。原边绕组连接端C通过纠偏电容连接第一开关Q1和第三开关Q3的串联连接端。
其中,第一开关Q1、第四开关Q4的占空比与第二开关Q2、第三开关Q3的占空比不同,可以理解为在工作时序中,前后两个占空比不对称。第一开关Q1、第四开关Q4的占空比是指第一开关Q1和第四开关Q4同时导通的第一时间,第二开关Q2、第三开关Q3的占空比是指第二开关Q2和第三开关Q3同时导通的第一时间。占空比不同是指第一开关Q1至第四开关Q4不存在同时导通的情形,且第一时间与第一时间不同,可以为第一时间的时间长度大于第二时间的时间长度,或者第二时间的时间长度大于第一时间的时间长度,可以根据实际需求进行设置。
图4a所示DC-AC变换电路103的工作逻辑与图3所示DC-AC变换电路103的工作逻辑类似,当控制第一开关Q1和第四开关Q4断开,且第二开关Q2和第三开关Q3导通时,第一直流源Vin1经过第二开关Q2分压后向变压器T1输入第一种励磁电压,第一直流源Vin1的电流经过第二开关Q2、整个原边绕组(即从原边绕组连接端A到原边绕组连接端C)后流入纠偏电容C1,再经过第三开关Q3后流入地线。
当控制第一开关Q1和第四开关Q4导通,且第二开关Q2和第三开关Q3断开时,第一直流源Vin1经过第一开关Q1、纠偏电容C1分压后向变压器T1输入第二种励磁电压,第一直流源Vin1的电流通过第一开关Q1、纠偏电容C1、原边绕组连接端C、原边绕组连接端B、第四开关Q4后流入地线。
可见,图4a中,将第一直流源Vin1作为供电源,控制第一开关至第四开关的占空比不同并经过分压后提供两种不同的励磁电压。另外,图4a中的第一AC-DC变换电路105与图2所示的第一AC-DC变换电路结构相同,不再赘述。
上述原边绕组连接端A、原边绕组连接端B和原边绕组连接端C与DC-AC变换电路103的三个输出连接端的连接位置可以根据实际需求进行修改。示例性地,参考图4b,图4b是本申请实施例提供的另一种功率变换器的结构示意图;其中,第二开关Q2的一端连接第一直流源Vin1,第二开关Q2的另一端与原边绕组连接端B连接。而第四开关Q4的一端与原边绕组连接端A连接,第四开关Q4的另一端接地。原边绕组连接端C作为公共连接端与第一开关Q1和第三开关Q3的串联连接端连接。
在另一种示例中,本申请实施例中,为了解决功率变换器的调压灵活性低下的问题,在变压器104的副边绕组这一侧,根据原边绕组接入的不同的励磁电压来调整起变压作用的副边绕组的匝数,以实现调整不同的励磁电压输入变压器的电流及能量大小,可以提升功率变换器102的调压灵活性。
具体地,变压器104的副边绕组包括至少两个子副边绕组,至少两个子副边绕组包括至少三个副边绕组连接端,其中至少两个子副边绕组共用一个副边绕组连接端,至少三个副边绕组连接端用于将副边绕组分成至少两个子副边绕组,一个子副边绕组的匝数根据变压器的原边绕组接入的一种励磁电压的变化而相应调整。其中,子副边绕组为全部或部分的副边绕组。第一AC-DC变换电路包括至少三个输入连接端,至少三个输入连接端一一对应连接至少三个副边绕组连接端。
图5a是本申请实施例提供的另一种功率变换器的结构示意图;示例性地,图5a中,第一AC-DC变换电路105包括第一整流器件D1、第二整流器件D2、第三整流器件D3和第四整流器件D4。
具体地,变压器T1的副边绕组具有C、D、E三个副边绕组连接端,副边绕组连接端C到副边绕组连接端E之间的绕组作为至少两个子副边绕组中的第一子副边绕组,而副边绕组 连接端D到副边绕组连接端E之间的绕组作为至少两个子副边绕组中的第二子副边绕组,第一子副边绕组和第二子副边绕组的公共连接端为副边绕组连接端E。第一整流器件D1和第三整流器件D3串联后并联到第一AC-DC变换电路105的输出端OUT1和OUT2。第二整流器件D2的一端与第一子副边绕组的副边绕组连接端C连接,第二整流器件D2的另一端连接第一AC-DC变换电路105的输出端OUT1。第四整流器件D4的一端与第二子副边绕组的副边绕组连接端D连接,第四整流器件D4的另一端连接第一AC-DC变换电路105的输出端OUT2。副边绕组连接端E连接第一整流器件D1和第三整流器件D3的串联连接端。
另外,图5a中DC-AC变换电路103包括第一开关Q1和第二开关Q2,第一开关Q1和第二开关Q2串联后并联到第一直流源Vin1,变压器T1的原边绕组连接端A连接第一开关Q1和第二开关Q2的串联连接端,原边绕组连接端B通过纠偏电容C1接地。
从图5a可以看出,当第一开关Q1导通,第二开关Q2断开时,第一直流源Vin1通过第一开关Q1分压后向变压器T1输入第一种励磁电压,第一直流源Vin1的电流经过第一开关Q1、原边绕组后流入纠偏电容C1,此时,对纠偏电容C1进行充电。此时,通过第一子副边绕组进行变压处理,并通过第二整流器件D2和第三整流器件D3进行整流处理。而第一开关Q1断开,第二开关Q2导通时,纠偏电容C1开始放电产生第二种励磁电压,此时的电流通过原边绕组、第二开关Q2后流回纠偏电容C1。此时,通过第二子副边绕组进行变压处理,并通过第一整流器件D1和第四整流器件D4进行整流处理。本申请实施例中,可以匹配原边绕组输入的不同的励磁电压,采用不同匝数的子副边绕组进行变压处理,有效提升了功率变换器的调压灵活性。
图5b是本申请实施例提供的另一种功率变换器的结构示意图,示例性地,图5b提供了另一种DC-AC变换电路103的示例,其中,DC-AC变换电路103包括第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4。第一开关Q1和第三开关Q3串联后连接第二直流源Vin2。第二开关Q2和第四开关Q4串联后连接第一直流源Vin1,原边绕组连接端A连接第二开关Q2和第四开关Q4的串联连接端,原边绕组连接端B通过纠偏电容C1连接第一开关Q1和第三开关Q3的串联连接端。
其中,当控制第一开关Q1和第四开关Q4断开,且第二开关Q2和第三开关Q3导通时,第一直流源Vin1经过第二开关Q2分压后向变压器T1输入第一种励磁电压,第一直流源Vin1的电流经过第二开关Q2、原边绕组后流入纠偏电容C1,再经过第三开关Q3后流入地线。此时,通过第一子副边绕组进行变压处理,并通过第二整流器件D2和第三整流器件D3进行整流处理。
当控制第一开关Q1和第四开关Q4导通,且第二开关Q2和第三开关Q3断开时,第二直流源Vin2经过第一开关Q1、纠偏电容C1分压后向变压器T1输入第二种励磁电压,第二直流源Vin2的电流通过第一开关Q1、纠偏电容C1、原边绕组、第四开关Q4后流入地线。此时,通过第二子副边绕组进行变压处理,并通过第一整流器件D1和第四整流器件D4进行整流处理。
图5c是本申请实施例提供的另一种功率变换器的结构示意图,示例性地,图5c提供了另一种DC-AC变换电路103的示例,其中,DC-AC变换电路103包括第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4。第一开关Q1和第三开关Q3串联后连接第一直流源Vin1。第二开关Q2和第四开关Q4串联后连接第一直流源Vin1。原边绕组连接端A连接第二开关Q2和第四开关Q4的串联连接端,原边绕组连接端B通过纠偏电容C1连接第一开关Q1和第三开关Q3的串联连接端。其中,第一开关Q1、第四开关Q4的占空比与第二开关Q2、第 三开关Q3的占空比不同,以实现输出两种不同的励磁电压。
其中,当控制第一开关Q1和第四开关Q4断开,且第二开关Q2和第三开关Q3导通时,第一直流源Vin1经过第二开关Q2分压后向变压器T1输入第一种励磁电压,第一直流源Vin1的电流经过第二开关Q2、原边绕组后流入纠偏电容C1,再经过第三开关Q3后流入地线。此时,通过第一子副边绕组进行变压处理,并通过第二整流器件D2和第三整流器件D3进行整流处理。
当控制第一开关Q1和第四开关Q4导通,且第二开关Q2和第三开关Q3断开时,第一直流源Vin1经过第一开关Q1、纠偏电容C1分压后向变压器T1输入第二种励磁电压,第一直流源Vin1的电流通过第一开关Q1、纠偏电容C1、原边绕组、第四开关Q4后流入地线。此时,通过第二子副边绕组进行变压处理,并通过第一整流器件D1和第四整流器件D4进行整流处理。
在另一种示例中,本申请实施例中,也可以根据不同的励磁电压,同时调整起变压作用的原边绕组的匝数和副边绕组的匝数,以调整不同的励磁电压输入变压器的电流及能量大小,可以提升功率变换器102的调压灵活性。
此时,变压器104的原边绕组包括至少两个子原边绕组,至少两个子原边绕组包括至少三个原边绕组连接端,其中至少两个子原边绕组共用一个原边绕组连接端,至少三个原边绕组连接端用于将原边绕组分成至少两个子原边绕组。DC-AC变换电路103的一种励磁电压对应输出至一个子原边绕组,而且DC-AC变换电路103包括至少三个输出连接端,至少三个输出连接端一一对应连接至少三个原边绕组连接端。同时,功率变压器的副边绕组包括至少两个子副边绕组,至少两个子副边绕组包括至少三个副边绕组连接端,其中至少两个子副边绕组共用一个副边绕组连接端,至少三个副边绕组连接端用于将副边绕组分成至少两个子副边绕组;至少两个子副边绕组与至少两个子原边绕组一一对应,且子原边绕组和对应的子副边绕组的匝数根据对应的该子原边绕组接入的励磁电压的变化而相应调整;第一AC-DC变换电路包括至少三个输入连接端,至少三个输入连接端一一对应连接至少三个副边绕组连接端。
图6是本申请实施例提供的另一种功率变换器的结构示意图;示例性地,图6中DC-AC变换电路103包括第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4。图6中变压器T1的原边绕组具有A、B、C三个原边绕组连接端,原边绕组连接端A到原边绕组连接端C之间的绕组作为至少两个子原边绕组中的第一子原边绕组,而原边绕组连接端B到原边绕组连接端C之间的绕组作为至少两个子原边绕组中的第二子原边绕组,第一子原边绕组和第二子原边绕组的公共连接端为原边绕组连接端C。进一步地,第一开关Q1和第三开关Q3串联后连接第二直流源Vin2。第二开关Q2的一端连接第一直流源Vin1,第二开关Q2的另一端作为DC-AC变换电路103的输出连接端连接第一子原边绕组的原边绕组连接端A。第四开关Q4的一端连接第二子原边绕组的原边绕组连接端B,第四开关Q4的另一端接地。原边绕组连接端C通过纠偏电容C1连接第一开关Q1和第三开关Q3的串联连接端。
而且,变压器T1的副边绕组具有D、E、F三个副边绕组连接端,副边绕组连接端D到副边绕组连接端F之间的绕组作为至少两个子副边绕组中的第一子副边绕组,而副边绕组连接端E到副边绕组连接端F之间的绕组作为至少两个子副边绕组中的第二子副边绕组,第一子副边绕组和第二子副边绕组的公共连接端为副边绕组连接端F。第一整流器件D1和第三整流器件D3串联后并联到第一AC-DC变换电路105的输出端OUT1和OUT2。第二整流器件D2的一端与第一子副边绕组的副边绕组连接端D连接,第二整流器件D2的另一端连接第一 AC-DC变换电路105的输出端OUT1。第四整流器件D4的一端与第二子副边绕组的副边绕组连接端E连接,第四整流器件D4的另一端连接第一AC-DC变换电路105的输出端OUT2。副边绕组连接端F连接第一整流器件D1和第三整流器件D3的串联连接端。
对于本申请任意实施例中的功率变换器,功率变换器还包括与变压器串联的电感,本申请实施例中,对于与变压器串联的电容和/或电感的个数不做特别限定,可以根据实际需求进行设置。示例性地,参考图7,图7是本申请实施例提供的另一种功率变换器的结构示意图;纠偏电容C1与电感L1串联,DC-AC变换电路通过纠偏电容C1和电感L1与变压器T1耦合;其中,DC-AC变换电路包括第一开关Q1、第二开关Q2、第三开关Q3和第四开关Q4。本申请实施例中,设置纠偏电容C1和电感L1可以减小DC-AC变换电路中的开关器件(如第一开关至第四开关中至少一个开关)的开关损耗,帮助减小DC-AC变换电路的损耗,实现电压稳定。又示例性地,参考图7,其中,电容C2和电感L2串联,变压器T1还通过电容C2和电感L2与第一AC-DC变换电路耦合;其中,第一AC-DC变换电路包括第一整流器件D1、第二整流器件D2、第三整流器件D3和第四整流器件D4。本申请实施例中,设置电容C2和电感L2可以调节第一AC-DC变换电路的输出电压,又能稳定该输出电压。
对于本申请任意实施例中的功率变换器,功率变换器还包括与第一AC-DC变换电路并联的输出电容,设置输出电容以稳定第一AC-DC变换电路的输出电压。示例性地,参考图7,第一AC-DC变换电路包括第一整流器件D1、第二整流器件D2、第三整流器件D3和第四整流器件D4。第一AC-DC变换电路与输出电容C3并联以稳定其输出电压。
对于本申请任意实施例中的电源,直流源包括DC-DC变换电路,DC-DC变换电路包括以下至少一项:Boost电路、Buck电路、正输出类型的Buck-Boost电路、单端初级电感式转换器(Single Ended Primary Inductor Converter,SEPIC)电路、双SEPIC电路。
其中,Boost电路是一种开关直流升压电路,它可以使输出电压比输入电压高。Buck电路是一种降压斩波器,其输出电压小于输入电压。而Buck-Boost电路的输出电压既可低于也可高于输入电压,但输出电压的极性与输入电压相反。SEPIC电路是一种允许输出电压大于、小于或者等于输入电压的DC-DC电路,其输出电压由开关(三极管或MOS管等)的占空比控制;SEPIC电路中,电源电流和负载电流均连续,有利于输入、输出滤波。双SEPIC电路又称Zeta电路,Zeta电路是一种允许输出电压大于、小于或者等于输入电压的DC-DC电路,Zeta电路的输入、输出电流均是断续的。
示例性地,对于图2所示的功率变换器,第一直流源Vin1可以采用以下任一项来实现:Boost电路、Buck电路、正输出类型的Buck-Boost电路、SEPIC电路、双SEPIC电路。
而对于图3所示的功率变换器,第一直流源Vin1可以采用以下任一项来实现:Boost电路、Buck电路、正输出类型的Buck-Boost电路、SEPIC电路、双SEPIC电路;第二直流源Vin2可以采用以下任一项来实现:Boost电路、Buck电路、正输出类型的Buck-Boost电路、SEPIC电路、双SEPIC电路。
示例性地,对于图3所示的功率变换器,参考图8,图8是本申请实施例提供的一种电源的结构示意图,采用Boost电路来作为第二直流源Vin2。图8中,Boost电路采用第五开关管Q5、第六开关管Q6、电感L1和电容C2来实现,第五开关管Q5和第六开关管Q6以采用NMOS管来实现为例,VgN、VgP为各自对应的NMOS管的基极控制信号。直流源Vin直接作为第一直流源Vin1,并经过第二开关Q2分压后向变压器T1提供第一种励磁电压。而Boost电路作为第二直流源Vin2,直流源Vin经过Boost电路处理后,经过第一开关Q1、纠 偏电容C1分压后向变压器T1提供第二种励磁电压。
对于本申请任意实施例中的电源,直流源包括交流源和第二AC-DC变换电路。第二AC-DC变换电路用于将交流源提供的交流电变换为直流电,以为DC-AC变换电路供电。其中,对第二AC-DC变换电路的具体电路结构不做特别限定,只要能够实现AC-DC转换即可。
当然,对于本申请任意实施例中的电源,直流源包括交流源、第二AC-DC变换电路和DC-DC变换电路,第二AC-DC变换电路用于将交流源提供的交流电变换为直流电,DC-DC变换电路用于将第二AC-DC变换电路输出直流电转换为另一种直流电,以为DC-AC变换电路供电。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种功率变换器,其特征在于,所述功率变换器包括直流DC-交流AC变换电路、变压器和第一AC-DC变换电路,所述DC-AC变换电路通过所述变压器和所述第一AC-DC变换电路耦合;
    所述DC-AC变换电路包括至少三个输出连接端;
    所述变压器的原边绕组包括至少两个子原边绕组,所述至少两个子原边绕组包括至少三个原边绕组连接端,其中至少两个子原边绕组共用一个原边绕组连接端,所述至少三个原边绕组连接端一一对应连接所述DC-AC变换电路的至少三个输出连接端;
    所述DC-AC变换电路用于分时产生至少两种不同的励磁电压,其中,一种所述励磁电压对应输出至一个所述子原边绕组,所述子原边绕组的匝数根据所述输入的励磁电压的变化而相应调整。
  2. 根据权利要求1所述的功率变换器,其特征在于,所述功率变换器还包括电容,所述电容与所述变压器串联。
  3. 根据权利要求2所述的功率变换器,其特征在于,所述DC-AC变换电路包括第一开关、第二开关、第三开关和第四开关;
    所述第一开关和所述第三开关串联后连接第二直流源;所述第二开关的一端连接第一直流源,所述第二开关的另一端作为所述DC-AC变换电路的输出连接端连接所述至少两个子原边绕组中第一子原边绕组的一端;所述第四开关的一端连接所述至少两个子原边绕组中第二子原边绕组的一端,所述第四开关的另一端接地;所述第一子原边绕组和所述第二子原边绕组的公共连接端通过所述电容连接所述第一开关和所述第三开关的串联连接端。
  4. 根据权利要求2所述的功率变换器,其特征在于,所述DC-AC变换电路包括第一开关、第二开关、第三开关和第四开关;
    所述第一开关和所述第三开关串联后连接第一直流源;所述第二开关的一端连接所述第一直流源,所述第二开关的另一端作为所述DC-AC变换电路的输出连接端连接所述至少两个子原边绕组中第一子原边绕组的一端;所述第四开关的一端连接所述至少两个子原边绕组中第二子原边绕组的一端,所述第四开关的另一端接地;所述第一子原边绕组和所述第二子原边绕组的公共连接端通过所述电容连接所述第一开关和所述第三开关的串联连接端;所述第一开关、所述第四开关的占空比与所述第二开关、所述第三开关的占空比不同。
  5. 根据权利要求2所述的功率变换器,其特征在于,所述DC-AC变换电路包括第一开关和第二开关;
    所述第一开关的一端与第一直流源连接,所述第一开关的另一端作为所述DC-AC变换电路的输出连接端连接所述至少两个子原边绕组中第一子原边绕组的一端;所述第二开关的一端连接所述至少两个子原边绕组中第二子原边绕组的一端,所述第二开关的另一端接地;所述第一子原边绕组和所述第二子原边绕组的公共连接端通过所述电容接地。
  6. 根据权利要求1至5任一项所述的功率变换器,其特征在于,所述第一AC-DC变换电路包括第一整流器件、第二整流器件、第三整流器件和第四整流器件;
    所述第一整流器件和所述第三整流器件串联后并联到所述第一AC-DC变换电路的输出端;所述第二整流器件和所述第四整流器件串联后并联到所述第一AC-DC变换电路的输出端;所述变压器的副边绕组并联在所述第一整流器件和所述第三整流器件的串联连接端、和所述第二整流器件和所述第四整流器件的串联连接端之间。
  7. 根据权利要求1至5任一项所述的功率变换器,其特征在于,所述功率变压器的副边绕组包括至少两个子副边绕组,所述至少两个子副边绕组包括至少三个副边绕组连接端,其中至少两个子副边绕组共用一个副边绕组连接端;所述至少两个子副边绕组与所述至少两个子原边绕组一一对应,且任一子副边绕组的匝数根据对应的任一子原边绕组接入的励磁电压的变化而相应调整;所述第一AC-DC变换电路包括至少三个输入连接端,所述至少三个输入连接端一一对应连接所述至少三个副边绕组连接端。
  8. 根据权利要求7所述的功率变换器,其特征在于,所述第一AC-DC变换电路包括第一整流器件、第二整流器件、第三整流器件和第四整流器件;
    所述第一整流器件和所述第三整流器件串联后并联到所述第一AC-DC变换电路的输出端;所述第二整流器件的一端与所述至少两个子副边绕组中的第一子副边绕组的一端连接,所述第二整流器件的另一端连接所述第一AC-DC变换电路的输出端;所述第四整流器件的一端与所述至少两个子副边绕组中的第二子副边绕组的一端连接,所述第四整流器件的另一端连接所述第一AC-DC变换电路的输出端;所述第一子副边绕组和所述第二子副边绕组的公共连接端连接所述第一整流器件和所述第三整流器件的串联连接端。
  9. 根据权利要求1至8任一项所述的功率变换器,其特征在于,所述功率变换器还包括与所述变压器串联的电感。
  10. 一种功率变换器,其特征在于,所述功率变换器包括直流DC-交流AC变换电路、变压器和第一AC-DC变换电路,所述DC-AC变换电路通过所述变压器和所述第一AC-DC变换电路耦合;
    所述DC-AC变换电路用于分时产生至少两种不同的励磁电压;所述变压器的副边绕组包括至少两个子副边绕组,所述至少两个子副边绕组包括至少三个副边绕组连接端,其中至少两个子副边绕组共用一个副边绕组连接端,一个所述子副边绕组的匝数根据所述变压器的原边绕组接入的一种励磁电压的变化而相应调整;所述第一AC-DC变换电路包括至少三个输入连接端,所述至少三个输入连接端一一对应连接所述至少三个副边绕组连接端。
  11. 根据权利要求10所述的功率变换器,其特征在于,所述第一AC-DC变换电路包括第一整流器件、第二整流器件、第三整流器件和第四整流器件;
    所述第一整流器件和所述第三整流器件串联后并联到所述第一AC-DC变换电路的输出端;所述第二整流器件的一端与所述至少两个子副边绕组中的第一子副边绕组的一端连接,所述第二整流器件的另一端连接所述第一AC-DC变换电路的输出端;所述第四整流器件的一端与所述至少两个子副边绕组中的第二子副边绕组的一端连接,所述第四整流器件的另一端连接所述第一AC-DC变换电路的输出端;所述第一子副边绕组和所述第二子副边绕组的公共连接端连接所述第一整流器件和所述第三整流器件的串联连接端。
  12. 根据权利要求10或11所述的功率变换器,其特征在于,所述功率变换器还包括与所述变压器串联的电容和/或与所述变压器串联的电感。
  13. 一种电源,包括直流源和功率变换器,所述功率变换器包括直流DC-交流AC变换电路、变压器和第一AC-DC变换电路,所述直流源用于为所述DC-AC变换电路供电,所述DC-AC变换电路通过所述变压器和所述第一AC-DC变换电路耦合;
    所述DC-AC变换电路包括至少三个输出连接端;
    所述变压器的原边绕组包括至少两个子原边绕组,所述至少两个子原边绕组包括至少三个原边绕组连接端,其中至少相邻两个子原边绕组共用一个原边绕组连接端,所述至少三个原边绕组连接端一一对应连接所述DC-AC变换电路的至少三个输出连接端;
    所述DC-AC变换电路用于分时产生至少两种不同的励磁电压,其中,一种所述励磁电压对应输出至一个所述子原边绕组,所述子原边绕组的匝数根据所述输入的励磁电压的变化而相应调整。
  14. 根据权利要求13所述的电源,其特征在于,所述直流源包括DC-DC变换电路,所述DC-DC变换电路包括以下至少一项:Boost电路、Buck电路、正输出类型的Buck-Boost电路、单端初级电感式转换器SEPIC电路、双SEPIC电路。
  15. 根据权利要求13或14所述的电源,其特征在于,所述直流源包括交流源和第二AC-DC变换电路;所述第二AC-DC变换电路用于将所述交流源提供的交流电变换为直流电,以为所述DC-AC变换电路供电。
PCT/CN2022/114925 2022-08-25 2022-08-25 功率变换器及电源 WO2024040537A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/114925 WO2024040537A1 (zh) 2022-08-25 2022-08-25 功率变换器及电源
CN202280035700.7A CN117356023A (zh) 2022-08-25 2022-08-25 功率变换器及电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114925 WO2024040537A1 (zh) 2022-08-25 2022-08-25 功率变换器及电源

Publications (1)

Publication Number Publication Date
WO2024040537A1 true WO2024040537A1 (zh) 2024-02-29

Family

ID=89363608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114925 WO2024040537A1 (zh) 2022-08-25 2022-08-25 功率变换器及电源

Country Status (2)

Country Link
CN (1) CN117356023A (zh)
WO (1) WO2024040537A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729135B1 (en) * 2007-05-10 2010-06-01 Fairchild Semiconductor Corporation Power converter using a single tapped transformer for multiple ranges of input voltage
CN109889051A (zh) * 2019-04-04 2019-06-14 深圳市三旺通信股份有限公司 一种dcdc隔离电源电路
CN109980942A (zh) * 2019-03-25 2019-07-05 华中科技大学 一种基于分段式变压器的dc-dc变换器
CN114070083A (zh) * 2021-10-13 2022-02-18 华为技术有限公司 Dc/dc变换器及其输出电压控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729135B1 (en) * 2007-05-10 2010-06-01 Fairchild Semiconductor Corporation Power converter using a single tapped transformer for multiple ranges of input voltage
CN109980942A (zh) * 2019-03-25 2019-07-05 华中科技大学 一种基于分段式变压器的dc-dc变换器
CN109889051A (zh) * 2019-04-04 2019-06-14 深圳市三旺通信股份有限公司 一种dcdc隔离电源电路
CN114070083A (zh) * 2021-10-13 2022-02-18 华为技术有限公司 Dc/dc变换器及其输出电压控制方法

Also Published As

Publication number Publication date
CN117356023A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
US10734905B2 (en) Direct current-direct current converter
US7463498B1 (en) Apparatus for isolated switching power supply with coupled output inductors
US8767415B2 (en) High efficiency and fast response AC-DC voltage converters
US8780585B2 (en) Double phase-shifting full-bridge DC-to-DC converter
JP5088386B2 (ja) スイッチング電源装置
WO2019128071A1 (zh) 一种dc-dc变换器
US9923476B2 (en) Switching power supply and method for controlling switching power supply
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
JPWO2009001854A1 (ja) 双方向dc/dcコンバータ
JP2004248485A (ja) スイッチング電源
WO2017220019A1 (zh) 开关电源、电子设备及开关电源控制方法
US9787201B2 (en) Bidirectional isolated multi-level DC-DC converter and method thereof
US20130051082A1 (en) Switching power supply
US20140071716A1 (en) High efficient single switch single stage power factor correction power supply
EP3748834A1 (en) Power supply device
US8031499B2 (en) Direct current/direct current converter with multiple outputs
US20230238892A1 (en) Isolated dc-dc converter
WO2024040537A1 (zh) 功率变换器及电源
US11817788B1 (en) Voltage converter and control method for voltage conversion
US7079403B2 (en) Isolated DC-DC converters
US11228250B2 (en) Flyback power switch structure for bridgeless rectifier
TWI714355B (zh) 單階雙切式寬輸入範圍電源轉換電路
CN219643801U (zh) Dc-dc变换器及dc-dc变换装置
US6081435A (en) Cross-conduction limiting circuit, method of operation thereof and DC/DC converter employing the same
CN219643800U (zh) Dc-dc变换器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280035700.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956083

Country of ref document: EP

Kind code of ref document: A1