WO2024038640A1 - 半導体直流遮断器および半導体モジュール - Google Patents

半導体直流遮断器および半導体モジュール Download PDF

Info

Publication number
WO2024038640A1
WO2024038640A1 PCT/JP2023/014742 JP2023014742W WO2024038640A1 WO 2024038640 A1 WO2024038640 A1 WO 2024038640A1 JP 2023014742 W JP2023014742 W JP 2023014742W WO 2024038640 A1 WO2024038640 A1 WO 2024038640A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
switching element
fuse
terminal
abnormal current
Prior art date
Application number
PCT/JP2023/014742
Other languages
English (en)
French (fr)
Inventor
大助 川瀬
康二 佐々木
大輔 前田
邦彦 富安
宇幸 串間
智康 古川
Original Assignee
株式会社日立パワーデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーデバイス filed Critical 株式会社日立パワーデバイス
Publication of WO2024038640A1 publication Critical patent/WO2024038640A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks

Definitions

  • the present invention relates to a semiconductor DC breaker and a semiconductor module.
  • Examples of devices that interrupt current when abnormal current occurs include fuses, mechanical DC circuit breakers, and semiconductor DC circuit breakers.
  • Patent Document 1 which uses a fuse
  • FIG. 1 provides a semiconductor module capable of continuous operation.
  • the semiconductor module of the embodiment has a first external terminal, a second external terminal, a first external terminal and a second external terminal. a first semiconductor switching element electrically connected between the terminal and having a first gate electrode; and a first semiconductor switching element between the first external terminal and the second external terminal. a second semiconductor switching element electrically connected in parallel and having a second gate electrode; a first fuse electrically connected between the first external terminal and the first semiconductor switching element; and a second fuse electrically connected between the second external terminal and the first semiconductor switching element.
  • the disconnection device (1) includes a semiconductor switch (20), a current sensor (30) that detects the current value flowing through the semiconductor switch (20), and a semiconductor switch based on a time limit characteristic that indicates the allowable continuous energization time corresponding to the current value. and a control circuit (10) that shuts off the switch (20).''
  • Patent Document 1 when one of a plurality of semiconductor switching elements connected in parallel as shown in FIG. Since the first fuse and the second fuse are cut off at the same time and the current path to the gate electrode is cut off, the remaining semiconductor switching elements can continue operating. However, once a fuse is blown, it cannot be reused.
  • a semiconductor DC circuit breaker such as that disclosed in Patent Document 2 detects an abnormal current and shuts it off using a semiconductor switch, so it can be reused after shutting off.
  • semiconductor DC circuit breakers have the advantage of being able to quickly cut off abnormal currents due to the high-speed breaking characteristics of semiconductors, and being able to suppress damage to equipment to be protected.
  • semiconductor switching elements have the problem that accidental failures may occur due to cosmic rays and the like.
  • the problem to be solved by the present invention is to provide a redundant semiconductor DC breaker that can cut off the current even if the semiconductor switching element for cutting off the current when abnormal current is detected fails, and a semiconductor DC breaker for use therein.
  • the objective is to provide a suitable semiconductor module.
  • the semiconductor DC breaker of the present invention includes, for example, a semiconductor DC breaker having a semiconductor switching element that cuts off a main current when an abnormal current is detected, and a fuse connected in series to the semiconductor switching element, and a fuse that detects the abnormal current. a gate drive unit that turns off the semiconductor switching element when the abnormal current is detected by the abnormal current detection unit, and a gate drive unit that turns off the semiconductor switching element; The fusing current of the fuse is set to be smaller than the blowing current of the fuse.
  • the semiconductor module of the present invention includes, for example, a semiconductor switching element having a first main terminal and a second main terminal, a housing containing the semiconductor switching element, and a semiconductor switching element connected to the first main terminal.
  • the semiconductor switching element is a reference of the first switching element having the first main terminal.
  • a bidirectional switch configured by connecting a potential terminal and a reference potential terminal of a second switching element having the second main terminal, connected in series with the semiconductor switching element, and built in the housing.
  • the invention is characterized in that it further includes a fuse.
  • a semiconductor DC breaker having redundancy capable of interrupting current even if a semiconductor switching element for interrupting current when abnormal current is detected fails, and a semiconductor module suitable for use therein. can be realized.
  • FIG. 1 is a circuit diagram of a semiconductor DC breaker and a semiconductor module of Example 1.
  • FIG. 1 is a perspective view of a semiconductor module of Example 1.
  • FIG. 2 is a perspective view of the inside of the semiconductor module of Example 1.
  • FIG. 3 is a top view of the inside of the semiconductor module of Example 1.
  • FIG. 3 is a top view of the inside of the semiconductor module of Example 1.
  • FIG. 3 is a top view of a first external terminal and a fuse of the semiconductor module of Example 1.
  • FIG. 3 is a circuit diagram of a semiconductor DC breaker and a semiconductor module according to a second embodiment.
  • FIG. 2 is a perspective view of the inside of a semiconductor module according to a second embodiment.
  • FIG. 3 is a top view of the inside of the semiconductor module of Example 2.
  • FIG. 3 is a circuit diagram of a semiconductor DC breaker and a semiconductor module of Example 3.
  • FIG. 4 is a circuit diagram of a semiconductor DC breaker and a semiconductor module according to a fourth
  • FIG. 1 is a circuit diagram of a semiconductor DC breaker and a semiconductor module of Example 1.
  • the semiconductor DC breaker 1 of the first embodiment is connected between the power supply 3 and the protected equipment 4, and interrupts the current when abnormal current is detected.
  • the semiconductor DC breaker 1 includes a semiconductor switching element 21 that cuts off the main current when an abnormal current is detected, a fuse 25 connected in series to the semiconductor switching element 21, and an abnormal current detection section 11 that detects the abnormal current. and a gate drive section 12 that turns off the semiconductor switching element 21 when the abnormal current detection section 11 detects an abnormal current.
  • the magnitude of the abnormal current that turns off the semiconductor switching element 21 is set to be smaller than the blowing current of the fuse 25. Note that the blowing current of the fuse 25 is set to be less than or equal to the allowable current of the device 4 to be protected.
  • the semiconductor switching element 21 is configured as a bidirectional switch in which a reference potential terminal of a first switching element 21a and a reference potential terminal of a second switching element 21b are connected. This allows current in either direction to be interrupted. Note that if there is no need to cut off in both directions, a unidirectional semiconductor switching element 21 may be used.
  • FIG. 1 shows an example in which MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) are used as the first switching element 21a and the second switching element 21b, the present invention is not limited to this, and MOSFETs (Insulated Gate Bipolar Transistors), etc. Other semiconductor switching elements may also be used.
  • MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • MOSFETs Insulated Gate Bipolar Transistors
  • the semiconductor switching element 21 is a MOSFET
  • the reference potential terminal through which the main current flows is the source S, which is one of the main terminals.
  • a diode 22 constituted by a body diode built into a MOSFET is connected in antiparallel to the drain D, which is another main terminal through which the main current flows. Then, a control signal from the gate driving section 12 is input to the gate G to control on/off.
  • the source may be read as an emitter
  • the drain may be read as a collector
  • an external diode may be used as the diode 22.
  • the semiconductor DC breaker 1 has a semiconductor module 2 that includes a semiconductor switching element 21.
  • FIG. 2 is a perspective view of the semiconductor module of Example 1
  • FIG. 3 is a perspective view of the inside of the semiconductor module of Example 1
  • FIGS. 4 and 5 are views of the inside of the semiconductor module of Example 1.
  • 6 is a top view of the first external terminal and fuse of the semiconductor module of Example 1.
  • FIG. 5 shows external terminals, auxiliary terminals, and connection wiring integrally formed therewith, they are omitted from FIG. 4.
  • the semiconductor module 2 includes a semiconductor switching element 21 , a housing 38 containing the semiconductor switching element 21 , a first external terminal 31 , and a second external terminal 32 .
  • the first external terminal 31 is connected to the first main terminal of the semiconductor switching element 21
  • the second external terminal 32 is connected to the second main terminal of the semiconductor switching element 21 .
  • FIG. 1 shows an example in which the first main terminal is the drain D of the first switching element 21a, and the second main terminal is the drain D of the second switching element 21b.
  • the fuse 25 connected in series with the semiconductor switching element 21 is also built into the casing 38 of the semiconductor module 2.
  • the built-in fuse 25 is formed from a part of the wiring inside the casing 38, and is designed to blow when a predetermined blowing current flows.
  • the fuse 25 can be provided between the semiconductor switching element 21 and the device 4 to be protected.
  • the method for forming the fuse 25 is not limited to this.
  • a part of the connection wiring 31a formed integrally with the first external terminal 31 may be made thinner, or a material having a lower melting point than the other part may be used.
  • the fuse 25 may be formed depending on the configuration.
  • the inside of the casing 38 of the semiconductor module 2 is sealed with gel such as silicone gel (not shown), and the fuse 25 is also sealed with gel. This improves the dielectric strength of the fuse 25 and allows it to be made smaller.
  • the fuse 25 has parasitic resistance and parasitic inductance.
  • the wiring of the semiconductor module 2 also has parasitic resistance and parasitic inductance.
  • the parasitic resistance 23 shown in FIG. 1 includes the parasitic resistance of the wiring and the parasitic resistance of the fuse 25, and the parasitic inductance 24 includes the parasitic inductance of the wiring and the parasitic inductance of the fuse 25.
  • the abnormal current detection unit 11 of the first embodiment also utilizes the parasitic resistance or parasitic inductance of the fuse 25 and detects the abnormal current based on the voltage including the voltage generated across the parasitic resistance or parasitic inductance of the fuse 25.
  • the structure is as follows.
  • the semiconductor module 2 is configured to have a measurement terminal that can measure a voltage including the voltage generated across the parasitic resistance or parasitic inductance of the fuse 25 as an external terminal connected to the outside of the casing 38.
  • the abnormal current measurement auxiliary terminal 37 and the first drain sense auxiliary terminal 35 shown in FIG. 3 can be used as the measurement terminals.
  • the abnormal current measurement auxiliary terminal 37 is a terminal connected to the right side of the abnormal current detection section 11 in FIG. 1, and is directly connected to the first external terminal 31 in FIG. Note that the abnormal current measurement auxiliary terminal 37 is not limited to this, and may be directly connected to the connection wiring 31a as long as it is closer to the first external terminal 31 than the fuse 25.
  • the first embodiment shows an example in which the abnormal current measurement auxiliary terminal 37 is provided on only one of the two first external terminals 31, it may be provided on the other first external terminal 31. However, it may be provided on both first external terminals 31. Further, the number of first external terminals 31 may be only one.
  • the first drain sense auxiliary terminal 35 is a terminal connected to the left side of the abnormal current detection section 11 in FIG. 1, and is connected to the first drain sense pad 45 in FIG. 5. Thereby, the potential of the drain D of the first switching element 21a can be measured.
  • two first drain sense auxiliary terminals 35 are provided, but only one may be provided.
  • the first drain sense auxiliary terminal 35 is larger than the other auxiliary terminals and has a shape similar to the first external terminal 31 . This makes it possible to reuse AC terminal components of semiconductor modules used in power converters and the like.
  • the first drain sense auxiliary terminal 35 is not limited to this, and may have a small shape similar to other auxiliary terminals.
  • the semiconductor module 2 of the first embodiment has six insulating substrates 47 on the base plate 39.
  • a wiring layer 48 is formed on the insulating substrate 47, and a portion of the wiring layer 48 functions as a pad.
  • the two large ones each have a plurality of first switching elements 21a mounted thereon, and are connected by a bonding material such as solder, a bonding wire 49, etc. .
  • the remaining one is an auxiliary substrate having a gate pad 43 connected to the gate G of the first switching element 21a and a source sense pad 44 connected to the source sense of the first switching element 21a.
  • auxiliary substrate having a gate pad 43 connected to the gate G of the second switching element 21b and a source sense pad 44 connected to the source sense of the second switching element 21b.
  • first switching elements 21a and second switching elements 21b are used, and a two-parallel configuration is used with an insulating substrate 47 on the left side and an insulating substrate 47 on the right side.
  • the configuration is not limited to this, and a configuration with three or more parallel connections may be used, or a single path may be used instead of being divided into left and right sides.
  • the gate pad 43 and the source sense pad 44 may be provided on the insulating substrate 47 on which the first switching element 21a and the second switching element 21b are mounted, without using an auxiliary substrate.
  • the first switching element 21a and the second switching element 21b may be mounted on one insulating substrate 47 without dividing into an upper side and a lower side. That is, the number of insulating substrates 47 is arbitrary.
  • the semiconductor module 2 includes, as external terminals, a first external terminal 31, a second external terminal 32, a gate auxiliary terminal 33, a source sense auxiliary terminal 34, and a first It has a drain sense auxiliary terminal 35, a second drain sense auxiliary terminal 36, and an abnormal current measurement auxiliary terminal 37.
  • the first external terminal 31 is connected to the first drain pad 41 and connected to the drain D of the first switching element 21a, through which the main current flows.
  • the second external terminal 32 is connected to the second drain pad 42 and connected to the drain D of the second switching element 21b, through which the main current flows.
  • the right gate auxiliary terminal 33 is connected to the upper gate pad 43 and to the gate G of the first switching element 21a.
  • the left gate auxiliary terminal 33 is connected to the lower gate pad 43 and to the gate G of the second switching element 21b.
  • the right source sense auxiliary terminal 34 is connected to the upper source sense pad 44 and to the source sense of the first switching element 21a.
  • the left source sense auxiliary terminal 34 is connected to the lower source sense pad 44 and to the source sense of the second switching element 21b.
  • the gate auxiliary terminal 33 and the source sense auxiliary terminal 34 are connected to the gate drive section 12, and the semiconductor switching element 21 is driven by a control signal from the gate drive section 12.
  • the first drain sense auxiliary terminal 35 and the abnormal current measurement auxiliary terminal 37 are as already described, so their explanation will be omitted.
  • the second drain sense auxiliary terminal 36 is connected to the second drain sense pad 46. Thereby, the potential of the drain D of the second switching element 21b can be measured. Note that in the first embodiment, only one second drain sense auxiliary terminal 36 is provided, but two or more may be provided.
  • fuses 25 are connected in series.
  • the fuse 25 has a large inductance because it is necessary to set a high current density so that the fuse 25 blows when a predetermined blowing current flows. If the inductance increases by connecting the fuses 25 in series, the surge voltage will increase when the semiconductor switching element 21 is cut off, so an element with high breakdown voltage will be required as the semiconductor switching element 21. However, increasing the breakdown voltage of the semiconductor switching element 21 causes an increase in the on-resistance of the semiconductor switching element 21, resulting in a problem of increased loss.
  • Example 1 a configuration including a clamp circuit was adopted in order to suppress the surge voltage.
  • a clamp circuit that includes the semiconductor switching element 21 in its path and does not include the fuse 25 in its path, the influence of the inductance of the fuse 25 can be suppressed.
  • Example 1 shows an example having two types of clamp circuits.
  • the first clamp circuit is configured with a path including a first switching element 21a, a Zener diode 26 connected between a gate G and a drain D of the first switching element 21a, and a gate driver 12. This is the clamp circuit that is used.
  • a drain surge voltage is induced and the Zener diode 26
  • the avalanche current is charged to the gate G of the first switching element 21a, so that the switching speed can be slowed down and shut off can be performed slowly. This makes it possible to limit the maximum voltage between the source S and the drain D, making it possible to use a semiconductor switching element 21 with a low breakdown voltage.
  • the Zener diode 26 connected to the first switching element 21a may be connected between the gate auxiliary terminal 33 and the first drain sense auxiliary terminal 35 of the first switching element 21a. Note that, since it is desirable that the parasitic inductance be small, a drain sense auxiliary terminal composed of a terminal smaller than the first drain sense auxiliary terminal 35 may be separately provided and connected thereto.
  • a Zener diode 26 is also provided between the gate G and drain D of the second switching element 21b, so that the second switching element 21b is A clamp circuit including element 21b in its path is provided.
  • the Zener diode 26 connected to the second switching element 21b may be connected between the gate auxiliary terminal 33 and the second drain sense auxiliary terminal 36 of the second switching element 21b.
  • the second drain sense auxiliary terminal 36 is preferable because it is desirable that the parasitic inductance is small.
  • the configuration is such that even if the inductance increases by connecting the fuses 25 in series, it will not be affected.
  • the second clamp circuit is a clamp circuit configured with a path including a semiconductor switching element 21 and a varistor 13 connected to both ends of the semiconductor switching element 21.
  • the inductance shown next to the varistor 13 in FIG. 1 is the parasitic inductance of this clamp circuit.
  • the varistor 13 for example, a metal oxide varistor (MOV) can be used.
  • MOV metal oxide varistor
  • the resistance decreases due to avalanche, and the current bypasses and flows to the varistor 13 side, so it is possible to use a semiconductor switching element 21 with a low breakdown voltage.
  • the second clamp circuit since the first clamp circuit applies a thermal load to the semiconductor switching element 21 during operation of the first clamp circuit, the second clamp circuit has the effect of reducing the thermal load.
  • One side of the varistor 13 may be connected to the first drain sense auxiliary terminal 35, and the other may be connected to the second drain sense auxiliary terminal 36 or the second external terminal 32. Since the second external terminal 32 has a larger current capacity than the second drain sense auxiliary terminal 36, it is desirable to connect it to the second external terminal 32. Similarly, it is desirable that the first drain sense auxiliary terminal 35 has a larger current capacity than the other auxiliary terminals.
  • the configuration is such that even if the inductance increases by connecting the fuses 25 in series, it will not be affected.
  • Zener diode 26 and the varistor 13 are provided outside the semiconductor module 2 in FIG. 1, at least one of them may be built into the semiconductor module 2. Similarly, one or both of the abnormal current detection section 11 and the gate drive section 12 may be built into the semiconductor module 2.
  • the semiconductor DC circuit breaker 1 has redundancy that can cut off the current even if the semiconductor switching element 21 for cutting off the current when abnormal current is detected fails;
  • a semiconductor module 2 suitable for use therein can be realized.
  • Example 2 is a modification of Example 1.
  • the second embodiment differs from the first embodiment in the method of realizing the fuse 25.
  • the second embodiment is the same as the first embodiment, so the explanation will focus on the differences, and redundant explanation will be omitted.
  • FIG. 7 is a circuit diagram of the semiconductor DC breaker and semiconductor module of Example 2
  • FIG. 8 is a perspective view of the inside of the semiconductor module of Example 2
  • FIG. 9 is a circuit diagram of the semiconductor module of Example 2. It is a top view of the inside. 7 corresponds to FIG. 1, FIG. 8 corresponds to FIG. 3, and FIG. 9 corresponds to FIG. 4.
  • the fuse 25 is connected between the source S, which is the reference potential terminal of the first switching element 21a, and the source S, which is the reference potential terminal of the second switching element 21b. is formed. Note that even in this case, since they are connected in series on the current path, it is interpreted that the fuse 25 and the semiconductor switching element 21 are connected in series.
  • Embodiment 2 is the same as Embodiment 1 in that the built-in fuse 25 is formed by a part of the wiring inside the casing 38, and is designed to blow when a predetermined blowing current flows.
  • the bonding wire 49 connecting between the insulating substrate 47 on which the first switching element 21a is mounted and the insulating substrate 47 on which the second switching element 21b is mounted is This number is smaller than that of the fuse 25, which allows it to function as a fuse 25. Therefore, this embodiment has the advantage of being easier to implement than the first embodiment.
  • the fuse 25 of Example 2 can also be sealed with gel.
  • the parasitic resistance and parasitic inductance of the fuse 25 are not included in the parasitic resistance 23 and the parasitic inductance 24, so the sensitivity for detecting abnormal current is higher in the first embodiment. Also, since the fuse 25 is not included in the path of the first clamp circuit, it is the same as the first embodiment, so the same effect can be obtained, but the fuse 25 is not included in the path of the second clamp circuit. Therefore, the second clamp circuit is different from the first embodiment in that the second clamp circuit is affected by an increase in inductance due to the series connection of the fuses 25.
  • Example 3 is a modification of Example 1.
  • the third embodiment differs from the first embodiment in that the fuse 25 is provided outside the semiconductor module 2.
  • the second embodiment is the same as the first embodiment, so the explanation will focus on the differences, and redundant explanation will be omitted.
  • FIG. 10 is a circuit diagram of a semiconductor DC breaker and a semiconductor module of Example 3.
  • FIG. 10 is a diagram corresponding to FIG. 1.
  • the fuse 25 is provided outside the semiconductor module 2. Therefore, it is possible to use a general fuse 25.
  • Example 4 is a modification of Example 3.
  • the fourth embodiment is different from the third embodiment in the detection method by the abnormal current detection section 11.
  • the third embodiment is the same as the third embodiment, so the explanation will focus on the differences, and redundant explanation will be omitted.
  • FIG. 11 is a circuit diagram of a semiconductor DC breaker and a semiconductor module of Example 4.
  • FIG. 11 is a diagram corresponding to FIG. 10.
  • the fuse 25 is provided outside the semiconductor module 2 as in the third embodiment. Therefore, it is possible to use a general fuse 25.
  • the abnormal current detection unit 11 detects an abnormal current based on the voltage including the voltage generated across the parasitic resistance or parasitic inductance of the fuse 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Power Conversion In General (AREA)
  • Protection Of Static Devices (AREA)

Abstract

異常電流を検出した時に電流を遮断するための半導体スイッチング素子が故障した場合でも電流の遮断が可能な冗長性を有する半導体直流遮断器を提供する。異常電流の検出時に主電流を遮断する半導体スイッチング素子21を有する半導体直流遮断器1において、半導体スイッチング素子21に直列に接続されたヒューズ25と、異常電流を検出する異常電流検出部11と、異常電流検出部11で異常電流が検出された場合に半導体スイッチング素子21をオフするゲート駆動部12と、を有し、半導体スイッチング素子21をオフする異常電流の大きさが、ヒューズ25の溶断電流よりも小さく設定されている。

Description

半導体直流遮断器および半導体モジュール
 本発明は、半導体直流遮断器および半導体モジュールに関する。
 異常電流が発生した場合に電流を遮断する機器としては、例えば、ヒューズや、機械式直流遮断器や、半導体直流遮断器などがある。
 半導体直流遮断器ではないが、ヒューズを用いたものとしては、例えば特許文献1があり、特許文献1の要約および図1には、「動作中に1個の半導体スイッチング素子が短絡故障した場合でも、動作の継続が可能な半導体モジュールを提供する。」こと、および、「実施形態の半導体モジュールは、第1の外部端子と、第2の外部端子と、第1の外部端子と第2の外部端子との間に電気的に接続され、第1のゲート電極を有する第1の半導体スイッチング素子と、第1の外部端子と第2の外部端子との間に第1の半導体スイッチング素子に対して電気的に並列に接続され、第2のゲート電極を有する第2の半導体スイッチング素子と、第1の外部端子と第1の半導体スイッチング素子との間に電気的に接続された第1のヒューズと、第2の外部端子と第1の半導体スイッチング素子との間に電気的に接続された第2のヒューズと、を備える。」ことが記載されている。
 また、半導体直流遮断器としては、例えば特許文献2があり、特許文献2の要約および図1には、「従来よりも汎用性に優れた半導体遮断装置を提供する。」こと、および、「半導体遮断装置(1)は、半導体スイッチ(20)と、半導体スイッチ(20)に流れる電流値を検出する電流センサ(30)と、上記電流値に対応する連続通電許容時間を示す限時特性に基づき半導体スイッチ(20)を遮断する制御回路(10)と、を備えている。」ことが記載されている。
特開2020-47674号公報 特開2022-39777号公報
 特許文献1によれば、特許文献1の図6のように並列接続された複数の半導体スイッチング素子のうち1つが短絡故障した場合に、短絡故障した半導体スイッチング素子の両側に直列に接続された第1のヒューズと第2のヒューズが同時に切断され、ゲート電極への電流経路を遮断するので、残りの半導体スイッチング素子で動作の継続が可能となる。しかしながら、一度切断されたヒューズは再利用することができない。
 一方、特許文献2のような半導体直流遮断器であれば、異常電流を検出して半導体スイッチにより遮断するので、遮断後に再利用することが可能である。半導体直流遮断器は、機械式直流遮断器と比較して、半導体の高速遮断特性により異常電流の速やかな遮断が可能であり、保護対象機器へのダメージを抑制できる利点がある。
 しかしながら、半導体スイッチング素子は宇宙線などによる偶発故障がおこり得るという問題がある。
 本発明が解決しようとする課題は、異常電流を検出した時に電流を遮断するための半導体スイッチング素子が故障した場合でも電流の遮断が可能な冗長性を有する半導体直流遮断器と、それに用いるのに適した半導体モジュールを提供することである。
 本発明の半導体直流遮断器は、例えば、異常電流の検出時に主電流を遮断する半導体スイッチング素子を有する半導体直流遮断器において、前記半導体スイッチング素子に直列に接続されたヒューズと、前記異常電流を検出する異常電流検出部と、前記異常電流検出部で前記異常電流が検出された場合に前記半導体スイッチング素子をオフするゲート駆動部と、を有し、前記半導体スイッチング素子をオフする前記異常電流の大きさが、前記ヒューズの溶断電流よりも小さく設定されていることを特徴とする。
 また、本発明の半導体モジュールは、例えば、第1の主端子および第2の主端子を有する半導体スイッチング素子と、前記半導体スイッチング素子を内蔵する筐体と、前記第1の主端子に接続された第1の外部端子と、前記第2の主端子に接続された第2の外部端子とを有する半導体モジュールにおいて、前記半導体スイッチング素子は、前記第1の主端子を有する第1のスイッチング素子の基準電位端子と前記第2の主端子を有する第2のスイッチング素子の基準電位端子とが接続されて構成された双方向スイッチであり、前記半導体スイッチング素子と直列に接続され、前記筐体内に内蔵されたヒューズをさらに有することを特徴とする。
 本発明によれば、異常電流を検出した時に電流を遮断するための半導体スイッチング素子が故障した場合でも電流の遮断が可能な冗長性を有する半導体直流遮断器と、それに用いるのに適した半導体モジュールを実現できる。
実施例1の半導体直流遮断器および半導体モジュールの回路図。 実施例1の半導体モジュールの斜視図。 実施例1の半導体モジュールの内部の斜視図。 実施例1の半導体モジュールの内部の上面図。 実施例1の半導体モジュールの内部の上面図。 実施例1の半導体モジュールの第1の外部端子およびヒューズの上面図。 実施例2の半導体直流遮断器および半導体モジュールの回路図。 実施例2の半導体モジュールの内部の斜視図。 実施例2の半導体モジュールの内部の上面図。 実施例3の半導体直流遮断器および半導体モジュールの回路図。 実施例4の半導体直流遮断器および半導体モジュールの回路図。
 以下、図面を用いて本発明の実施例を説明する。各図、各実施例において、同一または類似の構成要素については同じ符号を付け、重複する説明は省略する。
 図1は、実施例1の半導体直流遮断器および半導体モジュールの回路図である。
 実施例1の半導体直流遮断器1は、電源3と保護対象機器4との間に接続され、異常電流の検出時に電流を遮断する。ここで、半導体直流遮断器1は、異常電流の検出時に主電流を遮断する半導体スイッチング素子21と、半導体スイッチング素子21に直列に接続されたヒューズ25と、異常電流を検出する異常電流検出部11と、異常電流検出部11で異常電流が検出された場合に半導体スイッチング素子21をオフするゲート駆動部12とを有する。そして、半導体スイッチング素子21をオフする異常電流の大きさが、ヒューズ25の溶断電流よりも小さく設定されている。なお、ヒューズ25の溶断電流は、保護対象機器4の許容電流以下に設定されている。
 このような構成により、異常電流が流れた際に、異常電流を検出して、ヒューズ25が溶断する前に半導体スイッチング素子21をオフして電流を遮断することができるので、半導体直流遮断器1を再利用することが可能であるとともに、半導体スイッチング素子21が宇宙線などによって故障した場合でも、直列に接続されたヒューズ25が溶断することで電流の遮断が可能となる。すなわち、異常電流を検出した時に電流を遮断するための半導体スイッチング素子21が故障した場合でも電流の遮断が可能な冗長性を有する。
 半導体スイッチング素子21は、第1のスイッチング素子21aの基準電位端子と第2のスイッチング素子21bの基準電位端子とが接続されて構成された双方向スイッチで構成されている。これにより、どちらの方向の電流でも遮断することができる。なお、双方向で遮断する必要がない場合は、一方向の半導体スイッチング素子21を用いてもよい。
 図1では、第1のスイッチング素子21aと第2のスイッチング素子21bとしてMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いた例を示しているが、これに限られず、IGBT(Insulated Gate Bipolar Transistor)などの他の半導体スイッチング素子を用いてもよい。
 半導体スイッチング素子21がMOSFETの場合、主電流が流れる基準電位端子は主端子の1つであるソースSである。そして、主電流が流れるもう1つの主端子であるドレインDとの間に、MOSFETが内蔵するボディダイオードで構成されたダイオード22が逆並列に接続されている。そして、ゲートGにゲート駆動部12からの制御信号が入力されてオン、オフが制御される。なお、IGBTの場合は、ソースをエミッタと読み替え、ドレインをコレクタと読み替え、ダイオード22は外付けのダイオードを用いればよい。
 半導体直流遮断器1は、半導体スイッチング素子21を内蔵する半導体モジュール2を有している。
 図2は、実施例1の半導体モジュールの斜視図であり、図3は、実施例1の半導体モジュールの内部の斜視図であり、図4および図5は、実施例1の半導体モジュールの内部の上面図であり、図6は、実施例1の半導体モジュールの第1の外部端子およびヒューズの上面図である。なお、図5では、外部端子および補助端子と、それらに一体に形成された接続配線を図示しているが、図4ではそれらを図示省略している。
 半導体モジュール2は、半導体スイッチング素子21と、半導体スイッチング素子21を内蔵する筐体38と、第1の外部端子31と、第2の外部端子32とを有する。第1の外部端子31は、半導体スイッチング素子21の第1の主端子に接続され、第2の外部端子32は、半導体スイッチング素子21の第2の主端子に接続されている。図1では、第1の主端子は第1のスイッチング素子21aのドレインDであり、第2の主端子は第2のスイッチング素子21bのドレインDである例を示している。
 さらに、実施例1では、半導体スイッチング素子21と直列に接続されたヒューズ25も半導体モジュール2の筐体38内に内蔵されている。そして、この内蔵されたヒューズ25は、筐体38内の配線の一部で形成されており、所定の溶断電流が流れた時に溶断するようになっている。
 実施例1では、内蔵されたヒューズ25の一例として、図6に示すように、ヒューズ25は、第1の外部端子31と一体に形成された接続配線31aの一部が細くなっていることにより形成されている。これにより、図1に示すように、半導体スイッチング素子21と保護対象機器4との間にヒューズ25を設けることができる。なお、ヒューズ25の形成方法はこれに限られず、例えば、第1の外部端子31と一体に形成された接続配線31aの一部が薄くなっている、または、他の部分より融点の低い材料で構成されていることによってヒューズ25を形成してもよい。
 また、半導体モジュール2の筐体38内は、図示しないシリコーンゲルなどのゲルで封止されており、ヒューズ25もゲルにより封止されている。これによって、ヒューズ25の絶縁耐圧が向上し、小型化することができる。
 また、ヒューズ25は、寄生抵抗および寄生インダクタンスを有している。そして、半導体モジュール2の配線も、寄生抵抗および寄生インダクタンスを有している。図1に示す寄生抵抗23は、配線の寄生抵抗とヒューズ25の寄生抵抗とを含んだものであり、寄生インダクタンス24は、配線の寄生インダクタンスとヒューズ25の寄生インダクタンスとを含んだものである。
 そこで、実施例1の異常電流検出部11は、ヒューズ25の寄生抵抗または寄生インダクタンスも利用し、ヒューズ25の寄生抵抗または寄生インダクタンスの両端に生じる電圧を含んだ電圧に基づいて異常電流を検出する構成とした。
 そのために、半導体モジュール2は、筐体38の外部と接続される外部端子として、ヒューズ25の寄生抵抗または寄生インダクタンスの両端に生じる電圧を含んだ電圧を計測可能な計測端子を有する構成とした。実施例1では、計測端子として、図3に示す異常電流計測用補助端子37と、第1のドレインセンス補助端子35とを用いることができる。
 異常電流計測用補助端子37は、図1の異常電流検出部11の右側に接続される端子であり、図3において、第1の外部端子31に直接接続されている。なお、異常電流計測用補助端子37は、これに限られず、ヒューズ25よりも第1の外部端子31側であれば、接続配線31aに直接接続されていてもよい。なお、実施例1では2つある第1の外部端子31のうち一方のみに異常電流計測用補助端子37を設けた例を示しているが、他方の第1の外部端子31に設けてもよいし、両方の第1の外部端子31に設けてもよい。また、第1の外部端子31を1つだけにしてもよい。
 第1のドレインセンス補助端子35は、図1の異常電流検出部11の左側に接続される端子であり、図5の第1のドレインセンスパッド45に接続されている。これにより、第1のスイッチング素子21aのドレインDの電位を計測可能となる。なお、実施例1では第1のドレインセンス補助端子35を2つ設けているが、1つだけにしてもよい。また、第1のドレインセンス補助端子35は、他の補助端子よりも大きく、第1の外部端子31に近い形状の外部端子となっている。これによって電力変換装置などに用いられる半導体モジュールの交流端子の部品を流用することができる。なお、第1のドレインセンス補助端子35は、これに限られず、他の補助端子と同様の小さな形状としてもよい。
 図3から図5に示すように、実施例1の半導体モジュール2は、ベースプレート39の上に、6枚の絶縁基板47を有している。絶縁基板47の上には、配線層48が形成されており、そのうちの一部がパッドとして機能する。
 図4に示すように、上側の3枚の絶縁基板47のうち、大きな2枚はそれぞれ複数の第1のスイッチング素子21aが搭載され、はんだなどの接合材やボンディングワイヤ49などによって接続されている。残りの1枚は、第1のスイッチング素子21aのゲートGに接続されたゲートパッド43と第1のスイッチング素子21aのソースセンスに接続されたソースセンスパッド44とを有する補助基板である。
 同様に、下側の3枚の絶縁基板47のうち、大きな2枚はそれぞれ複数の第2のスイッチング素子21bが搭載されている。残りの1枚は、第2のスイッチング素子21bのゲートGに接続されたゲートパッド43と第2のスイッチング素子21bのソースセンスに接続されたソースセンスパッド44とを有する補助基板である。
 ここでは、電流容量を確保するために複数の第1のスイッチング素子21a、第2のスイッチング素子21bを用いるとともに、左側の絶縁基板47と右側の絶縁基板47で2並列の構成としているが、これに限られず、3並列以上の構成としてもよいし、左側と右側に分けずに1つの経路としてもよい。また、補助基板を用いず第1のスイッチング素子21a、第2のスイッチング素子21bが搭載された絶縁基板47にゲートパッド43とソースセンスパッド44とを設ける構成としてもよい。また、上側と下側に分けずに、1つの絶縁基板47に第1のスイッチング素子21aと第2のスイッチング素子21bとを搭載してもよい。すなわち、絶縁基板47の枚数は任意である。
 図3および図5に示すように、半導体モジュール2は、外部端子として、第1の外部端子31と、第2の外部端子32と、ゲート補助端子33と、ソースセンス補助端子34と、第1のドレインセンス補助端子35と、第2のドレインセンス補助端子36と、異常電流計測用補助端子37とを有している。
 第1の外部端子31は、第1のドレインパッド41に接続され、第1のスイッチング素子21aのドレインDと接続されて、主電流が流れる。第2の外部端子32は、第2のドレインパッド42に接続され、第2のスイッチング素子21bのドレインDと接続されて、主電流が流れる。
 右側のゲート補助端子33は、上側のゲートパッド43に接続され、第1のスイッチング素子21aのゲートGに接続されている。左側のゲート補助端子33は、下側のゲートパッド43に接続され、第2のスイッチング素子21bのゲートGに接続されている。
 右側のソースセンス補助端子34は、上側のソースセンスパッド44に接続され、第1のスイッチング素子21aのソースセンスに接続されている。左側のソースセンス補助端子34は、下側のソースセンスパッド44に接続され、第2のスイッチング素子21bのソースセンスに接続されている。
 ゲート補助端子33とソースセンス補助端子34は、ゲート駆動部12に接続され、ゲート駆動部12からの制御信号により半導体スイッチング素子21が駆動される。
 第1のドレインセンス補助端子35と、異常電流計測用補助端子37は、すでに説明した通りであるため説明を省略する。
 第2のドレインセンス補助端子36は、第2のドレインセンスパッド46に接続されている。これにより、第2のスイッチング素子21bのドレインDの電位を計測可能となる。なお、実施例1では第2のドレインセンス補助端子36を1つのみ設けているが、2つ以上設けてもよい。
 次に、実施例1のクランプ回路について説明する。
 図1に示すように、実施例1では、ヒューズ25を直列接続している。ヒューズ25は、所定の溶断電流が流れたときに溶断するよう電流密度を高く設定する必要があるため、インダクタンスが大きい。ヒューズ25を直列接続することによってインダクタンスが増大すると、半導体スイッチング素子21を遮断したときにサージ電圧が増大するので、半導体スイッチング素子21として高耐圧の素子が必要となってしまう。しかしながら、半導体スイッチング素子21の高耐圧化は半導体スイッチング素子21のオン抵抗の増大をもたらすので、損失が大きくなってしまうという問題がある。
 そこで、実施例1では、サージ電圧を抑制するために、クランプ回路を有する構成とした。半導体スイッチング素子21を経路内に含み、かつ、ヒューズ25を経路内に含まないクランプ回路を設けることで、ヒューズ25のインダクタンスによる影響を抑制することができる。
 実施例1では、2種類のクランプ回路を有する例を示している。
 1つ目のクランプ回路は、第1のスイッチング素子21aと、第1のスイッチング素子21aのゲートGとドレインDとの間に接続されたツェナーダイオード26と、ゲート駆動部12とを含む経路で構成されるクランプ回路である。異常電流が検出されて、ゲート駆動部12により第1のスイッチング素子21aのゲートから電荷を抜き、第1のスイッチング素子21aに流れる電流を遮断する際に、ドレインサージ電圧が誘起され、ツェナーダイオード26にアバランシェ電圧を越える電圧が印加されると、アバランシェ電流が第1のスイッチング素子21aのゲートGに充電されるので、スイッチングスピードを遅くしてゆっくり遮断することができる。これにより、ソースSとドレインDとの間の最大電圧を制限することができ、低い耐圧の半導体スイッチング素子21を用いることが可能となる。
 第1のスイッチング素子21aに接続されるツェナーダイオード26は、第1のスイッチング素子21aのゲート補助端子33と第1のドレインセンス補助端子35との間に接続すればよい。なお、寄生インダクタンスは小さい方が望ましいため、第1のドレインセンス補助端子35よりも小さい端子で構成されたドレインセンス補助端子を別途設け、そちらに接続するようにしてもよい。
 また、図1に示すように、第2のスイッチング素子21b側についても同様に、第2のスイッチング素子21bのゲートGとドレインDとの間にもツェナーダイオード26を設けることで、第2のスイッチング素子21bを経路内に含むクランプ回路を設けている。第2のスイッチング素子21bに接続されるツェナーダイオード26は、第2のスイッチング素子21bのゲート補助端子33と第2のドレインセンス補助端子36との間に接続すればよい。第2のドレインセンス補助端子36ではなく第2の外部端子32に接続することも可能であるが、寄生インダクタンスは小さい方が望ましいため、第2のドレインセンス補助端子36の方が望ましい。
 これらの1つ目のクランプ回路の経路内にはヒューズ25が含まれないので、ヒューズ25を直列接続することによってインダクタンスが増大してもその影響を受けない構成となっている。
 2つ目のクランプ回路は、半導体スイッチング素子21と、半導体スイッチング素子21の両端に接続されたバリスタ13とを含む経路で構成されるクランプ回路である。なお、図1のバリスタ13の横に図示したインダクタンスはこのクランプ回路の寄生インダクタンスである。バリスタ13は、例えば金属酸化物バリスタ(MOV:Metal Oxide Varistor)を用いることができる。バリスタ13は、所定以上の電圧がかかるとアバランシェして抵抗が下がり、バリスタ13側に電流がバイパスして流れるので、低い耐圧の半導体スイッチング素子21を用いることが可能となる。また、1つ目のクランプ回路は、1つ目のクランプ回路の動作時に半導体スイッチング素子21に熱負荷がかかるので、この2つ目のクランプ回路によってそれを軽減できる効果もある。
 バリスタ13の一方は、第1のドレインセンス補助端子35に接続され、他方は、第2のドレインセンス補助端子36または第2の外部端子32に接続すればよい。第2のドレインセンス補助端子36よりも第2の外部端子32の方が大きな電流容量を有するので、第2の外部端子32に接続するのが望ましい。同じく、第1のドレインセンス補助端子35は、他の補助端子よりも大きな電流容量を有することが望ましい。
 この2つ目のクランプ回路の経路内にはヒューズ25が含まれないので、ヒューズ25を直列接続することによってインダクタンスが増大してもその影響を受けない構成となっている。
 なお、図1では、ツェナーダイオード26とバリスタ13を半導体モジュール2の外部に設ける構成としているが、少なくとも一方を半導体モジュール2に内蔵するようにしてもよい。おなじく、異常電流検出部11とゲート駆動部12についても、一方または両方を半導体モジュール2に内蔵するようにしてもよい。
 以上説明したとおり、実施例1によれば、異常電流を検出した時に電流を遮断するための半導体スイッチング素子21が故障した場合でも電流の遮断が可能な冗長性を有する半導体直流遮断器1と、それに用いるのに適した半導体モジュール2を実現できる。
 実施例2は、実施例1の変形例である。実施例2は、ヒューズ25の実現方法が実施例1とは異なっている。これ以外は実施例1と同じであるため、相違点を中心に説明し、重複する説明は省略する。
 図7は、実施例2の半導体直流遮断器および半導体モジュールの回路図であり、図8は、実施例2の半導体モジュールの内部の斜視図であり、図9は、実施例2の半導体モジュールの内部の上面図である。図7は図1に対応し、図8は図3に対応し、図9は図4に対応する図である。
 実施例2の半導体直流遮断器1および半導体モジュール2は、ヒューズ25が第1のスイッチング素子21aの基準電位端子であるソースSと第2のスイッチング素子21bの基準電位端子であるソースSとの間に形成されている。なお、この場合でも、電流経路上は直列であるため、ヒューズ25と半導体スイッチング素子21は直列接続であると解釈する。
 実施例2では、内蔵されたヒューズ25が、筐体38内の配線の一部で形成されており、所定の溶断電流が流れた時に溶断するようになっている点では実施例1同じであるが、図9に示すように、第1のスイッチング素子21aが搭載された絶縁基板47と第2のスイッチング素子21bが搭載された絶縁基板47との間を接続するボンディングワイヤ49が、図4に比べて少なくなっており、これによってヒューズ25として機能するようになっている。したがって、実施例1に比べて実現が容易であるというメリットがある。実施例2のヒューズ25もゲルにより封止することができる。
 ただし、実施例2では、寄生抵抗23と寄生インダクタンス24にはヒューズ25の寄生抵抗と寄生インダクタンスは含まれていないので、異常電流を検出する感度は実施例1の方が高い。また、ヒューズ25が1つ目のクランプ回路の経路内に含まれていない点では実施例1と同じであるため同じ効果が得られるが、2つ目のクランプ回路については経路内にヒューズ25が含まれるため、2つ目のクランプ回路についてはヒューズ25を直列接続することによってインダクタンスが増大する影響を受ける点で実施例1と異なっている。
 実施例3は、実施例1の変形例である。実施例3は、ヒューズ25が半導体モジュール2の外部に設けられている点で実施例1とは異なっている。これ以外は実施例1と同じであるため、相違点を中心に説明し、重複する説明は省略する。
 図10は、実施例3の半導体直流遮断器および半導体モジュールの回路図である。図10は、図1に対応する図である。
 実施例3の半導体直流遮断器1および半導体モジュール2は、ヒューズ25が半導体モジュール2の外部に設けられている。したがって、一般的なヒューズ25を用いることが可能である。
 実施例4は、実施例3の変形例である。実施例4は、異常電流検出部11による検出方法が実施例3とは異なっている。これ以外は実施例3と同じであるため、相違点を中心に説明し、重複する説明は省略する。
 図11は、実施例4の半導体直流遮断器および半導体モジュールの回路図である。図11は、図10に対応する図である。
 実施例4の半導体直流遮断器1および半導体モジュール2は、実施例3と同様にヒューズ25が半導体モジュール2の外部に設けられている。したがって、一般的なヒューズ25を用いることが可能である。
 そして、異常電流検出部11は、ヒューズ25の寄生抵抗または寄生インダクタンスの両端に生じる電圧を含んだ電圧に基づいて異常電流を検出する。
 以上、本発明の実施例を説明したが、本発明は実施例に記載された構成に限定されず、本発明の技術的思想の範囲内で種々の変更が可能である。また、各実施例で説明した構成の一部または全部を組み合わせて適用してもよい。
 1…半導体直流遮断器、2…半導体モジュール、3…電源、4…保護対象機器、11…異常電流検出部、12…ゲート駆動部、13…バリスタ、21…半導体スイッチング素子、21a…第1のスイッチング素子、21b…第2のスイッチング素子、22…ダイオード、23…寄生抵抗、24…寄生インダクタンス、25…ヒューズ、26…ツェナーダイオード、31…第1の外部端子、31a…接続配線、32…第2の外部端子、33…ゲート補助端子、34…ソースセンス補助端子、35…第1のドレインセンス補助端子、36…第2のドレインセンス補助端子、37…異常電流計測用補助端子、38…筐体、39…ベースプレート、41…第1のドレインパッド、42…第2のドレインパッド、43…ゲートパッド、44…ソースセンスパッド、45…第1のドレインセンスパッド、46…第2のドレインセンスパッド、47…絶縁基板、48…配線層、49…ボンディングワイヤ、G…ゲート、S…ソース、D…ドレイン

Claims (14)

  1.  異常電流の検出時に主電流を遮断する半導体スイッチング素子を有する半導体直流遮断器において、
     前記半導体スイッチング素子に直列に接続されたヒューズと、
     前記異常電流を検出する異常電流検出部と、
     前記異常電流検出部で前記異常電流が検出された場合に前記半導体スイッチング素子をオフするゲート駆動部と、を有し、
     前記半導体スイッチング素子をオフする前記異常電流の大きさが、前記ヒューズの溶断電流よりも小さく設定されていることを特徴とする半導体直流遮断器。
  2.  請求項1において、
     前記異常電流検出部は、前記ヒューズの寄生抵抗または寄生インダクタンスの両端に生じる電圧を含んだ電圧に基づいて前記異常電流を検出することを特徴とする半導体直流遮断器。
  3.  請求項1において、
     前記半導体スイッチング素子を経路内に含み、かつ、前記ヒューズを経路内に含まないクランプ回路を有することを特徴とする半導体直流遮断器。
  4.  請求項1において、
     前記半導体スイッチング素子は、第1のスイッチング素子の基準電位端子と第2のスイッチング素子の基準電位端子とが接続されて構成された双方向スイッチであることを特徴とする半導体直流遮断器。
  5.  請求項1において、
     前記半導体スイッチング素子は、前記主電流が流れる第1の主端子および第2の主端子を有し、
     前記半導体スイッチング素子と、前記半導体スイッチング素子を内蔵する筐体と、前記第1の主端子に接続された第1の外部端子と、前記第2の主端子に接続された第2の外部端子とを有する半導体モジュールを有し、
     前記ヒューズは前記半導体モジュールの前記筐体内に内蔵されていることを特徴とする半導体直流遮断器。
  6.  請求項5において、
     前記ヒューズは、前記筐体内の配線の一部で形成されており、前記溶断電流が流れた時に溶断するようになっていることを特徴とする半導体直流遮断器。
  7.  請求項6において、
     前記ヒューズは、前記第1の外部端子と一体に形成された接続配線の一部が細くなっている、または、薄くなっている、または、他の部分より融点の低い材料で構成されていることにより形成されていることを特徴とする半導体直流遮断器。
  8.  第1の主端子および第2の主端子を有する半導体スイッチング素子と、前記半導体スイッチング素子を内蔵する筐体と、前記第1の主端子に接続された第1の外部端子と、前記第2の主端子に接続された第2の外部端子とを有する半導体モジュールにおいて、
     前記半導体スイッチング素子は、前記第1の主端子を有する第1のスイッチング素子の基準電位端子と前記第2の主端子を有する第2のスイッチング素子の基準電位端子とが接続されて構成された双方向スイッチであり、
     前記半導体スイッチング素子と直列に接続され、前記筐体内に内蔵されたヒューズをさらに有することを特徴とする半導体モジュール。
  9.  請求項8において、
     前記ヒューズは、前記筐体内の配線の一部で形成されており、所定の溶断電流が流れた時に溶断するようになっていることを特徴とする半導体モジュール。
  10.  請求項9において、
     前記ヒューズは、前記第1の外部端子と一体に形成された接続配線の一部が細くなっている、または、薄くなっている、または、他の部分より融点の低い材料で構成されていることにより形成されていることを特徴とする半導体モジュール。
  11.  請求項9において、
     前記ヒューズは、前記第1のスイッチング素子の前記基準電位端子と前記第2のスイッチング素子の前記基準電位端子との間に形成されていることを特徴とする半導体モジュール。
  12.  請求項8において、
     前記筐体内にゲルを有し、
     前記ヒューズは、前記ゲルにより封止されていることを特徴とする半導体モジュール。
  13.  請求項8において、
     前記筐体の外部と接続される外部端子として、前記ヒューズの寄生抵抗または寄生インダクタンスの両端に生じる電圧を含んだ電圧を計測可能な計測端子を有することを特徴とする半導体モジュール。
  14.  請求項8から13の何れかに記載の半導体モジュールと、
     前記ヒューズの寄生抵抗または寄生インダクタンスの両端に生じる電圧を含んだ電圧に基づいて異常電流を検出する異常電流検出部と、
     前記異常電流検出部で前記異常電流が検出された場合に前記半導体スイッチング素子をオフするゲート駆動部と、を有し、
     前記半導体スイッチング素子をオフする前記異常電流の大きさが、前記ヒューズの溶断電流よりも小さく設定されていることを特徴とする半導体直流遮断器。
PCT/JP2023/014742 2022-08-15 2023-04-11 半導体直流遮断器および半導体モジュール WO2024038640A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022129268A JP2024025907A (ja) 2022-08-15 2022-08-15 半導体直流遮断器および半導体モジュール
JP2022-129268 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024038640A1 true WO2024038640A1 (ja) 2024-02-22

Family

ID=89941689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014742 WO2024038640A1 (ja) 2022-08-15 2023-04-11 半導体直流遮断器および半導体モジュール

Country Status (2)

Country Link
JP (1) JP2024025907A (ja)
WO (1) WO2024038640A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029429A (ja) * 2010-07-22 2012-02-09 Fuji Electric Co Ltd 3レベル電力変換装置
JP2019047549A (ja) * 2017-08-30 2019-03-22 三菱電機株式会社 電力変換装置
JP2022016749A (ja) * 2020-07-13 2022-01-25 三菱電機株式会社 スイッチング装置および電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029429A (ja) * 2010-07-22 2012-02-09 Fuji Electric Co Ltd 3レベル電力変換装置
JP2019047549A (ja) * 2017-08-30 2019-03-22 三菱電機株式会社 電力変換装置
JP2022016749A (ja) * 2020-07-13 2022-01-25 三菱電機株式会社 スイッチング装置および電力変換装置

Also Published As

Publication number Publication date
JP2024025907A (ja) 2024-02-28

Similar Documents

Publication Publication Date Title
US9116532B2 (en) Power semiconductor device module
US9000827B2 (en) System and method for controlling at least two power semiconductors connected in parallel
JP2008042950A (ja) 電力変換装置
US10770882B2 (en) Power module
US20090161277A1 (en) Method and device for preventing damage to a semiconductor switch circuit during a failure
US20210366886A1 (en) Semiconductor device
US8698549B2 (en) Power device
JP2017153173A (ja) チョッパ装置
US10840903B2 (en) Semiconductor module
US8264071B2 (en) Power semiconductor module with overcurrent protective device
JP6905356B2 (ja) パワー半導体モジュール
WO2024038640A1 (ja) 半導体直流遮断器および半導体モジュール
CN111164746A (zh) 具有故障保护的半导体组合件
JP2022050887A (ja) 半導体装置
JPH09162255A (ja) 半導体素子の試験装置
KR101904682B1 (ko) 전류 차단 장치
US7449801B2 (en) Semiconductor circuit arrangement for controlling a high voltage or a current of high current intensity
JP4194420B2 (ja) 過電流保護回路を備えるパック電池
WO2024079813A1 (ja) 半導体装置
WO2023145144A1 (ja) パワー半導体モジュール
JPH06169526A (ja) 半導体装置の地絡保護装置
JP2000217337A (ja) 半導体装置及び電力変換装置
JP2004228593A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854680

Country of ref document: EP

Kind code of ref document: A1