WO2024038834A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2024038834A1
WO2024038834A1 PCT/JP2023/029359 JP2023029359W WO2024038834A1 WO 2024038834 A1 WO2024038834 A1 WO 2024038834A1 JP 2023029359 W JP2023029359 W JP 2023029359W WO 2024038834 A1 WO2024038834 A1 WO 2024038834A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
water
fuel cell
water flow
heat exchange
Prior art date
Application number
PCT/JP2023/029359
Other languages
English (en)
French (fr)
Inventor
裕 川口
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024038834A1 publication Critical patent/WO2024038834A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D18/00Small-scale combined heat and power [CHP] generation systems specially adapted for domestic heating, space heating or domestic hot-water supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04044Purification of heat exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell system.
  • a household cogeneration system in which electricity is generated by a fuel cell, heat is recovered from the fuel cell, and the recovered heat is used to heat and supply city water (see Patent Document 1). ).
  • a fuel cell system includes: fuel cell and an external water channel through which water supplied from the outside flows; a first heat exchange section located proximate to the outside of the fuel cell or located inside the fuel cell and causing water from the external water flow path to recover heat generated in the fuel cell; a hot water supply channel that supplies heated water to the outside; a first heat exchange flow path connected to the external water flow path and passing through the first heat exchange section; a first water flow path connecting the external water flow path and the hot water supply flow path; At a confluence section where the hot water supply flow path, the first heat exchange flow path, and the first water flow path merge, water vapor inside the first heat exchange flow path is liquefied and the water vapor inside the hot water supply flow path is liquefied. It is structured so that it flows.
  • the merging section includes a water storage section that stores water, a water inlet connected to the first water flow path, and a water outlet connected to the hot water supply flow path, and At least a portion of the channel is configured to be inside the water storage section.
  • a second water flow path is provided that connects an upstream side of the external water flow path with respect to the connection portion with the first water flow path and the hot water supply flow path.
  • the external water flow path includes a second heat exchange section that exchanges heat with exhaust gas discharged from the fuel cell.
  • any one of (1) to (5) It has a cooling/heating device that heats or cools the water flowing through the hot water supply channel.
  • a third water flow path that is between the first water flow path and the second water flow path and connects the external water flow path and the hot water supply flow path; and a cooling/heating device that heats or cools water flowing through the third water flow path.
  • the external water flow path may include a second heat exchange section that exchanges heat with exhaust gas discharged from the fuel cell.
  • a fuel cell system includes: fuel cell and an external water channel through which water supplied from the outside flows; a first heat exchange section located proximate to the outside of the fuel cell or located inside the fuel cell and causing water from the external water flow path to recover heat generated in the fuel cell; a hot water supply channel that supplies heated water to the outside; a first heat exchange flow path connected to the external water flow path and passing through the first heat exchange section; a first water flow path connecting the external water flow path and the hot water supply flow path; a bypass flow path connecting the external water flow path and the first water flow path; a second water flow path connecting an upstream side of the external water flow path with respect to the connection portion with the first water flow path and the hot water supply flow path; a third water flow path that is between the first water flow path and the second water flow path and connects the external water flow path and the hot water supply flow path; a control device; At a confluence section where the hot water supply flow path, the first heat exchange flow path, and the first water flow
  • the control device is configured to cause water from the external water flow path to flow into the first heat exchange flow path, the bypass flow path, the first water flow path, and the first water flow path in accordance with the operation of the fuel cell and a request for hot water supply.
  • the water is controlled to flow through at least one of the second water flow path and the third water flow path.
  • the control device causes water to flow through at least one of the first water flow path, the second water flow path, and the third water flow path in response to a request for hot water supply when the fuel cell is stopped. Control.
  • (10) As an embodiment of the present disclosure, in (8) or (9), comprising a cooling/heating device that heats or cools the water flowing through the hot water supply flow path or the water flowing through the third water flow path;
  • the control device is configured to cause the cooling and heating device to heat the water according to the temperature of heated water supplied to the outside when the fuel cell is in operation or stopped and there is a continuous request for hot water supply. control to do so.
  • any one of (8) to (10), comprising a cooling/heating device that heats or cools the water flowing through the hot water supply flow path or the water flowing through the third water flow path;
  • the control device controls water to flow through the bypass flow path when the fuel cell is in operation and there is no request for hot water supply, and the water from the hot water supply flow path flows through the second water flow path.
  • the water is controlled to flow through the third water channel to the external water channel, and the cooling/heating device is controlled to cool the water.
  • the control device controls water to flow through the first heat exchange flow path when the fuel cell is in operation and there is a request for hot water supply, and controls the flow of water through the second water flow path as necessary.
  • the third water flow path is controlled so that water flows.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system according to an embodiment of the present disclosure.
  • FIG. 2 is a structural diagram schematically showing the internal structure of the fuel cell.
  • FIG. 3 is a diagram schematically showing the configuration of the merging section.
  • FIG. 4 is a diagram for explaining the control executed by the control device.
  • FIG. 5 is a diagram for explaining the control executed by the control device.
  • FIG. 6 is a diagram for explaining the control executed by the control device.
  • FIG. 7 is a diagram for explaining the control executed by the control device.
  • FIG. 8 is a diagram for explaining the control executed by the control device.
  • FIG. 9 is a schematic configuration diagram of a fuel cell system according to an embodiment of the present disclosure.
  • a fuel cell system 11 As shown in FIG. 1, a fuel cell system 11 according to an embodiment of the present disclosure includes a plurality of channels through which water flows, a heat exchange section, a fuel cell 16, a cooling/heating device 22, and a control device 35. , has.
  • the fuel cell system 11 is installed at home, for example.
  • the fuel cell 16 may include a reformer and a cell stack.
  • the fuel cell 16 may be a fuel cell module that includes a reformer and a cell stack within a housing.
  • the reformer generates fuel such as hydrogen by causing a steam reforming reaction between gas supplied as raw fuel and water.
  • the cell stack is, for example, a solid oxide fuel cell (SOFC), and generates electricity through an electrochemical reaction using an oxidizing agent such as oxygen contained in the air and fuel produced by a reformer.
  • SOFC solid oxide fuel cell
  • the fuel cell 16 emits heat during operation to generate electricity.
  • the cell stack also generates water through an electrochemical reaction. Unreacted fuel and unreacted oxidant discharged from the cell stack are combusted and provide energy to perform a steam reforming reaction in the reformer.
  • Water discharged from the cell stack is discharged from the fuel cell 16 in the form of a high-temperature gas along with combustion gas from combustion of unreacted fuel and unreacted oxidizer. Heat and combustion heat generated during operation for power generation are recovered as heat generated by the fuel cell 16 using a heat medium.
  • the cell stack may be a polymer electrolyte fuel cell (PEFC). In this case, the configuration of the reformer and the like of the fuel cell 16 may be changed as appropriate.
  • the exhaust gas discharged from the fuel cell 16 may include combustion gas and gaseous water.
  • the exhaust gas discharged from the fuel cell 16 may be heat exchanged with a heat medium using the second heat exchange section 14, which will be described later.
  • the exhaust gas cooled by heat exchange may be separated into gaseous exhaust gas and condensed liquid water by a gas-liquid separator.
  • the separated exhaust gas may be discharged to the outside of the fuel cell system 11.
  • the separated water may be sent to the fuel cell 16 as water for use in the steam reforming reaction.
  • the fuel cell system 11 includes, as a plurality of channels through which water flows, an external water channel 81, a hot water supply channel 12, a first heat exchange channel 82, a first water channel 83, It has a bypass flow path 44 and a second water flow path 84.
  • the external water flow path 81 is a flow path through which water supplied from the outside of the fuel cell system 11 flows.
  • a temperature sensor 55 may be provided in the external water flow path 81 to measure the temperature of the water entering the water.
  • a flow rate sensor 62 that measures the amount of water entering the external water flow path 81 may be provided.
  • the external water flow path 81 may be provided with a first flow rate adjustment valve 43 that adjusts the amount of water supplied.
  • a temperature sensor 51 may be provided to measure the temperature of water after passing through the second heat exchange section 14, which will be described later.
  • the hot water supply channel 12 is a channel that supplies heated water (hot water) to the outside.
  • a temperature sensor 56 may be provided to measure the temperature of the water at the outlet of the hot water supply channel 12. Further, a temperature sensor 54 may be provided upstream from the position of the cooling/heating device 22 to measure the temperature of the water.
  • the first heat exchange flow path 82 is a flow path that is connected to the external water flow path 81 and passes through the first heat exchange section 13, which will be described later.
  • the first water flow path 83 is a flow path that connects the external water flow path 81 and the hot water supply flow path 12.
  • the first water flow path 83 may be provided with a second flow rate adjustment valve 45 that adjusts the amount of water supplied from the external water flow path 81 .
  • the bypass flow path 44 is a flow path that connects the external water flow path 81 and the first water flow path 83.
  • the bypass flow path 44 and the first heat exchange flow path 82 may be connected to the external water flow path 81 by the three-way valve 31.
  • the second water flow path 84 is a flow path that connects the hot water supply flow path 12 with the upstream side of the connection part with the first water flow path 83 of the external water flow path 81 . More specifically, the second water flow path 84 may be connected to the downstream side of the cooling/heating device 22 in the hot water supply flow path 12 .
  • the second water flow path 84 may be provided with a third flow rate adjustment valve 46 that adjusts the amount of water passing through the second water flow path 84 .
  • water from the hot water supply channel 12 may pass through the second water channel 84 and enter the external water channel 81 for circulation.
  • the external water flow path 81 may be provided with a circulation pump 40 that increases the pressure so as to circulate water.
  • the fuel cell system 11 includes a first heat exchange section 13 and a second heat exchange section 14 as heat exchange sections.
  • the first heat exchange section 13 may be located close to the outside of the fuel cell 16 (outside the casing 29) or inside the fuel cell 16 (inside the casing 29).
  • the fuel cell 16 is a PEFC
  • the first heat exchange section 13 may be located close to the reformer that constitutes the fuel cell 16.
  • the first heat exchange section 13 may be located so as to be able to contact the outside of the fuel cell 16.
  • the first heat exchange section 13 may be located around at least one of the reformer 26 and the cell stack 27. In such a configuration, the first heat exchange section 13 may be located around at least one of the reformer 26 and the cell stack 27 without intervening a heat insulating material. For example, as shown in FIG.
  • the first heat exchange section 13 provides a pipe line 25 through which the medium passes around at least one of the reformer 26 and the cell stack 27 without intervening a heat insulating material.
  • a heat insulating material is a material that prevents heat transfer, and may be, for example, a fiber-based heat insulating material such as glass wool, or a foam-based heat insulating material such as a resin foam.
  • the fuel cell 16 may have a configuration in which a packing 28 made of a material having heat insulating properties is located closer to the reformer 26 or the cell stack 27 than to the pipe line 25.
  • the heat medium conduit 25 in the first heat exchange section 13 may be provided in a casing 29 that surrounds at least one of the reformer 26 and the cell stack 27.
  • a heat insulating material 30 may be located between the conduit 25 and the housing 29 .
  • the conduit 25 may be located close to the outside of the casing 29 within a range where it can transfer heat from at least one of the reformer 26 and the cell stack 27.
  • the first heat exchange section 13 causes the water from the external water flow path 81 to recover heat generated in the fuel cell 16. More specifically, heat is recovered as follows. The outer surface of the conduit 25 is heated by radiation from the reformer 26 or cell stack 27 or by convection of surrounding gas. The first heat exchange section 13 recovers heat by transferring heat from the outer surface to the heat medium when the heat medium (water) flows through the pipe line 25 .
  • the second heat exchange section 14 exchanges heat with the exhaust gas discharged from the fuel cell 16 in the external water flow path 81.
  • the second heat exchange unit 14 heats the outer surface of the external water flow path 81 with the heat of the exhaust gas, and when the heat medium (water) flows through the external water flow path 81, the second heat exchange section 14 converts the heat of the outer surface into the heat medium. Transfer heat.
  • the cooling/heating device 22 is provided near the hot water supply channel 12 and heats or cools water flowing through the hot water supply channel 12.
  • the cooling/heating device 22 is a burner.
  • the cooling/heating device 22 may be an electric heater or the like.
  • the cooling/heating device 22 may include a fuel injection line that supplies gas fuel and an air supply line that forcibly takes in outside air using a blower.
  • the cooling/heating device 22 mixes and burns the gas fuel and outside air at the ignition port.
  • the water is heated by combustion in the cooling/heating device 22 .
  • the cooling/heating device 22 can generate wind using a blower to cool the water.
  • the merging section 70 is a part where the hot water supply flow path 12, the first heat exchange flow path 82, and the first water flow path 83 merge.
  • the merging section 70 is configured so that the water vapor inside the first heat exchange channel 82 is liquefied and flows through the hot water supply channel 12 .
  • the confluence section 70 functions as a steam trap.
  • the merging section 70 is configured as shown in FIG.
  • the confluence section 70 has a water storage section 72 that stores water, a water inlet 73 that is connected to the first water flow path 83 , and a water outlet 74 that is connected to the hot water supply flow path 12 . At least a portion of the first heat exchange channel 82 is configured to be inside the water storage section 72.
  • the water remaining in the first heat exchange flow path 82 may be heated and vaporized by the heat of the fuel cell 16, but it is cooled and liquefied by the water in the water storage section 72 of the confluence section 70.
  • hot water supply operation has sometimes stopped due to the generation of water vapor in the pipes, but in the fuel cell system 11 according to the present embodiment, the water vapor can be liquefied by the confluence section 70, thereby increasing the reliability of operation.
  • the supply of water to the water storage section 72 may be controlled so as to be executed when water vapor may be generated.
  • the fuel cell system 11 may further include an expansion tank 71.
  • the expansion tank 71 is a tank for absorbing expanded water, and is provided, for example, in the external water flow path 81.
  • the expansion tank 71 reduces the influence of pressure fluctuations on water hammer and hot water supply flow rate.
  • the control device 35 includes one or more processors and memory.
  • the processor may include a general-purpose processor that loads a specific program and executes a specific function, and a dedicated processor that is specialized for specific processing.
  • the dedicated processor may include an application specific integrated circuit (ASIC).
  • the processor may include a programmable logic device (PLD).
  • the PLD may include an FPGA (Field-Programmable Gate Array).
  • the control device 35 may be either an SoC (System-on-a-Chip) or an SiP (System In-a-Package) in which one or more processors cooperate.
  • the control device 35 includes components of the fuel cell system 11 such as the cooling/heating device 22, the three-way valve 31, the circulation pump 40, the first flow rate adjustment valve 43, the second flow rate adjustment valve 45, and the third flow rate adjustment valve 46. may be controlled.
  • the control device 35 may acquire information on the operation of the fuel cell system 11, such as the operating status of the fuel cell 16 and a request for hot water supply. Further, the control device 35 may acquire detection data from the temperature sensor 51, the temperature sensor 54, the temperature sensor 55, the temperature sensor 56, the flow rate sensor 62, and the like.
  • the control device 35 controls how water from the external water flow path 81 flows through the first heat exchange flow path 82, the bypass flow path 44, the first water flow path 83, and the second water flow path in accordance with the operation of the fuel cell 16 and the request for hot water supply.
  • the water is controlled to flow through at least one of the water channels 84. Examples of control will be described below with reference to the drawings. In Figures 4 to 8, arrows indicate the flow of water.
  • the control device 35 controls the temperature of the heated water supplied to the outside when the fuel cell 16 is in operation or stopped and there is a continuous request for hot water supply. , the cooling/heating device 22 is controlled to heat.
  • the controller 35 controls the three-way valve 31 so that water from the external water flow path 81 flows through the first heat exchange flow path 82 and is heated in the first heat exchange section 13 .
  • a predetermined temperature for example, 40° C.
  • the control device 35 causes the cooling/heating device 22 to burn to heat the water.
  • the control device 35 may adjust the intensity of heating in the cooling/heating device 22 based on the temperatures detected by the temperature sensor 54 and the temperature sensor 56, for example.
  • control device 35 controls the opening degree of the three-way valve 31.
  • the control device 35 controls water that flows through the first heat exchange channel 82 and is heated in the first heat exchange section 13 and water that flows from the bypass channel 44 through the first water channel 83 and joins at the confluence section 70. may be adjusted based on the operating state of the fuel cell 16 and the temperature detected by the temperature sensor 54, for example.
  • the control device 35 controls water to flow through the bypass flow path 44, and allows water to flow from the hot water flow path 12. is controlled so that it flows through the second water flow path 84 to the external water flow path 81.
  • the controller 35 switches the three-way valve 31 to allow water to flow into the bypass channel 44 .
  • the control device 35 controls the cooling/heating device 22 to cool.
  • the control device 35 generates wind using the blower of the cooling/heating device 22 to cool the water.
  • the control device 35 operates the circulation pump 40 to circulate water.
  • the control device 35 controls water to flow through the first water flow path 83 or the second water flow path 84 and to heat the cooling/heating device 22 in response to a request for hot water supply.
  • FIG. 6 shows a case where the fuel cell 16 stops after the state shown in FIG. 5. Since the water remaining in the first heat exchange channel 82 may be heated and vaporized, the control device 35 controls the second flow rate adjustment valve 45 to transfer the water to the water storage section 72 of the confluence section 70. Supply water.
  • FIG. 7 shows a case where the fuel cell 16 resumes operation after the state shown in FIG. 6 and there is a request for hot water supply.
  • the control device 35 controls water to flow through the first heat exchange channel 82 when the fuel cell 16 is in operation and there is a request for hot water supply. Further, the control device 35 controls water to flow through the second water flow path 84 as required for temperature adjustment. This realizes hot water supply at an appropriate temperature.
  • FIG. 8 shows a case where there is a request for hot water supply without the fuel cell 16 restarting its operation.
  • the control device 35 controls the second flow rate regulating valve 45 so that water flows through the first water flow path 83. Then, the control device 35 causes the cooling/heating device 22 to burn to heat the water.
  • the control device 35 may control the third flow rate regulating valve 46 to cause water to flow through the second water flow path 84 so that hot water is supplied at an appropriate temperature.
  • the fuel cell system 11 according to the present embodiment configured as described above, even when the water remaining in the piping becomes steam, it is liquefied and flows through the hot water supply channel 12. Therefore, the fuel cell system 11 according to the present embodiment can improve reliability without stopping the operation due to water vaporization or the like.
  • the fuel cell system 11 according to the second embodiment of the present disclosure further includes a third water flow path 85 as a plurality of flow paths through which water flows. Description of the same configuration as the fuel cell system 11 according to the first embodiment will be omitted.
  • the third water flow path 85 is located between the first water flow path 83 and the second water flow path 84 and connects the external water flow path 81 and the hot water supply flow path 12.
  • the cooling/heating device 22 is provided near the third water flow path 85 and heats or cools the water flowing through the third water flow path 85.
  • the third water flow path 85 may be provided with a fourth flow rate adjustment valve 47 that adjusts the amount of water passing through the third water flow path 85 .
  • the control device 35 controls water to flow through the bypass flow path 44 so that water from the hot water supply flow path 12 flows through the bypass flow path 44.
  • the water is controlled to flow into the external water flow path 81 through the water flow path 85 of No. 3.
  • the controller 35 switches the three-way valve 31 to allow water to flow into the bypass channel 44 .
  • the control device 35 controls the cooling/heating device 22 to cool.
  • the control device 35 generates wind using the blower of the cooling/heating device 22 to cool the water.
  • the control device 35 operates the circulation pump 40 to circulate water.
  • control device 35 controls at least one of the first water flow path 83, the second water flow path 84, and the third water flow path 85 in response to a request for hot water supply when the fuel cell 16 is stopped. Control the flow of water.
  • control device 35 controls water to flow through the first heat exchange channel 82 when the fuel cell 16 resumes operation after being stopped and there is a request for hot water supply. Further, the control device 35 controls water to flow through the third water flow path 85 as required for temperature adjustment. This realizes hot water supply at an appropriate temperature.
  • the fuel cell system 11 according to the present embodiment configured as described above, even when the water remaining in the piping becomes steam, it is liquefied and flows through the hot water supply channel 12. Therefore, the fuel cell system 11 according to the present embodiment can improve reliability without stopping the operation due to water vaporization or the like.
  • Embodiments according to the present disclosure are not limited to any of the specific configurations of the embodiments described above. Embodiments of the present disclosure may extend to any novel features or combinations thereof described in this disclosure, or to any novel method or process steps described or combinations thereof.
  • descriptions such as “first” and “second” are identifiers for distinguishing the configurations.
  • the numbers in the configurations can be exchanged. The exchange of identifiers takes place simultaneously. Even after exchanging identifiers, the configurations are distinguished. Identifiers may be removed. Configurations with removed identifiers are distinguished by codes. The description of identifiers such as “first” and “second” in this disclosure should not be used to interpret the order of the configuration or to determine the existence of lower-numbered identifiers.
  • Fuel cell system 12 Hot water supply channel 13 First heat exchange section 14 Second heat exchange section 16 Fuel cell 22 Cooling/heating device 25 Pipeline 26 Reformer 27 Cell stack 28 Packing 29 Housing 30 Heat insulating material 31 Three-way valve 35 Control device 40 Circulation pump 43 First flow rate adjustment valve 44 Bypass channel 45 Second flow rate adjustment valve 46 Third flow rate adjustment valve 47 Fourth flow rate adjustment valve 51, 54, 55, 56 Temperature sensor 62 Flow rate sensor 70 Confluence section 71 Expansion tank 72 Water storage section 73 Water inlet 74 Water outlet 81 External water flow path 82 First heat exchange flow path 83 First water flow path 84 Second water flow path 85 Third water flow path

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池システム(11)は、燃料電池(16)と、外部より供給される水が流れる外部水流路(81)と、燃料電池の外側に近接して位置し、又は、燃料電池の内部に位置して、外部水流路からの水に燃料電池で発生する熱を回収させる第1の熱交換部(13)と、外部に加熱された水を供給する給湯流路(12)と、外部水流路と接続され、第1の熱交換部を通る第1の熱交換流路(82)と、外部水流路と給湯流路とを接続する第1の水流路(83)と、を有し、給湯流路と、第1の熱交換流路と、第1の水流路とが合流する合流部(70)は、第1の熱交換流路の内部の水蒸気が液化されて給湯流路を流れるように構成されている。

Description

燃料電池システム 関連出願の相互参照
 本出願は、日本国特許出願2022-130781号(2022年8月18日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、燃料電池システムに関する。
 燃料電池によって電力を発電させるとともに、燃料電池から排出される熱を回収して、回収した熱を用いて市水を加熱して供給する家庭用コージェネレーションシステムが知られている(特許文献1参照)。
特開2002-298863号公報
 (1)本開示の一実施形態に係る燃料電池システムは、
 燃料電池と、
 外部より供給される水が流れる外部水流路と、
 前記燃料電池の外側に近接して位置し、又は、前記燃料電池の内部に位置して、前記外部水流路からの水に前記燃料電池で発生する熱を回収させる第1の熱交換部と、
 外部に加熱された水を供給する給湯流路と、
 前記外部水流路と接続され、前記第1の熱交換部を通る第1の熱交換流路と、
 前記外部水流路と前記給湯流路とを接続する第1の水流路と、を有し、
 前記給湯流路と、前記第1の熱交換流路と、前記第1の水流路とが合流する合流部は、前記第1の熱交換流路の内部の水蒸気が液化されて前記給湯流路を流れるように構成されている。
 (2)本開示の一実施形態として、(1)において、
 前記合流部は、水を貯留する貯水部と、前記第1の水流路と接続される入水口と、前記給湯流路と接続される出水口と、を有し、前記第1の熱交換流路の少なくとも一部が前記貯水部の内部にあるように構成されている。
 (3)本開示の一実施形態として、(1)又は(2)において、
 前記外部水流路と前記第1の水流路とを接続するバイパス流路を有する。
 (4)本開示の一実施形態として、(1)から(3)のいずれかにおいて、
 前記外部水流路の前記第1の水流路との接続部より上流側と、前記給湯流路とを接続する第2の水流路を備える。
 (5)本開示の一実施形態として、(1)から(4)のいずれかにおいて、
 前記外部水流路において、前記燃料電池より排出される排ガスと熱交換する第2の熱交換部を有する。
 (6)本開示の一実施形態として、(1)から(5)のいずれかにおいて、
 前記給湯流路を流れる水を加熱又は冷却する冷却加熱装置を有する。
 (7)本開示の一実施形態として、(4)において、
 前記第1の水流路と前記第2の水流路との間にあって、前記外部水流路と前記給湯流路とを接続する第3の水流路と、
 前記第3の水流路を流れる水を加熱又は冷却する冷却加熱装置と、を有する。
 さらに、前記外部水流路において、前記燃料電池より排出される排ガスと熱交換する第2の熱交換部を有してよい。
 (8)本開示の一実施形態に係る燃料電池システムは、
 燃料電池と、
 外部より供給される水が流れる外部水流路と、
 前記燃料電池の外側に近接して位置し、又は、前記燃料電池の内部に位置して、前記外部水流路からの水に前記燃料電池で発生する熱を回収させる第1の熱交換部と、
 外部に加熱された水を供給する給湯流路と、
 前記外部水流路と接続され、前記第1の熱交換部を通る第1の熱交換流路と、
 前記外部水流路と前記給湯流路とを接続する第1の水流路と、
 前記外部水流路と前記第1の水流路とを接続するバイパス流路と、
 前記外部水流路の前記第1の水流路との接続部より上流側と、前記給湯流路とを接続する第2の水流路と、
 前記第1の水流路と前記第2の水流路との間にあって、前記外部水流路と前記給湯流路とを接続する第3の水流路と、
 制御装置と、を有し、
 前記給湯流路と、前記第1の熱交換流路と、前記第1の水流路とが合流する合流部は、前記第1の熱交換流路の内部の水蒸気が液化されて前記給湯流路を流れるように構成されており、
 前記制御装置は、前記燃料電池の運転と、給湯の要求に応じて、前記外部水流路からの水が前記第1の熱交換流路、前記バイパス流路、前記第1の水流路、前記第2の水流路及び前記第3の水流路のうち少なくとも1つを流れるように制御する。
 (9)本開示の一実施形態として、(8)において、
 前記制御装置は、前記燃料電池の停止時に、給湯の要求に応じて、前記第1の水流路、前記第2の水流路及び前記第3の水流路のうち少なくとも1つを水が流れるように制御する。
 (10)本開示の一実施形態として、(8)又は(9)において、
 前記給湯流路を流れる水又は前記第3の水流路を流れる水を加熱又は冷却する冷却加熱装置を有し、
 前記制御装置は、前記燃料電池の運転時又は停止時であって、給湯の要求が連続してある場合に、外部に供給される加熱された水の温度に応じて、前記冷却加熱装置が加熱するように制御する。
 (11)本開示の一実施形態として、(8)から(10)のいずれかにおいて、
 前記給湯流路を流れる水又は前記第3の水流路を流れる水を加熱又は冷却する冷却加熱装置を有し、
 前記制御装置は、前記燃料電池の運転時であって、給湯の要求がない場合に、前記バイパス流路を水が流れるように制御し、前記給湯流路からの水が前記第2の水流路又は前記第3の水流路を通って前記外部水流路に流れるように制御し、前記冷却加熱装置が冷却するように制御する。
 (12)本開示の一実施形態として、(8)から(11)のいずれかにおいて、
 前記制御装置は、前記燃料電池の運転時であって、給湯の要求がある場合に、前記第1の熱交換流路を水が流れるように制御し、必要に応じて前記第2の水流路又は前記第3の水流路を水が流れるように制御する。
図1は、本開示の一実施形態に係る燃料電池システムの概略構成図である。 図2は、燃料電池の内部構成を概略的に示す構造図である。 図3は、合流部の構成を概略的に示す図である。 図4は、制御装置が実行する制御を説明するための図である。 図5は、制御装置が実行する制御を説明するための図である。 図6は、制御装置が実行する制御を説明するための図である。 図7は、制御装置が実行する制御を説明するための図である。 図8は、制御装置が実行する制御を説明するための図である。 図9は、本開示の一実施形態に係る燃料電池システムの概略構成図である。
 以下、図面を参照して本開示の実施形態に係る燃料電池システムが説明される。各図中、同一又は相当する部分には、同一符号が付されている。以下の実施形態の説明において、同一又は相当する部分については、説明を適宜省略又は簡略化する。また、図は模式的なものである。図面上の寸法比率等は、現実のものとは必ずしも一致していない。
(第1の実施形態)
 図1に示すように、本開示の一実施形態に係る燃料電池システム11は、水が流れる複数の流路と、熱交換部と、燃料電池16と、冷却加熱装置22と、制御装置35と、を有する。燃料電池システム11は、例えば家庭に設けられる。
 燃料電池16は、改質器及びセルスタックを有してよい。燃料電池16は、筐体内に改質器及びセルスタックを内包する燃料電池モジュールであってよい。改質器は、原燃料として供給されるガスと、水とで、水蒸気改質反応を生じさせることにより、水素などの燃料を生成する。セルスタックは、例えば固体酸化物形燃料電池(SOFC)であり、空気中に含まれる酸素などの酸化剤と、改質器が生成する燃料を用いた電気化学反応により発電する。燃料電池16は、発電のための稼働中に熱を発する。また、セルスタックは電気化学反応により水を生成する。セルスタックから排出される未反応燃料及び未反応酸化剤は燃焼され、改質器において水蒸気改質反応を行わせるエネルギーを付与する。セルスタックから排出される水は、未反応燃料及び未反応酸化剤の燃焼による燃焼ガスとともに高温のガス状で燃料電池16から排出される。発電のための稼働中に発した熱及び燃焼熱は、燃料電池16で発生する熱として、熱媒を用いて回収される。ここで、セルスタックは、固体高分子形燃料電池(PEFC)であってよい。この場合、燃料電池16の改質器等の構成は適宜変更されてよい。
 燃料電池16から排出される排ガスは、燃焼ガス及びガス状の水を含んでよい。燃料電池16から排出される排ガスは、後述する第2の熱交換部14を用いて熱媒と熱交換されてよい。熱交換により冷却された排ガスは、気液分離器により、ガス状の排ガスと、凝縮した液状の水に分離されてよい。分離された排ガスは、燃料電池システム11の外部に排出されてよい。分離された水は、水蒸気改質反応に用いる水として、燃料電池16に送られてよい。
 本実施形態に係る燃料電池システム11は、水が流れる複数の流路として、外部水流路81と、給湯流路12と、第1の熱交換流路82と、第1の水流路83と、バイパス流路44と、第2の水流路84と、を有する。
 外部水流路81は、燃料電池システム11の外部より供給される水が流れる流路である。外部水流路81において、入水した水の温度を測定する温度センサ55が設けられてよい。また、外部水流路81への入水量を測定する流量センサ62が設けられてよい。外部水流路81には、水の供給量を調整する第1の流量調整弁43が設けられてよい。また、外部水流路81において、後述する第2の熱交換部14を通った後の水の温度を測定する温度センサ51が設けられてよい。
 給湯流路12は、外部に加熱された水(お湯)を供給する流路である。給湯流路12の出口における水の温度を測定する温度センサ56が設けられてよい。また、冷却加熱装置22の位置より上流側で水の温度を測定する温度センサ54が設けられてよい。
 第1の熱交換流路82は、外部水流路81と接続され、後述する第1の熱交換部13を通る流路である。
 第1の水流路83は、外部水流路81と給湯流路12とを接続する流路である。第1の水流路83には、外部水流路81からの水の供給量を調整する第2の流量調整弁45が設けられてよい。
 バイパス流路44は、外部水流路81と第1の水流路83とを接続する流路である。バイパス流路44と第1の熱交換流路82は、三方弁31によって外部水流路81と接続されてよい。
 第2の水流路84は、外部水流路81の第1の水流路83との接続部より上流側と、給湯流路12とを接続する流路である。より具体的には、第2の水流路84は、給湯流路12における冷却加熱装置22の下流側に接続されてよい。第2の水流路84は、第2の水流路84を通る水量を調整する第3の流量調整弁46が設けられてよい。
 燃料電池システム11において、給湯流路12からの水が第2の水流路84を通って外部水流路81に入って循環することがある。外部水流路81に、水を循環させるように昇圧する循環ポンプ40が設けられてよい。
 本実施形態に係る燃料電池システム11は、熱交換部として、第1の熱交換部13と、第2の熱交換部14と、を有する。
 第1の熱交換部13は、燃料電池16の外側(筐体29の外側)に近接して位置するか又は燃料電池16の内部(筐体29の内部)に位置してよい。燃料電池16がPEFCの場合に、第1の熱交換部13は、燃料電池16を構成する改質器に近接して位置してよい。第1の熱交換部13は、燃料電池16の外側に近接して位置する場合には、燃料電池16の外側に接触可能に位置してよい。また、第1の熱交換部13は、燃料電池16の内部に位置する場合には、改質器26及びセルスタック27の少なくとも一方の周囲に位置してよい。このような構成において、第1の熱交換部13は、改質器26及びセルスタック27の少なくとも一方の周囲において、断熱材を介在せずに位置してよい。例えば、図2に示されるように、第1の熱交換部13は、媒体が通る管路25を、改質器26及びセルスタック27の少なくとも一方の周囲に、断熱材を介在せずに設けることにより形成してよい。本開示において、断熱材とは熱移動を防ぐ材料であり、例えば、グラスウール等の繊維系断熱材、樹脂発泡体等の発泡系断熱材であってよい。燃料電池16は、管路25よりも、改質器26又はセルスタック27に近くに、断熱性を有する材料で作成されるパッキン28が位置する構成であってよい。
 第1の熱交換部13における熱媒の管路25は、改質器26及びセルスタック27の少なくとも一方を囲繞する筐体29内に設けられてよい。管路25が筐体29内に設けられる構成において、管路25及び筐体29の間に断熱材30が位置してよい。別の例として、管路25は、改質器26及びセルスタック27の少なくとも一方の熱を伝熱可能な範囲で、筐体29の外側に近接して位置してよい。
 第1の熱交換部13は、外部水流路81からの水に燃料電池16で発生する熱を回収させる。より具体的には、以下のように熱が回収される。管路25の外面は改質器26又はセルスタック27からの輻射又は周囲の気体の対流により加熱されている。第1の熱交換部13は、熱媒(水)が管路25を流動する際に、外面の熱を熱媒に伝熱することにより熱を回収する。
 第2の熱交換部14は、外部水流路81において、燃料電池16より排出される排ガスと熱交換する。つまり、第2の熱交換部14は、排ガスが有する熱で外部水流路81の外面を加熱して、熱媒(水)が外部水流路81を流動する際に、外面の熱を熱媒に伝熱させる。
 冷却加熱装置22は、給湯流路12の近傍に設けられ、給湯流路12を流れる水を加熱又は冷却する。冷却加熱装置22はバーナである。別の例として、冷却加熱装置22は電気ヒータ等であってよい。冷却加熱装置22は、ガス燃料を供給する燃料噴射ラインと、ブロアにより外気を強制吸気して供給する空気供給ラインとを有してよい。冷却加熱装置22は、点火口において、ガス燃料及び外気を混合して燃焼させる。冷却加熱装置22の燃焼により水が加熱される。また、冷却加熱装置22はブロアによって風を発生させて水を冷却することができる。
 合流部70は、給湯流路12と、第1の熱交換流路82と、第1の水流路83とが合流する部分である。合流部70は、第1の熱交換流路82の内部の水蒸気が液化されて給湯流路12を流れるように構成されている。合流部70は、蒸気トラップとして機能する。本実施形態において、合流部70は図3のように構成される。合流部70は、水を貯留する貯水部72と、第1の水流路83と接続される入水口73と、給湯流路12と接続される出水口74と、を有する。第1の熱交換流路82の少なくとも一部が貯水部72の内部にあるように構成されている。燃料電池16の熱によって第1の熱交換流路82に残存する水が加熱されて水蒸気化することがあり得るが、合流部70の貯水部72の水によって冷やされて液化される。従来、管内で水蒸気が生じて給湯動作が停止することがあったが、本実施形態に係る燃料電池システム11は、合流部70によって水蒸気を液化し、動作の信頼性を高めることができる。ここで、貯水部72への水の供給は、水蒸気が発生し得る場合に実行されるように制御されてよい。
 燃料電池システム11は膨張タンク71をさらに有してよい。膨張タンク71は、膨張水を吸収するためのタンクであって、例えば外部水流路81に設けられる。膨張タンク71は、圧力変動によるウォーターハンマー及び給湯流量への影響を低減する。
 制御装置35は、1以上のプロセッサ及びメモリを含む。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ及び特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC;Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD;Programmable Logic Device)を含んでよい。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。制御装置35は、1つ又は複数のプロセッサが協働するSoC(System-on-a-Chip)及びSiP(System In a Package)のいずれかであってよい。制御装置35は、冷却加熱装置22、三方弁31、循環ポンプ40、第1の流量調整弁43、第2の流量調整弁45、第3の流量調整弁46等の燃料電池システム11の構成要素を制御してよい。制御装置35は、燃料電池16の運転状況、給湯の要求といった燃料電池システム11の動作の情報を取得してよい。また、制御装置35は、温度センサ51、温度センサ54、温度センサ55、温度センサ56、流量センサ62等の検出データを取得してよい。
 制御装置35は、燃料電池16の運転と、給湯の要求に応じて、外部水流路81からの水が第1の熱交換流路82、バイパス流路44、第1の水流路83、第2の水流路84のうち少なくとも1つを流れるように制御する。以下、図面を参照しながら、制御の例が説明される。図4から図8において、矢印は水の流れを示す。
 図4に示すように、制御装置35は、燃料電池16の運転時又は停止時であって、給湯の要求が連続してある場合に、外部に供給される加熱された水の温度に応じて、冷却加熱装置22が加熱するように制御する。制御装置35は、三方弁31を制御して、外部水流路81からの水が第1の熱交換流路82を流れて、第1の熱交換部13で熱せられるようにする。制御装置35は、例えば温度センサ56で検出される温度が所定温度(例えば40℃)より低い場合に、冷却加熱装置22を燃焼させて水を加熱する。制御装置35は、例えば温度センサ54及び温度センサ56で検出される温度に基づいて、冷却加熱装置22における加熱の強さを調整してよい。また、制御装置35は、三方弁31の開度を制御する。制御装置35は、第1の熱交換流路82を流れて第1の熱交換部13で熱せられる水と、バイパス流路44から第1の水流路83を流れ、合流部70で合流する水の量を、例えば燃料電池16の運転状態と温度センサ54で検出される温度に基づいて調整してよい。
 図5に示すように、制御装置35は、燃料電池16の運転時であって、給湯の要求がない場合に、バイパス流路44を水が流れるように制御し、給湯流路12からの水が第2の水流路84を通って外部水流路81に流れるように制御する。制御装置35は、三方弁31を切り替えて、水がバイパス流路44に流れるようにする。また、制御装置35は、冷却加熱装置22が冷却するように制御する。制御装置35は、冷却加熱装置22のブロアによって風を発生させて水を冷却する。制御装置35は、循環ポンプ40を動作させて水を循環させる。
 制御装置35は、燃料電池16の停止時に、給湯の要求に応じて、第1の水流路83又は第2の水流路84を水が流れて、冷却加熱装置22が加熱するように制御する。図6は、図5の状態の後に、燃料電池16が停止した場合を示す。第1の熱交換流路82に残存する水が加熱されて水蒸気化することがあり得るため、制御装置35は、第2の流量調整弁45を制御して、合流部70の貯水部72へ水を供給する。
 図7は、図6の状態の後に、燃料電池16が運転を再開し、給湯の要求がある場合を示す。制御装置35は、燃料電池16の運転時であって、給湯の要求がある場合に、第1の熱交換流路82を水が流れるように制御する。また、制御装置35は、温度調整の必要に応じて、第2の水流路84を水が流れるように制御する。このことによって、適切な温度での給湯が実現される。
 ここで、図8は、燃料電池16が運転を再開せずに、給湯の要求がある場合を示す。制御装置35は、燃料電池16の停止時であって、給湯の要求がある場合に、第2の流量調整弁45を制御して、第1の水流路83を水が流れるようにする。そして、制御装置35は、冷却加熱装置22を燃焼させて水を加熱する。制御装置35は、適切な温度での給湯が実現されるように、第3の流量調整弁46を制御して、第2の水流路84を水が流れるようにしてよい。
 以上のような構成の本実施形態に係る燃料電池システム11は、配管に残存する水が水蒸気化した場合でも液化されて給湯流路12を流れる。そのため、本実施形態に係る燃料電池システム11は、水蒸気化などによって動作を停止させることなく、信頼性を高めることができる。
(第2の実施形態)
 図9に示すように、本開示の第2の実施形態に係る燃料電池システム11は、水が流れる複数の流路として、さらに第3の水流路85を有する。第1の実施形態に係る燃料電池システム11と同じ構成については、説明を省略する。
 第3の水流路85は、第1の水流路83と第2の水流路84との間にあって、外部水流路81と給湯流路12とを接続する。本実施形態において、冷却加熱装置22は、第3の水流路85の近傍に設けられ、第3の水流路85を流れる水を加熱又は冷却する。第3の水流路85には、第3の水流路85を通る水量を調整する第4の流量調整弁47が設けられてよい。
 本実施形態において、制御装置35は、燃料電池16の運転時であって、給湯の要求がない場合に、バイパス流路44を水が流れるように制御し、給湯流路12からの水が第3の水流路85を通って外部水流路81に流れるように制御する。制御装置35は、三方弁31を切り替えて、水がバイパス流路44に流れるようにする。また、制御装置35は、冷却加熱装置22が冷却するように制御する。制御装置35は、冷却加熱装置22のブロアによって風を発生させて水を冷却する。制御装置35は、循環ポンプ40を動作させて水を循環させる。
 本実施形態において、制御装置35は、燃料電池16の停止時に、給湯の要求に応じて、第1の水流路83、第2の水流路84及び第3の水流路85のうち少なくとも1つを水が流れるように制御する。
 本実施形態において、制御装置35は、燃料電池16が停止後に運転を再開し、給湯の要求がある場合に、第1の熱交換流路82を水が流れるように制御する。また、制御装置35は、温度調整の必要に応じて、第3の水流路85を水が流れるように制御する。このことによって、適切な温度での給湯が実現される。
 以上のような構成の本実施形態に係る燃料電池システム11は、配管に残存する水が水蒸気化した場合でも液化されて給湯流路12を流れる。そのため、本実施形態に係る燃料電池システム11は、水蒸気化などによって動作を停止させることなく、信頼性を高めることができる。
 本開示に係る実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は改変を行うことが可能であることに注意されたい。従って、これらの変形又は改変は本開示の範囲に含まれることに留意されたい。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部等を1つに組み合わせたり、或いは分割したりすることが可能である。
 さらに、本開示に係る実施形態は、上述した実施形態のいずれの具体的構成にも制限されるものではない。本開示に係る実施形態は、本開示に記載された全ての新規な特徴又はそれらの組合せ、あるいは記載された全ての新規な方法又は処理のステップ又はそれらの組合せに拡張することができる。
 本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。
 11 燃料電池システム
 12 給湯流路
 13 第1の熱交換部
 14 第2の熱交換部
 16 燃料電池
 22 冷却加熱装置
 25 管路
 26 改質器
 27 セルスタック
 28 パッキン
 29 筐体
 30 断熱材
 31 三方弁
 35 制御装置
 40 循環ポンプ
 43 第1の流量調整弁
 44 バイパス流路
 45 第2の流量調整弁
 46 第3の流量調整弁
 47 第4の流量調整弁
 51,54,55,56 温度センサ
 62 流量センサ
 70 合流部
 71 膨張タンク
 72 貯水部
 73 入水口
 74 出水口
 81 外部水流路
 82 第1の熱交換流路
 83 第1の水流路
 84 第2の水流路
 85 第3の水流路

Claims (12)

  1.  燃料電池と、
     外部より供給される水が流れる外部水流路と、
     前記燃料電池の外側に近接して位置し、又は、前記燃料電池の内部に位置して、前記外部水流路からの水に前記燃料電池で発生する熱を回収させる第1の熱交換部と、
     外部に加熱された水を供給する給湯流路と、
     前記外部水流路と接続され、前記第1の熱交換部を通る第1の熱交換流路と、
     前記外部水流路と前記給湯流路とを接続する第1の水流路と、を有し、
     前記給湯流路と、前記第1の熱交換流路と、前記第1の水流路とが合流する合流部は、前記第1の熱交換流路の内部の水蒸気が液化されて前記給湯流路を流れるように構成されている、燃料電池システム。
  2.  前記合流部は、水を貯留する貯水部と、前記第1の水流路と接続される入水口と、前記給湯流路と接続される出水口と、を有し、前記第1の熱交換流路の少なくとも一部が前記貯水部の内部にあるように構成されている、請求項1に記載の燃料電池システム。
  3.  前記外部水流路と前記第1の水流路とを接続するバイパス流路を有する、請求項1又は2に記載の燃料電池システム。
  4.  前記外部水流路の前記第1の水流路との接続部より上流側と、前記給湯流路とを接続する第2の水流路を備える、請求項1から3のいずれか一項に記載の燃料電池システム。
  5.  前記外部水流路において、前記燃料電池より排出される排ガスと熱交換する第2の熱交換部を有する、請求項1から4のいずれか一項に記載の燃料電池システム。
  6.  前記給湯流路を流れる水を加熱又は冷却する冷却加熱装置を有する、請求項1から5のいずれか一項に記載の燃料電池システム。
  7.  前記第1の水流路と前記第2の水流路との間にあって、前記外部水流路と前記給湯流路とを接続する第3の水流路と、
     前記第3の水流路を流れる水を加熱又は冷却する冷却加熱装置と、を有する、請求項4に記載の燃料電池システム。
  8.  燃料電池と、
     外部より供給される水が流れる外部水流路と、
     前記燃料電池の外側に近接して位置し、又は、前記燃料電池の内部に位置して、前記外部水流路からの水に前記燃料電池で発生する熱を回収させる第1の熱交換部と、
     外部に加熱された水を供給する給湯流路と、
     前記外部水流路と接続され、前記第1の熱交換部を通る第1の熱交換流路と、
     前記外部水流路と前記給湯流路とを接続する第1の水流路と、
     前記外部水流路と前記第1の水流路とを接続するバイパス流路と、
     前記外部水流路の前記第1の水流路との接続部より上流側と、前記給湯流路とを接続する第2の水流路と、
     前記第1の水流路と前記第2の水流路との間にあって、前記外部水流路と前記給湯流路とを接続する第3の水流路と、
     制御装置と、を有し、
     前記給湯流路と、前記第1の熱交換流路と、前記第1の水流路とが合流する合流部は、前記第1の熱交換流路の内部の水蒸気が液化されて前記給湯流路を流れるように構成されており、
     前記制御装置は、前記燃料電池の運転と、給湯の要求に応じて、前記外部水流路からの水が前記第1の熱交換流路、前記バイパス流路、前記第1の水流路、前記第2の水流路及び前記第3の水流路のうち少なくとも1つを流れるように制御する、燃料電池システム。
  9.  前記制御装置は、前記燃料電池の停止時に、給湯の要求に応じて、前記第1の水流路、前記第2の水流路及び前記第3の水流路のうち少なくとも1つを水が流れるように制御する、請求項8に記載の燃料電池システム。
  10.  前記給湯流路を流れる水又は前記第3の水流路を流れる水を加熱又は冷却する冷却加熱装置を有し、
     前記制御装置は、前記燃料電池の運転時又は停止時であって、給湯の要求が連続してある場合に、外部に供給される加熱された水の温度に応じて、前記冷却加熱装置が加熱するように制御する、請求項8又は9に記載の燃料電池システム。
  11.  前記給湯流路を流れる水又は前記第3の水流路を流れる水を加熱又は冷却する冷却加熱装置を有し、
     前記制御装置は、前記燃料電池の運転時であって、給湯の要求がない場合に、前記バイパス流路を水が流れるように制御し、前記給湯流路からの水が前記第2の水流路又は前記第3の水流路を通って前記外部水流路に流れるように制御し、前記冷却加熱装置が冷却するように制御する、請求項8から10のいずれか一項に記載の燃料電池システム。
  12.  前記制御装置は、前記燃料電池の運転時であって、給湯の要求がある場合に、前記第1の熱交換流路を水が流れるように制御し、必要に応じて前記第2の水流路又は前記第3の水流路を水が流れるように制御する、請求項8から11のいずれか一項に記載の燃料電池システム。
PCT/JP2023/029359 2022-08-18 2023-08-10 燃料電池システム WO2024038834A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022130781 2022-08-18
JP2022-130781 2022-08-18

Publications (1)

Publication Number Publication Date
WO2024038834A1 true WO2024038834A1 (ja) 2024-02-22

Family

ID=89941692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029359 WO2024038834A1 (ja) 2022-08-18 2023-08-10 燃料電池システム

Country Status (1)

Country Link
WO (1) WO2024038834A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164201A (ja) * 2003-12-05 2005-06-23 Osaka Gas Co Ltd 排熱回収装置
JP2005197108A (ja) * 2004-01-08 2005-07-21 Hitachi Ltd 燃料電池発電給湯システム
JP2010008016A (ja) * 2008-06-30 2010-01-14 Noritz Corp 給湯システム及びコージェネレーションシステム
JP2013012381A (ja) * 2011-06-29 2013-01-17 Noritz Corp 燃料電池コージェネレーションシステム
JP2013105612A (ja) * 2011-11-14 2013-05-30 Panasonic Corp 燃料電池システムおよび燃料電池システムの制御方法
JP2015072090A (ja) * 2013-10-03 2015-04-16 Jx日鉱日石エネルギー株式会社 コジェネレーションシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164201A (ja) * 2003-12-05 2005-06-23 Osaka Gas Co Ltd 排熱回収装置
JP2005197108A (ja) * 2004-01-08 2005-07-21 Hitachi Ltd 燃料電池発電給湯システム
JP2010008016A (ja) * 2008-06-30 2010-01-14 Noritz Corp 給湯システム及びコージェネレーションシステム
JP2013012381A (ja) * 2011-06-29 2013-01-17 Noritz Corp 燃料電池コージェネレーションシステム
JP2013105612A (ja) * 2011-11-14 2013-05-30 Panasonic Corp 燃料電池システムおよび燃料電池システムの制御方法
JP2015072090A (ja) * 2013-10-03 2015-04-16 Jx日鉱日石エネルギー株式会社 コジェネレーションシステム

Similar Documents

Publication Publication Date Title
JP5106702B1 (ja) 燃料電池システム
JP5681948B2 (ja) 水素生成装置及びそれを備える燃料電池システム
JP5410994B2 (ja) 燃料電池システム
JP5274650B2 (ja) 燃料電池システム
JP6048680B2 (ja) 発電システム及びその運転方法
WO2012153482A1 (ja) 発電システム及びその運転方法
JP2008311140A (ja) 高温型燃料電池および高温型燃料電池の制御方法
CN109638314B (zh) 燃料电池空气供应系统及空气供应方法
WO2010119608A1 (ja) 水素生成装置及びこれを備える燃料電池システム
KR101958250B1 (ko) 연료전지 시스템
RU2443040C2 (ru) Система топливных элементов
JP2006318750A (ja) 燃料電池システム
WO2024038834A1 (ja) 燃料電池システム
US20230155148A1 (en) Fuel cell system
KR20230071971A (ko) 수소연료전지시스템의 폐열과 수소촉매버너를 이용한 가정용 발전 시스템
JP2010168242A (ja) 水素生成装置及びそれを備える燃料電池システム
JP2012199068A (ja) 排気通路の接続構造および燃料電池システム
JP5625441B2 (ja) 燃料電池システム
US10833339B2 (en) Fuel cell system and method of running fuel cell system
WO2023054719A1 (ja) 熱電併給システム
KR20090086655A (ko) Pemfc의 폐열과 수소촉매버너를 이용한 고효율 일체형 가정용 발전 시스템
JP5613374B2 (ja) 燃料電池システム
JP5737581B2 (ja) 燃料電池システム
JP2006199543A (ja) 化学変換装置の運転方法、燃料改質装置の運転方法及び燃料電池の運転方法
JPH02119060A (ja) 燃料電池発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854868

Country of ref document: EP

Kind code of ref document: A1