WO2024038819A1 - Workpiece holding member and laminate - Google Patents

Workpiece holding member and laminate Download PDF

Info

Publication number
WO2024038819A1
WO2024038819A1 PCT/JP2023/029191 JP2023029191W WO2024038819A1 WO 2024038819 A1 WO2024038819 A1 WO 2024038819A1 JP 2023029191 W JP2023029191 W JP 2023029191W WO 2024038819 A1 WO2024038819 A1 WO 2024038819A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
holding member
support
workpiece
workpiece holding
Prior art date
Application number
PCT/JP2023/029191
Other languages
French (fr)
Japanese (ja)
Inventor
亜樹子 田中
亮 伊関
達也 鈴木
瑞穂 水野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024038819A1 publication Critical patent/WO2024038819A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a work holding member and a laminate. More specifically, the present invention relates to a workpiece holding member and a laminate in which a workpiece is held on the workpiece holding member.
  • Patent Documents 1 and 2 Conventionally, in manufacturing electronic component devices, it has been known to mount electronic components on the surface of a workpiece such as a board, that is, to surface-mount electronic components on the workpiece (for example, Patent Documents 1 and 2 below).
  • Patent Document 1 discloses that in manufacturing a semiconductor device, which is an electronic component device, a semiconductor chip, which is an electronic component, is attached to the surface of a substrate (work), and a reflow treatment is performed on the semiconductor chip after being attached to the substrate. It is disclosed that the substrate is placed on a stage during mounting.
  • Patent Document 1 discloses that a semiconductor chip stack is obtained by stacking a plurality of semiconductor chips including bump electrodes in the height direction, and the semiconductor chip stack is placed on a support substrate (work). After placing the support substrate with the semiconductor chip stack attached on the first stage, which is a carrier plate, the first stage, which is a carrier plate, is placed on a stage in a heating furnace, which is a second stage. It is disclosed that a semiconductor device is manufactured by mounting a semiconductor chip on a support substrate, performing reflow processing on the support substrate, and mounting the semiconductor chip on the support substrate.
  • the reflow treatment is usually performed such that the peak top temperature in the heating furnace is approximately 270°C.
  • Patent Document 2 discloses that in manufacturing an organic EL device that is an electronic component device, a transparent electrode film such as an IZO film or an ITO film that is an electronic component is attached on a transparent substrate (work), and the transparent electrode film is annealed. It is disclosed that the transparent substrate is placed on a stage during mounting.
  • a transparent electrode film such as an IZO film or an ITO film that is an electronic component
  • Patent Document 2 discloses that after placing the transparent substrate on a substrate stage and attaching a transparent electrode film, which is an electronic component, on the transparent substrate by sputtering, an annealing treatment is performed. It is disclosed that an organic EL device is manufactured by mounting the transparent electrode film on a transparent substrate.
  • the annealing treatment is usually performed at a temperature of about 150° C. in order to fully develop the function of the transparent electrode film.
  • the board When electronic components are mounted on a board (work) as described above, the board is usually placed on a stage with some member interposed.
  • the substrate is placed on a stage with a work holding member including a support and a work holding layer laminated on the support.
  • the substrate is placed on the stage by placing the support body on the stage with the substrate (work) being held by the work holding layer of the work holding member.
  • the substrate (work) to which a semiconductor chip is attached or the substrate (work) to which a transparent electrode film is attached is attached to the workpiece holding member (more specifically , the work holding layer of the work holding member), but is removed from the work holding member after heat treatment during surface mounting of electronic components, such as after reflow treatment or annealing treatment. Therefore, from the viewpoint of efficiently manufacturing electronic component devices, it is preferable that the substrate (work) is sufficiently fixed to the workpiece holding member before heat treatment during surface mounting of electronic components, and It is preferable that the component can be easily removed from the workpiece holding member after heat treatment during surface mounting of the component.
  • the support and workpiece holding layer must be sufficiently fixed so that they do not separate even when the substrate (workpiece) is removed from the workpiece holding member. be.
  • sufficient studies have been made on a method for sufficiently fixing the workpiece holding layer on the support while maintaining the function of the workpiece holding layer.
  • the present invention is capable of sufficiently fixing the workpiece before heat treatment during surface mounting of electronic components, making it easy to remove the workpiece after heat treatment during surface mounting of electronic components, and maintaining the function of the workpiece holding layer.
  • An object of the present invention is to provide a workpiece holding member in which a workpiece holding layer is sufficiently fixed on a support body.
  • Another object of the present invention is to provide a laminate in which a workpiece is held by the workpiece holding member.
  • a workpiece holding member includes a support, an adhesive layer laminated on the support, and a workpiece holding layer laminated on the adhesive layer to hold the workpiece. It has been found that by forming the workpiece holding layer as a foam layer of a resin composition, the workpiece can be sufficiently fixed before heat treatment, and the workpiece can be easily removed after heat treatment.
  • the work holding layer in the work holding member can be formed on the support while maintaining the function of the work holding layer. was found to be able to be sufficiently fixed.
  • a work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
  • the work holding layer is configured as a foam layer of a resin composition
  • a work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
  • the work holding layer is configured as a foam layer of a resin composition
  • a workpiece holding member, wherein the adhesive layer is a molecular adhesive layer.
  • the above-mentioned material satisfies any of the following (i) to (iii) when a peel test is conducted between the support and the workpiece holding layer according to the following procedures (1) to (3).
  • the workpiece holding member according to [1] or [2]. (1) In a double-sided adhesive tape having an acrylic adhesive layer on one side of the main surface of a polyester film base material and a silicone adhesive layer on the other side, a PET film is attached to the acrylic adhesive layer side, A sample is prepared in which a workpiece holding layer of a workpiece holding member is attached to the silicone adhesive layer side. (2) The sample is allowed to stand at 50°C for 24 hours, and then at 23°C for 30 minutes.
  • the molecular adhesive forming the molecular adhesive layer contains a compound having at least one of a first reactive group RG1 and a second reactive group RG2,
  • the first reactive group RG1 is at least one selected from the group consisting of an amino group and an azide group
  • the molecular adhesive further has a triazine ring, and the group containing the first reactive group RG1 and the group containing the second reactive group RG2 are bonded to the triazine ring, according to [5] above. Work holding member.
  • the work holding layer has a shear adhesion value S to the polyimide film of 1N/100mm2 or more before heating at a temperature of 150°C or higher, and a polyimide film after heating at a temperature of 150°C or higher for 5 minutes.
  • the workpiece holding member according to [1] or [2] above, wherein the value P of 90° peeling force against the surface of the workpiece is 7 N/20 mm or less.
  • a work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work;
  • a laminate comprising: a workpiece held on the workpiece holding layer;
  • a laminate, wherein the workpiece holding member is the workpiece holding member described in [1] or [2] above.
  • the workpiece can be sufficiently fixed before the heat treatment during surface mounting of electronic components, the workpiece can be easily removed after the heat treatment during surface mounting of electronic components, and the function of the workpiece holding layer is maintained. It is possible to provide a work-holding member in which the work-holding layer is sufficiently fixed on the support while the workpiece-holding layer remains in place.
  • FIG. 1 is a sectional view showing the configuration of a workpiece holding member according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of a laminate according to an embodiment of the present invention.
  • FIG. 3A is a cross-sectional view showing how a workpiece is held on the workpiece holding layer of the workpiece holding member.
  • FIG. 3B is a cross-sectional view showing a state in which a workpiece is held on the workpiece holding layer of the workpiece holding member.
  • FIG. 3C is a cross-sectional view showing how a semiconductor chip is attached onto a workpiece.
  • FIG. 3D is a cross-sectional view showing how a semiconductor chip mounted on a workpiece is sealed with resin.
  • FIG. 3E is a cross-sectional view showing how a workpiece to which a resin-sealed semiconductor chip is attached is removed from a workpiece holding member.
  • the work holding member according to the first embodiment of the present invention is A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
  • the work holding layer is configured as a foam layer of a resin composition,
  • the thickness of the adhesive layer is 2 ⁇ m or less.
  • the work holding member according to the second embodiment of the present invention is A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
  • the work holding layer is configured as a foam layer of a resin composition
  • the adhesive layer is a molecular adhesive layer.
  • a workpiece holding member according to an embodiment of the present invention will be described with reference to FIG. 1.
  • the work holding member according to the first embodiment of the present invention and the work holding member according to the second embodiment will be collectively referred to as the work holding member according to the embodiment of the present invention, or the present embodiment. It is sometimes referred to as a workpiece holding member.
  • the workpiece holding member 10 includes a support 1, an adhesive layer 2 laminated on the support 1, and a workpiece holding layer 3 laminated on the adhesive layer 2 to hold the workpiece. Be prepared.
  • the support 1 supports a workpiece holding layer 3 via an adhesive layer 2, which will be described later.
  • the support 1 is not particularly limited as long as it can support the workpiece holding layer 3 via the adhesive layer 2, but as described later, when the adhesive layer 2 is a molecular adhesive layer, It is preferable that the support 1 has a partial structure that strongly chemically bonds with the compound contained in the molecular adhesive layer. That is, the material of the support 1 is preferably selected such that the support 1 can form chemical bonds via the molecular adhesive layer.
  • the material of the support 1 is such that the main surface of the support 1 on the side on which the adhesive layer 2 is laminated is selected from the group consisting of a hydrocarbon group, a carbonyl group, a carboxyl group, and a hydroxyl group. It is preferably selected to have at least one selected reactive group and to form a chemical bond with the molecular adhesive layer.
  • a support 1 high adhesive strength can be obtained between the support 1 and the molecular adhesive layer, and peeling between the support 1 and the molecular adhesive layer can be prevented.
  • the work holding layer 3 can be sufficiently fixed on the body.
  • Examples of the material for the support 1 include acrylic resin, olefin resin, olefin ionomer resin, polyester resin, polyamide resin, rubber, metal, glass, and ceramic.
  • acrylic resins include homopolymers of (meth)acrylic monomers, copolymers of (meth)acrylic monomers, (meth)acrylic monomers, and monomers copolymerizable with the same. Examples include copolymers with copolymers.
  • Examples of (meth)acrylic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2- Examples include (meth)acrylic acid esters such as ethylhexyl (meth)acrylate; (meth)acrylic acid;
  • Monomers copolymerizable with (meth)acrylic monomers include ethylene; aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, and chlorostyrene; cyano group-containing ethylenes such as acrylonitrile and methacrylonitrile; (meth)acrylamide monomers such as (meth)acrylamide, N-methylol (meth)acrylamide, and N-butoxymethyl (meth)acrylamide; and the like.
  • resins other than acrylic resins include PP (polypropylene), PA (polyamide), PPE (polyphenylene ether), PPS (polyphenylene sulfide), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), POM ( (polyacetal), PEEK (polyether ether ketone), PC (polycarbonate), PES (polyether sulfide), and the like.
  • PPS polyphenylene sulfide
  • PA polyamide
  • PET polyethylene terephthalate
  • PES polyether sulfide
  • the rubber may be either natural rubber or synthetic rubber.
  • examples of the above-mentioned rubber include nitrile rubber (NBR), methyl methacrylate-butadiene rubber (MBR), styrene-butadiene rubber (SBR), acrylic rubber (ACM, ANM), urethane rubber (AU), and silicone rubber.
  • NBR nitrile rubber
  • MRR methyl methacrylate-butadiene rubber
  • SBR styrene-butadiene rubber
  • acrylic rubber ACM, ANM
  • AU urethane rubber
  • silicone rubber silicone rubber.
  • NBR nitrile rubber
  • MRR methyl methacrylate-butadiene rubber
  • silicone rubber silicone rubber
  • the metal examples include metals selected from gold, silver, copper, aluminum, iron, titanium, alloys containing one or more of these, and materials containing stainless steel. Among these, materials containing copper, aluminum, or titanium or materials containing stainless steel are preferred, and materials containing aluminum or stainless steel are more preferred.
  • the glass examples include alkali-free glass, soda glass, borosilicate glass, aluminosilicate glass, and the like.
  • Examples of the ceramic include silicon wafer, alumina ceramic, zirconia ceramic, silicon nitride ceramic, aluminum nitride ceramic, and silicon carbide ceramic.
  • the thickness of the support 1 is preferably 0.3 mm or more, more preferably 0.5 mm or more, and even more preferably 1.0 mm or more.
  • the thickness of the support 1 is preferably 5.0 mm or less, more preferably 4.0 mm or less, even more preferably 3.0 mm or less, and 2. It is more preferably .0 mm or less, and particularly preferably 1.5 mm or less.
  • the thickness of the support 1 can be measured using, for example, a thickness gauge.
  • a thickness gauge examples include the thickness gauge JA-257 manufactured by Ozaki Seisakusho Co., Ltd. (terminal size: top and bottom ⁇ 20 mm).
  • the support 1 has a ratio of the three-point bending stress to the linear expansion coefficient of 0.3 or more.
  • the support body 1 becomes easier to bend as the value of the three-point bending stress becomes lower, so that the workpiece held by the workpiece holding layer 3 becomes more likely to warp. Further, as the value of the linear expansion coefficient increases, the support 1 becomes more likely to expand, and therefore, the workpiece held on the workpiece holding layer 3 becomes more likely to warp as the support 1 expands. Therefore, in the workpiece holding member 10, in order to suppress the warping that occurs in the workpiece held on the workpiece holding layer 3 of the workpiece holding member 10, it is preferable that the linear expansion coefficient of the support body 1 is as high as possible. The lower the stress value, the better.
  • the ratio of the three-point bending stress to the linear expansion coefficient of the support 1 is preferably 0.3 or more.
  • the ratio is such that the linear expansion coefficient is high and the three-point bending stress is low, the support 1 is less likely to warp. Therefore, also in the heat treatment during surface mounting of electronic components, it is possible to suppress warping of the workpiece held by the workpiece holding layer 3, which is preferable.
  • the three-point bending stress of the support 1 is preferably 5 N/10 mm or more, more preferably 6 N/10 mm or more, even more preferably 7 N/10 mm or more, and preferably 8 N/10 mm or more. Particularly preferred.
  • the upper limit of the three-point bending stress of the support 1 is usually 200N/10mm.
  • the three-point bending stress of the support 1 can be measured using a tensile compression tester (model "TG-5KN", manufactured by Minevia) according to the following procedures (1) to (3).
  • a tensile compression tester model "TG-5KN", manufactured by Minevia
  • (1) A support with a width of 10 mm and a length of 100 mm is prepared as a test specimen.
  • the tensile tester grips the specimen at a location 35 mm away from the center toward one end in the length direction and at a location 35 mm away from the center toward the other end in the length direction. Grip each member.
  • the linear expansion coefficient of the support 1 is preferably 30 ⁇ 10 ⁇ 6 /°C or less, more preferably 25 ⁇ 10 ⁇ 6 /°C or less, and preferably 20 ⁇ 10 ⁇ 6 /°C or less. More preferred.
  • the lower limit of the linear expansion coefficient of the support 1 is usually 5 ⁇ 10 ⁇ 6 /°C.
  • the linear expansion coefficient of the support 1 can be measured by thermomechanical analysis (TMA method).
  • Thermomechanical analysis can be performed under the following conditions.
  • ⁇ Device name Thermomechanical analyzer (product name: "TMA/SS7100, manufactured by SII Nanotechnology")
  • ⁇ Measurement mode Tensile method ⁇ Temperature range: -50°C ⁇ 300°C ⁇ Temperature increase rate: 10°C/min
  • ⁇ Sample shape 5mm square, 10mm height prismatic
  • ⁇ Standard sample Alumina
  • the ratio of the value of the three-point bending stress to the value of the coefficient of linear expansion can be obtained by dividing the value of the three-point bending stress obtained as above by the value of the coefficient of linear expansion. Can be done.
  • the support 1 may be surface-modified.
  • surface modification include introduction of hydroxyl groups by corona treatment.
  • the arithmetic mean roughness Ra of the surface of the support 1 on which the adhesive layer 2 described later is laminated is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.4 ⁇ m or less. . Further, the arithmetic mean roughness Ra of the surface of the support 1 on which the adhesive layer 2 is laminated is preferably 0.01 ⁇ m or more, more preferably 0.015 ⁇ m or more.
  • the workpiece holding layer 3 can be more fully fixed to the support 1 via the adhesive layer 2. can do.
  • the arithmetic mean roughness Ra of the surface of the support 1 on which the adhesive layer 2 is laminated can be measured in accordance with JIS B 0601 (1994). As the measurement conditions, the following can be adopted.
  • ⁇ Measurement device Confocal laser microscope (model: LEXT OLS5000, manufactured by Olympus)
  • ⁇ Settings High precision settings
  • ⁇ Filter Gaussian filter
  • the adhesive layer 2 is laminated on the support 1 and adheres the support 1 and the workpiece holding layer 3.
  • the thickness of the adhesive layer 2 is 2 ⁇ m or less. Since the thickness of the adhesive layer 2 is 2 ⁇ m or less, the workpiece holding layer 3 can be sufficiently fixed onto the support body 1 while maintaining the function of the workpiece holding layer 3.
  • the thickness of the adhesive layer 2 is preferably 500 nm or less, more preferably 200 nm or less, even more preferably 150 nm or less, even more preferably 100 nm or less, and particularly preferably 50 nm or less. Further, the thickness of the adhesive layer 2 may be 0.5 nm or more, and preferably 1 nm or more.
  • a PET film is attached to the acrylic adhesive layer side
  • a sample is prepared in which a workpiece holding layer of a workpiece holding member is attached to the silicone adhesive layer side.
  • the workpiece holding layer breaks in (ii) above means that the workpiece holding layer breaks before peeling occurs between the support and the workpiece holding layer.
  • Peeling occurs between the workpiece holding layer and the PET film means (a) Peeling occurs between the PET film and the acrylic adhesive layer, (b) Peeling occurs between the acrylic adhesive layer and the polyester (c) Peeling occurs between the polyester film base material and the silicone adhesive layer; (d) Peeling occurs between the silicone adhesive layer and the workpiece holding layer. This includes both cases of occurrence.
  • peeling occurs between the support and the workpiece holding layer means (e) peeling occurs between the workpiece holding layer and the adhesive layer, and (f) peeling occurs between the adhesive layer and the support. This includes any case where peeling occurs.
  • examples of the adhesive layer 2 include a molecular adhesive layer described below, a silicone adhesive, a polymer-type silane coupling agent, and the like.
  • the adhesive layer 2 is a molecular adhesive layer.
  • the molecular adhesive layer is not attached to the support and workpiece holding layer by intermolecular force like normal adhesives, but is bonded to the support and workpiece holding layer by chemical bonds such as covalent bonds. are chemically combined. Therefore, even if the support body and the workpiece holding layer are made of different materials or materials that are difficult to bond to, it is possible to form a workpiece holding member with excellent adhesive strength and high adhesion.
  • chemical bonds include covalent bonds, coordinate bonds, and ionic bonds, but do not include intermolecular forces.
  • the molecular adhesive layer can be formed using a molecular adhesive.
  • the molecular adhesive layer includes a compound having a first reactive group RG1 (hereinafter also referred to as first reactive group RG1 or RG1) that can form a chemical bond with the support and a chemical bond with the workpiece holding layer. It is preferable that at least one compound having a second reactive group RG2 (hereinafter also referred to as second reactive group RG2 or RG2) that can be formed is included.
  • first reactive group RG1 hereinafter also referred to as first reactive group RG1 or RG1
  • second reactive group RG2 hereinafter also referred to as second reactive group RG2 or RG2
  • the molecular adhesive may include a compound having at least one of the first reactive group RG1 and the second reactive group RG2.
  • first reactive group RG1 and the second reactive group RG2 may be different from each other.
  • the individual molecules constituting the molecular adhesive layer may be referred to as adhesive molecules.
  • adhesive molecules it is referred to as a molecular adhesive or an adhesive molecule regardless of whether it is in a state before or after forming a chemical bond with a support and a workpiece holding layer.
  • the molecular adhesive may contain components other than adhesive molecules (eg, a polymerization initiator).
  • the support and the workpiece holding layer have one adhesive molecule and the adhesive molecule has the first reactive group RG1 and the second reactive group RG2.
  • the bond may be formed by a chemical bond formed by the first reactive group RG1 of the adhesive molecule and the support, and a chemical bond formed by the workpiece holding layer and the second reactive group RG2 of the adhesive molecule.
  • first reactive group RG1 or the second reactive group RG2 can react with itself to form a chemical bond (for example, when the second reactive groups RG2 can react with each other to form a chemical bond)
  • multiple adhesive molecules may mediate the chemical bond between the support and the workholding layer.
  • the adhesive molecule may form a chemical bond by reaction between the silanol groups and/or alkoxysilyl groups.
  • tens to hundreds of adhesive molecules of the molecular adhesive layer can intervene in the chemical bond between the support and the workholding layer.
  • the fewest adhesive molecules intervening in the chemical bond between the support and the workholding layer can be a monolayer.
  • molecular adhesives contain many adhesive molecules that form such chemical bonds, they do not necessarily form a dense layer of adhesive molecules. If there are fewer reactive points to form chemical bonds in the support, the adhesive molecules may be sparsely present.
  • the first reactive group RG1 of the adhesive molecule may form a chemical bond with both the support and the workpiece holding layer.
  • an adhesive molecule (hereinafter referred to as a first adhesive molecule) that has formed a chemical bond between the support and the first reactive group RG1, and an adhesive that has formed a chemical bond between the workpiece holding layer and the first reactive group RG1.
  • An agent molecule (hereinafter referred to as a second adhesive molecule) is formed by forming a chemical bond between the second reactive group RG2 of the first adhesive molecule and the second reactive group RG2 of the second adhesive molecule.
  • the support and the work holding layer will be bonded by chemical bonds.
  • two adhesive molecules exist between the support and the workpiece holding layer.
  • first reactive group RG1 or the second reactive group RG2 can react with itself to form a chemical bond, then neither the first adhesive molecule nor the second adhesive molecule , one or more third adhesive molecules may intervene in the chemical bond between the support and the workholding layer.
  • the adhesive molecule may have at least one reactive group selected from the group consisting of, for example, an amino group, an azide group, a mercapto group, an isocyanate group, a ureido group, an epoxy group, a silanol group, and an alkoxysilyl group.
  • it has at least one reactive group selected from the group consisting of an amino group, an azide group, a silanol group, and an alkoxysilyl group.
  • An alkoxysilyl group produces a silanol group through a hydrolysis reaction.
  • the molecular adhesive forming the molecular adhesive layer contains a compound having at least one of a first reactive group RG1 and a second reactive group RG2, and the first reactive group RG1 is At least one selected from the group consisting of an amino group, an azide group, a mercapto group, an isocyanate group, a ureido group, and an epoxy group, and the second reactive group RG2 is at least one selected from a silanol group and an alkoxysilyl group. Preferably it is a seed.
  • the support 1 and the molecular adhesive layer can be prevented from peeling off, and the workpiece holding layer 3 can be sufficiently fixed onto the support 1 via the molecular adhesive layer.
  • the molecular adhesive forming the molecular adhesive layer contains a compound having a first reactive group RG1 and a second reactive group RG2, and the first reactive group RG1 is an amino group, an azide group,
  • the second reactive group RG2 is preferably at least one selected from the group consisting of a mercapto group, an isocyanate group, a ureido group, and an epoxy group, and the second reactive group RG2 is preferably at least one selected from a silanol group and an alkoxysilyl group. .
  • the molecular adhesive forming the molecular adhesive layer contains a compound having at least one of a first reactive group RG1 and a second reactive group RG2, and the first reactive group RG1 is at least one selected from the group consisting of an amino group and an azide group, and the second reactive group RG2 is at least one selected from a silanol group and an alkoxysilyl group.
  • the molecular adhesive forming the molecular adhesive layer contains a compound having a first reactive group RG1 and a second reactive group RG2, and the first reactive group RG1 is an amino group, and The second reactive group RG2 is at least one selected from the group consisting of azide groups, and the second reactive group RG2 is at least one selected from a silanol group and an alkoxysilyl group.
  • the adhesive molecules can be used alone or in combination of two or more. Two or more types of adhesive molecules may be used as a mixture, or molecular adhesive layers each formed of two or more types of adhesive molecules may be laminated and used.
  • the molecular adhesive layer contains an adhesive molecule containing an amino group as the first reactive group RG1 and at least one selected from a silanol group and an alkoxysilyl group as the second reactive group RG2.
  • the adhesive molecule further has a triazine ring, and a group containing the first reactive group RG1 and a group containing the second reactive group RG2 are bonded to the triazine ring.
  • the first reactive group RG1 is at least one selected from the group consisting of an amino group and an azide group
  • the second reactive group RG2 is at least one selected from the group consisting of a silanol group and an alkoxysilyl group
  • One reactive group may form a chemical bond with the surfaces of the support 1 and the workpiece holding layer 3
  • the second reactive groups may form a chemical bond with each other.
  • the adhesive molecule is preferably a compound represented by the following general formula [I]. That is, it is preferable that the molecular adhesive contains a compound represented by the following general formula [I].
  • E represents a divalent linking group
  • F represents OH or an OH-generating group
  • Q 1 and Q 2 each independently represent N 3 or -NR 1 (R 2 ).
  • R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 24 carbon atoms, an aminoalkyl group, or -R-Si(R') n (OA) 3-n .
  • R represents a chain divalent hydrocarbon group having 1 to 12 carbon atoms.
  • each R' independently represents a chain hydrocarbon group having 1 to 4 carbon atoms.
  • A's each independently represents a hydrogen atom or a chain hydrocarbon group having 1 to 4 carbon atoms.
  • n represents an integer from 0 to 2.
  • the divalent linking group represented by E is not particularly limited, but can include a divalent hydrocarbon group and a divalent linking group containing a hetero atom.
  • examples of the divalent hydrocarbon group represented by E include branched, chain, or cyclic hydrocarbon groups having 1 to 12 carbon atoms; A chain hydrocarbon group is preferred. Among these, linear alkylene groups having 1 to 6 carbon atoms are preferred, and specific examples include methylene, ethylene, propylene, butylene, and pentamethylene groups, with ethylene being preferred.
  • R 201 represents a hydrogen atom, an alkyl group, an aminoalkyl group, or -R-Si(R') n (OA) 3-n , and preferably represents a hydrogen atom.
  • E 101 represents the divalent hydrocarbon group in the above E, and preferable ones are also the same.
  • *- represents a bond bonded to the triazine ring.
  • a in -R-Si(R') n (OA) 3-n represented by R 201 is the same as A described below, and preferable ones are also the same.
  • the OH-generating group in general formula [I] is a group containing a hydroxyl group, or a group that reacts with water or a compound containing a hydroxyl group to produce a hydroxyl group.
  • the OH-generating group preferably represents, for example, -Si(R') n (F1) 3-n , a halogen atom, or an alkoxy group, and is -Si(R') n (F1) 3-n. is more preferable.
  • F1 represents a hydroxyl group, an alkoxy group, or a halogen atom, and preferably represents a hydroxyl group or an alkoxy group.
  • halogen atom examples include fluorine, chlorine, and iodine, with chlorine being preferred.
  • F contains a silanol group or an alkoxysilyl group.
  • the hydrocarbon group having 1 to 24 carbon atoms represented by R 1 and R 2 is preferably a hydrocarbon group having 1 to 12 carbon atoms, more preferably a hydrocarbon group having 1 to 6 carbon atoms. Preferably, it is an alkyl group having 1 to 6 carbon atoms.
  • the aminoalkyl group represented by R 201 , R 1 and R 2 is preferably an aminoalkyl group having 1 to 12 carbon atoms, more preferably an aminoalkyl group having 1 to 6 carbon atoms, such as an aminomethyl group or an aminoethyl group. , aminopropyl group, aminobutyl group, aminopentyl group, and aminohexyl group are preferred, and aminoethyl group (-CH 2 CH 2 NH 2 ) is particularly preferred.
  • the chain-like divalent hydrocarbon group having 1 to 12 carbon atoms represented by R is preferably a chain-like divalent hydrocarbon group having 1 to 10 carbon atoms.
  • linear alkylene groups having 1 to 6 carbon atoms are preferred, and specific examples include methylene, ethylene, propylene, butylene, and pentamethylene groups, with ethylene being preferred.
  • Examples of the chain hydrocarbon group having 1 to 4 carbon atoms represented by R' and A include a methyl group, an ethyl group, a propyl group, and a butyl group, with an ethyl group being preferred.
  • n represents an integer from 0 to 2, and preferably n is 0.
  • Adhesive molecules having a triazine ring represented by the above general formula [I] at least one selected from the group consisting of an amino group and an azide group, and at least one selected from a silanol group and an alkoxysilyl group Adhesive molecules having the following are preferred.
  • the amino or azide group of this adhesive molecule is attached to the triazine ring.
  • the number of amino groups or azide groups bonded to the triazine ring is, for example, one or two.
  • the OH or OH-generating group is preferably indirectly bonded to the triazine ring (C atom) via a divalent linking group.
  • the number of indirectly bonded alkoxysilyl groups is one or two or more.
  • the azide group bonded to the triazine ring (electron localized conjugated skeleton) has a high decomposition energy to nitrene. Therefore, effects from near ultraviolet rays and visible light are unlikely to occur. Therefore, the workability of ultraviolet exposure is improved.
  • Nitranes that are attached to a triazine ring are more stable than those that are not. Bonding between nitrenes is suppressed. Hydrogen abstraction activity for C--H bonds and addition activity for unsaturated bonds are enhanced. That is, an effective reaction is possible with a small amount of exposure.
  • the alkoxysilyl group is bonded to the triazine ring (electron localization conjugated skeleton) via a spacer (for example, an amino group, an oxy group, and/or a hydrocarbon group). Therefore, when adhesive molecules are bonded to a support or a workpiece holding layer, the entropy effect for forming a chemical bond increases upon contact with the surface of the other support or workpiece holding layer. The improvement in the entropy effect is reflected in an increase in the frequency factor in the interfacial reaction after contact with the support or workpiece holding layer. And if the length of the spacer is too long, the cost will increase. In addition, a decrease in the amount of absorbed adhesive molecules occurs. Therefore, spacers of appropriate length are preferred. From this point of view, adhesive molecules represented by the following general formulas [Io], [Ia], and [Ib] are preferred.
  • R 101s each independently represents an aminoalkyl group or -R-Si(R') n (OA) 3-n .
  • R 102 represents -R-Si(R')n(OA) 3-n .
  • R 201 each independently represents a hydrogen atom, a hydrocarbon group having 1 to 24 carbon atoms, an aminoalkyl group, or -R-Si(R') n (OA) 3-n .
  • R represents a chain divalent hydrocarbon group having 1 to 12 carbon atoms.
  • each R' independently represents a chain hydrocarbon group having 1 to 4 carbon atoms.
  • A's each independently represents a hydrogen atom or a chain hydrocarbon group having 1 to 4 carbon atoms.
  • n represents an integer from 0 to 2.
  • aminoalkyl groups, R, R', A, and n in the general formulas [Io], [Ia], and [Ib] are the aminoalkyl groups, R, R', A, and n in the general formula [I], respectively. They have the same meaning and are also preferred.
  • R 101 preferably represents an aminoalkyl group
  • R 201 preferably represents a hydrogen atom
  • the alkoxysilyl group in the general formulas [Io], [Ia], and [Ib] is an OH-forming group (OH precursor) in most cases.
  • OH precursor OH-forming group
  • it may be treated with water (neutral water, acidic water, alkaline water), for example.
  • corona discharge treatment or plasma treatment may be performed.
  • water treatment is preferred.
  • the compound having a reactive group contained in the molecular adhesive the following compounds can be exemplified.
  • Examples of compounds having an amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, 3-aminopropyldiethoxymethylsilane, [3-(N,N-dimethyl amino)propyl]trimethoxysilane, [3-(phenylamino)propyl]trimethoxysilane, trimethyl[3-(triethoxysilyl)propyl]ammonium chloride, trimethyl[3-(trimethoxysilyl)propyl]ammonium chloride, 3 -(2-aminoethylamino)propyltrimethoxysilane, 3-(2-aminoethylamino)propyltriethoxysilane, 3-(2-aminoethylamino)propyldimethoxymethylsilane, 2-(3,4-epoxycyclohexyl)
  • Examples of the compound having an azido group include (11-azidoundecyl)trimethoxysilane, (11-azidoundecyl)triethoxysilane, and the compounds (17) to (19) below.
  • Examples of compounds having a mercapto group include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyldimethoxymethylsilane.
  • Examples of the compound having an isocyanate group include 3-(trimethoxysilyl)propylisocyanate and 3-(triethoxysilyl)propylisocyanate.
  • Examples of compounds having a ureido group include 3-ureidopropyltrimethoxysilane and 3-ureidopropyltriethoxysilane.
  • Examples of compounds having an epoxy group include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane. Can be mentioned.
  • Examples of compounds in which the molecular adhesive has two or more first reactive groups RG1 in one molecule include the following compounds (11) to (19).
  • the compound having the first reactive group RG1 and the second reactive group RG2 prevents the support 1 from peeling off from the molecular adhesive layer, and even allows the workpiece to be placed on the support 1 via the molecular adhesive layer.
  • the compounds (11) to (19) above are preferred.
  • the molecular adhesive layer can be laminated on the support, for example, as follows.
  • a treatment liquid (solution or dispersion) containing adhesive molecules is prepared.
  • Solvents used include water, alcohols (e.g. methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, propylene glycol, cellosolve, carbitol), ketones (e.g. acetone, methyl ethyl ketone, cyclohexanone), aromatic hydrocarbons (e.g. benzene, toluene, xylene), aliphatic hydrocarbons (e.g. butane, hexane, octane, decane, dodecane, octadecane), esters (e.g.
  • ethers e.g. (tetrahydrofuran, butyl ether, ethyl butyl ether, anisole
  • halogen-containing solvents such as methylene chloride
  • amide solvents such as N,N-dimethylformamide and N-methylpyrrolidone.
  • the content of adhesive molecules may be from 0.05 to 10% by weight, preferably from 0.10 to 1% by weight. This is because if the content of adhesive molecules is too small, the effect will be poor. On the contrary, the amount of reaction with the support is limited, and even if it is too large, it is meaningless. From this point of view, the above ratio is preferable.
  • a surfactant is added to the treatment liquid as necessary from the viewpoint of adjusting the surface tension.
  • nonionic surfactants e.g., nonionic surfactants consisting of a long alkyl chain and polyethylene glycol
  • cationic surfactants e.g., quaternary ammonium salts
  • anionic surfactants e.g., (organic carboxylates, sulfonates) are used.
  • the adhesive molecule contains an azide group
  • a molecular adhesive containing a compound represented by the following general formula [I'] where Q 1 is N 3 in the above general formula [I]
  • the support is irradiated with light (ultraviolet light).
  • E represents a divalent linking group
  • F represents OH or an OH-generating group
  • Q represents N 3 or -NR 1 (R 2 ).
  • R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 24 carbon atoms, an aminoalkyl group, or -R-Si(R') n (OA) 3-n .
  • R represents a chain divalent hydrocarbon group having 1 to 12 carbon atoms.
  • each R' independently represents a chain hydrocarbon group having 1 to 4 carbon atoms.
  • A's each independently represents a hydrogen atom or a chain hydrocarbon group having 1 to 4 carbon atoms.
  • n represents an integer from 0 to 2.
  • the light is irradiated only at the locations where adhesive molecules are desired to be bonded to the support.
  • the light (ultraviolet) irradiation for example, a UV irradiation device (eg, high pressure mercury UV lamp, low pressure mercury UV lamp, fluorescent UV lamp (short ARC xenon lamp, chemical lamp), metal halide lamp) is used. Then, for example, ultraviolet light of 200 to 450 nm is irradiated. If the amount of irradiated light is too small, the reaction will be difficult to proceed. On the other hand, if the amount of irradiation light is too large, there is a risk of deterioration of the support. Therefore, the preferred amount of irradiation light (light source wavelength: 254 nm) is 1 mJ/cm 2 to 5 J/cm 2 , more preferably 5 mJ/cm 2 to 1 J/cm 2 .
  • a UV irradiation device eg, high pressure mercury UV lamp, low pressure mercury UV lamp, fluorescent UV lamp (short ARC xenon lamp, chemical lamp), metal
  • the support When the support has a complicated shape, it is effective to use a reflector to uniformly irradiate the support with UV light.
  • the reflecting plate include mirrors, surface-polished metal foils, AI mirror foils, SUS mirror foils, silver-plated mirror plates, and the like.
  • the shape, dimensions, material, etc. of the reflector are appropriately selected from the viewpoint of reflection efficiency.
  • the workpiece holding layer 3 holds the workpiece on the side opposite to the side supported by the support body 1 via the adhesive layer 2 .
  • the work holding layer 3 has adhesive properties.
  • adhesiveness is developed by the resin contained in the resin composition. Thereby, the workpiece holding layer 3 can hold the workpiece by adhesive force.
  • the workpiece is preferably one type selected from the group consisting of a ceramic substrate, a silicon substrate, a glass substrate, and a resin film substrate.
  • the resin film substrate include polyimide film, polyethylene naphthalate film, and the like.
  • the substrate When the workpiece is a substrate used for manufacturing a semiconductor device, the substrate may be a wired circuit board with a circuit formed on at least one surface. Further, the circuit may include a sensor element.
  • the thickness of the workpiece holding layer 3 is preferably 10 ⁇ m or more and 3500 ⁇ m or less.
  • the thickness of the workpiece holding layer 3 is more preferably 20 ⁇ m or more, even more preferably 30 ⁇ m or more, even more preferably 40 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the thickness of the workpiece holding layer 3 is more preferably 750 ⁇ m or less, even more preferably 700 ⁇ m or less, even more preferably 650 ⁇ m or less, and particularly preferably 600 ⁇ m or less.
  • the thickness of the workpiece holding layer 3 can be measured using, for example, a 1/100 dial gauge whose measurement unit is a diameter ( ⁇ ) of 20 mm.
  • the ratio (H2/H1) of the thickness H2 of the support body 1 to the thickness H1 of the workpiece holding layer 3 is preferably 0.1 or more, more preferably 0.5 or more, and 1.0 or more. It is more preferable that
  • H2/H1 is preferably 100 or less, more preferably 70 or less, and even more preferably 50 or less.
  • the workpiece holding layer 3 is configured as a foam layer of a resin composition.
  • the resin composition preferably contains a silicone resin or a fluororesin.
  • the workpiece holding layer 3 is configured as a foam layer of a resin composition, the workpiece can be sufficiently fixed before the heat treatment, and the workpiece can be easily removed after the heat treatment. Further, since the workpiece holding layer 3 is configured as a foam layer, the foam layer has air bubbles and has excellent cushioning properties.
  • the bubbles may have various shapes. The shape of the bubble may be perfectly spherical, or may be approximately spherical with partial distortion. Further, the bubbles may be greatly distorted and have an irregular shape. In short, the bubbles may have any shape as long as they contain gas such as air inside.
  • the work can be held.
  • Layer 3 can be configured as a rubber layer.
  • the silicone rubber-containing composition include addition (hydrosilylation) reaction type silicone rubber compositions and organic peroxide curing type silicone rubber compositions.
  • the addition (hydrosilylation) reaction type silicone rubber composition includes an alkenyl group-containing organopolysiloxane having two or more alkenyl groups in one molecule, such as a vinyl group, and two or more SiH groups, preferably two or more SiH groups.
  • the organic peroxide-curable silicone rubber composition is prepared by adding an organic peroxide as a curing agent to an organopolysiloxane having two or more alkenyl groups in one molecule in a curing effective amount (usually 100% by mass of the organopolysiloxane). 1 to 10 parts by mass).
  • the fluororubber-containing composition usually contains a copolymer that has a fluorine atom bonded to a carbon atom constituting the main chain and has rubber elasticity.
  • fluororubbers examples include vinylidene fluoride (VdF)/hexafluoropropylene (HFP) copolymer, VdF/HFP/tetrafluoroethylene (TFE) copolymer, TFE/propylene copolymer, and TFE/ Examples include propylene/VdF copolymer, ethylene/HFP copolymer, ethylene/HFP/VdF copolymer, ethylene/HFP/TFE copolymer, and the like.
  • the workpiece holding layer 3 can be a foam layer.
  • the resin composition is a resin composition containing a fluororesin (hereinafter also referred to as a fluororesin-containing composition)
  • a fluororesin-containing composition by adding various blowing agents to the fluororesin-containing composition in addition to the fluororesin, The resin composition may be in a foamed state.
  • fluororesin contained in the fluororesin-containing composition examples include tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene.
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE copolymers
  • blowing agents include chlorofluorocarbon gas, inert gas (argon, etc.), carbon dioxide, nitrogen, and hydrocarbons (propane, butane, pentane, hexane, etc.).
  • the fluororesin-containing composition may contain a nucleating agent in addition to the fluororesin and various foaming agents.
  • a nucleating agent examples include boron nitride (BN), silicon dioxide, titanium dioxide, alumina, and magnesia.
  • the workpiece holding layer 3 is foamed by foaming the silicone resin-containing composition by thermosetting it. It may also be configured as a body layer.
  • a silicone resin-containing composition that foams by thermosetting may be used.
  • silicone resin-containing compositions include those containing at least the following components (A) to (F) in the following mass ratios.
  • component (D-1) to component (D-2) is at least 1), (E) hydroxysilylation reaction catalyst, and (F) 0.001 parts by mass or more and 5 parts by mass or less of a curing retarder.
  • Component (A) is the main ingredient of the present silicone resin-containing composition.
  • alkenyl group in component (A) include a vinyl group, an allyl group, and a hexenyl group, and preferably a vinyl group.
  • silicon-bonded organic groups other than alkenyl groups in component (A) include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hexyl groups; phenyl, tolyl, and xylyl groups.
  • Examples include aryl groups such as; aralkyl groups such as benzyl group and phenethyl group; and halogen-substituted alkyl groups such as 3,3,3-trifluoropropyl group. Preferred is methyl group.
  • Component (A) specifically includes dimethylvinylsiloxy group-blocked dimethylpolysiloxane, dimethylvinylsiloxy group-blocked dimethylsiloxane/methylphenylsiloxane copolymer, trimethylsiloxy group-blocked methylvinylpolysiloxane, and trimethylsiloxy group-blocked dimethylsiloxane.
  • Examples include methylvinylsiloxane copolymer, trimethylsiloxy group-blocked dimethylsiloxane/methylvinylsiloxane/methylphenylsiloxane copolymer, and diorganopolysiloxane whose main chain is substantially linear is preferred.
  • Component (B) is a crosslinking agent for the present silicone resin-containing composition.
  • the bonding position of the silicon-bonded hydrogen atom in component (B) is not limited, and examples thereof include the molecular chain terminal and/or the molecular chain side chain.
  • Examples of silicon-bonded organic groups other than hydrogen atoms in component (B) include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hexyl; phenyl, tolyl, and xylyl groups; Aryl groups; aralkyl groups such as benzyl groups and phenethyl groups; halogen-substituted alkyl groups such as 3,3,3-trifluoropropyl groups, etc. are exemplified, and methyl groups are preferred.
  • Such component (B) includes dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, dimethylhydrogensiloxy group-blocked dimethylsiloxane/methylhydrogensiloxane copolymer, trimethylsiloxy group-blocked methylhydrogenpolysiloxane, and trimethylsiloxy group-blocked methylhydrogenpolysiloxane.
  • siloxane units represented by (CH 3 ) 3 SiO 1/2 siloxane units represented by H(CH 3 ) 2 SiO 1/2
  • SiO 4/2 examples include organopolysiloxanes consisting of siloxane units, and linear organopolysiloxanes are preferred.
  • component (B) is such that the silicon-bonded hydrogen atoms in component (B) are in the range of 0.4 to 20 moles per 1 mole of alkenyl group in component (A).
  • the amount is preferably in the range of 1.5 mol or more and 20 mol or less, and is more preferably the amount in the range of 1.5 mol or more and 10 mol or less.
  • Component (C) is a component for making the workpiece holding layer 3 obtained into a silicone sponge by removing the water in component (C) from the silicone crosslinked product obtained by crosslinking the present silicone resin-containing composition. be. Since component (C) is stably dispersed in component (A), the water in component (C) is preferably ion-exchanged water.
  • a foam is formed after crosslinking and curing by removing water in component (C).
  • the foam has a structure in which the path through which water is removed is communicated.
  • the foam formed by the present silicone resin-containing composition has an open cell structure.
  • the inorganic thickener in component (C) is blended to increase the viscosity of water, to easily disperse component (C) in component (A), and to stabilize the dispersion state of component (C). .
  • the inorganic thickeners may be natural or synthetic and include natural or synthetic smectite clays such as bentonite, montmorillonite, hectorite, saponite, sauconite, beidellite and nontronite; magnesium aluminum silicate; Examples include composites with water-soluble organic polymers such as carboxyvinyl polymers, and preferred are smectite clays such as bentonite and montmorillonite.
  • smectite clay for example, Smectone SA (manufactured by Kunimine Kogyo Co., Ltd.), which is a hydrothermally synthesized product, and Bengel (manufactured by Hojun Co., Ltd.), which is a naturally purified product, are available.
  • the pH of these smectite clays is preferably within the range of 5.0 or more and 9.0 or less in order to maintain the heat resistance of the silicone sponge.
  • the content of the inorganic thickener in component (C) is preferably in the range of 0.1 parts by mass or more and 10 parts by mass or less, and 0.5 parts by mass, based on 100 parts by mass of water. More preferably, the amount is within a range of 5 parts by mass or less.
  • the content of component (C) is within the range of 100 parts by mass or more and 1000 parts by mass or less, and preferably within the range of 100 parts by mass or more and 800 parts by mass or less, based on 100 parts by mass of component (A). It is more preferably in the range of 100 parts by mass or more and 500 parts by mass or less, even more preferably in the range of 200 parts by mass or more and 500 parts by mass or less, and it is in the range of 200 parts by mass or more and 350 parts by mass or less. is particularly preferred.
  • the obtained workpiece holding layer 3 can have a low density, and when it is below the upper limit of the above range, the obtained workpiece This is because the holding layer 3 can have a uniform and fine open cell structure.
  • the surfactant component (D) consists of (D-1) a nonionic surfactant with an HLB value of 3 or more and (D-2) a nonionic surfactant with an HLB value of less than 3.
  • Component surfactants include glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyethylene glycol fatty acid ester, polypropylene glycol fatty acid ester, polyoxyethylene glycerin fatty acid ester, and polyoxyethylene sorbitan fatty acid ester.
  • Examples include ester, polyoxyethylene/polyoxypropylene block copolymer, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, and polyoxyethylene fatty acid amide.
  • Component (D) consists of components (D-1) and (D-2), and the mass ratio of component (D-1) to component (D-2) is 1 or more, and preferably 5 or more. It is preferably 8 or more, more preferably 10 or more, and particularly preferably 15 or more.
  • the mass ratio of component (D-1) to component (D-2) is preferably 100 or less, more preferably 80 or less, even more preferably 70 or less, and even more preferably 60 or less. It is especially preferable that it is 50 or less, and even more preferably that it is 50 or less.
  • the workpiece holding layer 3 can be made into a low-density one having a uniform and fine open cell structure, and if it is smaller than the above upper limit, it is possible to form the workpiece holding layer 3 with a low density having a uniform fine open cell structure. This is because the component (C) can be dispersed in the component (B) with good stability, and as a result, the workpiece holding layer 3 can have a uniform and fine open cell structure.
  • the content of component (D) is within the range of 0.1 parts by mass or more and 15 parts by mass or less, and within the range of 0.2 parts by mass or more and 3 parts by mass or less, based on 100 parts by mass of component (A). It is preferable. This is because when the content of component (D) is at least the lower limit of the above range, the workpiece holding layer 3 can have a uniform and fine open cell structure, and when it is below the upper limit of the above range, This is because the work holding layer 3 can have excellent heat resistance.
  • Component (E) is a hydrosilylation reaction catalyst for promoting the hydrosilylation reaction in the present silicone resin-containing composition, and includes, for example, a platinum-based catalyst, a palladium-based catalyst, and a rhodium-based catalyst.
  • platinum-based catalysts it is preferable to use platinum-based catalysts.
  • Such component (E) includes chloroplatinic acid, alcohol-modified chloroplatinic acid, coordination compounds of chloroplatinic acid and olefins, vinyl siloxanes or acetylene compounds, platinum olefins, vinyl siloxanes or acetylene compounds.
  • Coordination compounds include tetrakis(triphenylphosphine)palladium and chlorotris(triphenylphosphine)rhodium.
  • component (E) is sufficient to crosslink the present silicone resin-containing composition.
  • the amount of catalytic metal in component (E) should be in the range of 0.01 ppm or more and 500 ppm or less in terms of mass relative to the total amount of components (A) and (B).
  • the amount is in the range of 0.1 ppm or more and 100 ppm or less.
  • the present silicone resin-containing composition may contain (F) a curing retarder.
  • Such component (F) includes 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 3-phenyl-1-butyn-3-ol, 1- Examples include alkyne alcohols such as ethynyl-1-cyclohexanol.
  • the content of component (F) is appropriately selected depending on the usage method and molding method of the present silicone resin-containing composition, but is generally 0.001 parts by mass per 100 parts by mass of component (A). The amount is within the range of 5 parts by mass or less.
  • the present silicone resin-containing composition may further contain (G) reinforcing silica fine powder.
  • a fine silica powder having a BET specific surface area of 50 m 2 /g or more and 350 m 2 /g or less is preferable, and a silica fine powder having a BET specific surface area of 80 m 2 /g or more and 250 m 2 /g or less is more preferable. preferable.
  • Examples of such fine silica powder include fumed silica and precipitated silica.
  • these fine silica powders may be surface-treated with organosilane or the like.
  • component (G) is 20 parts by mass or less, preferably 15 parts by mass or less, and more preferably 10 parts by mass or less, based on 100 parts by mass of component (A).
  • component (G) is preferably 0.1 parts by mass or more based on 100 parts by mass of component (A).
  • the present silicone resin-containing composition may contain pigments such as carbon black and red iron to the extent that the object of the present invention is not impaired.
  • the present silicone resin-containing composition can be easily produced by uniformly mixing the above-mentioned components or a composition in which various additives are blended with these components as necessary using known kneading means.
  • mixer examples include a homomixer, paddle mixer, homodisper, colloid mill, vacuum mixing mixer, and rotation/revolution mixer. It is not particularly limited as long as it can be dispersed in.
  • the workpiece holding layer 3 is configured as a foam layer using the silicone resin-containing composition described above. That is, the workpiece holding layer 3 is constructed as a foam layer using a silicone resin-containing composition containing various foaming agents in addition to the silicone resin.
  • the apparent density of the workpiece holding layer 3 configured as a foam layer of a resin composition is preferably 0.05 g/cm 3 or more and 0.90 g/cm 3 or less.
  • the apparent density of the workpiece holding layer 3 is more preferably 0.10 g/cm 3 or more, and even more preferably 0.15 g/cm 3 or more. Further, the apparent density of the workpiece holding layer 3 is more preferably 0.85 g/cm 3 or less, and even more preferably 0.80 g/cm 3 or less.
  • the apparent density of the workpiece holding layer 3 can be measured according to the following procedures (1) to (5).
  • a test specimen is obtained by punching out the workpiece holding layer 3 configured as a foam layer into a rectangular shape in plan view using a punching die of 100 mm x 100 mm.
  • (3) Calculate the volume of the test body from the planar dimensions of the test body and the thickness of the test body.
  • the average cell diameter of the workpiece holding layer 3 configured as a foam layer of a resin composition is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the average cell diameter of the workpiece holding layer 3 is more preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more. Further, the average cell diameter of the workpiece holding layer 3 is more preferably 80 ⁇ m or less, and even more preferably 70 ⁇ m or less.
  • the average bubble diameter of the workpiece holding layer 3 can be measured using a low vacuum scanning electron microscope (“S-3400N Model Scanning Electron Microscope”, manufactured by Hitachi High-Tech Science Systems). Specifically, it can be determined by capturing an enlarged image of the cross section of the workpiece holding layer 3 using the low vacuum scanning electron microscope and analyzing the enlarged image.
  • S-3400N Model Scanning Electron Microscope manufactured by Hitachi High-Tech Science Systems.
  • the number of bubbles used for the image analysis can be, for example, 20.
  • the work holding layer 3 configured as a foam layer of a resin composition preferably has an arithmetic mean roughness Ra of 0.1 ⁇ m or more and 50 ⁇ m or less on the surface that comes into contact with the adhesive layer 2.
  • the arithmetic mean roughness Ra of the surface of the work holding layer 3 that comes into contact with the adhesive layer 2 is more preferably 0.2 ⁇ m or more, even more preferably 0.3 ⁇ m or more, and even more preferably 0.5 ⁇ m or more. It is even more preferable that it is, and it is especially preferable that it is 1.0 ⁇ m or more.
  • the arithmetic mean roughness Ra of the surface of the work holding layer 3 that comes into contact with the adhesive layer 2 is more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the workpiece holding layer 3 can be sufficiently fixed to the support 1.
  • the arithmetic mean roughness Ra of the surface that comes into contact with the adhesive layer 2 is the arithmetic mean roughness Ra of the surface of the support 1 on which the adhesive layer 2 is laminated, as described above. It can be measured in the same manner as "Ra".
  • the work holding layer 3 configured as a foam layer of the resin composition has an open cell structure.
  • the open cell structure can be formed using a silicone resin-containing composition, for example, as described above.
  • the open-cell structure means a structure in which adjacent cells are connected to each other in the workpiece holding layer 3, which is the foam layer.
  • the adhesive layer 2 can be laminated on one side of the workpiece holding layer 3, which is the foam layer, and the workpiece (such as a substrate) can be laminated on the other side. ), between the adhesive layer 2 and one surface of the workpiece holding layer 3, which is a foam layer, and between the surface of the second adherend and the workpiece, which is a foam layer. It is possible to suppress air bubbles from being trapped between the holding layer 3 and the other surface.
  • the first adherend and the second adherend can be suitably held by the work holding layer 3, which is a foam layer.
  • the workpiece holding layer 3, which is the foam layer has an open cell structure, in the manufacture of electronic component devices, after mounting electronic components on a substrate, which is a workpiece, from the workpiece holding layer 3, which is a foam layer, The substrate can be easily peeled off without leaving any adhesive residue.
  • the holding ability (adsorption ability) of the workpiece holding layer 3 can be restored by washing with water, thereby improving the repeatability of the workpiece holding layer 3. Can be done.
  • the workpiece holding layer 3, which is the foam layer has an open cell structure, each of the above effects can be sufficiently exhibited even if the thickness of the workpiece holding layer 3, which is the foam layer, is made thin. Can be done.
  • the open cell ratio is preferably 90% or more, more preferably 90% or more and 100% or less, and 92% or more and 100% or less. It is more preferably 95% or more and 100% or less, particularly preferably 99% or more and 100% or less, and most preferably substantially 100%.
  • the work holding layer 3 which is the foam layer
  • 90% or more of all the cells have a cell diameter of 80 ⁇ m or less, and more preferably that 92% or more of all the cells have a cell diameter of 80 ⁇ m or less.
  • the diameter of 95% or more of all cells is 80 ⁇ m or less, even more preferably that the diameter of 97% or more of all cells is 80 ⁇ m or less, and the diameter of substantially 100% of all cells is 80 ⁇ m or less.
  • the foam layer can exhibit better air release properties, and the surface of the substrate or adhesive layer 2 and the surface of the foam layer can be It is possible to further suppress air bubbles from getting caught in between.
  • the work holding layer 3 has a shear adhesion value S to the polyimide film of 1N/100mm2 or more before heating at a temperature of 150°C or higher, and a polyimide film after heating at a temperature of 150°C or higher for 5 minutes. It is preferable that the value P of the 90° peeling force against the film is 7 N/20 mm or less.
  • the workpiece holding layer 3 preferably has a shear adhesive force value S of 1 N/100 mm 2 or more with respect to the polyimide film before heating at a temperature of 150° C. or higher.
  • 150°C is the temperature of the annealing process when a transparent electrode film such as an IZO film or an ITO film is mounted on a transparent substrate by sputtering or the like and then annealed and mounted in the production of organic EL devices. It is.
  • the value S of the shear adhesive force is more preferably 2N/100mm2 or more, even more preferably 3N/100mm2 or more, even more preferably 4N/100mm2 or more, and even more preferably 5N/100mm2 or more. It is particularly preferable that
  • the value S of the shear adhesive force is preferably 10 N/100 mm 2 or less, more preferably 9 N/100 mm 2 or less, even more preferably 8 N/100 mm 2 or less, and 7 N/100 mm 2 or less. It is even more preferable that it is below, and it is particularly preferable that it is below 6N/100mm 2 .
  • the upper limit of the temperature of 150°C or higher is preferably 270°C.
  • 270° C. is the peak top temperature of a heating furnace (reflow furnace) when a semiconductor chip is mounted on a printed circuit board and then subjected to reflow processing in the manufacture of semiconductor devices.
  • the ratio (S/P) of the shear adhesive force value S to the 90° peeling force value P is the workpiece holding property before heating and the workpiece holding property after heating. From the viewpoint of both ease of removal, the number is preferably 5 or more, more preferably 50 or more, and even more preferably 100 or more. Further, the S/P is preferably 1000 or less, more preferably 900 or less, and even more preferably 800 or less, from the viewpoint of achieving both workpiece retention before heating and ease of removing the workpiece after heating.
  • the value S of the shear adhesion of the workpiece holding layer 3 to the support 1 before heating at a temperature of 150° C. or higher is determined using the following procedure (1) using a tensile tester (model: DT9503-1000N, manufactured by Tansui Corporation). ) to (4). Further, as the polyimide film, for example, the product name "Kapton 100H” manufactured by DuPont-Toray Co., Ltd. can be used.
  • the work holding layer 3 preferably has a 90° peel force value P of 7 N/20 mm or less with respect to the polyimide film after being heated at a temperature of 150° C. or higher for 5 minutes.
  • the peel force value P is more preferably 5 N/20 mm or less, even more preferably 1 N/20 mm or less, even more preferably 0.1 N/20 mm or less.
  • the lower limit of the peel force value P is usually 0.01 N/20 mm.
  • the upper limit of the temperature of 150°C or higher is preferably 270°C.
  • the 90° peeling force of the workpiece holding layer 3 against the polyimide film after heating at a temperature of 150°C or higher for 5 minutes was determined using a tensile tester (model: AGS-X-5000N, manufactured by Shimadzu Corporation) as follows ( It can be measured according to the steps 1) to (4).
  • a tensile tester model: AGS-X-5000N, manufactured by Shimadzu Corporation
  • the polyimide film for example, the product name "Kapton 100H" manufactured by DuPont-Toray Co., Ltd. can be used.
  • the second laminate After obtaining a second laminate by placing a 20 mm wide polyimide film on the exposed surface of the work holding layer 3 (the opposite surface to the side to which the support 1 is attached), the second laminate is A 2 kg roller is moved back and forth once on the workpiece holding layer 3 to press the polyimide film onto the workpiece holding layer 3 to obtain a test piece for evaluation of 90° peeling force.
  • the work holding member 10 is used, for example, to mount electronic components on the surface of a work.
  • the work holding member 10 is used for mounting a semiconductor chip on the surface of a printed circuit board in the production of semiconductor devices, and is used for mounting a transparent substrate on the surface of a printed circuit board in the production of organic EL devices. It is used to mount a transparent electrode film such as an IZO film or an ITO film thereon.
  • the laminate 20 includes a support 1', an adhesive layer 2' laminated on the support 1', and a layer laminated on the adhesive layer 2'.
  • the work holding member 10' includes a work holding layer 3' for holding the work and a work holding layer 3', and a work 4 held on the work holding layer 3'.
  • the workpiece holding member 10' is configured as the workpiece holding member 10 according to the present embodiment described above. That is, the support 1', the adhesive layer 2', and the workpiece holding layer 3' are also configured in the same manner as the support 1, the adhesive layer 2, and the workpiece holding layer 3 described above.
  • the workpiece 4 is preferably one type selected from the group consisting of a ceramic substrate, a silicon substrate, a glass substrate, and a resin film substrate.
  • Examples of the resin film substrate include polyimide film, polyethylene naphthalate film, and the like.
  • the workpiece 4 (substrate) can be sufficiently fixed before the heat treatment during surface mounting of electronic components, and the workpiece 4 (substrate) can be sufficiently fixed during surface mounting of electronic components. After the heat treatment, the work 4 (substrate) can be easily removed from the work holding layer 3', and the work holding layer 3' is sufficiently fixed onto the support 1' via the adhesive layer 2'.
  • the work holding member 10 according to this embodiment can be manufactured, for example, by the following manufacturing method.
  • the method for manufacturing the workpiece holding member 10 according to the embodiment of the present invention includes the steps of laminating the adhesive layer 2 on the support 1 and laminating the workpiece holding layer 3 on the adhesive layer 2.
  • the method for manufacturing the workpiece holding member according to the present embodiment will be explained below using a case where a molecular adhesive layer is used as the adhesive layer 2 as an example, but the method for manufacturing the workpiece holding member according to the present embodiment is limited to this. It is not something that will be done.
  • the method for manufacturing the workpiece holding member 10 includes a step of applying a molecular adhesive to the support 1 (step A), and a step of applying the molecular adhesive to the support 1.
  • the method includes a step (step B) of heating the applied molecular adhesive and the workpiece holding layer 3 in a state where they face each other.
  • a molecular adhesive is applied to the support 1.
  • the molecular adhesive those explained in the section of the above-mentioned molecular adhesive layer can be used, and among them, it is preferable to use one containing a compound represented by the above general formula [I'].
  • the method further includes a step (step C) of irradiating the molecular adhesive with light (ultraviolet light). The irradiation with light (ultraviolet light) is as explained in the section regarding the molecular adhesive layer above.
  • the molecular adhesive can be applied to one main surface of the support 1, for example, as follows. For example, a molecular adhesive solution containing a molecular adhesive is prepared, this solution is applied onto one main surface of the support 1, and the resulting coating film is then dried or the molecular adhesive is applied to the support. Perform processing to fix it to 1.
  • the solvent used when preparing the molecular adhesive solution is not particularly limited.
  • solvents include alcohol-based solvents such as methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, propylene glycol, cellosolve, and carbitol; ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohexanone; ethyl acetate, butyl acetate, methyl propionate, and phthalate.
  • Ester solvents such as acid methyl; halogen-containing solvents such as methylene chloride; aliphatic hydrocarbon solvents such as butane, hexane, octane, decane, dodecane, and octadecane; ether solvents such as tetrahydrofuran, butyl ether, ethyl butyl ether, anisole, etc. Solvents; aromatic compound solvents such as benzene, toluene and xylene; amide solvents such as N,N-dimethylformamide and N-methylpyrrolidone; water; and the like. These can be used alone or in combination of two or more.
  • the concentration of the molecular adhesive in the molecular adhesive solution is not particularly limited. Its concentration is preferably 0.05 to 10% by weight, more preferably 0.10 to 1% by weight. By setting the concentration of adhesive molecules to 0.05% by mass or more, the molecular adhesive can be efficiently applied onto the support 1. Further, by setting the content to 10% by mass or less, unintended reactions of the molecular adhesive solution can be suppressed, and the stability of the solution is excellent.
  • the method for applying the molecular adhesive solution is not particularly limited, and any known application method can be used.
  • coating methods include spin coating, spray coating, bar coating, knife coating, roll knife coating, roll coating, blade coating, dip coating, curtain coating, die coating, and gravure coating. etc. Among these, bar coating and gravure coating are preferred.
  • a drying process is usually performed to dry the resulting coating film, such as by air drying or by putting it into a drying mechanism.
  • a drying process is usually performed to dry the resulting coating film, such as by air drying or by putting it into a drying mechanism.
  • the drying temperature adjusted by the drying mechanism is preferably 30 to 110°C, more preferably 30 to 90°C, even more preferably 30 to 80°C. Depending on the drying time, the temperature may be 30 to 70°C. Thereby, the adhesive heat of the molecular adhesive can be lowered, and deactivation of the molecular adhesive can be suppressed.
  • the drying time is usually 1 second to 120 minutes, preferably 10 seconds to 10 minutes, more preferably 20 seconds to 10 minutes, particularly preferably 30 seconds to 10 minutes. Depending on the drying temperature, the drying time may be 20 seconds to 5 minutes, or 30 seconds to 3 minutes.
  • Drying mechanisms include, for example, batch-type drying mechanisms such as air ovens, heat rolls, and hot air through mechanisms (in which the object to be dried moves and passes through an open drying oven while being heated and dried while being blown by air). Continuous drying mechanisms such as drying equipment, etc. Note that devices that can be used as part of these drying mechanisms, such as high-frequency heating, heat medium circulation heaters such as oil heaters, and heaters themselves such as far-infrared heaters, can also be used as the drying mechanism. Among these, the hot air through mechanism is preferred from the viewpoint of improving productivity.
  • a pretreatment step is included in which the surface to which the molecular adhesive is applied is subjected to a cleaning treatment or a surface treatment. Good too.
  • the pretreatment step allows the support and the workpiece holding layer to be bonded more firmly.
  • Examples of the cleaning treatment include alkaline degreasing treatment and the like.
  • Alkaline degreasing is a process in which the surface is washed with an alkaline cleaning solution, then washed with distilled water, and then dried.
  • Examples of the surface treatment include corona treatment, sputter etching treatment, plasma treatment, and the like.
  • Examples of corona treatment include a method of discharging in normal pressure air using a corona treatment machine.
  • the corona treatment is performed by irradiating the surface of the support with discharge using a corona surface treatment device using a high frequency power source.
  • the discharge amount in the corona treatment is preferably 10 to 500 W ⁇ min/m 2 , more preferably 30 to 300 W ⁇ min/m 2 , and even more preferably 50 to 200 W ⁇ min/m 2 .
  • the amount of discharge can be set within the above range by appropriately adjusting the discharge output intensity (kW) and the processing speed (m/min) of corona treatment.
  • the discharge output intensity is preferably 0.05 kW or more, more preferably 0.08 kW or more, and still more preferably 0.10 kW or more.
  • sputter etching process for example, energetic particles derived from a gas collide with the surface of the support. At the part of the support where the particles collide, atoms or molecules present on the surface of the support are released to form reactive groups, thereby improving adhesion.
  • the sputter etching process can be carried out, for example, by placing the support in a chamber, then reducing the pressure in the chamber, and then applying a high frequency voltage while introducing atmospheric gas.
  • the atmospheric gas is, for example, at least one selected from the group consisting of rare gases such as helium, neon, argon, and krypton, nitrogen gas, and oxygen gas.
  • the frequency of the high frequency voltage to be applied is, for example, 1 to 100 MHz, preferably 5 to 50 MHz.
  • the pressure inside the chamber when applying the high frequency voltage is, for example, 0.05 to 200 Pa, preferably 1 to 100 Pa.
  • the sputter etching energy (product of processing time and applied power) is, for example, 1 to 1000 J/cm 2 , preferably 2 to 200 J/cm 2 .
  • Examples of the plasma treatment include a method of discharging in normal pressure air using a plasma discharge machine. This can be done by setting the support in a plasma device and irradiating it with plasma using a predetermined gas.
  • the conditions for the plasma treatment can be set to any appropriate conditions as long as the effects of the present invention can be obtained.
  • the above plasma treatment may be a plasma treatment performed under atmospheric pressure or a plasma treatment performed under reduced pressure.
  • the pressure (degree of vacuum) during plasma treatment is, for example, 0.05 Pa to 200 Pa, preferably 0.5 Pa to 100 Pa.
  • the frequency of the high frequency power source used for plasma processing is, for example, 1 MHz to 100 MHz, preferably 5 MHz to 50 MHz.
  • the amount of energy during plasma treatment is preferably 0.1 J/cm 2 to 100 J/cm 2 , more preferably 1 J/cm 2 to 20 J/cm 2 .
  • the plasma treatment time is preferably 1 second to 5 minutes, more preferably 5 seconds to 3 minutes.
  • the gas supply amount during plasma treatment is preferably 1 sccm to 150 sccm, more preferably 10 sccm to 100 sccm.
  • Examples of the reactive gas used in the plasma treatment include gases such as water vapor, air, oxygen, nitrogen, hydrogen, ammonia, and alcohol (eg, ethanol, methanol, isopropyl alcohol). By using such a reactive gas, a support with excellent adhesiveness can be obtained. Further, an inert gas such as helium, neon, argon, etc. may be used in combination with the reactive gas.
  • the type of surface treatment can be selected as appropriate depending on the material constituting the support.
  • the molecular adhesive applied on the support and the workpiece holding layer are heated while facing each other.
  • a pretreatment step is performed in which a surface of the workpiece holding layer to be made to face the molecular adhesive is subjected to a cleaning treatment or a surface treatment. may have.
  • the pretreatment step allows the support and the workpiece holding layer to be bonded more firmly.
  • the pretreatment step may include cleaning treatment such as alkaline degreasing treatment, and surface treatment such as corona treatment, sputter etching treatment, plasma treatment, etc., in the same manner as described for the support above.
  • a molecular adhesive layer is formed with the molecular adhesive fixed to the support and the workpiece holding layer.
  • Heating may be performed from the support side, from the workpiece holding layer side, or from both.
  • the heating temperature is preferably 40 to 250°C, more preferably 60 to 200°C, and still more preferably 80 to 120°C.
  • the heating temperature when heating from the support side is preferably 40 to 250°C, more preferably 60 to 200°C, and even more preferably 90 to 110°C.
  • the heating temperature when heating from the work holding layer side is preferably 40 to 250°C, more preferably 60 to 200°C, and even more preferably 80 to 110°C.
  • the heating time is preferably 1 second to 120 minutes, more preferably 1 minute to 60 minutes, and still more preferably 1 minute to 30 minutes.
  • the heating method is not particularly limited, and a mechanism and device similar to the above-mentioned drying mechanism can be used.
  • the above heating may be performed while applying pressure.
  • the pressurizing pressure is preferably 0.01 MPa or more and 50 MPa or less, more preferably 0.1 MPa or more and 5 MPa or less.
  • the pressurizing time is preferably 0.1 minutes or more and 200 minutes or less.
  • the pressurizing method is not particularly limited, and a known hot press machine (for example, precision constant temperature press machine CYPT-10 manufactured by Shinto Kogyo Co., Ltd.) can be used.
  • a known hot press machine for example, precision constant temperature press machine CYPT-10 manufactured by Shinto Kogyo Co., Ltd.
  • a method for manufacturing an electronic component according to an embodiment of the present invention includes: On the work holding layer 3 of a work holding member 10 comprising a support 1, an adhesive layer 2 laminated on the support 1, and a work holding layer 3 laminated on the adhesive layer 2 and holding the work. a workpiece holding step S1 of holding the workpiece 4; an electronic component mounting step S2 of mounting an electronic component on one surface of the workpiece 4 held on the workpiece holding layer 3; The method includes a workpiece removal step S3 in which the workpiece 4 on which the electronic component is mounted is removed from the workpiece holding layer 3 of the workpiece holding member 10. Furthermore, in the electronic component manufacturing method according to the present embodiment, the workpiece holding member is configured as the workpiece holding member 10 according to the present embodiment described above.
  • the substrate is preferably a wired circuit board having a circuit formed on at least one surface.
  • the work holding member 10 is constructed by laminating the adhesive layer 2 on the support 1 and laminating the work holding layer 3 on the adhesive layer 2 before holding the substrate, which is the work 4, on the work holding layer 3. This can be obtained by
  • Lamination of the adhesive layer 2 on the support 1 can be carried out by the method described above.
  • the work holding layer 3 can be laminated onto the adhesive layer 2 by the method described above.
  • the workpiece holding layer 3 can be formed on the adhesive layer 2 by coating the adhesive layer 2 with a resin composition that is a raw material for the workpiece holding layer 3 and drying it.
  • the workpiece holding step S1 is carried out.
  • the semiconductor chip SC includes a semiconductor chip body CB and a bump electrode BE arranged on one surface of the semiconductor chip body CB.
  • connection conductor portion is formed on one surface of the substrate serving as the work 4 (not shown).
  • attachment of the semiconductor chip SC onto the substrate serving as the work 4 is carried out by connecting the bump electrodes BE of the semiconductor chip SC to the connecting conductor portions of the substrate serving as the work 4.
  • the bump electrode BE of the semiconductor chip SC is connected to the connection conductor portion of the substrate, which is the workpiece 4, by placing the semiconductor chip SC on the substrate, which is the workpiece 4, with the bump electrode BE in contact with the connection conductor portion. After obtaining the aggregate, this can be carried out by heating the aggregate in a reflow oven (reflow treatment).
  • the reflow process is usually performed such that the peak top temperature in the reflow oven is 270°C.
  • the workpiece holding member used in the semiconductor device manufacturing method is the workpiece holding member 10 according to the present embodiment, it is possible to suppress the substrate, which is the workpiece 4, from warping even after the reflow process.
  • the substrate serving as the work 4 can be sufficiently fixed on the work holding layer of the work holding member.
  • the SC is resin-sealed with a sealing resin ER.
  • thermosetting resin such as an epoxy resin or a phenol resin is usually used.
  • the temperature at which the sealing resin ER is thermally cured e.g., 150° C.
  • the electronic component mounting step S2 in the semiconductor device manufacturing method is performed.
  • a semiconductor package P is formed on the substrate serving as the work 4.
  • the workpiece 4 or substrate is removed from the workpiece holding layer 3 by using a suction device, for example, with a suction force greater than the force with which the workpiece holding layer 3 holds the workpiece 4 or the substrate. This can be carried out by suctioning the surface of the semiconductor package P on the side where there is no surface.
  • the workpiece holding member used in the semiconductor device manufacturing method is the workpiece holding member 10 according to the present embodiment, after the reflow treatment, the holding force (adhesive force) of the workpiece holding layer 3 to the substrate serving as the workpiece 4 is reduced. is getting smaller.
  • the substrate serving as the work 4 can be easily removed from the work holding layer 3.
  • the substrate which is the workpiece 4
  • the substrate holding layer 3 can be efficiently removed from the workpiece holding layer 3 even with a relatively small suction force.
  • the semiconductor package P with the work 4 from which the substrate serving as the work 4 has been removed from the work holding layer 3 may be used as a semiconductor device as it is.
  • the semiconductor package P with the workpiece 4 may be divided into a plurality of semiconductor devices by using a dicing blade or the like to include a predetermined number of semiconductor chips SC.
  • a plasma treatment step S1' in which the substrate, which is the workpiece 4, is treated with plasma discharge may be performed between the workpiece holding step S1 and the electronic component mounting step S2.
  • the plasma treatment step S1' can be performed using various known plasma cleaning apparatuses.
  • the substrate pad metal surface exposed on the surface of the substrate serving as the work 4 can be cleaned to remove organic contaminants.
  • the semiconductor chip SC may be subjected to plasma treatment before being resin-sealed with the sealing resin ER.
  • the plasma treatment of the semiconductor chip SC can be performed in the same manner as the plasma treatment step S1' described above.
  • an underfill process is performed in which the periphery of the bump electrode BE is sealed with an underfill material such as an epoxy resin. may be implemented.
  • the underfill material can be placed around the bump electrode BE where it is difficult for the sealing resin ER to spread, so resin sealing with the sealing resin ER can be performed with high precision. .
  • the method for manufacturing an electronic component device has been described above by taking the method for manufacturing a semiconductor device as an example, the method for manufacturing an electronic component device can be applied to methods other than methods for manufacturing semiconductor devices.
  • the method for manufacturing an electronic component device can also be applied to a method for manufacturing an organic EL device.
  • a transparent substrate is used as a workpiece, and in the electronic component mounting step S2, a transparent electrode film such as IZO or ITO, which is an electronic component, is mainly attached to the transparent substrate, which is a workpiece, by sputtering or the like.
  • the transparent electrode film is annealed at a temperature of about 150°C.
  • the transparent substrate that is the workpiece can be sufficiently fixed on the workpiece holding layer of the workpiece holding member.
  • the transparent substrate serving as the workpiece can be relatively easily removed from the workpiece holding layer.
  • workpiece holding member and laminate according to this embodiment are not limited to the above embodiment.
  • the workpiece holding member and laminate according to this embodiment are not limited to the above-described effects.
  • the workpiece holding member and the laminate according to this embodiment can be modified in various ways without departing from the gist of the present invention.
  • a work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
  • the work holding layer is configured as a foam layer of a resin composition
  • a work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
  • the work holding layer is configured as a foam layer of a resin composition
  • a workpiece holding member, wherein the adhesive layer is a molecular adhesive layer.
  • the above-mentioned material satisfies any of the following (i) to (iii) when a peel test is conducted between the support and the workpiece holding layer according to the following procedures (1) to (3).
  • the workpiece holding member according to [1] or [2]. (1) In a double-sided adhesive tape having an acrylic adhesive layer on one side of the main surface of a polyester film base material and a silicone adhesive layer on the other side, a PET film is attached to the acrylic adhesive layer side, A sample is prepared in which a workpiece holding layer of a workpiece holding member is attached to the silicone adhesive layer side. (2) The sample is allowed to stand at 50°C for 24 hours, and then at 23°C for 30 minutes.
  • the molecular adhesive forming the molecular adhesive layer contains a compound having at least one of a first reactive group RG1 and a second reactive group RG2,
  • the first reactive group RG1 is at least one selected from the group consisting of an amino group and an azide group
  • the molecular adhesive further has a triazine ring, and the group containing the first reactive group RG1 and the group containing the second reactive group RG2 are bonded to the triazine ring, according to [5] above. Work holding member.
  • the work holding layer has a shear adhesion value S to the polyimide film of 1N/100mm2 or more before heating at a temperature of 150°C or higher, and a polyimide film after heating at a temperature of 150°C or higher for 5 minutes.
  • a work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work;
  • a laminate comprising: a workpiece held on the workpiece holding layer;
  • a laminate, wherein the workpiece holding member is the workpiece holding member described in [1] to [18] above.
  • Example 1 A stainless steel plate (SUS304BA) was used as a support.
  • the planar dimensions of the stainless steel plate (SUS304BA) were 30 mm x 30 mm, and the thickness was 0.5 mm.
  • the thickness of the stainless steel plate was measured according to the method described in the embodiment section above. The same applies to each of the following examples.
  • a 0.5% by mass ethanol solution of 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-diazide as a molecular adhesive was applied onto a stainless steel plate (SUS304BA).
  • a molecular adhesive layer was formed by UV irradiation (265 nm, 100 mJ/cm 2 ) using a UV-LED irradiation device manufactured by Quark Technology. Subsequently, a silicone foam layer was used as the workpiece holding layer.
  • the silicone foam layer was produced according to the following procedures (a) to (e) using each of the materials (1) to (10) shown in Table 1 below in the amounts shown in Table 1 below.
  • the thickness of the silicone foam obtained according to the above procedure was 0.2 mm (200 ⁇ m). Further, the silicone foam had an open cell structure, the open cell ratio was 100%, and the average cell diameter was 8 ⁇ m. Furthermore, the apparent density of the silicone foam was 0.55 g/cm 3 .
  • the thickness of the silicone foam was measured according to the method described in the embodiment section above. The same applies to each of the following examples.
  • One surface of the silicone foam produced above was subjected to corona treatment at a discharge amount of 122 W ⁇ min/m 2 .
  • the molecular adhesive layer formed on a stainless steel plate (SUS304BA) and the corona-treated surface of the silicone foam were bonded together and heated in an oven at 90° C. for 10 minutes to produce the workpiece holding member of Example 1.
  • Example 2 N,N'-bis(2-aminoethyl)-6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine-2,4-diamine was applied as a molecular adhesive onto a stainless steel plate (SUS304BA).
  • the workpiece of Example 2 was prepared in the same manner as in Example 1, except that a molecular adhesive layer was formed by applying a 0.5% by mass aqueous solution and drying it in an oven at 80°C for 10 minutes. A holding member was produced.
  • Example 3 The support was glass (soda glass), and N,N'-bis(2-aminoethyl)-6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine-2, A workpiece holding member of Example 3 was produced in the same manner as Example 2 except that the concentration of 4-diamine was 0.1% by mass.
  • Example 4 The support is A5052P (Al-Mg alloy), and N,N'-bis(2-aminoethyl)-6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine- in the molecular adhesive layer.
  • a workpiece holding member of Example 4 was produced in the same manner as Example 2 except that the concentration of 2,4-diamine was 0.1% by mass.
  • Comparative example 3 Instead of forming a molecular adhesive layer on SUS304BA, DOWSIL SE9186 (manufactured by DOW, one-component, room temperature curing silicone adhesive) was applied as an adhesive to a thickness of 1 mm, and silicone foam was formed.
  • a work holding member of Comparative Example 3 was produced in the same manner as in Example 1, except that one of the two was pasted together and placed in an oven at 150°C for 30 minutes to bond the support and work holding layer. .
  • Shear adhesive strength S Regarding the workpiece holding layer according to each example, the value S of shear adhesion to the polyimide film before heating at a temperature of 150° C. or higher was measured according to the method described in the above embodiment section. Note that the thickness of the polyimide film was 25 ⁇ m. Moreover, as the polyimide film, the product name "Kapton 100H" manufactured by DuPont-Toray was used. The results are shown in Table 2 below.
  • adhesion between support and workpiece holding layer For each example, the adhesion between the support and the workpiece holding layer was evaluated according to the method described in the embodiment section above. That is, a peel test was conducted according to the following procedures (1) to (3), and the adhesion between the support and the workpiece holding layer was evaluated according to the following (i) to (iii).
  • Double-sided adhesive tape having an acrylic adhesive layer on one side of the main surface of a polyester film base material and a silicone adhesive layer on the other side (manufactured by Nitto Denko Corporation, No. 5302A, tape thickness: 0. 085 mm), PET film (manufactured by Toray Industries, Ltd., A sample was prepared in which a workpiece holding layer of a workpiece holding member was bonded to the silicone adhesive layer side. (2) The sample was allowed to stand at 50°C for 24 hours, and then at 23°C for 30 minutes.
  • repeatability of work holding layer was evaluated. Repeatability is determined by whether any marks remain after placing the workpiece (printed circuit board formed on a glass epoxy board (FR4)) on the workpiece holding member and heat-pressing it at 175°C, 10MPa, for 2 minutes. The evaluation was based on whether
  • the workpiece holding members of Examples 1 to 4 had good fixing properties and removability, so they could sufficiently fix the workpiece before the heat treatment when surface mounting electronic components. It was found that the workpiece was easy to remove after the heat treatment. It was also found that the adhesion between the support and the workpiece holding layer was high, and the workpiece holding layer was sufficiently fixed on the support.
  • the workpiece holding member of Comparative Example 1 uses an adhesive as the adhesive layer, and the thickness of the adhesive layer is also large, resulting in poor repeatability of the workpiece holding layer. Therefore, it was found that the function of the workpiece holding layer could not be maintained. Furthermore, in Comparative Example 2, since a foam layer was not used as the workpiece holding layer, the fixing properties and releasability were poor. Furthermore, in Comparative Example 3, a liquid adhesive was used as the adhesive layer, and the thickness of the adhesive layer was also large, resulting in poor repeatability of the workpiece holding layer. Therefore, it was found that the function of the workpiece holding layer could not be maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention pertains to a workpiece holding member comprising: a support body; an adhesive layer that is laminated onto the support body; and a workpiece holding layer that is laminated onto the adhesive layer and that holds a workpiece. The workpiece holding layer is configured as a foam body layer including a resin composition. The adhesive layer is no more than 2μm thick.

Description

ワーク保持部材及び積層体Work holding member and laminate
 本発明は、ワーク保持部材及び積層体に関する。より詳しくは、本発明は、ワーク保持部材、及び、該ワーク保持部材上にワークが保持された積層体に関する。 The present invention relates to a work holding member and a laminate. More specifically, the present invention relates to a workpiece holding member and a laminate in which a workpiece is held on the workpiece holding member.
 従来、電子部品装置の製造において、電子部品を基板などのワークの表面に実装すること、すなわち、電子部品をワークに表面実装することが知られている(例えば、下記特許文献1及び2)。 Conventionally, in manufacturing electronic component devices, it has been known to mount electronic components on the surface of a workpiece such as a board, that is, to surface-mount electronic components on the workpiece (for example, Patent Documents 1 and 2 below).
 下記特許文献1には、電子部品装置たる半導体装置の製造において、電子部品たる半導体チップを基板(ワーク)の表面に取り付けたり、基板に取り付けた後の半導体チップにリフロー処理を行ったりなどして実装するときに、ステージ上に基板を載置することが開示されている。 Patent Document 1 below discloses that in manufacturing a semiconductor device, which is an electronic component device, a semiconductor chip, which is an electronic component, is attached to the surface of a substrate (work), and a reflow treatment is performed on the semiconductor chip after being attached to the substrate. It is disclosed that the substrate is placed on a stage during mounting.
 より具体的には、下記特許文献1には、バンプ電極を備える複数の半導体チップを高さ方向に積層させた半導体チップ積層体を得て、該半導体チップ積層体を支持基板(ワーク)上に取り付けた状態とし、前記半導体チップ積層体を取り付けた支持基板を第1のステージたる搬送板上に載置した後、該第1のステージたる搬送板を第2のステージたる加熱炉内のステージ上に載置してリフロー処理を行い、支持基板上に半導体チップを実装することにより、半導体装置を製造することが開示されている。 More specifically, Patent Document 1 below discloses that a semiconductor chip stack is obtained by stacking a plurality of semiconductor chips including bump electrodes in the height direction, and the semiconductor chip stack is placed on a support substrate (work). After placing the support substrate with the semiconductor chip stack attached on the first stage, which is a carrier plate, the first stage, which is a carrier plate, is placed on a stage in a heating furnace, which is a second stage. It is disclosed that a semiconductor device is manufactured by mounting a semiconductor chip on a support substrate, performing reflow processing on the support substrate, and mounting the semiconductor chip on the support substrate.
 なお、前記リフロー処理は、通常、加熱炉内のピークトップ温度が270℃程度となるようにして実施される。 Note that the reflow treatment is usually performed such that the peak top temperature in the heating furnace is approximately 270°C.
 下記特許文献2には、電子部品装置たる有機EL装置の製造において、電子部品たるIZO膜やITO膜などといった透明電極膜を透明基板(ワーク)上に取り付けて、前記透明電極膜をアニールして実装するときに、ステージ上に前記透明基板を載置することが開示されている。 Patent Document 2 below discloses that in manufacturing an organic EL device that is an electronic component device, a transparent electrode film such as an IZO film or an ITO film that is an electronic component is attached on a transparent substrate (work), and the transparent electrode film is annealed. It is disclosed that the transparent substrate is placed on a stage during mounting.
 より具体的には、下記特許文献2には、前記透明基板を基板ステージ上に載置し、スパッタリング法により前記透明基板上に電子部品たる透明電極膜を取り付けた後、アニール処理を行って前記透明基板上に前記透明電極膜を実装して、有機EL装置を製造することが開示されている。 More specifically, Patent Document 2 below discloses that after placing the transparent substrate on a substrate stage and attaching a transparent electrode film, which is an electronic component, on the transparent substrate by sputtering, an annealing treatment is performed. It is disclosed that an organic EL device is manufactured by mounting the transparent electrode film on a transparent substrate.
 なお、前記アニール処理は、前記透明電極膜の機能を十分に発現させるために、通常、150℃程度の温度で実施される。 Note that the annealing treatment is usually performed at a temperature of about 150° C. in order to fully develop the function of the transparent electrode film.
 上記のように電子部品を基板(ワーク)に実装させる時には、前記基板は、通常、何らかの部材を介在させてステージ上に載置される。 When electronic components are mounted on a board (work) as described above, the board is usually placed on a stage with some member interposed.
 例えば、前記基板は、支持体と該支持体上に積層されたワーク保持層とを備えるワーク保持部材を介在させてステージ上に載置される。 For example, the substrate is placed on a stage with a work holding member including a support and a work holding layer laminated on the support.
 より具体的には、前記ワーク保持部材の前記ワーク保持層に基板(ワーク)を保持させた状態で前記支持体をステージ上に載置することにより、前記基板はステージ上に載置される。 More specifically, the substrate is placed on the stage by placing the support body on the stage with the substrate (work) being held by the work holding layer of the work holding member.
日本国特開2020-150202号公報Japanese Patent Application Publication No. 2020-150202 日本国特開2008-140735号公報Japanese Patent Application Publication No. 2008-140735
 半導体チップを取り付ける基板(ワーク)や透明電極膜を取り付ける基板(ワーク)は、リフロー処理前やアニール処理前などの電子部品の表面実装時の加熱処理前においては、前記ワーク保持部材(より詳しくは、前記ワーク保持部材のワーク保持層)に固定されているものの、リフロー処理後やアニール処理後などの電子部品の表面実装時の加熱処理後においては、前記ワーク保持部材から取り外される。そのため、効率良く電子部品装置を製造する観点から、前記基板(ワーク)は、電子部品の表面実装時の加熱処理前においては前記ワーク保持部材に十分に固定されていることが好ましく、かつ、電子部品の表面実装時の加熱処理後においては前記ワーク保持部材から取り外し易いことが好ましい。 The substrate (work) to which a semiconductor chip is attached or the substrate (work) to which a transparent electrode film is attached is attached to the workpiece holding member (more specifically , the work holding layer of the work holding member), but is removed from the work holding member after heat treatment during surface mounting of electronic components, such as after reflow treatment or annealing treatment. Therefore, from the viewpoint of efficiently manufacturing electronic component devices, it is preferable that the substrate (work) is sufficiently fixed to the workpiece holding member before heat treatment during surface mounting of electronic components, and It is preferable that the component can be easily removed from the workpiece holding member after heat treatment during surface mounting of the component.
 しかしながら、電子部品の表面実装時の加熱処理前においては、前記ワーク保持部材に前記基板(ワーク)を十分に固定しておき、電子部品の表面実装時の加熱処理後においては、前記ワーク保持部材から前記基板(ワーク)を取り外し易くすることについて、未だ十分な検討がなされているとは言い難い。 However, before the heat treatment when surface mounting electronic components, the substrate (work) is sufficiently fixed to the workpiece holding member, and after the heat treatment when surface mounting electronic components, the workpiece holding member It cannot be said that sufficient consideration has been given to making it easier to remove the substrate (work) from the device.
 また、支持体およびワーク保持層を備えるワーク保持部材においては、ワーク保持部材から前記基板(ワーク)を取り外す際においても支持体とワーク保持層とが剥離しないように十分に固定されている必要がある。しかし、ワーク保持層の機能を維持したまま、支持体上にワーク保持層を十分に固定する方法について、未だ十分な検討がなされているとは言い難い。 In addition, in a workpiece holding member that includes a support and a workpiece holding layer, the support and workpiece holding layer must be sufficiently fixed so that they do not separate even when the substrate (workpiece) is removed from the workpiece holding member. be. However, it cannot be said that sufficient studies have been made on a method for sufficiently fixing the workpiece holding layer on the support while maintaining the function of the workpiece holding layer.
 そこで、本発明は、電子部品の表面実装時の加熱処理前においてはワークを十分に固定でき、電子部品の表面実装時の加熱処理後においてはワークを取り外し易く、かつワーク保持層の機能を維持したまま、支持体上にワーク保持層が十分に固定されたワーク保持部材を提供することを課題とする。 Therefore, the present invention is capable of sufficiently fixing the workpiece before heat treatment during surface mounting of electronic components, making it easy to remove the workpiece after heat treatment during surface mounting of electronic components, and maintaining the function of the workpiece holding layer. An object of the present invention is to provide a workpiece holding member in which a workpiece holding layer is sufficiently fixed on a support body.
 また、本発明は、前記ワーク保持部材にワークが保持された積層体を提供することを課題とする。 Another object of the present invention is to provide a laminate in which a workpiece is held by the workpiece holding member.
 本発明者らが鋭意検討したところ、支持体と、該支持体上に積層される接着剤層と、該接着剤層上に積層されてワークを保持するワーク保持層と、を備えるワーク保持部材において、前記ワーク保持層が樹脂組成物の発泡体層として構成されることにより、加熱処理前はワークを十分に固定し、かつ加熱処理後はワークを取り外し易くできることを見出した。 As a result of intensive study by the present inventors, a workpiece holding member includes a support, an adhesive layer laminated on the support, and a workpiece holding layer laminated on the adhesive layer to hold the workpiece. It has been found that by forming the workpiece holding layer as a foam layer of a resin composition, the workpiece can be sufficiently fixed before heat treatment, and the workpiece can be easily removed after heat treatment.
 また、前記ワーク保持部材における接着剤層の厚みを2μm以下とすること、あるいは接着剤層を分子接着剤層とすることにより、ワーク保持層の機能を維持したまま、支持体上にワーク保持層を十分に固定できることを見出した。 In addition, by setting the thickness of the adhesive layer in the work holding member to 2 μm or less, or by making the adhesive layer a molecular adhesive layer, the work holding layer can be formed on the support while maintaining the function of the work holding layer. was found to be able to be sufficiently fixed.
 そして、本発明を完成するに至った。 Then, the present invention was completed.
 前記課題を解決するための手段は、以下の通りである。
〔1〕
 支持体と、該支持体上に積層される接着剤層と、該接着剤層上に積層されてワークを保持するワーク保持層と、を備えるワーク保持部材であって、
 前記ワーク保持層は樹脂組成物の発泡体層として構成されており、
 前記接着剤層の厚みは2μm以下である、ワーク保持部材。
〔2〕
 支持体と、該支持体上に積層される接着剤層と、該接着剤層上に積層されてワークを保持するワーク保持層と、を備えるワーク保持部材であって、
 前記ワーク保持層は樹脂組成物の発泡体層として構成されており、
 前記接着剤層が分子接着剤層である、ワーク保持部材。
〔3〕
 前記支持体と前記ワーク保持層との間で、以下の(1)~(3)の手順で、はく離試験を実施した際に、以下の(i)~(iii)のいずれかを満たす、上記〔1〕または〔2〕に記載のワーク保持部材。
(1)ポリエステルフィルム基材の主面の片側にアクリル系粘着剤層を有し、もう片側にシリコーン系粘着剤層を有する両面粘着テープにおいて、アクリル系粘着剤層側にPETフィルムを貼り合わせ、シリコーン系粘着剤層側にワーク保持部材におけるワーク保持層を貼り合わせたサンプルを用意する。
(2)前記サンプルを50℃で24時間静置し、その後23℃で30分静置する。
(3)静置をしたサンプルについて、はく離角度90度、引張速度300mm/minではく離試験を実施し、支持体とワーク保持層との間ではく離が生じる際のはく離力(N/20mm)を測定する。
(i)前記はく離力が1N/20mm以上である
(ii)ワーク保持層が破断する
(iii)ワーク保持層とPETフィルムとの間ではく離が生じる
〔4〕
 前記接着剤層が分子接着剤層である、上記〔1〕に記載のワーク保持部材。
〔5〕
 前記分子接着剤層を形成する分子接着剤が、第1反応性基RG1と、第2反応性基RG2とのいずれか少なくとも1つを有する化合物を含有し、
 前記第1反応性基RG1がアミノ基及びアジド基からなる群から選択された少なくとも1種であり、
 前記第2反応性基RG2がシラノール基及びアルコキシシリル基から選択される少なくとも1種である、上記〔2〕または〔4〕に記載のワーク保持部材。
〔6〕
 前記分子接着剤はトリアジン環をさらに有し、前記第1反応性基RG1を含む基及び前記第2反応性基RG2を含む基が前記トリアジン環に結合している、上記〔5〕に記載のワーク保持部材。
〔7〕
 前記ワーク保持層は、150℃以上の温度で加熱する前においてポリイミドフィルムに対するせん断粘着力の値Sが1N/100mm以上であり、かつ、150℃以上の温度で5分間加熱した後においてポリイミドフィルムに対する90°剥離力の値Pが7N/20mm以下である、上記〔1〕または〔2〕に記載のワーク保持部材。
〔8〕
 前記支持体は、線膨張係数の値に対する3点曲げ応力の値の比が0.3以上である、上記〔1〕または〔2〕に記載のワーク保持部材。
〔9〕
 前記支持体の3点曲げ応力が5N/10mm以上である、上記〔8〕に記載のワーク保持部材。
〔10〕
 前記支持体の線膨張係数が30×10-6/℃以下である、上記〔8〕に記載のワーク保持部材。
〔11〕
 前記90°剥離力の値Pに対する前記せん断粘着力の値Sの比(S/P)が5以上である、上記〔7〕に記載のワーク保持部材。
〔12〕
 前記支持体は、前記接着剤層が積層される面の算術平均粗さRaが2μm以下である、上記〔1〕または〔2〕に記載のワーク保持部材。
〔13〕
 前記樹脂組成物は、シリコーン樹脂またはフッ素樹脂を含む、上記〔1〕または〔2〕に記載のワーク保持部材。
〔14〕
 前記ワーク保持層の見掛け密度は、0.05g/cm以上0.90g/cm以下である、上記〔1〕または〔2〕に記載のワーク保持部材。
〔15〕
 前記ワーク保持層の平均気泡径は、1μm以上100μm以下である、上記〔1〕または〔2〕に記載のワーク保持部材。
〔16〕
 前記ワーク保持層は、前記接着剤層に当接される面の算術平均粗さRaが0.1μm以上50μm以下である、上記〔1〕または〔2〕に記載のワーク保持部材。
〔17〕
 前記ワークは、セラミック基板、シリコン基板、ガラス基板、及び、樹脂フィルム基板からなる群から選択される1種である、上記〔1〕または〔2〕に記載のワーク保持部材。
〔18〕
 前記ワークの表面に電子部品を実装するために用いられる、上記〔1〕または〔2〕に記載のワーク保持部材。
〔19〕
 支持体、該支持体上に積層される接着剤層、及び該接着剤層上に積層されてワークを保持するワーク保持層を備えるワーク保持部材と、
 前記ワーク保持層上に保持されているワークと、を備える積層体であって、
 前記ワーク保持部材が、上記〔1〕または〔2〕に記載のワーク保持部材である、積層体。
Means for solving the above problem are as follows.
[1]
A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
The work holding layer is configured as a foam layer of a resin composition,
A workpiece holding member, wherein the adhesive layer has a thickness of 2 μm or less.
[2]
A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
The work holding layer is configured as a foam layer of a resin composition,
A workpiece holding member, wherein the adhesive layer is a molecular adhesive layer.
[3]
The above-mentioned material satisfies any of the following (i) to (iii) when a peel test is conducted between the support and the workpiece holding layer according to the following procedures (1) to (3). The workpiece holding member according to [1] or [2].
(1) In a double-sided adhesive tape having an acrylic adhesive layer on one side of the main surface of a polyester film base material and a silicone adhesive layer on the other side, a PET film is attached to the acrylic adhesive layer side, A sample is prepared in which a workpiece holding layer of a workpiece holding member is attached to the silicone adhesive layer side.
(2) The sample is allowed to stand at 50°C for 24 hours, and then at 23°C for 30 minutes.
(3) A peel test was conducted on the sample that had been left standing at a peel angle of 90 degrees and a tensile speed of 300 mm/min, and the peel force (N/20 mm) when peeling occurs between the support and the workpiece holding layer was calculated. Measure.
(i) The peeling force is 1N/20mm or more (ii) The workpiece holding layer breaks (iii) Peeling occurs between the workpiece holding layer and the PET film [4]
The workpiece holding member according to [1] above, wherein the adhesive layer is a molecular adhesive layer.
[5]
The molecular adhesive forming the molecular adhesive layer contains a compound having at least one of a first reactive group RG1 and a second reactive group RG2,
The first reactive group RG1 is at least one selected from the group consisting of an amino group and an azide group,
The work holding member according to [2] or [4] above, wherein the second reactive group RG2 is at least one selected from a silanol group and an alkoxysilyl group.
[6]
The molecular adhesive further has a triazine ring, and the group containing the first reactive group RG1 and the group containing the second reactive group RG2 are bonded to the triazine ring, according to [5] above. Work holding member.
[7]
The work holding layer has a shear adhesion value S to the polyimide film of 1N/100mm2 or more before heating at a temperature of 150°C or higher, and a polyimide film after heating at a temperature of 150°C or higher for 5 minutes. The workpiece holding member according to [1] or [2] above, wherein the value P of 90° peeling force against the surface of the workpiece is 7 N/20 mm or less.
[8]
The workpiece holding member according to [1] or [2] above, wherein the support has a ratio of a three-point bending stress to a linear expansion coefficient of 0.3 or more.
[9]
The workpiece holding member according to [8] above, wherein the support has a three-point bending stress of 5 N/10 mm or more.
[10]
The workpiece holding member according to [8] above, wherein the support has a linear expansion coefficient of 30×10 −6 /° C. or less.
[11]
The workpiece holding member according to [7] above, wherein the ratio (S/P) of the value S of the shear adhesive force to the value P of the 90° peeling force is 5 or more.
[12]
The work holding member according to [1] or [2] above, wherein the support has an arithmetic mean roughness Ra of 2 μm or less on a surface on which the adhesive layer is laminated.
[13]
The work holding member according to [1] or [2] above, wherein the resin composition contains a silicone resin or a fluororesin.
[14]
The workpiece holding member according to [1] or [2] above, wherein the workpiece holding layer has an apparent density of 0.05 g/cm 3 or more and 0.90 g/cm 3 or less.
[15]
The workpiece holding member according to [1] or [2] above, wherein the workpiece holding layer has an average cell diameter of 1 μm or more and 100 μm or less.
[16]
The work holding member according to [1] or [2], wherein the work holding layer has an arithmetic mean roughness Ra of 0.1 μm or more and 50 μm or less on the surface that comes into contact with the adhesive layer.
[17]
The work holding member according to [1] or [2] above, wherein the work is one type selected from the group consisting of a ceramic substrate, a silicon substrate, a glass substrate, and a resin film substrate.
[18]
The work holding member according to [1] or [2] above, which is used for mounting electronic components on the surface of the work.
[19]
a work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work;
A laminate comprising: a workpiece held on the workpiece holding layer;
A laminate, wherein the workpiece holding member is the workpiece holding member described in [1] or [2] above.
 本発明によれば、電子部品の表面実装時の加熱処理前においてはワークを十分に固定でき、電子部品の表面実装時の加熱処理後においてはワークを取り外し易く、かつワーク保持層の機能を維持したまま、支持体上にワーク保持層が十分に固定されたワーク保持部材を提供できる。 According to the present invention, the workpiece can be sufficiently fixed before the heat treatment during surface mounting of electronic components, the workpiece can be easily removed after the heat treatment during surface mounting of electronic components, and the function of the workpiece holding layer is maintained. It is possible to provide a work-holding member in which the work-holding layer is sufficiently fixed on the support while the workpiece-holding layer remains in place.
 また、本発明によれば、前記ワーク保持部材にワークが保持された積層体を提供できる。 Further, according to the present invention, it is possible to provide a laminate in which a workpiece is held by the workpiece holding member.
図1は、本発明の一実施形態に係るワーク保持部材の構成を示す断面図である。FIG. 1 is a sectional view showing the configuration of a workpiece holding member according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る積層体の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of a laminate according to an embodiment of the present invention. 図3Aは、ワーク保持部材のワーク保持層上にワークを保持する様子を示す断面図である。FIG. 3A is a cross-sectional view showing how a workpiece is held on the workpiece holding layer of the workpiece holding member. 図3Bは、ワーク保持部材のワーク保持層上にワークを保持した状態を示す断面図である。FIG. 3B is a cross-sectional view showing a state in which a workpiece is held on the workpiece holding layer of the workpiece holding member. 図3Cは、ワーク上に半導体チップを取り付ける様子を示す断面図である。FIG. 3C is a cross-sectional view showing how a semiconductor chip is attached onto a workpiece. 図3Dは、ワーク上に取り付けられた半導体チップを樹脂封止する様子を示す断面図である。FIG. 3D is a cross-sectional view showing how a semiconductor chip mounted on a workpiece is sealed with resin. 図3Eは、樹脂封止された半導体チップが取り付けられたワークをワーク保持部材から取り外す様子を示す断面図である。FIG. 3E is a cross-sectional view showing how a workpiece to which a resin-sealed semiconductor chip is attached is removed from a workpiece holding member.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 The present invention will be described in detail below, but the present invention is not limited to the following embodiments, and can be implemented with arbitrary modifications within the scope of the gist of the present invention. In addition, "~" indicating a numerical range is used to include the numerical values written before and after it as a lower limit value and an upper limit value.
 また、以下の図面において、同じ作用を奏する部材、部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際の装置等のサイズや縮尺を必ずしも正確に表したものではない。 Furthermore, in the following drawings, members and parts that perform the same functions may be described with the same reference numerals, and overlapping descriptions may be omitted or simplified. Furthermore, the embodiments shown in the drawings are simplified to clearly explain the present invention, and do not necessarily accurately represent the size or scale of the actual device.
≪ワーク保持部材≫
 本発明の第1の実施形態に係るワーク保持部材は、
 支持体と、該支持体上に積層される接着剤層と、該接着剤層上に積層されてワークを保持するワーク保持層と、を備えるワーク保持部材であって、
 前記ワーク保持層は樹脂組成物の発泡体層として構成されており、
 前記接着剤層の厚みは2μm以下であることを特徴とする。
≪Work holding member≫
The work holding member according to the first embodiment of the present invention is
A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
The work holding layer is configured as a foam layer of a resin composition,
The thickness of the adhesive layer is 2 μm or less.
 また、本発明の第2の実施形態に係るワーク保持部材は、
 支持体と、該支持体上に積層される接着剤層と、該接着剤層上に積層されてワークを保持するワーク保持層と、を備えるワーク保持部材であって、
 前記ワーク保持層は樹脂組成物の発泡体層として構成されており、
 前記接着剤層が分子接着剤層であることを特徴とする。
Further, the work holding member according to the second embodiment of the present invention is
A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
The work holding layer is configured as a foam layer of a resin composition,
The adhesive layer is a molecular adhesive layer.
 以下、図1を参照しながら、本発明の実施形態に係るワーク保持部材について説明する。なお、以下では、上記本発明の第1の実施形態に係るワーク保持部材および第2の実施形態に係るワーク保持部材を、まとめて本発明の実施形態に係るワーク保持部材、あるいは、本実施形態に係るワーク保持部材と称することがある。 Hereinafter, a workpiece holding member according to an embodiment of the present invention will be described with reference to FIG. 1. In the following, the work holding member according to the first embodiment of the present invention and the work holding member according to the second embodiment will be collectively referred to as the work holding member according to the embodiment of the present invention, or the present embodiment. It is sometimes referred to as a workpiece holding member.
 本実施形態に係るワーク保持部材10は、支持体1と、支持体1上に積層される接着剤層2と、接着剤層2上に積層されてワークを保持するワーク保持層3と、を備える。 The workpiece holding member 10 according to the present embodiment includes a support 1, an adhesive layer 2 laminated on the support 1, and a workpiece holding layer 3 laminated on the adhesive layer 2 to hold the workpiece. Be prepared.
<支持体>
 支持体1は、後述する接着剤層2を介して、ワーク保持層3を支持する。
 支持体1としては、接着剤層2を介してワーク保持層3を支持できるものであれば特に制限されるものではないが、後述するように接着剤層2を分子接着剤層とする場合は、支持体1は、分子接着剤層に含まれる化合物と強固に化学結合する部分構造を有することが好ましい。すなわち、支持体1が分子接着剤層を介して化学結合を形成することができるように、支持体1の材料は選択されるのが好ましい。
<Support>
The support 1 supports a workpiece holding layer 3 via an adhesive layer 2, which will be described later.
The support 1 is not particularly limited as long as it can support the workpiece holding layer 3 via the adhesive layer 2, but as described later, when the adhesive layer 2 is a molecular adhesive layer, It is preferable that the support 1 has a partial structure that strongly chemically bonds with the compound contained in the molecular adhesive layer. That is, the material of the support 1 is preferably selected such that the support 1 can form chemical bonds via the molecular adhesive layer.
 上記の観点から、支持体1の材料は、支持体1の主面のうち、接着剤層2を積層する側の主面が、炭化水素基、カルボニル基、カルボキシル基、および水酸基からなる群から選択される少なくとも1種の反応性基を有し、分子接着剤層と化学結合を形成するように、選択されるのが好ましい。このような支持体1を使用することにより、分子接着剤層との間で高い接着力を得ることができ、支持体1と分子接着剤層との間が剥離するのを防止でき、ひいては支持体上にワーク保持層3を十分に固定することができる。 From the above viewpoint, the material of the support 1 is such that the main surface of the support 1 on the side on which the adhesive layer 2 is laminated is selected from the group consisting of a hydrocarbon group, a carbonyl group, a carboxyl group, and a hydroxyl group. It is preferably selected to have at least one selected reactive group and to form a chemical bond with the molecular adhesive layer. By using such a support 1, high adhesive strength can be obtained between the support 1 and the molecular adhesive layer, and peeling between the support 1 and the molecular adhesive layer can be prevented. The work holding layer 3 can be sufficiently fixed on the body.
 支持体1の材料としては、例えば、アクリル樹脂、オレフィン系樹脂、オレフィン系アイオノマー樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ゴム、金属、ガラス、セラミック等が挙げられる。 Examples of the material for the support 1 include acrylic resin, olefin resin, olefin ionomer resin, polyester resin, polyamide resin, rubber, metal, glass, and ceramic.
 アクリル樹脂としては、例えば(メタ)アクリル系単量体の単独重合体、(メタ)アクリル系単量体の共重合体、(メタ)アクリル系単量体と、これと共重合可能な単量体との共重合体が挙げられる。 Examples of acrylic resins include homopolymers of (meth)acrylic monomers, copolymers of (meth)acrylic monomers, (meth)acrylic monomers, and monomers copolymerizable with the same. Examples include copolymers with copolymers.
 (メタ)アクリル系単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル;(メタ)アクリル酸;が挙げられる。 Examples of (meth)acrylic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2- Examples include (meth)acrylic acid esters such as ethylhexyl (meth)acrylate; (meth)acrylic acid;
 (メタ)アクリル系単量体と共重合可能な単量体としては、エチレン;スチレン、α-メチルスチレン、クロロスチレン等の芳香族ビニル単量体;アクリロニトリル、メタクリロニトリル等のシアノ基含有エチレン性不飽和単量体;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等の(メタ)アクリルアミド系単量体;等が挙げられる。 Monomers copolymerizable with (meth)acrylic monomers include ethylene; aromatic vinyl monomers such as styrene, α-methylstyrene, and chlorostyrene; cyano group-containing ethylenes such as acrylonitrile and methacrylonitrile; (meth)acrylamide monomers such as (meth)acrylamide, N-methylol (meth)acrylamide, and N-butoxymethyl (meth)acrylamide; and the like.
 アクリル樹脂以外としては、例えば、具体的には、PP(ポリプロピレン)、PA(ポリアミド)、PPE(ポリフェニレンエーテル)、PPS(ポリフェニレンサルファイド)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、POM(ポリアセタール)、PEEK(ポリエーテルエーテルケトン)、PC(ポリカーボネート)、PES(ポリエーテルサルファイド)等が挙げられる。なかでも、支持体上にワーク保持層を十分に固定するという観点から、PPS(ポリフェニレンサルファイド)、PA(ポリアミド)、PET(ポリエチレンテレフタレート)、PES(ポリエーテルサルファイド)が挙げられ、PA(ポリアミド)、PET(ポリエチレンテレフタレート)がより好ましい。 Examples of resins other than acrylic resins include PP (polypropylene), PA (polyamide), PPE (polyphenylene ether), PPS (polyphenylene sulfide), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), POM ( (polyacetal), PEEK (polyether ether ketone), PC (polycarbonate), PES (polyether sulfide), and the like. Among them, PPS (polyphenylene sulfide), PA (polyamide), PET (polyethylene terephthalate), and PES (polyether sulfide) are mentioned from the viewpoint of sufficiently fixing the workpiece holding layer on the support. , PET (polyethylene terephthalate) is more preferred.
 ゴムとしては、天然ゴム、合成ゴムのいずれであってもよい。上記ゴムとして、例えば、ニトリルゴム(NBR)、メチルメタクリレート-ブタジエンゴム(MBR)、スチレン-ブタジエンゴム(SBR)、アクリルゴム(ACM、ANM)、ウレタンゴム(AU)、シリコーンゴムなどが挙げられる。これらの中でも、ニトリルゴム(NBR)、メチルメタクリレート-ブタジエンゴム(MBR)、シリコーンゴムが好ましい。また、これらのゴムが架橋されてなる架橋ゴムがより好ましい。 The rubber may be either natural rubber or synthetic rubber. Examples of the above-mentioned rubber include nitrile rubber (NBR), methyl methacrylate-butadiene rubber (MBR), styrene-butadiene rubber (SBR), acrylic rubber (ACM, ANM), urethane rubber (AU), and silicone rubber. Among these, nitrile rubber (NBR), methyl methacrylate-butadiene rubber (MBR), and silicone rubber are preferred. Further, crosslinked rubbers obtained by crosslinking these rubbers are more preferable.
 金属としては、例えば、金、銀、銅、アルミニウム、鉄、チタン、これらのうちの1以上を含む合金等より選択される金属、ステンレスを含む材料等が挙げられる。これらの中でも、銅、アルミニウム、又はチタンを含む材料もしくはステンレスを含む材料が好ましく、アルミニウムを含む材料もしくはステンレスを含む材料がより好ましい。 Examples of the metal include metals selected from gold, silver, copper, aluminum, iron, titanium, alloys containing one or more of these, and materials containing stainless steel. Among these, materials containing copper, aluminum, or titanium or materials containing stainless steel are preferred, and materials containing aluminum or stainless steel are more preferred.
 ガラスとしては、例えば、無アルカリガラス、ソーダガラス、ホウケイ酸ガラス、アルミノケイ酸ガラスなどが挙げられる。 Examples of the glass include alkali-free glass, soda glass, borosilicate glass, aluminosilicate glass, and the like.
 セラミックとしては、例えば、シリコンウエハ、アルミナセラミック、ジルコニアセラミック、窒化ケイ素セラミック、窒化アルミニウムセラミック、炭化ケイ素セラミックなどが挙げられる。 Examples of the ceramic include silicon wafer, alumina ceramic, zirconia ceramic, silicon nitride ceramic, aluminum nitride ceramic, and silicon carbide ceramic.
 支持体1の厚さは、反りを抑制するという観点からは、0.3mm以上であることが好ましく、0.5mm以上であることがより好ましく、1.0mm以上であることがさらに好ましい。 From the viewpoint of suppressing warpage, the thickness of the support 1 is preferably 0.3 mm or more, more preferably 0.5 mm or more, and even more preferably 1.0 mm or more.
 また、支持体1の厚さは、薄型化の観点からは、5.0mm以下であることが好ましく、4.0mm以下であることがより好ましく、3.0mm以下であることがさらに好ましく、2.0mm以下であることがさらに好ましく、1.5mm以下であることが特に好ましい。 Further, from the viewpoint of thinning, the thickness of the support 1 is preferably 5.0 mm or less, more preferably 4.0 mm or less, even more preferably 3.0 mm or less, and 2. It is more preferably .0 mm or less, and particularly preferably 1.5 mm or less.
 支持体1の厚さは、例えば、シックネスゲージを用いて測定することができる。シックネスゲージとしては、例えば、尾崎製作所社製のシックネスゲージJA-257(端子サイズ:上下φ20mm)が挙げられる。 The thickness of the support 1 can be measured using, for example, a thickness gauge. Examples of the thickness gauge include the thickness gauge JA-257 manufactured by Ozaki Seisakusho Co., Ltd. (terminal size: top and bottom φ20 mm).
 支持体1は、線膨張係数の値に対する3点曲げ応力の値の比が0.3以上であるのが好ましい。 It is preferable that the support 1 has a ratio of the three-point bending stress to the linear expansion coefficient of 0.3 or more.
 ここで、3点曲げ応力の値が低くなるなど、支持体1は曲がり易くなるため、ワーク保持層3に保持されたワークに反りが生じ易くなる。また、線膨張係数の値が高くなるほど、支持体1は膨張し易くなるので、ワーク保持層3に保持されたワークは、支持体1の膨張に伴って反り易くなる。そのため、ワーク保持部材10において、ワーク保持部材10のワーク保持層3に保持されたワークに生じる反りを抑制するためには、支持体1において、線膨張係数の値は高いほど好ましく、3点曲げ応力の値は低いほど好ましい。 Here, the support body 1 becomes easier to bend as the value of the three-point bending stress becomes lower, so that the workpiece held by the workpiece holding layer 3 becomes more likely to warp. Further, as the value of the linear expansion coefficient increases, the support 1 becomes more likely to expand, and therefore, the workpiece held on the workpiece holding layer 3 becomes more likely to warp as the support 1 expands. Therefore, in the workpiece holding member 10, in order to suppress the warping that occurs in the workpiece held on the workpiece holding layer 3 of the workpiece holding member 10, it is preferable that the linear expansion coefficient of the support body 1 is as high as possible. The lower the stress value, the better.
 本実施形態に係るワーク保持部材10では、支持体1について、線膨張係数の値に対する3点曲げ応力の値の比が0.3以上であるのが好ましい。線膨張係数の値が高くなり、かつ、3点曲げ応力の値が低くなるような比となっていると、支持体1には反りが生じ難くなる。そのため、電子部品の表面実装時の加熱処理においても、ワーク保持層3に保持されたワークに反りが生じることを抑制できるため好ましい。 In the work holding member 10 according to the present embodiment, the ratio of the three-point bending stress to the linear expansion coefficient of the support 1 is preferably 0.3 or more. When the ratio is such that the linear expansion coefficient is high and the three-point bending stress is low, the support 1 is less likely to warp. Therefore, also in the heat treatment during surface mounting of electronic components, it is possible to suppress warping of the workpiece held by the workpiece holding layer 3, which is preferable.
 支持体1の3点曲げ応力は、5N/10mm以上であることが好ましく、6N/10mm以上であることがより好ましく、7N/10mm以上であることがさらに好ましく、8N/10mm以上であることが特に好ましい。 The three-point bending stress of the support 1 is preferably 5 N/10 mm or more, more preferably 6 N/10 mm or more, even more preferably 7 N/10 mm or more, and preferably 8 N/10 mm or more. Particularly preferred.
 支持体1の3点曲げ応力の上限値は、通常、200N/10mmである。 The upper limit of the three-point bending stress of the support 1 is usually 200N/10mm.
 支持体1の3点曲げ応力は、引張圧縮試験機(型式「TG-5KN」、ミネビア社製)を用いて、以下の手順(1)~(3)にしたがって測定することができる。
(1)幅10mm×長さ100mmの支持体を試験体として準備する。
(2)前記試験体について、中心から長さ方向の一端側に向かって35mm離れた箇所、及び、中心から長さ方向の他端側に向かって35mm離れた箇所を、前記引張試験機の把持部材でそれぞれ把持する。
(3)前記引張試験機の押込み部材で、前記試験体の中心を押込み速度5mm/minで上方から下方に向けて押込み、押し込んだ際の最大荷重を3点曲げ応力とする。
The three-point bending stress of the support 1 can be measured using a tensile compression tester (model "TG-5KN", manufactured by Minevia) according to the following procedures (1) to (3).
(1) A support with a width of 10 mm and a length of 100 mm is prepared as a test specimen.
(2) The tensile tester grips the specimen at a location 35 mm away from the center toward one end in the length direction and at a location 35 mm away from the center toward the other end in the length direction. Grip each member.
(3) Using the pushing member of the tensile testing machine, push the center of the specimen from above to below at a pushing speed of 5 mm/min, and let the maximum load at the time of pushing be the three-point bending stress.
 支持体1の線膨張係数は、30×10-6/℃以下であることが好ましく、25×10-6/℃以下であることがより好ましく、20×10-6/℃以下であることがさらに好ましい。 The linear expansion coefficient of the support 1 is preferably 30×10 −6 /°C or less, more preferably 25×10 −6 /°C or less, and preferably 20×10 −6 /°C or less. More preferred.
 支持体1の線膨張係数の下限値は、通常、5×10-6/℃である。 The lower limit of the linear expansion coefficient of the support 1 is usually 5×10 −6 /°C.
 支持体1の線膨張係数は、熱機械分析(TMA法)にて測定することができる。 The linear expansion coefficient of the support 1 can be measured by thermomechanical analysis (TMA method).
 熱機械分析(TMA法)は、以下の条件にて実施することができる。
・装置名:熱機械分析装置(商品名「TMA/SS7100、エスアイアイ・ナノテクノロジー社製」)
・測定モード:引っ張り法
・温度範囲:-50℃~300℃
・昇温速度:10℃/min
・サンプル形状:5mm角、高さ10mmの角柱状
・標準試料:アルミナ
Thermomechanical analysis (TMA method) can be performed under the following conditions.
・Device name: Thermomechanical analyzer (product name: "TMA/SS7100, manufactured by SII Nanotechnology")
・Measurement mode: Tensile method ・Temperature range: -50℃~300℃
・Temperature increase rate: 10℃/min
・Sample shape: 5mm square, 10mm height prismatic ・Standard sample: Alumina
 なお、支持体1について、線膨張係数の値に対する3点曲げ応力の値の比は、上のようにして求めた、3点曲げ応力の値を線膨張係数の値で除することにより求めることができる。 For support 1, the ratio of the value of the three-point bending stress to the value of the coefficient of linear expansion can be obtained by dividing the value of the three-point bending stress obtained as above by the value of the coefficient of linear expansion. Can be done.
 必要に応じて、支持体1は表面改質されていてもよい。表面改質としては、例えば、コロナ処理によって水酸基を導入することが挙げられる。 If necessary, the support 1 may be surface-modified. Examples of surface modification include introduction of hydroxyl groups by corona treatment.
 支持体1は、後述する接着剤層2が積層される面の算術平均粗さRaが2μm以下であることが好ましく、1μm以下であることがより好ましく、0.4μm以下であることがさらに好ましい。また、支持体1は、接着剤層2が積層される面の算術平均粗さRaが0.01μm以上であることが好ましく、0.015μm以上であることがさらに好ましい。 The arithmetic mean roughness Ra of the surface of the support 1 on which the adhesive layer 2 described later is laminated is preferably 2 μm or less, more preferably 1 μm or less, and even more preferably 0.4 μm or less. . Further, the arithmetic mean roughness Ra of the surface of the support 1 on which the adhesive layer 2 is laminated is preferably 0.01 μm or more, more preferably 0.015 μm or more.
 支持体1において、接着剤層2が積層される面の算術平均粗さRaが上記の数値範囲であることにより、支持体1に接着剤層2を介してワーク保持層3をより十分に固定することができる。 Since the arithmetic mean roughness Ra of the surface of the support 1 on which the adhesive layer 2 is laminated is within the above numerical range, the workpiece holding layer 3 can be more fully fixed to the support 1 via the adhesive layer 2. can do.
 支持体1における、接着剤層2が積層される面の算術平均粗さRaは、JIS B 0601(1994)に準拠して測定することができる。測定条件としては、以下を採用することができる。
・測定装置:共焦点レーザ顕微鏡(型式:LEXT OLS5000、オリンパス社製)
・設定:高精度設定
・対物レンズ:10倍
・評価長さ:1279μm
・フィルタ:ガウシアンフィルタ
・カットオフ:λc=80.000μm、λs=なし、λf=なし
The arithmetic mean roughness Ra of the surface of the support 1 on which the adhesive layer 2 is laminated can be measured in accordance with JIS B 0601 (1994). As the measurement conditions, the following can be adopted.
・Measurement device: Confocal laser microscope (model: LEXT OLS5000, manufactured by Olympus)
・Settings: High precision settings ・Objective lens: 10x ・Evaluation length: 1279μm
・Filter: Gaussian filter ・Cutoff: λc=80.000μm, λs=none, λf=none
<接着剤層>
 接着剤層2は、支持体1上に積層され、支持体1とワーク保持層3とを接着させる。
<Adhesive layer>
The adhesive layer 2 is laminated on the support 1 and adheres the support 1 and the workpiece holding layer 3.
 本発明の第1の実施形態に係るワーク保持部材において、接着剤層2の厚みは2μm以下である。接着剤層2の厚みが2μm以下であることにより、ワーク保持層3の機能を維持したまま、支持体1上にワーク保持層3を十分に固定できる。 In the work holding member according to the first embodiment of the present invention, the thickness of the adhesive layer 2 is 2 μm or less. Since the thickness of the adhesive layer 2 is 2 μm or less, the workpiece holding layer 3 can be sufficiently fixed onto the support body 1 while maintaining the function of the workpiece holding layer 3.
 接着剤層2の厚みは、500nm以下が好ましく、200nm以下がより好ましく、150nm以下がさらに好ましく、100nm以下がよりさらに好ましく、50nm以下が特に好ましい。また、接着剤層2の厚みは0.5nm以上であってよく、1nm以上が好ましい。 The thickness of the adhesive layer 2 is preferably 500 nm or less, more preferably 200 nm or less, even more preferably 150 nm or less, even more preferably 100 nm or less, and particularly preferably 50 nm or less. Further, the thickness of the adhesive layer 2 may be 0.5 nm or more, and preferably 1 nm or more.
 本実施形態のワーク保持部材においては、前記支持体1と前記ワーク保持層3との間で、以下の(1)~(3)の手順で、はく離試験を実施した際に、以下の(i)~(iii)のいずれかを満たすのが好ましい。 In the work holding member of this embodiment, when a peel test was conducted between the support 1 and the work holding layer 3 in the following steps (1) to (3), the following (i) ) to (iii) is preferably satisfied.
(1)ポリエステルフィルム基材の主面の片側にアクリル系粘着剤層を有し、もう片側にシリコーン系粘着剤層を有する両面粘着テープにおいて、アクリル系粘着剤層側にPETフィルムを貼り合わせ、シリコーン系粘着剤層側にワーク保持部材におけるワーク保持層を貼り合わせたサンプルを用意する。 (1) In a double-sided adhesive tape having an acrylic adhesive layer on one side of the main surface of a polyester film base material and a silicone adhesive layer on the other side, a PET film is attached to the acrylic adhesive layer side, A sample is prepared in which a workpiece holding layer of a workpiece holding member is attached to the silicone adhesive layer side.
(2)前記サンプルを50℃で24時間静置し、その後23℃で30分静置する。 (2) The sample is allowed to stand at 50°C for 24 hours, and then at 23°C for 30 minutes.
(3)静置をしたサンプルについて、はく離角度90度、引張速度300mm/minではく離試験を実施し、支持体とワーク保持層との間ではく離が生じる際のはく離力(N/20mm)を測定する。
(i)前記はく離力が1N/20mm以上である
(ii)ワーク保持層が破断する
(iii)ワーク保持層とPETフィルムとの間ではく離が生じる
(3) A peel test was conducted on the sample that had been left standing at a peel angle of 90 degrees and a tensile speed of 300 mm/min, and the peel force (N/20 mm) when peeling occurs between the support and the workpiece holding layer was calculated. Measure.
(i) The peeling force is 1N/20mm or more (ii) The workpiece holding layer breaks (iii) Peeling occurs between the workpiece holding layer and the PET film.
 前記(ii)の「ワーク保持層が破断する」とは、支持体とワーク保持層との間ではく離が生じる前にワーク保持層が破断することを意味する。 "The workpiece holding layer breaks" in (ii) above means that the workpiece holding layer breaks before peeling occurs between the support and the workpiece holding layer.
 また、前記(iii)の「ワーク保持層とPETフィルムとの間ではく離が生じる」とは支持体とワーク保持層との間ではく離が生じる前に、ワーク保持層とPETフィルムとの間ではく離が生じることを意味する。 In addition, the above (iii) "Peeling occurs between the workpiece holding layer and the PET film" means that before peeling occurs between the support and the workpiece holding layer, between the workpiece holding layer and the PET film. This means that peeling occurs.
 ここでいう「ワーク保持層とPETフィルムとの間ではく離が生じる」とは、(ア)PETフィルムとアクリル系粘着剤層との間ではく離が生じる、(イ)アクリル系粘着剤層とポリエステルフィルム基材との間ではく離が生じる、(ウ)ポリエステルフィルム基材とシリコーン系粘着剤層との間ではく離が生じる、(エ)シリコーン系粘着剤層とワーク保持層との間ではく離が生じる、のいずれ場合も含む。 "Peeling occurs between the workpiece holding layer and the PET film" as used herein means (a) Peeling occurs between the PET film and the acrylic adhesive layer, (b) Peeling occurs between the acrylic adhesive layer and the polyester (c) Peeling occurs between the polyester film base material and the silicone adhesive layer; (d) Peeling occurs between the silicone adhesive layer and the workpiece holding layer. This includes both cases of occurrence.
 また、「支持体とワーク保持層との間ではく離が生じる」とは、(オ)ワーク保持層と接着剤層との間ではく離が生じる、(カ)接着剤層と支持体との間ではく離が生じる、のいずれ場合も含む。 In addition, "peeling occurs between the support and the workpiece holding layer" means (e) peeling occurs between the workpiece holding layer and the adhesive layer, and (f) peeling occurs between the adhesive layer and the support. This includes any case where peeling occurs.
 本発明の第1の実施形態に係るワーク保持部材においては、接着剤層2としては、後述する分子接着剤層の他、シリコーン系接着剤、ポリマー型シランカップリング剤等が挙げられる。 In the work holding member according to the first embodiment of the present invention, examples of the adhesive layer 2 include a molecular adhesive layer described below, a silicone adhesive, a polymer-type silane coupling agent, and the like.
 本発明の第2の実施形態に係るワーク保持部材においては、接着剤層2は分子接着剤層である。 In the workpiece holding member according to the second embodiment of the present invention, the adhesive layer 2 is a molecular adhesive layer.
 分子接着剤層は、通常の接着剤のように分子間力で支持体およびワーク保持層に接着されるのではなく、共有結合等の化学結合により支持体およびワーク保持層と分子接着剤層とが化学的に結合する。このため、支持体とワーク保持層とが異種の材料であったり、難接着材料であっても、接着強度に優れ、密着性の高いワーク保持部材を形成することができる。 The molecular adhesive layer is not attached to the support and workpiece holding layer by intermolecular force like normal adhesives, but is bonded to the support and workpiece holding layer by chemical bonds such as covalent bonds. are chemically combined. Therefore, even if the support body and the workpiece holding layer are made of different materials or materials that are difficult to bond to, it is possible to form a workpiece holding member with excellent adhesive strength and high adhesion.
 ここで、化学結合とは、共有結合、配位結合、イオン結合を含み、分子間力は含まない。 Here, chemical bonds include covalent bonds, coordinate bonds, and ionic bonds, but do not include intermolecular forces.
 分子接着剤層は分子接着剤により形成することができる。 The molecular adhesive layer can be formed using a molecular adhesive.
 分子接着剤層は、支持体と化学結合を形成することができる第1反応性基RG1(以下、第1反応性基RG1、またはRG1ともいう)を有する化合物と、ワーク保持層と化学結合を形成することができる第2反応性基RG2(以下、第2反応性基RG2、またはRG2ともいう)を有する化合物のいずれか少なくとも1つを含むことが好ましい。 The molecular adhesive layer includes a compound having a first reactive group RG1 (hereinafter also referred to as first reactive group RG1 or RG1) that can form a chemical bond with the support and a chemical bond with the workpiece holding layer. It is preferable that at least one compound having a second reactive group RG2 (hereinafter also referred to as second reactive group RG2 or RG2) that can be formed is included.
 また、分子接着剤は、第1反応性基RG1と、第2反応性基RG2のいずれか少なくとも1つを有する化合物を含んでいてもよい。 Furthermore, the molecular adhesive may include a compound having at least one of the first reactive group RG1 and the second reactive group RG2.
 また、第1反応性基RG1と第2反応性基RG2とは互いに異なってよい。 Furthermore, the first reactive group RG1 and the second reactive group RG2 may be different from each other.
 なお、以下では、分子接着剤層を構成する個々の分子を接着剤分子ということがある。また、支持体およびワーク保持層と化学結合を形成する前または後の状態にかかわらず、分子接着剤または接着剤分子というものとする。ただし、分子接着剤は、接着剤分子以外の成分(例えば、重合開始剤)を含有し得る。 Incidentally, hereinafter, the individual molecules constituting the molecular adhesive layer may be referred to as adhesive molecules. In addition, it is referred to as a molecular adhesive or an adhesive molecule regardless of whether it is in a state before or after forming a chemical bond with a support and a workpiece holding layer. However, the molecular adhesive may contain components other than adhesive molecules (eg, a polymerization initiator).
 上述のように、接着剤分子が、第1反応性基RG1と、第2反応性基RG2とを有するとき、支持体とワーク保持層とは、1つの接着剤分子と、この接着剤分子が有する第1反応性基RG1と支持体とによって形成された化学結合と、この接着剤分子が有する第2反応性基RG2とワーク保持層とによって形成された化学結合によって結合されてもよい。 As described above, when the adhesive molecule has the first reactive group RG1 and the second reactive group RG2, the support and the workpiece holding layer have one adhesive molecule and the adhesive molecule has the first reactive group RG1 and the second reactive group RG2. The bond may be formed by a chemical bond formed by the first reactive group RG1 of the adhesive molecule and the support, and a chemical bond formed by the workpiece holding layer and the second reactive group RG2 of the adhesive molecule.
 第1反応性基RG1または第2反応性基RG2が、それ自身と反応し化学結合を形成し得る場合(例えば、第2反応性基RG2同士が反応し化学結合を形成し得る場合)、複数の接着剤分子が、支持体とワーク保持層との間の化学結合に介在し得る。例えば、接着剤分子が、複数のシラノール基および/またはアルコキシシリル基を有している場合は、接着剤分子が、シラノール基および/またはアルコキシシリル基同士の反応によって化学結合を形成し得る。このとき、例えば、数十から数百の分子接着剤層の接着剤分子が、支持体とワーク保持層との間の化学結合に介在し得る。もちろん、支持体とワーク保持層との間の化学結合に介在する最少の接着剤分子は、単分子層であり得る。 When the first reactive group RG1 or the second reactive group RG2 can react with itself to form a chemical bond (for example, when the second reactive groups RG2 can react with each other to form a chemical bond), multiple adhesive molecules may mediate the chemical bond between the support and the workholding layer. For example, when an adhesive molecule has a plurality of silanol groups and/or alkoxysilyl groups, the adhesive molecule may form a chemical bond by reaction between the silanol groups and/or alkoxysilyl groups. In this case, for example, tens to hundreds of adhesive molecules of the molecular adhesive layer can intervene in the chemical bond between the support and the workholding layer. Of course, the fewest adhesive molecules intervening in the chemical bond between the support and the workholding layer can be a monolayer.
 分子接着剤は、このような化学結合を形成する接着剤分子を多数含んでいるが、接着剤分子の緻密な層を形成するとは限らない。支持体における化学結合を形成する反応点が少ないと、接着剤分子はまばらに存在することもある。 Although molecular adhesives contain many adhesive molecules that form such chemical bonds, they do not necessarily form a dense layer of adhesive molecules. If there are fewer reactive points to form chemical bonds in the support, the adhesive molecules may be sparsely present.
 また、接着剤分子の第1反応性基RG1が、支持体とワーク保持層の両方と化学結合を形成してもよい。このとき、支持体と第1反応性基RG1で化学結合を形成した接着剤分子(以下、第1接着剤分子という)と、ワーク保持層と第1反応性基RG1で化学結合を形成した接着剤分子(以下、第2接着剤分子という)とは、第1接着剤分子の第2反応性基RG2と第2接着剤分子の第2反応性基RG2とが化学結合を形成することによって、支持体とワーク保持層とが、化学結合で結合されることになる。このとき、支持体とワーク保持層との間に、2つの接着剤分子が存在することになる。また、上述したように、第1反応性基RG1または第2反応性基RG2が、それ自身と反応し化学結合を形成し得る場合、第1接着剤分子および第2接着剤分子のいずれでもない、1または2以上の第3接着剤分子が、支持体とワーク保持層との間の化学結合に介在し得る。 Additionally, the first reactive group RG1 of the adhesive molecule may form a chemical bond with both the support and the workpiece holding layer. At this time, an adhesive molecule (hereinafter referred to as a first adhesive molecule) that has formed a chemical bond between the support and the first reactive group RG1, and an adhesive that has formed a chemical bond between the workpiece holding layer and the first reactive group RG1. An agent molecule (hereinafter referred to as a second adhesive molecule) is formed by forming a chemical bond between the second reactive group RG2 of the first adhesive molecule and the second reactive group RG2 of the second adhesive molecule. The support and the work holding layer will be bonded by chemical bonds. At this time, two adhesive molecules exist between the support and the workpiece holding layer. Furthermore, as described above, if the first reactive group RG1 or the second reactive group RG2 can react with itself to form a chemical bond, then neither the first adhesive molecule nor the second adhesive molecule , one or more third adhesive molecules may intervene in the chemical bond between the support and the workholding layer.
 接着剤分子は、例えば、アミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基、エポキシ基、シラノール基、およびアルコキシシリル基からなる群から選択される少なくとも1種の反応性基を有することが好ましく、アミノ基、アジド基、シラノール基、およびアルコキシシリル基からなる群から選択される少なくとも1種の反応性基を有することがより好ましく、アミノ基またはアジド基と、シラノール基またはアルコキシシリル基とを有することが更に好ましい。アルコキシシリル基は加水分解反応によってシラノール基を生成する。上記接着剤分子を用いることにより、支持体1と分子接着剤層とが剥離するのを防止でき、ひいては支持体1上に分子接着剤層を介してワーク保持層3を十分に固定することができる。 The adhesive molecule may have at least one reactive group selected from the group consisting of, for example, an amino group, an azide group, a mercapto group, an isocyanate group, a ureido group, an epoxy group, a silanol group, and an alkoxysilyl group. Preferably, it has at least one reactive group selected from the group consisting of an amino group, an azide group, a silanol group, and an alkoxysilyl group. It is further preferable to have the following. An alkoxysilyl group produces a silanol group through a hydrolysis reaction. By using the adhesive molecules described above, it is possible to prevent the support 1 and the molecular adhesive layer from peeling off, and in turn, it is possible to sufficiently fix the workpiece holding layer 3 onto the support 1 via the molecular adhesive layer. can.
 また、分子接着剤層を形成する分子接着剤が、第1反応性基RG1と、第2反応性基RG2とのいずれか少なくとも1つを有する化合物を含有し、前記第1反応性基RG1がアミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基からなる群から選択された少なくとも1種であり、前記第2反応性基RG2がシラノール基及びアルコキシシリル基から選択される少なくとも1種であることが好ましい。これにより、支持体1と分子接着剤層とが剥離するのを防止でき、ひいては支持体1上に分子接着剤層を介してワーク保持層3を十分に固定することができる。 Further, the molecular adhesive forming the molecular adhesive layer contains a compound having at least one of a first reactive group RG1 and a second reactive group RG2, and the first reactive group RG1 is At least one selected from the group consisting of an amino group, an azide group, a mercapto group, an isocyanate group, a ureido group, and an epoxy group, and the second reactive group RG2 is at least one selected from a silanol group and an alkoxysilyl group. Preferably it is a seed. Thereby, the support 1 and the molecular adhesive layer can be prevented from peeling off, and the workpiece holding layer 3 can be sufficiently fixed onto the support 1 via the molecular adhesive layer.
 また、分子接着剤層を形成する分子接着剤が、第1反応性基RG1と、第2反応性基RG2とを有する化合物を含有し、前記第1反応性基RG1がアミノ基、アジド基、メルカプト基、イソシアネート基、ウレイド基及びエポキシ基からなる群から選択された少なくとも1種であり、前記第2反応性基RG2がシラノール基及びアルコキシシリル基から選択される少なくとも1種であることが好ましい。より好ましくは、分子接着剤層を形成する分子接着剤が、第1反応性基RG1と、第2反応性基RG2とのいずれか少なくとも1つを有する化合物を含有し、前記第1反応性基RG1がアミノ基及びアジド基からなる群から選択された少なくとも1種であり、前記第2反応性基RG2がシラノール基及びアルコキシシリル基から選択される少なくとも1種である。さらに好ましくは、分子接着剤層を形成する分子接着剤が、第1反応性基RG1と、第2反応性基RG2とを有する化合物を含有し、前記第1反応性基RG1がアミノ基、及びアジド基からなる群から選択された少なくとも1種であり、前記第2反応性基RG2がシラノール基及びアルコキシシリル基から選択される少なくとも1種である。これにより、支持体1と分子接着剤層とが剥離するのを防止でき、ひいては支持体1上に分子接着剤層を介してワーク保持層3を十分に固定することができる。 Further, the molecular adhesive forming the molecular adhesive layer contains a compound having a first reactive group RG1 and a second reactive group RG2, and the first reactive group RG1 is an amino group, an azide group, The second reactive group RG2 is preferably at least one selected from the group consisting of a mercapto group, an isocyanate group, a ureido group, and an epoxy group, and the second reactive group RG2 is preferably at least one selected from a silanol group and an alkoxysilyl group. . More preferably, the molecular adhesive forming the molecular adhesive layer contains a compound having at least one of a first reactive group RG1 and a second reactive group RG2, and the first reactive group RG1 is at least one selected from the group consisting of an amino group and an azide group, and the second reactive group RG2 is at least one selected from a silanol group and an alkoxysilyl group. More preferably, the molecular adhesive forming the molecular adhesive layer contains a compound having a first reactive group RG1 and a second reactive group RG2, and the first reactive group RG1 is an amino group, and The second reactive group RG2 is at least one selected from the group consisting of azide groups, and the second reactive group RG2 is at least one selected from a silanol group and an alkoxysilyl group. Thereby, the support 1 and the molecular adhesive layer can be prevented from peeling off, and the workpiece holding layer 3 can be sufficiently fixed onto the support 1 via the molecular adhesive layer.
 また、接着剤分子は、1種単独で、あるいは2種以上を組み合わせて用いることができる。2種以上の接着剤分子は混合して用いてもよく、2種以上の接着剤分子によりそれぞれ形成した分子接着剤層を積層して用いてもよい。 Furthermore, the adhesive molecules can be used alone or in combination of two or more. Two or more types of adhesive molecules may be used as a mixture, or molecular adhesive layers each formed of two or more types of adhesive molecules may be laminated and used.
 例えば、分子接着剤層は、第1反応性基RG1としてアミノ基を含有し、第2反応性基RG2としてシラノール基及びアルコキシシリル基から選択される少なくとも1種を含有する接着剤分子を含有する分子接着剤と、第1反応性基RG1としてアジド基を含有し、第2反応性基RG2としてシラノール基及びアルコキシシリル基から選択される少なくとも1種を含有する接着剤分子を含有する分子接着剤との2種の分子接着剤を用いて形成してもよい。これにより、支持体1と分子接着剤層とが剥離するのを防止でき、ひいては支持体1上に分子接着剤層を介してワーク保持層3を十分に固定することができる。 For example, the molecular adhesive layer contains an adhesive molecule containing an amino group as the first reactive group RG1 and at least one selected from a silanol group and an alkoxysilyl group as the second reactive group RG2. A molecular adhesive containing a molecular adhesive and an adhesive molecule containing an azide group as a first reactive group RG1 and at least one selected from a silanol group and an alkoxysilyl group as a second reactive group RG2. It may be formed using two types of molecular adhesives. Thereby, the support 1 and the molecular adhesive layer can be prevented from peeling off, and the workpiece holding layer 3 can be sufficiently fixed onto the support 1 via the molecular adhesive layer.
 接着剤分子は、トリアジン環をさらに有し、第1反応性基RG1を含む基及び第2反応性基RG2を含む基がトリアジン環に結合するのが好ましい。第1反応性基RG1がアミノ基及びアジド基からなる群から選択された少なくとも1種であり、第2反応性基RG2がシラノール基及びアルコキシシリル基から選択される少なくとも1種であるとき、第1反応性基で支持体1及びワーク保持層3の表面と化学結合を形成し、第2反応性基同士で化学結合を形成してもよい。 It is preferable that the adhesive molecule further has a triazine ring, and a group containing the first reactive group RG1 and a group containing the second reactive group RG2 are bonded to the triazine ring. When the first reactive group RG1 is at least one selected from the group consisting of an amino group and an azide group, and the second reactive group RG2 is at least one selected from the group consisting of a silanol group and an alkoxysilyl group, One reactive group may form a chemical bond with the surfaces of the support 1 and the workpiece holding layer 3, and the second reactive groups may form a chemical bond with each other.
 接着剤分子としては、好ましくは、下記の一般式[I]で表わされる化合物である。すなわち、分子接着剤が下記の一般式[I]で表される化合物を含むことが好ましい。 The adhesive molecule is preferably a compound represented by the following general formula [I]. That is, it is preferable that the molecular adhesive contains a compound represented by the following general formula [I].
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[一般式[I]中、Eは、2価の連結基を表し、Fは、OHまたはOH生成基を表す。
及びQは、それぞれ独立に、Nまたは-NR(R)を表す。
及びRは、それぞれ独立に、水素原子、炭素数が1~24の炭化水素基、アミノアルキル基、または-R-Si(R’)(OA)3-nを表す。
Rは、炭素数が1~12の鎖状の2価の炭化水素基を表す。
R’は、複数存在する場合はそれぞれ独立に、炭素数が1~4の鎖状の炭化水素基を表す。
Aは、複数存在する場合はそれぞれ独立に、水素原子または炭素数が1~4の鎖状の炭化水素基を表す。
nは0~2の整数を表す。]
[In general formula [I], E represents a divalent linking group, and F represents OH or an OH-generating group.
Q 1 and Q 2 each independently represent N 3 or -NR 1 (R 2 ).
R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 24 carbon atoms, an aminoalkyl group, or -R-Si(R') n (OA) 3-n .
R represents a chain divalent hydrocarbon group having 1 to 12 carbon atoms.
When a plurality of R's exist, each R' independently represents a chain hydrocarbon group having 1 to 4 carbon atoms.
When a plurality of A's exist, each independently represents a hydrogen atom or a chain hydrocarbon group having 1 to 4 carbon atoms.
n represents an integer from 0 to 2. ]
 一般式[I]中、Eが表す2価の連結基としては、特に限定されないが、2価の炭化水素基、ヘテロ原子を含む2価の連結基を挙げることができる。 In general formula [I], the divalent linking group represented by E is not particularly limited, but can include a divalent hydrocarbon group and a divalent linking group containing a hetero atom.
 一般式[I]中、Eにおける2価の炭化水素基としては、例えば、炭素数が1~12の分岐若しくは鎖状若しくは環状の炭化水素基を挙げることができ、炭素数が1~12の鎖状の炭化水素基であることが好ましい。中でも炭素数が1~6の直鎖状のアルキレン基が好ましく、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基等が挙げられ、エチレン基が好ましい。 In the general formula [I], examples of the divalent hydrocarbon group represented by E include branched, chain, or cyclic hydrocarbon groups having 1 to 12 carbon atoms; A chain hydrocarbon group is preferred. Among these, linear alkylene groups having 1 to 6 carbon atoms are preferred, and specific examples include methylene, ethylene, propylene, butylene, and pentamethylene groups, with ethylene being preferred.
 Eが表すヘテロ原子を含む2価の連結基としては、例えば、-O-、-N(R201)-、-C(=O)-O-、-C(=O)-より選択される少なくとも一種を含む2価の連結基を挙げることができ、-O-、-N(R201)-、-C(=O)-O-、又は-C(=O)-と2価の炭化水素基を組み合わせた基であることが好ましく、*-O-E101-、*-N(R201)-E101-、*-C(=O)-O-E101-、*-C(=O)-E101-がより好ましく、*-N(R201)-E101-がさらに好ましい。 The divalent linking group containing a hetero atom represented by E is selected from, for example, -O-, -N(R 201 )-, -C(=O)-O-, -C(=O)- Examples include divalent linking groups containing at least one type of -O-, -N(R 201 )-, -C(=O)-O-, or -C(=O)- and divalent carbonization. It is preferable that the group is a combination of hydrogen groups, such as *-O-E 101 -, *-N(R 201 )-E 101 -, *-C(=O)-O-E 101 -, *-C( =O)-E 101 - is more preferred, and *-N(R 201 )-E 101 - is even more preferred.
 R201は、水素原子、アルキル基、アミノアルキル基、または-R-Si(R’)(OA)3-nを表し、水素原子を表すことが好ましい。 R 201 represents a hydrogen atom, an alkyl group, an aminoalkyl group, or -R-Si(R') n (OA) 3-n , and preferably represents a hydrogen atom.
 E101は上述のEにおける2価の炭化水素基を表し、好ましいものも同様である。 E 101 represents the divalent hydrocarbon group in the above E, and preferable ones are also the same.
 *-はトリアジン環に結合する結合手を表す。 *- represents a bond bonded to the triazine ring.
 R201が表す-R-Si(R’)(OA)3-nにおけるAは、後述するAと同様であり、好ましいものも同様である。 A in -R-Si(R') n (OA) 3-n represented by R 201 is the same as A described below, and preferable ones are also the same.
 一般式[I]におけるOH生成基は、水酸基を含む基、または水若しくは水酸基を含む化合物と反応して水酸基を生成する基である。 The OH-generating group in general formula [I] is a group containing a hydroxyl group, or a group that reacts with water or a compound containing a hydroxyl group to produce a hydroxyl group.
 OH生成基としては、例えば、-Si(R’)(F1)3-n、ハロゲン原子、またはアルコキシ基を表すことが好ましく、-Si(R’)(F1)3-nであることがより好ましい。F1は水酸基、アルコキシ基またはハロゲン原子を表し、水酸基またはアルコキシ基を表すことが好ましい。 The OH-generating group preferably represents, for example, -Si(R') n (F1) 3-n , a halogen atom, or an alkoxy group, and is -Si(R') n (F1) 3-n. is more preferable. F1 represents a hydroxyl group, an alkoxy group, or a halogen atom, and preferably represents a hydroxyl group or an alkoxy group.
 ハロゲン原子としては、例えば、フッ素、塩素、ヨウ素を挙げることができ、塩素が好ましい。 Examples of the halogen atom include fluorine, chlorine, and iodine, with chlorine being preferred.
 すなわち、Fはシラノール基またはアルコキシシリル基を含むことが好ましい。 That is, it is preferable that F contains a silanol group or an alkoxysilyl group.
 R及びRが表す炭素数が1~24の炭化水素基は、炭素数が1~12の炭化水素基であることが好ましく、炭素数が1~6の炭化水素基であることがより好ましく、炭素数が1~6のアルキル基であることがさらに好ましい。 The hydrocarbon group having 1 to 24 carbon atoms represented by R 1 and R 2 is preferably a hydrocarbon group having 1 to 12 carbon atoms, more preferably a hydrocarbon group having 1 to 6 carbon atoms. Preferably, it is an alkyl group having 1 to 6 carbon atoms.
 R201、R及びRが表すアミノアルキル基としては、炭素数が1~12のアミノアルキル基が好ましく、炭素数が1~6のアミノアルキル基がより好ましく、アミノメチル基、アミノエチル基、アミノプロピル基、アミノブチル基、アミノペンチル基、アミノヘキシル基が好ましく、アミノエチル基(-CHCHNH)が特に好ましい。 The aminoalkyl group represented by R 201 , R 1 and R 2 is preferably an aminoalkyl group having 1 to 12 carbon atoms, more preferably an aminoalkyl group having 1 to 6 carbon atoms, such as an aminomethyl group or an aminoethyl group. , aminopropyl group, aminobutyl group, aminopentyl group, and aminohexyl group are preferred, and aminoethyl group (-CH 2 CH 2 NH 2 ) is particularly preferred.
 Rが表す炭素数が1~12の鎖状の2価の炭化水素基は、炭素数が1~10の鎖状の2価の炭化水素基であることが好ましい。中でも炭素数が1~6の直鎖状のアルキレン基が好ましく、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基等が挙げられ、エチレン基が好ましい。 The chain-like divalent hydrocarbon group having 1 to 12 carbon atoms represented by R is preferably a chain-like divalent hydrocarbon group having 1 to 10 carbon atoms. Among these, linear alkylene groups having 1 to 6 carbon atoms are preferred, and specific examples include methylene, ethylene, propylene, butylene, and pentamethylene groups, with ethylene being preferred.
 R’及びAが表す炭素数が1~4の鎖状の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基が挙げられ、エチル基を表すことが好ましい。 Examples of the chain hydrocarbon group having 1 to 4 carbon atoms represented by R' and A include a methyl group, an ethyl group, a propyl group, and a butyl group, with an ethyl group being preferred.
 nは0~2の整数を表し、nは0であることが好ましい。 n represents an integer from 0 to 2, and preferably n is 0.
 上記一般式[I]で表されるトリアジン環を有する接着剤分子のうち、アミノ基及びアジド基からなる群から選択された少なくとも1種と、シラノール基及びアルコキシシリル基から選択される少なくとも1種とを有する接着剤分子が好ましい。この接着剤分子のアミノ基またはアジド基はトリアジン環に結合している。 Among the adhesive molecules having a triazine ring represented by the above general formula [I], at least one selected from the group consisting of an amino group and an azide group, and at least one selected from a silanol group and an alkoxysilyl group Adhesive molecules having the following are preferred. The amino or azide group of this adhesive molecule is attached to the triazine ring.
 トリアジン環に結合しているアミノ基またはアジド基の数は、例えば1個または2個である。OHまたはOH生成基は、好ましくは、2価の連結基を介して、間接的に、トリアジン環(C原子)に結合している。間接的に結合しているアルコキシシリル基は、一個または二個以上である。 The number of amino groups or azide groups bonded to the triazine ring is, for example, one or two. The OH or OH-generating group is preferably indirectly bonded to the triazine ring (C atom) via a divalent linking group. The number of indirectly bonded alkoxysilyl groups is one or two or more.
 トリアジン環(電子局在化共役系骨格)に結合したアジド基は、ナイトレンへの分解エネルギーが高い。従って、近紫外線、可視光による影響が起き難い。このため、紫外線露光の作業性が改善される。トリアジン環に結合したナイトレンは、そうではないナイトレンに比べて、安定である。ナイトレン同士の結合が抑制される。C-H結合に対する水素引抜き活性や不飽和結合に対する付加活性が増強する。すなわち、少ない露光量で効果的な反応が可能である。 The azide group bonded to the triazine ring (electron localized conjugated skeleton) has a high decomposition energy to nitrene. Therefore, effects from near ultraviolet rays and visible light are unlikely to occur. Therefore, the workability of ultraviolet exposure is improved. Nitranes that are attached to a triazine ring are more stable than those that are not. Bonding between nitrenes is suppressed. Hydrogen abstraction activity for C--H bonds and addition activity for unsaturated bonds are enhanced. That is, an effective reaction is possible with a small amount of exposure.
 前記アルコキシシリル基は、トリアジン環(電子局在化共役系骨格)に対して、スペーサ(例えば、アミノ基、オキシ基および/または炭化水素基)を介して結合している。このため、接着剤分子が支持体やワーク保持層に結合した場合、他方の支持体やワーク保持層の表面との接触において、化学結合を生成する為のエントロピー効果が高まる。エントロピー効果の向上は、支持体やワーク保持層との接触後、界面反応における頻度因子の増大に反映させる。そして、スペーサの長さが長すぎると、コストが高くなる。かつ、接着剤分子の吸収量の減少が生ずる。従って、適度な長さのスペーサが好ましい。このような観点から、下記の一般式[Io]、[Ia]、[Ib]で表される接着剤分子が好ましい。 The alkoxysilyl group is bonded to the triazine ring (electron localization conjugated skeleton) via a spacer (for example, an amino group, an oxy group, and/or a hydrocarbon group). Therefore, when adhesive molecules are bonded to a support or a workpiece holding layer, the entropy effect for forming a chemical bond increases upon contact with the surface of the other support or workpiece holding layer. The improvement in the entropy effect is reflected in an increase in the frequency factor in the interfacial reaction after contact with the support or workpiece holding layer. And if the length of the spacer is too long, the cost will increase. In addition, a decrease in the amount of absorbed adhesive molecules occurs. Therefore, spacers of appropriate length are preferred. From this point of view, adhesive molecules represented by the following general formulas [Io], [Ia], and [Ib] are preferred.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[R101は、複数存在する場合はそれぞれ独立に、アミノアルキル基、または-R-Si(R’)(OA)3-nを表す。
102は、-R-Si(R’)n(OA)3-nを表す。
201は、それぞれ独立に、水素原子、炭素数が1~24の炭化水素基、アミノアルキル基、または-R-Si(R’)(OA)3-nを表す。
Rは、炭素数が1~12の鎖状の2価の炭化水素基を表す。
R’は、複数存在する場合はそれぞれ独立に、炭素数が1~4の鎖状の炭化水素基を表す。
Aは、複数存在する場合はそれぞれ独立に、水素原子または炭素数が1~4の鎖状の炭化水素基を表す。
nは0~2の整数を表す。]
[When multiple R 101s exist, each independently represents an aminoalkyl group or -R-Si(R') n (OA) 3-n .
R 102 represents -R-Si(R')n(OA) 3-n .
R 201 each independently represents a hydrogen atom, a hydrocarbon group having 1 to 24 carbon atoms, an aminoalkyl group, or -R-Si(R') n (OA) 3-n .
R represents a chain divalent hydrocarbon group having 1 to 12 carbon atoms.
When a plurality of R's exist, each R' independently represents a chain hydrocarbon group having 1 to 4 carbon atoms.
When a plurality of A's exist, each independently represents a hydrogen atom or a chain hydrocarbon group having 1 to 4 carbon atoms.
n represents an integer from 0 to 2. ]
 一般式[Io]、[Ia]、[Ib]におけるアミノアルキル基、R、R’、A、及びnは、それぞれ一般式[I]におけるアミノアルキル基、R、R’、A、及びnと同義であり、好ましいものも同様である。 The aminoalkyl groups, R, R', A, and n in the general formulas [Io], [Ia], and [Ib] are the aminoalkyl groups, R, R', A, and n in the general formula [I], respectively. They have the same meaning and are also preferred.
 一般式[Io]、[Ia]、[Ib]において、R101はアミノアルキル基を表すことが好ましく、R201は水素原子を表すことが好ましい。 In the general formulas [Io], [Ia], and [Ib], R 101 preferably represents an aminoalkyl group, and R 201 preferably represents a hydrogen atom.
 界面反応における頻度因子項の増大の観点から、1分子中に存在するシラノール基、アルコキシシリル基、アミノ基又はアジド基等の反応性基の数は多い方が好ましい。しかしながら、コスト等の観点から、その数にも制約がある。すなわち、前記一般式[Io]、[Ia]、[Ib]で表わされる接着剤分子が好ましい。 From the viewpoint of increasing the frequency factor term in the interfacial reaction, it is preferable that the number of reactive groups such as silanol groups, alkoxysilyl groups, amino groups, or azide groups present in one molecule is large. However, from the viewpoint of cost and the like, there are restrictions on the number. That is, adhesive molecules represented by the general formulas [Io], [Ia], and [Ib] are preferred.
 前記一般式[Io]、[Ia]、[Ib]におけるアルコキシシリル基は、ほとんどの場合、OH生成基(OH前駆体)である。OH生成基をOH基に変性するため、例えば水(中性水、酸性水、アルカリ水)で処理してもよい。その他にも、コロナ放電処理やプラズマ処理をしてもよい。但し、水処理が好ましい。 The alkoxysilyl group in the general formulas [Io], [Ia], and [Ib] is an OH-forming group (OH precursor) in most cases. In order to modify the OH-forming group into an OH group, it may be treated with water (neutral water, acidic water, alkaline water), for example. In addition, corona discharge treatment or plasma treatment may be performed. However, water treatment is preferred.
 分子接着剤が含む、反応性基を有する化合物として、より具体的には、下記の化合物を例示することができる。 More specifically, as the compound having a reactive group contained in the molecular adhesive, the following compounds can be exemplified.
 アミノ基を有する化合物としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジメトキシメチルシラン、3-アミノプロピルジエトキシメチルシラン、[3-(N,N-ジメチルアミノ)プロピル]トリメトキシシラン、[3-(フェニルアミノ)プロピル]トリメトキシシラン、トリメチル[3-(トリエトキシシリル)プロピル]アンモニウムクロリド、トリメチル[3-(トリメトキシシリル)プロピル]アンモニウムクロリド、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、下記(11)~(16)の化合物等が挙げられる。 Examples of compounds having an amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldimethoxymethylsilane, 3-aminopropyldiethoxymethylsilane, [3-(N,N-dimethyl amino)propyl]trimethoxysilane, [3-(phenylamino)propyl]trimethoxysilane, trimethyl[3-(triethoxysilyl)propyl]ammonium chloride, trimethyl[3-(trimethoxysilyl)propyl]ammonium chloride, 3 -(2-aminoethylamino)propyltrimethoxysilane, 3-(2-aminoethylamino)propyltriethoxysilane, 3-(2-aminoethylamino)propyldimethoxymethylsilane, 2-(3,4-epoxycyclohexyl) ) ethyltrimethoxysilane, and the following compounds (11) to (16).
 アジド基を有する化合物としては、(11-アジドウンデシル)トリメトキシシラン、(11-アジドウンデシル)トリエトキシシラン、下記(17)~(19)の化合物等が挙げられる。 Examples of the compound having an azido group include (11-azidoundecyl)trimethoxysilane, (11-azidoundecyl)triethoxysilane, and the compounds (17) to (19) below.
 メルカプト基を有する化合物としては、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン等が挙げられる。 Examples of compounds having a mercapto group include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyldimethoxymethylsilane.
 イソシアネート基を有する化合物としては、3-(トリメトキシシリル)プロピルイソシアネート、3-(トリエトキシシリル)プロピルイソシアネート等が挙げられる。 Examples of the compound having an isocyanate group include 3-(trimethoxysilyl)propylisocyanate and 3-(triethoxysilyl)propylisocyanate.
 ウレイド基を有する化合物としては、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン等が挙げられる。 Examples of compounds having a ureido group include 3-ureidopropyltrimethoxysilane and 3-ureidopropyltriethoxysilane.
 エポキシ基を有する化合物としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。 Examples of compounds having an epoxy group include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane. Can be mentioned.
 分子接着剤が第1反応性基RG1を1分子中に2以上有する化合物としては、例えば、下記(11)~(19)の化合物が挙げられる。 Examples of compounds in which the molecular adhesive has two or more first reactive groups RG1 in one molecule include the following compounds (11) to (19).
(11):N,N’-ビス(2-アミノエチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(12):N,N’-ビス(2-アミノエチル)-6-(3-トリメトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(13):N,N’-ビス(2-アミノエチル)-6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(14):N,N’-ビス(2-アミノメチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(15):N,N’-ビス(2-アミノメチル)-6-(3-トリメトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(16):N,N’-ビス(2-アミノメチル)-6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン
(17):6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジド
(18):6-(3-トリメトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジド
(19):6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジド
(11): N,N'-bis(2-aminoethyl)-6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine-2,4-diamine (12): N,N' -Bis(2-aminoethyl)-6-(3-trimethoxysilylpropyl)amino-1,3,5-triazine-2,4-diamine (13): N,N'-bis(2-aminoethyl) -6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-diamine (14): N,N'-bis(2-aminomethyl)-6-(3-trihydroxy silylpropyl)amino-1,3,5-triazine-2,4-diamine (15): N,N'-bis(2-aminomethyl)-6-(3-trimethoxysilylpropyl)amino-1,3 ,5-triazine-2,4-diamine (16): N,N'-bis(2-aminomethyl)-6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4 -Diamine (17): 6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine-2,4-diazide (18): 6-(3-trimethoxysilylpropyl)amino-1,3 ,5-triazine-2,4-diazide (19): 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-diazide
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 第1反応性基RG1および第2反応性基RG2を有する化合物としては、支持体1と分子接着剤層とが剥離するのを防止し、ひいては支持体1上に分子接着剤層を介してワーク保持層3を十分に固定するという観点から、上記(11)~(19)の化合物が好ましい。中でも、(11)N,N’-ビス(2-アミノエチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミン又は(19)6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジドの化合物が特に好ましい。 The compound having the first reactive group RG1 and the second reactive group RG2 prevents the support 1 from peeling off from the molecular adhesive layer, and even allows the workpiece to be placed on the support 1 via the molecular adhesive layer. From the viewpoint of sufficiently fixing the retaining layer 3, the compounds (11) to (19) above are preferred. Among them, (11) N,N'-bis(2-aminoethyl)-6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine-2,4-diamine or (19) 6-( Particularly preferred is the compound 3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-diazide.
 支持体上に分子接着剤層を積層するには、例えば、以下のようにして行うことができる。 The molecular adhesive layer can be laminated on the support, for example, as follows.
 まず、接着剤分子を含む処理液(溶液または分散液)が用意される。用いられる溶媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、セルソルブ、カルビトール)、ケトン(例えば、アセトン、メチルエチルケトン、シクロヘキサノン)、芳香族炭化水素(例えば、ベンゼン、トルエン、キシレン)、脂肪族炭化水素(例えば、ブタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン)、エステル(例えば、酢酸エチル、酢酸ブチル、プロピオン酸メチル、フタル酸メチル)、エーテル(例えば、テトラヒドロフラン、ブチルエーテル、エチルブチルエーテル、アニソール)、塩化メチレン等の含ハロゲン化合物系溶媒、N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド系溶媒等である。異なる種類の接着剤分子の混合物を用いてもよい。 First, a treatment liquid (solution or dispersion) containing adhesive molecules is prepared. Solvents used include water, alcohols (e.g. methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, propylene glycol, cellosolve, carbitol), ketones (e.g. acetone, methyl ethyl ketone, cyclohexanone), aromatic hydrocarbons (e.g. benzene, toluene, xylene), aliphatic hydrocarbons (e.g. butane, hexane, octane, decane, dodecane, octadecane), esters (e.g. ethyl acetate, butyl acetate, methyl propionate, methyl phthalate), ethers (e.g. (tetrahydrofuran, butyl ether, ethyl butyl ether, anisole), halogen-containing solvents such as methylene chloride, and amide solvents such as N,N-dimethylformamide and N-methylpyrrolidone. Mixtures of different types of adhesive molecules may also be used.
 接着剤分子の含有量は0.05~10質量%であってよく、好ましくは0.10~1質量%である。これは、接着剤分子の含有量が少なすぎると、効果が乏しいからである。逆に、支持体との反応量は限られており、多すぎても意味が乏しい。このような観点から、上記の割合が好ましい。 The content of adhesive molecules may be from 0.05 to 10% by weight, preferably from 0.10 to 1% by weight. This is because if the content of adhesive molecules is too small, the effect will be poor. On the contrary, the amount of reaction with the support is limited, and even if it is too large, it is meaningless. From this point of view, the above ratio is preferable.
 処理液中には、必要に応じて、表面張力の調整の観点から、界面活性剤が添加される。例えば、ノニオン系界面活性剤(例えば、長鎖アルキル鎖とポリエチレングリコールからなるノニオン系界面活性剤)、カチオン系界面活性剤(例えば、第4級アンモニウム塩)、又はアニオン系界面活性剤(例えば、有機カルボン酸塩、スルホン酸塩)が用いられる。 A surfactant is added to the treatment liquid as necessary from the viewpoint of adjusting the surface tension. For example, nonionic surfactants (e.g., nonionic surfactants consisting of a long alkyl chain and polyethylene glycol), cationic surfactants (e.g., quaternary ammonium salts), or anionic surfactants (e.g., (organic carboxylates, sulfonates) are used.
 処理液中に支持体が浸漬され、または、処理液が支持体に噴霧されることにより、接着剤分子(分子接着剤)が支持体の表面に付着する。 By immersing the support in the treatment liquid or spraying the treatment liquid onto the support, adhesive molecules (molecular adhesive) adhere to the surface of the support.
 接着剤分子がアジド基を含む場合、例えば、下記一般式[I’]で表される化合物(上記一般式[I]におけるQがNのもの)を含む分子接着剤を用いる場合、その後、支持体に光(紫外線)が照射される。 When the adhesive molecule contains an azide group, for example, when using a molecular adhesive containing a compound represented by the following general formula [I'] (where Q 1 is N 3 in the above general formula [I]), then , the support is irradiated with light (ultraviolet light).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[一般式[I’]中、Eは、2価の連結基を表し、FはOHまたはOH生成基を表す。
Qは、Nまたは-NR(R)を表す。
及びRは、それぞれ独立に、水素原子、炭素数が1~24の炭化水素基、アミノアルキル基、または-R-Si(R’)(OA)3-nを表す。
Rは、炭素数が1~12の鎖状の2価の炭化水素基を表す。
R’は、複数存在する場合はそれぞれ独立に、炭素数が1~4の鎖状の炭化水素基を表す。
Aは、複数存在する場合はそれぞれ独立に、水素原子または炭素数が1~4の鎖状の炭化水素基を表す。
nは0~2の整数を表す。]
[In general formula [I'], E represents a divalent linking group, and F represents OH or an OH-generating group.
Q represents N 3 or -NR 1 (R 2 ).
R 1 and R 2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 24 carbon atoms, an aminoalkyl group, or -R-Si(R') n (OA) 3-n .
R represents a chain divalent hydrocarbon group having 1 to 12 carbon atoms.
When a plurality of R's exist, each R' independently represents a chain hydrocarbon group having 1 to 4 carbon atoms.
When a plurality of A's exist, each independently represents a hydrogen atom or a chain hydrocarbon group having 1 to 4 carbon atoms.
n represents an integer from 0 to 2. ]
 特に、支持体に接着剤分子を結合させたい箇所にのみ光は照射される。このためには、適宜なパターンのマスクが使用されてもよい。光(紫外線)照射によって、接着剤分子のアジド基が分解し、ナイトレンが生成する。このナイトレンが支持体表面の官能基(例えば、-CH,-CH-,-CH<,-CH=CH-)を攻撃する。そして、水素引抜きラジカル付加あるいはラジカル付加反応が起き、接着剤分子と支持体表面との間で化学結合が生じる。未照射箇所では、化学結合が起きない。 In particular, the light is irradiated only at the locations where adhesive molecules are desired to be bonded to the support. For this purpose, a mask with an appropriate pattern may be used. Irradiation with light (ultraviolet light) decomposes the azide group of the adhesive molecule, producing nitrene. This nitrene attacks functional groups (eg, -CH 3 , -CH 2 -, -CH<, -CH=CH-) on the surface of the support. Then, hydrogen abstraction radical addition or radical addition reaction occurs, and chemical bonds are formed between the adhesive molecules and the support surface. No chemical bonding occurs in unirradiated areas.
 光(紫外線)照射には、例えばUV照射装置(例えば、高圧水銀UVランプ、低圧水銀UVランプ、蛍光式UVランプ(ショートARCキセノンランプ、ケミカルランプ)、メタルハライドランプ)が用いられる。そして、例えば200~450nmの紫外線が照射される。照射光量が少な過ぎると、反応が進み難い。逆に、照射光量が多すぎると、支持体の劣化のおそれがある。従って、好ましい照射光量(光源波長:254nm)は1mJ/cm~5J/cmであり、より好ましくは5mJ/cm~1J/cmである。 For the light (ultraviolet) irradiation, for example, a UV irradiation device (eg, high pressure mercury UV lamp, low pressure mercury UV lamp, fluorescent UV lamp (short ARC xenon lamp, chemical lamp), metal halide lamp) is used. Then, for example, ultraviolet light of 200 to 450 nm is irradiated. If the amount of irradiated light is too small, the reaction will be difficult to proceed. On the other hand, if the amount of irradiation light is too large, there is a risk of deterioration of the support. Therefore, the preferred amount of irradiation light (light source wavelength: 254 nm) is 1 mJ/cm 2 to 5 J/cm 2 , more preferably 5 mJ/cm 2 to 1 J/cm 2 .
 支持体が複雑な形状の場合において、UV光を支持体に均一に照射する為には、反射板の使用が有効である。反射板としては、例えば鏡、表面研磨された金属箔、AI鏡面箔、SUS鏡面箔、銀めっき鏡面板などが挙げられる。反射板の形状、寸法、材質などは、反射効率の観点から、適宜、選択される。 When the support has a complicated shape, it is effective to use a reflector to uniformly irradiate the support with UV light. Examples of the reflecting plate include mirrors, surface-polished metal foils, AI mirror foils, SUS mirror foils, silver-plated mirror plates, and the like. The shape, dimensions, material, etc. of the reflector are appropriately selected from the viewpoint of reflection efficiency.
<ワーク保持層>
 ワーク保持層3は、接着剤層2を介して支持体1に支持されている面と反対面側にワークを保持する。
 ワーク保持層3は、接着性を有する。
 ワーク保持層3では、樹脂組成物に含まれる樹脂によって接着性が発現される。
 これにより、ワーク保持層3は、接着力によってワークを保持することができる。
<Work holding layer>
The workpiece holding layer 3 holds the workpiece on the side opposite to the side supported by the support body 1 via the adhesive layer 2 .
The work holding layer 3 has adhesive properties.
In the workpiece holding layer 3, adhesiveness is developed by the resin contained in the resin composition.
Thereby, the workpiece holding layer 3 can hold the workpiece by adhesive force.
 前記ワークは、セラミック基板、シリコン基板、ガラス基板、及び、樹脂フィルム基板からなる群から選択される1種であることが好ましい。
 前記樹脂フィルム基板としては、ポリイミドフィルム、ポリエチレンナフタレートフィルムなどが挙げられる。
The workpiece is preferably one type selected from the group consisting of a ceramic substrate, a silicon substrate, a glass substrate, and a resin film substrate.
Examples of the resin film substrate include polyimide film, polyethylene naphthalate film, and the like.
 前記ワークが、半導体装置の製造に用いられる基板である場合には、該基板は、少なくとも一方面に回路が形成された配線回路基板であってもよい。
 また、前記回路には、センサ素子が含まれていてもよい。
When the workpiece is a substrate used for manufacturing a semiconductor device, the substrate may be a wired circuit board with a circuit formed on at least one surface.
Further, the circuit may include a sensor element.
 ワーク保持層3の厚さは、10μm以上3500μm以下であることが好ましい。 The thickness of the workpiece holding layer 3 is preferably 10 μm or more and 3500 μm or less.
 ワーク保持層3の厚さは、20μm以上であることがより好ましく、30μm以上であることがさらに好ましく、40μm以上であることがよりさらに好ましく、50μm以上であることが特に好ましい。 The thickness of the workpiece holding layer 3 is more preferably 20 μm or more, even more preferably 30 μm or more, even more preferably 40 μm or more, and particularly preferably 50 μm or more.
 また、ワーク保持層3の厚さは、750μm以下であることがより好ましく、700μm以下であることがさらに好ましく、650μm以下であることがよりさらに好ましく、600μm以下であることが特に好ましい。 Further, the thickness of the workpiece holding layer 3 is more preferably 750 μm or less, even more preferably 700 μm or less, even more preferably 650 μm or less, and particularly preferably 600 μm or less.
 ワーク保持層3の厚さは、例えば、測定単位の直径(φ)が20mmである1/100ダイヤルゲージを用いて測定することができる。 The thickness of the workpiece holding layer 3 can be measured using, for example, a 1/100 dial gauge whose measurement unit is a diameter (φ) of 20 mm.
 ワーク保持層3の厚さH1に対する支持体1の厚さH2の比(H2/H1)は、0.1以上であることが好ましく、0.5以上であることがより好ましく、1.0以上であることがより好ましい。 The ratio (H2/H1) of the thickness H2 of the support body 1 to the thickness H1 of the workpiece holding layer 3 is preferably 0.1 or more, more preferably 0.5 or more, and 1.0 or more. It is more preferable that
 また、H2/H1は、100以下であることが好ましく、70以下であることがより好ましく、50以下であることがより好ましい。 Furthermore, H2/H1 is preferably 100 or less, more preferably 70 or less, and even more preferably 50 or less.
 ワーク保持層3は、樹脂組成物の発泡体層として構成されている。
 前記樹脂組成物は、シリコーン樹脂またはフッ素樹脂を含んでいることが好ましい。 
The workpiece holding layer 3 is configured as a foam layer of a resin composition.
The resin composition preferably contains a silicone resin or a fluororesin.
 ワーク保持層3が樹脂組成物の発泡体層として構成されていることにより、加熱処理前はワークを十分に固定し、かつ加熱処理後はワークを取り外し易くできる。また、ワーク保持層3が発泡体層として構成されるため、前記発泡体層は気泡を有し、クッション性に優れるものとなる。該気泡は種々の形状を有していてもよい。前記気泡の形状は、真球状であってもよいし、部分的にひずみのある略球状であってもよい。また、前記気泡は、大きくひずんで不定形状となっていてもよい。要すれば、前記気泡は、内部に空気などの気体を含んでいればどのような形状であってもよい。 Since the workpiece holding layer 3 is configured as a foam layer of a resin composition, the workpiece can be sufficiently fixed before the heat treatment, and the workpiece can be easily removed after the heat treatment. Further, since the workpiece holding layer 3 is configured as a foam layer, the foam layer has air bubbles and has excellent cushioning properties. The bubbles may have various shapes. The shape of the bubble may be perfectly spherical, or may be approximately spherical with partial distortion. Further, the bubbles may be greatly distorted and have an irregular shape. In short, the bubbles may have any shape as long as they contain gas such as air inside.
 前記樹脂組成物として、シリコーンゴムを含む樹脂組成物(以下、シリコーンゴム含有組成物ともいう)またはフッ素ゴムを含む樹脂組成物(以下、フッ素ゴム含有組成物ともいう)を用いることにより、ワーク保持層3をゴム層として構成することができる。
 シリコーンゴム含有組成物としては、付加(ヒドロシリル化)反応型のシリコーンゴム組成物や有機過酸化物硬化型のシリコーンゴム組成物などが挙げられる。
By using a resin composition containing silicone rubber (hereinafter also referred to as a silicone rubber-containing composition) or a resin composition containing fluororubber (hereinafter also referred to as a fluororubber-containing composition) as the resin composition, the work can be held. Layer 3 can be configured as a rubber layer.
Examples of the silicone rubber-containing composition include addition (hydrosilylation) reaction type silicone rubber compositions and organic peroxide curing type silicone rubber compositions.
 前記付加(ヒドロシリル化)反応型のシリコーンゴム組成物としては、ビニル基に代表されるアルケニル基を1分子中に2個以上有するアルケニル基含有オルガノポリシロキサンと、SiH基を2個以上、好ましくは3個以上有するオルガノハイドロジェンポリシロキサン(通常、アルケニル基に対するSiH基のモル比が0.5~4となる量)と、白金又は白金化合物に代表される白金族金属系付加反応触媒(通常、アルケニル基含有オルガノポリシロキサンに対し1~1,000ppm)と、を含有するものが挙げられる。 The addition (hydrosilylation) reaction type silicone rubber composition includes an alkenyl group-containing organopolysiloxane having two or more alkenyl groups in one molecule, such as a vinyl group, and two or more SiH groups, preferably two or more SiH groups. An organohydrogenpolysiloxane having 3 or more (usually in an amount such that the molar ratio of SiH groups to alkenyl groups is 0.5 to 4) and a platinum group metal addition reaction catalyst represented by platinum or a platinum compound (usually 1 to 1,000 ppm) based on the alkenyl group-containing organopolysiloxane.
 前記有機過酸化物硬化型のシリコーンゴム組成物としては、アルケニル基を1分子中に2個以上有するオルガノポリシロキサンに硬化剤として有機過酸化物を硬化有効量(通常、上記オルガノポリシロキサン100質量部に対して1~10質量部)配合したものが挙げられる。 The organic peroxide-curable silicone rubber composition is prepared by adding an organic peroxide as a curing agent to an organopolysiloxane having two or more alkenyl groups in one molecule in a curing effective amount (usually 100% by mass of the organopolysiloxane). 1 to 10 parts by mass).
 また、フッ素ゴム含有組成物には、フッ素ゴムとして、通常、主鎖を構成する炭素原子に結合しているフッ素原子を有し、かつ、ゴム弾性を有する共重合体が含まれている。 Furthermore, the fluororubber-containing composition usually contains a copolymer that has a fluorine atom bonded to a carbon atom constituting the main chain and has rubber elasticity.
 このようなフッ素ゴムとしては、例えば、ビニリデンフルオライド(VdF)/ヘキサフルオロプロピレン(HFP)共重合体、VdF/HFP/テトラフルオロエチレン(TFE)共重合体、TFE/プロピレン共重合体、TFE/プロピレン/VdF共重合体、エチレン/HFP共重合体、エチレン/HFP/VdF共重合体、エチレン/HFP/TFE共重合体などが挙げられる。 Examples of such fluororubbers include vinylidene fluoride (VdF)/hexafluoropropylene (HFP) copolymer, VdF/HFP/tetrafluoroethylene (TFE) copolymer, TFE/propylene copolymer, and TFE/ Examples include propylene/VdF copolymer, ethylene/HFP copolymer, ethylene/HFP/VdF copolymer, ethylene/HFP/TFE copolymer, and the like.
 また、前記樹脂組成物を発泡させた状態でワーク保持層3を構成することにより、ワーク保持層3を発泡体層とすることができる。 Furthermore, by configuring the workpiece holding layer 3 in a foamed state of the resin composition, the workpiece holding layer 3 can be a foam layer.
 前記樹脂組成物がフッ素樹脂を含む樹脂組成物(以下、フッ素樹脂含有組成物ともいう)である場合には、フッ素樹脂含有組成物に、フッ素樹脂に加えて、各種発泡剤を加えることにより、前記樹脂組成物を発泡させた状態とすることができる。 When the resin composition is a resin composition containing a fluororesin (hereinafter also referred to as a fluororesin-containing composition), by adding various blowing agents to the fluororesin-containing composition in addition to the fluororesin, The resin composition may be in a foamed state.
 前記フッ素樹脂含有組成物に含まれるフッ素樹脂としては、例えば、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)などが挙げられる。 Examples of the fluororesin contained in the fluororesin-containing composition include tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene. Examples include copolymers (ETFE).
 各種発泡剤としては、フロンガス、不活性ガス(アルゴンなど)、二酸化炭素、窒素、炭化水素(プロパン、ブタン、ペンタン、ヘキサンなど)が挙げられる。 Various blowing agents include chlorofluorocarbon gas, inert gas (argon, etc.), carbon dioxide, nitrogen, and hydrocarbons (propane, butane, pentane, hexane, etc.).
 また、前記フッ素樹脂含有組成物は、前記フッ素樹脂及び各種発泡剤に加えて、成核剤を含んでいてもよい。
 前記成核剤としては、窒化ホウ素(BN)、二酸化ケイ素、二酸化チタン、アルミナ、マグネシアなどが挙げられる。
Further, the fluororesin-containing composition may contain a nucleating agent in addition to the fluororesin and various foaming agents.
Examples of the nucleating agent include boron nitride (BN), silicon dioxide, titanium dioxide, alumina, and magnesia.
 前記樹脂組成物がシリコーン樹脂を含む樹脂組成物(以下、シリコーン樹脂含有組成物ともいう)である場合には、シリコーン樹脂含有組成物を熱硬化することにより発泡させて、ワーク保持層3を発泡体層として構成してもよい。 When the resin composition is a resin composition containing a silicone resin (hereinafter also referred to as a silicone resin-containing composition), the workpiece holding layer 3 is foamed by foaming the silicone resin-containing composition by thermosetting it. It may also be configured as a body layer.
 すなわち、ワーク保持層3を発泡として構成するに際しては、シリコーン樹脂含有組成物として熱硬化により発泡するものを用いてもよい。 That is, when forming the workpiece holding layer 3 as a foam, a silicone resin-containing composition that foams by thermosetting may be used.
 このようなシリコーン樹脂含有組成物としては、少なくとも、以下のような(A)成分~(F)成分を以下の質量比率で含有するものが挙げられる。 Examples of such silicone resin-containing compositions include those containing at least the following components (A) to (F) in the following mass ratios.
 (A)一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン100質量部、
 (B)一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサン((A)成分中のアルケニル基1モルに対して(B)成分中のケイ素原子結合水素原子が0.4モル以上20モル以下となる量)、
 (C)水と無機系増粘剤からなる混合物100質量部以上1000質量部以下、
 (D)(D-1)HLBの値が3以上であるノニオン系界面活性剤、及び、(D-2)HLBの値が3未満であるノニオン系界面活性剤0.1質量部以上15質量部以下(ただし、(D-2)成分に対する(D-1)成分の質量比が少なくとも1)、
 (E)ヒドロキシシリル化反応触媒、及び、
 (F)硬化遅延剤0.001質量部以上5質量部以下。
(A) 100 parts by mass of an organopolysiloxane having at least two alkenyl groups in one molecule;
(B) Organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule (silicon-bonded hydrogen atoms in component (B) are 0.4 per mole of alkenyl group in component (A)) amount of mol or more and 20 mol or less),
(C) 100 parts by mass or more and 1000 parts by mass or less of a mixture consisting of water and an inorganic thickener;
(D) (D-1) A nonionic surfactant with an HLB value of 3 or more, and (D-2) 0.1 parts by mass or more and 15 parts by mass of a nonionic surfactant with an HLB value of less than 3. part or less (provided that the mass ratio of component (D-1) to component (D-2) is at least 1),
(E) hydroxysilylation reaction catalyst, and
(F) 0.001 parts by mass or more and 5 parts by mass or less of a curing retarder.
 (A)成分は、本シリコーン樹脂含有組成物の主剤である。
 (A)成分中のアルケニル基としては、ビニル基、アリル基、ヘキセニル基が挙げられ、好ましくは、ビニル基である。
 また、(A)成分中のアルケニル基以外のケイ素原子結合有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などのアルキル基;フェニル基、トリル基、キシリル基などのアリール基;ベンジル基、フェネチル基などのアラルキル基;3,3,3-トリフルオロプロピル基などのハロゲン置換アルキル基などが挙げられ、好ましくは、メチル基である。
Component (A) is the main ingredient of the present silicone resin-containing composition.
Examples of the alkenyl group in component (A) include a vinyl group, an allyl group, and a hexenyl group, and preferably a vinyl group.
In addition, silicon-bonded organic groups other than alkenyl groups in component (A) include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hexyl groups; phenyl, tolyl, and xylyl groups. Examples include aryl groups such as; aralkyl groups such as benzyl group and phenethyl group; and halogen-substituted alkyl groups such as 3,3,3-trifluoropropyl group. Preferred is methyl group.
 (A)成分は、具体的には、ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、トリメチルシロキシ基封鎖メチルビニルポリシロキサン、トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体が例示され、好ましくは、主鎖が実質的に直鎖状であるジオルガノポリシロキサンである。 Component (A) specifically includes dimethylvinylsiloxy group-blocked dimethylpolysiloxane, dimethylvinylsiloxy group-blocked dimethylsiloxane/methylphenylsiloxane copolymer, trimethylsiloxy group-blocked methylvinylpolysiloxane, and trimethylsiloxy group-blocked dimethylsiloxane. Examples include methylvinylsiloxane copolymer, trimethylsiloxy group-blocked dimethylsiloxane/methylvinylsiloxane/methylphenylsiloxane copolymer, and diorganopolysiloxane whose main chain is substantially linear is preferred.
 (B)成分は、本シリコーン樹脂含有組成物の架橋剤である。 Component (B) is a crosslinking agent for the present silicone resin-containing composition.
 (B)成分中のケイ素原子結合水素原子の結合位置は限定されず、分子鎖末端および/または分子鎖側鎖が例示される。(B)成分中の水素原子以外のケイ素原子結合有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;3,3,3-トリフロロプロピル基等のハロゲン置換アルキル基等が例示され、好ましくは、メチル基である。 The bonding position of the silicon-bonded hydrogen atom in component (B) is not limited, and examples thereof include the molecular chain terminal and/or the molecular chain side chain. Examples of silicon-bonded organic groups other than hydrogen atoms in component (B) include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hexyl; phenyl, tolyl, and xylyl groups; Aryl groups; aralkyl groups such as benzyl groups and phenethyl groups; halogen-substituted alkyl groups such as 3,3,3-trifluoropropyl groups, etc. are exemplified, and methyl groups are preferred.
 このような(B)成分としては、ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、(CH)SiO1/2で示されるシロキサン単位とH(CH)SiO1/2で示されるシロキサン単位とSiO4/2で示されるシロキサン単位からなるオルガノポリシロキサンが例示され、好ましくは、直鎖状のオルガノポリシロキサンである。 Such component (B) includes dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, dimethylhydrogensiloxy group-blocked dimethylsiloxane/methylhydrogensiloxane copolymer, trimethylsiloxy group-blocked methylhydrogenpolysiloxane, and trimethylsiloxy group-blocked methylhydrogenpolysiloxane. Blocked dimethylsiloxane/methylhydrogensiloxane copolymer, siloxane units represented by (CH 3 ) 3 SiO 1/2 , siloxane units represented by H(CH 3 ) 2 SiO 1/2 , and SiO 4/2 Examples include organopolysiloxanes consisting of siloxane units, and linear organopolysiloxanes are preferred.
 (B)成分の含有量は、(A)成分中のアルケニル基1モルに対して、(B)成分中のケイ素原子結合水素原子が0.4モル以上20モル以下の範囲内となる量であり、1.5モル以上20モル以下の範囲内となる量であることが好ましく、であり、1.5モル以上10モル以下の範囲内となる量であることがより好ましい。 The content of component (B) is such that the silicon-bonded hydrogen atoms in component (B) are in the range of 0.4 to 20 moles per 1 mole of alkenyl group in component (A). The amount is preferably in the range of 1.5 mol or more and 20 mol or less, and is more preferably the amount in the range of 1.5 mol or more and 10 mol or less.
 これは、(B)成分中のケイ素原子結合水素のモル数が上記範囲内であると、本シリコーン樹脂含有組成物で構成されたワーク保持層3の圧縮永久歪が改善されるからである。 This is because when the number of moles of silicon-bonded hydrogen in component (B) is within the above range, the compression set of the workpiece holding layer 3 made of the present silicone resin-containing composition is improved.
 (C)成分は、本シリコーン樹脂含有組成物を架橋して得られるシリコーン架橋体から(C)成分中の水を除去することにより、得られるワーク保持層3をシリコーンスポンジとするための成分である。(A)成分中に(C)成分が安定して分散することから、(C)成分中の水はイオン交換水であることが好ましい。 Component (C) is a component for making the workpiece holding layer 3 obtained into a silicone sponge by removing the water in component (C) from the silicone crosslinked product obtained by crosslinking the present silicone resin-containing composition. be. Since component (C) is stably dispersed in component (A), the water in component (C) is preferably ion-exchanged water.
 本シリコーン樹脂含有組成物では、(C)成分中の水が除去されることにより架橋されて硬化された後において発泡体が形成される。 In the present silicone resin-containing composition, a foam is formed after crosslinking and curing by removing water in component (C).
 そのため、前記発泡体においては、水が除去されるときの経路が連通された構造となっている。 Therefore, the foam has a structure in which the path through which water is removed is communicated.
 すなわち、本シリコーン樹脂含有組成物によって形成される前記発泡体は、連通気泡構造を有するものとなる。 That is, the foam formed by the present silicone resin-containing composition has an open cell structure.
 (C)成分中の無機系増粘剤は、水の粘度を高め、(A)成分中に(C)成分が容易に分散し、(C)成分の分散状態を安定させるために配合される。 The inorganic thickener in component (C) is blended to increase the viscosity of water, to easily disperse component (C) in component (A), and to stabilize the dispersion state of component (C). .
 この無機増粘剤としては、天然または合成のものがあり、ベントナイト、モンモリロナイト、ヘクトライト、サポナイト、ソーコナイト、バイデライトおよびノントロナイト等の天然または合成のスメクタイトクレー;ケイ酸アルミニウムマグネシウム;および、これらとカルボキシビニルポリマーなどの水溶性有機ポリマーとの複合品が例示され、好ましくは、ベントナイトやモンモリロナイトなどのスメクタイトクレーである。 The inorganic thickeners may be natural or synthetic and include natural or synthetic smectite clays such as bentonite, montmorillonite, hectorite, saponite, sauconite, beidellite and nontronite; magnesium aluminum silicate; Examples include composites with water-soluble organic polymers such as carboxyvinyl polymers, and preferred are smectite clays such as bentonite and montmorillonite.
 このような、スメクタイトクレーとしては、例えば、水熱合成品であるスメクトンSA(クニミネ工業社製)天然精製品であるベンゲル(ホージュン社製)が入手可能である。これらのスメクタイトクレーのpHは前記シリコーンスポンジの耐熱性を維持する点から5.0以上9.0以下の範囲内であることが好ましい。また、(C)成分中の無機系増粘剤の含有量は、水100質量部に対して、0.1質量部以上10質量部以下の範囲内であることが好ましく、0.5質量部以上5質量部以下の範囲内であることがより好ましい。 As such smectite clay, for example, Smectone SA (manufactured by Kunimine Kogyo Co., Ltd.), which is a hydrothermally synthesized product, and Bengel (manufactured by Hojun Co., Ltd.), which is a naturally purified product, are available. The pH of these smectite clays is preferably within the range of 5.0 or more and 9.0 or less in order to maintain the heat resistance of the silicone sponge. The content of the inorganic thickener in component (C) is preferably in the range of 0.1 parts by mass or more and 10 parts by mass or less, and 0.5 parts by mass, based on 100 parts by mass of water. More preferably, the amount is within a range of 5 parts by mass or less.
 (C)成分の含有量は、(A)成分100質量部に対して100質量部以上1000質量部以下の範囲内であり、100質量部以上800質量部以下の範囲内であることが好ましく、100質量部以上500質量部以下の範囲内であることがより好ましく、200質量部以上500質量部以下の範囲内であることがさらに好ましく、200質量部以上350質量部以下の範囲内であることが特に好ましい。これは、(C)成分の含有量が上記範囲の下限以上であると、得られるワーク保持層3を低密度とすることができるからであり、上記範囲の上限以下であると、得られるワーク保持層3を均一で微細な連続気泡構造を有するものとすることができるからである。 The content of component (C) is within the range of 100 parts by mass or more and 1000 parts by mass or less, and preferably within the range of 100 parts by mass or more and 800 parts by mass or less, based on 100 parts by mass of component (A). It is more preferably in the range of 100 parts by mass or more and 500 parts by mass or less, even more preferably in the range of 200 parts by mass or more and 500 parts by mass or less, and it is in the range of 200 parts by mass or more and 350 parts by mass or less. is particularly preferred. This is because when the content of the component (C) is at least the lower limit of the above range, the obtained workpiece holding layer 3 can have a low density, and when it is below the upper limit of the above range, the obtained workpiece This is because the holding layer 3 can have a uniform and fine open cell structure.
 (D)成分の界面活性剤は、(D-1)HLBの値が3以上であるノニオン系界面活性剤および(D-2)HLBの値が3未満であるノニオン系界面活性剤からなる。 The surfactant component (D) consists of (D-1) a nonionic surfactant with an HLB value of 3 or more and (D-2) a nonionic surfactant with an HLB value of less than 3.
 (D)成分の界面活性剤としては、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、スクロース脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリプロピレングリコール脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレン・ポリオキシプロピレンブロック共重合体、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸アミドが例示される。 (D) Component surfactants include glycerin fatty acid ester, polyglycerin fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyethylene glycol fatty acid ester, polypropylene glycol fatty acid ester, polyoxyethylene glycerin fatty acid ester, and polyoxyethylene sorbitan fatty acid ester. Examples include ester, polyoxyethylene/polyoxypropylene block copolymer, polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, and polyoxyethylene fatty acid amide.
 (D)成分は、(D-1)成分と(D-2)成分からなり、(D-2)成分に対する(D-1)成分の質量比が1以上であり、5以上であることが好ましく、8以上であることがより好ましく、10以上であることがさらに好ましく、15以上であることが特に好ましい。 Component (D) consists of components (D-1) and (D-2), and the mass ratio of component (D-1) to component (D-2) is 1 or more, and preferably 5 or more. It is preferably 8 or more, more preferably 10 or more, and particularly preferably 15 or more.
 また、(D-2)成分に対する(D-1)成分の質量比は、100以下であることが好ましく、80以下であることがより好ましく、70以下であることがさらに好ましく、60以下であることが特に好ましく、50以下であることがより特に好ましい。 Further, the mass ratio of component (D-1) to component (D-2) is preferably 100 or less, more preferably 80 or less, even more preferably 70 or less, and even more preferably 60 or less. It is especially preferable that it is 50 or less, and even more preferably that it is 50 or less.
 これは、この質量比が上記下限より大きくなれば、ワーク保持層3を均一で微細な連続気泡構造を有する低密度のものとすることができ、上記上限より小さくなれば、(A)成分と(B)成分中に(C)成分を安定性良く分散することができ、結果として、ワーク保持層3を均一で微細な連続気泡構造を有するものとすることができるからである。 This means that if this mass ratio is larger than the above lower limit, the workpiece holding layer 3 can be made into a low-density one having a uniform and fine open cell structure, and if it is smaller than the above upper limit, it is possible to form the workpiece holding layer 3 with a low density having a uniform fine open cell structure. This is because the component (C) can be dispersed in the component (B) with good stability, and as a result, the workpiece holding layer 3 can have a uniform and fine open cell structure.
 (D)成分の含有量は、(A)成分100質量部に対し、0.1質量部以上15質量部以下の範囲内であり、0.2質量部以上3質量部以下の範囲内であることが好ましい。これは、(D)成分の含有量が上記範囲の下限以上であると、ワーク保持層3を均一で微細な連続気泡構造を有するものとすることができ、上記範囲の上限以下であると、ワーク保持層3を耐熱性に優れるものとすることができるからである。 The content of component (D) is within the range of 0.1 parts by mass or more and 15 parts by mass or less, and within the range of 0.2 parts by mass or more and 3 parts by mass or less, based on 100 parts by mass of component (A). It is preferable. This is because when the content of component (D) is at least the lower limit of the above range, the workpiece holding layer 3 can have a uniform and fine open cell structure, and when it is below the upper limit of the above range, This is because the work holding layer 3 can have excellent heat resistance.
 (E)成分は、本シリコーン樹脂含有組成物においてヒドロシリル化反応を促進するためのヒドロシリル化反応触媒であり、例えば、白金系触媒、パラジウム系触媒、ロジウム系触媒が挙げられる。 Component (E) is a hydrosilylation reaction catalyst for promoting the hydrosilylation reaction in the present silicone resin-containing composition, and includes, for example, a platinum-based catalyst, a palladium-based catalyst, and a rhodium-based catalyst.
 これらの各種触媒の中でも、白金系触媒を用いることが好ましい。 Among these various catalysts, it is preferable to use platinum-based catalysts.
 このような(E)成分としては、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィン類、ビニルシロキサン又はアセチレン化合物との配位化合物、白金のオレフィン類、ビニルシロキサン又はアセチレン化合物との配位化合物、テトラキス(トリフェニルホスフィン)パラジウム、クロロトリス(トリフェニルホスフィン)ロジウムが挙げられる。 Such component (E) includes chloroplatinic acid, alcohol-modified chloroplatinic acid, coordination compounds of chloroplatinic acid and olefins, vinyl siloxanes or acetylene compounds, platinum olefins, vinyl siloxanes or acetylene compounds. Coordination compounds include tetrakis(triphenylphosphine)palladium and chlorotris(triphenylphosphine)rhodium.
 (E)成分の含有量は、本シリコーン樹脂含有組成物を架橋させるに十分な量である。 The content of component (E) is sufficient to crosslink the present silicone resin-containing composition.
 具体的には、(A)成分および(B)成分の合計量に対して、(E)成分中の触媒金属が質量換算で、0.01ppm以上500ppm以下の範囲内となる量であることが好ましく、0.1ppm以上100ppm以下の範囲内となる量であることがより好ましい。 Specifically, the amount of catalytic metal in component (E) should be in the range of 0.01 ppm or more and 500 ppm or less in terms of mass relative to the total amount of components (A) and (B). Preferably, the amount is in the range of 0.1 ppm or more and 100 ppm or less.
 硬化速度や作業可使時間を調整するため、本シリコーン樹脂含有組成物は、(F)硬化遅延剤を含有してもいてもよい。 In order to adjust the curing speed and working pot life, the present silicone resin-containing composition may contain (F) a curing retarder.
 このような(F)成分としては、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-フェニル-1-ブチン-3-オール、1-エチニル-1-シクロヘキサノール等のアルキンアルコールが例示される。(F)成分の含有量は、本シリコーン樹脂含有組成物の使用方法や成形方法に応じて適宜選択されるが、一般的には、(A)成分100質量部に対して0.001質量部以上5質量部以下の範囲内である。 Such component (F) includes 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, 3-phenyl-1-butyn-3-ol, 1- Examples include alkyne alcohols such as ethynyl-1-cyclohexanol. The content of component (F) is appropriately selected depending on the usage method and molding method of the present silicone resin-containing composition, but is generally 0.001 parts by mass per 100 parts by mass of component (A). The amount is within the range of 5 parts by mass or less.
 得られるワーク保持層3の強度を向上させる観点から、本シリコーン樹脂含有組成物は、さらに(G)補強性シリカ微粉末を含有していてもよい。 From the viewpoint of improving the strength of the workpiece holding layer 3 obtained, the present silicone resin-containing composition may further contain (G) reinforcing silica fine powder.
 このような(G)成分としては、BET比表面積が、50m/g以上350m/g以下であるシリカ微粉末が好ましく、80m/g以上250m/g以下であるシリカ微粉末がより好ましい。 As such component (G), a fine silica powder having a BET specific surface area of 50 m 2 /g or more and 350 m 2 /g or less is preferable, and a silica fine powder having a BET specific surface area of 80 m 2 /g or more and 250 m 2 /g or less is more preferable. preferable.
 このようなシリカ微粉末としては、ヒュームドシリカ、沈降シリカが挙げられる。 Examples of such fine silica powder include fumed silica and precipitated silica.
 また、これらのシリカ微粉末は、オルガノシラン等で表面処理されていてもよい。 Furthermore, these fine silica powders may be surface-treated with organosilane or the like.
 (G)成分の含有量は、(A)成分100質量部に対して、20質量部以下であり、15質量部以下であることが好ましく、10質量部以下であることがより好ましい。 The content of component (G) is 20 parts by mass or less, preferably 15 parts by mass or less, and more preferably 10 parts by mass or less, based on 100 parts by mass of component (A).
 また、(G)成分の含有量は、(A)成分100質量部に対して、0.1質量部以上であることが好ましい。 Furthermore, the content of component (G) is preferably 0.1 parts by mass or more based on 100 parts by mass of component (A).
 本シリコーン樹脂含有組成物は、本発明の目的を損なわない範囲で、カーボンブラックやベンガラ等の顔料を含有していてもよい。 The present silicone resin-containing composition may contain pigments such as carbon black and red iron to the extent that the object of the present invention is not impaired.
 本シリコーン樹脂含有組成物は、上記各成分あるいはこれらに必要に応じて各種添加剤を配合した組成物を公知の混練手段により均一に混合することにより容易に製造することができる。 The present silicone resin-containing composition can be easily produced by uniformly mixing the above-mentioned components or a composition in which various additives are blended with these components as necessary using known kneading means.
 ここで使用するミキサーとしてはホモミキサー、パドルミキサー、ホモディスパー、コロイドミル、真空混合攪拌ミキサー、自転公転ミキサー等が例示されるが、(C)成分及び(D)成分を(A)成分に十分に分散させることができるものであれば特に限定されるものではない。 Examples of the mixer used here include a homomixer, paddle mixer, homodisper, colloid mill, vacuum mixing mixer, and rotation/revolution mixer. It is not particularly limited as long as it can be dispersed in.
 本実施形態においては、上で説明したシリコーン樹脂含有組成物を用いて、ワーク保持層3は発泡体層として構成される。すなわち、シリコーン樹脂含有組成物として、シリコーン樹脂に加えて、各種発泡剤を含むものを用いて、ワーク保持層3を発泡体層として構成される。 In this embodiment, the workpiece holding layer 3 is configured as a foam layer using the silicone resin-containing composition described above. That is, the workpiece holding layer 3 is constructed as a foam layer using a silicone resin-containing composition containing various foaming agents in addition to the silicone resin.
 樹脂組成物の発泡体層として構成されるワーク保持層3の見掛け密度は、0.05g/cm以上0.90g/cm以下であることが好ましい。前記ワーク保持層3の見掛け密度は、0.10g/cm以上であることがより好ましく、0.15g/cm以上であることがさらに好ましい。また、前記ワーク保持層3の見掛け密度は、0.85g/cm以下であることがより好ましく、0.80g/cm以下であることがさらに好ましい。 The apparent density of the workpiece holding layer 3 configured as a foam layer of a resin composition is preferably 0.05 g/cm 3 or more and 0.90 g/cm 3 or less. The apparent density of the workpiece holding layer 3 is more preferably 0.10 g/cm 3 or more, and even more preferably 0.15 g/cm 3 or more. Further, the apparent density of the workpiece holding layer 3 is more preferably 0.85 g/cm 3 or less, and even more preferably 0.80 g/cm 3 or less.
 前記ワーク保持層3の見掛け密度は、以下の手順(1)~(5)にしたがって測定することができる。
 (1)100mm×100mmの打抜き刃型にて発泡体層として構成されたワーク保持層3を平面視矩形状に打ち抜いて、試験体を得る。
 (2)前記試験体の平面寸法を測定するとともに、測定端子の直径(φ)が20mmである1/100ダイヤルゲージを用いて、前記試験体の厚さを測定する。
 (3)前記試験体の平面寸法と前記試験体の厚さとから、前記試験体の体積を算出する。
 (4)最小目盛りが0.01g以上の上皿天秤を用いて、前記試験体の質量を測定する。
 (5)前記試験体の体積と前記試験体の質量とから、前記試験体の見掛け密度を算出し、この算出値を、前記発泡体層の見掛け密度とする。
The apparent density of the workpiece holding layer 3 can be measured according to the following procedures (1) to (5).
(1) A test specimen is obtained by punching out the workpiece holding layer 3 configured as a foam layer into a rectangular shape in plan view using a punching die of 100 mm x 100 mm.
(2) Measure the planar dimension of the test piece, and also measure the thickness of the test piece using a 1/100 dial gauge whose measurement terminal has a diameter (φ) of 20 mm.
(3) Calculate the volume of the test body from the planar dimensions of the test body and the thickness of the test body.
(4) Measure the mass of the test specimen using a balance with a minimum scale of 0.01 g or more.
(5) Calculate the apparent density of the test body from the volume of the test body and the mass of the test body, and use this calculated value as the apparent density of the foam layer.
 樹脂組成物の発泡体層として構成されるワーク保持層3の平均気泡径は、1μm以上100μm以下であることが好ましい。前記ワーク保持層3の平均気泡径は、2μm以上であることがより好ましく、3μm以上であることがより好ましい。また、前記ワーク保持層3の平均気泡径は、80μm以下であることがより好ましく、70μm以下であることがさらに好ましい。 The average cell diameter of the workpiece holding layer 3 configured as a foam layer of a resin composition is preferably 1 μm or more and 100 μm or less. The average cell diameter of the workpiece holding layer 3 is more preferably 2 μm or more, and more preferably 3 μm or more. Further, the average cell diameter of the workpiece holding layer 3 is more preferably 80 μm or less, and even more preferably 70 μm or less.
 前記ワーク保持層3の平均気泡径は、低真空走査電子顕微鏡(「S-3400N型走査電子顕微鏡」、日立ハイテクサイエンスシステムズ社製)を用いて測定することができる。具体的には、前記低真空走査電子顕微鏡にて、前記ワーク保持層3の断面の拡大画像を取り込み、該拡大画像を画像解析することにより求めることができる。 The average bubble diameter of the workpiece holding layer 3 can be measured using a low vacuum scanning electron microscope (“S-3400N Model Scanning Electron Microscope”, manufactured by Hitachi High-Tech Science Systems). Specifically, it can be determined by capturing an enlarged image of the cross section of the workpiece holding layer 3 using the low vacuum scanning electron microscope and analyzing the enlarged image.
 なお、前記画像解析に使用する気泡の数は、例えば、20個とすることができる。 Note that the number of bubbles used for the image analysis can be, for example, 20.
 樹脂組成物の発泡体層として構成されるワーク保持層3は、接着剤層2に当接される面の算術平均粗さRaが0.1μm以上50μm以下であることが好ましい。 The work holding layer 3 configured as a foam layer of a resin composition preferably has an arithmetic mean roughness Ra of 0.1 μm or more and 50 μm or less on the surface that comes into contact with the adhesive layer 2.
 前記ワーク保持層3は、接着剤層2に当接される面の算術平均粗さRaが0.2μm以上であることがより好ましく、0.3μm以上であることがさらに好ましく、0.5μm以上であることがよりさらに好ましく、1.0μm以上であることが特に好ましい。 The arithmetic mean roughness Ra of the surface of the work holding layer 3 that comes into contact with the adhesive layer 2 is more preferably 0.2 μm or more, even more preferably 0.3 μm or more, and even more preferably 0.5 μm or more. It is even more preferable that it is, and it is especially preferable that it is 1.0 μm or more.
 また、前記ワーク保持層3は、接着剤層2に当接される面の算術平均粗さRaが30μm以下であることがより好ましく、20μm以下であることがさらに好ましい。 Moreover, the arithmetic mean roughness Ra of the surface of the work holding layer 3 that comes into contact with the adhesive layer 2 is more preferably 30 μm or less, and even more preferably 20 μm or less.
 前記ワーク保持層3において、接着剤層2に当接される面の算術平均粗さRaが上記数値範囲であることにより、前記ワーク保持層3を支持体1により十分に固定することができる。 When the arithmetic mean roughness Ra of the surface of the workpiece holding layer 3 that comes into contact with the adhesive layer 2 is within the above numerical range, the workpiece holding layer 3 can be sufficiently fixed to the support 1.
 前記ワーク保持層3において、接着剤層2に当接される面の算術平均粗さRaは、先に説明した、「支持体1における、接着剤層2が積層される面の算術平均粗さRa」と同様にして測定することができる。 In the work holding layer 3, the arithmetic mean roughness Ra of the surface that comes into contact with the adhesive layer 2 is the arithmetic mean roughness Ra of the surface of the support 1 on which the adhesive layer 2 is laminated, as described above. It can be measured in the same manner as "Ra".
 前記樹脂組成物の発泡体層として構成されるワーク保持層3は、連続気泡構造を有していることが好ましい。連続気泡構造は、例えば、上で説明したような、シリコーン樹脂含有組成物を用いて形成することができる。連続気泡構造とは、前記発泡体層たるワーク保持層3において、隣接する気泡どうしが繋がっている構造を意味する。 It is preferable that the work holding layer 3 configured as a foam layer of the resin composition has an open cell structure. The open cell structure can be formed using a silicone resin-containing composition, for example, as described above. The open-cell structure means a structure in which adjacent cells are connected to each other in the workpiece holding layer 3, which is the foam layer.
 前記発泡体が連続気泡構造を有していることにより、発泡体層たるワーク保持層3の一方面に接着剤層2を積層させたり、他方面を第2の被着体たるワーク(基板など)に被着させたりするときに、前記接着剤層2と発泡体層たるワーク保持層3の一方面との間、及び、前記第2の被着体の被着面と発泡体層たるワーク保持層3の他方面との間に気泡が噛み込むことを抑制できる。 Since the foam has an open cell structure, the adhesive layer 2 can be laminated on one side of the workpiece holding layer 3, which is the foam layer, and the workpiece (such as a substrate) can be laminated on the other side. ), between the adhesive layer 2 and one surface of the workpiece holding layer 3, which is a foam layer, and between the surface of the second adherend and the workpiece, which is a foam layer. It is possible to suppress air bubbles from being trapped between the holding layer 3 and the other surface.
 そのため、前記第1の被着体及び前記第2の被着体を、発泡体層たるワーク保持層3に好適に保持させることができる。 Therefore, the first adherend and the second adherend can be suitably held by the work holding layer 3, which is a foam layer.
 また、前記発泡体層たるワーク保持層3が連続気泡構造を備えていることにより、電子部品装置の製造において、電子部品をワークたる基板に実装した後に、発泡体層たるワーク保持層3から、前記基板を糊残りなく剥がし易くなる。 Further, since the workpiece holding layer 3, which is the foam layer, has an open cell structure, in the manufacture of electronic component devices, after mounting electronic components on a substrate, which is a workpiece, from the workpiece holding layer 3, which is a foam layer, The substrate can be easily peeled off without leaving any adhesive residue.
 さらに、発泡体層たるワーク保持層3が汚れたとしても、水洗いすることでワーク保持層3の保持性(吸着性)を回復させることができ、ワーク保持層3の繰り返し使用性を向上させることができる。 Furthermore, even if the workpiece holding layer 3, which is a foam layer, becomes dirty, the holding ability (adsorption ability) of the workpiece holding layer 3 can be restored by washing with water, thereby improving the repeatability of the workpiece holding layer 3. Can be done.
 また、前記発泡体層たるワーク保持層3が連続気泡構造を有していることにより、前記発泡体層たるワーク保持層3の厚みを薄くしたとしても、上記の各効果を十分に発現させることができる。 Further, since the workpiece holding layer 3, which is the foam layer, has an open cell structure, each of the above effects can be sufficiently exhibited even if the thickness of the workpiece holding layer 3, which is the foam layer, is made thin. Can be done.
 前記発泡体層たるワーク保持層3が連続気泡構造を有する場合、連続気泡率は、90%以上であることが好ましく、90%以上100%以下であることがより好ましく、92%以上100%以下であることがさらに好ましく、95%以上100%以下であることがよりさらに好ましく、99%以上100%以下であることが特に好ましく、実質的に100%であることが最適である。 When the work holding layer 3, which is the foam layer, has an open cell structure, the open cell ratio is preferably 90% or more, more preferably 90% or more and 100% or less, and 92% or more and 100% or less. It is more preferably 95% or more and 100% or less, particularly preferably 99% or more and 100% or less, and most preferably substantially 100%.
 連続気泡率が、上記数値範囲内であることにより、優れた気泡抜け性を発現でき、基板や接着剤層2の表面と前記発泡体層たるワーク保持層3の表面との間に気泡が噛み込むことを抑制できる。 When the open cell ratio is within the above numerical range, excellent air bubble release properties can be exhibited, and air bubbles are trapped between the surface of the substrate or adhesive layer 2 and the surface of the workpiece holding layer 3, which is the foam layer. It is possible to suppress the intrusion.
 また、前記発泡体層たるワーク保持層3から基板などの被着体を糊残りなく剥がし易くなる。 Furthermore, it becomes easier to peel off an adherend such as a substrate from the work holding layer 3, which is the foam layer, without leaving any adhesive residue.
 前記発泡体層たるワーク保持層3は、全気泡の90%以上の気泡径が80μm以下であることが好ましく、全気泡の92%以上の気泡径が80μm以下であることがより好ましく、全気泡の95%以上の気泡径が80μm以下であることがさらに好ましく、全気泡の97%以上の気泡径が80μm以下であることがよりさらに好ましく、全セルの実質的に100%の気泡径が80μm以下であることが最適である。 In the work holding layer 3, which is the foam layer, it is preferable that 90% or more of all the cells have a cell diameter of 80 μm or less, and more preferably that 92% or more of all the cells have a cell diameter of 80 μm or less. It is more preferable that the diameter of 95% or more of all cells is 80 μm or less, even more preferably that the diameter of 97% or more of all cells is 80 μm or less, and the diameter of substantially 100% of all cells is 80 μm or less. Optimally, it is less than or equal to:
 全気泡において気泡径80μm以下の気泡が上記数値範囲であることにより、前記発泡体層において、より優れた気抜け性を発現でき、基板や接着剤層2の表面と前記発泡体層の表面との間に気泡が噛み込むことをより一層抑制できる。 By having the bubbles having a diameter of 80 μm or less in all the bubbles in the above numerical range, the foam layer can exhibit better air release properties, and the surface of the substrate or adhesive layer 2 and the surface of the foam layer can be It is possible to further suppress air bubbles from getting caught in between.
 また、前記発泡体層から基板などの被着体をより一層糊残りなく剥がし易くなる。 Furthermore, it becomes easier to peel off an adherend such as a substrate from the foam layer without leaving any adhesive residue.
 ワーク保持層3は、150℃以上の温度で加熱する前においてポリイミドフィルムに対するせん断粘着力の値Sが1N/100mm以上であり、かつ、150℃以上の温度で5分間加熱した後においてポリイミドフィルムに対する90°剥離力の値Pが7N/20mm以下であるのが好ましい。 The work holding layer 3 has a shear adhesion value S to the polyimide film of 1N/100mm2 or more before heating at a temperature of 150°C or higher, and a polyimide film after heating at a temperature of 150°C or higher for 5 minutes. It is preferable that the value P of the 90° peeling force against the film is 7 N/20 mm or less.
 上述のとおり、ワーク保持層3は、150℃以上の温度で加熱する前においてポリイミドフィルムに対するせん断粘着力の値Sが1N/100mm以上であるのが好ましい。なお、150℃は、有機EL装置の製造において、IZO膜やITO膜などの透明電極膜をスパッタリングなどで透明基板上に取り付けた後、アニール処理を行って実装するときの、前記アニール処理の温度である。 As described above, the workpiece holding layer 3 preferably has a shear adhesive force value S of 1 N/100 mm 2 or more with respect to the polyimide film before heating at a temperature of 150° C. or higher. Note that 150°C is the temperature of the annealing process when a transparent electrode film such as an IZO film or an ITO film is mounted on a transparent substrate by sputtering or the like and then annealed and mounted in the production of organic EL devices. It is.
 前記せん断粘着力の値Sは、2N/100mm以上であることがより好ましく、3N/100mm以上であることがさらに好ましく、4N/100mm以上であることがさらに好ましく、5N/100mm以上であることが特に好ましい。  The value S of the shear adhesive force is more preferably 2N/100mm2 or more, even more preferably 3N/100mm2 or more, even more preferably 4N/100mm2 or more, and even more preferably 5N/100mm2 or more. It is particularly preferable that
 また、前記せん断粘着力の値Sは、10N/100mm以下であることが好ましく、9N/100mm以下であることがより好ましく、8N/100mm以下であることがさらに好ましく、7N/100mm以下であることがよりさらに好ましく、6N/100mm以下であることが特に好ましい。 Further, the value S of the shear adhesive force is preferably 10 N/100 mm 2 or less, more preferably 9 N/100 mm 2 or less, even more preferably 8 N/100 mm 2 or less, and 7 N/100 mm 2 or less. It is even more preferable that it is below, and it is particularly preferable that it is below 6N/100mm 2 .
 150℃以上の温度の上限値は、270℃であることが好ましい。 The upper limit of the temperature of 150°C or higher is preferably 270°C.
 なお、270℃は、半導体装置の製造において、半導体チップを配線回路基板に取り付けた後、リフロー処理を行って実装するときの、加熱炉(リフロー炉)のピークトップ温度である。 Note that 270° C. is the peak top temperature of a heating furnace (reflow furnace) when a semiconductor chip is mounted on a printed circuit board and then subjected to reflow processing in the manufacture of semiconductor devices.
 本実施形態のワーク保持部材におけるワーク保持層において、前記90°剥離力の値Pに対する前記せん断粘着力の値Sの比(S/P)は、加熱前のワーク保持性と加熱後のワークの取り外し易さの両立の観点から、5以上が好ましく、50以上がより好ましく、100以上がさらに好ましい。また、前記S/Pは、加熱前のワーク保持性と加熱後のワークの取り外し易さの両立の観点から、1000以下が好ましく、900以下がより好ましく、800以下がさらに好ましい。 In the workpiece holding layer of the workpiece holding member of the present embodiment, the ratio (S/P) of the shear adhesive force value S to the 90° peeling force value P is the workpiece holding property before heating and the workpiece holding property after heating. From the viewpoint of both ease of removal, the number is preferably 5 or more, more preferably 50 or more, and even more preferably 100 or more. Further, the S/P is preferably 1000 or less, more preferably 900 or less, and even more preferably 800 or less, from the viewpoint of achieving both workpiece retention before heating and ease of removing the workpiece after heating.
 150℃以上の温度で加熱する前における支持体1に対するワーク保持層3のせん断粘着力の値Sは、引張試験機(型式:DT9503-1000N、タンスイ社製)を用いて、以下の手順(1)~(4)にしたがって測定することができる。また、ポリイミドフィルムとしては、例えば、東レ・デュポン社製の商品名「カプトン100H」を用いることができる。 The value S of the shear adhesion of the workpiece holding layer 3 to the support 1 before heating at a temperature of 150° C. or higher is determined using the following procedure (1) using a tensile tester (model: DT9503-1000N, manufactured by Tansui Corporation). ) to (4). Further, as the polyimide film, for example, the product name "Kapton 100H" manufactured by DuPont-Toray Co., Ltd. can be used.
 (1)平面寸法が30mm×30mmのワーク保持層3の一方面に支持体1を載置して第1積層体を得た後、該第1積層体上に2kgのローラを1往復させて、支持体1にワーク保持層3を圧着させる。
 なお、取り付け時には、可能な限り気泡を巻き込まないように注意する。
 その後、熱風式オーブンを用いて、圧着処理後の第1積層体を温度260℃で3時間加熱処理する。
 これにより、ワーク保持層付支持体を作製する。
(1) After obtaining a first laminate by placing the support 1 on one side of the work holding layer 3 having a planar dimension of 30 mm x 30 mm, a 2 kg roller is moved back and forth over the first laminate. , the workpiece holding layer 3 is pressure-bonded to the support body 1.
When installing, be careful not to trap air bubbles as much as possible.
Thereafter, the first laminate after the pressure bonding process is heat-treated at a temperature of 260° C. for 3 hours using a hot air oven.
In this way, a support body with a work holding layer is produced.
 (2)ワーク保持層3の露出面(支持体1が取り付けられている側の反対面)に、ポリイミドフィルムを載置して第2積層体を得た後、該第2積層体上に2kgのローラを1往復させて、ワーク保持層3にポリイミドフィルムを圧着させて、せん断粘着力評価用の試験体を得る。 (2) After obtaining a second laminate by placing a polyimide film on the exposed surface of the workpiece holding layer 3 (the opposite surface to the side to which the support 1 is attached), 2 kg of polyimide film is placed on the second laminate. The polyimide film is pressed onto the workpiece holding layer 3 by making one reciprocation of the roller to obtain a test piece for evaluating shear adhesive strength.
 (3)前記試験体の中心線と引張試験機のつかみの中心線とが一致するように、前記試験体を前記引張試験機にセットする。そして、引張速度50mm/minでポリイミドフィルムをせん断方向に引っ張った際に、ポリイミドフィルムがワーク保持層3からはく離するときの荷重(すなわち、最大荷重)を測定する。 (3) Set the test specimen in the tensile test machine so that the center line of the test specimen and the center line of the grip of the tensile test machine match. Then, when the polyimide film is pulled in the shearing direction at a pulling speed of 50 mm/min, the load (that is, the maximum load) at which the polyimide film peels off from the workpiece holding layer 3 is measured.
 (4)5個の試験体について、(1)~(3)を実施して、各試験体について最大荷重を測定した後、これらの測定値を算術平均する。
 そして、算術平均値を100mm当たりの値に比例換算してせん断接着力を求める。
(4) Perform steps (1) to (3) on the five specimens to measure the maximum load for each specimen, and then take the arithmetic average of these measured values.
Then, the arithmetic mean value is proportionally converted to a value per 100 mm 2 to determine the shear adhesive strength.
 上述のとおり、ワーク保持層3は、150℃以上の温度で5分間加熱した後においてポリイミドフィルムに対する90°剥離力の値Pが7N/20mm以下であるのが好ましい。 As mentioned above, the work holding layer 3 preferably has a 90° peel force value P of 7 N/20 mm or less with respect to the polyimide film after being heated at a temperature of 150° C. or higher for 5 minutes.
 前記剥離力の値Pは、5N/20mm以下であることがより好ましく、1N/20mm以下であることがさらに好ましく、0.1N/20mm以下であることがよりさらに好ましい。 The peel force value P is more preferably 5 N/20 mm or less, even more preferably 1 N/20 mm or less, even more preferably 0.1 N/20 mm or less.
 前記剥離力の値Pの下限値は、通常、0.01N/20mmである。  The lower limit of the peel force value P is usually 0.01 N/20 mm.​
 上記したように、150℃以上の温度の上限値は、270℃であることが好ましい。 As mentioned above, the upper limit of the temperature of 150°C or higher is preferably 270°C.
 150℃以上の温度で5分間加熱した後のポリイミドフィルムに対するワーク保持層3の90°剥離力は、引張試験機(型式:AGS-X-5000N、島津製作所社製)を用いて、以下の(1)~(4)の手順にしたがって測定することができる。また、ポリイミドフィルムとしては、例えば、東レ・デュポン社製の商品名「カプトン100H」を用いることができる。 The 90° peeling force of the workpiece holding layer 3 against the polyimide film after heating at a temperature of 150°C or higher for 5 minutes was determined using a tensile tester (model: AGS-X-5000N, manufactured by Shimadzu Corporation) as follows ( It can be measured according to the steps 1) to (4). Further, as the polyimide film, for example, the product name "Kapton 100H" manufactured by DuPont-Toray Co., Ltd. can be used.
 (1)平面寸法が30mm×30mmのワーク保持層3の一方面に支持体1を載置して第1積層体を得た後、該第1積層体上に2kgのローラを1往復させて、支持体1にワーク保持層3を圧着させる。
 なお、取り付け時には、可能な限り気泡を巻き込まないように注意する。
 その後、熱風式オーブンを用いて、圧着処理後の第1積層体を温度260℃で3時間加熱処理する。
 これにより、ワーク保持層付支持体を作製する。
(1) After obtaining a first laminate by placing the support 1 on one side of the work holding layer 3 having a planar dimension of 30 mm x 30 mm, a 2 kg roller is moved back and forth over the first laminate. , the workpiece holding layer 3 is pressure-bonded to the support body 1.
When installing, be careful not to trap air bubbles as much as possible.
Thereafter, the first laminate after the pressure bonding process is heat-treated at a temperature of 260° C. for 3 hours using a hot air oven.
In this way, a support body with a work holding layer is produced.
 (2)ワーク保持層3の露出面(支持体1が取り付けられている側の反対面)に、20mm幅のポリイミドフィルムを載置して第2積層体を得た後、該第2積層体上に2kgのローラを1往復させて、ワーク保持層3にポリイミドフィルムを圧着させて、90°剥離力評価用の試験体を得る。 (2) After obtaining a second laminate by placing a 20 mm wide polyimide film on the exposed surface of the work holding layer 3 (the opposite surface to the side to which the support 1 is attached), the second laminate is A 2 kg roller is moved back and forth once on the workpiece holding layer 3 to press the polyimide film onto the workpiece holding layer 3 to obtain a test piece for evaluation of 90° peeling force.
 (3)ワーク保持層3にポリイミドフィルムを圧着させてから30分後に、90°剥離力評価用の試験体をピークトップ温度が270℃のリフロー炉を通した後、前記引張試験機を用いて、はく離角度90°、引張速度300mm/分の条件にて、リフロー後を通した後の試験体についてワーク保持層3からポリイミドフィルムを引き剥がした際の剥離力(N/20mm)を測定する。 (3) Thirty minutes after the polyimide film was pressure-bonded to the workpiece holding layer 3, a test piece for 90° peel force evaluation was passed through a reflow oven with a peak top temperature of 270°C, and then tested using the tensile tester described above. The peeling force (N/20mm) when the polyimide film is peeled off from the workpiece holding layer 3 is measured for the test specimen after reflow under conditions of a peeling angle of 90° and a pulling speed of 300 mm/min.
 (4)5個の試験体について、(1)~(3)を実施して、各試験体について90°剥離力を測定し、これらの測定値を算術平均したものを、90°剥離力とする。 (4) Perform steps (1) to (3) on the five test specimens, measure the 90° peel force for each specimen, and calculate the arithmetic average of these measured values as the 90° peel force. do.
<用途>
 本実施形態に係るワーク保持部材10は、例えば、ワークの表面に電子部品を実装するために用いられる。
<Application>
The work holding member 10 according to this embodiment is used, for example, to mount electronic components on the surface of a work.
 より具体的には、本実施形態に係るワーク保持部材10は、半導体装置の製造において、配線回路基板の表面に半導体チップを実装するために用いられ、また、有機EL装置の製造において、透明基板上にIZO膜やITO膜などの透明電極膜を実装するために用いられる。 More specifically, the work holding member 10 according to the present embodiment is used for mounting a semiconductor chip on the surface of a printed circuit board in the production of semiconductor devices, and is used for mounting a transparent substrate on the surface of a printed circuit board in the production of organic EL devices. It is used to mount a transparent electrode film such as an IZO film or an ITO film thereon.
≪積層体≫
 本発明の一実施形態に係る積層体20は、図2に示したように、支持体1’、支持体1’上に積層される接着剤層2’、及び接着剤層2’上に積層されてワークを保持するワーク保持層3’とを備えるワーク保持部材10’と、ワーク保持層3’上に保持されているワーク4と、を備える。
≪Laminated body≫
As shown in FIG. 2, the laminate 20 according to an embodiment of the present invention includes a support 1', an adhesive layer 2' laminated on the support 1', and a layer laminated on the adhesive layer 2'. The work holding member 10' includes a work holding layer 3' for holding the work and a work holding layer 3', and a work 4 held on the work holding layer 3'.
 本実施形態に係る積層体20では、ワーク保持部材10’は、先に説明した、本実施形態に係るワーク保持部材10として構成されている。すなわち、支持体1’、接着剤層2’及びワーク保持層3’も、先に説明した、支持体1、接着剤層2及びワーク保持層3と同様に構成されている。 In the laminate 20 according to the present embodiment, the workpiece holding member 10' is configured as the workpiece holding member 10 according to the present embodiment described above. That is, the support 1', the adhesive layer 2', and the workpiece holding layer 3' are also configured in the same manner as the support 1, the adhesive layer 2, and the workpiece holding layer 3 described above.
 また、ワーク4は、先に説明したように、セラミック基板、シリコン基板、ガラス基板、及び、樹脂フィルム基板からなる群から選択される1種であることが好ましい。 Further, as described above, the workpiece 4 is preferably one type selected from the group consisting of a ceramic substrate, a silicon substrate, a glass substrate, and a resin film substrate.
 前記樹脂フィルム基板としては、ポリイミドフィルム、ポリエチレンナフタレートフィルムなどが挙げられる。 Examples of the resin film substrate include polyimide film, polyethylene naphthalate film, and the like.
 本実施形態に係る積層体20は、上記のように構成されているので、電子部品の表面実装時の加熱処理前においてはワーク4(基板)を十分に固定でき、電子部品の表面実装時の加熱処理後においてはワーク保持層3’からワーク4(基板)を取り外し易く、かつ支持体1’上に接着剤層2’を介してワーク保持層3’が十分に固定されたものとなる。 Since the laminate 20 according to the present embodiment is configured as described above, the workpiece 4 (substrate) can be sufficiently fixed before the heat treatment during surface mounting of electronic components, and the workpiece 4 (substrate) can be sufficiently fixed during surface mounting of electronic components. After the heat treatment, the work 4 (substrate) can be easily removed from the work holding layer 3', and the work holding layer 3' is sufficiently fixed onto the support 1' via the adhesive layer 2'.
≪ワーク保持部材の製造方法≫
 本実施形態に係るワーク保持部材10は、例えば、以下の製造方法で製造され得る。
≪Method for manufacturing work holding member≫
The work holding member 10 according to this embodiment can be manufactured, for example, by the following manufacturing method.
 本発明の実施形態のワーク保持部材10の製造方法は、支持体1上に接着剤層2を積層する工程と、接着剤層2上にワーク保持層3を積層する工程とを有する。 The method for manufacturing the workpiece holding member 10 according to the embodiment of the present invention includes the steps of laminating the adhesive layer 2 on the support 1 and laminating the workpiece holding layer 3 on the adhesive layer 2.
 特に、以下では、接着剤層2として分子接着剤層を用いる場合を例に本実施形態のワーク保持部材の製造方法を説明するが、本実施形態に係るワーク保持部材の製造方法はこれに限定されるものではない。 In particular, the method for manufacturing the workpiece holding member according to the present embodiment will be explained below using a case where a molecular adhesive layer is used as the adhesive layer 2 as an example, but the method for manufacturing the workpiece holding member according to the present embodiment is limited to this. It is not something that will be done.
 接着剤層2として分子接着剤層を用いる場合、本発明の実施形態のワーク保持部材10の製造方法は、支持体1に分子接着剤を付与する工程(工程A)と、支持体1上に付与された分子接着剤とワーク保持層3とを対向させた状態で加熱する工程(工程B)とを包含する。以下各工程について詳細に説明する。 When a molecular adhesive layer is used as the adhesive layer 2, the method for manufacturing the workpiece holding member 10 according to the embodiment of the present invention includes a step of applying a molecular adhesive to the support 1 (step A), and a step of applying the molecular adhesive to the support 1. The method includes a step (step B) of heating the applied molecular adhesive and the workpiece holding layer 3 in a state where they face each other. Each step will be explained in detail below.
<支持体に分子接着剤を付与する工程(工程A)>
 本工程では、支持体1に分子接着剤を付与する。
 分子接着剤としては、上述の分子接着剤層の項で説明したものを用いることができ、なかでも上記一般式[I’]で表わされる化合物を含むものを用いることが好ましい。その場合は、前記分子接着剤に光(紫外線)を照射する工程(工程C)をさらに含む。光(紫外線)の照射については、上述の分子接着剤層の項で説明したとおりである。
<Step of applying molecular adhesive to the support (step A)>
In this step, a molecular adhesive is applied to the support 1.
As the molecular adhesive, those explained in the section of the above-mentioned molecular adhesive layer can be used, and among them, it is preferable to use one containing a compound represented by the above general formula [I']. In that case, the method further includes a step (step C) of irradiating the molecular adhesive with light (ultraviolet light). The irradiation with light (ultraviolet light) is as explained in the section regarding the molecular adhesive layer above.
 分子接着剤は、例えば、以下のようにして、支持体1の一方の主面に付与され得る。例えば、分子接着剤を含有する分子接着剤溶液を調製し、この溶液を支持体1の一方の主面上に塗布し、次いで、得られた塗膜の乾燥処理や、分子接着剤を支持体1に固定する処理を行う。 The molecular adhesive can be applied to one main surface of the support 1, for example, as follows. For example, a molecular adhesive solution containing a molecular adhesive is prepared, this solution is applied onto one main surface of the support 1, and the resulting coating film is then dried or the molecular adhesive is applied to the support. Perform processing to fix it to 1.
 分子接着剤溶液を調製する際に用いる溶媒は特に限定されない。溶媒としては、メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、セルソルブ、カルビトール等のアルコール系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、プロピオン酸メチル、フタル酸メチル等のエステル系溶媒;塩化メチレン等の含ハロゲン化合物系溶媒;ブタン、ヘキサン、オクタン、デカン、ドデカン、オクタデカン等の脂肪族炭化水素系溶媒;テトラヒドロフラン、ブチルエーテル、エチルブチルエーテル、アニソール等のエーテル系溶媒;ベンゼン、トルエン、キシレン等の芳香族化合物系溶媒;N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド系溶媒;水;等が挙げられる。これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。 The solvent used when preparing the molecular adhesive solution is not particularly limited. Examples of solvents include alcohol-based solvents such as methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, propylene glycol, cellosolve, and carbitol; ketone-based solvents such as acetone, methyl ethyl ketone, and cyclohexanone; ethyl acetate, butyl acetate, methyl propionate, and phthalate. Ester solvents such as acid methyl; halogen-containing solvents such as methylene chloride; aliphatic hydrocarbon solvents such as butane, hexane, octane, decane, dodecane, and octadecane; ether solvents such as tetrahydrofuran, butyl ether, ethyl butyl ether, anisole, etc. Solvents; aromatic compound solvents such as benzene, toluene and xylene; amide solvents such as N,N-dimethylformamide and N-methylpyrrolidone; water; and the like. These can be used alone or in combination of two or more.
 分子接着剤溶液中の分子接着剤の濃度は特に限定されない。その濃度は、好ましくは0.05~10質量%、より好ましくは0.10~1質量%である。接着剤分子の濃度を0.05質量%以上とすることで、分子接着剤を支持体1上に効率よく付与することができる。また10質量%以下とすることで分子接着剤溶液の意図しない反応を抑制することができ、溶液の安定性に優れる。 The concentration of the molecular adhesive in the molecular adhesive solution is not particularly limited. Its concentration is preferably 0.05 to 10% by weight, more preferably 0.10 to 1% by weight. By setting the concentration of adhesive molecules to 0.05% by mass or more, the molecular adhesive can be efficiently applied onto the support 1. Further, by setting the content to 10% by mass or less, unintended reactions of the molecular adhesive solution can be suppressed, and the stability of the solution is excellent.
 分子接着剤溶液の塗布方法としては特に限定されず、公知の塗布方法を使用することができる。塗布方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコー卜法、ロールナイフコート法、ロールコート法、ブレードコート法、ディップコート法、カーテンコート法、ダイコート法、グラビアコート法等が挙げられる。なかでもバーコート法、グラビアコート法が好ましい。 The method for applying the molecular adhesive solution is not particularly limited, and any known application method can be used. Examples of coating methods include spin coating, spray coating, bar coating, knife coating, roll knife coating, roll coating, blade coating, dip coating, curtain coating, die coating, and gravure coating. etc. Among these, bar coating and gravure coating are preferred.
 分子接着剤溶液を塗布した後は、通常、得られた塗膜を乾燥するために、自然乾燥や乾燥機構への投入による乾燥処理を行う。これらの中でも、乾燥機構への投入による乾燥処理を行うことが生産性の向上の観点から好ましい。 After applying the molecular adhesive solution, a drying process is usually performed to dry the resulting coating film, such as by air drying or by putting it into a drying mechanism. Among these, it is preferable from the viewpoint of improving productivity to perform drying treatment by inputting the material into a drying mechanism.
 本発明の実施形態においては、分子接着剤の乾燥熱を調整することで接着熱を低温化することが好ましい。具体的には、乾燥機構で調整される乾燥温度は、好ましくは30~110℃、より好ましくは30~90℃、よりさらに好ましくは30~80℃である。乾燥時間によっては、30~70℃であってもよい。これにより、分子接着剤の接着熱を低温化でき、分子接着剤の失活を抑制できる。 In an embodiment of the present invention, it is preferable to lower the temperature of the adhesive heat by adjusting the drying heat of the molecular adhesive. Specifically, the drying temperature adjusted by the drying mechanism is preferably 30 to 110°C, more preferably 30 to 90°C, even more preferably 30 to 80°C. Depending on the drying time, the temperature may be 30 to 70°C. Thereby, the adhesive heat of the molecular adhesive can be lowered, and deactivation of the molecular adhesive can be suppressed.
 乾燥時間は、通常1秒~120分、好ましくは10秒~10分、より好ましくは20秒~10分、特に好ましくは30秒~10分である。乾燥温度によっては、20秒~5分であってもよく、30秒~3分であってもよい。 The drying time is usually 1 second to 120 minutes, preferably 10 seconds to 10 minutes, more preferably 20 seconds to 10 minutes, particularly preferably 30 seconds to 10 minutes. Depending on the drying temperature, the drying time may be 20 seconds to 5 minutes, or 30 seconds to 3 minutes.
 乾燥機構としては、例えば、エアーオーブン等のバッチ式の乾燥機構や、ヒートロールおよびホットエアースルー機構(開放式の乾燥炉内を被乾燥体が移動、通過しながら、送風を受けつつ加熱・乾燥される設備等)等の連続式の乾燥機構等が挙げられる。なお、これら乾燥機構の一部としても用いることができる装置、例えば、高周波加熱、オイルヒーター等の熱媒循環式ヒーター、及び遠赤外線式ヒーター等のヒーター自体も乾燥機構として用いることができる。これらの中でも生産性の向上の観点からホットエアースルー機構が好ましい。 Drying mechanisms include, for example, batch-type drying mechanisms such as air ovens, heat rolls, and hot air through mechanisms (in which the object to be dried moves and passes through an open drying oven while being heated and dried while being blown by air). Continuous drying mechanisms such as drying equipment, etc. Note that devices that can be used as part of these drying mechanisms, such as high-frequency heating, heat medium circulation heaters such as oil heaters, and heaters themselves such as far-infrared heaters, can also be used as the drying mechanism. Among these, the hot air through mechanism is preferred from the viewpoint of improving productivity.
 また、本工程における支持体の主面の少なくとも一方に分子接着剤を付与する前に、当該分子接着剤を付与する面に対し、洗浄処理又は表面処理を実施する前処理工程を有していてもよい。前処理工程により、支持体とワーク保持層とをより強固に接着させることができる。 Furthermore, before applying the molecular adhesive to at least one of the main surfaces of the support in this step, a pretreatment step is included in which the surface to which the molecular adhesive is applied is subjected to a cleaning treatment or a surface treatment. Good too. The pretreatment step allows the support and the workpiece holding layer to be bonded more firmly.
 洗浄処理としては、アルカリ脱脂処理等が挙げられる。
 アルカリ脱脂処理は、アルカリ洗浄液で洗浄した後、表面を蒸留水で洗浄し、乾燥させる処理である。
 表面処理としては、例えば、コロナ処理、スパッタエッチング処理、プラズマ処理等が挙げられる。
Examples of the cleaning treatment include alkaline degreasing treatment and the like.
Alkaline degreasing is a process in which the surface is washed with an alkaline cleaning solution, then washed with distilled water, and then dried.
Examples of the surface treatment include corona treatment, sputter etching treatment, plasma treatment, and the like.
 コロナ処理としては、例えば、コロナ処理機により常圧空気中で放電する方式が挙げられる。例えば、コロナ処理は、高周波電源のコロナ表面処理装置を用いて、支持体の表面に放電照射することにより実施される。コロナ処理における放電量は、10~500W・min/mが好ましく、30~300W・min/mがより好ましく、50~200W・min/mがさらに好ましい。放電量は、放電出力強度(kW)やコロナ処理の処理速度(m/min)を適宜調整することにより上記範囲とすることができる。放電出力強度は、好ましくは0.05kW以上であり、より好ましくは0.08kW以上であり、さらに好ましくは0.10kW以上である。 Examples of corona treatment include a method of discharging in normal pressure air using a corona treatment machine. For example, the corona treatment is performed by irradiating the surface of the support with discharge using a corona surface treatment device using a high frequency power source. The discharge amount in the corona treatment is preferably 10 to 500 W·min/m 2 , more preferably 30 to 300 W·min/m 2 , and even more preferably 50 to 200 W·min/m 2 . The amount of discharge can be set within the above range by appropriately adjusting the discharge output intensity (kW) and the processing speed (m/min) of corona treatment. The discharge output intensity is preferably 0.05 kW or more, more preferably 0.08 kW or more, and still more preferably 0.10 kW or more.
 スパッタエッチング処理は、例えば、ガスに由来するエネルギー粒子を支持体の表面に衝突させる。支持体における当該粒子が衝突した部分において、支持体の表面に存在する原子または分子が放出されて反応性基が形成され、これにより接着性が向上する。 In the sputter etching process, for example, energetic particles derived from a gas collide with the surface of the support. At the part of the support where the particles collide, atoms or molecules present on the surface of the support are released to form reactive groups, thereby improving adhesion.
 スパッタエッチング処理は、例えば、支持体をチャンバーに収容し、次いでチャンバー内を減圧した後、雰囲気ガスを導入しながら高周波電圧を印加することによって実施できる。 The sputter etching process can be carried out, for example, by placing the support in a chamber, then reducing the pressure in the chamber, and then applying a high frequency voltage while introducing atmospheric gas.
 雰囲気ガスは、例えば、ヘリウム、ネオン、アルゴン、クリプトン等の希ガス、窒素ガスおよび酸素ガスからなる群より選ばれる少なくとも1種である。 The atmospheric gas is, for example, at least one selected from the group consisting of rare gases such as helium, neon, argon, and krypton, nitrogen gas, and oxygen gas.
 印加する高周波電圧の周波数は、例えば1~100MHz、好ましくは5~50MHzである。 The frequency of the high frequency voltage to be applied is, for example, 1 to 100 MHz, preferably 5 to 50 MHz.
 高周波電圧を印加する際のチャンバー内の圧力は、例えば0.05~200Pa、好ましくは1~100Paである。スパッタエッチングのエネルギー(処理時間と印加した電力との積)は、例えば1~1000J/cm、望ましくは2~200J/cmである。 The pressure inside the chamber when applying the high frequency voltage is, for example, 0.05 to 200 Pa, preferably 1 to 100 Pa. The sputter etching energy (product of processing time and applied power) is, for example, 1 to 1000 J/cm 2 , preferably 2 to 200 J/cm 2 .
 プラズマ処理は、例えば、プラズマ放電機により常圧空気中で放電する方式が挙げられる。支持体をプラズマ装置内にセットし、所定のガスでプラズマ照射することにより行われ得る。 Examples of the plasma treatment include a method of discharging in normal pressure air using a plasma discharge machine. This can be done by setting the support in a plasma device and irradiating it with plasma using a predetermined gas.
 プラズマ処理の条件は、本発明の効果が得られる限りにおいて、任意の適切な条件に設定され得る。 The conditions for the plasma treatment can be set to any appropriate conditions as long as the effects of the present invention can be obtained.
 上記プラズマ処理は、大気圧下で行われるプラズマ処理であってもよく、減圧下で行われるプラズマ処理であってもよい。プラズマ処理時の圧力(真空度)は、例えば0.05Pa~200Paであり、好ましくは0.5Pa~100Paである。 The above plasma treatment may be a plasma treatment performed under atmospheric pressure or a plasma treatment performed under reduced pressure. The pressure (degree of vacuum) during plasma treatment is, for example, 0.05 Pa to 200 Pa, preferably 0.5 Pa to 100 Pa.
 プラズマ処理に用いる高周波電源の周波数は、例えば1MHz~100MHzであり、好ましくは5MHz~50MHzである。 The frequency of the high frequency power source used for plasma processing is, for example, 1 MHz to 100 MHz, preferably 5 MHz to 50 MHz.
 プラズマ処理時のエネルギー量は、好ましくは0.1J/cm~100J/cmであり、より好ましくは1J/cm~20J/cmである。 The amount of energy during plasma treatment is preferably 0.1 J/cm 2 to 100 J/cm 2 , more preferably 1 J/cm 2 to 20 J/cm 2 .
 プラズマ処理時間は、好ましくは1秒~5分であり、より好ましくは5秒~3分である。 The plasma treatment time is preferably 1 second to 5 minutes, more preferably 5 seconds to 3 minutes.
 プラズマ処理時のガス供給量は、好ましくは1sccm~150sccmであり、より好ましくは10sccm~100sccmである。 The gas supply amount during plasma treatment is preferably 1 sccm to 150 sccm, more preferably 10 sccm to 100 sccm.
 上記プラズマ処理に用いる反応ガスとしては、例えば、水蒸気、空気、酸素、窒素、水素、アンモニア、アルコール(例えば、エタノール、メタノール、イソプロピルアルコール)等のガスが挙げられる。このような反応ガスを用いれば、接着性に優れる支持体を得ることができる。また、反応ガスと併用して、例えば、ヘリウム、ネオン、アルゴン等の不活性ガスが用いられ得る。 Examples of the reactive gas used in the plasma treatment include gases such as water vapor, air, oxygen, nitrogen, hydrogen, ammonia, and alcohol (eg, ethanol, methanol, isopropyl alcohol). By using such a reactive gas, a support with excellent adhesiveness can be obtained. Further, an inert gas such as helium, neon, argon, etc. may be used in combination with the reactive gas.
 表面処理の種類は、支持体を構成する材料に応じて適宜選択することができる。 The type of surface treatment can be selected as appropriate depending on the material constituting the support.
<加熱工程(工程B)>
 次に、支持体上に付与された分子接着剤とワーク保持層とを対向させた状態で加熱する。ここで、支持体上に付与された分子接着剤とワーク保持層とを対向させる前に、ワーク保持層における分子接着剤と対向させる面に対し、洗浄処理又は表面処理を実施する前処理工程を有していてもよい。前処理工程により、支持体とワーク保持層とをより強固に接着させることができる。当該前処理工程は、上記の支持体で説明した内容と同様に、アルカリ脱脂処理等の洗浄処理や、コロナ処理、スパッタエッチング処理、プラズマ処理等の表面処理を行うことができる。
<Heating process (process B)>
Next, the molecular adhesive applied on the support and the workpiece holding layer are heated while facing each other. Here, before the molecular adhesive applied on the support and the workpiece holding layer are made to face each other, a pretreatment step is performed in which a surface of the workpiece holding layer to be made to face the molecular adhesive is subjected to a cleaning treatment or a surface treatment. may have. The pretreatment step allows the support and the workpiece holding layer to be bonded more firmly. The pretreatment step may include cleaning treatment such as alkaline degreasing treatment, and surface treatment such as corona treatment, sputter etching treatment, plasma treatment, etc., in the same manner as described for the support above.
 本工程Bにより、分子接着剤が支持体とワーク保持層に固定された状態で、分子接着剤層が形成される。 Through this step B, a molecular adhesive layer is formed with the molecular adhesive fixed to the support and the workpiece holding layer.
 加熱は、支持体側から加熱してもよいし、ワーク保持層側から加熱してもよいし、その両方から加熱してもよい。 Heating may be performed from the support side, from the workpiece holding layer side, or from both.
 加熱温度は、好ましくは40~250℃、より好ましくは60~200℃、さらに好ましくは80~120℃である。特に、支持体側から加熱する場合の加熱温度は、好ましくは40~250℃、より好ましくは60~200℃、さらに好ましくは90~110℃である。また、ワーク保持層側から加熱する場合の加熱温度は、好ましくは40~250℃、より好ましくは60~200℃、さらに好ましくは80~110℃である。 The heating temperature is preferably 40 to 250°C, more preferably 60 to 200°C, and still more preferably 80 to 120°C. In particular, the heating temperature when heating from the support side is preferably 40 to 250°C, more preferably 60 to 200°C, and even more preferably 90 to 110°C. Further, the heating temperature when heating from the work holding layer side is preferably 40 to 250°C, more preferably 60 to 200°C, and even more preferably 80 to 110°C.
 加熱時間は、好ましくは1秒~120分、より好ましくは1分~60分、さらに好ましくは1分~30分である。 The heating time is preferably 1 second to 120 minutes, more preferably 1 minute to 60 minutes, and still more preferably 1 minute to 30 minutes.
 加熱方法としては特に限定されず、上述の乾燥機構と同様の機構及び装置を用いることができる。 The heating method is not particularly limited, and a mechanism and device similar to the above-mentioned drying mechanism can be used.
 また、本工程においては、加圧しつつ、上記加熱を行ってもよい。その場合、加圧圧力は、好ましくは0.01MPa以上50MPa以下、より好ましくは0.1MPa以上5MPa以下である。加圧時間は、好ましくは0.1分以上200分以下である。 In addition, in this step, the above heating may be performed while applying pressure. In that case, the pressurizing pressure is preferably 0.01 MPa or more and 50 MPa or less, more preferably 0.1 MPa or more and 5 MPa or less. The pressurizing time is preferably 0.1 minutes or more and 200 minutes or less.
 加圧方法としては特に限定されず、公知の加熱プレス機(例えば、新東工業社製、精密恒温プレス機CYPT-10等)を用いることができる。 The pressurizing method is not particularly limited, and a known hot press machine (for example, precision constant temperature press machine CYPT-10 manufactured by Shinto Kogyo Co., Ltd.) can be used.
[電子部品装置の製造方法]
 本発明の一実施形態に係る電子部品の製造方法は、
 支持体1と該支持体1上に積層される接着剤層2と該接着剤層2上に積層されてワークを保持するワーク保持層3とを備えるワーク保持部材10の前記ワーク保持層3上にワーク4を保持させる、ワーク保持工程S1と、
 前記ワーク保持層3上に保持させた前記ワーク4の一表面上に電子部品を実装する電子部品実装工程S2と、
 前記電子部品を実装させた前記ワーク4を前記ワーク保持部材10の前記ワーク保持層3から取り外すワーク取り外し工程S3と、を有する。
 また、本実施形態に係る電子部品の製造方法では、前記ワーク保持部材は、先に説明した、本実施形態に係るワーク保持部材10として構成されている。 
[Manufacturing method of electronic component device]
A method for manufacturing an electronic component according to an embodiment of the present invention includes:
On the work holding layer 3 of a work holding member 10 comprising a support 1, an adhesive layer 2 laminated on the support 1, and a work holding layer 3 laminated on the adhesive layer 2 and holding the work. a workpiece holding step S1 of holding the workpiece 4;
an electronic component mounting step S2 of mounting an electronic component on one surface of the workpiece 4 held on the workpiece holding layer 3;
The method includes a workpiece removal step S3 in which the workpiece 4 on which the electronic component is mounted is removed from the workpiece holding layer 3 of the workpiece holding member 10.
Furthermore, in the electronic component manufacturing method according to the present embodiment, the workpiece holding member is configured as the workpiece holding member 10 according to the present embodiment described above.
 以下では、電子部品装置の製造方法として半導体装置の製造方法を例に挙げて、図3A~3Eを参照しながら説明する。
 なお、以下では、ワーク4上に半導体チップSCを取り付けた後、封止樹脂によって樹脂封止するまでを電子部品実装工程S2として説明する。
Hereinafter, a method for manufacturing a semiconductor device will be described as an example of a method for manufacturing an electronic component device with reference to FIGS. 3A to 3E.
Note that, hereinafter, the process from mounting the semiconductor chip SC on the workpiece 4 to sealing it with a sealing resin will be described as an electronic component mounting process S2.
(ワーク保持工程S1)
 図3A及び3Bに示したように、ワーク保持工程S1では、ワーク保持部材10のワーク保持層3上にワーク4たる基板を保持させる。
 すなわち、先に説明したような積層体20を形成する。
 半導体装置の製造方法においては、前記基板は、少なくとも一表面に回路が形成された配線回路基板であることが好ましい。
(Work holding process S1)
As shown in FIGS. 3A and 3B, in the work holding step S1, a substrate serving as a work 4 is held on the work holding layer 3 of the work holding member 10. As shown in FIGS.
That is, the laminate 20 as described above is formed.
In the method for manufacturing a semiconductor device, the substrate is preferably a wired circuit board having a circuit formed on at least one surface.
 なお、ワーク保持部材10は、ワーク保持層3上にワーク4たる基板を保持させる前に、支持体1上に接着剤層2を積層させ、接着剤層2上にワーク保持層3を積層させることにより得ることができる。 Note that the work holding member 10 is constructed by laminating the adhesive layer 2 on the support 1 and laminating the work holding layer 3 on the adhesive layer 2 before holding the substrate, which is the work 4, on the work holding layer 3. This can be obtained by
 支持体1への接着剤層2の積層は、上述した方法により実施することができる。 Lamination of the adhesive layer 2 on the support 1 can be carried out by the method described above.
 接着剤層2へのワーク保持層3の積層は、上述した方法により実施することができる。
 あるいは、接着剤層2にワーク保持層3の原料となる樹脂組成物を塗布して乾燥させて、接着剤層2上にワーク保持層3を形成することにより実施することができる。
The work holding layer 3 can be laminated onto the adhesive layer 2 by the method described above.
Alternatively, the workpiece holding layer 3 can be formed on the adhesive layer 2 by coating the adhesive layer 2 with a resin composition that is a raw material for the workpiece holding layer 3 and drying it.
 その後、ワーク保持層3へのワーク4を保持させる。 After that, the workpiece 4 is held on the workpiece holding layer 3.
 以上のようにして、ワーク保持工程S1を実施する。 As described above, the workpiece holding step S1 is carried out.
(電子部品実装工程S2)
 半導体装置の製造方法における電子部品実装工程S2では、まず、図3Cに示したように、ワーク4たる基板上に半導体チップSCを取り付ける。
(Electronic component mounting process S2)
In the electronic component mounting step S2 in the semiconductor device manufacturing method, first, as shown in FIG. 3C, a semiconductor chip SC is mounted on a substrate as a workpiece 4.
 本実施形態に係る電子部品の製造方法では、半導体チップSCは、半導体チップ本体CBと、該半導体チップ本体CBの一表面に配されるバンプ電極BEとを備えている。 In the method for manufacturing an electronic component according to the present embodiment, the semiconductor chip SC includes a semiconductor chip body CB and a bump electrode BE arranged on one surface of the semiconductor chip body CB.
 また、ワーク4たる基板の一表面には、接続用導体部が形成されている(図示せず)。 Furthermore, a connection conductor portion is formed on one surface of the substrate serving as the work 4 (not shown).
 そのため、ワーク4たる基板上への半導体チップSCの取り付けは、ワーク4たる基板の接続用導体部に半導体チップSCのバンプ電極BEを接続することにより実施される。 Therefore, attachment of the semiconductor chip SC onto the substrate serving as the work 4 is carried out by connecting the bump electrodes BE of the semiconductor chip SC to the connecting conductor portions of the substrate serving as the work 4.
 ワーク4たる基板の接続用導体部への半導体チップSCのバンプ電極BEの接続は、前記接続用導体部にバンプ電極BEを当接させた状態で半導体チップSCをワーク4たる基板上に配した集合体を得た後、リフロー炉内で該集合体を加熱する(リフロー処理する)ことにより実施することができる。 The bump electrode BE of the semiconductor chip SC is connected to the connection conductor portion of the substrate, which is the workpiece 4, by placing the semiconductor chip SC on the substrate, which is the workpiece 4, with the bump electrode BE in contact with the connection conductor portion. After obtaining the aggregate, this can be carried out by heating the aggregate in a reflow oven (reflow treatment).
 なお、リフロー処理は、通常、リフロー炉内のピークトップ温度が270℃となるように実施される。 Note that the reflow process is usually performed such that the peak top temperature in the reflow oven is 270°C.
 ここで、半導体装置の製造方法に用いられるワーク保持部材は、本実施形態に係るワーク保持部材10であるので、リフロー処理後においても、ワーク4たる基板が反ることを抑制できる。 Here, since the workpiece holding member used in the semiconductor device manufacturing method is the workpiece holding member 10 according to the present embodiment, it is possible to suppress the substrate, which is the workpiece 4, from warping even after the reflow process.
 また、リフロー処理前においては、ワーク保持部材のワーク保持層上にワーク4たる基板を十分に固定することができる。 Furthermore, before the reflow process, the substrate serving as the work 4 can be sufficiently fixed on the work holding layer of the work holding member.
 半導体装置の製造方法における電子部品実装工程S2では、次に、図3Dに示したように、バンプ電極BEを前記接続用導体部に接続することによって、ワーク4たる基板上に取り付けられた半導体チップSCを封止樹脂ERで樹脂封止する。 In the electronic component mounting step S2 in the method for manufacturing a semiconductor device, next, as shown in FIG. The SC is resin-sealed with a sealing resin ER.
 封止樹脂ERとしては、通常、エポキシ樹脂やフェノール樹脂などの熱硬化性樹脂が用いられる。 As the sealing resin ER, a thermosetting resin such as an epoxy resin or a phenol resin is usually used.
 そのため、ワーク4たる基板上に取り付けられた半導体チップSCを樹脂封止するに際しては、半導体チップSCを封止樹脂ERで覆った後、該封止樹脂ERを熱硬化させる温度(例えば、150℃)で加熱する。 Therefore, when resin-sealing the semiconductor chip SC mounted on the substrate, which is the work 4, after covering the semiconductor chip SC with the sealing resin ER, the temperature at which the sealing resin ER is thermally cured (e.g., 150° C. ).
 以上のようにして、半導体装置の製造方法における電子部品実装工程S2を実施する。
これにより、ワーク4たる基板上に半導体パッケージPが形成される。
As described above, the electronic component mounting step S2 in the semiconductor device manufacturing method is performed.
As a result, a semiconductor package P is formed on the substrate serving as the work 4.
 (ワーク取り外し工程S3)
 半導体装置の製造方法におけるワーク取り外し工程S3では、半導体パッケージPが配されたワーク4たる基板をワーク保持部材のワーク保持層3から取り外す。
(Workpiece removal process S3)
In the workpiece removal step S3 in the semiconductor device manufacturing method, the substrate, which is the workpiece 4 on which the semiconductor package P is arranged, is removed from the workpiece holding layer 3 of the workpiece holding member.
 ワーク保持層3からのワーク4たる基板の取り外しは、例えば、吸引装置を用いて、ワーク保持層3がワーク4たる基板を保持する力よりも大きな吸引力で、ワーク4たる基板が配されていない側の半導体パッケージPの面を吸引することにより実施することができる。 The workpiece 4 or substrate is removed from the workpiece holding layer 3 by using a suction device, for example, with a suction force greater than the force with which the workpiece holding layer 3 holds the workpiece 4 or the substrate. This can be carried out by suctioning the surface of the semiconductor package P on the side where there is no surface.
 なお、半導体装置の製造方法に用いられるワーク保持部材は、本実施形態に係るワーク保持部材10であるので、リフロー処理後においては、ワーク4たる基板に対するワーク保持層3の保持力(接着力)は小さくなっている。 Note that since the workpiece holding member used in the semiconductor device manufacturing method is the workpiece holding member 10 according to the present embodiment, after the reflow treatment, the holding force (adhesive force) of the workpiece holding layer 3 to the substrate serving as the workpiece 4 is reduced. is getting smaller.
 すなわち、ワーク保持層3からワーク4たる基板は取り外し易くなっている。 In other words, the substrate serving as the work 4 can be easily removed from the work holding layer 3.
 そのため、比較的小さな吸引力でも、ワーク保持層3からワーク4たる基板を効率良く取り外すことができる。 Therefore, the substrate, which is the workpiece 4, can be efficiently removed from the workpiece holding layer 3 even with a relatively small suction force.
 上記のように、ワーク4たる基板をワーク保持層3から取り外されたワーク4付の半導体パッケージPは、そのままの状態で半導体装置とされてもよい。 As described above, the semiconductor package P with the work 4 from which the substrate serving as the work 4 has been removed from the work holding layer 3 may be used as a semiconductor device as it is.
 あるいは、ワーク4付の半導体パッケージPは、ダイシングブレードなどで所定数の半導体チップSCを含むような形で分割されて、複数の半導体装置とされてもよい。 Alternatively, the semiconductor package P with the workpiece 4 may be divided into a plurality of semiconductor devices by using a dicing blade or the like to include a predetermined number of semiconductor chips SC.
 なお、ワーク保持工程S1と電子部品実装工程S2との間に、プラズマ放電でワーク4たる基板を処理するプラズマ処理工程S1’を実施してもよい。 Note that a plasma treatment step S1' in which the substrate, which is the workpiece 4, is treated with plasma discharge may be performed between the workpiece holding step S1 and the electronic component mounting step S2.
 プラズマ処理工程S1’は、各種公知のプラズマ洗浄装置を用いて実施することができる。 The plasma treatment step S1' can be performed using various known plasma cleaning apparatuses.
 電子部品実装工程S2の前にプラズマ処理工程S1’を実施することにより、ワーク4たる基板の表面に露出している基板パッド金属表面などを洗浄して有機系汚染物を除去することができる。 By performing the plasma treatment step S1' before the electronic component mounting step S2, the substrate pad metal surface exposed on the surface of the substrate serving as the work 4 can be cleaned to remove organic contaminants.
 また、電子部品実装工程S2において、封止樹脂ERで樹脂封止を実施する前に、半導体チップSCにプラズマ処理を実施してもよい。 Furthermore, in the electronic component mounting step S2, the semiconductor chip SC may be subjected to plasma treatment before being resin-sealed with the sealing resin ER.
 半導体チップSCのプラズマ処理は、先に説明したプラズマ処理工程S1’と同様にして実施することができる。 The plasma treatment of the semiconductor chip SC can be performed in the same manner as the plasma treatment step S1' described above.
 さらに、半導体チップSCにプラズマ処理を実施した後であって、封止樹脂ERで樹脂封止を実施する前に、バンプ電極BEの周辺をエポキシ樹脂などのアンダーフィル材によって封止させるアンダーフィル処理を実施してもよい。 Furthermore, after plasma processing is performed on the semiconductor chip SC and before resin sealing is performed with the sealing resin ER, an underfill process is performed in which the periphery of the bump electrode BE is sealed with an underfill material such as an epoxy resin. may be implemented.
 アンダーフィル処理を実施すれば、封止樹脂ERが行き渡り難いバンプ電極BEの周辺に前記アンダーフィル材を配することができるので、封止樹脂ERでの樹脂封止を精度よく実施することができる。 If the underfill treatment is performed, the underfill material can be placed around the bump electrode BE where it is difficult for the sealing resin ER to spread, so resin sealing with the sealing resin ER can be performed with high precision. .
 上では、半導体装置の製造方法を例に挙げて電子部品装置の製造方法について説明したが、該電子部品装置の製造方法は半導体装置の製造方法以外にも適用することができる。 Although the method for manufacturing an electronic component device has been described above by taking the method for manufacturing a semiconductor device as an example, the method for manufacturing an electronic component device can be applied to methods other than methods for manufacturing semiconductor devices.
 例えば、前記電子部品装置の製造方法は、有機EL装置の製造方法にも適用することができる。 For example, the method for manufacturing an electronic component device can also be applied to a method for manufacturing an organic EL device.
 なお、有機EL装置の製造方法においては、ワークとして透明基板を用い、電子部品実装工程S2において、主として、ワークたる透明基板上に電子部品たるIZOやITOなどの透明電極膜をスパッタリングなどにより取り付ける。 Note that in the method for manufacturing an organic EL device, a transparent substrate is used as a workpiece, and in the electronic component mounting step S2, a transparent electrode film such as IZO or ITO, which is an electronic component, is mainly attached to the transparent substrate, which is a workpiece, by sputtering or the like.
 そして、電子部品実装工程S2においては、前記透明基板上に前記透明電極膜を取り付けた後、該透明電極膜を150℃程度の温度でアニール処理する。 Then, in the electronic component mounting step S2, after the transparent electrode film is attached on the transparent substrate, the transparent electrode film is annealed at a temperature of about 150°C.
 電子部品実装工程S2においてアニール処理を伴う、上記のような電子部品の製造方法においても、アニール処理後にワークたる透明基板が反ることを抑制できる。 Even in the method of manufacturing an electronic component as described above that involves an annealing process in the electronic component mounting step S2, it is possible to suppress warping of the transparent substrate as a workpiece after the annealing process.
 また、アニール処理前においては、ワーク保持部材のワーク保持層上にワークたる透明基板を十分に固定することができる。 Furthermore, before the annealing process, the transparent substrate that is the workpiece can be sufficiently fixed on the workpiece holding layer of the workpiece holding member.
 さらに、ワーク取り外し工程S3において、ワーク保持層からワークたる透明基板を比較的容易に取り外すことができる。 Furthermore, in the workpiece removal step S3, the transparent substrate serving as the workpiece can be relatively easily removed from the workpiece holding layer.
 なお、本実施形態に係るワーク保持部材及び積層体は、上記実施形態によって限定されるものではない。 Note that the workpiece holding member and laminate according to this embodiment are not limited to the above embodiment.
 また、本実施形態に係るワーク保持部材及び積層体は、上記した作用効果によって限定されるものでもない Furthermore, the workpiece holding member and laminate according to this embodiment are not limited to the above-described effects.
 本実施形態に係るワーク保持部材及び積層体は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The workpiece holding member and the laminate according to this embodiment can be modified in various ways without departing from the gist of the present invention.
 以上説明したように、本明細書には次の事項が開示されている。
〔1〕
 支持体と、該支持体上に積層される接着剤層と、該接着剤層上に積層されてワークを保持するワーク保持層と、を備えるワーク保持部材であって、
 前記ワーク保持層は樹脂組成物の発泡体層として構成されており、
 前記接着剤層の厚みは2μm以下である、ワーク保持部材。
〔2〕
 支持体と、該支持体上に積層される接着剤層と、該接着剤層上に積層されてワークを保持するワーク保持層と、を備えるワーク保持部材であって、
 前記ワーク保持層は樹脂組成物の発泡体層として構成されており、
 前記接着剤層が分子接着剤層である、ワーク保持部材。
〔3〕
 前記支持体と前記ワーク保持層との間で、以下の(1)~(3)の手順で、はく離試験を実施した際に、以下の(i)~(iii)のいずれかを満たす、上記〔1〕または〔2〕に記載のワーク保持部材。
(1)ポリエステルフィルム基材の主面の片側にアクリル系粘着剤層を有し、もう片側にシリコーン系粘着剤層を有する両面粘着テープにおいて、アクリル系粘着剤層側にPETフィルムを貼り合わせ、シリコーン系粘着剤層側にワーク保持部材におけるワーク保持層を貼り合わせたサンプルを用意する。
(2)前記サンプルを50℃で24時間静置し、その後23℃で30分静置する。
(3)静置をしたサンプルについて、はく離角度90度、引張速度300mm/minではく離試験を実施し、支持体とワーク保持層との間ではく離が生じる際のはく離力(N/20mm)を測定する。
(i)前記はく離力が1N/20mm以上である
(ii)ワーク保持層が破断する
(iii)ワーク保持層とPETフィルムとの間ではく離が生じる
〔4〕
 前記接着剤層が分子接着剤層である、上記〔1〕に記載のワーク保持部材。
〔5〕
 前記分子接着剤層を形成する分子接着剤が、第1反応性基RG1と、第2反応性基RG2とのいずれか少なくとも1つを有する化合物を含有し、
 前記第1反応性基RG1がアミノ基及びアジド基からなる群から選択された少なくとも1種であり、
 前記第2反応性基RG2がシラノール基及びアルコキシシリル基から選択される少なくとも1種である、上記〔2〕または〔4〕に記載のワーク保持部材。
〔6〕
 前記分子接着剤はトリアジン環をさらに有し、前記第1反応性基RG1を含む基及び前記第2反応性基RG2を含む基が前記トリアジン環に結合している、上記〔5〕に記載のワーク保持部材。
〔7〕
 前記ワーク保持層は、150℃以上の温度で加熱する前においてポリイミドフィルムに対するせん断粘着力の値Sが1N/100mm以上であり、かつ、150℃以上の温度で5分間加熱した後においてポリイミドフィルムに対する90°剥離力の値Pが7N/20mm以下である、上記〔1〕~〔6〕のいずれかに記載のワーク保持部材。
〔8〕
 前記支持体は、線膨張係数の値に対する3点曲げ応力の値の比が0.3以上である、上記〔1〕~〔7〕のいずれかに記載のワーク保持部材。
〔9〕
 前記支持体の3点曲げ応力が5N/10mm以上である、上記〔8〕に記載のワーク保持部材。
〔10〕
 前記支持体の線膨張係数が30×10-6/℃以下である、上記〔8〕または〔9〕に記載のワーク保持部材。
〔11〕
 前記90°剥離力の値Pに対する前記せん断粘着力の値Sの比(S/P)が5以上である、上記〔7〕に記載のワーク保持部材。
〔12〕
 前記支持体は、前記接着剤層が積層される面の算術平均粗さRaが2μm以下である、
上記〔1〕~〔11〕のいずれかに記載のワーク保持部材。
〔13〕
 前記樹脂組成物は、シリコーン樹脂またはフッ素樹脂を含む、上記〔1〕~〔12〕のいずれかに記載のワーク保持部材。
〔14〕
 前記ワーク保持層の見掛け密度は、0.05g/cm以上0.90g/cm以下である、上記〔1〕または〔2〕に記載のワーク保持部材。
〔15〕
 前記ワーク保持層の平均気泡径は、1μm以上100μm以下である、上記〔1〕~〔14〕のいずれかに記載のワーク保持部材。
〔16〕
 前記ワーク保持層は、前記接着剤層に当接される面の算術平均粗さRaが0.1μm以上50μm以下である、上記〔1〕~〔15〕のいずれかに記載のワーク保持部材。
〔17〕
 前記ワークは、セラミック基板、シリコン基板、ガラス基板、及び、樹脂フィルム基板からなる群から選択される1種である、上記〔1〕~〔16〕のいずれかに記載のワーク保持部材。
〔18〕
 前記ワークの表面に電子部品を実装するために用いられる、上記〔1〕~〔17〕のいずれかに記載のワーク保持部材。
〔19〕
 支持体、該支持体上に積層される接着剤層、及び該接着剤層上に積層されてワークを保持するワーク保持層を備えるワーク保持部材と、
 前記ワーク保持層上に保持されているワークと、を備える積層体であって、
 前記ワーク保持部材が、上記〔1〕~〔18〕に記載のワーク保持部材である、積層体。
As explained above, the following matters are disclosed in this specification.
[1]
A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
The work holding layer is configured as a foam layer of a resin composition,
A workpiece holding member, wherein the adhesive layer has a thickness of 2 μm or less.
[2]
A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
The work holding layer is configured as a foam layer of a resin composition,
A workpiece holding member, wherein the adhesive layer is a molecular adhesive layer.
[3]
The above-mentioned material satisfies any of the following (i) to (iii) when a peel test is conducted between the support and the workpiece holding layer according to the following procedures (1) to (3). The workpiece holding member according to [1] or [2].
(1) In a double-sided adhesive tape having an acrylic adhesive layer on one side of the main surface of a polyester film base material and a silicone adhesive layer on the other side, a PET film is attached to the acrylic adhesive layer side, A sample is prepared in which a workpiece holding layer of a workpiece holding member is attached to the silicone adhesive layer side.
(2) The sample is allowed to stand at 50°C for 24 hours, and then at 23°C for 30 minutes.
(3) A peel test was conducted on the sample that had been left standing at a peel angle of 90 degrees and a tensile speed of 300 mm/min, and the peel force (N/20 mm) when peeling occurs between the support and the workpiece holding layer was calculated. Measure.
(i) The peeling force is 1N/20mm or more (ii) The workpiece holding layer breaks (iii) Peeling occurs between the workpiece holding layer and the PET film [4]
The workpiece holding member according to [1] above, wherein the adhesive layer is a molecular adhesive layer.
[5]
The molecular adhesive forming the molecular adhesive layer contains a compound having at least one of a first reactive group RG1 and a second reactive group RG2,
The first reactive group RG1 is at least one selected from the group consisting of an amino group and an azide group,
The work holding member according to [2] or [4] above, wherein the second reactive group RG2 is at least one selected from a silanol group and an alkoxysilyl group.
[6]
The molecular adhesive further has a triazine ring, and the group containing the first reactive group RG1 and the group containing the second reactive group RG2 are bonded to the triazine ring, according to [5] above. Work holding member.
[7]
The work holding layer has a shear adhesion value S to the polyimide film of 1N/100mm2 or more before heating at a temperature of 150°C or higher, and a polyimide film after heating at a temperature of 150°C or higher for 5 minutes. The workpiece holding member according to any one of [1] to [6] above, which has a 90° peeling force value P of 7 N/20 mm or less.
[8]
The work holding member according to any one of [1] to [7] above, wherein the support has a ratio of a three-point bending stress value to a linear expansion coefficient value of 0.3 or more.
[9]
The workpiece holding member according to [8] above, wherein the support has a three-point bending stress of 5 N/10 mm or more.
[10]
The workpiece holding member according to [8] or [9] above, wherein the support has a linear expansion coefficient of 30×10 −6 /° C. or less.
[11]
The workpiece holding member according to [7] above, wherein the ratio (S/P) of the value S of the shear adhesive force to the value P of the 90° peeling force is 5 or more.
[12]
The support has an arithmetic mean roughness Ra of 2 μm or less on the surface on which the adhesive layer is laminated.
The workpiece holding member according to any one of [1] to [11] above.
[13]
The workpiece holding member according to any one of [1] to [12] above, wherein the resin composition contains a silicone resin or a fluororesin.
[14]
The workpiece holding member according to [1] or [2] above, wherein the workpiece holding layer has an apparent density of 0.05 g/cm 3 or more and 0.90 g/cm 3 or less.
[15]
The workpiece holding member according to any one of [1] to [14] above, wherein the workpiece holding layer has an average cell diameter of 1 μm or more and 100 μm or less.
[16]
The work holding member according to any one of [1] to [15] above, wherein the work holding layer has an arithmetic mean roughness Ra of 0.1 μm or more and 50 μm or less of the surface that comes into contact with the adhesive layer.
[17]
The work holding member according to any one of [1] to [16] above, wherein the work is one type selected from the group consisting of a ceramic substrate, a silicon substrate, a glass substrate, and a resin film substrate.
[18]
The work holding member according to any one of [1] to [17] above, which is used for mounting electronic components on the surface of the work.
[19]
a work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work;
A laminate comprising: a workpiece held on the workpiece holding layer;
A laminate, wherein the workpiece holding member is the workpiece holding member described in [1] to [18] above.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。以下の実施例は本発明をさらに詳しく説明するためのものであり、本発明の範囲を限定するものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. The following examples are intended to explain the invention in more detail and are not intended to limit the scope of the invention.
<実施例1>
 支持体として、ステンレス板(SUS304BA)を用いた。該ステンレス板(SUS304BA)の平面寸法は、30mm×30mmであり、厚さは0.5mmであった。なお、前記ステンレス板の厚さは、上の実施形態の項で説明した方法にしたがって測定した。以下の各例についても同様である。
 ステンレス板(SUS304BA)上に、分子接着剤として6-(3-トリエトキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアジドの0.5質量%エタノール溶液を塗布し、塗布面についてドライヤー乾燥した後、クォークテクノロジー製UV-LED照射装置を用いてUV照射(265nm,100mJ/cm)することで、分子接着剤層を成膜した。
 つづいて、ワーク保持層として、シリコーン発泡体層を用いた。シリコーン発泡体層は、下記表1に示した(1)~(10)の各材料を下記表1に示した配合量で用いて、以下の手順(a)~(e)にしたがって作製した。
<Example 1>
A stainless steel plate (SUS304BA) was used as a support. The planar dimensions of the stainless steel plate (SUS304BA) were 30 mm x 30 mm, and the thickness was 0.5 mm. The thickness of the stainless steel plate was measured according to the method described in the embodiment section above. The same applies to each of the following examples.
A 0.5% by mass ethanol solution of 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-diazide as a molecular adhesive was applied onto a stainless steel plate (SUS304BA). After drying the surface with a dryer, a molecular adhesive layer was formed by UV irradiation (265 nm, 100 mJ/cm 2 ) using a UV-LED irradiation device manufactured by Quark Technology.
Subsequently, a silicone foam layer was used as the workpiece holding layer. The silicone foam layer was produced according to the following procedures (a) to (e) using each of the materials (1) to (10) shown in Table 1 below in the amounts shown in Table 1 below.
 (a)撹拌装置(あわとり錬太郎、型式「ARE-501」、シンキー社製)を用いて、下記表1の(1)~(10)の各材料を下記表1の配合量で15分間混合して乳化溶液をそして、該乳化溶液を室温(23±2℃)で5分間減圧乾燥して脱泡を行って樹脂組成物を得る。 (a) Using a stirring device (Awatori Rentaro, model "ARE-501", manufactured by Thinky), each of the ingredients (1) to (10) in Table 1 below was mixed in the amounts shown in Table 1 for 15 minutes. The emulsified solution is mixed to form an emulsified solution, and the emulsified solution is dried under reduced pressure at room temperature (23±2° C.) for 5 minutes to perform defoaming to obtain a resin composition.
 (b)前記樹脂組成物をフロロシリコーン処理PETフィルム(ニッパシートPET38x1-SS4A、ニッパ社製)の表面にアプリケータを用いて塗布して樹脂層を形成した後、前記樹脂層の露出面にPETフィルム(ルミラーS10、東レ社製)を被せて、前記樹脂層の一方面に前記フロロシリコーン処理PETフィルムが配され、前記樹脂層の他方面に前記PETフィルムが配された三層積層体を得る。 (b) After applying the resin composition to the surface of a fluorosilicone-treated PET film (Nipper Sheet PET38x1-SS4A, manufactured by Nipper Co., Ltd.) using an applicator to form a resin layer, apply PET to the exposed surface of the resin layer. Cover with a film (Lumirror S10, manufactured by Toray Industries, Inc.) to obtain a three-layer laminate in which the fluorosilicone-treated PET film is arranged on one side of the resin layer and the PET film is arranged on the other side of the resin layer. .
 (c)前記三層積層体を熱風オーブンによって85℃で6分間加熱して、前記樹脂層を硬化させる。 (c) The three-layer laminate is heated in a hot air oven at 85° C. for 6 minutes to cure the resin layer.
 (d)前記樹脂層を硬化させた後、前記樹脂層の一方面から前記フロロシリコーン処理PETフィルムを剥離させるとともに、前記樹脂層の他方面から前記PETフィルムを剥離させて、前記樹脂層の硬化体を得る。 (d) After the resin layer is cured, the fluorosilicone-treated PET film is peeled off from one side of the resin layer, and the PET film is peeled off from the other side of the resin layer, and the resin layer is cured. Get a body.
 (e)前記樹脂層の硬化体を200℃で3分間加熱乾燥する。 (e) The cured product of the resin layer is heated and dried at 200° C. for 3 minutes.
 上記の手順にしたがって得られたシリコーン発泡体の厚さは、0.2mm(200μm)であった。
 また、前記シリコーン発泡体は、連続気泡構造を有しており、連続気泡率が100%であり、平均気泡径は8μmであった。
 さらに、前記シリコーン発泡体の見掛け密度は、0.55g/cmであった。
The thickness of the silicone foam obtained according to the above procedure was 0.2 mm (200 μm).
Further, the silicone foam had an open cell structure, the open cell ratio was 100%, and the average cell diameter was 8 μm.
Furthermore, the apparent density of the silicone foam was 0.55 g/cm 3 .
 なお、前記シリコーン発泡体の厚さ、前記シリコーン発泡体の連続気泡率、及び、前記シリコーン発泡体の見掛け密度は、上の実施形態の項で説明した方法にしたがって測定した。以下の各例についても同様である。 Note that the thickness of the silicone foam, the open cell ratio of the silicone foam, and the apparent density of the silicone foam were measured according to the method described in the embodiment section above. The same applies to each of the following examples.
 以上作製したシリコーン発泡体の一方の面に対し、放電量122W・min/mの条件でコロナ処理を行った。
 ステンレス板(SUS304BA)上に形成した分子接着剤層とシリコーン発泡体のコロナ処理面とを貼り合わせ、90℃のオーブンで10分間加熱し、実施例1のワーク保持部材を作製した。
One surface of the silicone foam produced above was subjected to corona treatment at a discharge amount of 122 W·min/m 2 .
The molecular adhesive layer formed on a stainless steel plate (SUS304BA) and the corona-treated surface of the silicone foam were bonded together and heated in an oven at 90° C. for 10 minutes to produce the workpiece holding member of Example 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<実施例2>
 ステンレス板(SUS304BA)上に分子接着剤としてN,N’-ビス(2-アミノエチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミンの0.5質量%水溶液を塗布し、80℃のオーブンに10分いれて乾燥することで分子接着剤層を成膜したことを除いては、実施例1と同様にして、実施例2のワーク保持部材を作製した。
<Example 2>
N,N'-bis(2-aminoethyl)-6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine-2,4-diamine was applied as a molecular adhesive onto a stainless steel plate (SUS304BA). The workpiece of Example 2 was prepared in the same manner as in Example 1, except that a molecular adhesive layer was formed by applying a 0.5% by mass aqueous solution and drying it in an oven at 80°C for 10 minutes. A holding member was produced.
<実施例3>
 支持体をガラス(ソーダガラス)とし、分子接着剤層におけるN,N’-ビス(2-アミノエチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミンの濃度を0.1質量%としたことを除いては、実施例2と同様にして、実施例3のワーク保持部材を作製した。
<Example 3>
The support was glass (soda glass), and N,N'-bis(2-aminoethyl)-6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine-2, A workpiece holding member of Example 3 was produced in the same manner as Example 2 except that the concentration of 4-diamine was 0.1% by mass.
<実施例4>
 支持体をA5052P(Al-Mg合金)とし、分子接着剤層におけるN,N’-ビス(2-アミノエチル)-6-(3-トリヒドロキシシリルプロピル)アミノ-1,3,5-トリアジン-2,4-ジアミンの濃度を0.1質量%としたことを除いては、実施例2と同様にして、実施例4のワーク保持部材を作製した。
<Example 4>
The support is A5052P (Al-Mg alloy), and N,N'-bis(2-aminoethyl)-6-(3-trihydroxysilylpropyl)amino-1,3,5-triazine- in the molecular adhesive layer. A workpiece holding member of Example 4 was produced in the same manner as Example 2 except that the concentration of 2,4-diamine was 0.1% by mass.
<比較例1>
 SUS304BA上に分子接着剤層を形成する代わりに、シリコーン発泡体の一方にNo.5302A(日東電工社製、シリコーンゴム接着用両面テープ(シリコーン系粘着剤/アクリル系粘着剤))のシリコーン粘着剤側を貼り合わせ、もう片方のアクリル粘着剤側をSUS304BAと貼り合わせて粘着剤層を形成したことを除いては、実施例1と同様にして、比較例1のワーク保持部材を作製した。
<Comparative example 1>
Instead of forming a molecular adhesive layer on SUS304BA, one side of the silicone foam was coated with No. The silicone adhesive side of 5302A (manufactured by Nitto Denko Corporation, double-sided tape for silicone rubber adhesion (silicone adhesive/acrylic adhesive)) is bonded together, and the other acrylic adhesive side is bonded to SUS304BA to form an adhesive layer. A workpiece holding member of Comparative Example 1 was produced in the same manner as in Example 1, except that .
<比較例2>
 シリコーン発泡体の代わりに、MED2-4013(Nusil製、2液白金付加硬化型接着剤)の1液と2液を等量配合し混合したものを、ニトフロンNo.970-2UL(日東電工社製、ニトフロン含浸ガラスクロスフィルム)上に厚みが200umになるように塗工し、150℃のオーブンに15分間いれて硬化させて得た、Siシートを用いたことを除いては、実施例1と同様にして、比較例2のワーク保持部材を作製した。
<Comparative example 2>
Instead of the silicone foam, Nitoflon No. We used a Si sheet obtained by coating 970-2UL (manufactured by Nitto Denko Corporation, Nitoflon-impregnated glass cloth film) to a thickness of 200 um and curing it in an oven at 150°C for 15 minutes. A workpiece holding member of Comparative Example 2 was produced in the same manner as in Example 1 except for this.
<比較例3>
 SUS304BA上に分子接着剤層を形成する代わりに、SUS304BA上に接着剤として、DOWSIL SE9186(DOW製、1成分系,室温硬化シリコーン接着剤)を厚みが1mmになるように塗布し、シリコーン発泡体の一方を貼り合わせて、150℃のオーブンに30分間いれ、支持体とワーク保持層を接着させたことを除いては、実施例1と同様にして、比較例3のワーク保持部材を作製した。
<Comparative example 3>
Instead of forming a molecular adhesive layer on SUS304BA, DOWSIL SE9186 (manufactured by DOW, one-component, room temperature curing silicone adhesive) was applied as an adhesive to a thickness of 1 mm, and silicone foam was formed. A work holding member of Comparative Example 3 was produced in the same manner as in Example 1, except that one of the two was pasted together and placed in an oven at 150°C for 30 minutes to bond the support and work holding layer. .
(支持体の3点曲げ応力)
 各例に係る支持体について、上の実施形態の項で説明した方法にしたがって3点曲げ応力を測定した。
 その結果を以下の表2に示した。
(3-point bending stress of support)
Three-point bending stress was measured for the support according to each example according to the method described in the embodiment section above.
The results are shown in Table 2 below.
(支持体の線膨張係数)
 各例に係る支持体について、上の実施形態の項で説明した方法にしたがって線膨張係数を測定した。
 その結果を以下の表2に示した。
 また、各例に係る支持体について測定した3点曲げ応力の測定値と各例の支持体について測定した線膨張係数の値とを用いて、各例に係る支持体について、線膨張係数の値に対する3点曲げ応力の比(3点曲げ応力/線膨張係数)を算出した。 
 その結果を以下の表2に示した。
(Coefficient of linear expansion of support)
The linear expansion coefficient of each support was measured according to the method described in the embodiment section above.
The results are shown in Table 2 below.
Further, using the measured value of the three-point bending stress measured for the support according to each example and the value of the linear expansion coefficient measured for the support according to each example, the value of the linear expansion coefficient for the support according to each example is determined. The ratio of 3-point bending stress to 3-point bending stress (3-point bending stress/linear expansion coefficient) was calculated.
The results are shown in Table 2 below.
(支持体の算術平均表面粗さRa)
 各例に係る支持体について、上の実施形態の項で説明した方法にしたがって接着剤層が積層される面の算術平均粗さRaを測定した。
 その結果を以下の表2に示した。
(Arithmetic mean surface roughness Ra of support)
Regarding the support according to each example, the arithmetic mean roughness Ra of the surface on which the adhesive layer is laminated was measured according to the method described in the embodiment section above.
The results are shown in Table 2 below.
(ワーク保持層の算術平均表面粗さRa)
 各実施例に係るワーク保持層及び比較例1、3に係るワーク保持層について、上の実施形態の項で説明した方法にしたがって接着剤層に当接される側の発泡体層の面の算術平均表面粗さRaを測定した。
 その結果を以下の表2に示した。
(Arithmetic mean surface roughness Ra of workpiece holding layer)
Regarding the workpiece holding layer according to each Example and the workpiece holding layer according to Comparative Examples 1 and 3, the surface of the foam layer on the side that is in contact with the adhesive layer was calculated according to the method explained in the embodiment section above. The average surface roughness Ra was measured.
The results are shown in Table 2 below.
(せん断粘着力S)
 各例に係るワーク保持層について、上の実施形態の項で説明した方法にしたがって、150℃以上の温度で加熱する前のポリイミドフィルムに対するせん断粘着力の値Sを測定した。
 なお、ポリイミドフィルムの厚さは、25μmであった。
 また、前記ポリイミドフィルムとしては、東レ・デュポン社製の商品名「カプトン100H」を用いた。 
 その結果を以下の表2に示した。
(Shear adhesive strength S)
Regarding the workpiece holding layer according to each example, the value S of shear adhesion to the polyimide film before heating at a temperature of 150° C. or higher was measured according to the method described in the above embodiment section.
Note that the thickness of the polyimide film was 25 μm.
Moreover, as the polyimide film, the product name "Kapton 100H" manufactured by DuPont-Toray was used.
The results are shown in Table 2 below.
(剥離力P)
 各例に係るワーク保持層について、上の実施形態の項で説明した方法にしたがって、150℃以上の温度で5分間加熱した後のポリイミドフィルムに対する90°剥離力の値Pを測定した。
 なお、ポリイミドフィルムの厚さは、25μmであった。
 また、前記ポリイミドフィルムとしては、東レ・デュポン社製の商品名「カプトン100H」を用いた。
 その結果を以下の表2に示した。
 また、各例に係るワーク保持層について測定したせん断粘着力の値Sと各例に係るワーク保持層について測定した90°剥離力の値Pとを用いて、各例に係るワーク保持層について、90°剥離力の値Pに対するせん断粘着力の値Sの比(S/P)を算出した。
 その結果を以下の表2に示した。
(Peeling force P)
The work holding layer according to each example was heated at a temperature of 150° C. or higher for 5 minutes, and then the 90° peel force value P with respect to the polyimide film was measured according to the method described in the embodiment section above.
Note that the thickness of the polyimide film was 25 μm.
Moreover, as the polyimide film, the product name "Kapton 100H" manufactured by DuPont-Toray was used.
The results are shown in Table 2 below.
Further, using the shear adhesive force value S measured for the workpiece holding layer according to each example and the 90° peeling force value P measured for the workpiece holding layer according to each example, for the workpiece holding layer according to each example, The ratio (S/P) of the shear adhesive force value S to the 90° peel force value P was calculated.
The results are shown in Table 2 below.
(固定性及び剥離性)
 各例について、せん断粘着力Sの測定結果及び剥離力Pの測定結果から、ワーク保持層に対する基板の固定性及びワーク保持層からの基板の剥離性について評価した。
 固定性及び剥離性は、以下の基準にしたがって評価した。
〇:せん断粘着力の値Sが1N以上であり、かつ、剥離力Pの値が7N以下である。
×:上記以外。
 その結果を以下の表2に示した。
(Fixability and removability)
For each example, the fixability of the substrate to the workpiece holding layer and the peelability of the substrate from the workpiece holding layer were evaluated based on the measurement results of the shear adhesive force S and the peeling force P.
Fixability and removability were evaluated according to the following criteria.
O: The value of shear adhesive force S is 1N or more, and the value of peeling force P is 7N or less.
×: Other than the above.
The results are shown in Table 2 below.
(支持体とワーク保持層の密着性)
 各例について、上の実施形態の項で説明した方法にしたがって、支持体とワーク保持層の密着性を評価した。すなわち、以下の(1)~(3)の手順で、はく離試験を実施し、支持体とワーク保持層の密着性を以下の(i)~(iii)で評価した。
(Adhesion between support and workpiece holding layer)
For each example, the adhesion between the support and the workpiece holding layer was evaluated according to the method described in the embodiment section above. That is, a peel test was conducted according to the following procedures (1) to (3), and the adhesion between the support and the workpiece holding layer was evaluated according to the following (i) to (iii).
(1)ポリエステルフィルム基材の主面の片側にアクリル系粘着剤層を有し、もう片側にシリコーン系粘着剤層を有する両面粘着テープ(日東電工社製、No.5302A、テープ厚:0.085mm)において、アクリル系粘着剤層側にPETフィルム(東レ社製、
ルミラー、S10、25um厚)を貼り合わせ、シリコーン系粘着剤層側にワーク保持部材におけるワーク保持層を貼り合わせたサンプルを用意した。
(2)前記サンプルを50℃で24時間静置し、その後23℃で30分静置した。
(3)静置をしたサンプルについて、はく離角度90度、引張速度300mm/minではく離試験を実施し、支持体とワーク保持層との間ではく離が生じる際のはく離力(N/20mm)を測定した。
(1) Double-sided adhesive tape having an acrylic adhesive layer on one side of the main surface of a polyester film base material and a silicone adhesive layer on the other side (manufactured by Nitto Denko Corporation, No. 5302A, tape thickness: 0. 085 mm), PET film (manufactured by Toray Industries, Ltd.,
A sample was prepared in which a workpiece holding layer of a workpiece holding member was bonded to the silicone adhesive layer side.
(2) The sample was allowed to stand at 50°C for 24 hours, and then at 23°C for 30 minutes.
(3) A peel test was conducted on the sample that had been left standing at a peel angle of 90 degrees and a tensile speed of 300 mm/min, and the peel force (N/20 mm) when peeling occurs between the support and the workpiece holding layer was calculated. It was measured.
(i)前記はく離力が1N/20mm以上であった
(ii)ワーク保持層が破断した
(iii)ワーク保持層とPETフィルムとの間ではく離が生じた
 その結果を以下の表2に示した。
(i) The peeling force was 1N/20mm or more (ii) The workpiece holding layer was broken (iii) Peeling occurred between the workpiece holding layer and the PET film The results are shown in Table 2 below. .
(ワーク保持層の繰り返し使用性)
 各例について、ワーク保持層の繰り返し使用性について評価した。
 繰り返し使用性は、ワーク保持部材にワーク(ガラスエポキシ板(FR4)上にプリント回路基板を形成したもの)をのせて、175℃,10MPa,2分の条件で加熱圧着した後に、跡が残るかどうかにより評価した。
(Repetitive usability of work holding layer)
For each example, the repeatability of the work holding layer was evaluated.
Repeatability is determined by whether any marks remain after placing the workpiece (printed circuit board formed on a glass epoxy board (FR4)) on the workpiece holding member and heat-pressing it at 175℃, 10MPa, for 2 minutes. The evaluation was based on whether
 具体的には、繰り返し使用性は、以下の基準にしたがって評価した。
〇:跡が残らない
×:跡が残る
 その結果を以下の表2に示した。
Specifically, the repeatability was evaluated according to the following criteria.
○: No trace left ×: Trace remained The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1~4のワーク保持部材は、固定性及び剥離性が良好であったことから、電子部品の表面実装時の加熱処理前においてはワークを十分に固定でき、電子部品の表面実装時の加熱処理後においてはワークを取り外し易いことがわかった。また、支持体とワーク保持層の密着性も高く、支持体上にワーク保持層が十分に固定されていることがわかった。 The workpiece holding members of Examples 1 to 4 had good fixing properties and removability, so they could sufficiently fix the workpiece before the heat treatment when surface mounting electronic components. It was found that the workpiece was easy to remove after the heat treatment. It was also found that the adhesion between the support and the workpiece holding layer was high, and the workpiece holding layer was sufficiently fixed on the support.
 一方、比較例1のワーク保持部材は、接着剤層として粘着剤を用いており、接着剤層の厚みも大きいため、ワーク保持層の繰り返し使用性に劣る結果となった。そのため、ワーク保持層の機能を維持できないことがわかった。
 また、比較例2は、ワーク保持層として発泡体層を用いていないため、固定性及び剥離性に劣る結果となった。
 また、比較例3は、接着剤層として液状接着剤を用いており、接着剤層の厚みも大きいため、ワーク保持層の繰り返し使用性に劣る結果となった。そのため、ワーク保持層の機能を維持できないことがわかった。
On the other hand, the workpiece holding member of Comparative Example 1 uses an adhesive as the adhesive layer, and the thickness of the adhesive layer is also large, resulting in poor repeatability of the workpiece holding layer. Therefore, it was found that the function of the workpiece holding layer could not be maintained.
Furthermore, in Comparative Example 2, since a foam layer was not used as the workpiece holding layer, the fixing properties and releasability were poor.
Furthermore, in Comparative Example 3, a liquid adhesive was used as the adhesive layer, and the thickness of the adhesive layer was also large, resulting in poor repeatability of the workpiece holding layer. Therefore, it was found that the function of the workpiece holding layer could not be maintained.
 本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various changes can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.
 なお、本出願は、2022年8月19日出願の日本特許出願(特願2022-131311)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application (Japanese Patent Application No. 2022-131311) filed on August 19, 2022, and the contents thereof are incorporated as a reference in this application.
1,1’ 支持体
2,2’ 接着剤層
3,3’ ワーク保持層
4 ワーク
10 ワーク保持部材
20 積層体
SC 半導体チップ
CB 半導体チップ本体
BE バンプ電極
ER 封止樹脂
P 半導体パッケージ
1, 1' Support 2, 2' Adhesive layer 3, 3' Work holding layer 4 Work 10 Work holding member 20 Laminated body SC Semiconductor chip CB Semiconductor chip body BE Bump electrode ER Sealing resin P Semiconductor package

Claims (19)

  1.  支持体と、該支持体上に積層される接着剤層と、該接着剤層上に積層されてワークを保持するワーク保持層と、を備えるワーク保持部材であって、
     前記ワーク保持層は樹脂組成物の発泡体層として構成されており、
     前記接着剤層の厚みは2μm以下である、ワーク保持部材。
    A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
    The work holding layer is configured as a foam layer of a resin composition,
    A workpiece holding member, wherein the adhesive layer has a thickness of 2 μm or less.
  2.  支持体と、該支持体上に積層される接着剤層と、該接着剤層上に積層されてワークを保持するワーク保持層と、を備えるワーク保持部材であって、
     前記ワーク保持層は樹脂組成物の発泡体層として構成されており、
     前記接着剤層が分子接着剤層である、ワーク保持部材。
    A work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work,
    The work holding layer is configured as a foam layer of a resin composition,
    A workpiece holding member, wherein the adhesive layer is a molecular adhesive layer.
  3.  前記支持体と前記ワーク保持層との間で、以下の(1)~(3)の手順で、はく離試験を実施した際に、以下の(i)~(iii)のいずれかを満たす、請求項1または2に記載のワーク保持部材。
    (1)ポリエステルフィルム基材の主面の片側にアクリル系粘着剤層を有し、もう片側にシリコーン系粘着剤層を有する両面粘着テープにおいて、アクリル系粘着剤層側にPETフィルムを貼り合わせ、シリコーン系粘着剤層側にワーク保持部材におけるワーク保持層を貼り合わせたサンプルを用意する。
    (2)前記サンプルを50℃で24時間静置し、その後23℃で30分静置する。
    (3)静置をしたサンプルについて、はく離角度90度、引張速度300mm/minではく離試験を実施し、支持体とワーク保持層との間ではく離が生じる際のはく離力(N/20mm)を測定する。
    (i)前記はく離力が1N/20mm以上である
    (ii)ワーク保持層が破断する
    (iii)ワーク保持層とPETフィルムとの間ではく離が生じる
    A claim that satisfies any of the following (i) to (iii) when a peel test is conducted between the support and the workpiece holding layer according to the following procedures (1) to (3): Item 2. Work holding member according to item 1 or 2.
    (1) In a double-sided adhesive tape having an acrylic adhesive layer on one side of the main surface of a polyester film base material and a silicone adhesive layer on the other side, a PET film is attached to the acrylic adhesive layer side, A sample is prepared in which a workpiece holding layer of a workpiece holding member is attached to the silicone adhesive layer side.
    (2) The sample is allowed to stand at 50°C for 24 hours, and then at 23°C for 30 minutes.
    (3) A peel test was conducted on the sample that had been left standing at a peel angle of 90 degrees and a tensile speed of 300 mm/min, and the peel force (N/20 mm) when peeling occurs between the support and the workpiece holding layer was calculated. Measure.
    (i) The peeling force is 1N/20mm or more (ii) The workpiece holding layer breaks (iii) Peeling occurs between the workpiece holding layer and the PET film.
  4.  前記接着剤層が分子接着剤層である、請求項1に記載のワーク保持部材。 The workpiece holding member according to claim 1, wherein the adhesive layer is a molecular adhesive layer.
  5.  前記分子接着剤層を形成する分子接着剤が、第1反応性基RG1と、第2反応性基RG2とのいずれか少なくとも1つを有する化合物を含有し、
     前記第1反応性基RG1がアミノ基及びアジド基からなる群から選択された少なくとも1種であり、
     前記第2反応性基RG2がシラノール基及びアルコキシシリル基から選択される少なくとも1種である、請求項2または4に記載のワーク保持部材。
    The molecular adhesive forming the molecular adhesive layer contains a compound having at least one of a first reactive group RG1 and a second reactive group RG2,
    The first reactive group RG1 is at least one selected from the group consisting of an amino group and an azide group,
    The work holding member according to claim 2 or 4, wherein the second reactive group RG2 is at least one selected from a silanol group and an alkoxysilyl group.
  6.  前記分子接着剤はトリアジン環をさらに有し、前記第1反応性基RG1を含む基及び前記第2反応性基RG2を含む基が前記トリアジン環に結合している、請求項5に記載のワーク保持部材。 The workpiece according to claim 5, wherein the molecular adhesive further has a triazine ring, and the group containing the first reactive group RG1 and the group containing the second reactive group RG2 are bonded to the triazine ring. Holding member.
  7.  前記ワーク保持層は、150℃以上の温度で加熱する前においてポリイミドフィルムに対するせん断粘着力の値Sが1N/100mm以上であり、かつ、150℃以上の温度で5分間加熱した後においてポリイミドフィルムに対する90°剥離力の値Pが7N/20mm以下である、請求項1または2に記載のワーク保持部材。 The work holding layer has a shear adhesion value S to the polyimide film of 1N/100mm2 or more before heating at a temperature of 150°C or higher, and a polyimide film after heating at a temperature of 150°C or higher for 5 minutes. The workpiece holding member according to claim 1 or 2, wherein the value P of 90° peeling force against the workpiece is 7 N/20 mm or less.
  8.  前記支持体は、線膨張係数の値に対する3点曲げ応力の値の比が0.3以上である、請求項1または2に記載のワーク保持部材。 The work holding member according to claim 1 or 2, wherein the support has a ratio of a three-point bending stress value to a linear expansion coefficient value of 0.3 or more.
  9.  前記支持体の3点曲げ応力が5N/10mm以上である、請求項8に記載のワーク保持部材。 The workpiece holding member according to claim 8, wherein the three-point bending stress of the support is 5 N/10 mm or more.
  10.  前記支持体の線膨張係数が30×10-6/℃以下である、請求項8に記載のワーク保持部材。 The workpiece holding member according to claim 8, wherein the linear expansion coefficient of the support is 30×10 −6 /° C. or less.
  11.  前記90°剥離力の値Pに対する前記せん断粘着力の値Sの比(S/P)が5以上である、請求項7に記載のワーク保持部材。 The workpiece holding member according to claim 7, wherein the ratio (S/P) of the shear adhesive force value S to the 90° peel force value P is 5 or more.
  12.  前記支持体は、前記接着剤層が積層される面の算術平均粗さRaが2μm以下である、請求項1または2に記載のワーク保持部材。 The work holding member according to claim 1 or 2, wherein the support has an arithmetic mean roughness Ra of 2 μm or less on a surface on which the adhesive layer is laminated.
  13.  前記樹脂組成物は、シリコーン樹脂またはフッ素樹脂を含む、請求項1または2に記載のワーク保持部材。 The work holding member according to claim 1 or 2, wherein the resin composition contains a silicone resin or a fluororesin.
  14.  前記ワーク保持層の見掛け密度は、0.05g/cm以上0.90g/cm以下である、請求項1または2に記載のワーク保持部材。 The work holding member according to claim 1 or 2, wherein the work holding layer has an apparent density of 0.05 g/cm 3 or more and 0.90 g/cm 3 or less.
  15.  前記ワーク保持層の平均気泡径は、1μm以上100μm以下である、請求項1または2に記載のワーク保持部材。 The work holding member according to claim 1 or 2, wherein the work holding layer has an average cell diameter of 1 μm or more and 100 μm or less.
  16.  前記ワーク保持層は、前記接着剤層に当接される面の算術平均粗さRaが0.1μm以上50μm以下である、請求項1または2に記載のワーク保持部材。 The work holding member according to claim 1 or 2, wherein the work holding layer has an arithmetic mean roughness Ra of 0.1 μm or more and 50 μm or less on a surface that comes into contact with the adhesive layer.
  17.  前記ワークは、セラミック基板、シリコン基板、ガラス基板、及び、樹脂フィルム基板からなる群から選択される1種である、請求項1または2に記載のワーク保持部材。 The work holding member according to claim 1 or 2, wherein the work is one type selected from the group consisting of a ceramic substrate, a silicon substrate, a glass substrate, and a resin film substrate.
  18.  前記ワークの表面に電子部品を実装するために用いられる、請求項1または2に記載のワーク保持部材。 The work holding member according to claim 1 or 2, which is used for mounting electronic components on the surface of the work.
  19.  支持体、該支持体上に積層される接着剤層、及び該接着剤層上に積層されてワークを保持するワーク保持層を備えるワーク保持部材と、
     前記ワーク保持層上に保持されているワークと、を備える積層体であって、
     前記ワーク保持部材が、請求項1または2に記載のワーク保持部材である、積層体。
    a work holding member comprising a support, an adhesive layer laminated on the support, and a work holding layer laminated on the adhesive layer to hold the work;
    A laminate comprising: a workpiece held on the workpiece holding layer;
    A laminate, wherein the work holding member is the work holding member according to claim 1 or 2.
PCT/JP2023/029191 2022-08-19 2023-08-09 Workpiece holding member and laminate WO2024038819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-131311 2022-08-19
JP2022131311 2022-08-19

Publications (1)

Publication Number Publication Date
WO2024038819A1 true WO2024038819A1 (en) 2024-02-22

Family

ID=89941590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029191 WO2024038819A1 (en) 2022-08-19 2023-08-09 Workpiece holding member and laminate

Country Status (1)

Country Link
WO (1) WO2024038819A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098720A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Three-dimensional microchemical chip
WO2015098719A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Thermally conductive microchemical chip
JP2019065079A (en) * 2017-09-28 2019-04-25 日東電工株式会社 Temporary fixing sheet
JP2021160300A (en) * 2020-04-01 2021-10-11 日東電工株式会社 Temporary-fixation composite
JP2021174853A (en) * 2020-04-23 2021-11-01 信越ポリマー株式会社 Component holding tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098720A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Three-dimensional microchemical chip
WO2015098719A1 (en) * 2013-12-27 2015-07-02 株式会社朝日Fr研究所 Thermally conductive microchemical chip
JP2019065079A (en) * 2017-09-28 2019-04-25 日東電工株式会社 Temporary fixing sheet
JP2021160300A (en) * 2020-04-01 2021-10-11 日東電工株式会社 Temporary-fixation composite
JP2021174853A (en) * 2020-04-23 2021-11-01 信越ポリマー株式会社 Component holding tool

Similar Documents

Publication Publication Date Title
JP5958262B2 (en) Wafer processing body, wafer processing member, wafer processing temporary adhesive, and thin wafer manufacturing method
EP1850376B1 (en) Electrostatic chuck
US20150122422A1 (en) Thermally conductive silicone sheet, manufacturing method thereof, and plasma processing apparatus using the same
Shinohara et al. Studies on low-temperature direct bonding of VUV/O3-, VUV-and O2 plasma-pre-treated poly-methylmethacrylate
KR20140108133A (en) Thermal conductive composite silicone rubber sheet
JP5481024B2 (en) Laminated board
TW201220974A (en) Stencils for high-throughput micron-scale etching of substrates and processes of making and using the same
KR20150062945A (en) Laminated Structure, Method of Preparing Same, and Method of Fabricating Electronic Device Using Laminated Structure
JP3425521B2 (en) Method for reducing surface tackiness of low hardness thermally conductive silicone rubber sheet
JPWO2018079678A1 (en) LAMINATE AND ELECTRONIC COMPONENT MANUFACTURING METHOD
JP7359458B2 (en) Adhesive body
CN113165343A (en) Adhesive composition for light irradiation peeling, laminate, method for producing laminate, and peeling method
KR100923650B1 (en) Adhesive sheet of cross-linked silicone, method of manufacturing thereof and device comprising the sheet
JPWO2017122819A1 (en) Prepreg, printed wiring board, semiconductor package, and printed wiring board manufacturing method
WO2024038819A1 (en) Workpiece holding member and laminate
WO2017010419A1 (en) Layered body and method for manufacturing same
JP6981256B2 (en) FRP precursors, laminated boards, metal-clad laminated boards, printed wiring boards, semiconductor packages, and methods for manufacturing them.
EP3310142A1 (en) Device heat dissipation method
JP2017170728A (en) Polymer composite film
JP3700908B2 (en) Silicone adhesive sheet
EP3728506A1 (en) Multilayered polyetherketoneketone articles and methods thereof
JP2024022998A (en) Work holding member and laminate
JP2008031405A (en) Method of manufacturing thermoconductive resin composition
JP2024028173A (en) Laminate and its manufacturing method
JP2021160300A (en) Temporary-fixation composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854853

Country of ref document: EP

Kind code of ref document: A1