WO2013140947A1 - Method for producing flame-retardant polyester, and flame-retardant master batch - Google Patents

Method for producing flame-retardant polyester, and flame-retardant master batch Download PDF

Info

Publication number
WO2013140947A1
WO2013140947A1 PCT/JP2013/054686 JP2013054686W WO2013140947A1 WO 2013140947 A1 WO2013140947 A1 WO 2013140947A1 JP 2013054686 W JP2013054686 W JP 2013054686W WO 2013140947 A1 WO2013140947 A1 WO 2013140947A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
flame
ester
acid
retardant polyester
Prior art date
Application number
PCT/JP2013/054686
Other languages
French (fr)
Japanese (ja)
Inventor
忠彦 三上
清水 秀樹
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020147015718A priority Critical patent/KR20140147804A/en
Priority to CN201380016178.9A priority patent/CN104245789A/en
Publication of WO2013140947A1 publication Critical patent/WO2013140947A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/692Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus
    • C08G63/6924Polyesters containing atoms other than carbon, hydrogen and oxygen containing phosphorus derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6928Polycarboxylic acids and polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/06Organic materials
    • C09K21/12Organic materials containing phosphorus

Definitions

  • the present invention relates to a method for producing a flame retardant polyester containing a high concentration of phosphorus.
  • the flame retardant polyester obtained by the method of the present invention is useful as a flame retardant masterbatch.
  • Patent Document 1 As a method for producing a polyester copolymerized with a phosphorus compound, in addition to a method using a phosphorus compound synthesized in advance (see Patent Document 1), a method using a specific phosphorus compound that is non-ester forming ( Patent Document 2 and Patent Document 3) are known.
  • Patent Document 2 discloses a method for producing a flame-retardant polyester in which a specific amount of a specific phosphorus compound and a specific unsaturated aliphatic compound are added before an esterification reaction or an esterification reaction.
  • Patent Document 3 discloses flame resistance in which a specific phosphorus compound, a specific unsaturated carboxylic acid or an ester-forming derivative thereof, and a specific amine compound coexist in a reaction system of an esterification reaction or a transesterification reaction.
  • a method for producing polyester is disclosed. According to these methods, since it is not necessary to separately produce an ester-forming phosphorus compound copolymerizable with polyester, it is considered that the production cost of the flame-retardant polyester can be considerably reduced.
  • the present invention is a method for producing a flame-retardant polyester having a high degree of polymerization and a low copolymerization ratio of the diethylene glycol component and being less colored while containing a high concentration of phosphorus by copolymerization.
  • the purpose is to provide.
  • the present inventors have found that a specific phosphorus compound, an unsaturated carboxylic acid, or a polyvalent carboxylic acid or an ester-forming derivative thereof and a saturated aliphatic diol or an ester-forming derivative thereof.
  • the ester-forming derivative and metal acetate are mixed in the heat and mixed to contain high-concentration phosphorus by copolymerization, while having a high degree of polymerization and a low copolymerization ratio of diethylene glycol components and low coloration and flame retardancy
  • polyester can be produced at low cost and have completed the present invention. That is, the present invention is as follows.
  • (B) component unsaturated dicarboxylic acid or its ester-forming derivative
  • (C) component saturated aliphatic polyhydric alcohol and / or ester-forming derivative mainly composed of ethylene glycol
  • (E) component metal acetate metal salt
  • (B) component unsaturated dicarboxylic acid or its ester-forming derivative
  • (C) component saturated aliphatic polyhydric alcohol and / or ester-forming derivative mainly composed of ethylene glycol
  • (E) component metal acetate metal salt
  • a method for producing a flame-retardant polyester having:
  • a flame retardant masterbatch comprising a flame retardant polyester and a metal acetate,
  • the flame retardant polyester is 20 to 60 mol% of the following general formula (2) with respect to a total of 200 mol% of all polyvalent acid components and all polyhydric alcohol components constituting the flame retardant polyester.
  • the Co-b value is -5 to 20, and the Co-L value is 50 or more. Flame retardant masterbatch.
  • a flame-retardant polyester having a high degree of polymerization and a low copolymerization ratio of the diethylene glycol component and low coloration can be produced at low cost while containing a high concentration of phosphorus by copolymerization.
  • the flame retardant polyester obtained by the production method of the present invention as a flame retardant masterbatch, the flame retardant thermoplastic resin composition having high transparency and less coloring without impairing the mechanical properties of the base resin. Can be obtained.
  • the present invention includes (A) component: phosphorus compound of general formula (1), (B) component: unsaturated dicarboxylic acid or ester-forming derivative thereof, (C) component: saturated aliphatic diol or ester-forming derivative thereof, Flame retardant polyester having a step (P) of heating and mixing a composition containing (D) component: polyvalent carboxylic acid other than (B) component or ester-forming derivative thereof, and (E) component: acetic acid metal salt. It is related with the manufacturing method. Moreover, it is related with the manufacturing method of the flame-retardant polyester which has the process (Q) which adds (F) component: polymerization catalyst to the composition obtained at process (P), and then heats and pressure-reduces.
  • the flame retardant polyester of the present invention is a copolymer of the (B) component adduct of the (A) component, the (C) component, and the (D) component.
  • a polymerization catalyst as the component (F) after the esterification reaction and the transesterification reaction.
  • the phosphorus compound as the component (A) can stably produce a polyester having a higher degree of polymerization without deactivating the polymerization catalyst as the component (F). Tend to be able to.
  • the phosphorus compound of the general formula (1) which is the component (A) used in the present invention is 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOP).
  • DOP has an effect of imparting flame resistance to polyester, but DOP itself has no ester-forming ability, so it is inactive against ester-forming reaction, and cannot be directly used as a copolymer component of polyester. .
  • unsaturated carboxylic acid or ester-forming derivative thereof as component (B) used in the present invention unsaturated monocarboxylic acid such as acrylic acid, crotonic acid, methacrylic acid, maleic acid, fumaric acid, mesaconic acid
  • unsaturated dicarboxylic acids such as citraconic acid and itaconic acid
  • alkyl esters such as methyl ester and ethyl ester of the unsaturated carboxylic acid
  • acid anhydrides such as maleic anhydride, citraconic anhydride and itaconic anhydride.
  • unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid or ester-forming derivatives thereof are preferred. These compounds may be used alone or in combination of two or more.
  • the phosphorus compound of the general formula (1) as the component (A) and the unsaturated carboxylic acid or the ester-forming derivative thereof as the component (B) are substantially Although it is preferable to use it in an equimolar amount, either one may be in excess or deficiency within a range of 20 mol% with respect to an equimolar amount.
  • the component (A) is more than 20 mol% with respect to the component (B)
  • the polymerization catalyst is deactivated, and it takes a long time for the polymerization or the color tone of the polyester due to the deactivated catalyst. It tends to cause deterioration and turbidity.
  • the amount of each of the component (A) and the component (B) is preferably in a range in which either one is 80 to 120 mol% of the other, particularly preferably 85 to 115 mol%. It is a range.
  • the flame-retardant polyester of the present invention it is preferable that 20 to 60 mol% of a dicarboxylic acid component having an organic group represented by the general formula (2) as the component (A) is copolymerized.
  • the copolymerization ratio of the dicarboxylic acid component having an organic group represented by the general formula (2) is less than 20 mol%, the flame retardant master batch is added to the base resin in a high proportion in order to sufficiently exert the flame retardant effect. Therefore, the mechanical properties of the blend may be greatly inferior to those of the base resin, which is not preferable.
  • the copolymerization ratio of the dicarboxylic acid component having an organic group represented by the general formula (2) is more than 60 mol%, it tends to be difficult to obtain a flame-retardant polyester having a high degree of polymerization. Therefore, the mechanical properties of the blend may be greatly inferior to the mechanical properties of the base resin, which is not preferable.
  • the component (D) of the present invention is a polyvalent carboxylic acid other than the component (B) or a derivative thereof.
  • the component (D) is preferably mainly composed of an aromatic dicarboxylic acid component or an ester-forming derivative thereof.
  • aromatic dicarboxylic acid components include terephthalic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid.
  • Orthophthalic acid isophthalic acid, 5- (alkali metal) sulfoisophthalic acid, diphenic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-dicarboxydiphenyl sulfone, 4,4′-dicarboxydiphenyl ether, 1, Examples thereof include aromatic dicarboxylic acids such as 2-bis (phenoxy) ethane-p, p′-dicarboxylic acid and anthracene dicarboxylic acid, and ester-forming derivatives thereof. Among these aromatic dicarboxylic acids, terephthalic acid, 2 , 6-Naphthalenedicarboxylic acid is preferred.
  • the component (C) of the present invention is a saturated aliphatic polyhydric alcohol and / or ester-forming derivative mainly composed of ethylene glycol.
  • the component (C) include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3- Butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1 , 2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-d
  • ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, neopentyl glycol and the like have 2 to 5 carbon atoms. Is preferable in terms of increasing the glass transition point (Tg) of the flame-retardant polyester, and it is preferable that ethylene glycol is mainly 50 mol% or more.
  • the flame retardant polyester of the present invention includes trivalent or higher carboxylic acids such as trimellitic acid, trimellitic anhydride and pyromellitic acid, and trivalent or higher alcohols such as glycerin, trimethylolpropane and pentaerythritol. It is preferable to copolymerize a trifunctional or higher polyfunctional component from the viewpoint of increasing the viscosity of the flame retardant polyester, and in particular, a total of 200 mol% of the total polyhydric acid component and the total polyhydric alcohol component constituting the flame retardant polyester.
  • the total amount of the polyvalent carboxylic acid and / or the polyvalent polyol is less than 0.05 mol%, it is difficult to increase the polymerization degree to the target viscosity, and if it is 3 mol% or more, the hyperbranching of the polyester becomes excessive, May cause gelation.
  • the total amount of the polyvalent carboxylic acid and / or the polyvalent polyol is preferably 0.05 to 3 mol%, more preferably 0.1 to 2 mol%.
  • the metal acetate of the component (E) of the present invention is preferably an alkali metal salt, alkaline earth metal salt, transition metal salt or the like of acetic acid.
  • sodium acetate, lithium acetate, cobalt acetate, etc. suppress the color tone of the polyester. This is preferable.
  • sodium acetate it is preferable to blend sodium acetate that is 5 to 50 ppm as a sodium atom with respect to the flame-retardant polyester, and more preferably 10 to 30 ppm. If it is 5 ppm or less, the effect of suppressing the copolymerization ratio of the diethylene glycol component tends to be low. Further, if it is 50 ppm or more, resin coloring tends to be strong.
  • 5 to 50 ppm of cobalt acetate is preferably added as a cobalt atom, and more preferably 10 to 30 ppm. Below 5 ppm, the effect of lowering Co-b is small. Moreover, the resin bluish becomes strong at 50 ppm or more.
  • the polymerization catalyst which is the component (F) of the present invention is not particularly limited, but if a catalyst such as a germanium compound or an aluminum compound is used, the effect of suppressing darkening of the flame-retardant polyester is obtained, and a polyester having a high Co-L value. This is preferable.
  • germanium compounds are preferred because of their high polymerization activity.
  • the metal acetate added to the reaction system before the esterification reaction or transesterification reaction remains in the polycondensation step. Due to the remaining acetic acid metal salt, the reaction system becomes weakly alkaline and the by-product of diethylene glycol is suppressed. By such an action, an effect that the copolymerization ratio of diethylene glycol to the flame-retardant polyester can be kept low is exhibited.
  • the diethylene glycol component in the aliphatic polyol component constituting the flame-retardant polyester of the present invention is preferably 30 mol% or less.
  • the Tg of the flame-retardant polyester tends to be reduced, and when it is 30 mol% or more, there is a risk of causing deterioration in mechanical properties or blocking during drying.
  • the flame-retardant masterbatch of the present invention must contain the flame-retardant polyester of the present invention and a metal acetate metal salt, and may contain other resins, compatibilizers and / or various additives.
  • a coloring or antioxidant function can be added to the flame retardant masterbatch by blending a pigment or an antioxidant as an additive.
  • effects such as simplification of the melt-kneading process and homogenization of the flame-retardant resin composition can be expected by blending other resins and compatibilizers that are highly compatible with the base resin.
  • the flame retardant masterbatch of the present invention preferably has a moisture content of 0.1% by weight or less, further 0.05% by weight or less, and further 0.03% by weight or less. If the moisture content is 0.1% by weight or less, it is sufficiently dried, and blocking and decomposition tend to be suppressed.
  • a flame-retardant thermoplastic resin composition containing a predetermined amount of phosphorus can be produced by mixing the flame-retardant masterbatch of the present invention and a thermoplastic resin (base resin).
  • the flame retardant masterbatch of the present invention preferably has an L value (whiteness) measured by a Hunter color difference meter of 50 or more, and more preferably 55 or more.
  • the b value measured with a Hunter color difference meter is preferably ⁇ 5 or more and 20 or less, more preferably 15 or less and 10 or less.
  • the blending ratio of the flame retardant masterbatch with respect to the base resin can be appropriately adjusted depending on the phosphorus content desired by the flame retardant thermoplastic resin composition after blending. 5 to 90% by weight is preferable. Further, it is preferably 1 to 50% by weight, more preferably 10 to 30% by weight.
  • the phosphorus content in the flame-retardant thermoplastic resin composition is not particularly limited, but it is effective in terms of flame retardancy when it is 1000 ppm or more, further 2000 ppm or more, and further 4000 ppm or more.
  • thermoplastic resin can be used as the base resin in which the flame-retardant masterbatch of the present invention is blended.
  • optional thermoplastic resins include polyolefin resin, polystyrene resin, acrylonitrile / butadiene / styrene copolymer resin, acrylonitrile / styrene copolymer resin, (meth) acrylic acid / styrene copolymer resin, (meth) acrylic resin, butadiene ⁇ Styrene copolymer resin, polycarbonate resin, polyamide resin, polyarylate resin, polysulfone resin, polyallylsulfone resin, polyethersulfone resin, polyetherimide resin, polyimide resin, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, poly Examples thereof include polyester resins such as lactic acid, polyester carbonate resins, polyester ether resins, polyurethane resins and alloy resins thereof. When applied
  • the non-contact side of the ferro plate of the plate-like sample was analyzed by fluorescent X-ray using a fluorescent X-ray analyzer system 3270 manufactured by Rigaku Corporation to determine the phosphorus concentration.
  • (2) Intrinsic viscosity The intrinsic viscosity of the sample was measured at 30 ° C. in a phenol / 1,1,2,2-tetrachloroethane mixed solution (weight ratio (3/2)).
  • (3) Color value The color value of the sample was measured with a Hunter color difference meter. The larger the Co-L value, the stronger the whiteness, and the larger the Co-b value, the stronger the yellowness.
  • Glass transition temperature (Tg) annealed from room temperature to 200 ° C.
  • the upper limit was measured as 240 minutes.
  • (6) Pelletizing method After completion of the polycondensation process, the molten polyester is discharged from the base under nitrogen pressure, extruded into a strand shape, submerged in the cooling water in the water tank containing the cooling water, and then a strand cutter. Pelletized. A substantially cylindrical pellet having a diameter of about 3 mm and a length of about 3 mm was obtained.
  • Example 1 The polyhydric acid component and phosphorus compound shown in Table 1 are charged in the proportions shown in Table 1, and the polyhydric alcohol component shown in Table 1 is charged so as to be 2 molar equivalents with respect to the total polyhydric acid component, and under pressure.
  • the temperature was raised to 240 ° C. to carry out an esterification reaction.
  • 200 ppm of germanium dioxide in terms of germanium atoms is added to the resin, transferred to a polycondensation reaction can, and gradually raised in parallel while increasing the temperature to 265 ° C. over 60 minutes.
  • Example 2 and 3 Polyesters were produced in the same manner as in Example 1 using the compounds shown in Table 1 at the ratios shown in Table 1.
  • Example 4 A polyester was produced in the same manner as in Example 1 except that the sodium acetate compound was changed to cobalt acetate.
  • Comparative Example 1 A polyester was produced in the same manner as in Example 1, except that sodium acetate was not added.
  • Example 2 A polyester was produced in the same manner as in Example 1 except that sodium acetate was changed to tributylamine. However, polycondensation did not proceed to the target intrinsic viscosity, and the resulting resin was also poorly colored.
  • the copolymerization ratio of diethylene glycol is relatively low at 11 to 20 mol% while having a sufficient phosphorus atom content that provides excellent flame retardancy. It was possible to produce a flame-retardant polyester that was suppressed to a level, had a high degree of polymerization, a high glass transition temperature, and had coloring suppressed.
  • Comparative Example 1 is a case where no acetate is used, but the copolymerization ratio of diethylene glycol in the obtained flame-retardant polyester is as high as 34 mol%. For this reason, the glass transition temperature of the obtained polyester was lowered, and blocking occurred in the drying process.
  • Comparative Example 2 is a case where tributylamine was added without using an acetate salt, but although the copolymerization ratio of diethylene glycol was suppressed to a relatively low level of 15 mol%, tributylamine lost the polymerization catalyst. Even if the activity was partially raised and the polymerization time was extended, a flame-retardant polyester having a high degree of polymerization could not be produced. In addition, the obtained flame-retardant polyester was colored by tributylamine.
  • the flame retardant polyester of the present invention is useful as a flame retardant component to be blended in a flame retardant masterbatch, and is colored by blending the flame retardant masterbatch of the present invention into an arbitrary thermoplastic resin (base resin) and melt-kneading.
  • a flame-retardant thermoplastic resin composition can be obtained while suppressing deterioration of mechanical properties.
  • the obtained flame retardant thermoplastic resin composition can be used for clothing fibers, industrial material fibers, films, engineering plastics, adhesives, and the like by extrusion molding, injection molding, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Provided is a method for producing a flame-retardant polyester which contains phosphorous at a high concentration through copolymerization, has a high degree of polymerization, a low degree of copolymerization of a diethylene glycol component, and rarely undergoes discoloration. A method for producing a flame-retardant polyester, comprising a step of agitating a composition comprising components (A) to (E) mentioned below while heating: (A): a phosphorous compound represented by general formula (1); (B): an unsaturated dicarboxylic acid or an ester-forming derivative thereof; (C): a saturated aliphatic polyhydric alcohol mainly composed of ethylene glycol and/or an ester-forming derivative thereof; (D): a polycarboxylic acid other than the component (B) or an ester-forming derivative thereof; and (E): an acetic acid metal salt.

Description

難燃性ポリエステルの製造方法および難燃性マスターバッチMethod for producing flame retardant polyester and flame retardant masterbatch
 本発明は、高濃度のリンを含有する難燃性ポリエステルの製造方法に関する。本発明の方法で得られる難燃性ポリエステルは、難燃性マスターバッチとして有用である。 The present invention relates to a method for producing a flame retardant polyester containing a high concentration of phosphorus. The flame retardant polyester obtained by the method of the present invention is useful as a flame retardant masterbatch.
 9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシドに代表される有機リン系化合物(以下、当該化合物をDOPともいう)をポリエステルに共重合することで、リンを高濃度で含有しかつブリードアウトしにくい難燃剤が得られることが知られている。また、DOP等のリン化合物を共重合したリン含有量の高い共重合ポリエステルを難燃マスターバッチとし、難燃マスターバッチを熱可塑性樹脂(ベースレジン)に配合して溶融混練し、難燃性を付与する技術が知られている(特許文献1参照)。 By copolymerizing an organophosphorus compound typified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter, this compound is also referred to as DOP) with polyester, phosphorous is obtained. It is known that a flame retardant containing a high concentration and hardly bleeding out can be obtained. In addition, a high-phosphorus copolymerized polyester copolymerized with a phosphorus compound such as DOP is used as a flame retardant masterbatch, and the flame retardant masterbatch is blended into a thermoplastic resin (base resin) and melt-kneaded to achieve flame retardancy. The technique to give is known (refer patent document 1).
 リン化合物を共重合したポリエステルを製造する方法として、予め合成されたエステル形成性を有するリン化合物を用いる方法(特許文献1参照)のほか、非エステル形成性である特定のリン化合物を用いる方法(特許文献2、特許文献3参照)が知られている。 As a method for producing a polyester copolymerized with a phosphorus compound, in addition to a method using a phosphorus compound synthesized in advance (see Patent Document 1), a method using a specific phosphorus compound that is non-ester forming ( Patent Document 2 and Patent Document 3) are known.
 特許文献2においては、エステル化反応又はエステル化反応以前に特定のリン化合物と特定の不飽和脂肪族化合物を特定量添加する難燃性ポリエステルの製造方法が開示されている。また、特許文献3には、エステル化反応若しくはエステル交換反応の反応系中に、特定のリン化合物と、特定の不飽和カルボン酸若しくはそのエステル形成性誘導体と、特定のアミン化合物と共存させる耐炎性ポリエステルの製造方法が開示されている。これらの方法によれば、ポリエステルに共重合可能なエステル形成性リン化合物を別途製造する必要がないので、難燃性ポリエステルの製造コストをかなり低減させることが可能であるものと考えられる。 Patent Document 2 discloses a method for producing a flame-retardant polyester in which a specific amount of a specific phosphorus compound and a specific unsaturated aliphatic compound are added before an esterification reaction or an esterification reaction. Patent Document 3 discloses flame resistance in which a specific phosphorus compound, a specific unsaturated carboxylic acid or an ester-forming derivative thereof, and a specific amine compound coexist in a reaction system of an esterification reaction or a transesterification reaction. A method for producing polyester is disclosed. According to these methods, since it is not necessary to separately produce an ester-forming phosphorus compound copolymerizable with polyester, it is considered that the production cost of the flame-retardant polyester can be considerably reduced.
特許第3934133号公報Japanese Patent No. 3934133 特開2000-212266号公報JP 2000-212266 A 特許第4006629号公報Japanese Patent No. 4006629
  しかしながら、本発明者らが30000ppm程度以上の高濃度のリンを共重合により含有するポリエステル樹脂の製造を特許文献2および特許文献3に記載の方法で行なうことを検討したところ、リン化合物が重合触媒を失活し高重合度のポリエステル樹脂を得ることが困難であること、重合過程で副生するジエチレングリコールが共重合され得られるポリエステル樹脂のガラス転移温度が低下してしまうこと、さらにアミン化合物によるポリエステル樹脂への着色が発生すること、といった現象が生じることが判明した。そして、このような現象が生じた難燃性ポリエステルを難燃マスターバッチとして用いると、難燃マスターバッチとベースレジンとの溶融混合物の曲げ強度、曲げ弾性率、引張降伏強さ、荷重たわみ温度などといった機械物性はベースレジンと比較して顕著に低下しまた着色が発生する傾向にあり、高度な機械物性や低着色または無着色が求められる用途には問題が生じることが判明した。 However, when the present inventors examined the production of a polyester resin containing a high concentration of phosphorus of about 30000 ppm or more by copolymerization by the methods described in Patent Document 2 and Patent Document 3, the phosphorus compound was a polymerization catalyst. Is difficult to obtain a polyester resin having a high degree of polymerization, the glass transition temperature of the polyester resin obtained by copolymerization of diethylene glycol as a by-product in the polymerization process is lowered, and further polyesters by amine compounds It has been found that the phenomenon of coloring the resin occurs. And when the flame retardant polyester in which such a phenomenon has occurred is used as a flame retardant masterbatch, the bending strength, the flexural modulus, the tensile yield strength, the deflection temperature under load of the molten mixture of the flame retardant masterbatch and the base resin, etc. Such mechanical properties are significantly lower than those of the base resin, and coloring tends to occur, and it has been found that there is a problem in applications where high mechanical properties and low coloring or no coloring are required.
 上記事情に鑑み、本発明は、高濃度のリンを共重合により含有する難燃性ポリエステルでありながら、高重合度かつジエチレングリコール成分の共重合比率が低く着色の少ない難燃性ポリエステルを製造する方法を提供することを目的とする。 In view of the above circumstances, the present invention is a method for producing a flame-retardant polyester having a high degree of polymerization and a low copolymerization ratio of the diethylene glycol component and being less colored while containing a high concentration of phosphorus by copolymerization. The purpose is to provide.
 本発明者等は、上記課題を達成すべく鋭意検討した結果、多価カルボン酸もしくはそのエステル形成性誘導体と飽和脂肪族ジオールもしくはそのエステル形成性誘導体に、特定のリン化合物、不飽和カルボン酸もしくはそのエステル形成性誘導体、および酢酸金属塩を共存させて加熱混合することにより、高濃度のリンを共重合により含有しながら、高重合度かつジエチレングリコール成分の共重合比率が低く着色の少ない難燃性ポリエステルを安価に製造することができることを見出し、本発明を完成するに至った。
即ち、本発明は以下の通りである。 
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that a specific phosphorus compound, an unsaturated carboxylic acid, or a polyvalent carboxylic acid or an ester-forming derivative thereof and a saturated aliphatic diol or an ester-forming derivative thereof. The ester-forming derivative and metal acetate are mixed in the heat and mixed to contain high-concentration phosphorus by copolymerization, while having a high degree of polymerization and a low copolymerization ratio of diethylene glycol components and low coloration and flame retardancy The present inventors have found that polyester can be produced at low cost and have completed the present invention.
That is, the present invention is as follows.
  <1>
下記(A)~(E)成分、
 (A)成分:下記一般式(1)のリン化合物
<1>
The following components (A) to (E)
(A) component: phosphorus compound of the following general formula (1)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (B)成分:不飽和ジカルボン酸又はそのエステル形成性誘導体、
 (C)成分:エチレングリコールから主としてなる飽和脂肪族多価アルコールおよび/またはエステル形成性誘導体、
 (D)成分:(B)成分以外の多価カルボン酸又はそのエステル形成性誘導体、
 (E)成分:酢酸金属塩、
を含有する組成物を加熱混合する工程を有する難燃性ポリエステルの製造方法。
(B) component: unsaturated dicarboxylic acid or its ester-forming derivative,
(C) component: saturated aliphatic polyhydric alcohol and / or ester-forming derivative mainly composed of ethylene glycol,
Component (D): a polyvalent carboxylic acid other than the component (B) or an ester-forming derivative thereof,
(E) component: metal acetate metal salt
A method for producing a flame-retardant polyester, comprising a step of heating and mixing a composition comprising
  <2>
下記(A)~(E)成分、
 (A)成分:下記一般式(1)のリン化合物、
<2>
The following components (A) to (E)
(A) component: phosphorus compound of the following general formula (1),
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (B)成分:不飽和ジカルボン酸又はそのエステル形成性誘導体、
 (C)成分:エチレングリコールから主としてなる飽和脂肪族多価アルコールおよび/またはエステル形成性誘導体、
 (D)成分:(B)成分以外の多価カルボン酸又はそのエステル形成性誘導体、
 (E)成分:酢酸金属塩、
を含有する組成物を加熱混合する工程(P)、
工程(P)で得られた組成物に(F)成分:重合触媒を添加し次いで加熱し減圧する工程(Q)、
を有する難燃性ポリエステルの製造方法。
(B) component: unsaturated dicarboxylic acid or its ester-forming derivative,
(C) component: saturated aliphatic polyhydric alcohol and / or ester-forming derivative mainly composed of ethylene glycol,
Component (D): a polyvalent carboxylic acid other than the component (B) or an ester-forming derivative thereof,
(E) component: metal acetate metal salt
A step (P) of heating and mixing the composition containing
Step (Q) in which component (F): a polymerization catalyst is added to the composition obtained in step (P) and then heated and depressurized,
A method for producing a flame-retardant polyester having:
  <3>
 (B)成分がマレイン酸、フマル酸および/またはイタコン酸である<1>または<2>に記載の難燃性ポリエステルの製造方法。
<3>
(B) The method for producing a flame-retardant polyester according to <1> or <2>, wherein the component is maleic acid, fumaric acid and / or itaconic acid.
  <4>
 難燃性ポリエステルと酢酸金属塩とを含有する難燃マスターバッチであって、
 前記難燃性ポリエステルが、該難燃性ポリエステルを構成する全多価酸成分と全多価アルコール成分の合計200モル%に対し、20~60モル%の下記一般式(2)
<4>
A flame retardant masterbatch comprising a flame retardant polyester and a metal acetate,
The flame retardant polyester is 20 to 60 mol% of the following general formula (2) with respect to a total of 200 mol% of all polyvalent acid components and all polyhydric alcohol components constituting the flame retardant polyester.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で表される有機基を有するジカルボン酸成分と、合計0.05~3モル%の三価以上の多価カルボン酸成分および/または三価以上の多価ポリオール成分と、37~79.95モル%の芳香族ジカルボン酸成分と、残部の脂肪族ジオール成分とからなる難燃性ポリエステルであり、
 Co-b値が-5~20、Co-L値が50以上である、
難燃マスターバッチ。
37 to 79.95 mol of a dicarboxylic acid component having an organic group represented by the formula: a total of 0.05 to 3 mol% of a trivalent or higher polyvalent carboxylic acid component and / or a trivalent or higher polyvalent polyol component; % Flame retardant polyester comprising an aromatic dicarboxylic acid component and the remaining aliphatic diol component,
The Co-b value is -5 to 20, and the Co-L value is 50 or more.
Flame retardant masterbatch.
  <5>
 前記難燃性ポリエステル樹脂を構成するジエチレングリコール成分の共重合比率が30モル%以下である<4>に記載の難燃マスターバッチ。
<5>
The flame retardant masterbatch according to <4>, wherein the copolymerization ratio of the diethylene glycol component constituting the flame retardant polyester resin is 30 mol% or less.
 本発明によれば、高濃度のリンを共重合により含有しながら、高重合度かつジエチレングリコール成分の共重合比率が低く着色の少ない難燃性ポリエステルを安価に製造することができる。また、本発明の製造方法により得られた難燃性ポリエステルを難燃マスターバッチとして用いることより、ベースレジンの機械物性を損ねることなくかつ着色が少なく透明性の高い難燃性熱可塑性樹脂組成物を得ることができる。 According to the present invention, a flame-retardant polyester having a high degree of polymerization and a low copolymerization ratio of the diethylene glycol component and low coloration can be produced at low cost while containing a high concentration of phosphorus by copolymerization. Further, by using the flame retardant polyester obtained by the production method of the present invention as a flame retardant masterbatch, the flame retardant thermoplastic resin composition having high transparency and less coloring without impairing the mechanical properties of the base resin. Can be obtained.
 以下に本発明について、さらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明は、(A)成分:一般式(1)のリン化合物、(B)成分:不飽和ジカルボン酸又はそのエステル形成性誘導体、(C)成分:飽和脂肪族ジオールまたはそのエステル形成性誘導体、(D)成分:(B)成分以外の多価カルボン酸又はそのエステル形成性誘導体、(E)成分:酢酸金属塩、を含有する組成物を加熱混合する工程(P)を有する難燃性ポリエステルの製造方法に関するものである。また、工程(P)で得られた組成物に(F)成分:重合触媒を添加し次いで加熱し減圧する工程(Q)、を有する難燃性ポリエステルの製造方法に関するものである。本発明の難燃性ポリエステルは、(A)成分の(B)成分付加体と(C)成分と(D)成分の共重合体である。 The present invention includes (A) component: phosphorus compound of general formula (1), (B) component: unsaturated dicarboxylic acid or ester-forming derivative thereof, (C) component: saturated aliphatic diol or ester-forming derivative thereof, Flame retardant polyester having a step (P) of heating and mixing a composition containing (D) component: polyvalent carboxylic acid other than (B) component or ester-forming derivative thereof, and (E) component: acetic acid metal salt. It is related with the manufacturing method. Moreover, it is related with the manufacturing method of the flame-retardant polyester which has the process (Q) which adds (F) component: polymerization catalyst to the composition obtained at process (P), and then heats and pressure-reduces. The flame retardant polyester of the present invention is a copolymer of the (B) component adduct of the (A) component, the (C) component, and the (D) component.
 本発明の難燃性ポリエステルの製造方法においては、(A)成分である一般式(1)のリン化合物と(B)成分である不飽和カルボン酸もしくはそのエステル形成誘導体と(E)成分である酢酸金属塩とを、エステル化反応またはエステル交換反応の前に共存させることが必須である。このような工程を経ることにより、(A)成分と(B)成分との反応が速やかに進行し、たとえエステル化反応及び/またはエステル交換反応が高温、高真空下行なわれる場合であっても反応の初期段階に速やかに熱的に安定なエステル形成性リン化合物誘導体を生成するので、(A)成分の揮発による共重合比率の低下および(B)成分の反応による架橋形成とそれにともなうゲル化を抑制することができる。 In the method for producing a flame retardant polyester of the present invention, the phosphorus compound of the general formula (1) as the component (A), the unsaturated carboxylic acid or the ester-forming derivative thereof as the component (B), and the component (E). It is essential for the metal acetate to coexist before the esterification or transesterification reaction. Through such a process, the reaction between the component (A) and the component (B) proceeds promptly, even if the esterification reaction and / or transesterification reaction is performed under high temperature and high vacuum. Since a thermally stable ester-forming phosphorus compound derivative is quickly produced in the initial stage of the reaction, the copolymerization ratio is reduced due to the volatilization of the component (A), and the cross-linking formation due to the reaction of the component (B) and the gelation accompanying it. Can be suppressed.
 また、エステル化反応及びエステル交換反応の後に(F)成分である重合触媒を添加することが好ましい。このような反応段階に(F)成分を添加することにより、(A)成分であるリン化合物が(F)成分である重合触媒を失活させることなく、より高重合度のポリエステルを安定に製造することができる傾向にある。 Further, it is preferable to add a polymerization catalyst as the component (F) after the esterification reaction and the transesterification reaction. By adding the component (F) to such a reaction stage, the phosphorus compound as the component (A) can stably produce a polyester having a higher degree of polymerization without deactivating the polymerization catalyst as the component (F). Tend to be able to.
 本発明で使用する(A)成分である一般式(1)のリン化合物は9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド(DOP)である。DOPはポリエステルに耐炎性を付与する作用は有するが、それ自身はエステル形成能を持たないので、エステル形成反応に対しては不活性であり、これを直接ポリエステルの共重合成分とすることができない。このため、本発明では、ポリエステルの製造工程における、エステル化反応又はエステル交換反応を行う際に、反応系中に、DOPと、不飽和カルボン酸またはそのエステル形成性誘導体とを共存させて、熱的に安定なエステル形成性リン化合物誘導体を生成せしめ、該生成したエステル形成性リン化合物誘導体を、重縮合反応工程でポリエステルに共重合させることで、側鎖にDOP残基を有する難燃性ポリエステルを製造する。なお、本発明においては、エステル化反応を経る直接エステル化法が原料コストの点で好ましい。  The phosphorus compound of the general formula (1) which is the component (A) used in the present invention is 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOP). DOP has an effect of imparting flame resistance to polyester, but DOP itself has no ester-forming ability, so it is inactive against ester-forming reaction, and cannot be directly used as a copolymer component of polyester. . For this reason, in the present invention, when performing esterification reaction or transesterification reaction in the production process of polyester, DOP and unsaturated carboxylic acid or an ester-forming derivative thereof coexist in the reaction system, A flame-retardant polyester having a DOP residue in the side chain by forming a stable ester-forming phosphorus compound derivative and copolymerizing the produced ester-forming phosphorus compound derivative with polyester in a polycondensation reaction step Manufacturing. In the present invention, a direct esterification method that undergoes an esterification reaction is preferred in terms of raw material costs.
 本発明で使用する(B)成分である不飽和カルボン酸もしくはそのエステル形成性誘導体としては、アクリル酸、クロトン酸、メタアクリル酸等の不飽和モノカルボン酸、マレイン酸、フマル酸、メサコン酸、シトラコン酸、イタコン酸等の不飽和ジカルボン酸、前記不飽和カルボン酸のメチルエステルやエチルエステル等のアルキルエステル、無水マレイン酸、無水シトラコン酸、無水イタコン酸等の酸無水物が挙げられる。これらの中でもマレイン酸、フマル酸及びイタコン酸等の不飽和ジカルボン酸若しくはそのエステル形成性誘導体が好ましい。これらの化合物はいずれか1種を単独で使用しても2種以上を併用してもよい。 As the unsaturated carboxylic acid or ester-forming derivative thereof as component (B) used in the present invention, unsaturated monocarboxylic acid such as acrylic acid, crotonic acid, methacrylic acid, maleic acid, fumaric acid, mesaconic acid, Examples thereof include unsaturated dicarboxylic acids such as citraconic acid and itaconic acid, alkyl esters such as methyl ester and ethyl ester of the unsaturated carboxylic acid, and acid anhydrides such as maleic anhydride, citraconic anhydride and itaconic anhydride. Among these, unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid or ester-forming derivatives thereof are preferred. These compounds may be used alone or in combination of two or more.
 本発明の難燃性ポリエステルの製造方法において、(A)成分である一般式(1)のリン化合物と、(B)成分である不飽和カルボン酸もしくはそのエステル形成性誘導体とは、実質的に当モルで使用するのが好ましいが、どちらか一方が等モルに対して20モル%の範囲内で過不足があっても差し支えない。しかし、(A)成分が(B)成分に対して20モル%よりも過剰になると、重合触媒が失活して、重合に長時間を要することや、不活性化した触媒によるポリエステルの色調の悪化や濁りの原因になる傾向にある。逆に、(A)成分が(B)成分に対して20モル%よりも過少になると、不飽和カルボン酸の量が過剰となり、ポリエステルのゲル化や着色の原因になる傾向にある。即ち、本発明において、(A)成分及び(B)成分の各量は、いずれか一方が、いずれか他方の80~120モル%となる範囲が好ましく、特に好ましくは85~115モル%となる範囲である。 In the method for producing a flame-retardant polyester of the present invention, the phosphorus compound of the general formula (1) as the component (A) and the unsaturated carboxylic acid or the ester-forming derivative thereof as the component (B) are substantially Although it is preferable to use it in an equimolar amount, either one may be in excess or deficiency within a range of 20 mol% with respect to an equimolar amount. However, when the component (A) is more than 20 mol% with respect to the component (B), the polymerization catalyst is deactivated, and it takes a long time for the polymerization or the color tone of the polyester due to the deactivated catalyst. It tends to cause deterioration and turbidity. On the other hand, when the amount of the component (A) is less than 20 mol% with respect to the component (B), the amount of the unsaturated carboxylic acid becomes excessive and tends to cause gelation or coloring of the polyester. That is, in the present invention, the amount of each of the component (A) and the component (B) is preferably in a range in which either one is 80 to 120 mol% of the other, particularly preferably 85 to 115 mol%. It is a range.
 本発明の難燃性ポリエステルには、(A)成分である一般式(2)で表される有機基を有するジカルボン酸成分が20~60モル%共重合されていることが好ましい。一般式(2)で表される有機基を有するジカルボン酸成分の共重合比率が20モル%未満では、難燃効果を十分に発揮させるにはベースレジンに対する難燃マスターバッチの配合比率を高くする必要があり、このため配合物の機械物性がベースレジンの機械物性よりも大きく劣ることとなりかねず、好ましくない。また、一般式(2)で表される有機基を有するジカルボン酸成分の共重合比率が60モル%より多いと、高重合度の難燃性ポリエステルを得ることが困難となる傾向にあり、このため配合物の機械物性がベースレジンの機械物性よりも大きく劣ることとなりかねず、好ましくない。 In the flame-retardant polyester of the present invention, it is preferable that 20 to 60 mol% of a dicarboxylic acid component having an organic group represented by the general formula (2) as the component (A) is copolymerized. When the copolymerization ratio of the dicarboxylic acid component having an organic group represented by the general formula (2) is less than 20 mol%, the flame retardant master batch is added to the base resin in a high proportion in order to sufficiently exert the flame retardant effect. Therefore, the mechanical properties of the blend may be greatly inferior to those of the base resin, which is not preferable. Moreover, when the copolymerization ratio of the dicarboxylic acid component having an organic group represented by the general formula (2) is more than 60 mol%, it tends to be difficult to obtain a flame-retardant polyester having a high degree of polymerization. Therefore, the mechanical properties of the blend may be greatly inferior to the mechanical properties of the base resin, which is not preferable.
 本発明の(D)成分は、(B)成分以外の多価カルボン酸またはその誘導体である。(D)成分は主に芳香族ジカルボン酸成分またはこれらのエステル形成性誘導体からなることが好ましい。芳香族ジカルボン酸成分としては、テレフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、オルソフタル酸、イソフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジカルボキシジフェニルスルホン、4,4’-ジカルボキシジフェニルエーテル、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、アントラセンジカルボン酸などの芳香族ジカルボン酸およびこれらのエステル形成性誘導体があげられるが、これらの芳香族ジカルボン酸のうち、テレフタル酸、2,6-ナフタレンジカルボン酸が好ましい。 The component (D) of the present invention is a polyvalent carboxylic acid other than the component (B) or a derivative thereof. The component (D) is preferably mainly composed of an aromatic dicarboxylic acid component or an ester-forming derivative thereof. Examples of aromatic dicarboxylic acid components include terephthalic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid. Orthophthalic acid, isophthalic acid, 5- (alkali metal) sulfoisophthalic acid, diphenic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-dicarboxydiphenyl sulfone, 4,4′-dicarboxydiphenyl ether, 1, Examples thereof include aromatic dicarboxylic acids such as 2-bis (phenoxy) ethane-p, p′-dicarboxylic acid and anthracene dicarboxylic acid, and ester-forming derivatives thereof. Among these aromatic dicarboxylic acids, terephthalic acid, 2 , 6-Naphthalenedicarboxylic acid is preferred.
 本発明の(C)成分は、エチレングリコールから主としてなる飽和脂肪族多価アルコールおよび/またはエステル形成性誘導体である。(C)成分の例としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどの脂肪族グリコールがあげられ、これらのグリコールのうちエチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコールなどの炭素数が2~5のグリコールが難燃性ポリエステルのガラス転移点(Tg)を高める点で好ましく、主としてエチレングリコールが50モル%以上であることが好ましい。 The component (C) of the present invention is a saturated aliphatic polyhydric alcohol and / or ester-forming derivative mainly composed of ethylene glycol. Examples of the component (C) include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3- Butylene glycol, 1,4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1 , 2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polyethylene glycol, Examples thereof include aliphatic glycols such as trimethylene glycol and polytetramethylene glycol. Among these glycols, ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, neopentyl glycol and the like have 2 to 5 carbon atoms. Is preferable in terms of increasing the glass transition point (Tg) of the flame-retardant polyester, and it is preferable that ethylene glycol is mainly 50 mol% or more.
 また、本発明の難燃性ポリエステルには、トリメリット酸、無水トリメリット酸、ピロメリット酸等の3価以上のカルボン酸、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3価以上のアルコール等の三官能以上の多官能成分を共重合することが難燃性ポリエステルの粘度を上げる点で好ましく、特に該難燃性ポリエステルを構成する全多価酸成分と全多価アルコール成分の合計200モル%に対し、合計0.05~3モル%の三価以上の多価カルボン酸成分および/または三価以上の多価ポリオール成分を共重合することが好ましい。多価カルボン酸および/または多価ポリオールの合計量が0.05モル%未満では、目的の粘度まで重合度を上げることが困難であり、3モル%以上では、ポリエステルの多分岐が過剰となり、ゲル化を生じる恐れがある。多価カルボン酸および/または多価ポリオールの合計量は0.05~3モル%が好ましく、さらには0.1モル%~2モル%が好ましい。 In addition, the flame retardant polyester of the present invention includes trivalent or higher carboxylic acids such as trimellitic acid, trimellitic anhydride and pyromellitic acid, and trivalent or higher alcohols such as glycerin, trimethylolpropane and pentaerythritol. It is preferable to copolymerize a trifunctional or higher polyfunctional component from the viewpoint of increasing the viscosity of the flame retardant polyester, and in particular, a total of 200 mol% of the total polyhydric acid component and the total polyhydric alcohol component constituting the flame retardant polyester. On the other hand, it is preferable to copolymerize a total of 0.05 to 3 mol% of a trivalent or higher polyvalent carboxylic acid component and / or a trivalent or higher polyvalent polyol component. If the total amount of the polyvalent carboxylic acid and / or the polyvalent polyol is less than 0.05 mol%, it is difficult to increase the polymerization degree to the target viscosity, and if it is 3 mol% or more, the hyperbranching of the polyester becomes excessive, May cause gelation. The total amount of the polyvalent carboxylic acid and / or the polyvalent polyol is preferably 0.05 to 3 mol%, more preferably 0.1 to 2 mol%.
 本発明の(E)成分である酢酸金属塩は、酢酸のアルカリ金属塩、アルカリ土類金属塩、遷移金属塩などが好ましく、中でも、酢酸ナトリウム、酢酸リチウム、酢酸コバルトなどがポリエステルの色調を抑える点で好ましい。酢酸ナトリウムを配合する場合、難燃性ポリエステルに対してナトリウム原子として5~50ppmとなる酢酸ナトリウムを配合することが好ましく、より好ましくは10ppm~30ppmである。5ppm以下ではジエチレングリコール成分の共重合比率を抑制する効果が低くなる傾向にある。また、50ppm以上では樹脂着色が強くなる傾向にある。また、難燃性マスターバッチのCo-bを下げるために、コバルト原子として5~50ppmの酢酸コバルトを配合することが好ましく、より好ましくは10ppm~30ppmである。5ppm以下ではCo-bを下げる効果が少ない。また、50ppm以上では樹脂青みが強くなる。 The metal acetate of the component (E) of the present invention is preferably an alkali metal salt, alkaline earth metal salt, transition metal salt or the like of acetic acid. Among them, sodium acetate, lithium acetate, cobalt acetate, etc. suppress the color tone of the polyester. This is preferable. When sodium acetate is blended, it is preferable to blend sodium acetate that is 5 to 50 ppm as a sodium atom with respect to the flame-retardant polyester, and more preferably 10 to 30 ppm. If it is 5 ppm or less, the effect of suppressing the copolymerization ratio of the diethylene glycol component tends to be low. Further, if it is 50 ppm or more, resin coloring tends to be strong. Further, in order to lower Co-b of the flame retardant masterbatch, 5 to 50 ppm of cobalt acetate is preferably added as a cobalt atom, and more preferably 10 to 30 ppm. Below 5 ppm, the effect of lowering Co-b is small. Moreover, the resin bluish becomes strong at 50 ppm or more.
 本発明の(F)成分である重合触媒は、特に限定されないが、ゲルマニウム化合物、アルミニウム化合物などの触媒を用いると、難燃性ポリエステルの黒ずみを抑制する効果があり、Co-L値の高いポリエステルを得られる傾向にあるので、好ましい。特にゲルマニウム化合物が重合活性が高い点で好ましい。  The polymerization catalyst which is the component (F) of the present invention is not particularly limited, but if a catalyst such as a germanium compound or an aluminum compound is used, the effect of suppressing darkening of the flame-retardant polyester is obtained, and a polyester having a high Co-L value. This is preferable. In particular, germanium compounds are preferred because of their high polymerization activity.
 本発明の難燃性ポリエステルの製造方法においては、エステル化反応またはエステル交換反応の前に反応系に添加した酢酸金属塩が、重縮合工程においても残存している。酢酸金属塩が残存していることによって反応系が弱アルカリ性になり、ジエチレングリコールの副生が抑制される。このような作用によりジエチレングリコールの難燃性ポリエステルに対する共重合比率を低く抑えることができる、との効果が発揮される。本発明の難燃性ポリエステルを構成する脂肪族ポリオール成分中のジエチレングリコール成分は30モル%以下であることが好ましい。ジエチレングリコール成分の共重合比率が高くなると難燃性ポリエステルのTgが低下する傾向にあり、30モル%以上では、機械物性の低下や乾燥時のブロッキングを引き起こすおそれがある。 In the method for producing a flame-retardant polyester of the present invention, the metal acetate added to the reaction system before the esterification reaction or transesterification reaction remains in the polycondensation step. Due to the remaining acetic acid metal salt, the reaction system becomes weakly alkaline and the by-product of diethylene glycol is suppressed. By such an action, an effect that the copolymerization ratio of diethylene glycol to the flame-retardant polyester can be kept low is exhibited. The diethylene glycol component in the aliphatic polyol component constituting the flame-retardant polyester of the present invention is preferably 30 mol% or less. When the copolymerization ratio of the diethylene glycol component is high, the Tg of the flame-retardant polyester tends to be reduced, and when it is 30 mol% or more, there is a risk of causing deterioration in mechanical properties or blocking during drying.
 本発明の難燃性マスターバッチは、本発明の難燃性ポリエステルと酢酸金属塩とを含有することを必須とし、さらにその他の樹脂、相溶化剤および/または各種添加剤が配合されていてもよい。例えば、顔料や酸化防止剤を添加剤として配合することにより、難燃マスターバッチに着色や酸化防止の機能を付加することができる。また、ベースレジンと相溶性の高いその他の樹脂や相溶化剤を配合することにより、溶融混練工程の簡素化や難燃性樹脂組成物の均質化等の効果を得られることが期待できる。 The flame-retardant masterbatch of the present invention must contain the flame-retardant polyester of the present invention and a metal acetate metal salt, and may contain other resins, compatibilizers and / or various additives. Good. For example, a coloring or antioxidant function can be added to the flame retardant masterbatch by blending a pigment or an antioxidant as an additive. Moreover, it can be expected that effects such as simplification of the melt-kneading process and homogenization of the flame-retardant resin composition can be expected by blending other resins and compatibilizers that are highly compatible with the base resin.
 本発明の難燃性マスターバッチは、水分率が0.1重量%以下、さらには0.05重量%以下、さらには0.03重量%以下であるのが好ましい。水分率が0.1重量%以下であれば十分に乾燥されており、ブロッキングや分解が抑制される傾向にある。  The flame retardant masterbatch of the present invention preferably has a moisture content of 0.1% by weight or less, further 0.05% by weight or less, and further 0.03% by weight or less. If the moisture content is 0.1% by weight or less, it is sufficiently dried, and blocking and decomposition tend to be suppressed.
 本発明の難燃性マスターバッチと熱可塑性樹脂(ベースレジン)とを混合して、リンを所定量含有した難燃性熱可塑性樹脂組成物を製造することができる。 A flame-retardant thermoplastic resin composition containing a predetermined amount of phosphorus can be produced by mixing the flame-retardant masterbatch of the present invention and a thermoplastic resin (base resin).
 本発明の難燃性マスターバッチは、ハンター色差計にて測定したL値(白度)が50以上であることが好ましく、さらには55以上であるのが好ましい。また、ハンター色差計にて測定したb値は-5以上20以下であるのが好ましく、さらには15以下、10以下であるのが好ましい。本発明の難燃性ポリエステルの製造方法をとることにより、白度が高く、なおかつ黄味が低い低着色または無着色の難燃性マスターバッチを得ることができる。また本発明の難燃性マスターバッチは、着色が少なく耐着色性も良好である。そのため、本発明の難燃性マスターバッチをベースレジンに配合して得られる熱可塑性樹脂組成物の白度は、難燃性マスターバッチを配合する前の通常のベースレジンと殆ど変わらない。 The flame retardant masterbatch of the present invention preferably has an L value (whiteness) measured by a Hunter color difference meter of 50 or more, and more preferably 55 or more. The b value measured with a Hunter color difference meter is preferably −5 or more and 20 or less, more preferably 15 or less and 10 or less. By using the method for producing a flame-retardant polyester of the present invention, a low-colored or non-colored flame-retardant masterbatch having high whiteness and low yellowness can be obtained. Moreover, the flame-retardant masterbatch of the present invention has little coloration and good coloration resistance. Therefore, the whiteness of the thermoplastic resin composition obtained by blending the flame-retardant masterbatch of the present invention with the base resin is almost the same as that of a normal base resin before blending the flame-retardant masterbatch.
 難燃性マスターバッチのベースレジンに対する配合比率は、配合後の難燃性熱可塑性樹脂組成物が所望するリン含有量により適宜に調整できるが、通常、難燃性熱可塑性樹脂組成物の0.5~90重量%とするのが好ましい。さらには、1~50重量%、さらには10~30重量%であるのが好ましい。難燃性熱可塑性樹脂組成物におけるリン含有量は特に限定されないが、1000ppm以上、さらには2000ppm以上、さらには4000ppm以上である場合に難燃性の点で有効である。従来技術においては、難燃性マスターバッチとして高リン濃度と高重合度と高ガラス転移温度を同時に満たすことができなかったため、前記範囲のリン含有量を満たす難燃性熱可塑性樹脂組成物の成形加工は成型品の強度が弱くなるため、もしくは成型品を金型から取り出すのに必要とする冷却時間が長くなるため、実用的ではなかったが、本発明では十分な強度を有する成形品を、高い生産効率で容易に生産することができる。 The blending ratio of the flame retardant masterbatch with respect to the base resin can be appropriately adjusted depending on the phosphorus content desired by the flame retardant thermoplastic resin composition after blending. 5 to 90% by weight is preferable. Further, it is preferably 1 to 50% by weight, more preferably 10 to 30% by weight. The phosphorus content in the flame-retardant thermoplastic resin composition is not particularly limited, but it is effective in terms of flame retardancy when it is 1000 ppm or more, further 2000 ppm or more, and further 4000 ppm or more. In the prior art, as a flame retardant masterbatch, a high phosphorus concentration, a high degree of polymerization and a high glass transition temperature could not be satisfied at the same time, so molding of a flame retardant thermoplastic resin composition satisfying the phosphorus content in the above range Processing is not practical because the strength of the molded product is weakened or the cooling time required to take out the molded product from the mold is long, but in the present invention, the molded product having sufficient strength, It can be easily produced with high production efficiency.
 本発明の難燃性マスターバッチが配合されるベースレジンとしては、任意の熱可塑性樹脂を用いることができる。任意の熱可塑性樹脂の例としては、ポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル・ブタジエン・スチレン共重合樹脂、アクリロニトリル・スチレン共重合樹脂、(メタ)アクリル酸・スチレン共重合樹脂、(メタ)アクリル樹脂、ブタジエン・スチレン共重合樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリアリルスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリイミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ乳酸等のポリエステル樹脂、ポリエステルカーボネート樹脂、ポリエステルエーテル樹脂、ポリウレタン樹脂およびそれらのアロイ樹脂などを例示することができ、特にポリエステル樹脂に適用した場合、相溶性の点で好ましい。 Any thermoplastic resin can be used as the base resin in which the flame-retardant masterbatch of the present invention is blended. Examples of optional thermoplastic resins include polyolefin resin, polystyrene resin, acrylonitrile / butadiene / styrene copolymer resin, acrylonitrile / styrene copolymer resin, (meth) acrylic acid / styrene copolymer resin, (meth) acrylic resin, butadiene・ Styrene copolymer resin, polycarbonate resin, polyamide resin, polyarylate resin, polysulfone resin, polyallylsulfone resin, polyethersulfone resin, polyetherimide resin, polyimide resin, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, poly Examples thereof include polyester resins such as lactic acid, polyester carbonate resins, polyester ether resins, polyurethane resins and alloy resins thereof. When applied to ester resin is preferred in terms of compatibility.
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、本明細書において各測定は、以下の方法に従って行った。
(1)リン濃度:小型電子天秤にて試料樹脂7gを秤量した。フェロ板使用面(鏡面)にアルミリングを並べ、その中に秤量した試料を入れた。試料を載せたフェロ板を270℃の熱風乾燥機に入れ、20分間熱処理した。冷却後、フェロ板よりアルミリングごと、溶融した試料を剥離し、厚さ5mm程度の板状試料を得た。板状試料のフェロ板非接触側をリガク社製蛍光X線分析装置システム3270を用いて蛍光X線分析し、リン濃度を決定した。
(2)極限粘度:試料の極限粘度は、フェノール/1,1,2,2-テトラクロロエタン混合溶液(重量比(3/2))、30℃で測定した。
(3)カラー値:試料のカラー値は、ハンター色差計にて測定した。Co-L値は大きくなるほど白色味の強いこと、Co-b値は大きくなるほど黄色味の強いことを示す。
(4)ガラス転移点温度(Tg):示差走査熱量計(DSC)を用いて、室温から200℃まで20℃/分の昇温速度でアニーリングさせ、液体窒素で急冷後、0℃から200℃まで20℃/分の昇温速度で昇温し、ベースラインと変曲点での接線の交点を測定した。サンプルは試料5mgをアルミニウム押え蓋型容器に入れ、クリンプした。
(5)重合時間
 重縮合工程で反応缶の内圧が10hPaに低下した時からポリエステルの極限粘度(IV)が0.67(目標値)±0.03dl/gまで上がるのにかかった時間を重合時間とした。但し、上限を240分として計測した。
(6)ペレタイズ加工方法
 重縮合工程終了後に、窒素加圧下で溶融状態のポリエステルを口金から吐出し、ストランド状に押出し、冷却水が入った水槽内の冷却水中を潜らせた後、ストランドカッターでペレタイズした。直径3mm程度、長さ3mm程度の略円柱状のペレットを得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples. In this specification, each measurement was performed according to the following method.
(1) Phosphorus concentration: 7 g of sample resin was weighed with a small electronic balance. Aluminum rings were arranged on the ferro plate use surface (mirror surface), and a weighed sample was put therein. The ferro plate on which the sample was placed was placed in a hot air dryer at 270 ° C. and heat-treated for 20 minutes. After cooling, the molten sample was peeled off from the ferro plate together with the aluminum ring to obtain a plate-like sample having a thickness of about 5 mm. The non-contact side of the ferro plate of the plate-like sample was analyzed by fluorescent X-ray using a fluorescent X-ray analyzer system 3270 manufactured by Rigaku Corporation to determine the phosphorus concentration.
(2) Intrinsic viscosity: The intrinsic viscosity of the sample was measured at 30 ° C. in a phenol / 1,1,2,2-tetrachloroethane mixed solution (weight ratio (3/2)).
(3) Color value: The color value of the sample was measured with a Hunter color difference meter. The larger the Co-L value, the stronger the whiteness, and the larger the Co-b value, the stronger the yellowness.
(4) Glass transition temperature (Tg): annealed from room temperature to 200 ° C. at a rate of 20 ° C./min using a differential scanning calorimeter (DSC), quenched with liquid nitrogen, and then 0 ° C. to 200 ° C. The temperature was raised at a rate of temperature rise of 20 ° C./min until the intersection of the tangent line at the base line and the inflection point was measured. As a sample, 5 mg of a sample was placed in an aluminum press-lid container and crimped.
(5) Polymerization time The time required for the intrinsic viscosity (IV) of the polyester to rise to 0.67 (target value) ± 0.03 dl / g from the time when the internal pressure of the reaction vessel is reduced to 10 hPa in the polycondensation step is polymerized. It was time. However, the upper limit was measured as 240 minutes.
(6) Pelletizing method After completion of the polycondensation process, the molten polyester is discharged from the base under nitrogen pressure, extruded into a strand shape, submerged in the cooling water in the water tank containing the cooling water, and then a strand cutter. Pelletized. A substantially cylindrical pellet having a diameter of about 3 mm and a length of about 3 mm was obtained.
 以下、本発明の難燃性マスターバッチ用ポリエステル樹脂組成物に関する実施例と比較例である。
〔実施例1〕
 表1に示す多価酸成分、リン化合物を、表1に記載の割合で仕込み、表1に示す多価アルコール成分が全多価酸成分に対して2モル当量になるように仕込み、加圧下で温度240℃まで昇温し、エステル化反応を行った。このエステル化反応物に二酸化ゲルマニウムを樹脂に対しゲルマニウム原子換算で200ppm添加し、それを重縮合反応缶に移送し、温度を60分間かけて265℃まで昇温しながら同時並行して圧力を徐々に減じて60分後に1.3hPa以下とした。この条件で攪拌しながらポリエステルが目標の極限粘度(0.67±0.03dl/g)になるまで重縮合反応を行って、リン原子を含有するポリエステルを得た。
〔実施例2、3〕
 表1に示す化合物を、表1に示す割合で、実施例1と同様にしてポリエステルを製造した。
〔実施例4〕
 酢酸ナトリウム化合物を酢酸コバルトに変更した以外は、実施例1と同様にしてポリエステルを製造した。
〔比較例1〕 
 酢酸ナトリウムを添加せずに仕込んだ以外は、実施例1と同様にしてポリエステルを製造した。しかし、得られたポリエステルのTgが低く、乾燥温度60℃では、ペレットのブロッキングが確認された。
〔比較例2〕
酢酸ナトリウムをトリブチルアミンに変更した以外は、実施例1と同様にしてポリエステルを製造した。しかし、目標の極限粘度まで重縮合が進まず、得られた樹脂も着色が悪化した。
Hereinafter, examples and comparative examples relating to the polyester resin composition for a flame-retardant masterbatch of the present invention will be described.
[Example 1]
The polyhydric acid component and phosphorus compound shown in Table 1 are charged in the proportions shown in Table 1, and the polyhydric alcohol component shown in Table 1 is charged so as to be 2 molar equivalents with respect to the total polyhydric acid component, and under pressure. The temperature was raised to 240 ° C. to carry out an esterification reaction. To this esterification reaction product, 200 ppm of germanium dioxide in terms of germanium atoms is added to the resin, transferred to a polycondensation reaction can, and gradually raised in parallel while increasing the temperature to 265 ° C. over 60 minutes. After 60 minutes, the pressure was reduced to 1.3 hPa or less. A polycondensation reaction was performed while stirring under these conditions until the polyester reached the target intrinsic viscosity (0.67 ± 0.03 dl / g) to obtain a polyester containing phosphorus atoms.
[Examples 2 and 3]
Polyesters were produced in the same manner as in Example 1 using the compounds shown in Table 1 at the ratios shown in Table 1.
Example 4
A polyester was produced in the same manner as in Example 1 except that the sodium acetate compound was changed to cobalt acetate.
[Comparative Example 1]
A polyester was produced in the same manner as in Example 1, except that sodium acetate was not added. However, when the obtained polyester had a low Tg and a drying temperature of 60 ° C., blocking of the pellet was confirmed.
[Comparative Example 2]
A polyester was produced in the same manner as in Example 1 except that sodium acetate was changed to tributylamine. However, polycondensation did not proceed to the target intrinsic viscosity, and the resulting resin was also poorly colored.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1から明らかなように、実施例1~4では、優れた難燃性が得られる十分量のリン原子含有量を有しながら、ジエチレングリコールの共重合比率は11~20モル%と比較的低いレベルに抑えられており、高重合度、高ガラス転移温度でありなおかつ着色が抑制された難燃性ポリエステルを製造することができた。これに対し、比較例1は酢酸塩を用いていない場合であるが、得られた難燃性ポリエステルに占めるジエチレングリコールの共重合比率が34モル%と高くなっている。このため得られたポリエステルのガラス転移温度が低くなり、乾燥工程でのブロッキングが発生した。また、比較例2は酢酸塩を使用せずトリブチルアミンを添加した場合であるが、ジエチレングリコールの共重合比率は15モル%と比較的低いレベルに抑えられているものの、トリブチルアミンが重合触媒の失活を一部起こし、重合時間を延長しても高重合度の難燃性ポリエステルを製造することが出来なかった。また、得られた難燃性ポリエステルにはトリブチルアミンによる着色が発生していた。 As is clear from Table 1, in Examples 1 to 4, the copolymerization ratio of diethylene glycol is relatively low at 11 to 20 mol% while having a sufficient phosphorus atom content that provides excellent flame retardancy. It was possible to produce a flame-retardant polyester that was suppressed to a level, had a high degree of polymerization, a high glass transition temperature, and had coloring suppressed. On the other hand, Comparative Example 1 is a case where no acetate is used, but the copolymerization ratio of diethylene glycol in the obtained flame-retardant polyester is as high as 34 mol%. For this reason, the glass transition temperature of the obtained polyester was lowered, and blocking occurred in the drying process. Comparative Example 2 is a case where tributylamine was added without using an acetate salt, but although the copolymerization ratio of diethylene glycol was suppressed to a relatively low level of 15 mol%, tributylamine lost the polymerization catalyst. Even if the activity was partially raised and the polymerization time was extended, a flame-retardant polyester having a high degree of polymerization could not be produced. In addition, the obtained flame-retardant polyester was colored by tributylamine.
 本発明の難燃性ポリエステルの製造方法によると、着色が低減され、機械物性に優れる難燃性ポリエステルを得ることができる。本発明の難燃性ポリエステルは難燃マスターバッチに配合する難燃成分として有用であり、本発明の難燃マスターバッチを任意の熱可塑性樹脂(ベースレジン)に配合し溶融混練することにより、着色や機械物性低下を抑制しつつ、難燃性熱可塑性樹脂組成物を得ることができる。得られた難燃性熱可塑性樹脂組成物は、押出成形、射出成形等により、衣料用繊維や、産業資材用繊維、フィルム、エンジニアリングプラスチック、また接着剤等に利用することができる。 According to the method for producing a flame-retardant polyester of the present invention, it is possible to obtain a flame-retardant polyester with reduced coloring and excellent mechanical properties. The flame retardant polyester of the present invention is useful as a flame retardant component to be blended in a flame retardant masterbatch, and is colored by blending the flame retardant masterbatch of the present invention into an arbitrary thermoplastic resin (base resin) and melt-kneading. In addition, a flame-retardant thermoplastic resin composition can be obtained while suppressing deterioration of mechanical properties. The obtained flame retardant thermoplastic resin composition can be used for clothing fibers, industrial material fibers, films, engineering plastics, adhesives, and the like by extrusion molding, injection molding, and the like.

Claims (5)

  1. 下記(A)~(E)成分、
     (A)成分:下記一般式(1)のリン化合物
    Figure JPOXMLDOC01-appb-C000001
     (B)成分:不飽和ジカルボン酸又はそのエステル形成性誘導体、
     (C)成分:エチレングリコールから主としてなる飽和脂肪族多価アルコールおよび/またはエステル形成性誘導体、
     (D)成分:(B)成分以外の多価カルボン酸又はそのエステル形成性誘導体、
     (E)成分:酢酸金属塩、
    を含有する組成物を加熱混合する工程を有する難燃性ポリエステルの製造方法。
    The following components (A) to (E)
    (A) component: phosphorus compound of the following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (B) component: unsaturated dicarboxylic acid or its ester-forming derivative,
    (C) component: saturated aliphatic polyhydric alcohol and / or ester-forming derivative mainly composed of ethylene glycol,
    Component (D): a polyvalent carboxylic acid other than the component (B) or an ester-forming derivative thereof,
    (E) component: metal acetate metal salt
    A method for producing a flame-retardant polyester, comprising a step of heating and mixing a composition comprising
  2. 下記(A)~(E)成分、
     (A)成分:下記一般式(1)のリン化合物、
    Figure JPOXMLDOC01-appb-C000002
     (B)成分:不飽和ジカルボン酸又はそのエステル形成性誘導体、
     (C)成分:エチレングリコールから主としてなる飽和脂肪族多価アルコールおよび/またはエステル形成性誘導体、
     (D)成分:(B)成分以外の多価カルボン酸又はそのエステル形成性誘導体、
     (E)成分:酢酸金属塩、
    を含有する組成物を加熱混合する工程(P)、
    工程(P)で得られた組成物に(F)成分:重合触媒を添加し次いで加熱し減圧する工程(Q)、
    を有する難燃性ポリエステルの製造方法。
    The following components (A) to (E)
    (A) component: phosphorus compound of the following general formula (1),
    Figure JPOXMLDOC01-appb-C000002
    (B) component: unsaturated dicarboxylic acid or its ester-forming derivative,
    (C) component: saturated aliphatic polyhydric alcohol and / or ester-forming derivative mainly composed of ethylene glycol,
    Component (D): a polyvalent carboxylic acid other than the component (B) or an ester-forming derivative thereof,
    (E) component: metal acetate metal salt
    A step (P) of heating and mixing the composition containing
    Step (Q) in which component (F): a polymerization catalyst is added to the composition obtained in step (P) and then heated and depressurized,
    A method for producing a flame-retardant polyester having:
  3.  (B)成分がマレイン酸、フマル酸および/またはイタコン酸である請求項1または2に記載の難燃性ポリエステルの製造方法。 The method for producing a flame-retardant polyester according to claim 1 or 2, wherein the component (B) is maleic acid, fumaric acid and / or itaconic acid.
  4.  難燃性ポリエステルと酢酸金属塩とを含有する難燃マスターバッチであって、
     前記難燃性ポリエステルが、該難燃性ポリエステルを構成する全多価酸成分と全多価アルコール成分の合計200モル%に対し、20~60モル%の下記一般式(2)
    Figure JPOXMLDOC01-appb-C000003
    で表される有機基を有するジカルボン酸成分と、合計0.05~3モル%の三価以上の多価カルボン酸成分および/または三価以上の多価ポリオール成分と、37~79.95モル%の芳香族ジカルボン酸成分と、残部の脂肪族ジオール成分とからなる難燃性ポリエステルであり、
     Co-b値が-5~20、Co-L値が50以上である、
    難燃マスターバッチ。
    A flame retardant masterbatch comprising a flame retardant polyester and a metal acetate,
    The flame retardant polyester is 20 to 60 mol% of the following general formula (2) with respect to a total of 200 mol% of all polyvalent acid components and all polyhydric alcohol components constituting the flame retardant polyester.
    Figure JPOXMLDOC01-appb-C000003
    37 to 79.95 mol of a dicarboxylic acid component having an organic group represented by the formula: a total of 0.05 to 3 mol% of a trivalent or higher polyvalent carboxylic acid component and / or a trivalent or higher polyvalent polyol component; % Flame retardant polyester comprising an aromatic dicarboxylic acid component and the remaining aliphatic diol component,
    The Co-b value is -5 to 20, and the Co-L value is 50 or more.
    Flame retardant masterbatch.
  5.  前記難燃性ポリエステル樹脂を構成するジエチレングリコール成分の共重合比率が30モル%以下である請求項4に記載の難燃マスターバッチ。
     
    The flame-retardant masterbatch according to claim 4, wherein a copolymerization ratio of a diethylene glycol component constituting the flame-retardant polyester resin is 30 mol% or less.
PCT/JP2013/054686 2012-03-23 2013-02-25 Method for producing flame-retardant polyester, and flame-retardant master batch WO2013140947A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147015718A KR20140147804A (en) 2012-03-23 2013-02-25 Method for producing flame-retardant polyester, and flame-retardant master batch
CN201380016178.9A CN104245789A (en) 2012-03-23 2013-02-25 Method for producing flame-retardant polyester, and flame-retardant master batch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012066755 2012-03-23
JP2012-066755 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013140947A1 true WO2013140947A1 (en) 2013-09-26

Family

ID=49222410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054686 WO2013140947A1 (en) 2012-03-23 2013-02-25 Method for producing flame-retardant polyester, and flame-retardant master batch

Country Status (5)

Country Link
JP (1) JPWO2013140947A1 (en)
KR (1) KR20140147804A (en)
CN (1) CN104245789A (en)
TW (1) TWI598376B (en)
WO (1) WO2013140947A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102360899B1 (en) * 2015-09-30 2022-02-08 코오롱인더스트리 주식회사 Flame retardant polyester film
CN115785632B (en) * 2022-11-30 2024-01-16 美瑞新材料股份有限公司 High-fluidity high-toughness PLA/PBS (polylactic acid/Poly Butylene succinate) blending alloy material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178975A (en) * 1991-12-28 1993-07-20 Toyobo Co Ltd Production of fire-resistant polyester
JP2000212266A (en) * 1999-01-26 2000-08-02 Nippon Ester Co Ltd Preparation of flame-retardant polyester
JP2004043535A (en) * 2002-05-14 2004-02-12 Toyobo Co Ltd Method for producing flame-resistant polyester
JP2005194499A (en) * 2003-12-09 2005-07-21 Toyobo Co Ltd Masterbatching thermoplastic resin composition, method for producing molding material of the same, thermoplastic resin composition given by using the same, and method for producing the same
JP2007145727A (en) * 2005-11-24 2007-06-14 Sanko Kk New organophosphorus compound and method for producing the same and polytrimethylene terephthalate
JP2011231178A (en) * 2010-04-26 2011-11-17 Nippon Ester Co Ltd Polyester elastomer resin composition
JP2012111812A (en) * 2010-11-22 2012-06-14 Toyobo Co Ltd Polyester elastomer
JP2013018942A (en) * 2011-07-14 2013-01-31 Unitika Ltd Flame-retardant polyester resin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551663B2 (en) * 1989-09-11 1996-11-06 積水化学工業株式会社 Method for producing aliphatic polyester
JP2004002515A (en) * 2002-05-31 2004-01-08 Mitsubishi Chemicals Corp Polyester resin, biaxially oriented film and insulating film for capacitor composed thereof
CN100567376C (en) * 2003-12-09 2009-12-09 东洋纺织株式会社 The manufacture method of thermoplastic resin composition for masterbatches and shaped material thereof and thermoplastic resin composition and manufacture method thereof
JP2006169358A (en) * 2004-12-15 2006-06-29 Nippon Ester Co Ltd Flame-retardant polyester for fiber and method for producing the same
JP2008179714A (en) * 2007-01-25 2008-08-07 Teijin Fibers Ltd Flame-retardant copolyester composition and flame-retardant polyester fiber
JP2010241974A (en) * 2009-04-07 2010-10-28 Teijin Fibers Ltd Method for producing polyester
JP2011099004A (en) * 2009-11-04 2011-05-19 Teijin Dupont Films Japan Ltd Polyester film for touch panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178975A (en) * 1991-12-28 1993-07-20 Toyobo Co Ltd Production of fire-resistant polyester
JP2000212266A (en) * 1999-01-26 2000-08-02 Nippon Ester Co Ltd Preparation of flame-retardant polyester
JP2004043535A (en) * 2002-05-14 2004-02-12 Toyobo Co Ltd Method for producing flame-resistant polyester
JP2005194499A (en) * 2003-12-09 2005-07-21 Toyobo Co Ltd Masterbatching thermoplastic resin composition, method for producing molding material of the same, thermoplastic resin composition given by using the same, and method for producing the same
JP2007145727A (en) * 2005-11-24 2007-06-14 Sanko Kk New organophosphorus compound and method for producing the same and polytrimethylene terephthalate
JP2011231178A (en) * 2010-04-26 2011-11-17 Nippon Ester Co Ltd Polyester elastomer resin composition
JP2012111812A (en) * 2010-11-22 2012-06-14 Toyobo Co Ltd Polyester elastomer
JP2013018942A (en) * 2011-07-14 2013-01-31 Unitika Ltd Flame-retardant polyester resin

Also Published As

Publication number Publication date
JPWO2013140947A1 (en) 2015-08-03
TW201343712A (en) 2013-11-01
CN104245789A (en) 2014-12-24
KR20140147804A (en) 2014-12-30
TWI598376B (en) 2017-09-11

Similar Documents

Publication Publication Date Title
JP6050825B2 (en) Polylactic acid resin and copolyester resin blend and molded product using the same
JP2010132917A (en) Polyester/polycarbonate blend with reduced yellowness
JP2004292803A (en) Polyester polymerization catalyst, process for producing the same and process for producing polyester therewith
JP2015518915A (en) Polyester resin and method for producing the same
KR102299987B1 (en) Co-polyester resin, molded article and heat-shrinkable film
WO2006064773A1 (en) Polyester resin composition, process for producing the same and molding thereof
KR101801702B1 (en) Blend of polylactic acid resin and copolyester resin having superior impact strength and heat resistance and articles using the same
WO2022131219A1 (en) Polyester resin
KR20140114828A (en) Polyester resins with particular carbon black as a reheat additive
JP2006193725A (en) Polyester-based resin composition, method for producing the same, and molded product
WO2013140947A1 (en) Method for producing flame-retardant polyester, and flame-retardant master batch
TW201326300A (en) Blend of polylactic acid resin and copolyester resin and articles using the same
WO2022270505A1 (en) Polyester resin composition production method, method for regenerating recovered polyester resin, and polyester resin composition
WO2022234749A1 (en) Method for producing polyester resin composition and method for regenerating collected polyester resin
WO2022131218A1 (en) Polyester resin
WO2022131220A1 (en) Polyester resin
JP2008013664A (en) Copolyester and its molded product
JP7369178B2 (en) Polyester resin and its manufacturing method
TW202222927A (en) Method for producing polyester resin composition
WO2006049827A2 (en) Neopentyl glycol containing polyesters blended with polycarbonates
JP2022550817A (en) Polyester resin mixtures and moldings formed therefrom
JPH02302432A (en) Production of polyester
JPS6312894B2 (en)
JP2009024088A (en) Polyester resin for rubber reinforcing fiber, and method for producing the same
JP2004143209A (en) Polybutylene terephthalate resin composition and molded product

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013548668

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147015718

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763910

Country of ref document: EP

Kind code of ref document: A1