JP3715812B2 - Chemical recycling method for polyethylene terephthalate waste - Google Patents

Chemical recycling method for polyethylene terephthalate waste Download PDF

Info

Publication number
JP3715812B2
JP3715812B2 JP37510198A JP37510198A JP3715812B2 JP 3715812 B2 JP3715812 B2 JP 3715812B2 JP 37510198 A JP37510198 A JP 37510198A JP 37510198 A JP37510198 A JP 37510198A JP 3715812 B2 JP3715812 B2 JP 3715812B2
Authority
JP
Japan
Prior art keywords
polyethylene terephthalate
bhet
crude
ethylene glycol
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37510198A
Other languages
Japanese (ja)
Other versions
JP2000169623A (en
Inventor
修司 稲田
菊智 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I.S CORPORATION
Original Assignee
I.S CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I.S CORPORATION filed Critical I.S CORPORATION
Priority to JP37510198A priority Critical patent/JP3715812B2/en
Publication of JP2000169623A publication Critical patent/JP2000169623A/en
Application granted granted Critical
Publication of JP3715812B2 publication Critical patent/JP3715812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエチレンテレフタレート廃棄物のケミカルリサイクル方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレート製品(ボトル容器、フィルム、繊維その他)の消費量は年々増大しており、中でもポリエチレンテレフタレート製ボトル(ペットボトル)の消費量増加は著しく、ペットボトルだけでも大雑把にみて、1997年は20万トン、1998年は26万トンが消費され、2000年にはその消費量は30万トンに達すると見込まれている。今後もポリエチレンテレフタレート製品の消費量は年々増加すると予測され、使用済みポリエチレンテレフタレート製品の回収率とリサイクル率を向上することは地球規模で必要不可欠な命題となっている。
【0003】
ポリエチレンテレフタレート製品の一つであるペットボトルについていえば、最近、使用済みペットボトルの分別収集と再商品化が法律で義務付けられ、行政と民間が一体となって使用済みペットボトルの回収とリサイクルに努めているが、現在のところそのリサイクル率は5〜7%程度であり、諸外国と比較しても低く、未だ目標値に達していないのが現状である。回収率を向上させるためには、行政と民間が協力して効果的な回収システムを構築する必要があるが、一方、回収されたペットボトルのリサイクル率を上げることも省資源、省エネルギーの見地から大きな課題となっている。
【0004】
従来、回収されたペットボトルは、市町村が分別・減容圧縮してペットボトルのベール(例えば40×40×60cm程度)とし、再商品化業者に引き渡している。再商品化業者は、これを解俵して金属、塩ビボトル等の異物を分別し、洗浄した後に、更に着色ボトルを分別し、次に粉砕してラベル、アルミ等を分別する。更に、洗浄を行い、ポリエチレンテレフタレート以外のプラスチックを分別し、脱水、乾燥を行った後、更に磁力による金属の分別を行い、フレーク若しくはペレットとしている。
【0005】
このフレーク若しくはペレットは、利用業者に送られ、該業者はこのフレーク若しくはペレットを原料として、カーペット、卵等の包装用フィルム、短繊維等ペットボトル以外の製品としている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の回収法、いわゆるマテリアルリサイクル法では、次のような問題点があった。まず、現行のマテリアルリサイクル法では、ゴミ、異物の混入が多いために再商品化業者における回収歩留まりが低く、しかも異物混入の問題が完全に解決されていないため、フレーク若しくはペレットの当該異物の混入量による品質変動が大きい。また、衛生上の理由等によりフレーク若しくはペレットからの再生可能製品の種類が限定されるので、販売マーケットが小さいという問題もある。このため、ペットボトルのリサイクルは僅かしか行われていないというのが現状である。また、現在分別収集及び再商品化の対象となっている第二種指定のペットボトル(清涼飲料、醤油、酒用)以外のもの、例えば食用油、マヨネーズ、ドレッシング用途の容易に洗浄できないペットボトルが急増しているが、この類のペットボトルは現状のリサイクル方法では処理できない。
【0007】
上記の通り、現在生産・市販されているペットボトルは、該ペットボトルからペットボトルへのリサイクルが実現しない限り、使用済み後はすべて一般・産業廃棄物となるものであり、現在一部回収・リサイクルされているものもいずれは一般・廃棄物となる運命にある。この点は他のポリエチレンテレフタレート製品も同様である。 この種の一般・産業廃棄物は、焼却若しくは埋立等の最終処分が必要であるが、これらの処理は環境汚染の問題を含んでおり、このまま推移することは困難である。また、このような処理法では、省資源、省エネルギーの見地から大きな問題が残されている。
【0008】
そこで、本発明は、市中から回収された使用済みのペットボトルのフレーク若しくはペレットを一旦ポリエチレンテレフタレート製造の中間原料であるビス−β−ヒドロキシエチルテレフタレートして精製し、再度高純度のポリエチレンテレフタレートを製造できるようにすることを課題としている。
【0009】
【課題を解決するための手段】
本発明者は、上記課題を解決するため、不純物、異物類を含有するポリエチレンテレフタレート廃棄物を出発原料として高純度のポリエチレンテレフタレート中間原料、製品を得る方法について鋭意検討の結果、本発明に到達した。即ち、本発明は、ポリエチレンテレフタレート廃棄物に粉砕、洗浄、異物分別等の前処理を施して粗製ポリエチレンテレフタレートフレーク若しくはペレットを得る前処理工程得られた粗製ポリエチレンテレフタレートフレーク若しくはペレットを過剰の精製及び/又は粗製のエチレングリコールを用いて触媒の存在下で解重合を行い粗製ビス−β−ヒドロキシエチルテレフタレート(BHET)を得る解重合工程と、得られた粗製BHETと粗製エチレングリコールの二種混合溶液中からポリエチレンテレフタレート以の異プラスチック及び/又は金属、ガラス、砂の固形異物及び/又は沈殿物を除去する異物除去工程と、得られた粗製BHETと粗製エチレングリコールの二種混合溶液中から着色物及び/又は溶存イオンを除去する前精製工程と、前精製工程を経た二種混合溶液に蒸留・蒸発操作を施してエチレングリコールを蒸発・留去させて濃縮BHETを得るか、もしくは二種混合溶液を10℃以下まで冷却してBHETを晶析させた後エチレングリコールとBHETを固液分離することにより濃縮BHETを得るBHET濃縮工程と、得られた濃縮BHETを190℃を越え250℃以下の温度で且つ蒸発器内での濃縮BHETの滞留時間が10分以下となるように真空蒸発させることにより精製ビス−β−ヒドロキシエチルテレフタレートを得るBHET精製工程と、得られた精製BHET及び/又は前記BHET濃縮工程で得られた濃縮BHETを原料として溶融重縮合し高純度ポリエチレンテレフタレートポリマーを得るポリエチレンテレフタレートポリマー生成工程とを経てポリエチレンテレフタレート廃棄物から高純度のポリエチレンテレフタレート重合物を得ることを特徴とするポリエチレンテレフタレート廃棄物のケミカルリサイクル方法である
【0010】
前記前処理工程で得られる粗製ポリエチレンテレフタレートフレーク若しくはペレットを遠心脱水された程度の水分の多い状態で溶融すると同時に加水分解させ重合度の低いポリエチレンテレフタレート溶融物とし、該ポリエチレンテレフタレート溶融物を過剰のエチレングリコールで解重合処理するのが効果的である。
【0011】
前記異物除去工程を経て得られた粗製BHETと粗製エチレングリコールの二種混合溶液中の粗製BHET濃度を10乃至50wt%、望ましくは15乃至35wt%とし、100℃以下の吸着及び/又はイオン交換機能が発揮され、且つ粗製BHETが晶出しない温度で公知の吸着剤及び/又はイオン交換樹脂を使用して着色物及び/又は溶存イオンを除去する前精製工程処理を施し、前工程処理で得られた二種混合溶液に蒸留・蒸発操作を施してエチレングリコールを蒸発・留去させて濃縮BHETを得るか、もしくは二種混合溶液を10℃以下まで冷却してBHETを晶析させた後エチレングリコールとBHETを固液分離することにより濃縮BHETを得て、この濃縮BHETを190℃を越え250℃以下の温度で且つ蒸発器内での濃縮BHETの滞留時間が10分以下となるように真空蒸発させて精製ビス−β−ヒドロキシエチルテレフタレートとするのが好ましい。
【0012】
前記BHET濃縮工程において分離されたエチレングリコールを直接、再度前記解重合工程へリサイクルするか、このリサイクル及び/又は該エチレングリコールを蒸留等の公知の操作により精製した後、再度解重合工程へリサイクルするようにすると経済的である。
【0013】
前記BHET精製工程において生じる缶残の大部分、及び/又は前記BHET濃縮工程において分離されたエチレングリコールを精製する際に生じる缶残の大部分を再度前記解重合工程へリサイクルするのも収率を向上させる上で効果的である。
【0014】
前記異物除去工程において、ポリエチレンテレフタレート廃棄物中に混在するポリエチレン、ポリスチレン、ポリプロピレン、塩化ビニールの如き、ポリエチレンテレフタレート以外の異プラスチックは互いに相溶性があり、共融混合物となり易く、しかも解重合反応終了後の粗製BHETと粗製エチレングリコールの二種混合溶液に対しては不溶性であり、且つ該二種混合溶液よりも比重が小さいため、ポリエチレンテレフタレート以外の異プラスチックの共融混合浮遊物層として層分離するので、該共融混合浮遊物層を解重合槽から抜き出すようにすれば、異プラスチックの除去を効果的に行うことができる。
【0015】
【発明の実施の形態】
以下、本発明について、具体例を挙げつつ詳細に説明する。図1は、本発明のケミカルリサイクル方法を具体的に表すフローチャートである。本実施形態では、使用済みペットボトルを減容圧縮したベールを出発原料としている。このペットボトルベールは、現在市町村が採用している公知の方法によって製造される。勿論、ペットボトルベールの替わりに他のポリエチレンテレフタレート廃棄物を出発原料としても差し支えないし、ペットボトルのフレークを出発原料としても差し支えない。
【0016】
ペットボトル廃棄物を減容圧縮したペットボトルベールを解梱包することなくベール状のままで粉砕機に連続投入し、温水もしくは常温水又は洗剤を含有する温水もしくは常温水を注入して水中粉砕する。このように、ペットボトルベールを解梱包することなく粉砕するので、作業性の向上が図れ、安全衛生対策上も効果的である。更に、粉砕時の混合、摩擦のエネルギーを利用して洗浄を行うことにより洗浄効果が極めて高くなり、食用油や機械油等の除去も洗浄剤によって容易に行われる。従って、高度の洗浄効果が得られる。
【0017】
更に、粉砕機から排出されるペットボトルのフレーク若しくはペレットと洗浄水の混合物は直ちに比重分離処理を行って、夾雑物である金属、石、ガラス、砂とフレーク若しくはペレットとを分離する。次いで、フレーク若しくはペレットと洗浄水とを分離し、フレーク若しくはペレットはイオン交換水で濯ぎ、遠心脱水する。分離された洗浄水及び使用後の濯ぎの水は濾過され、上記水中粉砕用の水として再使用され、汚水は排水処理にかけられる。このようにして前処理工程は極めて単純化される。従って、この前処理工程の自動化も容易に図ることができる。また、このように効果的な粉砕と洗浄が行われるために、本発明によればペットボトル中味が残存していても全く問題がない。
【0018】
上記前処理工程で得られた粗製ポリエチレンテレフタレートフレーク若しくはペレットを解重合するが、この場合、遠心脱水された程度の水分の多い状態で溶融すると同時に加水分解させて重合度の低いポリエチレンテレフタレート溶融物とし、該ポリエチレンテレフタレート溶融物を公知のエステル化触媒、公知の触媒濃度の存在下で過剰のエチレングリコールと反応させて解重合を行うのが効果的である。公知のエステル化触媒としては、例えば、1985年日刊工業新聞社発刊の「飽和ポリエステル樹脂ハンドブック」に記載の酢酸亜鉛、硼酸亜鉛、亜鉛・マグネシウム・カルシウム・コバルト・アンチモン・バリウムの脂肪酸塩、亜鉛・マグネシウム・カルシウム・コバルト・アンチモン・バリウムの炭酸塩、ナトリウム・マグネシウムのメチラート、金属ナトリウム、金属マグネシウム、亜鉛・アンチモン・鉛・ゲルマニウムの酸化物が挙げられる。特に、本発明によれば、ペットボトルの強度アップ及び寸法安定性の向上のために結晶化処理、白化させた部分も全く問題なしに使用でき、該結晶化処理、白化させた部分の解重合には本法が効果的である。
【0019】
溶融・加水分解された重合度の低いポリエチレンテレフタレート溶融物を過剰のエチレングリコールによって解重合し粗製BHETと粗製エチレングリコールの二種混合溶液を得る。この二種混合溶液中にはポリエチレンテレフタレート廃棄物が持ち込んだポリエチレンテレフタレート以外の異プラスチックが混入する場合があるが、これらポリエチレンテレフタレート以外のポリエチレン、ポリスチレン、ポリプロピレン、塩化ビニールの如き異プラスチックは互いに相溶性があり、粗製BHETと粗製エチレングリコールの二種混合溶液に対して不溶性であり、且つ、二種混合溶液との比重差により異プラスチックの共融混合浮遊物として二種混合溶液の上部に容易に層分離するので、該共融混合浮遊物層を解重合槽から抜き出すようにすれば、異プラスチックの除去を効果的に行うことができる。
【0020】
通常、ポリエチレンテレフタレートの解重合によって得られる粗製BHET中には重合度2〜4程度の線状オリゴマーが相当量残存すると言われているが、解重合時のポリエチレンテレフタレートとエチレングリコールの混合比率、解重合温度と圧力、解重合触媒を適切に選択することにより本法の解重合によって得られる粗製BHET中には上記線状オリゴマーは殆ど残存しなくすることができるので、収率向上のために好ましい。
【0021】
また、通常、粗製BHET中には線状オリゴマーの他にも環状オリゴマーが数%程度存在している。この環状オリゴマーは融点がポリエチレンテレフタレートよりもはるかに高く、325〜327℃であり、ペットボトルの成型時及び成型後の製品に悪影響を与える。本発明によれば、精製ビス−β−ヒドロキシエチルテレフタレートとしてこの環状オリゴマーを全く含有しないものが得られるので、極めて良質なポリエチレンテレフタレートが得られる。
【0022】
解重合反応終了後の粗製BHETと粗製エチレングリコールの二種混合溶液を降温し、濾過して高融点沈殿物としての未反応の線状及び環状オリゴマー、ポリエチレンテレフタレート以外の残存異プラスチックの凝固物、金属等の固形異物を除去し、次いで吸着・イオン 交換処理を施して、着色物と溶存イオンを除去することにより、粗製BHET中に含まれる有害な異物を全て取り除くことができる。
【0023】
前記前精製工程は原料に同伴する着色剤及び/又は有機物の熱劣化による着色物を除去し、更にポリエチレンテレフタレートに付着している糖分、塩類、ポリエチレンテレフタレート重合時の触媒イオン、添加安定剤、其の他の工程から混入する陰陽の両イオンを除去する。当該前精製工程は極めて重要であり、粗製BHETと粗製エチレングリコールの二種混合溶液中の脱色処理のみを行ってエチレングリコールを蒸発・留去した場合には、110〜120℃を越える温度で粗製BHETと粗製エチレングリコールの二種混合溶液が淡褐色乃至褐色に着色する。その原因が共存する陰陽の両イオンが関与する熱分解着色挙動にあることを見出し、更に加えて濃縮BHETの真空蒸発工程における伝熱面へのスケールの生成並びにBHETの分解促進や重合促進を防止し、工程の安定化と精製BHETの純度を維持することができることを見出し、本発明に至ったのである。
【0024】
このように効果的な異物除去・前精製が行われるため、ポリエチレンテレフタレート以外の異プラスチックの混入が許容されることになり、本発明によれば再商品化の対象となり得るペットボトル廃棄物の種類が第二種指定容器のみならず、全てのペットボトルに拡大されることになり、ペットボトルの大幅なリサイクル率向上が可能となる。また、現在市町村によって行われているペットボトル廃棄物の減容圧縮方法についても、現行は、ペットボトル廃棄物の再商品化プロセスからの制約のために側面圧縮方法のみが採用されているが、本発明によれば、提灯圧縮方法、斜回転切り圧縮方法、熱切断圧縮方法等種々の減容圧縮方法が可能となり再商品化時におけるペットボトル廃棄物の輸送運賃コストが大幅に低減されることになり経済的効果が非常に大きい。
【0025】
前記前精製工程を経て得られた粗製BHETと粗製エチレングリコールの二種混合溶液に蒸留・蒸発操作を施してエチレングリコールを分離・留出させて濃縮BHETを得る、もしくは二種混合溶液を10℃以下まで冷却してBHETを晶析させた後エチレングリコールとBHETを固液分離することにより濃縮BHETを得て、この濃縮BHETを190℃を越え250℃以下の温度で且つ蒸発器内での濃縮BHETの滞留時間が10分以下となるように真空蒸発させて精製ビス−β−ヒドロキシエチルテレフタレートを得る。
【0026】
BHETは熱的に非常に不安定であり、この真空蒸発は190℃ 〜250℃、0.1〜0.5mmHgの条件下で素早く蒸発させることが必要となる。真空蒸発に際しては、ポリエチレンテレフタレート重合時の触媒、安定剤、原料ポリエチレンテレフタレート廃棄物に混入する不純物が蒸発器の伝熱面に濃縮固着して種々のトラブルを引き起こす。高真空下の蒸発ではこれらの不純物が飛散、同伴され、精製BHET中に混入したり、BHETの重縮合によるエチレングリコールの生成等によって、真空系の能力低下、蒸発温度の上昇、BHETの熱分解に至り、更なる蒸発器の伝熱を阻害するという悪循環を引き起こすだけでなく、蒸発器底部の詰まりをも誘発する。本発明では、前記のように吸着処理及びイオン交換処理を施して着色物と溶存イオンを除去するので真空蒸発器の寿命を向上させることができる。
【0027】
上記真空蒸発では、できるだけ温度と滞留時間を下げるのが望ましいが、真空蒸発において安定した真空度を維持できる実用的な条件として0.1〜0.5mmHg程度とするのが適当である。また、滞留時間はできるだけ短い方が好ましいが、物理的に限界があり、真空蒸発器の処理能力、蒸発潜熱等により、10分以内とするのが適当である。
【0028】
上記のようにして高純度の精製BHETが得られたら、この精製BHETを溶融重縮合反応器に仕込んで高純度ポリエチレンテレフタレートポリマーを得る。
【0029】
本発明では、上記の通り、ポリエチレンテレフタレート廃棄物から精製BHETを経て高純度ポリエチレンテレフタレートポリマー製造するが、その利点は次の通りである。すなわち、ポリエチレンテレフタレートとエチレングリコールを用いてBHETとし、このBHETを再度ポリエチレンテレフタレートとエチレングリコールにするので、副生成物が生じず、エチレングリコールの補給も原則として不要である。また、BHETに重合触媒を加え、真空下で加熱重合すると、このBHET中には環状オリゴマーがないので高品質のポリエチレンテレフタレートポリマーが得られる。
【0030】
図1は、上記リサイクル処理によって得られた高純度BHETを中間原料として各種ポリエチレンテレフタレート製品を製造する工程を表すもので、高純度BHETを中間原料として得られるポリエチレン重合物(ポリマー)を製膜設備でポリエチレンテレフタレートフィルムにして各種ポリエチレンテレフタレートフィルム製品群とすることもできるし、上記ポリマーを製糸設備でポリエチレンテレフタレート原糸、綿とし、高級繊維衣料、カーペット、タイヤコード、自動車内装材等の製品とすることもできる。また、上記ポリマーを固相重合設備で必要な処理をすることにより、エンジニアリングプラスチック製品群やペットボトル製品群の原料とすることもできる。
【0031】
本発明のリサイクル法によれば、使用済みポリエチレンテレフタレート製品をポリエチレンテレフタレート製品群の中間原料に返した後、再度市販用のポリエチレンテレフタレート製品群を生産することができるので、ほぼ完全な「閉リサイクルシステム」を可能とし、使用済みポリエチレンテレフタレート製品を将来も一般・産業廃棄物として焼却、埋立等の最終処分をする必要がなくなる。このため、最終目的とする省資源、省エネルギーを達成することができる。
【0032】
【実施例】
市町村によって分別収集・回収されたペットボトルベール(ベール寸法:40cm×40cm×60cmの18Kgベール)をカッターナイフ付き湿式粉砕機に投入し、水1,000リッターに対して500gの液体台所洗剤を加えたものを、流量2.3m3 /Hrでポンプによって上記湿式粉砕機の仕込口と粉砕機の底部スクリーン下の水受との間を循環させつつ粉砕を行い、粉砕機に接続している比重分離機によって金属、砂、ガラス等の比重の大きいものを沈殿させ、上層部から洗剤入りの水とフレークの混合物を水受の上に設けたスクリーンに流し、フレークを取り出した。このフレークを純水で濯ぎ、遠心脱水して回収フレークとした。
【0033】
該回収フレークを未乾燥の状態で溶融したもの30Kg を230リッターの攪拌機付きオートクレーブ中で、予め180℃まで加熱しておいたエチレングリコール150Kg、酢酸亜鉛2水和物150gの混合液中に仕込み、水・酢酸の如きエチレングリコールよりも沸点の低い溜分を除去した後、還流コンデンサーを作動させて常圧下で195〜200℃の温度で3.5時間反応させた。
【0034】
反応終了後、攪拌しつつ197℃の反応器内容物温度を97〜98℃まで降温し、325メッシュのステンレス金網フィルターで熱時濾過して浮遊物及び沈殿物を除去した。
【0035】
熱時濾過後の濾液を更に50℃まで冷却し、粗製BHETが完全に溶解していることを確認した後、50〜51℃で活性炭床、次いでアニオン/カチオン交換混合床を30分間かけて通し、前精製処理を施した。前精製処理液の着色検査は目視により行い、残存イオン量の検査は導電率測定により行った。着色検査結果は十分に純白・良好であり、導電率検査ではイオン除去前200μS/cmであったものがイオン除去後では2μS/cmまで減少していた。
【0036】
上記の前精製処理液を再度230リッターの攪拌式オートクレーブに仕込み、加熱して余剰のエチレングリコールを198℃で常圧留出させ、濃縮BHETの溶融液を得た。
【0037】
得られた濃縮BHETの溶融液を、窒素ガス雰囲気下で攪拌しつつ、130℃まで自然降温した後、オートクレーブから取り出し、濃縮BHETの細片ブロックを得た。
【0038】
得られた濃縮BHETの細片ブロックには殆ど着色は見られなかった。この細片ブロックを再度130℃まで加熱・溶融した後、定量ポンプにて薄膜真空蒸発器に供給し、237℃、0.5mmHg abs.にて薄膜蒸発器内の滞留時間を5分間で蒸発させ、冷却凝縮して精製BHETを得た。得られた精製BHETの分析結果は次の通りであり、市販の試薬グレードBHETの品質と同等であった。
【0039】
【表1】

Figure 0003715812
【0040】
なお、光学密度とは、BHET の品質評価法であり、着色物含有量に比例的であると考えられている値である。具体的には、BHET の10%メタノール溶液の吸光度を波長380nmセル、セル長10mmで測定した値である。
【0041】
この精製BHETを原料としてビーカースケールの溶融重合を行い、ポリエチレンテレフタレートポリマーを得た。得られたポリエチレンテレフタレートポリマーの品質は以下の通りであり、バージンの市販ポリエチレンテレフタレートペレットの品質と同等であった。
【0042】
【表2】
Figure 0003715812
【0043】
比較例
[0035]項の前精製処理を省略した以外は実施例と同様の方法によって精製BHETを得た。得られた精製BHETの光学密度は4.677であった。また、蒸発終了後に薄膜蒸発器の伝熱面には一様にうすい灰白色のスケールの存在を認め、温度90〜95℃、濃度15%の水酸化ナトリウムで洗浄を行う必要があった。
【0044】
【発明の効果】
以上に説明した如く、本発明にかかるポリエチレンテレフタレート廃棄物のケミカルリサイクル方法は、ポリエチレンテレフタレート廃棄物を一旦高純度の精製BHETとし、これらを中間原料として再度高純度ポリエチレンテレフタレート製品群を製造するものであるから、使用済みポリエチレンテレフタレート製品のリサイクルを閉リサイクルシステムで行うことが可能となり、一般・産業廃棄物として、焼却処理や埋立処理を行う必要がなく、目的とする省資源、省エネルギーを達成することが可能となる。本方式のリサイクルシステムによれば、ポリエチレンテレフタレート製の使用済みのボトル、フィルム、衣料、自動車内装材(シュレダーダスト)を高純度ポリエチレンテレフタレートにリサイクルするだけでなく、ポリエチレンテレフタレート以外の使用済みポリエステル系材料、例えば、ポリブチレンテレフタレート、液晶ポリエステル、ポリエチレンナフタレートを再度高純度のポリエステル系材料にリサイクルすることが可能である。
【図面の簡単な説明】
【図 1】 ペットボトルを例とした本発明のリサイクルシステムとフローチャートを表す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to chemical recycling process of Po triethylene terephthalate waste.
[0002]
[Prior art]
Polyethylene terephthalate products has been increasing year by year (bottle container, film, fiber the other) the consumption of, inter alia consumption increase in the amount of polyethylene terephthalate bottles (PET bottles) is remarkable, as viewed in a roughly even only plastic bottles, 1997 200,000 tons, 260,000 tons were consumed in 1998, and in 2000 the consumption is expected to reach 300,000 tons. In the future, the consumption of polyethylene terephthalate products is expected to increase year by year, and improving the recovery rate and recycling rate of used polyethylene terephthalate products is an essential proposition on a global scale.
[0003]
Speaking of PET bottles, one of the polyethylene terephthalate products, recently, separate collection and recycling of used PET bottles has become mandatory by law, and the government and the private sector are working together to collect and recycle used PET bottles. Although we are making efforts, at present the recycling rate is about 5-7%, which is low compared to other countries, and has not yet reached the target value. In order to improve the recovery rate, it is necessary for the government and the private sector to cooperate to construct an effective collection system. On the other hand, increasing the recycling rate of collected plastic bottles is also a resource and energy conservation viewpoint. It has become a big issue.
[0004]
Conventionally, collected plastic bottles are sorted, volume-reduced and compressed by municipalities into veils (for example, about 40 × 40 × 60 cm) of plastic bottles and delivered to re-commercialization companies. The re-commercializing company unraveles this, separates foreign matters such as metal and vinyl chloride bottles, and after washing, further separates colored bottles, and then pulverizes them to separate labels, aluminum, and the like. Furthermore, after washing, plastic other than polyethylene terephthalate is separated, dehydrated and dried, and then the metal is further separated by magnetic force to obtain flakes or pellets.
[0005]
The flakes or pellets are sent to a user, who uses the flakes or pellets as raw materials for products other than PET bottles such as carpets, eggs and other packaging films, and short fibers.
[0006]
[Problems to be solved by the invention]
However, the conventional recovery method, so-called material recycling method, has the following problems. First, in the current Material Recycling Law, there is a large amount of dust and foreign matter, so the recovery rate at the re-commercializing company is low, and the problem of foreign matter contamination has not been completely solved. The quality variation with quantity is large. There is also a problem that the sales market is small because the types of products that can be regenerated from flakes or pellets are limited for hygiene reasons. For this reason, PET bottles are only slightly recycled. In addition, PET bottles other than those designated as Type 2 (for soft drinks, soy sauce, liquor) that are currently subject to separate collection and re-commercialization, such as cooking oil, mayonnaise, and PET bottles that cannot be easily washed However, this kind of plastic bottle cannot be processed with the current recycling method.
[0007]
As described above, currently produced and marketed PET bottles are all general and industrial waste after use unless recycling from PET bottles to PET bottles is realized. Anything that is recycled is destined to become general and waste. This also applies to other polyethylene terephthalate products. This kind of general / industrial waste requires final disposal such as incineration or landfill, but these treatments involve environmental pollution and are difficult to continue. In addition, such a treatment method still has a big problem from the viewpoint of resource saving and energy saving.
[0008]
Accordingly, the present invention is purified in the once-bis -β- hydroxyethyl terephthalate which is an intermediate raw material of polyethylene terephthalate Manufacturing flakes or pellets of collected used PET bottles from the market, high purity again is an object to be able to produce polyethylene terephthalate in.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor has reached the present invention as a result of intensive investigations on a method for obtaining a high-purity polyethylene terephthalate intermediate raw material and product using polyethylene terephthalate waste containing impurities and foreign substances as a starting material . . That is, the present onset Ming, ground to a port triethylene terephthalate waste, washed, flakes or pellets of crude polyethylene terephthalate obtained in the pretreatment step of obtaining a flake or pellet of crude polyethylene terephthalate subjected to a pretreatment of the foreign matter fractionation A depolymerization step of obtaining a crude bis-β-hydroxyethyl terephthalate (BHET) by depolymerization in the presence of a catalyst using an excess of purified and / or crude ethylene glycol, and the obtained crude BHET and crude ethylene glycol different plastic及 beauty / or metal polyethylene terephthalate except from the two-kinds-mixed solution, glass, and the foreign matter removing step of removing solid contaminants and / or precipitates such as sand, obtained crude BHET and the crude ethylene Removes colored substances and / or dissolved ions from a binary mixture of glycols The pre-purification step and the binary mixed solution that has undergone the pre-purification step are subjected to distillation / evaporation operation to evaporate and distill off ethylene glycol to obtain concentrated BHET, or the binary mixed solution is cooled to 10 ° C. or lower. A BHET concentration step of obtaining concentrated BHET by solid-liquid separation of ethylene glycol and BHET after crystallization of BHET, and the obtained concentrated BHET at a temperature higher than 190 ° C and lower than 250 ° C and in an evaporator BHET purification step for obtaining purified bis-β-hydroxyethyl terephthalate by vacuum evaporation so that the residence time of concentrated BHET is 10 minutes or less, and the obtained purified BHET and / or the concentration obtained in the BHET concentration step Polyethylene terephthalate polymer to obtain high purity polyethylene terephthalate polymer by melt polycondensation using BHET as raw material Through the mer generation step is a chemical recycling process of polyethylene terephthalate waste, characterized in that polyethylene terephthalate waste to obtain a high-purity polyethylene terephthalate polymer of.
[0010]
Wherein the pretreated crude polyethylene terephthalate obtained in step phthalate flakes or pellets centrifugal dehydrated when melted in watery state extent is hydrolyzed simultaneously polymerization degree of less polyethylene terephthalate melt, excess the polyethylene terephthalate melt It is effective to perform a depolymerization treatment with ethylene glycol.
[0011]
Adsorption and / or ion exchange function at 100 ° C. or less with the crude BHET concentration in the mixed solution of crude BHET and crude ethylene glycol obtained through the foreign matter removing step being 10 to 50 wt%, preferably 15 to 35 wt% And a pre-purification process that removes colored substances and / or dissolved ions using a known adsorbent and / or ion exchange resin at a temperature at which crude BHET does not crystallize. Distilled / evaporated ethylene glycol to obtain concentrated BHET by distilling or evaporating the mixed solution, or cooling the mixed solution to 10 ° C. or lower to crystallize BHET and then ethylene glycol And BHET are obtained by solid-liquid separation to obtain concentrated BHET, and this concentrated BHET is heated to a temperature exceeding 190 ° C and lower than 250 ° C in an evaporator. The residence time of the concentrated BHET is preferably set to evaporated in vacuo purified bis -β- hydroxyethyl terephthalate to be equal to or less than 10 minutes.
[0012]
The ethylene glycol separated in the BHET concentration step is directly recycled again to the depolymerization step, or after being recycled and / or purified by a known operation such as distillation, the ethylene glycol is recycled again to the depolymerization step. This is economical.
[0013]
It is also possible to recycle most of the can residue generated in the BHET purification step and / or most of the can residue generated when purifying the ethylene glycol separated in the BHET concentration step to the depolymerization step again. It is effective in improving.
[0014]
In the foreign substance removing step, the polyethylene mixed in polyethylene terephthalate waste, polystyrene, polypropylene, such as vinyl chloride, different plastics other than polyethylene terephthalate are compatible with each other, it tends to become eutectic mixture, moreover depolymerization reaction completion Since it is insoluble in the later mixed solution of crude BHET and crude ethylene glycol and has a specific gravity smaller than that of the mixed solution of the two types, the layers are separated as a eutectic mixed float layer of a different plastic other than polyethylene terephthalate. Therefore, if the eutectic mixed suspended material layer is extracted from the depolymerization tank, it is possible to effectively remove the different plastic.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with specific examples. FIG. 1 is a flowchart specifically showing the chemical recycling method of the present invention. In this embodiment, a bale obtained by reducing and compressing a used PET bottle is used as a starting material. This plastic bottle veil is manufactured by a publicly known method currently employed by municipalities. Of course, other polyethylene terephthalate waste may be used as the starting material instead of the PET bottle veil, and PET bottle flakes may be used as the starting material.
[0016]
Reduce the volume of compressed PET bottle waste, and continuously put it into a crusher without unpacking it into a pulverizer, inject hot water or room temperature water, or warm water or room temperature water containing detergent, and pulverize it in water. . As described above, since the plastic bottle veil is pulverized without being unpacked, the workability can be improved and the health and safety measures are effective. Further, the cleaning effect is extremely enhanced by performing cleaning using the energy of mixing and friction during pulverization, and the removal of edible oil, machine oil, and the like is easily performed by the cleaning agent. Therefore, a high cleaning effect can be obtained.
[0017]
Further, the mixture of PET bottle flakes or pellets and washing water discharged from the pulverizer is immediately subjected to a specific gravity separation process to separate impurities, such as metal, stone, glass, sand, and flakes or pellets . Next, the flakes or pellets and the washing water are separated, and the flakes or pellets are rinsed with ion-exchanged water and centrifuged and dehydrated. The separated washing water and rinsing water after use are filtered and reused as the above-mentioned water for grinding in water, and the waste water is subjected to waste water treatment. In this way, the pretreatment process is greatly simplified. Therefore, the pretreatment process can be easily automated. In addition, since effective crushing and washing are performed in this way, there is no problem even if the contents in the PET bottle remain according to the present invention.
[0018]
Depolymerizing flakes or pellets of crude polyethylene terephthalate obtained in the above pretreatment step, but in this case, the centrifugal dehydrated degree of simultaneously melting at high states of water by hydrolytic polymerization degree of less polyethylene terephthalate melt It is effective to perform depolymerization by reacting the polyethylene terephthalate melt with an excess of ethylene glycol in the presence of a known esterification catalyst and a known catalyst concentration. Known esterification catalysts include, for example, zinc acetate, zinc borate, zinc / magnesium / calcium / cobalt / antimony / barium fatty acid salts described in “Saturated Polyester Resin Handbook” published by Nikkan Kogyo Shimbun in 1985, zinc Examples include carbonates of magnesium, calcium, cobalt, antimony, and barium, methylates of sodium and magnesium, metal sodium, metal magnesium, and oxides of zinc, antimony, lead, and germanium. In particular, according to the present invention, the crystallization treatment and the whitened portion can be used without any problem to increase the strength of the PET bottle and improve the dimensional stability, and the crystallization treatment and the depolymerization of the whitened portion can be performed. This method is effective for this.
[0019]
The melted and hydrolyzed polyethylene terephthalate melt having a low degree of polymerization is depolymerized with an excess of ethylene glycol to obtain a binary mixed solution of crude BHET and crude ethylene glycol. Different plastics other than polyethylene terephthalate brought into the polyethylene terephthalate waste may be mixed in this two-mixed solution, but these other plastics such as polyethylene, polystyrene, polypropylene, and vinyl chloride are compatible with each other. It is insoluble in the binary mixed solution of crude BHET and crude ethylene glycol, and can easily be placed on top of the binary mixed solution as a eutectic mixed float of different plastics due to the difference in specific gravity with the binary mixed solution. Since the layers are separated, if the eutectic mixed suspended material layer is extracted from the depolymerization tank, the different plastics can be effectively removed.
[0020]
Usually, it is said that a considerable amount of linear oligomer having a degree of polymerization of about 2 to 4 remains in the crude BHET obtained by depolymerization of polyethylene terephthalate, but the mixing ratio of polyethylene terephthalate and ethylene glycol during depolymerization, The linear oligomer can be hardly left in the crude BHET obtained by the depolymerization of this method by appropriately selecting the polymerization temperature and pressure, and the depolymerization catalyst, which is preferable for improving the yield. .
[0021]
Usually, in the crude BHET, about several percent of cyclic oligomers are present in addition to linear oligomers. This cyclic oligomer has a melting point much higher than that of polyethylene terephthalate and is 325 to 327 ° C., which adversely affects the product during and after the molding of the PET bottle. According to the present invention, purified bis-β-hydroxyethyl terephthalate containing no cyclic oligomer is obtained, so that very good quality polyethylene terephthalate can be obtained.
[0022]
The temperature of the mixed solution of crude BHET and crude ethylene glycol after the completion of the depolymerization reaction is lowered, filtered, and unreacted linear and cyclic oligomers as high-melting-point precipitates, coagulated solids of residual plastic other than polyethylene terephthalate, By removing solid foreign substances such as metals and then performing adsorption / ion exchange treatment to remove colored substances and dissolved ions, all harmful foreign substances contained in the crude BHET can be removed.
[0023]
The pre-purification step removes the colorant accompanying the raw material and / or the colored matter due to thermal deterioration of the organic substance, and further, sugars adhering to the polyethylene terephthalate, salts, catalyst ions at the time of polymerizing polyethylene terephthalate, added stabilizer, The yin and yang ions mixed from other processes are removed. The pre-purification step is extremely important. When only the decolorization treatment in a binary mixed solution of crude BHET and crude ethylene glycol is performed to evaporate and distill ethylene glycol, the crude purification is performed at a temperature exceeding 110 to 120 ° C. A mixed solution of BHET and crude ethylene glycol is colored light brown to brown. It was found that the cause was the thermal decomposition coloring behavior involving both coexisting yin and yang ions. In addition, the formation of scale on the heat transfer surface in the vacuum evaporation process of concentrated BHET and the prevention of BHET decomposition and polymerization promotion were prevented. As a result, it was found that the process can be stabilized and the purity of the purified BHET can be maintained.
[0024]
Since effective foreign substance removal and pre-purification are performed in this way, mixing of different plastics other than polyethylene terephthalate is allowed, and according to the present invention, the types of PET bottle waste that can be re-commercialized Will be expanded to all PET bottles as well as the second type designated container, and it will be possible to greatly improve the recycling rate of PET bottles. In addition, as for the volume reduction compression method currently used by municipalities, only the side compression method is currently adopted due to restrictions from the process of re-commercializing PET bottle waste. According to the present invention, various volume reduction compression methods such as a lantern compression method, an oblique rotation cutting compression method, and a thermal cutting compression method are possible, and the transportation fare cost of PET bottle waste at the time of re-commercialization is greatly reduced. The economic effect is very large.
[0025]
Distillation / evaporation operation is performed on the mixed solution of crude BHET and crude ethylene glycol obtained through the pre-purification step to separate and distill ethylene glycol to obtain concentrated BHET, or the mixed solution of 10 ° C. After cooling to below and crystallizing BHET, ethylene glycol and BHET were separated into solid and liquid to obtain concentrated BHET. The concentrated BHET was concentrated at a temperature exceeding 190 ° C. and below 250 ° C. in an evaporator. Purified bis-β-hydroxyethyl terephthalate is obtained by vacuum evaporation so that the residence time of BHET is 10 minutes or less.
[0026]
BHET is very unstable thermally, and this vacuum evaporation requires rapid evaporation under the conditions of 190 ° C. to 250 ° C. and 0.1 to 0.5 mmHg. At the time of vacuum evaporation, the impurities mixed in the catalyst, stabilizer, and raw polyethylene terephthalate waste during the polymerization of polyethylene terephthalate concentrate on the heat transfer surface of the evaporator and cause various troubles. In evaporation under high vacuum, these impurities are scattered and entrained, mixed into purified BHET, or by the production of ethylene glycol by polycondensation of BHET, resulting in reduced vacuum system capacity, increased evaporation temperature, and thermal decomposition of BHET. This leads not only to a vicious cycle of inhibiting further heat transfer of the evaporator, but also to clogging the bottom of the evaporator. In the present invention, the life of the vacuum evaporator can be improved because the colored material and dissolved ions are removed by performing the adsorption treatment and the ion exchange treatment as described above.
[0027]
In the vacuum evaporation, it is desirable to reduce the temperature and the residence time as much as possible. However, it is appropriate to set the pressure to about 0.1 to 0.5 mmHg as a practical condition for maintaining a stable degree of vacuum in the vacuum evaporation. The residence time is preferably as short as possible, but is physically limited, and is suitably within 10 minutes depending on the processing capacity of the vacuum evaporator, latent heat of vaporization, and the like.
[0028]
When purified BHET having high purity is obtained as described above, this purified BHET is charged into a melt polycondensation reactor to obtain a high purity polyethylene terephthalate polymer.
[0029]
In the present invention, as described above, high-purity polyethylene terephthalate polymer is produced from polyethylene terephthalate waste through purified BHET, and the advantages are as follows. In other words, polyethylene terephthalate and ethylene glycol are used to make BHET, and this BHET is again made into polyethylene terephthalate and ethylene glycol. Therefore, no by-product is produced, and ethylene glycol replenishment is unnecessary in principle. Further, when a polymerization catalyst is added to BHET and heat polymerization is performed under vacuum, a high-quality polyethylene terephthalate polymer can be obtained because there is no cyclic oligomer in BHET.
[0030]
FIG. 1 shows a process for producing various polyethylene terephthalate products using high-purity BHET obtained by the above recycling process as an intermediate raw material. A polyethylene polymer (polymer) obtained using high-purity BHET as an intermediate raw material is formed into a film. It can be made into various polyethylene terephthalate film product groups with polyethylene terephthalate film, and the above polymer is made into polyethylene terephthalate raw yarn and cotton with yarn making equipment, and it is made into products such as high-grade textile clothing, carpets, tire cords, automobile interior materials, etc. You can also. Moreover, the said polymer can also be made into the raw material of an engineering plastic product group or a plastic bottle product group by processing required in a solid-phase polymerization equipment.
[0031]
According to the recycling method of the present invention, after the used polyethylene terephthalate product is returned to the intermediate raw material of the polyethylene terephthalate product group, a commercially available polyethylene terephthalate product group can be produced again. , And it is no longer necessary to dispose of used polyethylene terephthalate products as general and industrial waste in the future, such as incineration and landfill. For this reason, it is possible to achieve resource and energy savings as the final objective.
[0032]
【Example】
PET bottle veil collected and collected by municipalities (bale size: 40cm x 40cm x 60cm 18Kg bale) is put into a wet crusher with a cutter knife, and 500g of liquid kitchen detergent is added to 1,000 liters of water. The specific gravity connected to the pulverizer is pulverized while circulating between the feed port of the wet pulverizer and the water receiver under the bottom screen of the pulverizer at a flow rate of 2.3 m 3 / Hr. A separator having a high specific gravity such as metal, sand, and glass was precipitated, and a mixture of detergent-containing water and flakes was poured from an upper layer portion onto a screen provided on a water tray, and the flakes were taken out. The flakes were rinsed with pure water and centrifuged to obtain recovered flakes.
[0033]
30 kg of the recovered flake melted in an undried state was charged in a mixture of 150 kg of ethylene glycol and 150 g of zinc acetate dihydrate previously heated to 180 ° C. in a 230 liter autoclave equipped with a stirrer. After removing a fraction having a boiling point lower than that of ethylene glycol such as water and acetic acid, the reflux condenser was operated to react at a temperature of 195 to 200 ° C. for 3.5 hours under normal pressure.
[0034]
After completion of the reaction, the temperature of the reactor contents at 197 ° C. was lowered to 97 to 98 ° C. while stirring, and filtered while hot through a 325 mesh stainless steel wire filter to remove suspended matters and precipitates.
[0035]
The filtrate after hot filtration is further cooled to 50 ° C., and after confirming that the crude BHET is completely dissolved, the activated carbon bed and then the anion / cation exchange mixed bed are passed over 30 minutes at 50 to 51 ° C. A pre-purification treatment was performed. The pre-purification treatment liquid was visually inspected, and the residual ion amount was inspected by measuring the conductivity. The result of the color inspection was sufficiently pure white and good, and in the conductivity test, it was 200 μS / cm before the ion removal but decreased to 2 μS / cm after the ion removal.
[0036]
The above prepurified liquid was again charged in a 230 liter stirring autoclave and heated to distill excess ethylene glycol at 198 ° C. at normal pressure to obtain a concentrated BHET melt.
[0037]
The obtained concentrated BHET melt was naturally cooled to 130 ° C. while stirring in a nitrogen gas atmosphere, and then taken out from the autoclave to obtain a concentrated BHET strip block.
[0038]
The resulting concentrated BHET strip block was hardly colored. The strip block was again heated to 130 ° C. and melted, and then supplied to a thin film vacuum evaporator with a metering pump, and then fed at 237 ° C., 0.5 mmHg abs. To evaporate the residence time in the thin film evaporator in 5 minutes, cooled and condensed to obtain purified BHET. The analysis result of the obtained purified BHET was as follows and was equivalent to the quality of commercially available reagent grade BHET.
[0039]
[Table 1]
Figure 0003715812
[0040]
The optical density is a method for evaluating the quality of BHET and is a value considered to be proportional to the content of colored substances. Specifically, it is a value obtained by measuring the absorbance of a 10% methanol solution of BHET with a wavelength of 380 nm cell and a cell length of 10 mm.
[0041]
Using this purified BHET as a raw material, beaker-scale melt polymerization was performed to obtain a polyethylene terephthalate polymer. The quality of the obtained polyethylene terephthalate polymer was as follows and was equivalent to the quality of virgin commercially available polyethylene terephthalate pellets.
[0042]
[Table 2]
Figure 0003715812
[0043]
Purified BHET was obtained by the same method as in Example except that the pre-purification treatment in the Comparative Example [0035] section was omitted. The obtained purified BHET had an optical density of 4.677. Further, after the evaporation was completed, the presence of a light grayish white scale was observed uniformly on the heat transfer surface of the thin film evaporator, and it was necessary to wash with sodium hydroxide having a temperature of 90 to 95 ° C. and a concentration of 15%.
[0044]
【The invention's effect】
As described above, chemical recycling process of polyethylene terephthalate waste according to the present invention are those which the port triethylene terephthalate waste once the high purity of the purified BHET, producing these high purity polyethylene terephthalate products again as an intermediate material Therefore, it is possible to recycle used polyethylene terephthalate products in a closed recycling system, eliminating the need for incineration and landfill treatment as general and industrial waste, and achieving the desired resource and energy savings. It becomes possible. This recycling system not only recycles polyethylene terephthalate used bottles, films, clothing, and car interior materials (shredder dust) to high-purity polyethylene terephthalate, but also used polyester materials other than polyethylene terephthalate. For example, it is possible to recycle polybutylene terephthalate, liquid crystal polyester, and polyethylene naphthalate to a high-purity polyester material again.
[Brief description of the drawings]
FIG. 1 is a diagram showing a recycling system and a flowchart of the present invention taking a PET bottle as an example.

Claims (7)

リエチレンテレフタレート廃棄物に粉砕、洗浄、異物分別の前処理を施して粗製ポリエチレンテレフタレートフレーク若しくはペレットを得る前処理工程得られた粗製ポリエチレンテレフタレートフレーク若しくはペレットを過剰の精製及び/又は粗製のエチレングリコールを用いて触媒の存在下で解重合を行い粗製ビス−β−ヒドロキシエチルテレフタレート(BHET)を得る解重合工程と、得られた粗製BHETと粗製エチレングリコールの二種混合溶液中からポリエチレンテレフタレート以の異プラスチック、及び/又は金属、ガラス、砂の固形異物、及び/又は沈殿物を除去する異物除去工程と、得られた粗製BHETと粗製エチレングリコールの二種混合溶液中から着色物及び/又は溶存イオンを除去する前精製工程と、前精製工程を経た二種混合溶液に蒸留・蒸発操作を施してエチレングリコールを蒸発・留去させて濃縮BHETを得るか、もしくは二種混合溶液を10℃以下まで冷却してBHETを晶析させた後エチレングリコールとBHETを固液分離することにより濃縮BHETを得るBHET濃縮工程と、得られた濃縮BHETを190℃を越え250℃以下の温度で且つ蒸発器内での濃縮BHETの滞留時間が10分以下となるように真空蒸発させることにより精製ビス−β−ヒドロキシエチルテレフタレートを得るBHET精製工程と、得られた精製BHET及び/又は前記BHET濃縮工程で得られた濃縮BHETを原料として溶融重縮合し高純度ポリエチレンテレフタレートポリマーを得るポリエチレンテレフタレートポリマー生成工程とを経てポリエチレンテレフタレート廃棄物から高純度のポリエチレンテレフタレート重合物を得ることを特徴とするポリエチレンテレフタレート廃棄物のケミカルリサイクル方法。Ground to port triethylene terephthalate waste, washing, foreign matters fractionation pretreatment alms crude Po triethylene terephthalate flakes or pellets obtained in flakes or pellets of crude polyethylene terephthalate obtained in the pretreatment step over purification and / or From the depolymerization step in which crude ethylene glycol is depolymerized in the presence of a catalyst to obtain crude bis-β-hydroxyethyl terephthalate (BHET), and in the resulting mixed solution of crude BHET and crude ethylene glycol polyethylene terephthalate other than different plastics,及 beauty / or metal, glass, solid foreign matters such as sand, and / or a foreign matter removing step of removing the precipitate, two of the obtained crude BHET and the crude ethylene glycol colorings and / or purified prior to removing dissolved ions from the mixed solution Then, the binary mixed solution that has undergone the pre-purification step is subjected to distillation / evaporation operation to evaporate / evaporate ethylene glycol to obtain concentrated BHET, or the binary mixed solution is cooled to 10 ° C. or lower to obtain BHET. A BHET concentration step in which concentrated BHET is obtained by solid-liquid separation of ethylene glycol and BHET after crystallization, and the obtained concentrated BHET is heated to a temperature exceeding 190 ° C and lower than 250 ° C and in the evaporator. BHET purification step for obtaining purified bis-β-hydroxyethyl terephthalate by vacuum evaporation so that the residence time is 10 minutes or less, and the obtained purified BHET and / or the concentrated BHET obtained in the BHET concentration step as raw materials Polyethylene terephthalate polymer generator to obtain high purity polyethylene terephthalate polymer by melt polycondensation Chemical recycling methods polyethylene terephthalate waste, characterized in that polyethylene terephthalate waste to obtain a high-purity polyethylene terephthalate polymer of via and. 前記前処理工程で得られる粗製ポリエチレンテレフタレートフレーク若しくはペレットを遠心脱水された程度の水分の多い状態で溶融すると同時に加水分解させ重合度の低いポリエチレンテレフタレート溶融物とし、該ポリエチレンテレフタレート溶融物を過剰のエチレングリコールで解重合処理する請求項1に記載のポリエチレンテレフタレート廃棄物のケミカルリサイクル方法。Wherein the pretreated crude polyethylene terephthalate obtained in step phthalate flakes or pellets centrifugal dehydrated extent of the melt at high states of water is hydrolyzed at the same time the degree of polymerization of lower polyethylene terephthalate melt, excess the polyethylene terephthalate melt The method for chemically recycling polyethylene terephthalate waste according to claim 1, wherein the depolymerization is performed with ethylene glycol. 前記異物除去工程を経て得られた粗製BHETと粗製エチレングリコールの二種混合溶液中の粗製BHET濃度を10乃至50wt%とし、100℃以下の吸着及び/又はイオン交換機能が発揮され且つ粗製BHETが晶出しない温度で吸着剤及び/又はイオン交換樹脂を使用して着色物及び/又は溶存イオンを除去する請求項1又は2に記載のポリエチレンテレフタレート廃棄物のケミカルリサイクル方法。The crude BHET concentration in the binary mixed solution of crude BHET and crude ethylene glycol obtained through the foreign matter removing step is 10 to 50 wt %, and adsorption and / or ion exchange functions at 100 ° C. or less are exhibited and crude BHET Chemical recycling methods polyethylene terephthalate waste according to claim 1 or 2 but removing color bodies and / or dissolved ions using adsorbents and / or ion-exchange resin at a temperature not crystallize. 前記BHET濃縮工程において分離されたエチレングリコールを直接再度前記解重合工程へリサイクルするか、もしくは該エチレングリコールを蒸留等の精製操作により精製した後、再度解重合工程へリサイクルする請求項1乃至3のいずれかに記載のポリエチレンテレフタレート廃棄物のケミカルリサイクル方法。After purification by the BHET or recycling the separated ethylene glycol directly again the depolymerization step in the concentration step, or refining operations such as distillation and the ethylene glycol, to claim 1 for recycling back into the depolymerization step 4. The chemical recycling method for polyethylene terephthalate waste according to any one of 3 above. 前記BHET精製工程において生じる缶残の大部分、及び/又は前記BHET濃縮工程において分離されたエチレングリコールを精製する際に生じる缶残の大部分を再度前記解重合工程へリサイクルする請求項1乃至4のいずれかに記載のポリエチレンテレフタレート廃棄物のケミカルリサイクル方法。5. The majority of the can residue produced in the BHET purification step and / or the majority of the can residue produced when purifying ethylene glycol separated in the BHET concentration step is recycled to the depolymerization step again. A method for chemically recycling polyethylene terephthalate waste according to any one of the above. 前記異物除去工程において、ポリエチレンテレフタレート廃棄物中に混在するポリエチレンテレフタレート以外の異プラスチックを、解重合反応終了後の粗製BHETと粗製エチレングリコールの二種混合溶液に対して不溶性で、且つ該二種混合溶液よりも比重の小さいポリエチレンテレフタレート以外の異プラスチックの共融混合浮遊物層として層分離させた後、該共融混合浮遊物層を解重合槽から抜き出し除去する請求項1乃至5のいずれかに記載のポリエチレンテレフタレート廃棄物のケミカルリサイクル方法。In the foreign substance removing step, the polyethylene terephthalate non different plastics mixed in polyethylene terephthalate waste, insoluble against two mixed solution of the crude BHET and the crude ethylene glycol after depolymerization reaction was completed, and the two 6. The layer of eutectic mixed suspended matter of a different plastic other than polyethylene terephthalate having a specific gravity smaller than that of the mixed solution is separated, and then the eutectic mixed suspended matter layer is extracted from the depolymerization tank and removed. A method for chemically recycling polyethylene terephthalate waste according to claim 1. ポリエチレンテレフタレート廃棄物の梱包ベールを解梱包することなく梱包状態のままで粉砕機に投入し、該ポリエチレンテレフタレート廃棄物を粉砕しつつ粉砕機内に温水もしくは常温水又は洗剤を含有する温水もしくは常温水を注入して、粉砕時の混合及び摩擦によりポリエチレンテレフタレート内外面の付着異物及び/又はポリエチレンテレフタレート容器内の中味残査を洗浄除去した後、プラスチックと金属、ガラス、砂等を比重分離し、プラスチッ 清澄水で濯ぎ、脱水処理してポリエチレンテレフタレート廃棄物のフレーク若しくはペレットを得る請求項1乃至6のいずれかに記載のポリエチレンテレフタレート廃棄物のケミカルリサイクル方法。Packing the polyethylene terephthalate waste packaging bale without unpacking it, put it into the crusher as it is packed, and crush the polyethylene terephthalate waste with warm water or room temperature water or hot water or room temperature water containing detergent in the crusher injected, after washing away the contents residue adhesion foreign substances and / or polyethylene terephthalate container of polyethylene terephthalate in the outer surface, plastic and metal, glass, sand and gravity separation by mixing and friction during grinding, plastic The method for chemical recycling of polyethylene terephthalate waste according to any one of claims 1 to 6, wherein the cake is rinsed with clear water and dehydrated to obtain polyethylene terephthalate waste flakes or pellets .
JP37510198A 1998-12-10 1998-12-10 Chemical recycling method for polyethylene terephthalate waste Expired - Lifetime JP3715812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37510198A JP3715812B2 (en) 1998-12-10 1998-12-10 Chemical recycling method for polyethylene terephthalate waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37510198A JP3715812B2 (en) 1998-12-10 1998-12-10 Chemical recycling method for polyethylene terephthalate waste

Publications (2)

Publication Number Publication Date
JP2000169623A JP2000169623A (en) 2000-06-20
JP3715812B2 true JP3715812B2 (en) 2005-11-16

Family

ID=18504970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37510198A Expired - Lifetime JP3715812B2 (en) 1998-12-10 1998-12-10 Chemical recycling method for polyethylene terephthalate waste

Country Status (1)

Country Link
JP (1) JP3715812B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111332A1 (en) 2012-01-27 2013-08-01 株式会社ジナリス Method for producing useful chemical substance from terephthalic acid potassium salt
WO2018007356A1 (en) 2016-07-05 2018-01-11 IFP Energies Nouvelles Method for the depolymerisation of a polyester comprising opaque polyethylene terephthalate
WO2018123953A1 (en) 2016-12-27 2018-07-05 Spiber株式会社 Method for recovering protein
WO2020156965A1 (en) 2019-02-01 2020-08-06 IFP Energies Nouvelles Method for producing a polyester terephthalate incorporating a depolymerization method
WO2020156966A1 (en) 2019-02-01 2020-08-06 IFP Energies Nouvelles Method for producing a terephthalate polyester from a monomeric mixture comprising a diester
WO2021122095A1 (en) 2019-12-19 2021-06-24 IFP Energies Nouvelles Improved method for depolymerizing a polyester comprising polyethylene terephthalate
WO2021122094A1 (en) 2019-12-19 2021-06-24 IFP Energies Nouvelles Optimized method for depolymerizing a polyester comprising polyethylene terephthalate
WO2021140016A1 (en) 2020-01-09 2021-07-15 IFP Energies Nouvelles Optimized depolymerization process by glycolysis of a polyester comprising polyethylene terephthalate
JPWO2021200754A1 (en) * 2020-03-31 2021-10-07
JP6986813B1 (en) * 2020-06-29 2021-12-22 株式会社シンテック Method for producing bis- (2-hydroxyethyl) terephthalate and method for producing recycled polyethylene terephthalate
WO2022004359A1 (en) * 2020-06-29 2022-01-06 株式会社シンテック Method for producing bis-(2-hydroxyethyl)terephthalate and method for producing recycled polyethylene terephthalate
FR3124186A1 (en) 2021-06-17 2022-12-23 IFP Energies Nouvelles PROCESS FOR PREPARING A PURIFIED AND DECOLORED DIESTER MONOMER BY DEPOLYMERIZATION OF A POLYESTER FILLER
FR3124185A1 (en) 2021-06-17 2022-12-23 IFP Energies Nouvelles PROCESS FOR PURIFYING A DIESTER TEREPHTALATE MONOMER BY ADSORPTION
FR3124187A1 (en) 2021-06-17 2022-12-23 IFP Energies Nouvelles PROCESS FOR DEPOLYMERIZING A POLYESTER FILLER COMPRISING A PRE-MIXING STAGE OF THE FILLER
KR20230026495A (en) 2020-06-29 2023-02-24 신테크 코퍼레이션 Method for producing high-purity bis-(2-hydroxyethyl) terephthalate, regenerated polyethylene terephthalate, bleaching solvent, and purification method for bis-(2-hydroxyethyl) terephthalate
WO2023104790A1 (en) 2021-12-10 2023-06-15 IFP Energies Nouvelles Process for producing a polyester having a reduced crystallisation temperature
WO2023110538A1 (en) 2021-12-17 2023-06-22 IFP Energies Nouvelles Bis(2-hydroxyethyl) terephthalate with low nitrogen content

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60042656D1 (en) 1999-10-22 2009-09-10 Teijin Ltd METHOD FOR THE SEPARATION AND RECOVERY OF DIMETHYLTEREPHTHALATE AND ETHYLENE GLYCOL FROM POLYESTER WASTE
JP4238300B2 (en) * 2000-02-04 2009-03-18 ペットリファインテクノロジー株式会社 Method for producing high purity bis-β-hydroxyethyl terephthalate
CN1230415C (en) 2000-07-31 2005-12-07 株式会社爱伊斯 Bis-beta-hydroxyethyle terephthalate
WO2002042253A1 (en) * 2000-11-27 2002-05-30 Teijin Limited Dimethyl terephthalate composition and process for producing the same
WO2003033581A1 (en) * 2001-10-16 2003-04-24 Teijin Limited Method for recycling pet bottle
JP4428052B2 (en) 2001-11-16 2010-03-10 日立化成工業株式会社 Method for dissolving saturated polyester, solution for decomposing saturated polyester, and decomposition method using the same
KR100803588B1 (en) * 2001-12-27 2008-02-15 김도균 Raw resin composition useful by recycling waste polyester resin and its manufacturing method
CN1264804C (en) 2002-06-04 2006-07-19 株式会社爱维塑 Processes for the purification of bis(2-hydroxyethyl)terephthalate
JP4908415B2 (en) 2005-08-05 2012-04-04 帝人株式会社 Method for producing useful components from dyed polyester fiber
JP4773799B2 (en) * 2005-11-09 2011-09-14 帝人株式会社 Method for separating different materials
KR101197724B1 (en) 2009-12-31 2012-11-06 웅진케미칼 주식회사 Recycled polyester yarn using waste polyester and method thereof
KR101142328B1 (en) * 2010-01-05 2012-05-17 주식회사 휴비스 Method for Chemical Recycling Polyester
US8541477B2 (en) 2011-03-04 2013-09-24 International Business Machines Corporation Methods of depolymerizing terephthalate polyesters
FR2998572B1 (en) * 2012-11-26 2015-12-11 Valagro Carbone Renouvelable Poitou Charentes PROCESS FOR RECYCLING AND VALORIZING CONSTITUENTS OF TEXTILE PRODUCTS
JP6050834B2 (en) * 2012-12-20 2016-12-21 アースリサイクル株式会社 Separating and collecting plastic composite waste
GB2586249B (en) * 2019-08-13 2021-09-22 Poseidon Plastics Ltd Polymer recycling
TWI819062B (en) * 2019-08-14 2023-10-21 南亞塑膠工業股份有限公司 Polyester film and method for manufacturing the same
NL2023681B1 (en) * 2019-08-21 2021-04-13 Ioniqa Tech B V Method and reactor system for depolymerising a terephthalate-containing polymer into reusable raw material
JP2023521429A (en) 2020-04-13 2023-05-24 イーストマン ケミカル カンパニー Chemical recycling of waste plastics from various sources including wet granules
JP7226661B2 (en) 2020-09-03 2023-02-21 東洋紡株式会社 Biaxially oriented polyester film roll and its manufacturing method
KR102601626B1 (en) 2020-11-18 2023-11-10 에스케이케미칼 주식회사 Method for purifying bis-2-hydroxyethyl terephthalate for high purity and polyester resin containing the same
JP7163998B1 (en) 2021-06-02 2022-11-01 東洋紡株式会社 Biaxially oriented polyester film and its manufacturing method
WO2022265112A1 (en) * 2021-06-18 2022-12-22 Ube株式会社 Separation/collection method for resin mixture
KR102571563B1 (en) * 2021-07-02 2023-08-29 (주) 시온텍 Chemical recycling method of polyester-based polymer waste.
WO2023013331A1 (en) * 2021-08-05 2023-02-09 株式会社ブリヂストン Chemically-recycled pet fibers, rubber-fiber composite, conveyor belt, hose and tire
JP2023023658A (en) * 2021-08-05 2023-02-16 株式会社ブリヂストン Chemically recycled pet fiber, rubber-fiber composite, conveyor belt, hose, and tire
WO2023026953A1 (en) 2021-08-25 2023-03-02 東洋紡株式会社 Laminated film
JP7196970B1 (en) 2021-09-01 2022-12-27 東洋紡株式会社 Biaxially oriented polyethylene terephthalate film roll
CN113773477B (en) * 2021-09-08 2023-02-17 浙江佳人新材料有限公司 Method for preparing modified engineering polyester by using byproducts generated after chemical method cyclic regeneration of fiber vitamins
EP4272927A1 (en) 2022-04-04 2023-11-08 Canon Kabushiki Kaisha Resin mixture, method of producing resin mixture, stretch blow molded product, and method of producing stretch blow molded product
KR20230143522A (en) * 2022-04-05 2023-10-12 에스케이케미칼 주식회사 Preparation method of bis(glycol) terephthalate and polyester resin using same
KR20240007453A (en) 2022-07-08 2024-01-16 엠에스켐인터내셔날 (주) A method for producing a polyester resin using waste PET and powder coating composition comprising the same
WO2024014455A1 (en) * 2022-07-13 2024-01-18 住友重機械工業株式会社 Chemical recycling device and chemical recycling molding system
JP7435843B1 (en) 2022-08-17 2024-02-21 東洋紡株式会社 Chemically recycled polyethylene terephthalate resin, molded product thereof, and method for producing chemically recycled polyethylene terephthalate resin
KR20240033488A (en) * 2022-09-05 2024-03-12 에스케이케미칼 주식회사 Method for preparing bis(2-hydroxyethyl) terephthalate using recycled ethylene glycol
CN117021420B (en) * 2023-10-08 2024-02-02 国能龙源环保有限公司 Method for recycling bassa wood from waste wind power blades

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915255B1 (en) * 1970-07-23 1974-04-13
JPS5027510B2 (en) * 1971-12-03 1975-09-08
US5223544A (en) * 1992-03-31 1993-06-29 Shell Oil Company Process for the removal of foreign materials from a post-consumer plyethylene terephthalate feed stream
SG74541A1 (en) * 1992-05-18 2000-08-22 Swig Pty Ltd Acn 061 099 778 Improved polyethylene terephthalate decontamination
US5294305A (en) * 1993-05-06 1994-03-15 Mobile Process Technology, Inc. Ethylene glycol recovery process
US5432203A (en) * 1994-12-12 1995-07-11 Eastman Kodak Company Process of recovering components from polyester resins
JP2000053802A (en) * 1998-08-11 2000-02-22 Is:Kk Process for recycling pet bottle

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111332A1 (en) 2012-01-27 2013-08-01 株式会社ジナリス Method for producing useful chemical substance from terephthalic acid potassium salt
KR20140033495A (en) 2012-01-27 2014-03-18 가부시키가이샤 지나리스 Method for producing useful chemical substance from terephthalic acid potassium salt
US9394549B2 (en) 2012-01-27 2016-07-19 Genaris, Inc. Method for producing useful chemical substance from terephthalic acid potassium salt
WO2018007356A1 (en) 2016-07-05 2018-01-11 IFP Energies Nouvelles Method for the depolymerisation of a polyester comprising opaque polyethylene terephthalate
WO2018123953A1 (en) 2016-12-27 2018-07-05 Spiber株式会社 Method for recovering protein
WO2020156966A1 (en) 2019-02-01 2020-08-06 IFP Energies Nouvelles Method for producing a terephthalate polyester from a monomeric mixture comprising a diester
WO2020156965A1 (en) 2019-02-01 2020-08-06 IFP Energies Nouvelles Method for producing a polyester terephthalate incorporating a depolymerization method
FR3092324A1 (en) 2019-02-01 2020-08-07 IFP Energies Nouvelles Process for the production of a polyester terephthalate incorporating a depolymerization process
FR3092323A1 (en) 2019-02-01 2020-08-07 IFP Energies Nouvelles A method of producing a polyester terephthalate from a monomer mixture comprising a diester
CN113423756A (en) * 2019-02-01 2021-09-21 Ifp 新能源公司 Process for producing a polyterephthalate from a monomer mixture comprising a diester
WO2021122095A1 (en) 2019-12-19 2021-06-24 IFP Energies Nouvelles Improved method for depolymerizing a polyester comprising polyethylene terephthalate
WO2021122094A1 (en) 2019-12-19 2021-06-24 IFP Energies Nouvelles Optimized method for depolymerizing a polyester comprising polyethylene terephthalate
FR3105235A1 (en) 2019-12-19 2021-06-25 IFP Energies Nouvelles IMPROVED PROCESS FOR DEPOLYMERIZATION OF A POLYESTER CONTAINING POLYETHYLENE TEREPHTHALATE
FR3105236A1 (en) 2019-12-19 2021-06-25 IFP Energies Nouvelles OPTIMIZED PROCESS FOR DEPOLYMERIZATION OF A POLYESTER CONTAINING POLYETHYLENE TEREPHTHALATE
FR3106134A1 (en) 2020-01-09 2021-07-16 IFP Energies Nouvelles OPTIMIZED PROCESS FOR DEPOLYMERIZATION BY GLYCOLYSIS OF A POLYESTER CONTAINING POLYETHYLENE TEREPHTHALATE
WO2021140016A1 (en) 2020-01-09 2021-07-15 IFP Energies Nouvelles Optimized depolymerization process by glycolysis of a polyester comprising polyethylene terephthalate
JP7153259B2 (en) 2020-03-31 2022-10-14 ユニチカ株式会社 Method for producing biaxially stretched polyester resin film
JPWO2021200754A1 (en) * 2020-03-31 2021-10-07
KR20230027276A (en) 2020-06-29 2023-02-27 신테크 코퍼레이션 Method for producing bis-(2-hydroxyethyl) terephthalate and method for producing recycled polyethylene terephthalate
WO2022004359A1 (en) * 2020-06-29 2022-01-06 株式会社シンテック Method for producing bis-(2-hydroxyethyl)terephthalate and method for producing recycled polyethylene terephthalate
KR20230026495A (en) 2020-06-29 2023-02-24 신테크 코퍼레이션 Method for producing high-purity bis-(2-hydroxyethyl) terephthalate, regenerated polyethylene terephthalate, bleaching solvent, and purification method for bis-(2-hydroxyethyl) terephthalate
JP6986813B1 (en) * 2020-06-29 2021-12-22 株式会社シンテック Method for producing bis- (2-hydroxyethyl) terephthalate and method for producing recycled polyethylene terephthalate
FR3124186A1 (en) 2021-06-17 2022-12-23 IFP Energies Nouvelles PROCESS FOR PREPARING A PURIFIED AND DECOLORED DIESTER MONOMER BY DEPOLYMERIZATION OF A POLYESTER FILLER
FR3124185A1 (en) 2021-06-17 2022-12-23 IFP Energies Nouvelles PROCESS FOR PURIFYING A DIESTER TEREPHTALATE MONOMER BY ADSORPTION
FR3124187A1 (en) 2021-06-17 2022-12-23 IFP Energies Nouvelles PROCESS FOR DEPOLYMERIZING A POLYESTER FILLER COMPRISING A PRE-MIXING STAGE OF THE FILLER
WO2023104790A1 (en) 2021-12-10 2023-06-15 IFP Energies Nouvelles Process for producing a polyester having a reduced crystallisation temperature
FR3130278A1 (en) 2021-12-10 2023-06-16 IFP Energies Nouvelles METHOD FOR PRODUCING A POLYESTER HAVING A REDUCED CRYSTALLIZATION TEMPERATURE
WO2023110538A1 (en) 2021-12-17 2023-06-22 IFP Energies Nouvelles Bis(2-hydroxyethyl) terephthalate with low nitrogen content
FR3130804A1 (en) 2021-12-17 2023-06-23 IFP Energies Nouvelles BIS(2-HYDROXYETHYL)TEREPHTHALATE WITH A LOW NITROGEN CONTENT

Also Published As

Publication number Publication date
JP2000169623A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
JP3715812B2 (en) Chemical recycling method for polyethylene terephthalate waste
JP2000053802A (en) Process for recycling pet bottle
JP3983977B2 (en) An improved method for converting contaminated polyethylene terephthalate to decontaminated polybutylene terephthalate.
US7192988B2 (en) Process for recycling polyester materials
JP4908415B2 (en) Method for producing useful components from dyed polyester fiber
JP4647625B2 (en) Chemical recycling method for waste polyethylene terephthalate (PET)
EP1153070B1 (en) A glycolysis process for recycling of post-consumer pet
RU2263658C2 (en) Method for chemical reutilization of depleted polyethylene terephthalate
KR100271405B1 (en) Polyethylene terephthalate decontamination
WO2002042253A1 (en) Dimethyl terephthalate composition and process for producing the same
JP2005255963A (en) Method for recovering ester monomer from fibrous polyester
US5504121A (en) Polyethylene terephthalate decontamination
JP4080720B2 (en) How to recycle PET bottles
JP5178211B2 (en) Method for recovering dimethyl terephthalate with improved hue from PET bottle waste
JP2002086448A (en) Polyester regeneration method
US5602187A (en) Polyethylene terephthalate decontamination
JP4014356B2 (en) How to recycle plastic bottles
JP2001192492A (en) Method for producing refined thermoplastic polyester
JP2005330444A (en) Method for recovering ester monomer from polyester fibers
JP2002167469A (en) Recycling system for waste polyester and its method
JP2001018224A (en) Method for grinding discarded polyethylene terephthalate bottle
CN1067049C (en) Process for producing terephthalic acid
JP3831775B2 (en) Method for purifying bishydroxyalkyl terephthalate
EP4306510A1 (en) Process for the recovery of epsilon-caprolactam from nylon 6-containing multi-component material
WO2023144337A1 (en) Process for the recovery of epsilon-caprolactam from nylon 6-containing multi-component material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20021009

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term