WO2024038883A1 - Chemically recycled polyethylene terephthalate resin, molded body of same, and method for producing chemically recycled polyethylene terephthalate resin - Google Patents

Chemically recycled polyethylene terephthalate resin, molded body of same, and method for producing chemically recycled polyethylene terephthalate resin Download PDF

Info

Publication number
WO2024038883A1
WO2024038883A1 PCT/JP2023/029643 JP2023029643W WO2024038883A1 WO 2024038883 A1 WO2024038883 A1 WO 2024038883A1 JP 2023029643 W JP2023029643 W JP 2023029643W WO 2024038883 A1 WO2024038883 A1 WO 2024038883A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
chemically recycled
amount
polyethylene terephthalate
less
Prior art date
Application number
PCT/JP2023/029643
Other languages
French (fr)
Japanese (ja)
Inventor
佑 山本
珠世 佐々井
万紀 木南
博史 柴野
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2024038883A1 publication Critical patent/WO2024038883A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a chemically recycled polyethylene terephthalate resin, a molded article thereof, and a method for producing a chemically recycled polyethylene terephthalate resin.
  • Polyester resin is widely used for packaging and industrial materials because it has excellent mechanical strength, chemical stability, heat resistance, and moisture resistance, and can also be highly transparent, as well as being inexpensive and stable in supply. There is.
  • a general-purpose polyester resin is polyethylene terephthalate, which is a polycondensate of terephthalic acid and ethylene glycol.
  • Terephthalic acid and ethylene glycol are produced from petroleum, a fossil fuel.
  • recycling of fossil fuel-derived products has been progressing in order to reduce environmental impact such as reducing carbon dioxide emissions.
  • mechanical recycling of polyester which involves crushing and remelting the product, it is also possible to decompose polyester to the monomer level.
  • chemical recycling in which polycondensation is performed again using this as a raw material is also being put into practical use.
  • polyester resin in order to reduce the environmental impact, the use of polyethylene terephthalate obtained through chemical recycling from PET beverage bottles, polyester fibers for clothing, etc. is being considered. Even such environmentally friendly resins are required to be used for the same purposes as non-recycled resins and to have similar properties.
  • polyester resin When polyester resin is used for films, fibers, and beverage bottles, if there are many foreign substances in the resin, product yield will decrease due to poor operability such as film breakage and fiber breakage during processing. Otherwise, foreign matter may remain in the product as a defect, leading to deterioration of quality. Furthermore, when used as a raw material for blow molded products, etc., it is difficult to obtain a hollow molded product with excellent transparency.
  • Antimony, germanium compounds, and titanium compounds are widely used as polyester polycondensation catalysts used in polyester polycondensation.
  • Antimony trioxide is a catalyst that is inexpensive and has excellent catalytic activity, but if it is used as the main component, that is, in an amount sufficient to achieve a practical polymerization rate, metallic antimony trioxide will be produced during polycondensation. is precipitated, which causes darkening and foreign matter on the polyester, which causes surface defects on the film.
  • a catalyst system consisting of an aluminum compound and a phosphorus compound has been disclosed as a polycondensation catalyst that reduces the amount of foreign matter (see, for example, Patent Document 1).
  • techniques are known to reduce the production of foreign substances caused by polycondensation catalysts by devising a method for preparing ethylene glycol solutions of aluminum compounds and phosphorus compounds used as catalysts, and by adding phosphorus compounds after the ester reaction is completed. (For example, see Patent Documents 2 and 3).
  • the present invention has been made against the background of such problems with the prior art, and by synthesizing a chemically recycled polyethylene terephthalate resin from raw materials obtained by chemically recycling and using an aluminum compound and a phosphorus compound as a catalyst during polymerization.
  • the purpose of the present invention is to provide a chemically recycled polyethylene terephthalate resin containing less foreign matter that is difficult to remove with a filter (specifically, foreign matter having a particle size of 0.5 to 0.69 ⁇ m).
  • the present inventors have repeatedly studied polycondensation of raw materials containing chemically recycled bis-2-hydroxyethyl terephthalate, and have found that chemically recycled bis-2-hydroxyethyl terephthalate is used and an aluminum compound and a phosphorus compound are used as catalysts during polymerization.
  • the researchers found that compared to polyethylene terephthalate resin obtained from virgin terephthalic acid and virgin ethylene glycol raw materials, chemically recycled polyethylene terephthalate resin can contain fewer foreign substances (particularly foreign substances that are difficult to remove with a filter).
  • the present invention consists of the following configuration.
  • a chemically recycled polyethylene terephthalate resin that satisfies the following (1) to (2).
  • (1) Contains aluminum atoms and phosphorus atoms (2)
  • the amount of foreign matter with a particle size of 0.50 to 0.69 ⁇ m measured by a particle counter is 2000 particles/ml or less
  • the aluminum in the chemically recycled polyethylene terephthalate resin The chemically recycled polyethylene terephthalate resin according to [1] above, wherein the content of atoms is 50 mass ppm or less, and the content of the phosphorus atoms is 100 mass ppm or less.
  • a method for producing polyethylene terephthalate resin using a raw material containing chemically recycled bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin comprising: Chemically recycled polyethylene terephthalate, characterized in that the raw material containing the chemically recycled bis-2-hydroxyethyl terephthalate is subjected to a polycondensation reaction in the presence of an aluminum compound and a phosphorus compound, either as it is or after esterifying its OH end.
  • Method of manufacturing resin comprising: Chemically recycled polyethylene terephthalate, characterized in that the raw material containing the chemically recycled bis-2-hydroxyethyl terephthalate is subjected to a polycondensation reaction in the presence of an aluminum compound and a phosphorus compound, either as it is or after esterifying its OH end.
  • the chemically recycled polyethylene terephthalate resin of the present invention can be suitably used as a material for various molded products such as films, fibers, beverage bottles, and optical applications.
  • the chemically recycled polyethylene terephthalate resin of the present invention has high transparency. Further, it is preferable that coloring is suppressed. Furthermore, it is preferable to have high thermal stability. Resins with high transparency, suppressed coloration, and high thermal stability are particularly preferred as materials for various molded products such as films, fibers, beverage bottles, and optical applications.
  • the method for producing chemically recycled polyethylene terephthalate resin of the present invention is characterized by polycondensing bis-2-hydroxyethyl terephthalate obtained by chemical recycling.
  • bis-2-hydroxyethyl terephthalate may be abbreviated as BHET
  • bis-2-hydroxyethyl terephthalate obtained by chemical recycling may be abbreviated as chemical recycled BHET or CR-BHET.
  • polyethylene terephthalate resin obtained by polycondensing chemically recycled BHET is sometimes abbreviated as chemically recycled PET or CR-PET.
  • polyethylene terephthalate may be abbreviated as PET.
  • the chemically recycled PET resin according to this embodiment can be a chemically recycled PET resin with a small amount of foreign matter having a particle size of 0.50 to 0.69 ⁇ m.
  • the present inventors have repeatedly investigated polymerizing chemically recycled PET using chemically recycled BHET obtained by decomposing polyester resin as a raw material, and found that free ethylene was present in the oligomer reaction liquid obtained from chemically recycled BHET. It was found that the content of glycol was low. On the other hand, a large amount of free ethylene glycol is present in the oligomer reaction solution obtained by esterifying terephthalic acid and ethylene glycol. It was discovered that when polymerization is carried out by adding a polymerization catalyst, foreign substances derived from the catalyst, which are difficult to remove with a filter, increase in the resulting resin.
  • the content of free ethylene glycol in the oligomer reaction solution containing BHET obtained from chemical recycling BHET is lower than that in the oligomer reaction solution obtained from terephthalic acid or ethylene glycol.
  • Foreign matter derived from the catalyst can be reduced.
  • Chemically recycled BHET is obtained by heating and depolymerizing PET resin in the presence of ethylene glycol.
  • the original PET resin is preferably one that has been used in some way; examples include containers such as PET bottles and trays collected from the city, fibers and products, and products released during manufacturing before being used as products. , products that were not shipped to the market as B-class products, selvedge parts that are held during film stretching, slit scraps, molded products that were returned due to complaints, etc.
  • Terephthalic acid and ethylene glycol of these PET resins may be derived from petroleum, or may be derived from biomass. It may also be a mechanically recycled molded product. Alternatively, a mixture of these PET resins may be used.
  • PET resins are generally used in the depolymerization process after being crushed, washed, and foreign matter removed.
  • ethylene glycol and alkaline compounds such as sodium hydroxide and potassium hydroxide are added to PET resin and heated to advance depolymerization.
  • the obtained reaction product is filtered and decolorized to remove solid matter, if necessary, and further, excess ethylene glycol and the like are distilled off to obtain a BHET crude product.
  • BHET crude product By purifying this BHET crude product by distillation, crystallization, etc., it is possible to obtain chemically recycled BHET of a purity used for polycondensation.
  • chemically recycled BHET in the present invention refers to one obtained by depolymerizing PET resin, and may contain components other than BHET as impurities.
  • BHET a dicarboxylic acid diester composed of one molecule of a polyhydric carboxylic acid component and two molecules of a polyhydric alcohol component such as bis-2-hydroxyethyl isophthalate; linear dimers and higher polymers; carboxylic acid monoesters composed of one molecule of polyhydric carboxylic acid component and one molecule of polyhydric alcohol component such as mono-2-hydroxyethyl terephthalate; free terephthalic acid Free polyhydric carboxylic acids such as; free polyhydric alcohols such as free ethylene glycol; and the like may be included.
  • the chemically recycled BHET contains BHET as a main component, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more.
  • the total acid value and hydroxyl value of the chemically recycled BHET is preferably 6,500 eq/ton or more, more preferably 7,000 eq/ton or more, and even more preferably 7,500 eq/ton or more.
  • the upper limit is preferably 9500 eq/ton, more preferably 9000 eq/ton, still more preferably 8500 eq/ton. That is, the total acid value and hydroxyl value of the chemically recycled BHET is preferably 6,500 to 9,500 eq/ton, more preferably 7,000 to 9,000 eq/ton, and still more preferably 7,500 to 8,500 eq/ton.
  • an acid value of 1 eq/ton means that 1 mole of carboxylic acid group (-COOH) is contained per ton of the target (here, chemical recycling BHET), and a hydroxyl value of 1 eq/ton means that the target (here, chemical recycling BHET) contains 1 mole of carboxylic acid group (-COOH).
  • BHET means that 1 mol of OH groups is contained per ton.
  • the chemical recycling BHET may contain a polyhydric carboxylic acid component other than the terephthalic acid component and a polyhydric alcohol component other than ethylene glycol.
  • polyhydric carboxylic acid components other than terephthalic acid components include isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid, and cyclohexanedicarboxylic acid
  • polyhydric alcohol components other than ethylene glycol include , diethylene glycol, neopentyl glycol, cyclohexanedimethanol, trimethylene glycol, tetramethylene glycol, an ethylene glycol or propylene glycol adduct of bisphenol A, an ethylene glycol or propylene glycol adduct of bisphenol S, and the like.
  • the chemical recycling BHET may contain one or more polyhydric carboxylic acid components, and may contain one or more polyhydric alcohol components.
  • the amount of terephthalic acid component contained in the chemically recycled BHET is preferably 98.0 mol% or more (or exceeds), more preferably 98.0 mol% or more, when the total polyhydric carboxylic acid component of the chemically recycled BHET is 100 mol%. .3 mol% or more, more preferably 98.5 mol% or more, even more preferably 98.8 mol% or more, particularly preferably 99.0 mol% or more, and most preferably 99.0 mol% or more. It is 2 mol% or more.
  • chemically recycled BHET is preferably one obtained by depolymerizing PET resin containing products recovered from the market, and PET recovered from the market is one in which components other than PET are added to adjust crystallinity and physical properties.
  • the amount of terephthalic acid component contained in the chemically recycled BHET is preferably 99.98 mol% or less, more preferably 99.95 mol% or less, when the total polyhydric carboxylic acid component of the chemically recycled BHET is 100 mol%.
  • the amount of terephthalic acid component contained in the chemically recycled BHET is preferably 98.0 to 99.98 mol%, more preferably 98.0 to 99.98 mol%, when the total polyhydric carboxylic acid component of the chemically recycled BHET is 100 mol%. 3 to 99.95 mol%, more preferably 98.5 to 99.95 mol%, 98.8 to 99.9 mol%, 99.0 to 99.85 mol%, or 99.2 to 99. It may be 8 mol%.
  • the polycarboxylic acid component other than the terephthalic acid component contained in chemically recycled BHET often contains isophthalic acid component, and the content of isophthalic acid component is equal to the total polycarboxylic acid component of chemically recycled BHET.
  • it is preferably 2.0 mol% or less (or less), next preferably 1.7 mol% or less, more preferably 1.5 mol% or less, and even more preferably is 1.2 mol% or less, particularly preferably 1.0 mol% or less, and most preferably 0.8 mol% or less.
  • the content of the isophthalic acid component may be 0.15 mol% or less or less than 0.15 mol%.
  • the content of the isophthalic acid component is preferably 0.02 mol% or more, more preferably 0.05 mol% or more, 0.1 mol% or more, 0.15 mol% or more, or 0.2 mol% or more. It may be mol% or more. That is, the content of the isophthalic acid component is preferably 0.02 to 2.0 mol%, more preferably 0.02 to 1.7 mol%, and still more preferably 0.05 to 1.5 mol%. , 0.1-1.2 mol%, 0.15-1.0 mol%, 0.2-0.8 mol%, or 0.02-0.15 mol%.
  • the amount of ethylene glycol component contained in the chemically recycled BHET is preferably 98.7 mol% or more, more preferably 99.0 mol% or more, when the total polyhydric alcohol component of the chemically recycled BHET is 100 mol%. and may be 99.2 mol% or more, 99.3 mol% or more, or 99.4 mol% or more. Further, the amount of the ethylene glycol component may be 98.0 mol% or more, 98.3 mol% or more, 98.6 mol% or more, or 98.8 mol% or more.
  • the amount of free ethylene glycol in the ethylene glycol component contained in the chemically recycled BHET is preferably 1.5 mol% or less, more preferably 1.5 mol% or less, when the total polyhydric alcohol component of the chemically recycled BHET is 100 mol%. 1.3 mol% or less, more preferably 1.2 mol% or less, even more preferably 1.0 mol% or less, particularly preferably 0.8 mol% or less, most preferably 0 .6 mol% or less. In this case, the content of free ethylene glycol in the oligomer reaction liquid obtained from chemical recycling BHET is reduced, and the amount of foreign substances that are difficult to remove with a filter in the resulting resin can be further suppressed.
  • the amount of ethylene glycol component in the total polyhydric alcohol component of chemically recycled BHET is preferably 99.9 mol% or less, more preferably 99.8 mol% or less, and still more preferably 99.75 mol% or less. It is particularly preferably 99.7 mol% or less.
  • the amount of the ethylene glycol component is preferably 98.0 to 99.9 mol%, more preferably 98.3 to 99.8 mol%, still more preferably 98.6 to 99.75 mol%, Even more preferably it is 98.8 to 99.7 mol%.
  • diethylene glycol component is often contained, and the content of diethylene glycol component is 100 mol% of the total polyhydric alcohol component of chemically recycled BHET. In this case, it is preferably 2.0 mol% or less, more preferably 1.7 mol% or less, even more preferably 1.4 mol% or less, particularly preferably 1.2 mol% or less.
  • the content of the diethylene glycol component is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, even more preferably 0.5 mol% or more, and particularly preferably 0.6 mol%. % or more. That is, the content of the diethylene glycol component is preferably 0.1 to 2.0 mol%, more preferably 0.3 to 1.7 mol%, even more preferably 0.5 to 1.4 mol%, Particularly preferred is 0.6 to 1.2 mol%.
  • polycarboxylic acid components such as terephthalic acid component and isophthalic acid component, and polyhydric alcohol components such as ethylene glycol component and diethylene glycol component are present in the chemical recycling BHET as a single substance (that is, one molecule of the compound is liberated).
  • polycarboxylic acid components such as terephthalic acid component and isophthalic acid component
  • polyhydric alcohol components such as ethylene glycol component and diethylene glycol component
  • the amount and time of ethylene glycol added during depolymerization of PET is also preferable to appropriately adjust the amount and time of ethylene glycol added during depolymerization of PET. If the amount of ethylene glycol is small, sufficient transesterification with diethylene glycol in PET may not occur. Furthermore, if the amount of ethylene glycol is too large, diethylene glycol may be generated from ethylene glycol and incorporated into the chemical recycling BHET. The amount of ethylene glycol added is preferably 5 to 7 times the weight of PET. If the depolymerization time is short, sufficient transesterification with diethylene glycol in PET may not occur. If the time is long, diethylene glycol may be generated from ethylene glycol and incorporated into the chemical recycling BHET.
  • the depolymerization time is preferably 3 to 10 hours. It is preferable that the PET resin be pulverized to an appropriate size so that depolymerization is completed in an appropriate amount of time. In order to further reduce the amount of diethylene glycol in the obtained chemically recycled BHET, it is preferable to perform recrystallization.
  • the original PET resins may not be the same, and the amounts of copolymer components are not always the same. Furthermore, it is difficult to completely avoid the production of diethylene glycol in the production of PET resin, and the amount of diethylene glycol produced varies depending on differences in production conditions and equipment conditions. These factors cause the composition of the obtained PET resin to vary, and if it exceeds a certain range, the resin properties of the chemically recycled PET resin may deteriorate.
  • the copolymerization component of chemically recycled PET resin it is preferable to keep the copolymerization component of chemically recycled PET resin within a specific range. Furthermore, in order to obtain a chemically recycled PET resin with good productivity, it is preferable that the polyhydric carboxylic acid component and polyhydric alcohol component of the chemically recycled BHET be within a certain range.
  • PET resin is often copolymerized with a small amount of isophthalic acid or diethylene glycol.
  • we also adjust the proportion of PET resin used as the source of depolymerization blend multiple chemically recycled BHETs to meet the above range, and appropriately refine chemically recycled BHETs. , (e), (f), and (g).
  • the amount of terephthalic acid component in the chemically recycled bis-2-hydroxyethyl terephthalate is 98.0 mol% or more and 99.98 mol% or less based on the total polyhydric carboxylic acid components
  • Chemically recycled bis-2-hydroxyethyl terephthalate The amount of ethylene glycol component is 98.0 mol% or more and 99.9 mol% or less (preferably 98.7 mol% or more and 99.9 mol% or less) based on the total polyhydric alcohol components.
  • Chemical recycling Bis-2-hydroxyethyl terephthalate has a diethylene glycol component amount of 0.1 mol% or more and 2.0 mol% or less based on the total polyhydric alcohol component.
  • the amount of isophthalic acid component based on the total polyvalent carbon components in chemical recycled bis-2-hydroxyethyl terephthalate is 0.02 mol% or more and 2.0 mol% or less
  • the ethylene glycol solution of crude BHET obtained by chemical recycling is appropriately purified in the purification process so that it falls within the range of (i). Adjustment is preferred. Alternatively, a plurality of chemically recycled BHETs may be blended and adjusted to fall within the range (i). (i) The amount of free ethylene glycol component is 1.5 mol% or less based on the total polyhydric alcohol component in chemically recycled bis-2-hydroxyethyl terephthalate.
  • a copolymerized polyhydric alcohol component such as diethylene glycol has a higher boiling point than ethylene glycol and is less likely to volatilize during polycondensation, so it is easily incorporated into the polyester resin. It is preferable to take these things into account and decide the range of the amount of polyhydric alcohol components other than ethylene glycol.
  • the amount of terephthalic acid component based on 100 mol% of the total polyhydric carboxylic acid component in the above chemically recycled bis-2-hydroxyethyl terephthalate is TPA (b) mol%
  • the total polyhydric carboxylic acid component in the chemically recycled bis-2-hydroxyethyl terephthalate is
  • the amount of ethylene glycol component with respect to 100 mol% of alcohol component is defined as EG (b) mol%
  • the upper limit of the value of (100-TPA(b))+(100-EG(b)) ⁇ 2 is preferably 4 mol%, more preferably 3.5 mol%, still more preferably 3 mol%.
  • the content is particularly preferably 2.8 mol%.
  • the lower limit of the value of (100-TPA(b))+(100-EG(b)) ⁇ 2 is preferably 0.15 mol%, more preferably 0.3 mol%, still more preferably 0. It is 5 mol%. That is, the value of (100-TPA(b))+(100-EG(b)) ⁇ 2 is preferably 0.15 to 4 mol%, more preferably 0.3 to 3.5 mol%. , more preferably 0.5 to 3 mol %, particularly preferably 0.5 to 2.8 mol %.
  • the thermal stability of the obtained chemically recycled PET resin can also be maintained high.
  • the range of selection of manufacturing conditions for chemically recycled PET can be expanded, and chemically recycled PET can be obtained with high productivity.
  • Chemically recycled BHET may contain a polymerization catalyst for the base PET resin, and may act as a catalyst during the polycondensation reaction to produce chemically recycled PET from chemically recycled BHET. It is preferable that the polymerization catalyst for the original PET resin is not contained in the chemical recycling BHET or is contained at an undetectable level. It is preferable to use chemically recycled BHET that has been purified through the purification process to a level where metal components derived from the polymerization catalyst are not detected.
  • the method for producing chemically recycled PET resin of the present invention uses chemically recycled BHET obtained by decomposing polyester resin as a raw material, and uses a polyester polymerization catalyst consisting of an aluminum compound and a phosphorus compound as a catalyst. , can be carried out by a method including known steps.
  • the method for producing the chemically recycled PET resin of the present invention involves polycondensation of raw materials containing recycled BHET obtained by decomposing polyester resins as they are, or after esterification and/or transesterification of their OH terminals. It has a process of Specifically, the first step is to add the chemically recycled BHET to a reaction vessel and melt it, or to add the chemically recycled BHET and, if necessary, a copolymerization component to the reaction vessel and melt it, and then esterify the OH end of the chemically recycled BHET. and a second step of further adding an aluminum compound and a phosphorus compound to the reaction product obtained in the first step to perform a polycondensation reaction.
  • the second step is preferably performed under reduced pressure while removing the produced glycol from the system in a rectification column.
  • the copolymerization component in the first step the above-mentioned polyhydric carboxylic acid is preferable, and terephthalic acid is more preferable.
  • the method for producing chemically recycled PET resin is not particularly limited as long as the above steps are satisfied.
  • chemically recycled BHET obtained by decomposing a polyester resin and, if necessary, other copolymerization components are directly reacted, water is distilled off and esterified, and then polycondensation is carried out under normal pressure or reduced pressure.
  • a direct esterification method is mentioned.
  • solid phase polymerization may be performed to increase the intrinsic viscosity.
  • the first step may be performed in one step or may be performed in multiple steps.
  • the polycondensation in the second step may be carried out in one step or may be carried out in multiple stages. In the case of multiple stages, a multi-can system in which two or more polycondensation cans are connected is preferred. Further, the polycondensation in the second step may be performed only by melt polymerization, but the chemically recycled PET resin produced by melt polymerization may be additionally polymerized by solid phase polymerization.
  • the chemically recycled PET resin of the present invention is produced using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound.
  • the chemically recycled PET resin of the present invention contains a catalytic amount of an aluminum compound-derived component and a phosphorus compound-derived component. include.
  • the chemically recycled PET resin of the present invention contains aluminum atoms and phosphorus atoms.
  • Examples of aluminum compounds and phosphorus compounds include the following.
  • the aluminum compound is not limited as long as it is soluble in the solvent, and any known aluminum compound can be used without limitation, and among these, at least one selected from carboxylates, inorganic acid salts, and chelate compounds is preferred.
  • at least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetonate is more preferable, and aluminum acetate, basic aluminum acetate, aluminum chloride, water
  • At least one selected from aluminum oxide, aluminum hydroxide chloride, and aluminum acetylacetonate is more preferred, at least one selected from aluminum acetate and basic aluminum acetate is particularly preferred, and basic aluminum acetate is most preferred.
  • the aluminum compound is preferable to use as an aluminum compound solution dissolved in at least one solvent selected from the group consisting of water and alkylene glycol because the effects of the present invention can be significantly exhibited.
  • the alkylene glycol it is preferable to use a solvent that dissolves the aluminum compound, and it is more preferable to use a glycol that is a constituent of the target polyester resin, such as ethylene glycol.
  • an aqueous solution of an aluminum compound it is preferable to prepare an aqueous solution of an aluminum compound, add alkylene glycol, and then distill off water to obtain an alkylene glycol solution of an aluminum compound.
  • the amount of alkylene glycol added to the aqueous solution of the aluminum compound is preferably 0.5 to 3 times the volume ratio. It is preferable to stir the solution after addition of alkylene glycol for several hours (for example, 0.2 to 5 hours) at room temperature (for example, 18 to 25°C) to obtain a uniform water/alkylene glycol mixed solution. Thereafter, an alkylene glycol solution can be obtained by heating the solution and distilling off water. The heating temperature is preferably 40 to 120°C. Note that, if necessary, the above heating may be performed under reduced pressure (for example, 1 to 30 kPa).
  • the concentration of the aluminum compound solution is preferably 10 to 30 g/L, more preferably 15 to 25 g/L.
  • the amount of the aluminum compound added is preferably 5 to 70 mass ppm, more preferably 7 to 55 mass ppm, still more preferably 8 to 50 mass ppm, and even more preferably It is preferably 10 to 40 ppm by weight, particularly preferably 10 to 30 ppm by weight.
  • Polymerization activity can be further increased by adjusting the amount of aluminum atoms to 5 mass ppm or more.
  • the amount of aluminum-based foreign matter tends to be further reduced.
  • mass ppm means 10 -4 mass %.
  • the content of aluminum atoms in chemically recycled PET is preferably 9 to 20 mass ppm, more preferably 9 to 19 mass ppm, still more preferably 10 to 17 mass ppm, especially Preferably it is 12 to 17 ppm by mass.
  • the amount of aluminum atoms to 9 mass ppm or more the polycondensation rate can be further increased and productivity can be ensured.
  • the amount to 20 mass ppm or less it becomes easier to suppress the increase in the amount of aluminum-based foreign substances (particularly foreign substances that are difficult to remove with a filter), regardless of the content of phosphorus atoms, which will be described later. Therefore, the cost of the catalyst can be reduced.
  • the phosphorus compound is not particularly limited, but it is preferable to use a phosphonic acid-based compound and/or a phosphinic acid-based compound because it has a large effect of improving the catalytic activity.
  • the use of a phosphonic acid-based compound has the effect of improving the catalytic activity. is particularly large, so it is more preferable.
  • phosphorus compounds having a phosphorus atom and a phenol structure in the same molecule are preferred.
  • Phosphorus compounds that have a phosphorus atom and a phenol structure in the same molecule are not particularly limited, but include phosphonic acid compounds that have a phosphorus atom and a phenol structure in the same molecule, and phosphines that have a phosphorus atom and a phenol structure in the same molecule. It is preferable to use one or more compounds selected from the group consisting of acid-based compounds because both the effect of improving the catalytic activity of the aluminum compound and the effect of improving the thermal stability of the resin are large.
  • a phosphonic acid compound having a phosphorus atom and a phenol structure therein since both the effect of improving the catalyst activity and the effect of improving the thermal stability of the resin are very large.
  • the reason for this is thought to be that the phenol moiety (preferably the hindered phenol moiety) in the phosphorus compound improves the thermal stability of the chemically recycled PET resin.
  • R 1 represents a hydrocarbon group having 1 to 50 carbon atoms containing a phenol structure, a substituent such as a hydroxyl group, a halogen group, an alkoxyl group or an amino group, and a hydrocarbon group having 1 to 50 carbon atoms containing a phenol structure.
  • R 4 represents a hydrogen atom, a hydrocarbon group having 6 to 50 carbon atoms, a hydrocarbon group having 6 to 50 carbon atoms containing a substituent such as a hydroxyl group, a halogen group, an alkoxyl group, or an amino group.
  • R 2 and R 3 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 50 carbon atoms, or a hydrocarbon group having 1 to 50 carbon atoms containing a substituent such as a hydroxyl group or an alkoxyl group.
  • the hydrocarbon group may include not only a linear structure but also a branched structure, an alicyclic structure such as cyclohexyl, and an aromatic ring structure such as phenyl or naphthyl. The ends of R 2 and R 3 or R 2 and R 4 may be bonded to each other.
  • Examples of phosphorus compounds having a phosphorus atom and a phenol structure in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis (p-hydroxyphenyl)phosphinic acid, methyl bis(p-hydroxyphenyl)phosphinate, phenyl bis(p-hydroxyphenyl)phosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, p-hydroxyphenyl Examples include phenyl phosphinate.
  • examples of phosphorus compounds having a phosphorus atom and a phenol structure in the same molecule include a phosphorus atom and a hindered phenol structure (alkyl group having a tertiary carbon (preferably t-butyl group, thexyl group)).
  • examples include phosphorus compounds having a phenol structure in which an alkyl group having a tertiary carbon at the benzylic position; such as a neopentyl group) is bonded to one or two ortho positions of a hydroxyl group.
  • X 1 and X 2 have the number of carbon atoms. More preferred is dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, which is an alkyl group having 1 to 4 atoms.
  • the phosphorus compound used in the production of chemically recycled PET resin is a compound shown below (formula B) (preferably dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate). is preferred, but a modified version of the compound shown below (formula B) (preferably dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate) may also be included. Details of the modified product will be described later.
  • X 1 and X 2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the chemically recycled PET of the present invention is preferably a polyester resin produced using a phosphorus compound having a phosphorus atom and a hindered phenol structure in the same molecule as a polymerization catalyst.
  • each of X 1 and X 2 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms.
  • an ethyl ester having 2 carbon atoms is preferred because it is commercially available as Irganox 1222 (manufactured by BASF) and is easily available.
  • dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate in the above (formula B) is used as the phosphorus compound
  • 3,5-di-tert-butyl-4-hydroxy A part of the dialkyl benzylphosphonate undergoes a structural change. For example, it changes due to elimination of a t-butyl group, hydrolysis of an alkyl ester group (preferably an ethyl ester group), and a hydroxyethyl transesterification structure (transesterification structure with ethylene glycol).
  • the phosphorus compound may include structurally changed phosphorus compounds in addition to dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate. Note that the elimination of the t-butyl group occurs significantly at high temperatures during the polymerization process.
  • the solvent in the heat treatment is not limited as long as it is at least one selected from the group consisting of water and alkylene glycol, but as the alkylene glycol, it is preferable to use a solvent that dissolves a phosphorus compound, and it is preferable to use a solvent that dissolves a phosphorus compound, such as ethylene glycol. It is more preferable to use glycol, which is a constituent component of the polyester resin.
  • the heat treatment in a solvent is preferably performed after the phosphorus compound has been dissolved, but it is not necessary to completely dissolve the phosphorus compound.
  • the temperature of the heat treatment is not particularly limited, but is preferably 20 to 250°C, more preferably 150 to 200°C.
  • the heat treatment time is not particularly limited, but is preferably 50 to 300 minutes, more preferably 100 to 200 minutes.
  • the concentration of the phosphorus compound solution is preferably 30 to 70 g/L, more preferably 40 to 60 g/L.
  • diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate when diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate is used as a phosphorus compound, part of diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate has a structure Nine phosphorus compounds that have changed are shown. The amount of each structurally changed phosphorus compound in the glycol solution can be determined by P-NMR measurement.
  • the chemically recycled PET resin has a phosphorus atom and a hindered phenol structure in the same molecule. It can be said that this is a chemically recycled PET resin manufactured using a phosphorus compound having this as a polymerization catalyst. By using a phosphorus compound having a hindered phenol structure, sufficient polymerization activity can be exhibited while reducing the cost of the catalyst.
  • the content of phosphorus atoms in chemically recycled PET is preferably 5 to 1000 mass ppm, more preferably 10 to 500 mass ppm, even more preferably 15 to 200 mass ppm, and 15 to 100 mass ppm. Particularly preferably ppm, most preferably 15 to 80 ppm by weight.
  • the amount of phosphorus atoms can be adjusted to 5 mass ppm or more, the effect of improving polymerization activity and the effect of suppressing the amount of aluminum-based foreign substances (particularly foreign substances that are difficult to remove with a filter) can be further enhanced.
  • the polymerization activity can be increased by adjusting the amount to 1000 mass ppm or less, and the catalyst cost can be suppressed by reducing the amount of the phosphorus compound added.
  • the content of phosphorus atoms in chemically recycled PET is preferably 13 to 31 mass ppm, more preferably 15 to 29 mass ppm, and even more preferably 16 to 28 mass ppm.
  • the amount of phosphorus atoms By adjusting the amount of phosphorus atoms to 13 mass ppm or more, the effect of improving polymerization activity and the effect of suppressing the amount of aluminum-based foreign matter (particularly foreign matter that is difficult to remove with a filter) can be further enhanced.
  • the content to 31 mass ppm or less the polymerization activity can be further increased, and the catalyst cost can be further suppressed by further reducing the amount of the phosphorus compound added.
  • the molar ratio of phosphorus atoms to aluminum atoms in chemically recycled PET is preferably from 1.00 to 5.00, more preferably from 1.10 to 4.00, and more preferably from 1.20 to 3.50. It is more preferably 1.25 to 3.00, particularly preferably 1.25 to 3.00.
  • the aluminum and phosphorus atoms in chemically recycled PET are derived from the aluminum and phosphorus compounds used as polymerization catalysts, respectively. By using these aluminum compounds and phosphorus compounds together in a specific ratio, a complex having catalytic activity is functionally formed in the polymerization system, and sufficient polymerization activity can be exhibited.
  • resins manufactured using polymerization catalysts consisting of aluminum compounds and phosphorus compounds have higher catalyst costs (higher manufacturing costs) than chemically recycled PET resins manufactured using catalysts such as antimony catalysts.
  • catalyst costs higher manufacturing costs
  • by using an aluminum compound and a phosphorus compound together in a specific ratio it is possible to exhibit sufficient polymerization activity while suppressing the cost of the catalyst.
  • thermal stability and thermal oxidation stability can be improved, and aluminum-based foreign substances (especially foreign substances that are difficult to remove with a filter) can be improved. The amount can be further suppressed.
  • the catalyst cost can be suppressed by reducing the amount of the phosphorus compound added.
  • the residual molar ratio of phosphorus atoms to aluminum atoms is preferably 1.32 to 1.80, more preferably 1.38 to 1.68.
  • the chemically recycled PET resin of the present invention has a suppressed amount of foreign matter and a suppressed crystallization rate of the chemically recycled PET resin, so it does not contain copolymerized components such as isophthalic acid or has a small content. It is also preferable in that it can be used.
  • Catalysts other than aluminum compounds and phosphorus compounds Furthermore, in the present invention, in addition to the above-mentioned aluminum compounds and phosphorus compounds, other polymerization catalysts such as antimony compounds, germanium compounds, titanium compounds, and cobalt compounds are used to improve the properties, processability, color tone, etc. of the chemically recycled PET resin of the present invention. They may be used together as long as they do not cause any problems to the product.
  • other polymerization catalysts such as antimony compounds, germanium compounds, titanium compounds, and cobalt compounds are used to improve the properties, processability, color tone, etc. of the chemically recycled PET resin of the present invention. They may be used together as long as they do not cause any problems to the product.
  • the content of antimony atoms in the chemically recycled PET resin of the present invention is preferably 100 mass ppm or less, more preferably 50 mass ppm or less, even more preferably 20 mass ppm or less.
  • the content of germanium atoms in the chemically recycled PET resin is preferably 40 mass ppm or less, more preferably 20 mass ppm or less, and the content of titanium atoms in the chemically recycled PET resin of the present invention is 10 mass ppm or less.
  • the content of cobalt atoms in the chemically recycled PET resin of the present invention is preferably 40 mass ppm or less, and 20 mass ppm or less. It is more preferable.
  • the amount of foreign matter is reduced compared to when other polymerization catalysts (e.g., titanium compounds and antimony compounds) are used, but in order to further reduce the amount of foreign matter, It is preferable to add an aluminum compound and a phosphorus compound to the polymerization catalyst from the end of the first step to before the start of the second step.
  • the above-mentioned "before the start of the second step" includes the time when the pressure is reduced and polycondensation is started.
  • the amount of free ethylene glycol component in chemically recycled BHET varies from lot to lot, it is necessary to not only reduce the amount of free ethylene glycol in chemically recycled BHET to a certain amount or less, but also to produce chemically recycled PET using chemically recycled BHET. It is preferable to reduce as much as possible the amount of free ethylene glycol contained in the reaction solution at the end of the first step in producing the resin.
  • the amount of free ethylene glycol component is 1.5 mol% or less based on 100 mol% of the total amount of all polyhydric alcohol components contained in the reaction solution at the end of the first step. More preferably, it is 1.0 mol% or less, still more preferably 0.7 mol% or less, particularly preferably 0.5 mol% or less.
  • the first step In order to reduce as much as possible the amount of free ethylene glycol component contained in the reaction solution at the end of the first step, it is preferable to perform the first step in a short time, for example.
  • the reaction temperature is preferably 80 to 285°C, more preferably 90 to 282°C, even more preferably 100 to 280°C, particularly preferably 110 to 278°C.
  • the pressure is preferably 0.05 to 0.60 MPa, more preferably 0.055 to 0.55 MPa, even more preferably 0.060 to 0.50 MPa, particularly preferably 0.065 to 0.45 MPa.
  • the reaction time is preferably 200 minutes or less, more preferably 195 minutes or less, even more preferably 190 minutes or less, particularly preferably 185 minutes or less.
  • the first step may be completed at the time when chemically recycled BHET is added to the reaction vessel and melted.
  • alkaline agents include tertiary amines such as triethylamine, tri-n-butylamine, and benzyldimethylamine, and quaternary ammonium hydroxides such as tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, and trimethylbenzylammonium hydroxide. and lithium carbonate, sodium carbonate, potassium carbonate, sodium acetate, and the like.
  • the lower limit of the amount of the alkali agent added is preferably 0.01 mol%, more preferably 0.05 mol%, and even more preferably It is 0.1 mol%.
  • the upper limit of the amount of alkali agent is preferably 2 mol%, more preferably 1.5 mol%, and even more preferably 1 mol%.
  • the physical properties of the reaction intermediate oligomer after the first step are such that the acid value is 80 to 2000 eq/ton and the hydroxyl value is 2800 to 8000 eq/ton. It is preferable that Thereby, the reaction rate of the polycondensation reaction can be increased.
  • the physical properties of the reaction intermediate oligomer it is more preferable that the acid value is 90 to 1900 eq/ton and the hydroxyl value is 3000 to 7800 eq/ton.
  • an oligomer is a reaction intermediate after the first step (e.g., esterification reaction) and before the polycondensation reaction, including any unreacted raw materials, if any. shows.
  • the second step in order to reduce the amount of foreign matter in the chemically recycled PET resin, it is also preferable to perform the second step in a short time, for example.
  • the first step it is preferable to carry out the first step in the presence of terephthalic acid. That is, it is preferable to add terephthalic acid to the chemical recycling BHET and perform the first step in the presence of terephthalic acid.
  • the reaction is activated by the acid group of terephthalic acid, making it possible to perform the second step in a short time, and making it possible to reduce the thermal history in the polycondensation reaction.
  • the first step is carried out while water or alcohol produced by the reaction is removed from the system in a rectification column.
  • the temperature in the first step is preferably 80 to 285°C, more preferably 90 to 282°C, even more preferably 100 to 280°C, particularly preferably 110 to 278°C.
  • the pressure is preferably 0.05 to 0.60 MPa, more preferably 0.055 to 0.55 MPa, even more preferably 0.060 to 0.50 MPa, particularly preferably 0.065 to 0.45 MPa. be exposed.
  • the reaction time is preferably 200 minutes or less, more preferably 195 minutes or less, still more preferably 190 minutes or less, particularly preferably 185 minutes or less, and most preferably 100 minutes or less.
  • the amount of terephthalic acid to be added (hereinafter sometimes referred to as added terephthalic acid) should be 40 mol% or less based on the total of 100 mol% of all polyhydric carboxylic acid components and added terephthalic acid in the chemical recycling BHET. preferable. More preferably it is 30 mol% or less, and still more preferably 20 mol% or less.
  • the temperature is preferably 260 to 270°C and the pressure is preferably 0.01 to 0.001 MPa, and the pressure is lowered while gradually increasing the temperature, and finally the temperature is preferably 270 to 270°C. It is carried out at 285° C. and a pressure of preferably 0.0002 to 0.000005 MPa or 0.00002 to 0.000005 MPa.
  • the time for the polycondensation reaction is preferably within 200 minutes, more preferably within 180 minutes, even more preferably within 160 minutes, particularly preferably within 140 minutes, most preferably 120 minutes or less, from when the above temperature is reached until the end of the polycondensation reaction. Within minutes. Further, it is preferable to quickly raise the temperature to the initial temperature after charging the reactants after the first step. In order to shorten the heating time, it is preferable to optimize the size and shape of the reaction vessel, such as by increasing the surface area relative to the contents, and to optimize the amount of reactants added after the first step. . Further, it is preferable to perform sufficient stirring.
  • the time for the polycondensation reaction is preferably 30 minutes or more, more preferably 45 minutes or more, from the viewpoint of appropriate catalyst amount and stirring.
  • chemically recycled BHET is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably 90% by mass or more. It is also preferable that the amount is 100% by mass.
  • the amount of foreign substances with a particle size of 0.50 to 0.69 ⁇ m measured by a particle counter in the chemically recycled PET resin thus obtained is 2000 particles/ml or less, preferably 1500 particles/ml or less, and more preferably is 800 pieces/ml or less, particularly preferably 300 pieces/ml or less, and most preferably 150 pieces/ml or less.
  • the lower limit of the cooling crystallization temperature of the chemically recycled PET resin is, for example, 175°C or higher, preferably 178°C or higher, more preferably 180°C or higher, particularly preferably 183°C or higher, and most preferably 185°C or higher. °C or higher.
  • the upper limit of the cooling crystallization temperature of chemically recycled PET resin is, for example, 202°C or lower, preferably 200°C or lower, more preferably 198°C or lower, particularly preferably 196°C or lower, and most preferably 194°C or lower. be.
  • the cooling crystallization temperature of the chemically recycled PET resin is, for example, 175 to 202°C, preferably 178 to 200°C, more preferably 180 to 198°C, still more preferably 183 to 196°C, particularly preferably 185°C. ⁇ 194°C.
  • the lower limit of the amount of terephthalic acid component based on 100 mol% of the total polyhydric carboxylic acid components in the chemically recycled PET resin is preferably 98 mol%, next preferably 98.3 mol%, and more preferably 98.5 mol%. %, more preferably 98.8 mol%, particularly preferably 99 mol%, most preferably 99.2 mol%.
  • the upper limit of the amount of terephthalic acid component is preferably 99.98 mol%, more preferably 99.95 mol%, even if it is 99.9 mol%, 99.85 mol%, or 99.8 mol%. good.
  • the lower limit of 98 mol% means that it may be 98 mol% or more, or may be more than 98 mol%.
  • the upper limit of 99.98 mol% means that it may be 99.98 mol% or less, or may be less than 99.98 mol%.
  • the amount of terephthalic acid component based on 100 mol% of the total polycarboxylic acid components in the chemically recycled PET resin is preferably 98 to 99.98 mol%, more preferably 98.3 to 99.95 mol%. It may be 98.5 to 99.9 mol%, 98.8 to 99.85 mol%, 99 to 99.8 mol%, or 99.2 to 99.8 mol%.
  • the lower limit of the amount of isophthalic acid component based on 100 mol% of the total polycarboxylic acid components in the chemically recycled PET resin is preferably 0.02 mol%, more preferably 0.05 mol%, 0.1 mol%, 0. It may be 15 mol% or 0.2 mol%. In this case, the crystallization rate can be optimized and a highly transparent resin can be obtained.
  • the upper limit of the amount of isophthalic acid component is preferably 2 mol%, next preferably 1.7 mol%, more preferably 1.5 mol%, still more preferably 1.2 mol%, especially Preferably it is 1 mol%, most preferably 0.8 mol%, and may be 0.15 mol%.
  • the upper limit of 2 mol% means that it may be 2 mol% or less, or may be less than 2 mol%. That is, the amount of isophthalic acid component is preferably 0.02 to 2 mol%, more preferably 0.05 to 1.7 mol%, based on 100 mol% of the total polycarboxylic acid components in the chemically recycled PET resin. It may be 0.1 to 1.5 mol%, 0.15 to 1.2 mol%, 0.2 to 1 mol%, or 0.02 to 0.15 mol%.
  • the lower limit of the ethylene glycol component amount relative to 100 mol% of the total polyhydric alcohol components in the chemically recycled PET resin is preferably 97.5 mol%, more preferably 97.7 mol%, and even more preferably 97.8 mol%. %, particularly preferably 97.9 mol%, most preferably 98 mol%.
  • the upper limit of the amount of ethylene glycol component is preferably 99.3 mol%, more preferably 99.1 mol%, even more preferably 99 mol%, particularly preferably 98.9 mol%, and most preferably is 98.8 mol%.
  • the amount of ethylene glycol component relative to 100 mol% of the total polyhydric alcohol component in the chemically recycled PET resin is preferably 97.5 to 99.3 mol%, more preferably 97.7 to 99.1 mol%. It is more preferably 97.8 to 99 mol%, particularly preferably 97.9 to 98.9 mol%, and most preferably 98 to 98.8 mol%.
  • the lower limit of the amount of diethylene glycol component relative to 100 mol% of the total polyhydric alcohol components in the chemically recycled PET resin is preferably 0.7 mol%, more preferably 0.9 mol%, and even more preferably 1 mol. %, particularly preferably 1.1 mol %, most preferably 1.2 mol %.
  • the upper limit of the amount of diethylene glycol component is preferably 2.5 mol%, more preferably 2.3 mol%, even more preferably 2.1 mol%, particularly preferably 1.9 mol%, Most preferably it is 1.7 mol%.
  • the amount of diethylene glycol component relative to 100 mol% of the total polyhydric alcohol component in the chemically recycled PET resin is preferably 0.7 to 2.5 mol%, more preferably 0.9 to 2.3 mol%.
  • the content is more preferably 1 to 2.1 mol%, particularly preferably 1.1 to 1.9 mol%, and most preferably 1.2 to 1.7 mol%.
  • the amount of terephthalic acid component relative to 100 mol% of the total polyhydric carboxylic acid component in the above chemically recycled PET resin is TPA (r) mol%
  • the amount of ethylene glycol component is relative to 100 mol% of the total polyhydric alcohol component in the chemically recycled PET resin.
  • the lower limit of the value of 200-TPA(r)-EG(r) is preferably 0.8 mol%, more preferably 0.9 mol%, still more preferably 1 mol%, particularly preferably 1 .2 mol%.
  • the upper limit of the value of 200-TPA(r)-EG(r) is preferably 4 mol%, more preferably 3.5 mol%, still more preferably 3.2 mol%, particularly preferably 3 0 mole%, most preferably 2.8 mole%. That is, the value of 200-TPA(r)-EG(r) is preferably 0.8 to 4 mol%, more preferably 0.9 to 3.5 mol%, and still more preferably 1 to 4 mol%. It is 3.2 mol%, particularly preferably 1.2 to 3.0 mol%, and most preferably 1.2 to 2.8 mol%.
  • composition of the chemically recycled PET resin within the above range, coloring can be suppressed and it can have high thermal stability.
  • the lower limit of the intrinsic viscosity of the chemically recycled PET resin is preferably 0.5 dL/g, more preferably 0.55 dL/g, and even more preferably 0.58 dL/g.
  • the upper limit of the intrinsic viscosity is preferably 0.8 dL/g, more preferably 0.77 dL/g, even more preferably 0.75 dL/g. That is, the intrinsic viscosity of the chemically recycled PET resin is preferably 0.5 to 0.8 dL/g, more preferably 0.55 to 0.77 dL/g, and still more preferably 0.58 to 0.8 dL/g. It is 75 dL/g. By setting it within the above range, the strength as a film and the stability of film formation can be ensured. In order to obtain chemically recycled PET with high intrinsic viscosity, it is preferable to perform solid phase polymerization after melt polymerization.
  • the lower limit of the acid value of the chemically recycled PET resin is preferably 0 equivalent/ton, more preferably 1 equivalent/ton, still more preferably 2 equivalent/ton, particularly preferably 3 equivalent/ton, and most preferably Preferably it is 4 equivalents/ton.
  • the lower limit of the acid value of PET is preferably 15 equivalents/ton, more preferably 20 equivalents. /ton, more preferably 23 equivalents/ton, particularly preferably 25 equivalents/ton.
  • the upper limit is preferably 60 equivalents/ton, more preferably 55 equivalents/ton, even more preferably 50 equivalents/ton, particularly preferably 45 equivalents/ton, and most preferably 40 equivalents/ton.
  • the acid value of the chemically recycled PET resin is preferably 0 to 60 equivalents/ton, more preferably 1 to 55 equivalents/ton, even more preferably 2 to 50 equivalents/ton, and particularly preferably 3 to 45 equivalents/ton, most preferably 4 to 40 equivalents/ton, 15 to 60 equivalents/ton, 20 to 60 equivalents/ton, 23 to 60 equivalents/ton, or 25 to 60 equivalents/ton. There may be.
  • the productivity of chemically recycled PET can be ensured, and the acid value of the obtained film can be made into the appropriate range.
  • the intrinsic viscosity retention after melt-kneading of chemically recycled PET is preferably 89% or more, more preferably 90% or more, still more preferably 91% or more, particularly preferably 92% or more. preferable. If the intrinsic viscosity retention is less than 89%, the thermal stability of the resin may be low and the mechanical properties of the molded product may be insufficient.
  • intrinsic viscosity retention rate when it is simply described as “intrinsic viscosity retention rate", it refers to the intrinsic viscosity retention rate after kneading which is melted and kneaded once.
  • the color b value of the chemically recycled PET resin is preferably 10 or less, more preferably 8 or less, even more preferably 5 or less, and particularly preferably 3 or less.
  • the color b value indicates the yellow/blue coordinate, positive values indicate yellow, negative values indicate blue, and the color b value is affected by the amount of foreign substances and thermal stability of chemically recycled PET resin. it is conceivable that.
  • IV Intrinsic viscosity Approximately 3g of PET resin was freeze-pulverized and dried at 140°C for 15 minutes, then 0.20g was weighed, and 1,1,2,2-tetrachloroethane and p-chlorophenol were mixed at a ratio of 1:3 (mass ratio). Using 20 ml of the mixed solvent, the mixture was stirred at 100° C. for 60 minutes to completely dissolve, cooled to room temperature, and then passed through a glass filter to be used as a sample.
  • ⁇ Acid value in oligomer (OLG-AV) The acid equivalent (unit: eq/ton) per ton of oligomer was determined.
  • ⁇ Hydroxyl value in oligomer (OLG-OHV) The equivalent weight (unit: eq/ton) of hydroxyl groups per ton of oligomer was determined. (Measuring method) 20 mg of PET resin was dissolved in 0.6 ml of a mixed solvent of deuterated hexafluoroisopropanol and deuterated chloroform at a ratio of 1:9 (volume ratio), and centrifuged. Thereafter, the supernatant was collected and subjected to H-NMR measurement under the following conditions.
  • Amount of foreign matter 0.06 g of PET resin was dissolved in 100 ml of HFIP (hexafluoro-2-propanol) and measured with a particle counter to evaluate the number of particles with a particle size of 0.50 to 0.69 ⁇ m.
  • Cooling crystallization temperature (Tc2) Using a differential scanning calorimeter "DSC220 model” manufactured by Seiko Electronics Co., Ltd., 5 mg of PET resin was placed in an aluminum pan, and the lid was pressed to seal the pan. Next, the temperature was once held at 290° C. for 5 minutes, and then cooled at a temperature decreasing rate of 10° C./min. The peak top value of the exothermic peak obtained during cooling was defined as the cooling crystallization temperature.
  • TPA refers to terephthalic acid
  • IPA refers to isophthalic acid
  • EG refers to ethylene glycol
  • DEG refers to diethylene glycol.
  • TPA (b) and EG (b) are as described above.
  • Example 1 A 5L stainless steel autoclave equipped with a stirrer was charged with CR-BHET1 shown in Table 2 as a chemical recycling BHET, and 0.3 mol% of triethylamine was added as an alkali agent based on the terephthalic acid component in the chemical recycling BHET. Thereafter, BHET was melted to obtain an oligomer (first step).
  • the oligomer properties after the first step are 100 eq/t for OLG-AV, 7600 eq/t for OLG-OHV, and free ethylene glycol content when the total amount of all polyhydric alcohol components contained in the reaction solution is 100 mol%. The amount was 0.1 mol%.
  • a mixed solution obtained by mixing the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t prepared by the above method into one liquid was added.
  • the mixed liquid was added so that the amounts of aluminum atoms and phosphorus atoms in the chemically recycled PET were 30 mass ppm and 74 mass ppm.
  • Example 2 The same procedure as in Example 1 was conducted except that CR-BHET2 listed in Table 2 was used as the chemically recycled BHET.
  • Examples 3-5 Terephthalic acid (hereinafter sometimes referred to as added terephthalic acid) was charged together with CR-BHET1. The same procedure as in Example 1 was carried out except that the molar ratio of CR-BHET1 and added terephthalic acid, the first step time and the polycondensation time were set to the conditions shown in Table 3.
  • Example 6 The same procedure as in Example 4 was carried out except that aluminum atoms and phosphorus atoms were used in amounts of 15 mass ppm and 38 mass ppm with respect to the mass of the chemically recycled PET resin.
  • the molar ratio of phosphorus atoms to aluminum atoms (P/Al) was 2.20.
  • Example 7 The same procedure as in Example 1 was conducted except that CR-BHET1 and CR-BHET3 were charged at the molar ratio shown in Table 3.
  • Comparative example 1 The same procedure as in Example 1 was conducted except that CR-BHET3 shown in Table 2 was used as the chemically recycled BHET.
  • Comparative example 2 Instead of adding the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t, an antimony catalyst was added so that the antimony atoms contained in the chemically recycled PET resin was 200 mass ppm, and the polycondensation time was set as shown in Table 3. The same procedure as in Example 1 was carried out except that the time described in .
  • Comparative example 3 Instead of adding the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t, a titanium catalyst was added so that the titanium atoms contained in the chemically recycled PET resin was 30 mass ppm, and the polycondensation time was set as shown in Table 3. The same procedure as in Example 1 was carried out except that the time described in .
  • Comparative example 4 At the same time as CR-BHET1, tributyl phosphate was added so that the phosphorus atoms contained in the chemically recycled PET resin was 30 ppm, and instead of adding aluminum-containing ethylene glycol solution s and phosphorus-containing ethylene glycol solution t, chemically recycled PET Same as Example 1 except that 2.5 g/L germanium dioxide-containing ethylene glycol solution was added so that the germanium atoms contained in the resin was 115 ppm by mass, and the polycondensation time was set to the conditions shown in Table 3. went.
  • Comparative example 5 At the same time as CR-BHET1, tributyl phosphate was added so that the phosphorus atoms contained in the chemically recycled PET resin was 30 ppm, and instead of adding aluminum-containing ethylene glycol solution s and phosphorus-containing ethylene glycol solution t, chemically recycled PET Same as Example 1 except that 4.5 g/L of antimony trioxide-containing ethylene glycol solution was added so that the antimony atoms contained in the resin was 700 mass ppm, and the polycondensation time was set to the conditions shown in Table 3. I went to
  • Comparative example 6 Instead of adding aluminum-containing ethylene glycol solution s and phosphorus-containing ethylene glycol solution t, 2.5 g/L antimony trioxide-containing ethylene glycol solution, 2.5 g/L cobalt acetate-containing ethylene glycol solution, 2.5 g/L The same procedure as in Example 1 was carried out, except that L phosphoric acid-containing ethylene glycol solution and titanium oxide (product name SA-1: manufactured by Sakai Chemical Industries) were added, and the polycondensation time was set to the conditions shown in Table 3. .
  • L phosphoric acid-containing ethylene glycol solution and titanium oxide product name SA-1: manufactured by Sakai Chemical Industries
  • the 2.5 g/L antimony trioxide-containing ethylene glycol solution was added so that the antimony atoms contained in the chemically recycled PET resin was 250 mass ppm, and the 2.5 g/L cobalt acetate-containing ethylene glycol solution was , the cobalt atoms contained in the chemically recycled PET resin are added so as to be 57 mass ppm, and the 2.5 g/L phosphoric acid-containing ethylene glycol solution is added so that the phosphorus atoms contained in the chemically recycled PET resin are 17 mass ppm. Titanium oxide was added at a concentration of 3000 ppm by mass based on the chemically recycled PET resin.
  • Comparative example 7 At the same time as CR-BHET1, an 85% by weight aqueous phosphoric acid solution was added so that the phosphorus atoms contained in the chemically recycled PET resin was 20 ppm, and instead of adding the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t.
  • the same procedure as in Example 1 was conducted except that germanium dioxide was added so that the germanium atoms contained in the chemically recycled PET resin was 100 mass ppm, and the polycondensation time was set to the conditions shown in Table 3.
  • Reference example 2 The same procedure as in Reference Example 1 was carried out except that ethylene glycol was charged in a molar amount 1.3 times that of high-purity terephthalic acid.
  • Example 2 is an example in which the amount of free ethylene glycol was increased from Example 1, and although a slight difference was observed in the amount of foreign substances, there was no problem.
  • Comparative Example 1 is an example in which the amount of free ethylene glycol increased significantly, and the amount of foreign matter increased significantly.
  • Examples 7 and 8 are examples in which the usage ratio of CR-BHET1 and CR-BHET3 is changed.
  • the amount of free ethylene glycol in CR-BHET increases (the amount of free ethylene glycol component in 100 mol% of the total polyhydric alcohol component of CR-BHET: Although a slight increase in the amount of foreign matter was observed (1.0 mol%, 1.3 mol% in Example 8), there was no problem.
  • Examples 3 to 5 are examples in which the usage ratio of CR-BHET and added terephthalic acid was changed, and although a slight difference was observed in the amount of foreign matter, there was no problem.
  • Example 6 is an example in which the amounts of Al catalyst and Ti catalyst were changed, and although a slight difference was observed in the amount of foreign matter, there was no problem.
  • Comparative Examples 2, 3, 4, and 7 are examples in which the metal species and/or phosphorus compound of the catalyst were changed, but the amount of foreign matter increased significantly.
  • Comparative Example 5 is an example in which an ethylene glycol solution of antimony trioxide was used as an antimony catalyst and tributyl phosphate was used as a phosphorus compound, but the amount of foreign matter increased significantly. This is because the use of a dilute antimony-based ethylene glycol solution increased the amount of free ethylene glycol after adding the catalyst compared to Comparative Example 2, and the absolute amount of catalyst was also large, leading to an increase in the amount of foreign matter. Conceivable.
  • Comparative Example 6 is an example in which a cobalt compound and titanium oxide were added to suppress the color b value, but the amount of foreign matter increased significantly.
  • the amount of free ethylene glycol in the oligomers produced from terephthalic acid and ethylene glycol in Reference Examples 1 and 2 was higher than that in the oligomers using CR-BHET in which the amount of free ethylene glycol was controlled, and the resulting PET resin contained foreign substances. The quantity was also large.
  • the molar ratio described in the column of CR-BHET of raw materials in Examples and Comparative Examples is CR when the total of all polyhydric carboxylic acid components and added terephthalic acid contained in CR-BHET is 100 mol%.
  • - Indicates the proportion of all polycarboxylic acid components that BHET has
  • the molar ratio stated in the TPA column of raw material is when the total of all polycarboxylic acid components and added terephthalic acid that CR-BHET has is 100 mol%. shows the percentage of added terephthalic acid.
  • the molar ratio described in the column of EG of raw materials in Reference Examples indicates the ratio of ethylene glycol when the amount of terephthalic acid is 100 mol%.
  • Chemically recycled polyethylene terephthalate resin obtained using chemically recycled BHET as a raw material and an aluminum compound and a phosphorus compound as a polymerization catalyst can reduce the amount of foreign substances that are difficult to remove with a filter compared to conventional PET resin. This improves the processing suitability and transparency of PET resin.
  • the resin of the present invention can be suitably used for optical purposes and as a material for various molded products such as films, fibers, and beverage bottles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

The present invention addresses the problem of providing a chemically recycled polyethylene terephthalate resin which includes only a few foreign substances that are difficult to remove by a filter. A chemically recycled polyethylene terephthalate resin according to the present invention is characterized by satisfying the requirements (1) and (2) described below. (1) Aluminum atoms and phosphorus atoms are contained. (2) The amount of foreign substances having a particle diameter of 0.50 µm to 0.69 µm as determined by a particle counter is 2,000 per ml or less.

Description

ケミカルリサイクルポリエチレンテレフタレート樹脂及びその成形体、並びにケミカルリサイクルポリエチレンテレフタレート樹脂の製造方法Chemically recycled polyethylene terephthalate resin, molded product thereof, and method for producing chemically recycled polyethylene terephthalate resin
 本発明は、ケミカルリサイクルポリエチレンテレフタレート樹脂及びその成形体、並びにケミカルリサイクルポリエチレンテレフタレート樹脂の製造方法に関する。 The present invention relates to a chemically recycled polyethylene terephthalate resin, a molded article thereof, and a method for producing a chemically recycled polyethylene terephthalate resin.
 機械的強度、化学的安定性、耐熱性及び耐湿性に優れ、さらに透明性も高くできること、低価格で供給も安定しているという理由から、包装や工業用部材として広くポリエステル樹脂が用いられている。 Polyester resin is widely used for packaging and industrial materials because it has excellent mechanical strength, chemical stability, heat resistance, and moisture resistance, and can also be highly transparent, as well as being inexpensive and stable in supply. There is.
 汎用のポリエステル樹脂としてポリエチレンテレフタレートがあり、これはテレフタル酸とエチレングリコールの重縮合物である。テレフタル酸およびエチレングリコールは化石燃料である石油から生産されている。近年、二酸化炭素排出削減等の環境負荷の低減のため、化石燃料由来製品のリサイクルが進んでおり、ポリエステルにおいても、製品を粉砕、再溶融成形するメカニカルリサイクルだけでなく、ポリエステルをモノマーレベルまで分解し、これを原料として再度重縮合したケミカルリサイクルも実用化されつつある。 A general-purpose polyester resin is polyethylene terephthalate, which is a polycondensate of terephthalic acid and ethylene glycol. Terephthalic acid and ethylene glycol are produced from petroleum, a fossil fuel. In recent years, recycling of fossil fuel-derived products has been progressing in order to reduce environmental impact such as reducing carbon dioxide emissions.In addition to mechanical recycling of polyester, which involves crushing and remelting the product, it is also possible to decompose polyester to the monomer level. However, chemical recycling in which polycondensation is performed again using this as a raw material is also being put into practical use.
 ポリエステル樹脂でも、環境負荷の低減のため、飲料用PETボトルや衣料用ポリエステル繊維などからケミカルリサイクルして得られたポリエチレンテレフタレートを利用することが検討されている。このような環境負荷対応の樹脂であっても、非リサイクル樹脂と同様な用途に用い、同様な特性を有することが求められるようになってきた。 Regarding polyester resin, in order to reduce the environmental impact, the use of polyethylene terephthalate obtained through chemical recycling from PET beverage bottles, polyester fibers for clothing, etc. is being considered. Even such environmentally friendly resins are required to be used for the same purposes as non-recycled resins and to have similar properties.
 ポリエステル樹脂をフィルムや繊維、飲料用ボトルとして用いる場合は、樹脂中に異物が多く存在していると、加工する際に、フィルムの破断や繊維の糸切れなどの操業性悪化による製品歩留まりが低下したり、異物が欠点として製品中に残存し、品位の悪化につながる場合がある。また、中空成形品等の原料として用いた場合には、透明性に優れた中空成形体を得ることが困難である。 When polyester resin is used for films, fibers, and beverage bottles, if there are many foreign substances in the resin, product yield will decrease due to poor operability such as film breakage and fiber breakage during processing. Otherwise, foreign matter may remain in the product as a defect, leading to deterioration of quality. Furthermore, when used as a raw material for blow molded products, etc., it is difficult to obtain a hollow molded product with excellent transparency.
 異物の発生は、特に金属触媒が変性し、樹脂中に不溶化することで、異物となることが知られている。
 ポリエステルの重縮合時に用いられるポリエステル重縮合触媒としては、アンチモンやゲルマニウム化合物、チタン化合物が広く用いられている。三酸化アンチモンは、安価で、かつ優れた触媒活性をもつ触媒であるが、これを主成分、即ち、実用的な重合速度が発揮される程度の添加量にて使用すると、重縮合時に金属アンチモンが析出するため、ポリエステルに黒ずみや異物が発生し、フィルムの表面欠点の原因にもなるという問題がある。
It is known that foreign matter is generated especially when the metal catalyst is denatured and becomes insolubilized in the resin.
Antimony, germanium compounds, and titanium compounds are widely used as polyester polycondensation catalysts used in polyester polycondensation. Antimony trioxide is a catalyst that is inexpensive and has excellent catalytic activity, but if it is used as the main component, that is, in an amount sufficient to achieve a practical polymerization rate, metallic antimony trioxide will be produced during polycondensation. is precipitated, which causes darkening and foreign matter on the polyester, which causes surface defects on the film.
 異物量を低減する重縮合触媒として、アルミニウム化合物とリン化合物とからなる触媒系が開示されている(例えば、特許文献1参照)。また、触媒として用いるアルミニウム化合物やリン化合物のエチレングリコール溶液の調整方法を工夫したり、エステル反応終了後にリン化合物を添加することにより、重縮合触媒に起因する異物の生成を低減するという技術が知られている(例えば、特許文献2、3参照)。 A catalyst system consisting of an aluminum compound and a phosphorus compound has been disclosed as a polycondensation catalyst that reduces the amount of foreign matter (see, for example, Patent Document 1). In addition, techniques are known to reduce the production of foreign substances caused by polycondensation catalysts by devising a method for preparing ethylene glycol solutions of aluminum compounds and phosphorus compounds used as catalysts, and by adding phosphorus compounds after the ester reaction is completed. (For example, see Patent Documents 2 and 3).
特開2007-204557号公報Japanese Patent Application Publication No. 2007-204557 WO2005/075539号WO2005/075539 特開2005-187558号公報Japanese Patent Application Publication No. 2005-187558
 しかしながら、上記アルミニウム化合物とリン化合物とからなる触媒系においても、フィルターで除去することが難しい触媒異物が発生するという問題があることを発見した。 However, it has been discovered that even in the above catalyst system consisting of an aluminum compound and a phosphorus compound, there is a problem in that catalytic foreign substances are generated that are difficult to remove with a filter.
 本発明は、かかる従来技術の課題を背景になされたものであり、ケミカルリサイクルして得られた原料からケミカルリサイクルポリエチレンテレフタレート樹脂を合成し、重合時の触媒としてアルミニウム化合物及びリン化合物を用いることにより、フィルターで除去することが難しい異物(具体的には粒子径が0.5~0.69μmの異物)が少ないケミカルリサイクルポリエチレンテレフタレート樹脂を提供することを目的とする。 The present invention has been made against the background of such problems with the prior art, and by synthesizing a chemically recycled polyethylene terephthalate resin from raw materials obtained by chemically recycling and using an aluminum compound and a phosphorus compound as a catalyst during polymerization. The purpose of the present invention is to provide a chemically recycled polyethylene terephthalate resin containing less foreign matter that is difficult to remove with a filter (specifically, foreign matter having a particle size of 0.5 to 0.69 μm).
 本発明者らは、ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレートを含む原料を重縮合する検討重ね、ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレートを用い、重合時の触媒としてアルミニウム化合物及びリン化合物を用いることにより、バージンのテレフタル酸とバージンのエチレングリコール原料から得られるポリエチレンテレフタレート樹脂と比べて、ケミカルリサイクルポリエチレンテレフタレート樹脂中の異物(特に、フィルターで除去することが難しい異物)を少なくできることを見出した。 The present inventors have repeatedly studied polycondensation of raw materials containing chemically recycled bis-2-hydroxyethyl terephthalate, and have found that chemically recycled bis-2-hydroxyethyl terephthalate is used and an aluminum compound and a phosphorus compound are used as catalysts during polymerization. The researchers found that compared to polyethylene terephthalate resin obtained from virgin terephthalic acid and virgin ethylene glycol raw materials, chemically recycled polyethylene terephthalate resin can contain fewer foreign substances (particularly foreign substances that are difficult to remove with a filter).
 すなわち、本発明は以下の構成からなる。
[1]下記の(1)~(2)を満足することを特徴とするケミカルリサイクルポリエチレンテレフタレート樹脂。
(1)アルミニウム原子及びリン原子を含む
(2)パーティクルカウンターによる粒子径0.50~0.69μmの異物量が2000個/ml以下である
[2]前記ケミカルリサイクルポリエチレンテレフタレート樹脂中の、前記アルミニウム原子の含有量が、50質量ppm以下であり、前記リン原子の含有量が、100質量ppm以下であることを特徴とする、上記[1]に記載のケミカルリサイクルポリエチレンテレフタレート樹脂。
[3]固有粘度保持率が89%以上であることを特徴とする、上記[1]又は[2]に記載のケミカルリサイクルポリエチレンテレフタレート樹脂。
[4]カラーb値が10以下である、上記[1]~[3]のいずれかに記載のケミカルリサイクルポリエチレンテレフタレート樹脂。
[5]上記[1]~[4]のいずれかに記載のケミカルリサイクルポリエチレンテレフタレート樹脂を含む、成形体。
[6]ポリエステル樹脂を分解することによって得られたケミカルリサイクルビス-2-ヒドロキシエチルテレフタレートを含む原料を用いてポリエチレンテレフタレート樹脂を製造する方法であって、
 前記ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレートを含む原料をそのままで、またはそのOH末端をエステル化した後に、アルミニウム化合物及びリン化合物の存在下で重縮合反応することを特徴とする、ケミカルリサイクルポリエチレンテレフタレート樹脂の製造方法。
[7]前記ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレートを構成する全多価アルコール成分100モル%中の遊離エチレングリコール成分量が1.5モル%以下である、上記[6]に記載のケミカルリサイクルポリエチレンテレフタレート樹脂の製造方法。
That is, the present invention consists of the following configuration.
[1] A chemically recycled polyethylene terephthalate resin that satisfies the following (1) to (2).
(1) Contains aluminum atoms and phosphorus atoms (2) The amount of foreign matter with a particle size of 0.50 to 0.69 μm measured by a particle counter is 2000 particles/ml or less [2] The aluminum in the chemically recycled polyethylene terephthalate resin The chemically recycled polyethylene terephthalate resin according to [1] above, wherein the content of atoms is 50 mass ppm or less, and the content of the phosphorus atoms is 100 mass ppm or less.
[3] The chemically recycled polyethylene terephthalate resin according to [1] or [2] above, which has an intrinsic viscosity retention of 89% or more.
[4] The chemically recycled polyethylene terephthalate resin according to any one of [1] to [3] above, which has a color b value of 10 or less.
[5] A molded article containing the chemically recycled polyethylene terephthalate resin according to any one of [1] to [4] above.
[6] A method for producing polyethylene terephthalate resin using a raw material containing chemically recycled bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin, comprising:
Chemically recycled polyethylene terephthalate, characterized in that the raw material containing the chemically recycled bis-2-hydroxyethyl terephthalate is subjected to a polycondensation reaction in the presence of an aluminum compound and a phosphorus compound, either as it is or after esterifying its OH end. Method of manufacturing resin.
[7] The chemical recycling according to the above [6], wherein the amount of free ethylene glycol component in 100 mol% of the total polyhydric alcohol components constituting the chemical recycling bis-2-hydroxyethyl terephthalate is 1.5 mol% or less. Method for producing polyethylene terephthalate resin.
 ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレートを含む原料を用い、重合時の触媒としてアルミニウム化合物及びリン化合物を用いることにより、バージンのテレフタル酸とバージンのエチレングリコール原料から得られるポリエチレンテレフタレート樹脂と比べて、異物(特に、フィルターで除去することが難しい異物)が少ないケミカルリサイクルポリエチレンテレフタレート樹脂とすることができる。そのため、本発明のケミカルリサイクルポリエチレンテレフタレート樹脂は、フィルムや繊維、飲料用ボトル、光学用途等の各種成形品用の材料として好適に用いることができる。 By using a raw material containing chemically recycled bis-2-hydroxyethyl terephthalate and using an aluminum compound and a phosphorus compound as catalysts during polymerization, compared to polyethylene terephthalate resin obtained from virgin terephthalic acid and virgin ethylene glycol raw materials, A chemically recycled polyethylene terephthalate resin containing less foreign matter (particularly foreign matter that is difficult to remove with a filter) can be obtained. Therefore, the chemically recycled polyethylene terephthalate resin of the present invention can be suitably used as a material for various molded products such as films, fibers, beverage bottles, and optical applications.
 また、本発明のケミカルリサイクルポリエチレンテレフタレート樹脂は透明性が高いことが好ましい。また、着色が抑制されていることが好ましい。さらに、高い熱安定性を有することが好ましい。透明性が高く、着色が抑制され、高い熱安定性を有する樹脂は、フィルムや繊維、飲料用ボトル、光学用途等の各種成形品用の材料として特に好ましい。 Furthermore, it is preferable that the chemically recycled polyethylene terephthalate resin of the present invention has high transparency. Further, it is preferable that coloring is suppressed. Furthermore, it is preferable to have high thermal stability. Resins with high transparency, suppressed coloration, and high thermal stability are particularly preferred as materials for various molded products such as films, fibers, beverage bottles, and optical applications.
 本発明のケミカルリサイクルポリエチレンテレフタレート樹脂の製造方法は、ケミカルリサイクルによって得られたビス-2-ヒドロキシエチルテレフタレートを重縮合することを特徴とするものである。
 なお、以下ではビス-2-ヒドロキシエチルテレフタレートをBHETと略することがあり、ケミカルリサイクルによって得られたビス-2-ヒドロキシエチルテレフタレートをケミカルリサイクルBHET、またはCR-BHETと略することがある。
The method for producing chemically recycled polyethylene terephthalate resin of the present invention is characterized by polycondensing bis-2-hydroxyethyl terephthalate obtained by chemical recycling.
Note that hereinafter, bis-2-hydroxyethyl terephthalate may be abbreviated as BHET, and bis-2-hydroxyethyl terephthalate obtained by chemical recycling may be abbreviated as chemical recycled BHET or CR-BHET.
 また、ケミカルリサイクルBHETを重縮合することによって得られたポリエチレンテレフタレート樹脂は、ケミカルリサイクルPET、またはCR-PETと略することがある。また、ポリエチレンテレフタレートはPETと略することがある。 Furthermore, polyethylene terephthalate resin obtained by polycondensing chemically recycled BHET is sometimes abbreviated as chemically recycled PET or CR-PET. Moreover, polyethylene terephthalate may be abbreviated as PET.
 本実施形態に係るケミカルリサイクルPET樹脂は、粒子径0.50~0.69μmの異物量が少ないケミカルリサイクルPET樹脂とすることができる。
 本発明者らは、ポリエステル樹脂を分解することによって得られたケミカルリサイクルBHETを原料として、ケミカルリサイクルPETを重合する検討を重ね、ケミカルリサイクルBHETから得られたオリゴマー反応液中には、遊離のエチレングリコールの含有量が少ないことを見出した。一方、テレフタル酸とエチレングリコールをエステル化して得られるオリゴマー反応液中には、遊離エチレングリコールが多量に存在する。そこに重合触媒を添加して重合を行うと、生成される樹脂中にフィルターで除去することが難しい触媒由来の異物が増加することを発見した。
The chemically recycled PET resin according to this embodiment can be a chemically recycled PET resin with a small amount of foreign matter having a particle size of 0.50 to 0.69 μm.
The present inventors have repeatedly investigated polymerizing chemically recycled PET using chemically recycled BHET obtained by decomposing polyester resin as a raw material, and found that free ethylene was present in the oligomer reaction liquid obtained from chemically recycled BHET. It was found that the content of glycol was low. On the other hand, a large amount of free ethylene glycol is present in the oligomer reaction solution obtained by esterifying terephthalic acid and ethylene glycol. It was discovered that when polymerization is carried out by adding a polymerization catalyst, foreign substances derived from the catalyst, which are difficult to remove with a filter, increase in the resulting resin.
 この理由については、例えば以下のように推察する。遊離エチレングリコールが多量に存在するオリゴマー反応液中に、重合触媒を添加し、内温がエチレングリコールの沸点以上になると、急激にエチレングリコールが揮発する。その揮発速度は速く、また揮発量が多いため、何等かの作用を触媒に与え、触媒の変性が促進される。その結果、生成される樹脂中に触媒由来の異物が増加する。
 この異物の増加を抑制するためには、重合触媒添加時点の遊離エチレングリコール含有量を抑制することが重要である。上記重合触媒添加時点において、ケミカルリサイクルBHETから得られたBHETを含むオリゴマー反応液中には、テレフタル酸やエチレングリコールから得られるオリゴマー反応液中に比べて、遊離のエチレングリコールの含有量が少ないために、上記重合触媒添加時点における、エチレングリコールの揮発する速度や揮発量を小さくすることができ、触媒への作用を小さくすることができ、触媒の変性を抑制することができ、生成される樹脂中に触媒由来の異物を低減できる。また、触媒としてアルミニウム化合物とリン化合物を用いることにより、ケミカルリサイクルPET中の異物を少なくできることができると推察される。
The reason for this is surmised as follows, for example. When a polymerization catalyst is added to an oligomer reaction solution containing a large amount of free ethylene glycol and the internal temperature becomes equal to or higher than the boiling point of ethylene glycol, ethylene glycol rapidly evaporates. Since its volatilization rate is fast and its volatilization amount is large, it exerts some kind of action on the catalyst and promotes modification of the catalyst. As a result, foreign matter derived from the catalyst increases in the produced resin.
In order to suppress the increase in foreign matter, it is important to suppress the content of free ethylene glycol at the time of addition of the polymerization catalyst. At the time of addition of the polymerization catalyst, the content of free ethylene glycol in the oligomer reaction solution containing BHET obtained from chemical recycling BHET is lower than that in the oligomer reaction solution obtained from terephthalic acid or ethylene glycol. In addition, it is possible to reduce the volatilization rate and amount of ethylene glycol at the time of addition of the polymerization catalyst, thereby reducing the effect on the catalyst, suppressing the modification of the catalyst, and improving the resulting resin. Foreign matter derived from the catalyst can be reduced. Furthermore, it is presumed that by using an aluminum compound and a phosphorus compound as a catalyst, the amount of foreign substances in chemically recycled PET can be reduced.
(ケミカルリサイクルBHET)
 ケミカルリサイクルBHETは、PET樹脂をエチレングリコール存在下で加熱して解重合して得られたものである。元となるPET樹脂は、何らかの形で使用済みとなったものが好ましく、例としては、街中から回収されたPETボトル、トレイなどの容器類、繊維や製品、製造において製品取りする前の放流品、B級品として市場に出荷さなかった製品類、フィルム延伸の際に把持される耳部分、スリットの端材、クレーム等で返品された成形品などが挙げられる。これらの元となるPET樹脂は、テレフタル酸やエチレングリコールが石油由来のものであってもよく、バイオマス由来のものであってもよい。またメカニカルリサイクルの成形品であってもよい。また、これらのPET樹脂の混合物であってもよい。
(Chemical Recycling BHET)
Chemically recycled BHET is obtained by heating and depolymerizing PET resin in the presence of ethylene glycol. The original PET resin is preferably one that has been used in some way; examples include containers such as PET bottles and trays collected from the city, fibers and products, and products released during manufacturing before being used as products. , products that were not shipped to the market as B-class products, selvedge parts that are held during film stretching, slit scraps, molded products that were returned due to complaints, etc. Terephthalic acid and ethylene glycol of these PET resins may be derived from petroleum, or may be derived from biomass. It may also be a mechanically recycled molded product. Alternatively, a mixture of these PET resins may be used.
 これらの元となるPET樹脂は、一般的に、粉砕、洗浄、異物除去後、解重合工程に利用される。
 解重合では、PET樹脂にエチレングリコール、水酸化ナトリウムや水酸化カリウムなどのアルカリ化合物を加え、加熱して解重合を進める。得られた反応物は、必要により固形物などを濾過、脱色し、さらに余剰のエチレングリコールなどを留去させてBHET粗製物とする。このBHET粗製物を、蒸留、晶析などで精製することで、重縮合に用いられる純度のケミカルリサイクルBHETとすることができる。
These PET resins are generally used in the depolymerization process after being crushed, washed, and foreign matter removed.
In depolymerization, ethylene glycol and alkaline compounds such as sodium hydroxide and potassium hydroxide are added to PET resin and heated to advance depolymerization. The obtained reaction product is filtered and decolorized to remove solid matter, if necessary, and further, excess ethylene glycol and the like are distilled off to obtain a BHET crude product. By purifying this BHET crude product by distillation, crystallization, etc., it is possible to obtain chemically recycled BHET of a purity used for polycondensation.
 なお、本発明における「ケミカルリサイクルBHET」とは、上述の通り、PET樹脂を解重合して得られたものを指し、不純物として、BHET以外の成分を含んでいてもよい。具体的に、ケミカルリサイクルBHET中には、BHET、ビス-2-ヒドロキシエチルイソフタレート等の1分子の多価カルボン酸成分と2分子多価アルコール成分から構成されるジカルボン酸ジエステル;前記カルボン酸ジエステルの線状の2量体やそれ以上の多量体;モノ-2-ヒドロキシエチルテレフタレート等の1分子の多価カルボン酸成分と1分子多価アルコール成分から構成されるカルボン酸モノエステル;遊離テレフタル酸等の遊離多価カルボン酸;遊離エチレングリコール等の遊離多価アルコール;などが含まれていてもよい。ケミカルリサイクルBHET中には、BHETが主成分として含まれており、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上のBHETが含まれている。 Note that, as described above, "chemically recycled BHET" in the present invention refers to one obtained by depolymerizing PET resin, and may contain components other than BHET as impurities. Specifically, in the chemical recycling BHET, BHET, a dicarboxylic acid diester composed of one molecule of a polyhydric carboxylic acid component and two molecules of a polyhydric alcohol component such as bis-2-hydroxyethyl isophthalate; linear dimers and higher polymers; carboxylic acid monoesters composed of one molecule of polyhydric carboxylic acid component and one molecule of polyhydric alcohol component such as mono-2-hydroxyethyl terephthalate; free terephthalic acid Free polyhydric carboxylic acids such as; free polyhydric alcohols such as free ethylene glycol; and the like may be included. The chemically recycled BHET contains BHET as a main component, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more.
 ケミカルリサイクルBHETの酸価及び水酸基価の合計は6500eq/ton以上が好ましく、7000eq/ton以上がより好ましく、7500eq/ton以上がさらに好ましい。上限は好ましくは9500eq/tonであり、より好ましくは9000eq/tonであり、さらに好ましくは8500eq/tonである。すなわち、ケミカルリサイクルBHETの酸価及び水酸基価の合計は、6500~9500eq/tonが好ましく、より好ましくは7000~9000eq/ton、さらに好ましくは7500~8500eq/tonである。上記範囲とすることで、十分な純度を保ちながら、生産性を確保することができる。なお、酸価1eq/tonは、対象(ここではケミカルリサイクルBHET)1トン当たりカルボン酸基(-COOH)が1モル含まれることを意味し、水酸基価1eq/tonは、対象(ここではケミカルリサイクルBHET)1トン当たりOH基が1モル含まれることを意味する。以下、他の対象(オリゴマー、樹脂など)で酸価、水酸基価を特定する場合も同様の意味である。 The total acid value and hydroxyl value of the chemically recycled BHET is preferably 6,500 eq/ton or more, more preferably 7,000 eq/ton or more, and even more preferably 7,500 eq/ton or more. The upper limit is preferably 9500 eq/ton, more preferably 9000 eq/ton, still more preferably 8500 eq/ton. That is, the total acid value and hydroxyl value of the chemically recycled BHET is preferably 6,500 to 9,500 eq/ton, more preferably 7,000 to 9,000 eq/ton, and still more preferably 7,500 to 8,500 eq/ton. By keeping it within the above range, productivity can be ensured while maintaining sufficient purity. Note that an acid value of 1 eq/ton means that 1 mole of carboxylic acid group (-COOH) is contained per ton of the target (here, chemical recycling BHET), and a hydroxyl value of 1 eq/ton means that the target (here, chemical recycling BHET) contains 1 mole of carboxylic acid group (-COOH). BHET) means that 1 mol of OH groups is contained per ton. Hereinafter, the same meaning applies when specifying the acid value and hydroxyl value for other objects (oligomers, resins, etc.).
 上述の通り、ケミカルリサイクルBHET中には、テレフタル酸成分以外の多価カルボン酸成分、エチレングリコール以外の多価アルコール成分が含まれていてもよい。テレフタル酸成分以外の多価カルボン酸成分としては、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸、シクロヘキサンジカルボン酸、等の成分が挙げられ、エチレングリコール以外の多価アルコール成分としては、ジエチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、トリメチレングリコール、テトラメチレングリコール、ビスフェノールAのエチレングリコールまたはプロピレングリコール付加物、ビスフェノールSのエチレングリコールまたはプロピレングリコール付加物、などの成分が挙げられる。ケミカルリサイクルBHET中には、多価カルボン酸成分が1種単独で又は2種以上含有されていてもよく、また、多価アルコール成分が1種単独で又は2種以上含有されていてもよい。 As mentioned above, the chemical recycling BHET may contain a polyhydric carboxylic acid component other than the terephthalic acid component and a polyhydric alcohol component other than ethylene glycol. Examples of polyhydric carboxylic acid components other than terephthalic acid components include isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid, and cyclohexanedicarboxylic acid, and polyhydric alcohol components other than ethylene glycol include , diethylene glycol, neopentyl glycol, cyclohexanedimethanol, trimethylene glycol, tetramethylene glycol, an ethylene glycol or propylene glycol adduct of bisphenol A, an ethylene glycol or propylene glycol adduct of bisphenol S, and the like. The chemical recycling BHET may contain one or more polyhydric carboxylic acid components, and may contain one or more polyhydric alcohol components.
 ケミカルリサイクルBHETに含まれるテレフタル酸成分量は、ケミカルリサイクルBHETの全多価カルボン酸成分を100モル%とした場合に、98.0モル%以上(または超えている)が好ましく、より好ましくは98.3モル%以上であり、さらに好ましくは98.5モル%以上であり、よりさらに好ましくは98.8モル%以上であり、特に好ましくは99.0モル%以上であり、最も好ましくは99.2モル%以上である。 The amount of terephthalic acid component contained in the chemically recycled BHET is preferably 98.0 mol% or more (or exceeds), more preferably 98.0 mol% or more, when the total polyhydric carboxylic acid component of the chemically recycled BHET is 100 mol%. .3 mol% or more, more preferably 98.5 mol% or more, even more preferably 98.8 mol% or more, particularly preferably 99.0 mol% or more, and most preferably 99.0 mol% or more. It is 2 mol% or more.
 上記のように、ケミカルリサイクルBHETは市場からの回収品を含むPET樹脂を解重合したものが好ましく、市場からの回収PETは、結晶性や物性の調整などのためにPET以外の成分が加えられている場合もあるが、回収物から純粋なPETのみを選別したり、BHETをテレフタル酸以外の酸成分を検出されないレベルまで精製したりすることはコスト面では好ましくない。従って、ケミカルリサイクルBHETに含まれるテレフタル酸成分量は、ケミカルリサイクルBHETの全多価カルボン酸成分を100モル%とした場合に、好ましくは99.98モル%以下であり、より好ましくは99.95モル%以下であり、99.9モル%以下、99.85モル%以下、又は99.8モル%以下であってもよい。
 すなわち、ケミカルリサイクルBHETに含まれるテレフタル酸成分量は、ケミカルリサイクルBHETの全多価カルボン酸成分を100モル%とした場合に、98.0~99.98モル%が好ましく、より好ましくは98.3~99.95モル%、さらに好ましくは98.5~99.95モル%であり、98.8~99.9モル%、99.0~99.85モル%、又は99.2~99.8モル%であってもよい。
As mentioned above, chemically recycled BHET is preferably one obtained by depolymerizing PET resin containing products recovered from the market, and PET recovered from the market is one in which components other than PET are added to adjust crystallinity and physical properties. However, in terms of cost, it is not desirable to select only pure PET from recovered materials or to refine BHET to a level where acid components other than terephthalic acid are undetectable. Therefore, the amount of terephthalic acid component contained in the chemically recycled BHET is preferably 99.98 mol% or less, more preferably 99.95 mol% or less, when the total polyhydric carboxylic acid component of the chemically recycled BHET is 100 mol%. It may be 99.9 mol% or less, 99.85 mol% or less, or 99.8 mol% or less.
That is, the amount of terephthalic acid component contained in the chemically recycled BHET is preferably 98.0 to 99.98 mol%, more preferably 98.0 to 99.98 mol%, when the total polyhydric carboxylic acid component of the chemically recycled BHET is 100 mol%. 3 to 99.95 mol%, more preferably 98.5 to 99.95 mol%, 98.8 to 99.9 mol%, 99.0 to 99.85 mol%, or 99.2 to 99. It may be 8 mol%.
 ケミカルリサイクルBHETに含まれるテレフタル酸成分以外の多価カルボン酸成分としては、イソフタル酸成分が含有されている場合が多く、イソフタル酸成分の含有量は、ケミカルリサイクルBHETの全多価カルボン酸成分を100モル%とした場合に、好ましくは2.0モル%以下(または未満)であり、次に好ましくは1.7モル%以下であり、より好ましくは1.5モル%以下であり、さらに好ましくは1.2モル%以下であり、特に好ましくは1.0モル%以下であり、最も好ましくは0.8モル%以下である。また、前記イソフタル酸成分の含有量は、0.15モル%以下又は0.15モル%未満であってもよい。
 前記イソフタル酸成分の含有量は、好ましくは0.02モル%以上であり、より好ましくは0.05モル%以上であり、0.1モル%以上、0.15モル%以上、又は0.2モル%以上であってもよい。
 すなわち、前記イソフタル酸成分の含有量は、0.02~2.0モル%が好ましく、より好ましくは0.02~1.7モル%、さらに好ましくは0.05~1.5モル%であり、0.1~1.2モル%、0.15~1.0モル%、0.2~0.8モル%、又は0.02~0.15モル%未満であってもよい。
The polycarboxylic acid component other than the terephthalic acid component contained in chemically recycled BHET often contains isophthalic acid component, and the content of isophthalic acid component is equal to the total polycarboxylic acid component of chemically recycled BHET. When taken as 100 mol%, it is preferably 2.0 mol% or less (or less), next preferably 1.7 mol% or less, more preferably 1.5 mol% or less, and even more preferably is 1.2 mol% or less, particularly preferably 1.0 mol% or less, and most preferably 0.8 mol% or less. Further, the content of the isophthalic acid component may be 0.15 mol% or less or less than 0.15 mol%.
The content of the isophthalic acid component is preferably 0.02 mol% or more, more preferably 0.05 mol% or more, 0.1 mol% or more, 0.15 mol% or more, or 0.2 mol% or more. It may be mol% or more.
That is, the content of the isophthalic acid component is preferably 0.02 to 2.0 mol%, more preferably 0.02 to 1.7 mol%, and still more preferably 0.05 to 1.5 mol%. , 0.1-1.2 mol%, 0.15-1.0 mol%, 0.2-0.8 mol%, or 0.02-0.15 mol%.
 ケミカルリサイクルBHETに含まれるエチレングリコール成分量は、ケミカルリサイクルBHETの全多価アルコール成分を100モル%とした場合に、好ましくは98.7モル%以上であり、より好ましくは99.0モル%以上であり、99.2モル%以上、99.3モル%以上、又は99.4モル%以上であってもよい。また前記エチレングリコール成分量は、98.0モル%以上、98.3モル%以上、98.6モル%以上、又は98.8モル%以上であってもよい。 The amount of ethylene glycol component contained in the chemically recycled BHET is preferably 98.7 mol% or more, more preferably 99.0 mol% or more, when the total polyhydric alcohol component of the chemically recycled BHET is 100 mol%. and may be 99.2 mol% or more, 99.3 mol% or more, or 99.4 mol% or more. Further, the amount of the ethylene glycol component may be 98.0 mol% or more, 98.3 mol% or more, 98.6 mol% or more, or 98.8 mol% or more.
 ケミカルリサイクルBHETに含まれるエチレングリコール成分中の遊離のエチレングリコール量は、ケミカルリサイクルBHETの全多価アルコール成分を100モル%とした場合に、好ましくは1.5モル%以下であり、より好ましくは1.3モル%以下であり、さらに好ましくは1.2モル%以下であり、よりさらに好ましくは1.0モル%以下であり、特に好ましくは0.8モル%以下であり、最も好ましくは0.6モル%以下である。この場合、ケミカルリサイクルBHETから得られたオリゴマー反応液中には、遊離のエチレングリコールの含有量が少なくなり、得られる樹脂中のフィルターで除去することが難しい異物量をより抑制することができる。 The amount of free ethylene glycol in the ethylene glycol component contained in the chemically recycled BHET is preferably 1.5 mol% or less, more preferably 1.5 mol% or less, when the total polyhydric alcohol component of the chemically recycled BHET is 100 mol%. 1.3 mol% or less, more preferably 1.2 mol% or less, even more preferably 1.0 mol% or less, particularly preferably 0.8 mol% or less, most preferably 0 .6 mol% or less. In this case, the content of free ethylene glycol in the oligomer reaction liquid obtained from chemical recycling BHET is reduced, and the amount of foreign substances that are difficult to remove with a filter in the resulting resin can be further suppressed.
 上記のように、市場からの回収物から純粋なPETのみを選別したり、BHETをエチレングリコール以外の多価アルコール成分を検出されないレベルまで精製したりすることはコスト面では好ましくない。また、ジエチレングリコールはPETの製造工程で副反応として発生し、これを避けることは困難である。
 従って、ケミカルリサイクルBHETの全多価アルコール成分中のエチレングリコール成分量は好ましくは99.9モル%以下であり、より好ましくは99.8モル%以下であり、さらに好ましくは99.75モル%以下であり、特に好ましくは99.7モル%以下である。
 すなわち、前記エチレングリコール成分量は、98.0~99.9モル%であることが好ましく、より好ましくは98.3~99.8モル%、さらに好ましくは98.6~99.75モル%、よりさらに好ましくは98.8~99.7モル%である。
As mentioned above, it is not desirable from a cost standpoint to select only pure PET from recovered materials from the market or to refine BHET to a level where polyhydric alcohol components other than ethylene glycol are not detected. Furthermore, diethylene glycol is generated as a side reaction during the PET manufacturing process, and it is difficult to avoid this.
Therefore, the amount of ethylene glycol component in the total polyhydric alcohol component of chemically recycled BHET is preferably 99.9 mol% or less, more preferably 99.8 mol% or less, and still more preferably 99.75 mol% or less. It is particularly preferably 99.7 mol% or less.
That is, the amount of the ethylene glycol component is preferably 98.0 to 99.9 mol%, more preferably 98.3 to 99.8 mol%, still more preferably 98.6 to 99.75 mol%, Even more preferably it is 98.8 to 99.7 mol%.
 ケミカルリサイクルBHETに含まれるエチレングリコール以外の多価アルコール成分の中でも、ジエチレングリコール成分が含有されている場合が多く、ジエチレングリコール成分の含有量は、ケミカルリサイクルBHETの全多価アルコール成分を100モル%とした場合に、好ましくは2.0モル%以下であり、より好ましくは1.7モル%以下であり、さらに好ましくは1.4モル%以下であり、特に好ましくは1.2モル%以下である。前記ジエチレングリコール成分の含有量は、好ましくは0.1モル%以上であり、より好ましくは0.3モル%以上であり、さらに好ましくは0.5モル%以上であり、特に好ましくは0.6モル%以上である。すなわち、前記ジエチレングリコール成分の含有量は、好ましくは0.1~2.0モル%であり、より好ましくは0.3~1.7モル%、さらに好ましくは0.5~1.4モル%、特に好ましくは0.6~1.2モル%である。 Among the polyhydric alcohol components other than ethylene glycol contained in chemically recycled BHET, diethylene glycol component is often contained, and the content of diethylene glycol component is 100 mol% of the total polyhydric alcohol component of chemically recycled BHET. In this case, it is preferably 2.0 mol% or less, more preferably 1.7 mol% or less, even more preferably 1.4 mol% or less, particularly preferably 1.2 mol% or less. The content of the diethylene glycol component is preferably 0.1 mol% or more, more preferably 0.3 mol% or more, even more preferably 0.5 mol% or more, and particularly preferably 0.6 mol%. % or more. That is, the content of the diethylene glycol component is preferably 0.1 to 2.0 mol%, more preferably 0.3 to 1.7 mol%, even more preferably 0.5 to 1.4 mol%, Particularly preferred is 0.6 to 1.2 mol%.
 上記のテレフタル酸成分、イソフタル酸成分等の多価カルボン酸成分、エチレングリコール成分、ジエチレングリコール成分等の多価アルコール成分は、ケミカルリサイクルBHETに単体として(すなわち1分子の化合物が遊離して)存在しているものも含んだ値である。 The above-mentioned polycarboxylic acid components such as terephthalic acid component and isophthalic acid component, and polyhydric alcohol components such as ethylene glycol component and diethylene glycol component are present in the chemical recycling BHET as a single substance (that is, one molecule of the compound is liberated). The value also includes the
 ケミカルリサイクルBHETに含まれるジエチレングリコール量を下げるためには、PETの解重合の時に、添加するエチレングリコールの量および時間を適正に調整することも好ましい。エチレングリコール量が少ない場合は、PET中のジエチレングリコールと十分なエステル交換が起こらない場合がある。また、エチレングリコール量が多すぎる場合にはエチレングリコールからジエチレングリコールが生成してケミカルリサイクルBHETに組み込まれる場合がある。添加するエチレングリコールの量は、PETに対して5~7質量倍が好ましい。
 解重合の時間が短い場合は、PET中のジエチレングリコールと十分なエステル交換が起こらない場合がある。時間が長い場合は、エチレングリコールからジエチレングリコールが生成してケミカルリサイクルBHETに組み込まれる場合がある。解重合の時間は3~10時間が好ましい。適正な時間で解重合が完了するよう、PET樹脂は適正なサイズに粉砕しておくことが好ましい。
 得られたケミカルリサイクルBHETのジエチレングリコール量を更に下げるために、再結晶を行うことが好ましい。
In order to reduce the amount of diethylene glycol contained in the chemically recycled BHET, it is also preferable to appropriately adjust the amount and time of ethylene glycol added during depolymerization of PET. If the amount of ethylene glycol is small, sufficient transesterification with diethylene glycol in PET may not occur. Furthermore, if the amount of ethylene glycol is too large, diethylene glycol may be generated from ethylene glycol and incorporated into the chemical recycling BHET. The amount of ethylene glycol added is preferably 5 to 7 times the weight of PET.
If the depolymerization time is short, sufficient transesterification with diethylene glycol in PET may not occur. If the time is long, diethylene glycol may be generated from ethylene glycol and incorporated into the chemical recycling BHET. The depolymerization time is preferably 3 to 10 hours. It is preferable that the PET resin be pulverized to an appropriate size so that depolymerization is completed in an appropriate amount of time.
In order to further reduce the amount of diethylene glycol in the obtained chemically recycled BHET, it is preferable to perform recrystallization.
 ケミカルリサイクルBHETは、元となるPET樹脂が同一ではないことがあり、共重合成分の量が常に同じというわけでない。また、PET樹脂の製造においてジエチレングリコールの生成を完全に避けることは困難であり、製造条件の違いや設備の状態の違いにより、ジエチレングリコールの生成量も異なってくる。これらの要因により、得られるPET樹脂の組成が変動し、一定範囲を超えるとケミカルリサイクルPET樹脂の樹脂特性が低下するおそれがある。ケミカルリサイクルPET樹脂から安定した品質の成形品を得るためには、ケミカルリサイクルPET樹脂の共重合成分を特定範囲内にすることが好ましいため、ケミカルリサイクルPET樹脂の製造条件の選択の幅を広げ、また、生産性よくケミカルリサイクルPET樹脂を得るためにも、ケミカルリサイクルBHETの多価カルボン酸成分および多価アルコール成分を一定範囲になるようにすることが好ましい。 In chemically recycled BHET, the original PET resins may not be the same, and the amounts of copolymer components are not always the same. Furthermore, it is difficult to completely avoid the production of diethylene glycol in the production of PET resin, and the amount of diethylene glycol produced varies depending on differences in production conditions and equipment conditions. These factors cause the composition of the obtained PET resin to vary, and if it exceeds a certain range, the resin properties of the chemically recycled PET resin may deteriorate. In order to obtain molded products of stable quality from chemically recycled PET resin, it is preferable to keep the copolymerization component of chemically recycled PET resin within a specific range. Furthermore, in order to obtain a chemically recycled PET resin with good productivity, it is preferable that the polyhydric carboxylic acid component and polyhydric alcohol component of the chemically recycled BHET be within a certain range.
 例えば、PETボトルではPET樹脂に少量のイソフタル酸やジエチレングリコールが共重合されている場合が多く、ケミカルリサイクルPETの製造に用いるケミカルリサイクルBHETの組成を上記範囲とするためには、ケミカルリサイクルBHETを上記基準で選択するだけでなく、解重合の元となるPET樹脂の使用割合を調整したり、複数のケミカルリサイクルBHETをブレンドして上記範囲に合わせたり、ケミカルリサイクルBHETを適正に精製するなどを行い、(e)、(f)、(g)の範囲内になるよう調整して選択することも好ましい。 For example, in PET bottles, PET resin is often copolymerized with a small amount of isophthalic acid or diethylene glycol. In addition to selecting based on standards, we also adjust the proportion of PET resin used as the source of depolymerization, blend multiple chemically recycled BHETs to meet the above range, and appropriately refine chemically recycled BHETs. , (e), (f), and (g).
(e)ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレート中の全多価カルボン酸成分に対するテレフタル酸成分量が98.0モル%以上99.98モル%以下
(f)ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレート中の全多価アルコール成分に対するエチレングリコール成分量が98.0モル%以上99.9モル%以下(好ましくは98.7モル%以上99.9モル%以下)
(g)ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレート中の全多価アルコール成分に対するジエチレングリコール成分量が0.1モル%以上2.0モル%以下
(e) The amount of terephthalic acid component in the chemically recycled bis-2-hydroxyethyl terephthalate is 98.0 mol% or more and 99.98 mol% or less based on the total polyhydric carboxylic acid components (f) Chemically recycled bis-2-hydroxyethyl terephthalate The amount of ethylene glycol component is 98.0 mol% or more and 99.9 mol% or less (preferably 98.7 mol% or more and 99.9 mol% or less) based on the total polyhydric alcohol components.
(g) Chemical recycling Bis-2-hydroxyethyl terephthalate has a diethylene glycol component amount of 0.1 mol% or more and 2.0 mol% or less based on the total polyhydric alcohol component.
 さらには、(h)の範囲内になるようにすることが好ましい。
(h)ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレート中の全多価カルボン成分に対するイソフタル酸成分量が0.02モル%以上2.0モル%以下
Furthermore, it is preferable to keep it within the range of (h).
(h) The amount of isophthalic acid component based on the total polyvalent carbon components in chemical recycled bis-2-hydroxyethyl terephthalate is 0.02 mol% or more and 2.0 mol% or less
 ケミカルリサイクルBHETに含まれる遊離エチレングリコール量を下げるためには、ケミカルリサイクルにより得られた粗製BHETのエチレングリコール溶液を、精製工程にて適正に精製を行い、(i)の範囲内になるように調整することが好ましい。また、複数のケミカルリサイクルBHETをブレンドして(i)の範囲内になるように調整してもよい。
(i)ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレート中の全多価アルコール成分に対する遊離エチレングリコール成分量が1.5モル%以下
In order to reduce the amount of free ethylene glycol contained in chemically recycled BHET, the ethylene glycol solution of crude BHET obtained by chemical recycling is appropriately purified in the purification process so that it falls within the range of (i). Adjustment is preferred. Alternatively, a plurality of chemically recycled BHETs may be blended and adjusted to fall within the range (i).
(i) The amount of free ethylene glycol component is 1.5 mol% or less based on the total polyhydric alcohol component in chemically recycled bis-2-hydroxyethyl terephthalate.
 なお、ジエチレングリコールなどの共重合多価アルコール成分はエチレングリコールに比較して沸点が高く、重縮合中に揮発しにくいため、ポリエステル樹脂中に組み込まれやすい。これらのことを考慮して、エチレングリコール以外の多価アルコール成分量の範囲を決めることが好ましい。
 上記のケミカルリサイクルビス-2-ヒドロキシエチルテレフタレート中の全多価カルボン酸成分100モル%に対するテレフタル酸成分の量をTPA(b)モル%、ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレート中の全多価アルコール成分100モル%に対するエチレングリコール成分の量をEG(b)モル%とした場合、
 (100-TPA(b))+(100-EG(b))×2の値の上限は好ましくは4モル%であり、より好ましくは3.5モル%であり、さらに好ましくは3モル%であり、特に好ましくは2.8モル%である。
 (100-TPA(b))+(100-EG(b))×2の値の下限は好ましくは0.15モル%であり、より好ましくは0.3モル%であり、さらに好ましくは0.5モル%である。
 すなわち、(100-TPA(b))+(100-EG(b))×2の値は、0.15~4モル%であることが好ましく、より好ましくは0.3~3.5モル%、さらに好ましくは0.5~3モル%、特に好ましくは0.5~2.8モル%である。
 上記範囲とすることで、得られたケミカルリサイクルPET樹脂の熱安定性も高く保つことができる。さらに、ケミカルリサイクルPETの製造条件の選択の幅を広げ、また、生産性よくケミカルリサイクルPETを得ることができる。
Note that a copolymerized polyhydric alcohol component such as diethylene glycol has a higher boiling point than ethylene glycol and is less likely to volatilize during polycondensation, so it is easily incorporated into the polyester resin. It is preferable to take these things into account and decide the range of the amount of polyhydric alcohol components other than ethylene glycol.
The amount of terephthalic acid component based on 100 mol% of the total polyhydric carboxylic acid component in the above chemically recycled bis-2-hydroxyethyl terephthalate is TPA (b) mol%, and the total polyhydric carboxylic acid component in the chemically recycled bis-2-hydroxyethyl terephthalate is When the amount of ethylene glycol component with respect to 100 mol% of alcohol component is defined as EG (b) mol%,
The upper limit of the value of (100-TPA(b))+(100-EG(b))×2 is preferably 4 mol%, more preferably 3.5 mol%, still more preferably 3 mol%. The content is particularly preferably 2.8 mol%.
The lower limit of the value of (100-TPA(b))+(100-EG(b))×2 is preferably 0.15 mol%, more preferably 0.3 mol%, still more preferably 0. It is 5 mol%.
That is, the value of (100-TPA(b))+(100-EG(b))×2 is preferably 0.15 to 4 mol%, more preferably 0.3 to 3.5 mol%. , more preferably 0.5 to 3 mol %, particularly preferably 0.5 to 2.8 mol %.
By setting it within the above range, the thermal stability of the obtained chemically recycled PET resin can also be maintained high. Furthermore, the range of selection of manufacturing conditions for chemically recycled PET can be expanded, and chemically recycled PET can be obtained with high productivity.
 ケミカルリサイクルBHETには、元となるPET樹脂の重合触媒が含まれている場合があり、ケミカルリサイクルBHETからケミカルリサイクルPETを製造する重縮合反応時に触媒として作用する場合もある。ケミカルリサイクルBHET中に、元となるPET樹脂の重合触媒が含まれていない、もしくは検出されないレベルで含まれることが好ましい。ケミカルリサイクルBHETはその精製工程により重合触媒由来の金属成分が検出されないレベルまで精製されているものを使用することが好ましい。 Chemically recycled BHET may contain a polymerization catalyst for the base PET resin, and may act as a catalyst during the polycondensation reaction to produce chemically recycled PET from chemically recycled BHET. It is preferable that the polymerization catalyst for the original PET resin is not contained in the chemical recycling BHET or is contained at an undetectable level. It is preferable to use chemically recycled BHET that has been purified through the purification process to a level where metal components derived from the polymerization catalyst are not detected.
(ケミカルリサイクルPET樹脂の製造方法)
 本発明のケミカルリサイクルPET樹脂の製造方法としては、原料としてポリエステル樹脂を分解することによって得られたケミカルリサイクルBHETを用いる点、並びに触媒としてアルミニウム化合物およびリン化合物からなるポリエステル重合触媒を用いる点以外は、公知の工程を備えた方法で行うことができる。
(Method for producing chemically recycled PET resin)
The method for producing chemically recycled PET resin of the present invention uses chemically recycled BHET obtained by decomposing polyester resin as a raw material, and uses a polyester polymerization catalyst consisting of an aluminum compound and a phosphorus compound as a catalyst. , can be carried out by a method including known steps.
 本発明のケミカルリサイクルPET樹脂の製造方法としては、ポリエステル樹脂を分解することによって得られたリサイクルBHETを含む原料をそのままで、或いはそのOH末端をエステル化及び/又はエステル交換反応した後に、重縮合する工程を有する。具体的には、反応容器にケミカルリサイクルBHETを加え溶融する、或いは、反応容器にケミカルリサイクルBHET及び必要により共重合成分などを加えて溶融した後ケミカルリサイクルBHETのOH末端をエステル化する第1工程と、前記第1工程で得られた反応物に、さらにアルミニウム化合物およびリン化合物を添加して重縮合反応を行う第2工程とを有することが好ましい。前記第2工程は、減圧下で、生成するグリコールを精留塔で系外に除去しながら行われることが好ましい。前記第1工程における共重合成分としては、前述の多価カルボン酸が好ましく、テレフタル酸がより好ましい。 The method for producing the chemically recycled PET resin of the present invention involves polycondensation of raw materials containing recycled BHET obtained by decomposing polyester resins as they are, or after esterification and/or transesterification of their OH terminals. It has a process of Specifically, the first step is to add the chemically recycled BHET to a reaction vessel and melt it, or to add the chemically recycled BHET and, if necessary, a copolymerization component to the reaction vessel and melt it, and then esterify the OH end of the chemically recycled BHET. and a second step of further adding an aluminum compound and a phosphorus compound to the reaction product obtained in the first step to perform a polycondensation reaction. The second step is preferably performed under reduced pressure while removing the produced glycol from the system in a rectification column. As the copolymerization component in the first step, the above-mentioned polyhydric carboxylic acid is preferable, and terephthalic acid is more preferable.
 ケミカルリサイクルPET樹脂を製造する方法は、上記工程を満たす限り、特に限定されない。例えば、ポリエステル樹脂を分解することによって得られたケミカルリサイクルBHET、および必要により他の共重合成分を直接反応させて、水を留去しエステル化した後、常圧あるいは減圧下で重縮合を行う直接エステル化法が挙げられる。さらに必要に応じて、固有粘度を増大させる為に固相重合を行ってもよい。 The method for producing chemically recycled PET resin is not particularly limited as long as the above steps are satisfied. For example, chemically recycled BHET obtained by decomposing a polyester resin and, if necessary, other copolymerization components are directly reacted, water is distilled off and esterified, and then polycondensation is carried out under normal pressure or reduced pressure. A direct esterification method is mentioned. Furthermore, if necessary, solid phase polymerization may be performed to increase the intrinsic viscosity.
 第1工程は、1段階で行ってもよいし、また多段階に分けて行ってもよい。第2工程での重縮合は、1段階で行ってもよいし、また多段階に分けて行ってもよい。多段階である場合は、2つ以上の重縮合缶をつなげた多缶方式が好ましい。また、第2工程での重縮合は、溶融重合法のみでもよいが、溶融重合法で製造されたケミカルリサイクルPET樹脂を固相重合法で追加重合してもよい。 The first step may be performed in one step or may be performed in multiple steps. The polycondensation in the second step may be carried out in one step or may be carried out in multiple stages. In the case of multiple stages, a multi-can system in which two or more polycondensation cans are connected is preferred. Further, the polycondensation in the second step may be performed only by melt polymerization, but the chemically recycled PET resin produced by melt polymerization may be additionally polymerized by solid phase polymerization.
(重合触媒)
 本発明のケミカルリサイクルPET樹脂は、アルミニウム化合物とリン化合物からなる重合触媒を用いて製造されており、その結果、本発明のケミカルリサイクルPET樹脂は、アルミニウム化合物由来成分とリン化合物由来成分を触媒量含む。換言すると、本発明のケミカルリサイクルPET樹脂は、アルミニウム原子及びリン原子を含む。
(polymerization catalyst)
The chemically recycled PET resin of the present invention is produced using a polymerization catalyst consisting of an aluminum compound and a phosphorus compound. As a result, the chemically recycled PET resin of the present invention contains a catalytic amount of an aluminum compound-derived component and a phosphorus compound-derived component. include. In other words, the chemically recycled PET resin of the present invention contains aluminum atoms and phosphorus atoms.
 アルミニウム化合物とリン化合物としては、以下のものが挙げられる。 Examples of aluminum compounds and phosphorus compounds include the following.
(アルミニウム化合物)
 アルミニウム化合物は溶媒に溶解するものであれば限定されず、公知のアルミニウム化合物が限定なく使用でき、これらのうちカルボン酸塩、無機酸塩、およびキレート化合物から選ばれる少なくとも1種が好ましい。これらの中でも酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、及びアルミニウムアセチルアセトネートから選ばれる少なくとも1種がより好ましく、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、及びアルミニウムアセチルアセトネートから選ばれる少なくとも1種がさらに好ましく、酢酸アルミニウム及び塩基性酢酸アルミニウムから選ばれる少なくとも1種が特に好ましく、塩基性酢酸アルミニウムが最も好ましい。
(aluminum compound)
The aluminum compound is not limited as long as it is soluble in the solvent, and any known aluminum compound can be used without limitation, and among these, at least one selected from carboxylates, inorganic acid salts, and chelate compounds is preferred. Among these, at least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetonate is more preferable, and aluminum acetate, basic aluminum acetate, aluminum chloride, water At least one selected from aluminum oxide, aluminum hydroxide chloride, and aluminum acetylacetonate is more preferred, at least one selected from aluminum acetate and basic aluminum acetate is particularly preferred, and basic aluminum acetate is most preferred.
 前記アルミニウム化合物は、水およびアルキレングリコールからなる群から選ばれる少なくとも1種の溶媒に溶解したアルミニウム化合物溶液として用いることが本発明の効果を顕著に発現することができるので好ましい。前記アルキレングリコールとしては、アルミニウム化合物を溶解する溶媒を用いることが好ましく、エチレングリコール等の目的とするポリエステル樹脂の構成成分であるグリコールを用いることがより好ましい。 It is preferable to use the aluminum compound as an aluminum compound solution dissolved in at least one solvent selected from the group consisting of water and alkylene glycol because the effects of the present invention can be significantly exhibited. As the alkylene glycol, it is preferable to use a solvent that dissolves the aluminum compound, and it is more preferable to use a glycol that is a constituent of the target polyester resin, such as ethylene glycol.
 特に、アルミニウム化合物の水溶液を調整したのち、アルキレングリコールを加え、その後水を留去することで、アルミニウム化合物のアルキレングリコール溶液としたものを用いることが好ましい。
 具体的には、前記アルミニウム化合物の水溶液に対する、アルキレングリコールの添加量は、容量比で0.5~3倍量が好ましい。アルキレングリコール添加後の溶液を数時間(例えば0.2~5時間)常温(例えば18~25℃)で攪拌することで均一な水/アルキレングリコール混合溶液とすることが好ましい。その後、該溶液を加熱し、水を留去することでアルキレングリコール溶液を得ることができる。加熱温度は40~120℃であることが好ましい。なお、必要があれば、減圧下(例えば1~30kPa)で上記加熱を行ってもよい。
In particular, it is preferable to prepare an aqueous solution of an aluminum compound, add alkylene glycol, and then distill off water to obtain an alkylene glycol solution of an aluminum compound.
Specifically, the amount of alkylene glycol added to the aqueous solution of the aluminum compound is preferably 0.5 to 3 times the volume ratio. It is preferable to stir the solution after addition of alkylene glycol for several hours (for example, 0.2 to 5 hours) at room temperature (for example, 18 to 25°C) to obtain a uniform water/alkylene glycol mixed solution. Thereafter, an alkylene glycol solution can be obtained by heating the solution and distilling off water. The heating temperature is preferably 40 to 120°C. Note that, if necessary, the above heating may be performed under reduced pressure (for example, 1 to 30 kPa).
 上記アルミニウム化合物溶液の濃度は、10~30g/Lであることが好ましく、15~25g/Lであることがより好ましい。 The concentration of the aluminum compound solution is preferably 10 to 30 g/L, more preferably 15 to 25 g/L.
 アルミニウム化合物の添加量は、ケミカルリサイクルPET中におけるアルミニウム原子の含有率で、5~70質量ppmであることが好ましく、より好ましくは7~55質量ppm、さらに好ましくは8~50質量ppm、よりさらに好ましくは10~40質量ppm、特に好ましくは10~30質量ppmである。アルミニウム原子の量を5質量ppm以上に調整することで、重合活性をより高めることができる。一方、70質量ppm以下に調整することで、アルミニウム系異物(特に、フィルターで除去することが難しい異物)量がより低減する傾向にある。特に、アルミニウム系異物量をさらに低減する観点からは、50質量ppm以下であることが好ましい。なお、本明細書においては、質量ppmとは10-4質量%を意味する。 The amount of the aluminum compound added is preferably 5 to 70 mass ppm, more preferably 7 to 55 mass ppm, still more preferably 8 to 50 mass ppm, and even more preferably It is preferably 10 to 40 ppm by weight, particularly preferably 10 to 30 ppm by weight. Polymerization activity can be further increased by adjusting the amount of aluminum atoms to 5 mass ppm or more. On the other hand, by adjusting the content to 70 mass ppm or less, the amount of aluminum-based foreign matter (particularly foreign matter that is difficult to remove with a filter) tends to be further reduced. In particular, from the viewpoint of further reducing the amount of aluminum-based foreign matter, it is preferably 50 mass ppm or less. In addition, in this specification, mass ppm means 10 -4 mass %.
 また、コストを重視する場合は、ケミカルリサイクルPET中におけるアルミニウム原子の含有率は、好ましくは9~20質量ppmであり、より好ましくは9~19質量ppm、さらに好ましくは10~17質量ppm、特に好ましくは12~17質量ppmである。アルミニウム原子の量を9質量ppm以上に調整することで、重縮合速度をより高めることができ、生産性を確保できる。一方、20質量ppm以下に調整することで、後述するリン原子の含有率によらず、アルミニウム系異物(特に、フィルターで除去することが難しい異物)量が増大することを抑制しやすくなり、加えて触媒のコストを抑えることができる。 In addition, when cost is important, the content of aluminum atoms in chemically recycled PET is preferably 9 to 20 mass ppm, more preferably 9 to 19 mass ppm, still more preferably 10 to 17 mass ppm, especially Preferably it is 12 to 17 ppm by mass. By adjusting the amount of aluminum atoms to 9 mass ppm or more, the polycondensation rate can be further increased and productivity can be ensured. On the other hand, by adjusting the amount to 20 mass ppm or less, it becomes easier to suppress the increase in the amount of aluminum-based foreign substances (particularly foreign substances that are difficult to remove with a filter), regardless of the content of phosphorus atoms, which will be described later. Therefore, the cost of the catalyst can be reduced.
(リン化合物)
 リン化合物としては、特に限定はされないが、ホスホン酸系化合物及び/又はホスフィン酸系化合物を用いると触媒活性の向上効果が大きいため好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きいためより好ましい。
(phosphorus compound)
The phosphorus compound is not particularly limited, but it is preferable to use a phosphonic acid-based compound and/or a phosphinic acid-based compound because it has a large effect of improving the catalytic activity. Among these, the use of a phosphonic acid-based compound has the effect of improving the catalytic activity. is particularly large, so it is more preferable.
 上記リン化合物のうち、同一分子内にリン原子とフェノール構造を有するリン化合物が好ましい。同一分子内にリン原子とフェノール構造を有するリン化合物であれば特に限定はされないが、同一分子内にリン原子とフェノール構造を有するホスホン酸系化合物、同一分子内にリン原子とフェノール構造を有するホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いるとアルミニウム化合物の触媒活性の向上効果と樹脂の熱安定性向上効果の両方が大きいため好ましく、一種または二種以上の同一分子内にリン原子とフェノール構造を有するホスホン酸系化合物を用いると触媒活性の向上効果と樹脂の熱安定性の向上効果の両方が非常に大きいためより好ましい。その理由は、リン化合物中のフェノール部分(好ましくはヒンダードフェノール部分)がケミカルリサイクルPET樹脂の熱安定性を向上させているためと考えられる。 Among the above phosphorus compounds, phosphorus compounds having a phosphorus atom and a phenol structure in the same molecule are preferred. Phosphorus compounds that have a phosphorus atom and a phenol structure in the same molecule are not particularly limited, but include phosphonic acid compounds that have a phosphorus atom and a phenol structure in the same molecule, and phosphines that have a phosphorus atom and a phenol structure in the same molecule. It is preferable to use one or more compounds selected from the group consisting of acid-based compounds because both the effect of improving the catalytic activity of the aluminum compound and the effect of improving the thermal stability of the resin are large. It is more preferable to use a phosphonic acid compound having a phosphorus atom and a phenol structure therein, since both the effect of improving the catalyst activity and the effect of improving the thermal stability of the resin are very large. The reason for this is thought to be that the phenol moiety (preferably the hindered phenol moiety) in the phosphorus compound improves the thermal stability of the chemically recycled PET resin.
 また、同一分子内にリン原子とフェノール構造を有するリン化合物としては、P(=O)R1(OR2)(OR3)やP(=O)R14(OR2)で表される化合物などが挙げられる。R1はフェノール構造を含む炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール構造を含む炭素数1~50の炭化水素基を表す。R4は、水素原子、炭素数6~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数6~50の炭化水素基を表す。R2、R3はそれぞれ独立に水素原子、炭素数1~50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1~50の炭化水素基を表す。ただし、炭化水素基は、直鎖構造だけでなく、分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。R2とR3やR2とR4の末端同士は結合していてもよい。 In addition, phosphorus compounds that have a phosphorus atom and a phenol structure in the same molecule are represented by P(=O)R 1 (OR 2 ) (OR 3 ) and P(=O)R 1 R 4 (OR 2 ). Examples include compounds such as R 1 represents a hydrocarbon group having 1 to 50 carbon atoms containing a phenol structure, a substituent such as a hydroxyl group, a halogen group, an alkoxyl group or an amino group, and a hydrocarbon group having 1 to 50 carbon atoms containing a phenol structure. R 4 represents a hydrogen atom, a hydrocarbon group having 6 to 50 carbon atoms, a hydrocarbon group having 6 to 50 carbon atoms containing a substituent such as a hydroxyl group, a halogen group, an alkoxyl group, or an amino group. R 2 and R 3 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 50 carbon atoms, or a hydrocarbon group having 1 to 50 carbon atoms containing a substituent such as a hydroxyl group or an alkoxyl group. However, the hydrocarbon group may include not only a linear structure but also a branched structure, an alicyclic structure such as cyclohexyl, and an aromatic ring structure such as phenyl or naphthyl. The ends of R 2 and R 3 or R 2 and R 4 may be bonded to each other.
 同一分子内にリン原子とフェノール構造を有するリン化合物としては、例えば、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニルなどが挙げられる。 Examples of phosphorus compounds having a phosphorus atom and a phenol structure in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis (p-hydroxyphenyl)phosphinic acid, methyl bis(p-hydroxyphenyl)phosphinate, phenyl bis(p-hydroxyphenyl)phosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, p-hydroxyphenyl Examples include phenyl phosphinate.
 同一分子内にリン原子とフェノール構造を有するリン化合物としては、上記の例示の他に同一分子内にリン原子とヒンダードフェノール構造(3級炭素を有するアルキル基(好ましくはt-ブチル基、テキシル基などの3級炭素をベンジル位に有するアルキル基;ネオペンチル基など)が水酸基の1つ又は2つのオルト位に結合しているフェノール構造など)を有するリン化合物が挙げられ、同一分子内にリン原子と下記(化式A)の構造を有するリン化合物であることが好ましく、中でも、下記(化式B)に示す化合物がより好ましく、下記(化式B)においてX1及びX2が炭素数1~4のアルキル基である3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルであることがより好ましい。なお、ケミカルリサイクルPET樹脂の製造に用いられるリン化合物としては、下記(化式B)に示す化合物(好ましくは、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル)であることが好ましいが、それ以外に下記(化式B)に示す化合物(好ましくは、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル)の変性体も含まれていてもよい。変性体の詳細については後述する。 In addition to the above-mentioned examples, examples of phosphorus compounds having a phosphorus atom and a phenol structure in the same molecule include a phosphorus atom and a hindered phenol structure (alkyl group having a tertiary carbon (preferably t-butyl group, thexyl group)). Examples include phosphorus compounds having a phenol structure in which an alkyl group having a tertiary carbon at the benzylic position; such as a neopentyl group) is bonded to one or two ortho positions of a hydroxyl group. It is preferable that it is a phosphorus compound having an atom and the structure shown below (formula A), and among them, the compound shown below (formula B) is more preferable, and in the following (formula B), X 1 and X 2 have the number of carbon atoms. More preferred is dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, which is an alkyl group having 1 to 4 atoms. The phosphorus compound used in the production of chemically recycled PET resin is a compound shown below (formula B) (preferably dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate). is preferred, but a modified version of the compound shown below (formula B) (preferably dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate) may also be included. Details of the modified product will be described later.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
((化式A)において、*は結合手を表す。) (In (formula A), * represents a bond.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
((化式B)において、X1、X2は、それぞれ、水素原子又は炭素数1~4のアルキル基を表す。) (In (formula B), X 1 and X 2 each represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
 本発明のケミカルリサイクルPETは、同一分子内にリン原子とヒンダードフェノール構造とを有するリン化合物を重合触媒として製造されたポリエステル樹脂であることが好ましい。 The chemically recycled PET of the present invention is preferably a polyester resin produced using a phosphorus compound having a phosphorus atom and a hindered phenol structure in the same molecule as a polymerization catalyst.
 上記(化式B)において、X1、X2はいずれも炭素数1~4のアルキル基であることが好ましく、炭素数1~2のアルキル基であることがより好ましい。特に、炭素数2のエチルエステル体は、Irganox1222(ビーエーエスエフ社製)として市販されており容易に入手できるので好ましい。 In the above (formula B), each of X 1 and X 2 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms. In particular, an ethyl ester having 2 carbon atoms is preferred because it is commercially available as Irganox 1222 (manufactured by BASF) and is easily available.
 リン化合物は溶媒中で熱処理して用いることが好ましい。なお、熱処理の詳細については後述する。リン化合物として、上記(化式B)における3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルを用いた場合、上記熱処理において、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの一部が構造変化する。例えば、t-ブチル基の脱離、アルキルエステル基(好ましくは、エチルエステル基)の加水分解およびヒドロキシエチルエステル交換構造(エチレングリコールとのエステル交換構造)などにより変化する。従って、本発明においては、リン化合物としては、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル以外にも構造変化したリン化合物も含まれていてもよい。なお、t-ブチル基の脱離は、重合工程の高温下で顕著に起こる。 It is preferable to use the phosphorus compound after heat treatment in a solvent. Note that the details of the heat treatment will be described later. When dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate in the above (formula B) is used as the phosphorus compound, in the heat treatment, 3,5-di-tert-butyl-4-hydroxy A part of the dialkyl benzylphosphonate undergoes a structural change. For example, it changes due to elimination of a t-butyl group, hydrolysis of an alkyl ester group (preferably an ethyl ester group), and a hydroxyethyl transesterification structure (transesterification structure with ethylene glycol). Therefore, in the present invention, the phosphorus compound may include structurally changed phosphorus compounds in addition to dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate. Note that the elimination of the t-butyl group occurs significantly at high temperatures during the polymerization process.
 前記熱処理における溶媒としては、水およびアルキレングリコールからなる群から選ばれる少なくとも1種であれば限定されないが、アルキレングリコールとしては、リン化合物を溶解する溶媒を用いることが好ましく、エチレングリコール等の目的とするポリエステル樹脂の構成成分であるグリコールを用いることがより好ましい。溶媒中での熱処理は、リン化合物を溶解してから行うのが好ましいが、完全に溶解していなくてもよい。
 熱処理の温度は特に限定されないが、20~250℃であることが好ましく、より好ましくは150~200℃である。
 熱処理の時間は特に限定されないが、50~300分が好ましく、100~200分がより好ましい。
 上記リン化合物溶液の濃度は、30~70g/Lであることが好ましく、40~60g/Lであることがより好ましい。
The solvent in the heat treatment is not limited as long as it is at least one selected from the group consisting of water and alkylene glycol, but as the alkylene glycol, it is preferable to use a solvent that dissolves a phosphorus compound, and it is preferable to use a solvent that dissolves a phosphorus compound, such as ethylene glycol. It is more preferable to use glycol, which is a constituent component of the polyester resin. The heat treatment in a solvent is preferably performed after the phosphorus compound has been dissolved, but it is not necessary to completely dissolve the phosphorus compound.
The temperature of the heat treatment is not particularly limited, but is preferably 20 to 250°C, more preferably 150 to 200°C.
The heat treatment time is not particularly limited, but is preferably 50 to 300 minutes, more preferably 100 to 200 minutes.
The concentration of the phosphorus compound solution is preferably 30 to 70 g/L, more preferably 40 to 60 g/L.
 以下では、リン化合物として3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルを用いた場合に3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルの一部が構造変化した9つのリン化合物を示している。グリコール溶液中での構造変化した各リン化合物の成分量はP-NMR測定方法により定量できる。 In the following, when diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate is used as a phosphorus compound, part of diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate has a structure Nine phosphorus compounds that have changed are shown. The amount of each structurally changed phosphorus compound in the glycol solution can be determined by P-NMR measurement.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 従って、本発明におけるリン化合物としては、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル以外にも9つの上記化学式で示されるような3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの変性体も含まれていてもよい。 Therefore, as the phosphorus compound in the present invention, in addition to dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, 3,5-di-tert-butyl-4 as shown by the nine chemical formulas above may be used. - Modified dialkyl hydroxybenzylphosphonates may also be included.
 リン化合物として上記Irganox1222を用いた場合、ケミカルリサイクルPET樹脂中に下記表1に示した9種のリン化合物残基の少なくとも1種が含まれることが好ましい。P-NMR測定方法により、表1に示した9種のリン化合物残基の中の少なくとも1種が検出された場合、ケミカルリサイクルPET樹脂は、同一分子内にリン原子とヒンダードフェノール構造とを有するリン化合物を重合触媒として製造されたケミカルリサイクルPET樹脂であるといえる。ヒンダードフェノール構造を有するリン化合物を用いることにより、触媒のコストを抑えつつ、十分な重合活性を発揮することができる。 When the above-mentioned Irganox 1222 is used as the phosphorus compound, it is preferable that at least one of the nine types of phosphorus compound residues shown in Table 1 below is contained in the chemically recycled PET resin. If at least one of the nine types of phosphorus compound residues shown in Table 1 is detected by the P-NMR measurement method, the chemically recycled PET resin has a phosphorus atom and a hindered phenol structure in the same molecule. It can be said that this is a chemically recycled PET resin manufactured using a phosphorus compound having this as a polymerization catalyst. By using a phosphorus compound having a hindered phenol structure, sufficient polymerization activity can be exhibited while reducing the cost of the catalyst.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明においては、上記化式1、4、及び7の少なくとも1種が含まれていることが好ましい。 In the present invention, it is preferable that at least one of the above formulas 1, 4, and 7 is included.
 ケミカルリサイクルPET中におけるリン原子の含有率は5~1000質量ppmであることが好ましく、10~500質量ppmであることがより好ましく、15~200質量ppmであることがさらに好ましく、15~100質量ppmであることが特に好ましく、15~80質量ppmであることが最も好ましい。リン原子の量を5質量ppm以上に調整することで、重合活性の向上効果やアルミニウム系異物(特に、フィルターで除去することが難しい異物)量の抑制効果をより高めることができる。一方、1000質量ppm以下に調整することでも重合活性を高めることができ、またリン化合物の添加量の低減により触媒コストを抑えることができる。 The content of phosphorus atoms in chemically recycled PET is preferably 5 to 1000 mass ppm, more preferably 10 to 500 mass ppm, even more preferably 15 to 200 mass ppm, and 15 to 100 mass ppm. Particularly preferably ppm, most preferably 15 to 80 ppm by weight. By adjusting the amount of phosphorus atoms to 5 mass ppm or more, the effect of improving polymerization activity and the effect of suppressing the amount of aluminum-based foreign substances (particularly foreign substances that are difficult to remove with a filter) can be further enhanced. On the other hand, the polymerization activity can be increased by adjusting the amount to 1000 mass ppm or less, and the catalyst cost can be suppressed by reducing the amount of the phosphorus compound added.
 コストをより重視する場合、ケミカルリサイクルPET中におけるリン原子の含有率は13~31質量ppmが好ましく、15~29質量ppmがより好ましく、16~28質量ppmがさらに好ましい。リン原子の量を13質量ppm以上に調整することで、重合活性の向上効果やアルミニウム系異物(特に、フィルターで除去することが難しい異物)量の抑制効果をより高めることができる。一方、31質量ppm以下に調整することで、重合活性をよりさらに高めることができ、またリン化合物の添加量の更なる低減により触媒コストをより抑えることができる。 If cost is more important, the content of phosphorus atoms in chemically recycled PET is preferably 13 to 31 mass ppm, more preferably 15 to 29 mass ppm, and even more preferably 16 to 28 mass ppm. By adjusting the amount of phosphorus atoms to 13 mass ppm or more, the effect of improving polymerization activity and the effect of suppressing the amount of aluminum-based foreign matter (particularly foreign matter that is difficult to remove with a filter) can be further enhanced. On the other hand, by adjusting the content to 31 mass ppm or less, the polymerization activity can be further increased, and the catalyst cost can be further suppressed by further reducing the amount of the phosphorus compound added.
 ケミカルリサイクルPET中での、アルミニウム原子に対するリン原子のモル比が1.00~5.00であることが好ましく、1.10~4.00であることがより好ましく、1.20~3.50であることがさらに好ましく、1.25~3.00であることが特に好ましい。上述のように、ケミカルリサイクルPET中のアルミニウム原子およびリン原子はそれぞれ、重合触媒として使用するアルミニウム化合物およびリン化合物に由来する。これらアルミニウム化合物とリン化合物を特定の比率で併用することで、重合系中で触媒活性を有する錯体が機能的に形成され、十分な重合活性を発揮することができる。また、アルミニウム化合物とリン化合物とからなる重合触媒を用いて製造された樹脂はアンチモン触媒などの触媒を用いて製造されてなるケミカルリサイクルPET樹脂と比べて触媒のコストが高く(製造コストが高く)なるが、アルミニウム化合物とリン化合物を特定の比率で併用することにより、触媒のコストを抑えつつ、十分な重合活性を発揮することができる。アルミニウム原子に対するリン原子の残存モル比を1.00以上に調整することで、熱安定性および熱酸化安定性を高めることができ、またアルミニウム系異物(特に、フィルターで除去することが難しい異物)量をより抑制することができる。一方、アルミニウム原子に対するリン原子の残存モル比を5.00以下に調整することで、リン化合物の添加量の低減により触媒コストを抑えることができる。
 コストをより重視する場合、アルミニウム原子に対するリン原子の残存モル比が1.32~1.80が好ましく、1.38~1.68がより好ましい。
The molar ratio of phosphorus atoms to aluminum atoms in chemically recycled PET is preferably from 1.00 to 5.00, more preferably from 1.10 to 4.00, and more preferably from 1.20 to 3.50. It is more preferably 1.25 to 3.00, particularly preferably 1.25 to 3.00. As mentioned above, the aluminum and phosphorus atoms in chemically recycled PET are derived from the aluminum and phosphorus compounds used as polymerization catalysts, respectively. By using these aluminum compounds and phosphorus compounds together in a specific ratio, a complex having catalytic activity is functionally formed in the polymerization system, and sufficient polymerization activity can be exhibited. In addition, resins manufactured using polymerization catalysts consisting of aluminum compounds and phosphorus compounds have higher catalyst costs (higher manufacturing costs) than chemically recycled PET resins manufactured using catalysts such as antimony catalysts. However, by using an aluminum compound and a phosphorus compound together in a specific ratio, it is possible to exhibit sufficient polymerization activity while suppressing the cost of the catalyst. By adjusting the residual molar ratio of phosphorus atoms to aluminum atoms to 1.00 or more, thermal stability and thermal oxidation stability can be improved, and aluminum-based foreign substances (especially foreign substances that are difficult to remove with a filter) can be improved. The amount can be further suppressed. On the other hand, by adjusting the remaining molar ratio of phosphorus atoms to aluminum atoms to 5.00 or less, the catalyst cost can be suppressed by reducing the amount of the phosphorus compound added.
When cost is more important, the residual molar ratio of phosphorus atoms to aluminum atoms is preferably 1.32 to 1.80, more preferably 1.38 to 1.68.
 上記のように、アルミニウム原子とリン原子の含有率やアルミニウム原子に対するリン原子のモル比を調整することにより、フィルターで除去することが難しい異物量をより抑制することができる。異物は結晶化剤として機能し、ケミカルリサイクルPET樹脂の結晶化速度を速め得る。従って、ケミカルリサイクルPET樹脂中の異物量が多い場合、加工時に樹脂が容易に結晶化し、樹脂の白化による透明性低下などの品位悪化につながるおそれもある。なお透明性向上のために、ポリエチレンテレフタレート樹脂にイソフタル酸などの共重合成分を加え、結晶化速度を低減する手法などもあるが、当該手法は樹脂物性の低下を招く恐れがある。
 一方本発明のケミカルリサイクルPET樹脂は、異物量が抑制されており、ケミカルリサイクルPET樹脂の結晶化速度が抑制されているため、イソフタル酸などの共重合成分を含有しない、或いはその含有量が少なくてもよい点においても好ましい。
As described above, by adjusting the content of aluminum atoms and phosphorus atoms and the molar ratio of phosphorus atoms to aluminum atoms, it is possible to further suppress the amount of foreign substances that are difficult to remove with a filter. Foreign matter can function as a crystallization agent and speed up the crystallization rate of chemically recycled PET resin. Therefore, if the amount of foreign matter in the chemically recycled PET resin is large, the resin will easily crystallize during processing, which may lead to deterioration of quality such as decreased transparency due to whitening of the resin. In order to improve transparency, there is a method of adding a copolymer component such as isophthalic acid to polyethylene terephthalate resin to reduce the crystallization rate, but this method may lead to a decrease in the physical properties of the resin.
On the other hand, the chemically recycled PET resin of the present invention has a suppressed amount of foreign matter and a suppressed crystallization rate of the chemically recycled PET resin, so it does not contain copolymerized components such as isophthalic acid or has a small content. It is also preferable in that it can be used.
(アルミニウム化合物およびリン化合物以外の触媒)
 また、本発明では、上述のアルミニウム化合物およびリン化合物に加えて、アンチモン化合物、ゲルマニウム化合物、チタン化合物、コバルト化合物など他の重合触媒を、本発明のケミカルリサイクルPET樹脂の特性、加工性、色調等製品に問題を生じない範囲内において併用してもよい。
(Catalysts other than aluminum compounds and phosphorus compounds)
Furthermore, in the present invention, in addition to the above-mentioned aluminum compounds and phosphorus compounds, other polymerization catalysts such as antimony compounds, germanium compounds, titanium compounds, and cobalt compounds are used to improve the properties, processability, color tone, etc. of the chemically recycled PET resin of the present invention. They may be used together as long as they do not cause any problems to the product.
 本発明のケミカルリサイクルPET樹脂中におけるアンチモン原子の含有率は100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましく、20質量ppm以下であることがさらに好ましく、本発明のケミカルリサイクルPET樹脂中におけるゲルマニウム原子の含有率は40質量ppm以下であることが好ましく、20質量ppm以下であることがより好ましく、本発明のケミカルリサイクルPET樹脂中におけるチタン原子の含有率は10質量ppm以下であることが好ましく、5質量ppm以下であることがより好ましく、本発明のケミカルリサイクルPET樹脂中におけるコバルト原子の含有率は40質量ppm以下であることが好ましく、20質量ppm以下であることがより好ましい。 The content of antimony atoms in the chemically recycled PET resin of the present invention is preferably 100 mass ppm or less, more preferably 50 mass ppm or less, even more preferably 20 mass ppm or less. The content of germanium atoms in the chemically recycled PET resin is preferably 40 mass ppm or less, more preferably 20 mass ppm or less, and the content of titanium atoms in the chemically recycled PET resin of the present invention is 10 mass ppm or less. ppm or less, more preferably 5 mass ppm or less, and the content of cobalt atoms in the chemically recycled PET resin of the present invention is preferably 40 mass ppm or less, and 20 mass ppm or less. It is more preferable.
 ただし、本発明の目的から、上記他の重合触媒は、極力使用しないことが好ましい。 However, for the purpose of the present invention, it is preferable to use as few of the other polymerization catalysts as possible.
 重合触媒としてアルミニウム化合物及びリン化合物を用いることにより、他の重合触媒(例えば、チタン化合物やアンチモン化合物等)を用いた場合と比べると異物量は低減しているが、さらに異物量を低減するため、重合触媒は、第1工程の終了から、第2工程の開始前までにアルミニウム化合物及びリン化合物を添加するのが好ましい。上述の「第2工程の開始前」とは、減圧して重縮合開始する時点を包含する。なお、上述の通り、アルミニウム化合物及びリン化合物の添加に際しては、アルミニウム化合物溶液及びリン化合物溶液として添加することが好ましい。 By using aluminum compounds and phosphorus compounds as polymerization catalysts, the amount of foreign matter is reduced compared to when other polymerization catalysts (e.g., titanium compounds and antimony compounds) are used, but in order to further reduce the amount of foreign matter, It is preferable to add an aluminum compound and a phosphorus compound to the polymerization catalyst from the end of the first step to before the start of the second step. The above-mentioned "before the start of the second step" includes the time when the pressure is reduced and polycondensation is started. In addition, as mentioned above, when adding an aluminum compound and a phosphorus compound, it is preferable to add them as an aluminum compound solution and a phosphorus compound solution.
 また、ケミカルリサイクルBHETは、ロットごとに遊離エチレングリコール成分の量にバラツキが生じるため、ケミカルリサイクルBHET中の遊離エチレングリコール量を一定量以下にするだけではなく、ケミカルリサイクルBHETを用いてケミカルリサイクルPET樹脂を製造する際の、第1工程終了時に反応液中に含まれる遊離エチレングリコール成分量をできるだけ低減させることが好ましい。好ましくは第1工程終了時に反応液中に含まれる全多価アルコール成分の合計量100モル%に対する遊離エチレングリコール成分量が1.5モル%以下である。より好ましくは、1.0モル%以下であり、さらに好ましくは0.7モル%以下であり、特に好ましくは0.5モル%以下である。 In addition, since the amount of free ethylene glycol component in chemically recycled BHET varies from lot to lot, it is necessary to not only reduce the amount of free ethylene glycol in chemically recycled BHET to a certain amount or less, but also to produce chemically recycled PET using chemically recycled BHET. It is preferable to reduce as much as possible the amount of free ethylene glycol contained in the reaction solution at the end of the first step in producing the resin. Preferably, the amount of free ethylene glycol component is 1.5 mol% or less based on 100 mol% of the total amount of all polyhydric alcohol components contained in the reaction solution at the end of the first step. More preferably, it is 1.0 mol% or less, still more preferably 0.7 mol% or less, particularly preferably 0.5 mol% or less.
 第1工程終了時に反応液中に含まれる遊離エチレングリコール成分量をできるだけ低減させるためには、例えば、第1工程を短時間で行うことが好ましい。 In order to reduce as much as possible the amount of free ethylene glycol component contained in the reaction solution at the end of the first step, it is preferable to perform the first step in a short time, for example.
 反応温度は、80~285℃であることが好ましく、より好ましくは90~282℃、さらに好ましくは100~280℃であり、特に好ましくは110~278℃である。圧力は0.05~0.60MPaであることが好ましく、より好ましくは、0.055~0.55MPa、さらに好ましくは0.060~0.50MPa、特に好ましくは0.065~0.45MPaである。反応時間は、200分以下であることが好ましく、より好ましくは195分以下、さらに好ましくは190分以下、特に好ましくは185分以下である。ケミカルリサイクルBHETを含む原料を使用することにより、エステル化反応を経ることなく或いは短時間で行うことが可能であり、この場合、遊離エチレングリコールの生成を抑制できる。
 なお、ケミカルリサイクルBHETのみを原料として使用する場合、反応容器にケミカルリサイクルBHETを加えて溶融した時点で、第1工程を終了する場合がある。
The reaction temperature is preferably 80 to 285°C, more preferably 90 to 282°C, even more preferably 100 to 280°C, particularly preferably 110 to 278°C. The pressure is preferably 0.05 to 0.60 MPa, more preferably 0.055 to 0.55 MPa, even more preferably 0.060 to 0.50 MPa, particularly preferably 0.065 to 0.45 MPa. . The reaction time is preferably 200 minutes or less, more preferably 195 minutes or less, even more preferably 190 minutes or less, particularly preferably 185 minutes or less. By using a raw material containing chemically recycled BHET, it is possible to carry out the esterification reaction without going through the esterification reaction or in a short time, and in this case, the generation of free ethylene glycol can be suppressed.
Note that when only chemically recycled BHET is used as a raw material, the first step may be completed at the time when chemically recycled BHET is added to the reaction vessel and melted.
 また、第1工程時(例えば、エステル化反応時)にアルカリ剤を添加することも好ましい。この場合、第1工程を短時間で行うことができる。アルカリ剤としては、トリエチルアミン、トリ-n-ブチルアミン、ベンジルジメチルアミンなどの第3級アミン、水酸化テトラエチルアンモニウム、水酸化テトラ-n-ブチルアンモニウム、水酸化トリメチルベンジルアンモニウムなどの水酸化第4級アンモニウムおよび炭酸リチウム、炭酸ナトリウム、炭酸カリウム、酢酸ナトリウムなどが挙げられる。 It is also preferable to add an alkali agent during the first step (for example, during the esterification reaction). In this case, the first step can be performed in a short time. Examples of alkaline agents include tertiary amines such as triethylamine, tri-n-butylamine, and benzyldimethylamine, and quaternary ammonium hydroxides such as tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, and trimethylbenzylammonium hydroxide. and lithium carbonate, sodium carbonate, potassium carbonate, sodium acetate, and the like.
 アルカリ剤の添加量は、ケミカルリサイクルBHET中の全多価カルボン酸成分100モル%に対して下限は好ましくは0.01モル%であり、より好ましくは0.05モル%であり、さらに好ましくは0.1モル%である。アルカリ剤量の上限は好ましくは2モル%であり、より好ましくは1.5モル%であり、さらに好ましくは1モル%である。 The lower limit of the amount of the alkali agent added is preferably 0.01 mol%, more preferably 0.05 mol%, and even more preferably It is 0.1 mol%. The upper limit of the amount of alkali agent is preferably 2 mol%, more preferably 1.5 mol%, and even more preferably 1 mol%.
 本発明のケミカルリサイクルPET樹脂の製造においては、第1工程(例えば、エステル化反応)終了後の反応中間体オリゴマーの物性は、酸価が80~2000eq/ton、水酸基価が2800~8000eq/tonであることが好ましい。これにより、重縮合反応の反応速度を高めることができる。反応中間体オリゴマーの物性は、酸価が90~1900eq/ton、水酸基価が3000~7800eq/tonであることがより好ましい。
 本発明においてオリゴマーとは、第1工程(例えば、エステル化反応)終了後、重縮合反応を行う前の反応中間体である、未反応の原料が存在する場合は、それらも含めた反応中間体を示す。
In the production of the chemically recycled PET resin of the present invention, the physical properties of the reaction intermediate oligomer after the first step (e.g., esterification reaction) are such that the acid value is 80 to 2000 eq/ton and the hydroxyl value is 2800 to 8000 eq/ton. It is preferable that Thereby, the reaction rate of the polycondensation reaction can be increased. As for the physical properties of the reaction intermediate oligomer, it is more preferable that the acid value is 90 to 1900 eq/ton and the hydroxyl value is 3000 to 7800 eq/ton.
In the present invention, an oligomer is a reaction intermediate after the first step (e.g., esterification reaction) and before the polycondensation reaction, including any unreacted raw materials, if any. shows.
 ケミカルリサイクルPET樹脂中の異物量を低減させるためには、例えば、第2工程を短時間で行うことも好ましい。 In order to reduce the amount of foreign matter in the chemically recycled PET resin, it is also preferable to perform the second step in a short time, for example.
 そのためには、第1工程をテレフタル酸の存在下で行うことが好ましい。すなわち、ケミカルリサイクルBHETにテレフタル酸を加え、第1工程をテレフタル酸の存在下で行うことが好ましい。この場合、テレフタル酸の酸基により反応が活性化され、第2工程を短時間で行うことが可能になり、重縮合反応における熱履歴を小さくすることが可能である。酸成分を加える場合には、酸成分のエステル化反応を短時間で行うことが好ましい。
 具体的には、例えば、第1工程は、反応によって生成した水またはアルコ-ルを精留塔で系外に除去しながら行う。第1工程の温度は、好ましくは80~285℃、より好ましくは90~282℃、さらに好ましくは100~280℃、特に好ましくは110~278℃である。圧力は0.05~0.60MPaであることが好ましく、より好ましくは、0.055~0.55MPa、さらに好ましくは0.060~0.50MPa、特に好ましくは0.065~0.45MPaで行われる。反応時間は、200分以下が好ましく、より好ましくは195分以内、さらに好ましくは190分以内、特に好ましくは185分以内、最も好ましくは100分以内である。
 添加するテレフタル酸(以下、添加テレフタル酸という場合がある)の量は、ケミカルリサイクルBHET中の全多価カルボン酸成分及び添加テレフタル酸の合計100モル%に対し、40モル%以下であることが好ましい。より好ましくは30モル%以下、さらに好ましくは20モル%以下である。
For this purpose, it is preferable to carry out the first step in the presence of terephthalic acid. That is, it is preferable to add terephthalic acid to the chemical recycling BHET and perform the first step in the presence of terephthalic acid. In this case, the reaction is activated by the acid group of terephthalic acid, making it possible to perform the second step in a short time, and making it possible to reduce the thermal history in the polycondensation reaction. When adding an acid component, it is preferable to perform the esterification reaction of the acid component in a short time.
Specifically, for example, the first step is carried out while water or alcohol produced by the reaction is removed from the system in a rectification column. The temperature in the first step is preferably 80 to 285°C, more preferably 90 to 282°C, even more preferably 100 to 280°C, particularly preferably 110 to 278°C. The pressure is preferably 0.05 to 0.60 MPa, more preferably 0.055 to 0.55 MPa, even more preferably 0.060 to 0.50 MPa, particularly preferably 0.065 to 0.45 MPa. be exposed. The reaction time is preferably 200 minutes or less, more preferably 195 minutes or less, still more preferably 190 minutes or less, particularly preferably 185 minutes or less, and most preferably 100 minutes or less.
The amount of terephthalic acid to be added (hereinafter sometimes referred to as added terephthalic acid) should be 40 mol% or less based on the total of 100 mol% of all polyhydric carboxylic acid components and added terephthalic acid in the chemical recycling BHET. preferable. More preferably it is 30 mol% or less, and still more preferably 20 mol% or less.
 第2工程を短時間で行うには、重縮合を短時間で重合度が上がるよう、温度と減圧度を調整しながら行うのが好ましい。重縮合の初期には、温度が好ましくは260~270℃、圧力が好ましくは0.01~0.001MPaであり、徐々に温度を上げながら圧力を下げ、最終的には温度が好ましくは270~285℃、圧力が好ましくは0.0002~0.000005MPa又は0.00002~0.000005MPaで行われる。重縮合反応の時間は、上記温度に達してから終了までの間で、200分以内が好ましく、より好ましくは180分以内、さらに好ましくは160分以内、特に好ましくは140分以内、最も好ましくは120分以内である。また、第1工程終了後の反応物を仕込んでから初期の温度までの昇温も速やかに行うことが好ましい。昇温時間を短くするためには、内容物に対して表面積を上げるなど、反応容器の大きさや形状を適正化するとともに、第1工程終了後の反応物の投入量を適正化することが好ましい。また、十分な攪拌を行うことが好ましい。
 添加する重縮合触媒の量を高い重合速度が得られるよう適正化すること、触媒表面を更新させるため、十分な攪拌を行うことも重要である。触媒量は多すぎると、異物となりフィルムの透明性が下がったり、欠点が多くなったりする場合がある。フィルムの用途に応じて、これらの問題が許容される範囲内で触媒量を多くすることが好ましい。重縮合反応の時間は、適正な触媒量や攪拌の面から、好ましくは30分以上であり、より好ましくは45分以上である。
In order to carry out the second step in a short time, it is preferable to carry out the polycondensation while adjusting the temperature and degree of vacuum so that the degree of polymerization increases in a short time. At the initial stage of polycondensation, the temperature is preferably 260 to 270°C and the pressure is preferably 0.01 to 0.001 MPa, and the pressure is lowered while gradually increasing the temperature, and finally the temperature is preferably 270 to 270°C. It is carried out at 285° C. and a pressure of preferably 0.0002 to 0.000005 MPa or 0.00002 to 0.000005 MPa. The time for the polycondensation reaction is preferably within 200 minutes, more preferably within 180 minutes, even more preferably within 160 minutes, particularly preferably within 140 minutes, most preferably 120 minutes or less, from when the above temperature is reached until the end of the polycondensation reaction. Within minutes. Further, it is preferable to quickly raise the temperature to the initial temperature after charging the reactants after the first step. In order to shorten the heating time, it is preferable to optimize the size and shape of the reaction vessel, such as by increasing the surface area relative to the contents, and to optimize the amount of reactants added after the first step. . Further, it is preferable to perform sufficient stirring.
It is also important to optimize the amount of polycondensation catalyst added so as to obtain a high polymerization rate, and to perform sufficient stirring to renew the catalyst surface. If the amount of the catalyst is too large, foreign matter may be formed and the transparency of the film may be reduced or defects may increase. Depending on the use of the film, it is preferable to increase the amount of catalyst within a range that allows these problems to be avoided. The time for the polycondensation reaction is preferably 30 minutes or more, more preferably 45 minutes or more, from the viewpoint of appropriate catalyst amount and stirring.
 ケミカルリサイクルPETの原料のうち、ケミカルリサイクルBHETは好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、特に好ましくは80質量%以上、最も好ましくは90質量%以上であり、100質量%であることも好ましい。 Of the raw materials for chemically recycled PET, chemically recycled BHET is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably 90% by mass or more. It is also preferable that the amount is 100% by mass.
 このようにして得られたケミカルリサイクルPET樹脂中のパーティクルカウンターによる粒子サイズが0.50~0.69μmの異物量が2000個/ml以下であり、好ましくは1500個/ml以下であり、より好ましくは800個/ml以下であり、特に好ましくは300個/ml以下であり、最も好ましくは150個/ml以下である。
 異物量を上記範囲に調整することで、透明性の低下や成形品の品位悪化を抑制することができる。
The amount of foreign substances with a particle size of 0.50 to 0.69 μm measured by a particle counter in the chemically recycled PET resin thus obtained is 2000 particles/ml or less, preferably 1500 particles/ml or less, and more preferably is 800 pieces/ml or less, particularly preferably 300 pieces/ml or less, and most preferably 150 pieces/ml or less.
By adjusting the amount of foreign matter within the above range, it is possible to suppress a decrease in transparency and a deterioration in the quality of the molded product.
 ケミカルリサイクルPET樹脂の降温結晶化温度の下限は、例えば175℃以上であり、好ましくは178℃以上であり、より好ましくは180℃以上であり、特に好ましくは183℃以上であり、最も好ましくは185℃以上である。ケミカルリサイクルPET樹脂の降温結晶化温度の上限は例えば202℃以下であり、好ましくは200℃以下、より好ましくは198℃以下であり、特に好ましくは196℃以下であり、最も好ましくは194℃以下である。すなわち、ケミカルリサイクルPET樹脂の降温結晶化温度は、例えば175~202℃であり、好ましくは178~200℃、より好ましくは180~198℃であり、さらに好ましくは183~196℃、特に好ましくは185~194℃である。 The lower limit of the cooling crystallization temperature of the chemically recycled PET resin is, for example, 175°C or higher, preferably 178°C or higher, more preferably 180°C or higher, particularly preferably 183°C or higher, and most preferably 185°C or higher. ℃ or higher. The upper limit of the cooling crystallization temperature of chemically recycled PET resin is, for example, 202°C or lower, preferably 200°C or lower, more preferably 198°C or lower, particularly preferably 196°C or lower, and most preferably 194°C or lower. be. That is, the cooling crystallization temperature of the chemically recycled PET resin is, for example, 175 to 202°C, preferably 178 to 200°C, more preferably 180 to 198°C, still more preferably 183 to 196°C, particularly preferably 185°C. ~194°C.
 ケミカルリサイクルPET樹脂中の全多価カルボン酸成分100モル%に対するテレフタル酸成分量の下限は好ましくは98モル%であり、次に好ましくは98.3モル%であり、より好ましくは98.5モル%であり、さらに好ましくは98.8モル%であり、特に好ましくは99モル%であり、最も好ましくは99.2モル%である。テレフタル酸成分量の上限は好ましくは99.98モル%であり、より好ましくは99.95モル%であり、99.9モル%、99.85モル%、又は99.8モル%であってもよい。なお、本明細書において、下限が98モル%とは、98モル%以上であってもよく、98モル%超えであってもよいことを指す。また、本明細書において上限が99.98モル%とは、99.98モル%以下であってもよく、99.98モル%未満であってもよいことを指す。他の成分や物性における上限・下限についても同様である。
 すなわち、ケミカルリサイクルPET樹脂中の全多価カルボン酸成分100モル%に対するテレフタル酸成分量は、98~99.98モル%であることが好ましく、より好ましくは98.3~99.95モル%であり、98.5~99.9モル%、98.8~99.85モル%、99~99.8モル%、又は99.2~99.8モル%であってもよい。
The lower limit of the amount of terephthalic acid component based on 100 mol% of the total polyhydric carboxylic acid components in the chemically recycled PET resin is preferably 98 mol%, next preferably 98.3 mol%, and more preferably 98.5 mol%. %, more preferably 98.8 mol%, particularly preferably 99 mol%, most preferably 99.2 mol%. The upper limit of the amount of terephthalic acid component is preferably 99.98 mol%, more preferably 99.95 mol%, even if it is 99.9 mol%, 99.85 mol%, or 99.8 mol%. good. In this specification, the lower limit of 98 mol% means that it may be 98 mol% or more, or may be more than 98 mol%. Further, in this specification, the upper limit of 99.98 mol% means that it may be 99.98 mol% or less, or may be less than 99.98 mol%. The same applies to the upper and lower limits of other components and physical properties.
That is, the amount of terephthalic acid component based on 100 mol% of the total polycarboxylic acid components in the chemically recycled PET resin is preferably 98 to 99.98 mol%, more preferably 98.3 to 99.95 mol%. It may be 98.5 to 99.9 mol%, 98.8 to 99.85 mol%, 99 to 99.8 mol%, or 99.2 to 99.8 mol%.
 ケミカルリサイクルPET樹脂中の全多価カルボン酸成分100モル%に対するイソフタル酸成分量の下限は好ましくは0.02モル%、より好ましくは0.05モル%であり、0.1モル%、0.15モル%、又は0.2モル%であってもよい。この場合、結晶化速度を最適化することが可能で、透明性の高い樹脂が得られる。イソフタル酸成分量の上限は好ましくは2モル%であり、次に好ましくは1.7モル%であり、より好ましくは1.5モル%であり、さらに好ましくは1.2モル%であり、特に好ましくは1モル%であり、最も好ましくは0.8モル%であり、0.15モル%であってもよい。なお、上限が2モル%とは、2モル%以下であってもよく、2モル%未満であってよいことを指す。
 すなわち、ケミカルリサイクルPET樹脂中の全多価カルボン酸成分100モル%に対するイソフタル酸成分量は、0.02~2モル%であることが好ましく、より好ましくは0.05~1.7モル%であり、0.1~1.5モル%、0.15~1.2モル%、0.2~1モル%、又は0.02~0.15モル%であってもよい。
The lower limit of the amount of isophthalic acid component based on 100 mol% of the total polycarboxylic acid components in the chemically recycled PET resin is preferably 0.02 mol%, more preferably 0.05 mol%, 0.1 mol%, 0. It may be 15 mol% or 0.2 mol%. In this case, the crystallization rate can be optimized and a highly transparent resin can be obtained. The upper limit of the amount of isophthalic acid component is preferably 2 mol%, next preferably 1.7 mol%, more preferably 1.5 mol%, still more preferably 1.2 mol%, especially Preferably it is 1 mol%, most preferably 0.8 mol%, and may be 0.15 mol%. Note that the upper limit of 2 mol% means that it may be 2 mol% or less, or may be less than 2 mol%.
That is, the amount of isophthalic acid component is preferably 0.02 to 2 mol%, more preferably 0.05 to 1.7 mol%, based on 100 mol% of the total polycarboxylic acid components in the chemically recycled PET resin. It may be 0.1 to 1.5 mol%, 0.15 to 1.2 mol%, 0.2 to 1 mol%, or 0.02 to 0.15 mol%.
 ケミカルリサイクルPET樹脂中の全多価アルコール成分100モル%に対するエチレングリコール成分量の下限は好ましくは97.5モル%であり、より好ましくは97.7モル%であり、さらに好ましくは97.8モル%であり、特に好ましくは97.9モル%であり、最も好ましくは98モル%である。エチレングリコール成分量の上限は好ましくは99.3モル%であり、より好ましくは99.1モル%であり、さらに好ましくは99モル%であり、特に好ましくは98.9モル%であり、最も好ましくは98.8モル%である。
 すなわち、ケミカルリサイクルPET樹脂中の全多価アルコール成分100モル%に対するエチレングリコール成分量は、97.5~99.3モル%であることが好ましく、より好ましくは97.7~99.1モル%であり、さらに好ましくは97.8~99モル%であり、特に好ましくは97.9~98.9モル%であり、最も好ましくは98~98.8モル%である。
The lower limit of the ethylene glycol component amount relative to 100 mol% of the total polyhydric alcohol components in the chemically recycled PET resin is preferably 97.5 mol%, more preferably 97.7 mol%, and even more preferably 97.8 mol%. %, particularly preferably 97.9 mol%, most preferably 98 mol%. The upper limit of the amount of ethylene glycol component is preferably 99.3 mol%, more preferably 99.1 mol%, even more preferably 99 mol%, particularly preferably 98.9 mol%, and most preferably is 98.8 mol%.
That is, the amount of ethylene glycol component relative to 100 mol% of the total polyhydric alcohol component in the chemically recycled PET resin is preferably 97.5 to 99.3 mol%, more preferably 97.7 to 99.1 mol%. It is more preferably 97.8 to 99 mol%, particularly preferably 97.9 to 98.9 mol%, and most preferably 98 to 98.8 mol%.
 ケミカルリサイクルPET樹脂中の全多価アルコール成分100モル%に対するジエチレングリコール成分量の下限は、下限は好ましくは0.7モル%であり、より好ましくは0.9モル%であり、さらに好ましくは1モル%であり、特に好ましくは1.1モル%であり、最も好ましくは1.2モル%である。前記ジエチレングリコール成分量の上限は好ましくは2.5モル%であり、より好ましくは2.3モル%であり、さらに好ましくは2.1モル%であり、特に好ましくは1.9モル%であり、最も好ましくは1.7モル%である。すなわち、ケミカルリサイクルPET樹脂中の全多価アルコール成分100モル%に対するジエチレングリコール成分量は、0.7~2.5モル%であることが好ましく、より好ましくは0.9~2.3モル%であり、さらに好ましくは1~2.1モル%であり、特に好ましくは1.1~1.9モル%であり、最も好ましくは1.2~1.7モル%である。
 ジエチレングリコール成分量を上記範囲に調整することで、ケミカルリサイクルPET樹脂は高い熱安定性を有することができ、樹脂の着色を抑制することができる。特に、前記ジエチレングリコール成分量が2.5モル%を超えると、ケミカルリサイクルPET樹脂の固有粘度保持率が低くなり、成形品の力学特性が低下する場合がある。
The lower limit of the amount of diethylene glycol component relative to 100 mol% of the total polyhydric alcohol components in the chemically recycled PET resin is preferably 0.7 mol%, more preferably 0.9 mol%, and even more preferably 1 mol. %, particularly preferably 1.1 mol %, most preferably 1.2 mol %. The upper limit of the amount of diethylene glycol component is preferably 2.5 mol%, more preferably 2.3 mol%, even more preferably 2.1 mol%, particularly preferably 1.9 mol%, Most preferably it is 1.7 mol%. That is, the amount of diethylene glycol component relative to 100 mol% of the total polyhydric alcohol component in the chemically recycled PET resin is preferably 0.7 to 2.5 mol%, more preferably 0.9 to 2.3 mol%. The content is more preferably 1 to 2.1 mol%, particularly preferably 1.1 to 1.9 mol%, and most preferably 1.2 to 1.7 mol%.
By adjusting the amount of diethylene glycol component within the above range, the chemically recycled PET resin can have high thermal stability and coloration of the resin can be suppressed. In particular, if the amount of the diethylene glycol component exceeds 2.5 mol%, the intrinsic viscosity retention of the chemically recycled PET resin may become low, and the mechanical properties of the molded article may deteriorate.
 上記のケミカルリサイクルPET樹脂中の全多価カルボン酸成分100モル%に対するテレフタル酸成分の量をTPA(r)モル%、ケミカルリサイクルPET樹脂中の全多価アルコール成分100モル%に対するエチレングリコール成分の量をEG(r)モル%とした場合、
 200-TPA(r)-EG(r)の値の下限は好ましくは0.8モル%であり、より好ましくは0.9モル%であり、さらに好ましくは1モル%であり、特に好ましくは1.2モル%である。200-TPA(r)-EG(r)の値の上限は好ましくは4モル%であり、より好ましくは3.5モル%であり、さらに好ましくは3.2モル%であり、特に好ましくは3.0モル%であり、最も好ましくは2.8モル%である。すなわち、200-TPA(r)-EG(r)の値は、0.8~4モル%であることが好ましく、より好ましくは0.9~3.5モル%であり、さらに好ましくは1~3.2モル%であり、特に好ましくは1.2~3.0モル%であり、最も好ましくは1.2~2.8モル%である。
The amount of terephthalic acid component relative to 100 mol% of the total polyhydric carboxylic acid component in the above chemically recycled PET resin is TPA (r) mol%, and the amount of ethylene glycol component is relative to 100 mol% of the total polyhydric alcohol component in the chemically recycled PET resin. When the amount is expressed as EG(r) mol%,
The lower limit of the value of 200-TPA(r)-EG(r) is preferably 0.8 mol%, more preferably 0.9 mol%, still more preferably 1 mol%, particularly preferably 1 .2 mol%. The upper limit of the value of 200-TPA(r)-EG(r) is preferably 4 mol%, more preferably 3.5 mol%, still more preferably 3.2 mol%, particularly preferably 3 0 mole%, most preferably 2.8 mole%. That is, the value of 200-TPA(r)-EG(r) is preferably 0.8 to 4 mol%, more preferably 0.9 to 3.5 mol%, and still more preferably 1 to 4 mol%. It is 3.2 mol%, particularly preferably 1.2 to 3.0 mol%, and most preferably 1.2 to 2.8 mol%.
 ケミカルリサイクルPET樹脂の組成を上記範囲とすることで、着色が抑制され、高い熱安定性を有することができる。 By setting the composition of the chemically recycled PET resin within the above range, coloring can be suppressed and it can have high thermal stability.
(ケミカルリサイクルPET樹脂の物性)
 ケミカルリサイクルPET樹脂は、固有粘度の下限は好ましくは0.5dL/gであり、より好ましくは0.55dL/gであり、さらに好ましくは0.58dL/gである。固有粘度の上限は好ましくは0.8dL/gであり、より好ましくは0.77dL/gであり、さらに好ましくは0.75dL/gである。すなわち、ケミカルリサイクルPET樹脂の固有粘度は、0.5~0.8dL/gであることが好ましく、より好ましくは0.55~0.77dL/gであり、さらに好ましくは0.58~0.75dL/gである。上記範囲にすることでフィルムとしての強度と製膜安定性を確保することができる。固有粘度の高いケミカルリサイクルPETを得るためには、溶融重合後に固相重合を行うことが好ましい。
(Physical properties of chemically recycled PET resin)
The lower limit of the intrinsic viscosity of the chemically recycled PET resin is preferably 0.5 dL/g, more preferably 0.55 dL/g, and even more preferably 0.58 dL/g. The upper limit of the intrinsic viscosity is preferably 0.8 dL/g, more preferably 0.77 dL/g, even more preferably 0.75 dL/g. That is, the intrinsic viscosity of the chemically recycled PET resin is preferably 0.5 to 0.8 dL/g, more preferably 0.55 to 0.77 dL/g, and still more preferably 0.58 to 0.8 dL/g. It is 75 dL/g. By setting it within the above range, the strength as a film and the stability of film formation can be ensured. In order to obtain chemically recycled PET with high intrinsic viscosity, it is preferable to perform solid phase polymerization after melt polymerization.
 ケミカルリサイクルPET樹脂の酸価の下限は好ましくは0当量/tonであり、より好ましくは1当量/tonであり、さらに好ましくは2当量/tonであり、特に好ましくは3当量/tonであり、最も好ましくは4当量/tonである。酸価を低くするためには、固相重合を行うことが好ましいが、固相重合を行わない場合は、PETの酸価の下限は、好ましくは15当量/tonであり、より好ましくは20当量/tonであり、さらに好ましくは23当量/tonであり、特に好ましくは25当量/tonである。
 上限は好ましくは60当量/tonであり、より好ましくは55当量/tonであり、さらに好ましくは50当量/tonであり、特に好ましくは45当量/tonであり、最も好ましくは40当量/tonである。すなわち、ケミカルリサイクルPET樹脂の酸価は、0~60当量/tonであることが好ましく、より好ましくは1~55当量/tonであり、さらに好ましくは2~50当量/tonであり、特に好ましくは3~45当量/tonであり、最も好ましくは4~40当量/tonであり、15~60当量/ton、20~60当量/ton、23~60当量/ton、又は25~60当量/tonであってもよい。上記範囲とすることでケミカルリサイクルPETの生産性を確保し、得られるフィルムの酸価を適正な範囲にすることができる。酸価を上記範囲とするためには、重縮合中で上記適正温度、減圧状態を維持する、重縮合時に反応容器内を窒素などの不活性ガスで置換して、低酸素状態にするなどの方法を採ることが好ましい。
The lower limit of the acid value of the chemically recycled PET resin is preferably 0 equivalent/ton, more preferably 1 equivalent/ton, still more preferably 2 equivalent/ton, particularly preferably 3 equivalent/ton, and most preferably Preferably it is 4 equivalents/ton. In order to lower the acid value, it is preferable to perform solid phase polymerization, but if solid phase polymerization is not performed, the lower limit of the acid value of PET is preferably 15 equivalents/ton, more preferably 20 equivalents. /ton, more preferably 23 equivalents/ton, particularly preferably 25 equivalents/ton.
The upper limit is preferably 60 equivalents/ton, more preferably 55 equivalents/ton, even more preferably 50 equivalents/ton, particularly preferably 45 equivalents/ton, and most preferably 40 equivalents/ton. . That is, the acid value of the chemically recycled PET resin is preferably 0 to 60 equivalents/ton, more preferably 1 to 55 equivalents/ton, even more preferably 2 to 50 equivalents/ton, and particularly preferably 3 to 45 equivalents/ton, most preferably 4 to 40 equivalents/ton, 15 to 60 equivalents/ton, 20 to 60 equivalents/ton, 23 to 60 equivalents/ton, or 25 to 60 equivalents/ton. There may be. By setting it as the said range, the productivity of chemically recycled PET can be ensured, and the acid value of the obtained film can be made into the appropriate range. In order to keep the acid value within the above range, it is necessary to maintain the above-mentioned appropriate temperature and reduced pressure during polycondensation, and to replace the inside of the reaction vessel with an inert gas such as nitrogen during polycondensation to create a low oxygen state. It is preferable to adopt the method.
 ケミカルリサイクルPETの溶融混練後の固有粘度保持率は好ましくは89%以上であり、より好ましくは90%以上であり、さらに好ましくは91%以上であり、特に好ましくは92%以上であることが特に好ましい。固有粘度保持率が89%を下回る場合は、樹脂の熱安定性が低く、成型品の力学特性が不十分となるおそれがある。なお、本明細書では単に「固有粘度保持率」と記載されている場合には、1回溶融混練した混錬後の固有粘度保持率のことを指す。 The intrinsic viscosity retention after melt-kneading of chemically recycled PET is preferably 89% or more, more preferably 90% or more, still more preferably 91% or more, particularly preferably 92% or more. preferable. If the intrinsic viscosity retention is less than 89%, the thermal stability of the resin may be low and the mechanical properties of the molded product may be insufficient. In addition, in this specification, when it is simply described as "intrinsic viscosity retention rate", it refers to the intrinsic viscosity retention rate after kneading which is melted and kneaded once.
 ケミカルリサイクルPET樹脂のカラーb値は、10以下であることが好ましく、8以下であることがより好ましく、5以下であることがさらに好ましく、3以下であることが特に好ましい。カラーb値は黄色/青色座標を示しており、正の値は黄色を示し、負の値は青色を示しており、カラーb値はケミカルリサイクルPET樹脂の異物量や熱安定性に影響を受けると考えられる。 The color b value of the chemically recycled PET resin is preferably 10 or less, more preferably 8 or less, even more preferably 5 or less, and particularly preferably 3 or less. The color b value indicates the yellow/blue coordinate, positive values indicate yellow, negative values indicate blue, and the color b value is affected by the amount of foreign substances and thermal stability of chemically recycled PET resin. it is conceivable that.
 本願は、2022年8月17日に出願された日本国特許出願第2022-130235号、及び2023年1月17日に出願された日本国特許出願第2023-005108号に基づく優先権の利益を主張するものである。2022年8月17日に出願された日本国特許出願第2022-130235号の明細書の全内容、及び2023年1月17日に出願された日本国特許出願第2023-005108号の明細書の全内容が、本願に参考のため援用される。 This application benefits from the priority rights based on Japanese Patent Application No. 2022-130235 filed on August 17, 2022 and Japanese Patent Application No. 2023-005108 filed on January 17, 2023. It is something that is claimed. The entire contents of the specification of Japanese Patent Application No. 2022-130235 filed on August 17, 2022, and the specification of Japanese Patent Application No. 2023-005108 filed on January 17, 2023. The entire contents are incorporated by reference into this application.
 以下、本発明を実施例により説明するが、本発明はもとよりこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be explained with reference to Examples, but the present invention is not limited to these Examples.
(1)固有粘度(IV)
 PET樹脂を約3g凍結粉砕して140℃15分間乾燥した後、0.20g計量し、1,1,2,2-テトラクロロエタンとp-クロロフェノールとを1:3(質量比)で混ぜた混合溶媒を20ml用いて100℃で60分間撹拌して完全に溶解して室温まで冷却した後グラスフィルターを通して試料とした。30℃に温調されたウベローデ粘度計((株)離合社製)を用いて試料および溶媒の落下時間を計測し、次式により固有粘度[η]を求めた。
  [η]=(-1+√(1+4K’ηsp))/2K’C
  ηsp=(τ-τ)/τ
  ここで、
  [η]:固有粘度(dl/g)
  ηsp:比粘度(-)
  K’:ハギンスの恒数(=0.33)
  C:濃度(=1g/dl)
  τ:試料の落下時間(sec)
  τ:溶媒の落下時間(sec)
(1) Intrinsic viscosity (IV)
Approximately 3g of PET resin was freeze-pulverized and dried at 140°C for 15 minutes, then 0.20g was weighed, and 1,1,2,2-tetrachloroethane and p-chlorophenol were mixed at a ratio of 1:3 (mass ratio). Using 20 ml of the mixed solvent, the mixture was stirred at 100° C. for 60 minutes to completely dissolve, cooled to room temperature, and then passed through a glass filter to be used as a sample. The falling time of the sample and solvent was measured using an Ubbelohde viscometer (manufactured by Rigosha Co., Ltd.) whose temperature was controlled at 30° C., and the intrinsic viscosity [η] was determined using the following formula.
[η] = (-1+√(1+4K'η sp ))/2K'C
η sp = (τ−τ 0 )/τ 0
here,
[η]: Intrinsic viscosity (dl/g)
η sp : Specific viscosity (-)
K': Huggins' constant (=0.33)
C: Concentration (=1g/dl)
τ: Sample falling time (sec)
τ 0 : Falling time of solvent (sec)
(2)試料中における所定の金属原子の含有率
 白金製るつぼにPET樹脂を秤量し、電気コンロでの炭化の後、マッフル炉で550℃、8時間の条件で灰化した。灰化後のサンプルを1.2M塩酸に溶解し、試料溶液とした。調製した試料溶液を下記の条件で測定し、高周波誘導結合プラズマ発光分析法によりPET樹脂中におけるアンチモン原子、アルミニウム原子、チタン原子、ゲルマニウム原子、コバルト原子の濃度を求めた。
  装置:SPECTRO社製 CIROS-120
  プラズマ出力:1400W
  プラズマガス:13.0L/min
  補助ガス:2.0L/min
  ネブライザー:クロスフローネブライザー
  チャンバー:サイクロンチャンバー
  測定波長:167.078nm
(2) Content of specified metal atoms in sample PET resin was weighed in a platinum crucible, carbonized on an electric stove, and then incinerated in a muffle furnace at 550° C. for 8 hours. The sample after incineration was dissolved in 1.2M hydrochloric acid to prepare a sample solution. The prepared sample solution was measured under the following conditions, and the concentrations of antimony atoms, aluminum atoms, titanium atoms, germanium atoms, and cobalt atoms in the PET resin were determined by high-frequency inductively coupled plasma emission spectrometry.
Equipment: CIROS-120 manufactured by SPECTRO
Plasma output: 1400W
Plasma gas: 13.0L/min
Auxiliary gas: 2.0L/min
Nebulizer: Crossflow nebulizer Chamber: Cyclone chamber Measurement wavelength: 167.078nm
(3)PET樹脂中におけるリン原子の含有率
 PET樹脂を硫酸、硝酸、過塩素酸で湿式分解を行った後、アンモニア水で中和した。調製した溶液にモリブデン酸アンモニウムおよび硫酸ヒドラジンを加えた後、紫外可視吸光光度計(島津製作所社製、UV-1700)を用いて、波長830nmでの吸光度を測定した。あらかじめ作製した検量線から、PET樹脂中のリン原子の濃度を求めた。
(3) Content of phosphorus atoms in PET resin After performing wet decomposition of PET resin with sulfuric acid, nitric acid, and perchloric acid, it was neutralized with aqueous ammonia. After adding ammonium molybdate and hydrazine sulfate to the prepared solution, the absorbance at a wavelength of 830 nm was measured using a UV-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-1700). The concentration of phosphorus atoms in the PET resin was determined from a calibration curve prepared in advance.
(4)PET樹脂中の多価カルボン酸成分、多価アルコール成分の含有量、ポリマー酸価、及びオリゴマー酸価、オリゴマー水酸基価
・PET樹脂中の多価カルボン酸成分量
 全多価カルボン酸成分100モル%に対する各多価カルボン酸成分量(モル%)を求めた。
・PET樹脂中の多価アルコール成分量
 全多価アルコール成分100モル%に対する各多価アルコール成分量(モル%)を求めた。
・ポリマー酸価(AV)
 PET樹脂1t当たりの酸の当量(単位;eq/ton)を求めた。
・オリゴマー中の酸価(OLG-AV)
 オリゴマー1t当たりの酸の当量(単位;eq/ton)を求めた。
・オリゴマー中の水酸基価(OLG-OHV)
 オリゴマー1t当たりの水酸基の当量(単位;eq/ton)を求めた。
(測定方法)
 PET樹脂20mgを重ヘキサフルオロイソプロパノールと重クロロホルムとを1:9(容量比)で混ぜた混合溶媒0.6mlに溶解し、遠心分離を行った。
 その後、上澄み液を採取し、下記の条件でH-NMR測定を行った。
  装置:フーリエ変換核磁気共鳴装置(BRUKER製、AVANCE NEO600)
  1H共鳴周波数:600.13MHz
  ロック溶媒:重クロロホルム
  フリップ角:30°
  データ取り込み時間:4秒
  遅延時間:1秒
  測定温度:30℃
  積算回数:128回
(4) Content of polycarboxylic acid component and polyhydric alcohol component in PET resin, polymer acid value, oligomer acid value, oligomer hydroxyl value/amount of polycarboxylic acid component in PET resin Total polycarboxylic acid component The amount (mol %) of each polycarboxylic acid component relative to 100 mol % was determined.
- Amount of polyhydric alcohol component in PET resin The amount of each polyhydric alcohol component (mol %) with respect to 100 mol % of the total polyhydric alcohol component was determined.
・Polymer acid value (AV)
The equivalent amount of acid (unit: eq/ton) per ton of PET resin was determined.
・Acid value in oligomer (OLG-AV)
The acid equivalent (unit: eq/ton) per ton of oligomer was determined.
・Hydroxyl value in oligomer (OLG-OHV)
The equivalent weight (unit: eq/ton) of hydroxyl groups per ton of oligomer was determined.
(Measuring method)
20 mg of PET resin was dissolved in 0.6 ml of a mixed solvent of deuterated hexafluoroisopropanol and deuterated chloroform at a ratio of 1:9 (volume ratio), and centrifuged.
Thereafter, the supernatant was collected and subjected to H-NMR measurement under the following conditions.
Equipment: Fourier transform nuclear magnetic resonance apparatus (AVANCE NEO600, manufactured by BRUKER)
1H resonance frequency: 600.13MHz
Lock solvent: deuterated chloroform Flip angle: 30°
Data acquisition time: 4 seconds Delay time: 1 second Measurement temperature: 30℃
Accumulated number of times: 128 times
(5)オリゴマーの水酸基の割合算出(OLG-OH%)
 水酸基の割合は、上記方法で求めた酸価と水酸基価より、下記式に従って算出した。オリゴマー末端を酸価と水酸基価の合計値としている。
水酸基の割合={水酸基価/(水酸基価+酸価)}×100
(5) Calculation of the proportion of hydroxyl groups in oligomers (OLG-OH%)
The proportion of hydroxyl groups was calculated according to the following formula from the acid value and hydroxyl value determined by the above method. The oligomer end is the sum of the acid value and hydroxyl value.
Ratio of hydroxyl groups = {hydroxyl value / (hydroxyl value + acid value)} x 100
(6)ケミカルリサイクルBHET中の多価カルボン酸成分および多価アルコール成分の含有量
 ケミカルリサイクルBHETを重メタノールに溶解し、下記の条件でH-NMR測定を行った。
  装置:フーリエ変換核磁気共鳴装置(BRUKER製)
  1H共鳴周波数:500.13MHz
  ロック溶媒:重メタノール
  フリップ角:45°
  データ取り込み時間:4秒
  遅延時間:1秒
  測定温度:27℃
  積算回数:36回
(6) Content of polyhydric carboxylic acid component and polyhydric alcohol component in chemically recycled BHET Chemically recycled BHET was dissolved in heavy methanol, and H-NMR measurement was performed under the following conditions.
Equipment: Fourier transform nuclear magnetic resonance apparatus (manufactured by BRUKER)
1H resonance frequency: 500.13MHz
Lock solvent: Heavy methanol Flip angle: 45°
Data acquisition time: 4 seconds Delay time: 1 second Measurement temperature: 27℃
Accumulated number of times: 36 times
(7)異物量
 PET樹脂0.06gをHFIP(ヘキサフルオロ-2-プロパノール)100mlに溶解し、パーティクルカウンターで測定し、粒子径0.50~0.69μmの粒子数を評価した。
  日本インテグリス合同会社製 個数カウント方式 粒度分布測定装置 AccuSizer A7000/SIS
  測定範囲:0.5~400μm
(7) Amount of foreign matter 0.06 g of PET resin was dissolved in 100 ml of HFIP (hexafluoro-2-propanol) and measured with a particle counter to evaluate the number of particles with a particle size of 0.50 to 0.69 μm.
AccuSizer A7000/SIS, number counting method, particle size distribution measuring device manufactured by Nippon Entegris LLC
Measurement range: 0.5-400μm
(8)降温結晶化温度(Tc2)
 セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」にて、PET樹脂5mgをアルミパンに入れ、蓋を押さえて密封した。次いで、一度290℃で5分ホールドした後、10℃/minの降温速度で冷却した。降温時に得られた発熱ピークのピークトップの値を降温結晶化温度とした。
(8) Cooling crystallization temperature (Tc2)
Using a differential scanning calorimeter "DSC220 model" manufactured by Seiko Electronics Co., Ltd., 5 mg of PET resin was placed in an aluminum pan, and the lid was pressed to seal the pan. Next, the temperature was once held at 290° C. for 5 minutes, and then cooled at a temperature decreasing rate of 10° C./min. The peak top value of the exothermic peak obtained during cooling was defined as the cooling crystallization temperature.
(9)PET樹脂のカラーb値
 PET樹脂約50gを、測定セルに詰め込み、回転させながら測定を実施し、色の基本的刺激量を表現している三刺激値XYZからカラーb値を測定した。値が高いほど黄色味が強くなる。
  装置:東京電色社製 精密型分光光度色彩計TC-1500SX
  測定方法:JIS Z8722準拠 透過光 0度、-0度法
  検出素子:シリコンフォトダイオードアレー
  光源:ハロゲンランプ 12V100W 2000H
  測定面積:透過25mmφ
  湿温度条件:25℃、RH50%
  測定セル:φ35mm、高さ25mm 回転式(ペレット)
  測定内容:X,Y,Z3刺激値 CIE色度座標 x=X/(X+Y+Z) y=Y/(X+Y+Z)
(9) Color b value of PET resin Approximately 50 g of PET resin was packed into a measurement cell and measured while rotating, and the color b value was measured from the tristimulus values XYZ, which express the basic amount of color stimulation. . The higher the value, the stronger the yellow color.
Equipment: Tokyo Denshokusha precision spectrophotometer colorimeter TC-1500SX
Measurement method: JIS Z8722 compliant Transmitted light 0 degree, -0 degree method Detection element: Silicon photodiode array Light source: Halogen lamp 12V100W 2000H
Measurement area: Transmission 25mmφ
Humidity temperature condition: 25℃, RH50%
Measuring cell: φ35mm, height 25mm Rotating type (pellet)
Measurement details: X, Y, Z tristimulus values CIE chromaticity coordinates x=X/(X+Y+Z) y=Y/(X+Y+Z)
(10)熱分解試験
 PET樹脂を真空乾燥140℃、16時間乾燥し、水分率150ppm以下の乾燥結晶化ポリエステルを作製した。この乾燥結晶化ポリエステルを用いて以下の条件で二軸押出機にて溶融混練後の固有粘度(処理後IV)を測定し、下記の式を用いて固有粘度保持率(IV保持率)を算出した。
  二軸押出機:テクノベル社製KZW15TW-45/60MG-NH(-2200)
  設定温度:300℃
  スクリュー回転数:200rpm
  吐出量:1.7~2.0kg/h
 固有粘度保持率(%)=100×混練後の固有粘度/混練前の固有粘度
 なお、水分率は、電量滴定法であるカールフィッシャー水分計(株式会社三菱ケミカルアナリテック製、CA-200)を用いて、試料0.6gを230℃,5分間、250mL/minの窒素気流下の条件で測定した。
(10) Thermal decomposition test PET resin was vacuum dried at 140° C. for 16 hours to produce a dry crystallized polyester with a moisture content of 150 ppm or less. Using this dry crystallized polyester, measure the intrinsic viscosity (IV after treatment) after melt-kneading in a twin-screw extruder under the following conditions, and calculate the intrinsic viscosity retention (IV retention) using the following formula: did.
Twin screw extruder: KZW15TW-45/60MG-NH (-2200) manufactured by Technovel
Set temperature: 300℃
Screw rotation speed: 200rpm
Discharge amount: 1.7-2.0kg/h
Intrinsic viscosity retention rate (%) = 100 × Intrinsic viscosity after kneading / Intrinsic viscosity before kneading The moisture content was measured using a Karl Fischer moisture meter (manufactured by Mitsubishi Chemical Analytic Corporation, CA-200), which is a coulometric titration method. Using this method, 0.6 g of a sample was measured at 230° C. for 5 minutes under a nitrogen flow of 250 mL/min.
 以下、アルミニウム含有エチレングリコール溶液、リン含有エチレングリコール溶液、及びケミカルリサイクルBHETの調製について説明する。 Hereinafter, the preparation of an aluminum-containing ethylene glycol solution, a phosphorus-containing ethylene glycol solution, and chemically recycled BHET will be explained.
(アルミニウム含有エチレングリコール溶液sの調製)
 塩基性酢酸アルミニウムの20g/L水溶液に対して、等量(容量比)のエチレングリコールをともに調合タンクに仕込み、室温(23℃)で数時間撹拌した後、減圧(3kPa)下、50~90℃で数時間撹拌しながら系から水を留去し、アルミニウム化合物が20g/L含まれたアルミニウム含有エチレングリコール溶液sを調製した。
(Preparation of aluminum-containing ethylene glycol solution s)
A 20 g/L aqueous solution of basic aluminum acetate and an equal amount (volume ratio) of ethylene glycol were charged into a mixing tank, stirred for several hours at room temperature (23°C), and then heated to 50 to 90 g/L under reduced pressure (3 kPa). Water was distilled off from the system while stirring at °C for several hours to prepare an aluminum-containing ethylene glycol solution s containing 20 g/L of an aluminum compound.
(リン含有エチレングリコール溶液tの調製)
 リン化合物として、Irganox1222(ビーエーエスエフ社製)を、エチレングリコールとともに調合タンクに仕込み、窒素置換下撹拌しながら175℃で150分熱処理し、リン化合物が50g/L含まれたリン含有エチレングリコール溶液tを調製した。
(Preparation of phosphorus-containing ethylene glycol solution t)
As a phosphorus compound, Irganox 1222 (manufactured by BFA) was charged into a preparation tank together with ethylene glycol, and heat treated at 175°C for 150 minutes with stirring under nitrogen substitution to obtain a phosphorus-containing ethylene glycol solution containing 50 g/L of phosphorus compound. was prepared.
 (ケミカルリサイクルBHETの調製)
 ケミカルリサイクルBHETが表2に示した組成比となるように、下記(j)~(l)を混合し、CR-BHET1、CR-BHET2、CR-BHET3を調製した。
 (j)飲料用ボトルの回収物から得られ、イソフタル酸成分を含むケミカルリサイクルBHET
 (k)飲料用ボトルの回収物から得られ、ジエチレングリコール成分を含むケミカルリサイクルBHET
 (l)PETフィルムの回収物から得られ、イソフタル酸成分を含むケミカルリサイクルBHET
(Preparation of chemically recycled BHET)
The following (j) to (l) were mixed so that the chemically recycled BHET had the composition ratio shown in Table 2 to prepare CR-BHET1, CR-BHET2, and CR-BHET3.
(j) Chemical recycled BHET obtained from recovered beverage bottles and containing isophthalic acid components
(k) Chemical recycled BHET obtained from recovered beverage bottles and containing diethylene glycol components
(l) Chemical recycled BHET obtained from recovered PET film and containing isophthalic acid components
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、TPAはテレフタル酸を、IPAはイソフタル酸を、EGはエチレングリコールを、DEGはジエチレングリコールを指す。また、TPA(b)及びEG(b)は上述の通りである。 Note that TPA refers to terephthalic acid, IPA refers to isophthalic acid, EG refers to ethylene glycol, and DEG refers to diethylene glycol. Moreover, TPA (b) and EG (b) are as described above.
実施例1
 撹拌機付き5Lステンレス製オートクレーブに、ケミカルリサイクルBHETとして、表2のCR-BHET1を仕込み、アルカリ剤として、トリエチルアミンをケミカルリサイクルBHET中のテレフタル酸成分に対して0.3mol%添加した。その後BHETを溶融させオリゴマーを得た(第1工程)。第1工程後のオリゴマー特性はOLG-AVが100eq/t、OLG-OHVが7600eq/t、反応液中に含まれる全多価アルコール成分の合計量100モル%とした際の遊離のエチレングリコール含有量は0.1mol%であった。その後、上記方法で調製したアルミニウム含有エチレングリコール溶液sおよびリン含有エチレングリコール溶液tを混合し一液化した混合液を添加した。なお該混合液は、ケミカルリサイクルPETにおける、アルミニウム原子およびリン原子の量が30質量ppmおよび74質量ppmとなるように添加した。アルミニウム原子に対するリン原子のモル比は(P/Al)=2.15であった。
 その後、攪拌しながら、系の温度を278℃まで昇温して、この間に系の圧力を徐々に減じて0.1kPaとし、この条件下で重縮合反応を行い、次いで、得られた溶融樹脂をストランドカッターに供給して、ペレット状のケミカルリサイクルPET樹脂を得た。昇温を開始してから反応終了までの時間は180分であった。
Example 1
A 5L stainless steel autoclave equipped with a stirrer was charged with CR-BHET1 shown in Table 2 as a chemical recycling BHET, and 0.3 mol% of triethylamine was added as an alkali agent based on the terephthalic acid component in the chemical recycling BHET. Thereafter, BHET was melted to obtain an oligomer (first step). The oligomer properties after the first step are 100 eq/t for OLG-AV, 7600 eq/t for OLG-OHV, and free ethylene glycol content when the total amount of all polyhydric alcohol components contained in the reaction solution is 100 mol%. The amount was 0.1 mol%. Thereafter, a mixed solution obtained by mixing the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t prepared by the above method into one liquid was added. The mixed liquid was added so that the amounts of aluminum atoms and phosphorus atoms in the chemically recycled PET were 30 mass ppm and 74 mass ppm. The molar ratio of phosphorus atoms to aluminum atoms was (P/Al)=2.15.
Thereafter, while stirring, the temperature of the system was raised to 278°C, during which time the pressure of the system was gradually reduced to 0.1 kPa, a polycondensation reaction was carried out under these conditions, and the resulting molten resin was fed to a strand cutter to obtain pelletized chemically recycled PET resin. The time from the start of temperature rise to the end of the reaction was 180 minutes.
実施例2
 ケミカルリサイクルBHETとして、表2記載のCR-BHET2を用いた以外は実施例1と同様に行った。
Example 2
The same procedure as in Example 1 was conducted except that CR-BHET2 listed in Table 2 was used as the chemically recycled BHET.
実施例3~5
 CR-BHET1と共にテレフタル酸(以下、添加テレフタル酸という場合がある)を仕込んだ。CR-BHET1と添加テレフタル酸のモル比、並びに、第1工程時間及び重縮合時間を表3の条件としたこと以外は、実施例1と同様に行った。
Examples 3-5
Terephthalic acid (hereinafter sometimes referred to as added terephthalic acid) was charged together with CR-BHET1. The same procedure as in Example 1 was carried out except that the molar ratio of CR-BHET1 and added terephthalic acid, the first step time and the polycondensation time were set to the conditions shown in Table 3.
実施例6
 ケミカルリサイクルPET樹脂の質量に対して、アルミニウム原子およびリン原子として15質量ppmおよび38質量ppmとなるように用いた以外は実施例4と同様に行った。アルミニウム原子に対するリン原子のモル比(P/Al)=2.20であった。
Example 6
The same procedure as in Example 4 was carried out except that aluminum atoms and phosphorus atoms were used in amounts of 15 mass ppm and 38 mass ppm with respect to the mass of the chemically recycled PET resin. The molar ratio of phosphorus atoms to aluminum atoms (P/Al) was 2.20.
実施例7、8
 CR-BHET1とCR-BHET3を表3記載のモル比になるように仕込んだ以外は、実施例1と同様に行った。
Examples 7 and 8
The same procedure as in Example 1 was conducted except that CR-BHET1 and CR-BHET3 were charged at the molar ratio shown in Table 3.
比較例1
 ケミカルリサイクルBHETとして、表2のCR-BHET3を用いた以外は実施例1と同様に行った。
Comparative example 1
The same procedure as in Example 1 was conducted except that CR-BHET3 shown in Table 2 was used as the chemically recycled BHET.
比較例2
 アルミニウム含有エチレングリコール溶液sおよびリン含有エチレングリコール溶液tを添加する代わりに、ケミカルリサイクルPET樹脂に含まれるアンチモン原子が200質量ppmになるようにアンチモン触媒を添加し、且つ、重縮合時間を表3に記載の時間に変更したこと以外は実施例1と同様に行った。
Comparative example 2
Instead of adding the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t, an antimony catalyst was added so that the antimony atoms contained in the chemically recycled PET resin was 200 mass ppm, and the polycondensation time was set as shown in Table 3. The same procedure as in Example 1 was carried out except that the time described in .
比較例3
 アルミニウム含有エチレングリコール溶液sおよびリン含有エチレングリコール溶液tを添加する代わりに、ケミカルリサイクルPET樹脂に含まれるチタン原子が30質量ppmになるようにチタン触媒を添加し、且つ、重縮合時間を表3に記載の時間に変更したこと以外は実施例1と同様に行った。
Comparative example 3
Instead of adding the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t, a titanium catalyst was added so that the titanium atoms contained in the chemically recycled PET resin was 30 mass ppm, and the polycondensation time was set as shown in Table 3. The same procedure as in Example 1 was carried out except that the time described in .
比較例4
 CR-BHET1と同時に、ケミカルリサイクルPET樹脂に含まれるリン原子が30ppmとなるようにリン酸トリブチルを添加し、アルミニウム含有エチレングリコール溶液sおよびリン含有エチレングリコール溶液tを添加する代わりに、ケミカルリサイクルPET樹脂に含まれるゲルマニウム原子が115質量ppmになるように2.5g/Lの二酸化ゲルマニウム含有エチレングリコール溶液を添加し、且つ重縮合時間を表3の条件としたこと以外は実施例1と同様に行った。
Comparative example 4
At the same time as CR-BHET1, tributyl phosphate was added so that the phosphorus atoms contained in the chemically recycled PET resin was 30 ppm, and instead of adding aluminum-containing ethylene glycol solution s and phosphorus-containing ethylene glycol solution t, chemically recycled PET Same as Example 1 except that 2.5 g/L germanium dioxide-containing ethylene glycol solution was added so that the germanium atoms contained in the resin was 115 ppm by mass, and the polycondensation time was set to the conditions shown in Table 3. went.
比較例5
 CR-BHET1と同時に、ケミカルリサイクルPET樹脂に含まれるリン原子が30ppmとなるようにリン酸トリブチルを添加し、アルミニウム含有エチレングリコール溶液sおよびリン含有エチレングリコール溶液tを添加する代わりに、ケミカルリサイクルPET樹脂に含まれるアンチモン原子が700質量ppmになるように4.5g/Lの三酸化アンチモン含有エチレングリコール溶液を添加し、且つ重縮合時間を表3の条件としたこと以外は実施例1と同様に行った。
Comparative example 5
At the same time as CR-BHET1, tributyl phosphate was added so that the phosphorus atoms contained in the chemically recycled PET resin was 30 ppm, and instead of adding aluminum-containing ethylene glycol solution s and phosphorus-containing ethylene glycol solution t, chemically recycled PET Same as Example 1 except that 4.5 g/L of antimony trioxide-containing ethylene glycol solution was added so that the antimony atoms contained in the resin was 700 mass ppm, and the polycondensation time was set to the conditions shown in Table 3. I went to
比較例6
 アルミニウム含有エチレングリコール溶液sおよびリン含有エチレングリコール溶液tを添加する代わりに、2.5g/Lの三酸化アンチモン含有エチレングリコール溶液、2.5g/Lの酢酸コバルト含有エチレングリコール溶液、2.5g/Lのリン酸含有エチレングリコール溶液、及び酸化チタン(品名SA-1:堺化学工業製)を添加し、且つ重縮合時間を表3の条件としたこと以外は、実施例1と同様に行った。なお、2.5g/Lの三酸化アンチモン含有エチレングリコール溶液は、ケミカルリサイクルPET樹脂に含まれるアンチモン原子が250質量ppmになるように添加し、2.5g/Lの酢酸コバルト含有エチレングリコール溶液は、ケミカルリサイクルPET樹脂に含まれるコバルト原子が57質量ppmになるように添加し、2.5g/Lのリン酸含有エチレングリコール溶液は、ケミカルリサイクルPET樹脂に含まれるリン原子が17質量ppmになるように添加し、酸化チタンは、ケミカルリサイクルPET樹脂に対し3000質量ppmとなるよう添加した。
Comparative example 6
Instead of adding aluminum-containing ethylene glycol solution s and phosphorus-containing ethylene glycol solution t, 2.5 g/L antimony trioxide-containing ethylene glycol solution, 2.5 g/L cobalt acetate-containing ethylene glycol solution, 2.5 g/L The same procedure as in Example 1 was carried out, except that L phosphoric acid-containing ethylene glycol solution and titanium oxide (product name SA-1: manufactured by Sakai Chemical Industries) were added, and the polycondensation time was set to the conditions shown in Table 3. . The 2.5 g/L antimony trioxide-containing ethylene glycol solution was added so that the antimony atoms contained in the chemically recycled PET resin was 250 mass ppm, and the 2.5 g/L cobalt acetate-containing ethylene glycol solution was , the cobalt atoms contained in the chemically recycled PET resin are added so as to be 57 mass ppm, and the 2.5 g/L phosphoric acid-containing ethylene glycol solution is added so that the phosphorus atoms contained in the chemically recycled PET resin are 17 mass ppm. Titanium oxide was added at a concentration of 3000 ppm by mass based on the chemically recycled PET resin.
比較例7
 CR-BHET1と同時に、ケミカルリサイクルPET樹脂に含まれるリン原子が20ppmとなるように85重量%のリン酸水溶液を添加し、アルミニウム含有エチレングリコール溶液sおよびリン含有エチレングリコール溶液tを添加する代わりに、ケミカルリサイクルPET樹脂に含まれるゲルマニウム原子が100質量ppmになるように二酸化ゲルマニウムを添加し、且つ重縮合時間を表3の条件としたこと以外は実施例1と同様に行った。
Comparative example 7
At the same time as CR-BHET1, an 85% by weight aqueous phosphoric acid solution was added so that the phosphorus atoms contained in the chemically recycled PET resin was 20 ppm, and instead of adding the aluminum-containing ethylene glycol solution s and the phosphorus-containing ethylene glycol solution t. The same procedure as in Example 1 was conducted except that germanium dioxide was added so that the germanium atoms contained in the chemically recycled PET resin was 100 mass ppm, and the polycondensation time was set to the conditions shown in Table 3.
参考例1
 撹拌機付きの5Lステンレス製オートクレーブに高純度テレフタル酸とその2.0倍モル量のエチレングリコールを仕込み、トリエチルアミンを多価カルボン酸成分に対して0.4mol%加え、0.25Mpaの加圧下245℃にて水を系外に留去しながらエステル化反応を行い、BHETとオリゴマーの混合物を得た。その後は実施例1と同様に行った。
Reference example 1
High-purity terephthalic acid and 2.0 times the molar amount of ethylene glycol were placed in a 5L stainless steel autoclave equipped with a stirrer, and 0.4 mol% of triethylamine was added to the polyhydric carboxylic acid component. The esterification reaction was carried out at 0.degree. C. while water was distilled out of the system to obtain a mixture of BHET and oligomer. After that, the same procedure as in Example 1 was carried out.
参考例2
 高純度テレフタル酸に対するエチレングリコールを1.3倍モル量に仕込んだ以外は参考例1と同様に行った。
Reference example 2
The same procedure as in Reference Example 1 was carried out except that ethylene glycol was charged in a molar amount 1.3 times that of high-purity terephthalic acid.
 結果を表3に示す。
 実施例2は実施例1から遊離のエチレングリコール量が増えた例であり、異物量にわずかな差異が認められたが、問題のないものであった。比較例1は遊離のエチレングリコール量が大幅に増えた例であり、異物量が顕著に増加した。
 また実施例7、8はCR-BHET1とCR-BHET3の使用割合を変更した例である。CR-BHET1と共にCR-BHET3を配合することで、CR-BHET中の遊離エチレングリコール量が増加し(CR-BHETの全多価アルコール成分100モル%中の遊離エチレングリコール成分量:実施例7で1.0モル%、実施例8で1.3モル%)、異物量のわずかな増加が認められたが、問題のないものであった。
 実施例3~5はCR-BHETと添加テレフタル酸の使用比率を変更した例であるが、異物量にわずかな差異が認められたが、問題のないものであった。
 実施例6はAl触媒及びTi触媒量を変更した例であるが、異物量にわずかな差異が認められたが、問題のないものであった。
 比較例2、3、4、7は触媒の金属種及び/またはリン化合物を変更した例であるが、異物量が顕著に増加した。
 比較例5は、アンチモン触媒として三酸化アンチモンのエチレングリコール溶液を使用し、リン化合物としてリン酸トリブチルを使用した例であるが、異物量が顕著に増加した。これは希薄なアンチモン系エチレングリコール溶液を用いたことで、比較例2よりもさらに触媒添加後の遊離エチレングリコール量が増加したことに加えて、触媒絶対量も多く、異物量の増加につながったと考えられる。
 比較例6はカラーb値を抑制するため、コバルト化合物及び酸化チタンを添加した例であるが、異物量が顕著に増加した。
 また、参考例1,2のテレフタル酸とエチレングリコールから製造したオリゴマーの遊離エチレングリコール量は遊離エチレングリコール量が制御されたCR-BHETを用いたオリゴマーに比べて多く、得られたPET樹脂の異物量も多かった。
The results are shown in Table 3.
Example 2 is an example in which the amount of free ethylene glycol was increased from Example 1, and although a slight difference was observed in the amount of foreign substances, there was no problem. Comparative Example 1 is an example in which the amount of free ethylene glycol increased significantly, and the amount of foreign matter increased significantly.
Further, Examples 7 and 8 are examples in which the usage ratio of CR-BHET1 and CR-BHET3 is changed. By blending CR-BHET3 with CR-BHET1, the amount of free ethylene glycol in CR-BHET increases (the amount of free ethylene glycol component in 100 mol% of the total polyhydric alcohol component of CR-BHET: Although a slight increase in the amount of foreign matter was observed (1.0 mol%, 1.3 mol% in Example 8), there was no problem.
Examples 3 to 5 are examples in which the usage ratio of CR-BHET and added terephthalic acid was changed, and although a slight difference was observed in the amount of foreign matter, there was no problem.
Example 6 is an example in which the amounts of Al catalyst and Ti catalyst were changed, and although a slight difference was observed in the amount of foreign matter, there was no problem.
Comparative Examples 2, 3, 4, and 7 are examples in which the metal species and/or phosphorus compound of the catalyst were changed, but the amount of foreign matter increased significantly.
Comparative Example 5 is an example in which an ethylene glycol solution of antimony trioxide was used as an antimony catalyst and tributyl phosphate was used as a phosphorus compound, but the amount of foreign matter increased significantly. This is because the use of a dilute antimony-based ethylene glycol solution increased the amount of free ethylene glycol after adding the catalyst compared to Comparative Example 2, and the absolute amount of catalyst was also large, leading to an increase in the amount of foreign matter. Conceivable.
Comparative Example 6 is an example in which a cobalt compound and titanium oxide were added to suppress the color b value, but the amount of foreign matter increased significantly.
In addition, the amount of free ethylene glycol in the oligomers produced from terephthalic acid and ethylene glycol in Reference Examples 1 and 2 was higher than that in the oligomers using CR-BHET in which the amount of free ethylene glycol was controlled, and the resulting PET resin contained foreign substances. The quantity was also large.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお表3中、実施例及び比較例における原料のCR-BHETの欄に記載のモル比は、CR-BHETが有する全多価カルボン酸成分と添加テレフタル酸の合計を100mol%とした際のCR-BHETが有する全多価カルボン酸成分の割合を示し、原料のTPAの欄に記載のモル比は、CR-BHETが有する全多価カルボン酸成分と添加テレフタル酸の合計を100mol%とした際の添加テレフタル酸の割合を示す。また、表3中、参考例における原料のEGの欄に記載のモル比は、テレフタル酸の量を100mol%とした際のエチレングリコールの割合を示す。 In addition, in Table 3, the molar ratio described in the column of CR-BHET of raw materials in Examples and Comparative Examples is CR when the total of all polyhydric carboxylic acid components and added terephthalic acid contained in CR-BHET is 100 mol%. - Indicates the proportion of all polycarboxylic acid components that BHET has, and the molar ratio stated in the TPA column of raw material is when the total of all polycarboxylic acid components and added terephthalic acid that CR-BHET has is 100 mol%. shows the percentage of added terephthalic acid. Moreover, in Table 3, the molar ratio described in the column of EG of raw materials in Reference Examples indicates the ratio of ethylene glycol when the amount of terephthalic acid is 100 mol%.
 原料としてケミカルリサイクルBHETを、重合触媒としてアルミニウム化合物及びリン化合物を用いて得られたケミカルリサイクルポリエチレンテレフタレート樹脂は、従来のPET樹脂に比べ、フィルターで除去することが難しい異物の量を低減することができ、PET樹脂の加工適正や透明性を向上させるものである。本発明の樹脂は光学用途やフィルムや繊維、飲料用ボトルなど各種成形品の材料として好適に用いることができる。 Chemically recycled polyethylene terephthalate resin obtained using chemically recycled BHET as a raw material and an aluminum compound and a phosphorus compound as a polymerization catalyst can reduce the amount of foreign substances that are difficult to remove with a filter compared to conventional PET resin. This improves the processing suitability and transparency of PET resin. The resin of the present invention can be suitably used for optical purposes and as a material for various molded products such as films, fibers, and beverage bottles.

Claims (7)

  1.  下記の(1)~(2)を満足することを特徴とするケミカルリサイクルポリエチレンテレフタレート樹脂。
    (1)アルミニウム原子及びリン原子を含む
    (2)パーティクルカウンターによる粒子径0.50~0.69μmの異物量が2000個/ml以下である
    A chemically recycled polyethylene terephthalate resin characterized by satisfying the following (1) to (2).
    (1) Contains aluminum atoms and phosphorus atoms (2) The amount of foreign matter with a particle size of 0.50 to 0.69 μm measured by a particle counter is 2000 particles/ml or less
  2.  前記ケミカルリサイクルポリエチレンテレフタレート樹脂中の、前記アルミニウム原子の含有量が、50質量ppm以下であり、前記リン原子の含有量が、100質量ppm以下であることを特徴とする、請求項1に記載のケミカルリサイクルポリエチレンテレフタレート樹脂。 The content of the aluminum atom in the chemically recycled polyethylene terephthalate resin is 50 mass ppm or less, and the content of the phosphorus atom is 100 mass ppm or less, according to claim 1. Chemically recycled polyethylene terephthalate resin.
  3.  固有粘度保持率が89%以上であることを特徴とする、請求項1に記載のケミカルリサイクルポリエチレンテレフタレート樹脂。 The chemically recycled polyethylene terephthalate resin according to claim 1, which has an intrinsic viscosity retention of 89% or more.
  4.  カラーb値が10以下である、請求項1に記載のケミカルリサイクルポリエチレンテレフタレート樹脂。 The chemically recycled polyethylene terephthalate resin according to claim 1, which has a color b value of 10 or less.
  5.  請求項1~4のいずれかに記載のケミカルリサイクルポリエチレンテレフタレート樹脂を含む、成形体。 A molded article comprising the chemically recycled polyethylene terephthalate resin according to any one of claims 1 to 4.
  6.  ポリエステル樹脂を分解することによって得られたケミカルリサイクルビス-2-ヒドロキシエチルテレフタレートを含む原料を用いてポリエチレンテレフタレート樹脂を製造する方法であって、
     前記ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレートを含む原料をそのままで、またはそのOH末端をエステル化した後に、アルミニウム化合物及びリン化合物の存在下で重縮合反応することを特徴とする、ケミカルリサイクルポリエチレンテレフタレート樹脂の製造方法。
    A method for producing polyethylene terephthalate resin using a raw material containing chemically recycled bis-2-hydroxyethyl terephthalate obtained by decomposing a polyester resin, the method comprising:
    Chemically recycled polyethylene terephthalate, characterized in that the raw material containing the chemically recycled bis-2-hydroxyethyl terephthalate is subjected to a polycondensation reaction in the presence of an aluminum compound and a phosphorus compound, either as it is or after esterifying its OH end. Method of manufacturing resin.
  7.  前記ケミカルリサイクルビス-2-ヒドロキシエチルテレフタレートを構成する全多価アルコール成分100モル%中の遊離エチレングリコール成分量が1.5モル%以下である、請求項6に記載のケミカルリサイクルポリエチレンテレフタレート樹脂の製造方法。 The chemically recycled polyethylene terephthalate resin according to claim 6, wherein the amount of free ethylene glycol component in 100% by mole of the total polyhydric alcohol component constituting the chemically recycled bis-2-hydroxyethyl terephthalate is 1.5% by mole or less. Production method.
PCT/JP2023/029643 2022-08-17 2023-08-16 Chemically recycled polyethylene terephthalate resin, molded body of same, and method for producing chemically recycled polyethylene terephthalate resin WO2024038883A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022130235 2022-08-17
JP2022-130235 2022-08-17
JP2023-005108 2023-01-17
JP2023005108 2023-01-17

Publications (1)

Publication Number Publication Date
WO2024038883A1 true WO2024038883A1 (en) 2024-02-22

Family

ID=89906000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029643 WO2024038883A1 (en) 2022-08-17 2023-08-16 Chemically recycled polyethylene terephthalate resin, molded body of same, and method for producing chemically recycled polyethylene terephthalate resin

Country Status (2)

Country Link
JP (1) JP7435843B1 (en)
WO (1) WO2024038883A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029110A1 (en) * 1999-10-19 2001-04-26 Aies Co., Ltd. METHOD OF POLYMERIZING DEIONIZED BIS-β-HYDROXYETHYL TEREPHTHALATE
WO2005075539A1 (en) * 2004-02-10 2005-08-18 Toyo Boseki Kabushiki Kaisha Polyester polymerization catalyst, polyester produced therewith and process for producing the polyester
JP2006143622A (en) * 2004-11-17 2006-06-08 Is:Kk Method for purifying glycol solution
JP2010111636A (en) * 2008-11-07 2010-05-20 Toray Ind Inc Bis-2-hydroxyethyl terephthalate pellet and method for producing polyester
JP2021187452A (en) * 2020-05-26 2021-12-13 大日本印刷株式会社 Polyester container and polyester preform, and manufacturing method of polyester preform and polyester container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715812B2 (en) 1998-12-10 2005-11-16 株式会社アイエス Chemical recycling method for polyethylene terephthalate waste
JP2011088972A (en) 2009-10-21 2011-05-06 Toyobo Co Ltd Polyester resin composition and molded article comprising the same
CN114599713A (en) 2019-08-28 2022-06-07 桑贾伊·塔玛吉·库尔卡尼 Process for making specialty polyesters and copolyesters from recycled bis-2-hydroxyethyl terephthalate (rBHET) and products thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029110A1 (en) * 1999-10-19 2001-04-26 Aies Co., Ltd. METHOD OF POLYMERIZING DEIONIZED BIS-β-HYDROXYETHYL TEREPHTHALATE
WO2005075539A1 (en) * 2004-02-10 2005-08-18 Toyo Boseki Kabushiki Kaisha Polyester polymerization catalyst, polyester produced therewith and process for producing the polyester
JP2006143622A (en) * 2004-11-17 2006-06-08 Is:Kk Method for purifying glycol solution
JP2010111636A (en) * 2008-11-07 2010-05-20 Toray Ind Inc Bis-2-hydroxyethyl terephthalate pellet and method for producing polyester
JP2021187452A (en) * 2020-05-26 2021-12-13 大日本印刷株式会社 Polyester container and polyester preform, and manufacturing method of polyester preform and polyester container

Also Published As

Publication number Publication date
JP2024028087A (en) 2024-03-01
JP7435843B1 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
JP4529485B2 (en) Polyester polymerization catalyst, method for producing the same, and method for producing polyester using the same
JPWO2005075539A1 (en) Polyester polymerization catalyst, polyester produced using the same, and method for producing polyester
WO1997030102A1 (en) Process for preparing copolyesters of terephthalic acid, ethylene glycol, and 1,4-cyclohexanedimethanol exhibiting a neutral hue, high clarity and increased brightness
TWI806052B (en) Polyester composition
US10072118B2 (en) Polycyclohexylenedimethylene terephthalate resin having enhanced crystallization speed and method for preparing same
US20100069553A1 (en) Polyester melt-phase compositions having improved thermo-oxidative stability, and methods of making and using them
JP2007224106A (en) Catalyst for polyester polycondensation, its production method and method of producing polyester
JP2004123984A (en) Copolyester
JP7435843B1 (en) Chemically recycled polyethylene terephthalate resin, molded product thereof, and method for producing chemically recycled polyethylene terephthalate resin
JP7435842B1 (en) Chemically recycled polyethylene terephthalate resin and molded products thereof
JP2004137292A (en) Copolyester
JP2010163547A (en) Manufacturing method for high crystalline polyester composition
JP4844088B2 (en) Polyester polycondensation catalyst and method for producing polyester resin using the same
TW202413511A (en) Chemically recycled polyethylene terephthalate resin and molded article thereof, and method for manufacturing chemically recycled polyethylene terephthalate resin
TW202413479A (en) Chemically recycled polyethylene terephthalate resin and its molded body, and method for producing chemically recycled polyethylene terephthalate resin
JP6601048B2 (en) Polyester resin for film and method for producing the same
JPH07216074A (en) Production of polyester
JP2009024088A (en) Polyester resin for rubber reinforcing fiber, and method for producing the same
KR930007881B1 (en) Process for preparation of polyester
WO2013140947A1 (en) Method for producing flame-retardant polyester, and flame-retardant master batch
JP7475364B2 (en) Polyester polymerization catalyst and method for producing polyester using the same
JP3770792B2 (en) Method for producing polyester resin and polyester resin obtained therefrom
JPH05117379A (en) Production of polyester having excellent light resistance
JP2008195845A (en) Polycondensation catalyst for polyester and method for producing polyester using the same
JP2016132720A (en) Polyester resin pellet and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854917

Country of ref document: EP

Kind code of ref document: A1