WO2024038508A1 - Turbine device and consecutively connected turbine system - Google Patents

Turbine device and consecutively connected turbine system Download PDF

Info

Publication number
WO2024038508A1
WO2024038508A1 PCT/JP2022/030988 JP2022030988W WO2024038508A1 WO 2024038508 A1 WO2024038508 A1 WO 2024038508A1 JP 2022030988 W JP2022030988 W JP 2022030988W WO 2024038508 A1 WO2024038508 A1 WO 2024038508A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
turbine
phase
reservoir
turbine device
Prior art date
Application number
PCT/JP2022/030988
Other languages
French (fr)
Japanese (ja)
Inventor
啓一 中島
Original Assignee
啓一 中島
坂本 聡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 啓一 中島, 坂本 聡 filed Critical 啓一 中島
Priority to PCT/JP2022/030988 priority Critical patent/WO2024038508A1/en
Priority to PCT/JP2023/028898 priority patent/WO2024038799A1/en
Publication of WO2024038508A1 publication Critical patent/WO2024038508A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/08Machines or engines of reaction type; Parts or details peculiar thereto with pressure-velocity transformation exclusively in rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels

Definitions

  • the present invention relates to a turbine device related to gravitational torque conversion that converts potential energy of a fluid into useful mechanical power.
  • the turbine device related to gravity torque conversion of the present invention can be suitably used as a power generation device.
  • Electrical energy produced in a general power plant is generated by rotating the rotating shaft of a dielectric power generation device called a dynamo or alternator using some kind of physical power energy.
  • thermal power generation uses fuel such as oil, coal, combustible gas, or nuclear power, converts it into high-temperature "thermal energy,” generates strong steam pressure in a boiler, and uses that "strong pressure” to generate electricity.
  • the most common method is to generate electricity by rotating a turbine connected to the machine at high speed.
  • a turbine device has also been proposed that uses the potential energy of a fluid located at a high position to turn a rotating shaft and obtain kinetic energy.
  • a turbine device as disclosed in Patent Document 1 below has been proposed with the aim of generating power with high efficiency and high output even when installed in a place where a sufficient head cannot be obtained.
  • a broader object of the present invention is to provide a turbine device and a connected turbine system that can efficiently convert physical power energy such as potential energy of a fluid into power for rotating a turbine used for power generation etc. with a simple configuration. It is.
  • a turbine device is a turbine device that rotates a plurality of storage bodies that store the fluid, which are fixed to a rotating shaft, by gravity related to the fluid, and includes:
  • the apparatus is characterized in that it has a distribution function part that distributes the fluid between the plurality of reservoirs so as to be effective in changing the rotational torque around the rotation axis.
  • the second aspect of the present invention is a supply port for supplying the fluid supplied from above to the reservoir; an opening for introducing the fluid into the reservoir from the supply port; the reservoir is comprised of a phase reservoir;
  • the phase reservoir is a reservoir for the fluid that is configured to include a front wall, a rear wall, and a side wall, and spreads in the direction in which the rotation axis extends, In the front curve of the side wall that appears when viewed from the front side and the rear curve of the side wall that appears when viewed from the rear side, the phase of the rear curve is compared to the phase of the front curve.
  • the side wall of the phase storage body connects the front curve and the rear curve rotated by the twist angle and extended by the extension angle in the front-rear direction with a three-dimensionally twisted wall surface.
  • the distribution function section is configured with an on-off valve, and the on-off valve is provided in a peripheral area of the side wall of the phase storage body, and the on-off valve is configured such that when the phase storage body is in an upper position, It is characterized in that the opening/closing valve is opened to take the fluid into the phase reservoir, and when rotating downward, the opening/closing valve is closed to prevent the accumulated fluid from leaking.
  • the fourth aspect of the present invention is It is characterized in that the opening/closing valve distributes the fluid between the phase reservoir at an advanced position in the rotation angle and the phase reservoir at a position delayed in the rotation angle.
  • the fifth aspect of the present invention is Both the front curve and the rear curve are spiral curves in which the radial position of the curve extending from the center of rotation gradually increases as it rotates in the circumferential direction.
  • the sixth aspect of the present invention is The plurality of phase reservoirs is characterized in that the plurality of phase reservoirs are composed of three phase reservoirs mounted at 120° intervals around the rotation axis.
  • the seventh aspect of the present invention is The torsion angle and the extension angle of the rear curve were set so that the side edges of the side walls of the phase reservoir, through which the fluid overflows as the phase reservoir rotates, are horizontal. , is characterized by.
  • the eighth aspect of the present invention is The torsion angle and the extension of the rear curve are such that the side edges of the side walls of the phase reservoir, through which the fluid overflows as the phase reservoir rotates, are parallel to the axis of rotation. It is characterized by having set corners.
  • the ninth aspect of the present invention is The on-off valve is characterized in that it is composed of an on-off door that is driven by the action of gravity.
  • the connected turbine system includes: The phase reservoir is formed using a cylindrical shell that rotates about the rotation axis, The cylindrical shell is composed of a front circular plate, a rear circular plate, and a cylindrical plate, The cylindrical shell is characterized in that the opening is provided at a front end position or a rear end position of the phase reservoir.
  • a basic eleventh aspect of the present invention is characterized in that a plurality of the turbine devices according to claim 2 are provided.
  • the twelfth aspect of the present invention is The plurality of turbine devices are characterized in that, in the flow of the fluid, each of the plurality of turbine devices has a fluid path communication path that allows the fluid to flow from at least an upstream side to a downstream side.
  • the thirteenth aspect of the present invention is A siphon type communication path using a siphon phenomenon is provided in at least a part of the fluid communication path.
  • the fourteenth aspect of the present invention is The present invention is characterized in that it includes a return passage that returns the fluid from the turbine device on the downstream side to the turbine device on the upstream side, and a pump that circulates the fluid.
  • the fifteenth aspect of the present invention is A serial turbine system having a configuration in which a plurality of the turbine devices are arranged horizontally, a first upper storage tank provided above the first turbine device on the upstream side and containing the fluid falling from above; a first lower reservoir provided at a position below the first turbine device and containing the fluid discharged from the first turbine device; a siphon-type communication path that communicates from a lower position of the first lower storage tank to the supply port of the fluid of the second turbine device on the downstream side; a second lower reservoir containing the fluid discharged from the second turbine device at a position below the second turbine device; The first turbine device and the second turbine device are rotated by flowing the fluid from the second lower storage tank using a siphon phenomenon.
  • the sixteenth aspect of the present invention is A second upper storage tank is provided above the second turbine device, and the siphon type communication path is communicated with the second upper storage tank.
  • the seventeenth aspect of the present invention is A return passage is provided for returning the fluid flowing out from the second lower storage tank to the first upper storage tank, and a pump is provided for circulating the fluid flowing out.
  • the eighteenth aspect of the present invention is The plurality of turbine devices are vertically connected via the fluid communication path.
  • the nineteenth aspect of the present invention is The distribution function section is characterized in that it has an inter-reservoir communication port that communicates between the plurality of reservoirs.
  • the 20th aspect of the present invention is The present invention is characterized in that it includes a distribution pump that distributes the fluid between the plurality of reservoirs in a manner effective for changing the rotational torque.
  • FIG. 2 is a schematic diagram for explaining rotational torque obtained by gravity, moment of inertia, and effective gravity that should be taken into account when rotating a blade.
  • (a) is a schematic diagram showing a state in which a linear flat plate is rotated by fluid falling from above
  • (b) is a schematic diagram showing a state in which a reservoir is used in which fluid flows and stagnates.
  • (a), (b), and (c) are diagrams in which the horizontal axis represents the rotation angle of each turbine blade in FIG. 3, and the vertical axis represents the value of torque conversion.
  • (a) is a view of the front curve seen from the front side
  • (b) is a perspective view of the main part of the turbine device seen from an angle
  • (c) is a view of the rear curve seen from the rear side
  • ( e) and (f) are exploded perspective views showing phase reservoirs formed around the rotation axis, respectively.
  • FIG. 2 is a perspective view showing an assembled state of the disassembled turbine device.
  • FIG. 2 is a perspective view for explaining the configuration of an opening and the configuration of an on-off valve in an example of the present turbine device.
  • FIG. 6 is a diagram schematically showing the movement and retention of the fluid in the front-rear direction until the falling fluid enters each phase storage body and exits from the discharge port.
  • (a), (b), (c), and (d) are schematic diagrams viewed from the front side in order to explain the movement of the on-off valves provided on the side walls of each phase storage body during rotation.
  • (a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 30 degrees.
  • (a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 60 degrees.
  • (a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 90 degrees.
  • (a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 120 degrees.
  • FIG. 3 is a perspective view of another turbine device according to the present embodiment.
  • FIG. 3 is a diagram of another turbine device viewed from the front side.
  • (a), (b), (c), and (d) are diagrams for explaining operations of other turbine devices, respectively. It is a figure for explaining a siphon phenomenon when a plurality of water storage tanks are provided in the horizontal direction, and is a figure showing a state where a valve is closed.
  • FIG. 24 is a diagram for explaining the siphon phenomenon in a state where the valve is opened.
  • FIG. 3 is a diagram showing a configuration in which fluid reservoirs are connected in the vertical direction.
  • FIG. 2 is a schematic perspective view for explaining a serially connected turbine device according to the present embodiment that utilizes a siphon phenomenon.
  • FIG. 2 is a diagram showing an example of a continuous turbine device that utilizes the siphon phenomenon using the potential energy of naturally falling fluid.
  • FIG. 2 is a diagram illustrating an example of a serially connected turbine device that uses a siphon phenomenon to provide a fluid return passage and a pump that circulates the fluid. It is a diagram showing angle on the horizontal axis and relative torque output on the vertical axis.
  • the reservoir has an expanse in the direction in which the rotating shaft extends (front-back direction), and also in the width direction (lateral and radial directions). It is a receptor for fluid that moves, convects, and stagnates between bodies.
  • the reservoir can also be constructed in the form of a container. Each reservoir has an opening that receives fluid from an inlet, typically supplied from above. The aperture primarily functions as an inlet for fluid into the reservoir.
  • the rotational torque output that is, the conversion efficiency into rotational energy is significantly affected by the shape of the storage body.
  • the linear flat plate 52 is rotated by the fluid 4 falling from above, and as shown in FIG. 6(b), the force of water volume due to gravity is converted into rotational torque. It is important to compare this with a state in which the object is rotated at a "low speed” with the aim of prolonging the time it is affected by gravity.
  • a container 51 that creates a natural "flow” that "stagnates” while performing "convection”
  • a structure that uses a flat plate 52 that uses a flat plate 52.
  • the advantages of the configuration of this embodiment can be easily understood.
  • the configuration of this embodiment which will be described later, in an instantaneous operating state (in which there is accumulated water in advance), the injected water and the discharged water are in exactly the same operating state, that is, they consume the same potential energy.
  • the efficiency of conversion into rotational torque can be increased not only several times, but tens of times, even hundreds of times.
  • Distribution function section 36 As shown in FIGS. 8 to 13, when fluid flows upward into the reservoir due to the action of gravity, and when fluid flows out from the reservoir due to the action of gravity, the flow of fluid into the reservoir is It is important to consider a reservoir configuration that can continuously and efficiently realize supply and discharge around a rotation axis. Note that in this specification, "distribution of fluid” is a concept that includes movement of fluid between different reservoirs, division (branching), and the like. Taking as an example a member to be described later, the distribution function section 36 may be configured by, for example, only the inter-reservoir communication port 38. The inter-reservoir communication port 38 may also be an inter-reservoir communication path 39 having a certain length.
  • part or all of the opening 40 that takes the fluid into the reservoir from the supply port 22 may function as part of the distribution function section 36.
  • a configuration including a distribution tool can be exemplified.
  • the distributing device include a valve body, an on-off valve 5, a water channel (gate mechanism), etc., as shown in the specific configuration described later.
  • (Aspect 3) Supply Port A supply port for supplying fluid to the reservoir from above is disposed at a position facing the opening and suitable for supplying the fluid.
  • the fluid supply port is constituted by a fluid supply pipe 34 (see, for example, FIGS. 1 and 14).
  • the length of the supply port in the longitudinal direction, the length in the lateral direction, and the cross-sectional shape of the supply port when viewed from above are optimal for generating rotational torque depending on, for example, the configuration of the opening and, for example, the configuration of the distributor. is designed to be.
  • the efficiency of utilizing the potential energy of the fluid can be increased compared to the case where only one turbine device 1a is provided at the lowermost storage tank 70a. .
  • the reason is that when water falls from the highest water supply position, that is, the lower end of the connecting pipe 77 of the storage tank 70c, if there is only one turbine device 1a at the lowest position, the turbine Due to phenomena such as impact, vibration, water splashing, and sound generation caused by the collision of the falling water with the turbine blades of the device 1a, the potential energy of the water at a higher position is lost, and the energy conversion efficiency is reduced. Because it will be.
  • the configuration in which a siphon-type communication passage, which will be described later, is provided is an example of a configuration related to a subordinate concept of a continuous type turbine device.
  • One of the features of the concept of this embodiment is that when converting the potential energy of a fluid falling from above into the torque of the rotating shaft of the turbine shaft, the instantaneous kinetic energy hitting the turbine blades is converted into rotational torque.
  • the potential energy of the fluid can be efficiently converted into rotational energy by adopting various configurations and devices for allowing fluid to flow between individual reservoirs or between multiple reservoirs, causing convection and storage. There are some points that I have found.
  • FIG. 2(a), (b), (c), and (d) are diagrams showing the shapes of turbine blades (turbine blades), respectively, and Figure 3 is the rotation of each turbine blade in Figures 2(b), (c, and d).
  • FIG. 3 is a diagram illustrating a sequence.
  • FIG. 4 is a diagram for considering the gravitational effect rate depending on the rotation angle using trigonometric functions, where the solid line indicates a sine curve and the broken line indicates a cosine curve.
  • FIG. 5 is a diagram schematically showing factors that cause rotational torque.
  • arrow G indicates gravity
  • arrow EG indicates effective gravity
  • arrow M indicates moment of inertia.
  • T indicates rotational torque.
  • FIG. 2 there are various ways to rotate a dielectric power generator using turbine blades, depending on the system configuration of the motive force that rotates the turbine blades.
  • To convert fluids such as steam or water flowing at high pressure into rotational energy it is necessary to install a large number of blades to increase the surface area that receives pressure. The higher the fluid pressure, the less pressure energy can be converted into rotational energy with a single blade wheel, so a method of stacking blade wheels in multiple layers is used.
  • the number of blade wheels is small, the efficiency of absorbing pressure and converting it into rotational power will be reduced, and the pressure will be wasted.
  • the number of blade wheels is too large, fluid resistance will increase and the overall fluid velocity will increase.
  • the turbine speed is also reduced, so just designing the turbine blades to improve the rotational efficiency of the turbine requires extremely complex and delicate design, installation, and operation.
  • the storage body of this embodiment As mentioned above, if we consider the storage body of this embodiment as a type of blade, it is not intended to receive pressure, but to receive water falling due to gravity, and the force due to the weight of the water is effective for torque conversion. It is important to be able to stay in a certain position for as long as possible. Therefore, there will be a large difference in the torque conversion characteristics depending on the shape of the reservoir. For example, even though the three types of reservoirs shown in Figure 3 below, b, c, and d, do not have much difference in appearance, there is a significant difference in torque conversion efficiency in the rotation range from 0° to 90°. .
  • this torque output (Tcon) characteristic is different between the semicircular 4-blade blade "Type b" shown in Fig. 7(a) and the semicircular 3-blade blade shown in Fig. 7(b).
  • the three-blade phase curve-shaped blade of "Type d” has a "phase curve shape” in which the deployment angle expands in a spiral shape toward the outer shell, as shown in Fig. 7(c). It can be seen that the performance is good. In other words, when comparing the torque output, it can be seen that the torque output of the "Type d" phase curve blade has far less deviation than the other two types, and has good "stability" over the entire rotation range.
  • the blade shape adopts a "spiral curve" in which the radius increases from the rotation center and extends to the outer periphery, as shown in Figure 3(d), with three spiral curves arranged at 120° intervals around the rotation axis. This means that the blade shape with the blade configuration is more efficient.
  • the physical formula for the energy (output energy) that can be generated from rotational torque is the correlation between generated output P [kW] and torque T [Nm], and output P [W] from torque T [Nm] and rotational speed N [rps].
  • the stability of rotational torque is an essential element when considering the power generation efficiency of a power generation system. In a system like this embodiment, which catches water falling due to gravity, stores it to a certain extent, and uses the force of the weight of that water to turn a turbine, it is possible to rotate the constantly changing weight balance of water.
  • FIG. 1 is an external perspective view showing the external appearance of a turbine device 1 (hereinafter sometimes referred to as a turbine for simplicity) according to the present embodiment
  • FIGS. 9 to 11 are exploded views of the turbine
  • FIG. 12 is an on-off valve.
  • FIG. 3 is a perspective view for explaining the configuration of the vicinity.
  • the turbine 1 exemplified in this embodiment takes a water flow caused by the natural fall of water 4 as a fluid into the turbine device 1, rotates the rotating shaft 2, and generates the rotational power of the rotating shaft 2.
  • a generator 3 such as a dynamo or alternator.
  • the direction in which water 4 falls is the vertical direction (referred to as the X direction in FIG. 1)
  • the direction in which the rotating shaft 2 extends is the front-rear direction (referred to as the Y direction in FIG. 1).
  • the direction perpendicular to both the up-down direction and the front-back direction is called the lateral direction, the lateral direction (radial direction), or the left-right direction (shown as the Z direction in FIG. 1).
  • the phase storage body 6 is a storage container fixed to the rotating shaft 2 of the turbine device 1, and is a three-dimensional storage container divided into a plurality of container parts in the direction in which the rotating shaft extends (front-back direction). It is composed of side walls 16 (rotating blades) that are twisted in a circular motion. Moreover, each phase storage body 6 has a front wall 14, a rear wall 15, and a side wall 16, and is a container that stores water as a fluid.
  • the shapes of the front wall 14 and the rear wall 15 are not particularly limited as long as they are shapes that allow water to move and accumulate together with the side walls 16 within a predetermined time period determined by the system.
  • the phase storage body 6 rotates the front curve 30 described later and the front curve 30 in a predetermined direction by a twist angle ⁇ (see FIG. 8(b)), and rotates the front curve 30 in a predetermined direction by an extension angle ⁇ (see FIG. 8(b)).
  • twist angle
  • extension angle
  • extension angle
  • the side wall 16 of each phase reservoir 6 has a central region with a large curvature extending radially from the center of rotation and a peripheral region with a small curvature extending along the inner circumferential wall of the inner cylindrical shell.
  • a twist angle ⁇ see FIG. 8(b)
  • extension angle
  • is connected to the rear curve 31 by a side wall 16 extending in the front-rear direction.
  • the side wall 16 of each phase reservoir 6 has a central region with a large curvature extending radially from the center of rotation and a peripheral region with a small curvature extending along the inner circumferential wall of the inner cylindrical shell.
  • the front curve 30 and the rear curve 31 be configured as "a spiral curve in which the radial distance of the rotary blade increases as it rotates in the circumferential direction."
  • the expression "spiral curve” is used to include a polygonal line shape that connects a plurality of straight lines close to an approximate curve or a spiral curve to the extent that energy efficiency can be improved.
  • spiral curves including Archimedean spiral curves, logarithmic spiral curves, Fibonacci lines, and unknown adaptive spirals that are calculated to improve power generation efficiency in accordance with the usage pattern of fluid. Examples include curves. Which curve to use is selected depending on the required capacity, properties, surrounding conditions, etc. of each turbine device.
  • the number of blades formed along the spiral curve is not limited to three, but in order to achieve high energy efficiency, the number of blades is increased as explained using FIGS. 3 and 7. It is preferable to consist of three pieces.
  • twist angle In the relationship between the front curve 30 and the rear curve 31 described above, in the phase around the rotation axis, the phase of the rear curve 31 is compared to the phase of the front curve 30, for example, by a twist angle ⁇ around the rotation axis in the rotation direction. I'm shifting it so I can move forward.
  • the torsion angle ⁇ is preferably determined from the viewpoint of a shape that increases the amount of fluid retained in an angular range of 30° above and below the horizontal axis, that is, 60°. , the twist angle ⁇ is appropriately set.
  • extension angle ⁇ increases the capacity of the water container when storing water, and also allows the side edge 33 of the side wall 16 (for example, see FIG.
  • the twist angle ⁇ and the extension angle ⁇ are both set to about 60°.
  • the rotational torque can be increased.
  • the direction in which the water flows and the direction of the discharge port from which the water is discharged are opposite directions due to the difference in height between the side walls of the storage body in the front and rear directions. From this point of view, we designed the slope of the height position of the bottom of the side wall of each reservoir, and also positioned the water supply and discharge ports of each reservoir at positions closer to the ends of the turbine device in the longitudinal direction. It is preferable to provide one.
  • FIG. 13 shows that the rearward flow of water due to the difference in the bottom height position of the side wall 16 explained above and the forward flow of water at the time of discharge are performed continuously in each phase reservoir.
  • FIG. 3 is a diagram schematically showing the situation.
  • an on-off valve it is preferable to provide an on-off valve as a valve body or a distributor for supplying water to each phase reservoir from above along the peripheral region of the phase reservoir. If each phase storage body is composed of a bowl-shaped water container concave downward as shown in FIG. 6(b), and the entire upper surface is completely open, the Since the timing at which the falling water is supplied is not optimized and the position at which the water falls onto the phase reservoir cannot be optimized, it is not possible to increase the rotational torque. In other words, the combination of the configuration of the supply port 22, the configuration of the opening 40, and the configuration of the distribution function section 36, in other words, optimization of each of these parameters is important. If the description is limited to the present embodiment shown in FIGS.
  • the preferred main functions of the on-off valve are as follows.
  • (A) Opening/closing valves provided along the peripheral region of the phase reservoirs operate to form openings into each phase reservoir for introducing upward water as each phase reservoir moves upwardly.
  • the on-off valve provided in the turbine device 1 is configured so that the distribution of the amount of water stored in each phase storage body and the storage time are extended. Further, it is preferable that each phase storage body is provided with an on-off valve.
  • the on-off valve may also be constructed by providing a support shaft extending in the front-rear direction at a circumferential position in the peripheral area of each phase storage body, and rotating the on-off valve around the support shaft. It is preferable that the on-off valve such as a revolving door has a curved line when viewed from the front so as to follow the curvature of the peripheral area of each phase storage body. Further, it is preferable that the opening/closing valve is configured so that its opening/closing angle (hanging angle viewed from the support shaft) changes due to the action of gravity or the like.
  • a configuration using gravity as the driving force for the on-off valve can be constructed inexpensively and easily, in the present invention, in order to improve the timing adjustment and the degree of closing of the opening, it is preferable to use a driving means for the on-off valve other than gravity (for example, This does not exclude configurations in which various actuators, etc.) are provided.
  • a dispensing device is provided.
  • the on-off valve 5 also serves as a dispensing device.
  • the turbine device 1 As shown in FIG. 9, the turbine device 1 according to this embodiment is housed in an inner cylindrical shell 11. As shown in FIG. Further, the inner cylindrical shell 11 is accommodated in the outer cylindrical shell 18. As shown in FIG. 9(b), the turbine device 1 has three side walls 16 arranged at 120° intervals around the rotating shaft 2, with the side walls 16 increasing in radius from the center in the circumferential direction. , and the outer periphery is surrounded by an inner cylindrical shell 11.
  • the inner cylindrical shell 11 has a shape like a cylindrical container in which a cylindrical plate 13 is attached to a rear circular plate 12.
  • the front side wall 16 is fixed to the front circular plate 17, and the rear side wall 16 is fixed to the rear circular plate 12.
  • Most of the side wall 16 in the front-rear direction is accommodated within the cylindrical plate 13 of the inner cylindrical shell 11 and fixed to the inner peripheral wall of the cylindrical plate 13. Therefore, the inner cylindrical shell 11 rotates as the rotating shaft 2 rotates.
  • the length of the cylindrical plate 13 of the inner cylindrical shell 11 in the front-rear direction is longer than the length of the turbine blade in the front-rear direction (the length of the side wall 16 attached to the rotating shaft 2). Since the opening 40 is formed to be shorter by the length d in the longitudinal direction shown in FIG. 12, an opening 40 having no circumferential wall of the cylindrical plate 13 is formed on the front side of the turbine device 1 over 360 degrees around the rotating shaft 2.
  • the outer cylindrical shell 18 is concentrically formed with the inner cylindrical shell 11 and has a substantially similar shape on the rotating shaft 2. It is constructed into a container shape by a front circular plate 19, a rear circular plate 20, and a cylindrical plate 21 to prevent water from leaking.
  • the space between the outer circumferential wall of the inner cylindrical shell 11 and the inner circumferential wall of the outer cylindrical shell 18 functions as a discharge passage 24 through which water leaking from the side wall 16 of each phase storage body flows downward (see FIG. 17(a)).
  • a supply port 22 for power water to the turbine device 1 is provided at an upper position (preferably at the uppermost position) near the front end of the outer cylindrical shell 18.
  • a power water outlet 23 is provided at a lower position near the front end of the outer cylindrical shell 18 (preferably at the lowermost position).
  • the outer cylindrical shell 18 may be replaced by an outer shell of another shape, a funnel, or the like, as long as it has a structure that allows water to be supplied and discharged well inside.
  • a support shaft 7 extending in the front-rear direction is provided at the end of the peripheral area of the twisted side wall 16 facing the front opening 40 at an end position of the main body of the valve body.
  • an opening/closing door 10 serving as the opening/closing valve 5 is configured.
  • Three opening/closing doors 10 are provided at 120° intervals.
  • the opening/closing door 10 is an opening/closing valve 5 having an inward-opening structure that hangs down toward the inside of a cylindrical body around a support shaft 7 as a central axis due to gravity.
  • the on-off valve 5 when the on-off valve 5 is supported by the peripheral area of the side wall 16, due to the action of water pressure and gravity in the phase reservoir 6, the peripheral area of the side wall 16 is made of an elastic body, etc.
  • the close contact portions are in close contact with each other to form an on-off valve that hardly leaks water in the phase storage body 6.
  • the on-off valve 5 has a substantially curved shape that is substantially the same as the peripheral area of the side wall 16 when viewed from the front, and has a substantially curved plate shape with a substantially width d in the front-rear direction. It has been formed.
  • each phase space 28 includes an on-off valve 5 and an opening 40 (see FIG. 12). Fluid such as water flows into each phase space 28 from the water (reference) and rotates while being stored in each phase space 28.
  • connection form of the side walls 16 constituting each phase space 28 in the front-rear direction is such that the central side line part of the front curve 30 is connected to the central side line part of the rear curve 31, and the outer peripheral side line part of the front curve 30 is connected to the central side line part of the rear curve 31. are connected to the outer circumferential side line portion of the rear curve 31, so three three-dimensionally twisted phase reservoirs 6a, 6b, and 6c as shown in FIGS. 8(e) to 8(f) are formed, respectively. Ru.
  • the rear wall 15 constituting each phase reservoir 6 is constructed using the rear circular plate 12 of the inner cylindrical shell 11. That is, as shown in FIG. 8(c), each of the three spiral rear walls 15 is formed by using the wall surface of the rear circular plate 12 (see FIG. 9(c)).
  • the front wall 14 constituting each phase storage body 6 is constructed using a front circular plate 17 (see FIG. 9(b)). That is, as shown in FIG. 8(a), each of the three spiral-shaped front walls 14 is formed by using the wall surface of the front circular plate 17.
  • the configuration of this phase storage body allows for automatic movement of the water flow generated by the water's own weight (gravity), and changes in the gravity balance due to the movement of the water, which is always effective in the rotation range by highly efficient torque conversion.
  • this turbine device can automatically create “convection” and “retention” in the optimal form and generate stable torque without using a pump or control device.
  • the shape of the outer shell of the storage body in each of the three phase spaces 28 is such that the phase angle continues from the side where the phase angle lags (the left side of the inner cylindrical shell 11 in the drawing) to the side where the phase angle advances in a twisted manner.
  • the space is shaped like a ⁇ waterway'' that ⁇ spreads out at the end'' and ⁇ gently descends.''
  • FIG. 2 is a diagram schematically showing the movement of. 15 to 20, (a) shows the inflow state seen from the front side, (b) shows the inflow state seen from an oblique direction, and (c) shows the inflow state seen from the rear side. are shown respectively. As shown in FIG.
  • the position of the bearing body 8a of the on-off valve 5a corresponding to the first side wall 16a is 0° at the time of startup, that is, rotated 30° clockwise from (see FIG. 14(a)).
  • water falling from above flows into the first side wall 16a through the opening 40 (see FIG. 12), and the first on-off valve 5a is closed due to the action of water pressure and gravity. become.
  • the bottom height position of the first side wall 16a on the rear side is higher than that of the first side wall on the front side. Since the bottom wall is inclined to be at a lower position than the bottom height position of 16a, the water flowing in moves downward to the rear.
  • the second on-off valve 5b is brought into an open state by the action of gravity, leaves the state along the second side wall 16b, and comes into contact with the wall surface on the center side of the third side wall 16c. is in a state. Further, the water falling from the supply port 22 hits the center side wall of the second side wall 16b, and is gradually diffused in the radial direction of the first side wall 16a to a position below the first side wall 16a. It accumulates in In this case, since the water falling toward the first side wall 16b is configured to hit a large curvature part at the center of the first side wall 16b, most of the water that bounces back is absorbed into the phase reservoir. It is designed to flow into the body 6a.
  • the second on-off valve 5b is rotated from the parallel state shown in FIG.
  • the second side wall 16b is further tilted inward, and an opening is formed in the outer peripheral side wall of the second side wall 16b by the second on-off valve 5b.
  • the height position on the rear side of the phase storage body 6b is also low, water flows toward the rear side and is gradually stored.
  • the annular space between the inner cylindrical shell 11 and the outer cylindrical shell 18 functions as a discharge passage 24, and water is discharged from the discharge port 23. Further, in the state shown in FIG. 17, all of the falling water flows into the phase reservoir 6b. In this way, the pattern of water injection into the phase reservoirs 6a and 6b, convection, retention, overflow from the side edge 33, and discharge from the opening 40 and the discharge port 23 is 0° to 90° (90° is the fluid flow rate). This occurs in the range of the instant of overflowing from the lateral edge 33). Moreover, such a phenomenon creates a "time difference" in the flow of fluid into the phase reservoirs 6a and 6b by the on-off valve 5.
  • the water channel (gate mechanism) included in the distribution function section 36 is an important element in order to convert the vertically directed gravity vector into rotational torque with high efficiency without disturbing it. Specifically, in order to efficiently convert water that flows down in a straight line due to gravity into a circular orbit and convert it into torque, avoid as much as possible the form of water storage where the falling water collides and bounces back. Must be a structure.
  • the distribution function section 16 is configured with a "movable on-off valve 5" that is operated by gravity to solve these problems.
  • the drive/control means for the "movable on-off valve 5" is not limited to gravity.
  • the advantage of this embodiment is that the turbine device can highly efficiently utilize potential energy resources stored in fluids that have been overlooked in the past, such as short vertical drops of water, streams that flow due to the development of potential energy, and waterfalls. There are some points that can be provided. Since it has a configuration that can convert the potential energy of a fluid into rotational energy with high efficiency, this embodiment is applicable not only to water but also to a wide range of technical fields that convert the potential energy of various fluids into kinetic energy. , it is possible to implement.
  • FIG. 21 to 23 are diagrams for explaining a turbine device in which the distribution function section 36 is composed of an inter-reservoir communication path 39 that connects a plurality of reservoirs, and a distribution pump 37.
  • this turbine device has an inner cylindrical shell 11 similar to the Durbin device configured in the first embodiment, and a side wall 16 is provided on the front side of the front circular plate 17 and the rear side circular plate 12, respectively. It has a configuration that appears as a curve 30.30.
  • these three reservoirs 90a, 90b, and 90c are reservoirs each having no twist angle ⁇ and no extension angle ⁇ . As shown in FIG.
  • an inter-reservoir communication passage 39 that communicates a first inlet 92 in the first reservoir 90a with a first outlet 93 in the second reservoir 90b, and a first inlet 92 in the second reservoir 90b communicate with each other.
  • An inter-reservoir communication path 39 that communicates the second inlet 94 with the second outlet 95 in the third reservoir 90c, and the third inlet 96 in the third reservoir 90c and the third outlet 97 in the first reservoir 90a.
  • An inter-storage body communication path 39 is provided to communicate with the storage bodies.
  • Distribution pumps P1, P2, and P3 are each provided at a predetermined position capable of moving fluid between the inlet and the outlet.
  • FIG. 22 shows a configuration in which distribution pumps P1, P2, and P3 are provided in the inter-reservoir communication path 39. Furthermore, as shown in FIG. 21, the respective inter-reservoir communication passages 39 and the distribution pumps P1, P2, P3 are shown to be provided closer to the front side of the turbine device.
  • the sequence for operating this turbine device is to move water as shown in FIG. 23, thereby making it possible to generate strong and stable rotational torque over the entire rotation range.
  • water has already accumulated in the first reservoir 90a located at the upper right. If we assume that a state in which rotational torque is applied in the clockwise direction is considered as a 0° start, then in this 0° state, the dielectric generator begins to rotate slowly while receiving resistance from the rotating shaft to rotate the shaft.
  • the weight of water at 0° is the peak point of the storage state that is most effective for rotational torque conversion, and at 0° in Fig.
  • P2 and P3 pumps operate in the same way as P1 shown in Figure 23 at appropriate times, and this 90° rotation pattern is repeated four times, resulting in stable torque conversion over the entire rotation range. can be made possible.
  • the structure is such that water does not enter from above, but the supply port 22 (not shown), the discharge port 23 (not shown), and the outer cylindrical shell 18 (not shown) may be ), and water enters from the supply port 22 and is discharged from the discharge port 23.
  • a reservoir plate connecting path 39 is provided between the plurality of reservoirs as appropriate, and the distribution pump 37 is driven. .
  • the third embodiment is a continuous type turbine device that utilizes a siphon phenomenon.
  • a plurality of turbine devices having turbine blades (storage bodies) of various shapes and extracting the potential energy of a fluid as kinetic energy are arranged in a substantially horizontal direction, and each turbine device is communicated with each other.
  • a fluid communication passage is provided, a siphon type communication passage using a siphon phenomenon is provided in at least a part of the fluid communication passage, and rotation of a plurality of turbine devices is realized based on the siphon phenomenon.
  • turbine blades storage bodies of various shapes
  • conversion means that converts the potential energy of falling fluid into practical kinetic energy such as rotational energy.
  • Such energy conversion means are housed in a container with falling fluid, such as a turbine arrangement that extracts kinetic energy.
  • the energy conversion means include devices and elements such as means for converting pressure fluctuations caused by a fluid, positional fluctuations of a converter due to falling fluid, and electromagnetic field fluctuations for a coil or the like into energy.
  • a piezo element etc. can be illustrated as such an example.
  • the siphon phenomenon when a plurality of water storage tanks is provided will be described.
  • the siphon phenomenon generally occurs when water is flowed through a pipe connecting a high starting point and a low destination point. Explanations for the occurrence of the siphon phenomenon include those that emphasize atmospheric pressure and the difference in gravity that affects the amount of water in the pipe due to height differences within the pipe. Although there are many cases, in this embodiment, emphasis is placed on phenomena that actually occur.
  • a siphon phenomenon occurs from the lower position of the water storage tank 70 on the upstream side to the downstream side.
  • a communicating path 71 is provided in the upper part of a certain water storage tank 70 and each water storage tank 70a, 70b, 70c is filled with water 69.
  • all the spaces in each water storage tank 70a, 70b, 70c and the communication path 71 are filled with water (not shown), or as shown in FIG. , 70b, 70c are filled with a certain amount of water on the lower side and air on the upper side.
  • a discharge path 74 connected to the water storage tank 70a on the most downstream side is provided, and when the valve body 72 provided in the discharge path 74 is closed, as shown in FIG.
  • the valve body 72 When the valve body 72 is opened, air 73 is sucked in from the communication passage 71 provided at the upper part of the water storage tank 70c, and the height position of the water in the water storage tanks 70a and 70b hardly changes. , a phenomenon occurs in which water continuously flows out from the discharge channel 74.
  • FIG. 26 is a diagram showing a configuration in which water storage tanks 70a, 70b, and 70c are connected and connected in the vertical direction via a conduit 77.
  • FIGS. 24 and 25 As can be seen by comparing the siphon phenomenon in FIGS. 24 and 25 with FIG. 26, if the water storage tanks 70a, 70b, 70c70 are arranged approximately horizontally and the siphon phenomenon as described above is repeated, the structure shown in FIG. This creates a fluid flow phenomenon that is almost the same as stacking up and down in the vertical direction. If the configuration uses the siphon phenomenon shown in Figures 24 and 25, various conditions must be met to create a system that can repeatedly obtain potential energy by simply arranging each storage tank in a substantially horizontal direction without using pumping energy. This can be achieved by preparing the following.
  • FIG. 27 a continuous turbine system 62 using natural fluid fall, which is an example of the third embodiment, will be described.
  • a first upper reservoir 54a into which the upper water (fluid 4) flows is provided above the first turbine device 1a, and a first turbine device 1a is provided at a lower position of the upper reservoir 54a.
  • An upper connection passage 55a for supplying water to the supply port 22a is provided. Water discharged from the discharge port 23a of the first turbine device 1a is stored in the first lower storage tank 57a via the lower connection passage 56a.
  • the upper connection passage 55a and the lower connection passage 56a may be omitted as appropriate.
  • a rising passage 58 attached to the outlet 45 at a position lower than the height of the water put into the first lower storage tank 57a and a connecting passage located at a position higher than the supply port 22b of the second turbine device 1b. It communicates with 59.
  • the downstream side of the connection passage 59 is connected to the supply port 22b of the second turbine device 1b.
  • the connecting passage 59 is shown to be U-shaped.
  • the rising passage 58 and the connecting passage 59 constitute an example of the above-mentioned siphon type communication passage.
  • a second lower storage tank 57b is provided below the second turbine device 1b, and the water in the second lower storage tank 57 is discharged from the discharge port 46 of the second lower storage tank 57b through the discharge passage 61.
  • the fluid path communication passage 80 is configured to include at least a passage through which fluid flows from the upstream side to the downstream side.
  • the fluid path communication path 80 is used as a concept including the first upper storage tank 54a, the lower storage tanks 57a and 57b, the siphon type communication path, the return path 65, and the like.
  • the upper storage tank 54a shown in FIG. 27, which stores power water, is designed to prevent excess air from entering or leaking from the turbine module, thereby preventing the stabilization of the water level in the downstream storage tank that functions as a siphon. It is set up to do so. Furthermore, if the amount of the original water source poured by gravity is equal to or greater than the amount of water coming out from the final outlet 46 of the siphon chain, the connected turbine system 62 using this siphon phenomenon will operate stably. As a result, stable power generation can continue.
  • the second upper storage tank 54b (not shown) is omitted, and a configuration in which only the second lower storage tank 57b is provided is shown.
  • the second upper storage tank 54b (not shown) is provided at a higher position than the supply port 22b of the second turbine device 1b, and the siphon type communication path is connected to the second upper storage tank 54b.
  • a configuration in which it communicates with a storage tank 54b (not shown) can also be adopted.
  • the highest position of the connection passage 59 is shown to reach the first upper storage tank 54a, but at least the highest position of the connection passage 59 reaches the first upper storage tank 54a. Any configuration may be used as long as it is located at a higher position and can supply water to the supply port 22b.
  • FIG. 28 illustrates such a configuration, and is a diagram showing a configuration in which four turbine devices 1a, 1b, 1c, and 1d are arranged in series.
  • FIG. 28 since both the aforementioned front curve and the rear curve twisted at the twist angle ⁇ are drawn, a total of six side walls 16 are drawn, three on the front side and three on the rear side. It is shown in the figure.
  • FIGS. 27 and 29 (Connected turbine system with fluid return passage and pump) As a modification of the third embodiment, as shown in FIGS. 27 and 29, a return passage 65 for returning fluid from the turbine device on the downstream side to the turbine device on the upstream side and a pump 66 for circulating the fluid are provided. A continuous turbine system will be explained. To explain the features of this configuration using the example of FIG. 27, a return passage 65 shown by a broken line in FIG. The water is returned to the upper storage tank 54a. That is, by connecting the water discharged from the final discharge passage 61 of the connected turbine system to the first water intake part of the siphon chain using a pump 66 that operates with small electric power and has a small-scale pumping function. More siphon chain elements 67 can be connected. Further, the configuration shown in FIG.
  • FIG. 29 shows a turbine system in which four turbine devices 1a, 1b, 1c, and 1d are connected through a fluid path communication path 80.
  • the first upper storage tank 54a is not provided in the upper part of the first turbine device 1a, and the water returned by the pump 66 is directly communicated with the supply port 22 of the first turbine device 1a. There is.
  • the number of continuous installations can be reduced compared to natural fall. It can be increased compared to the configuration.
  • the power generation efficiency of the system can be improved by using a type of fluid that can reduce the amount of gas that dissolves into the fluid when the pressure is reduced, and reduce various resistance factors such as surface tension between the fluid and the passage. You can also do it.
  • the potential energy possessed by solid substances and the potential energy possessed by fluids such as water are determined based on the time axis affected by gravity as a physical phenomenon that actually occurs, as described above.
  • non-solid liquid substances such as water and air
  • by changing or creating special flows such as convection and stagnation, we can create an effect that overlaps the dynamic changes of fluid substances with mass over time.
  • the idea of the present invention makes it possible to efficiently supplement and fill in "blank areas that cannot be filled” using, for example, the following four methodologies and systems.
  • the first methodology is to use a blade shape that utilizes the phase curve shown in Figure 2(d) to increase the amount of storage over time, resulting in a significant amount of water as shown in Figure 7(c). This makes it possible to fill in the blank areas.
  • the second methodology is a "distorted space" in which a two-dimensional phase curve as explained in the first embodiment is given a three-dimensional phase angle and a "twist" is added to the configuration of the first methodology. ” is being created. Then, each "distorted space” is installed in an integrated form, and by using the accurate flow of water due to natural gravity, the opening and closing of the inlet to each space is controlled in a timely manner, and the inflow timing of powered water is controlled.
  • FIG. 30 is an explanatory diagram thereof.
  • a rectangular region 87 corresponding to a relative torque of 1.0 on the vertical axis is almost filled by four chevron curves 86. This shows that stable torque output can be obtained by providing a distribution function section and switching the reservoir waterway as described above.
  • the third methodology is a configuration that does not use a distorted space that is twisted like the second methodology.
  • a pump means such as an electric pump
  • the inter-reservoir communication passage 39 is provided so that the "center of gravity" of the power water flowing into each space is always at a position effective for rotational torque conversion.
  • the flow rate per unit time that is spatially moved at appropriate timing it is possible to achieve torque conversion performance superior to that of the second method depending on various setting conditions.
  • additional energy is required to operate the pump, it must be noted that the ⁇ load on the amount of water pumped due to the difference in pumping height'' that occurs instantaneously accounts for most of the energy required to operate the pump.
  • the fourth methodology is to use an articulated system that mainly utilizes the siphon phenomenon as described in the third embodiment. Note that, if necessary, by combining the above-mentioned first, second, and third methods, it is possible to further increase the torque conversion efficiency from a different perspective.
  • Each of the systems described in the first, second, and third methodologies also makes it possible to increase the efficiency of torque conversion from gravity in each unique system configuration. In each methodology, if you look at it roughly, it is possible to further amplify torque by using the potential energy of water due to gravity, the ⁇ kinetic energy of water flow'', i.e., convection, etc., and the weight balance due to the time difference due to retention. It can also be said that they have something in common.
  • Opening/closing valve an example of a distribution function part
  • 6a, 6b, 6c Phase storage body 10: Opening/closing door (an example of an opening/closing valve) 11: Inner cylindrical shell 12: Rear circular plate 13: Cylindrical plate 14: Front wall 15: Rear wall 16: Side wall 17: Front circular plate 22: Supply port 30: Front curve 31: Back curve 33: Side Side edge of wall 36: Distribution function section 37: Distribution pump 38: Communication port between reservoirs (an example of distribution function section) 39: Inter-reservoir communication path (an example of a distribution function part) 40: Opening 54a: First upper storage tank 57a: First lower storage tank 57b: Second lower storage tank 58: Rising passage (passage forming part of the siphon communication passage) 59: Connection passage (passage that forms part of the siphon type communication passage) 65: Return passage 66: Pump 80: Fluid communication passage 90, 90a, 90b, 90c: Reservoir ⁇ :

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Provided is a turbine device which is capable of efficiently converting the potential energy of a fluid into power for turning a turbine used in power generation or the like. A turbine device in which a fluid 4 supplied from above rotates a plurality of phased storage bodies 6 which store said fluid 4 and are secured to a rotating shaft 2, said turbine device being characterized in that: the phased storage bodies 6 are composed of a front wall, a rear wall and a lateral wall, and are fluid storage bodies which expand in the direction in which the rotating shaft 2 extends; a front curve 30 of the lateral wall visible when viewed from the front and a rear curve 31 of the lateral wall visible when viewed from the rear are configured such that in comparison to the phase of the front curve, the phase of the rear curve 31 is rotated forward in the rotation direction around the rotating shaft 2 by the torsion angle, while the peripheral region of the rear curve 31 extends by only the extension angle; and the lateral wall of a phased storage body 6 is formed by connecting the front curve and the rear curve 31, which is rotated by the torsion angle and extends by the extension angle, in the front-rear direction by means of a three-dimensionally twisted wall surface.

Description

タービン装置及び連設型タービンシステムTurbine equipment and connected turbine systems
 本発明は、流体が持っている位置エネルギーなどを有用な機械的動力に変換する重力トルク変換に係るタービン装置に関する。本発明の重力トルク変換に係るタービン装置は発電装置として好適に使用できる。 The present invention relates to a turbine device related to gravitational torque conversion that converts potential energy of a fluid into useful mechanical power. The turbine device related to gravity torque conversion of the present invention can be suitably used as a power generation device.
 一般的な発電所で作られる電力エネルギーは、発電する段階で、ダイナモまたはオルタネーターといわれる誘電発電装置の回転軸を何等かの「物理動力エネルギー」で回転させることで電気を発生させ、「電力エネルギー」に変換しているものである。例えば、火力発電であれば石油または石炭・可燃ガス等の燃料や原子力を利用し、高温の「熱エネルギー」に変えて、ボイラーで強力な水蒸気圧を発生させ、その「強力な圧力」で発電機と連動するタービンを「高速で回転させること」で発電をする形が一般的である。
 一方、高い位置にある流体が有する位置エネルギーを利用し、回転軸を回して運動エネルギーを得るタービン装置も提案されている。
 そのようなタービン装置の一種として、十分な落差が得られない場所に設置された場合でも高効率かつ高出力で発電できることを目的として、下記特許文献1のようなタービン装置が提案されている。
Electrical energy produced in a general power plant is generated by rotating the rotating shaft of a dielectric power generation device called a dynamo or alternator using some kind of physical power energy. ”. For example, thermal power generation uses fuel such as oil, coal, combustible gas, or nuclear power, converts it into high-temperature "thermal energy," generates strong steam pressure in a boiler, and uses that "strong pressure" to generate electricity. The most common method is to generate electricity by rotating a turbine connected to the machine at high speed.
On the other hand, a turbine device has also been proposed that uses the potential energy of a fluid located at a high position to turn a rotating shaft and obtain kinetic energy.
As a type of such a turbine device, a turbine device as disclosed in Patent Document 1 below has been proposed with the aim of generating power with high efficiency and high output even when installed in a place where a sufficient head cannot be obtained.
特開2019-173690号公報JP2019-173690A
 しかしながら、燃料等のエネルギー資源から使い勝手の良い電気エネルギーに変換する過程において、無駄に失われる熱エネルギーが膨大であり、エネルギー変電効率は未だに著しく低いままである。特に火力発電の場合は、燃料物質が本来持つエネルギーの大半を熱エネルギーに変え、その熱エネルギーで副次的に発生するボイラーからの蒸気圧の物理動力エネルギーから発電タービンを回している。
 つまりは、熱エネルギーに変換した時点で大半を無駄に消費しており、その発電システムの安定稼働上、冷却や制御のために他の電力を使い、また、電気は貯めて置くことが難しいので常に実需要以上の電力を発生させているが、瞬間的に使用消費されない分はその瞬間ですべて消滅しており、運用上の効率性においては極めて低いと言える。
However, in the process of converting energy resources such as fuel into easy-to-use electrical energy, a huge amount of thermal energy is wasted, and the efficiency of energy transformation still remains extremely low. In particular, in the case of thermal power generation, most of the energy originally contained in fuel substances is converted into thermal energy, and the power generation turbine is turned by the physical power energy of the steam pressure generated by the boiler.
In other words, most of the energy is wasted when it is converted into thermal energy, and for stable operation of the power generation system, other power is used for cooling and control, and it is difficult to store electricity. Although it always generates more power than the actual demand, all the power that is not used or consumed momentarily disappears, so it can be said that operational efficiency is extremely low.
 以上まとめると、発電効率の改善が見込める電力供給システムが求められており、それを実現するための課題としては以下のものがある。
(A)熱を利用せず、高い位置にある流体の位置エネルギーを用いるとともに、そのエネルギー損失を少なくして、高効率で回転エネルギーに変換できるタービン装置を開発する。
(B)十分な落差が得られないような水源や、水量の少ない場所を流れる流体の位置エネルギーを回転エネルギーに変換できる高効率なタービン装置を開発する。
In summary, there is a need for a power supply system that can be expected to improve power generation efficiency, and the challenges to achieve this include the following.
(A) Develop a turbine device that uses the potential energy of a fluid located at a high position without using heat, reduces energy loss, and converts the energy into rotational energy with high efficiency.
(B) Develop a highly efficient turbine device that can convert the potential energy of fluid flowing through water sources where a sufficient head cannot be obtained or where the amount of water is low into rotational energy.
 本発明は、上記各課題を解決するためになされたものである。
 本発明のより広い目的としては、簡単な構成で流体の位置エネルギーなどの物理動力エネルギーを発電等に利用するタービンを回す動力に効率的に変換できるタービン装置及び連設型タービンシステムを提供することである。
The present invention has been made to solve each of the above problems.
A broader object of the present invention is to provide a turbine device and a connected turbine system that can efficiently convert physical power energy such as potential energy of a fluid into power for rotating a turbine used for power generation etc. with a simple configuration. It is.
 本発明の基本的な第1態様に係るタービン装置は、流体に係る重力によって、回転軸に固定された、前記流体を溜める複数の貯溜体を回転させるタービン装置であって、
 前記回転軸回りの回転トルク変化に有効なように、複数の前記貯溜体間で前記流体を分配する分配機能部を有している、ことを特徴とする。
 本発明の第2態様は、
 上方から供給される前記流体を前記貯溜体に供給する供給口と、
 前記供給口から前記貯溜体内に前記流体を取り入れる開口と、を有し、
 前記貯溜体が位相貯溜体で構成され、
 前記位相貯溜体は前方壁と後方壁と側方壁とを含んで構成され、前記回転軸の延びる方向に広がる前記流体の貯溜体であり、
 前方側から見たときに現れる前記側方壁の前側曲線と、後方側から見たときに現れる前記側方壁の後側曲線とにおいて、前記後側曲線の位相は前側曲線の位相に比べて、前記回転軸回りの捻り角だけ、回転方向に進めるように回転させるとともに、前記後側曲線の周辺域部を延出角だけ延ばしており、
 前記位相貯溜体の前記側方壁は、前記前側曲線と、前記捻り角だけ回転させ前記延出角だけ延ばした前記後側曲線と、の間を3次元的に捻れた壁面で前後方向に接続することで構成されている、ことを特徴とする。
 本発明の第3態様は、
 前記分配機能部を開閉弁で構成し、前記位相貯溜体の前記側方壁の周辺域部に、前記開閉弁を設け、前記開閉弁は、前記位相貯溜体が上部位置にある場合は、前記開閉弁を開いて前記流体を前記位相貯溜体内に取り入れ、下方側へ回転する場合は溜まった前記流体を洩れないように前記開閉弁を閉じるように機能する、ことを特徴とする。
A turbine device according to a basic first aspect of the present invention is a turbine device that rotates a plurality of storage bodies that store the fluid, which are fixed to a rotating shaft, by gravity related to the fluid, and includes:
The apparatus is characterized in that it has a distribution function part that distributes the fluid between the plurality of reservoirs so as to be effective in changing the rotational torque around the rotation axis.
The second aspect of the present invention is
a supply port for supplying the fluid supplied from above to the reservoir;
an opening for introducing the fluid into the reservoir from the supply port;
the reservoir is comprised of a phase reservoir;
The phase reservoir is a reservoir for the fluid that is configured to include a front wall, a rear wall, and a side wall, and spreads in the direction in which the rotation axis extends,
In the front curve of the side wall that appears when viewed from the front side and the rear curve of the side wall that appears when viewed from the rear side, the phase of the rear curve is compared to the phase of the front curve. , rotated so as to advance in the rotation direction by a twist angle around the rotation axis, and extend a peripheral area of the rear curve by an extension angle;
The side wall of the phase storage body connects the front curve and the rear curve rotated by the twist angle and extended by the extension angle in the front-rear direction with a three-dimensionally twisted wall surface. It is characterized by the fact that it consists of
The third aspect of the present invention is
The distribution function section is configured with an on-off valve, and the on-off valve is provided in a peripheral area of the side wall of the phase storage body, and the on-off valve is configured such that when the phase storage body is in an upper position, It is characterized in that the opening/closing valve is opened to take the fluid into the phase reservoir, and when rotating downward, the opening/closing valve is closed to prevent the accumulated fluid from leaking.
 本発明の第4態様は、
 前記開閉弁が、回転角度において進んだ位置の前記位相貯溜体と回転角度において遅れた前記位相貯溜体の間で前記流体を配分する、ことを特徴とする。
 本発明の第5態様は、
 前記前側曲線と前記後側曲線は共に、回転中心から延びる曲線の半径位置が、周方向に回転するに従って徐々に大きくなる渦巻き曲線に構成してある、ことを特徴とする。
 本発明の第6態様は、
 複数の前記位相貯溜体は、前記回転軸の回りに120゜間隔で取付けられる3個の前記位相貯溜体で構成した、ことを特徴とする。
The fourth aspect of the present invention is
It is characterized in that the opening/closing valve distributes the fluid between the phase reservoir at an advanced position in the rotation angle and the phase reservoir at a position delayed in the rotation angle.
The fifth aspect of the present invention is
Both the front curve and the rear curve are spiral curves in which the radial position of the curve extending from the center of rotation gradually increases as it rotates in the circumferential direction.
The sixth aspect of the present invention is
The plurality of phase reservoirs is characterized in that the plurality of phase reservoirs are composed of three phase reservoirs mounted at 120° intervals around the rotation axis.
 本発明の第7態様は、
 前記位相貯溜体の回転に伴って前記流体が溢れ出る前記位相貯溜体の前記側方壁の側方縁が水平となるように、前記後側曲線の前記捻り角及び前記延出角を設定した、ことを特徴とする。
 本発明の第8態様は、
 前記位相貯溜体の回転に伴って前記流体が溢れ出る前記位相貯溜体の前記側方壁の側方縁が前記回転軸と平行となるように、前記後側曲線の前記捻り角及び前記延出角を設定した、ことを特徴とする。
 本発明の第9態様は、
 前記開閉弁は、重力の作用によって駆動する開閉扉で構成されている、ことを特徴とする。
The seventh aspect of the present invention is
The torsion angle and the extension angle of the rear curve were set so that the side edges of the side walls of the phase reservoir, through which the fluid overflows as the phase reservoir rotates, are horizontal. , is characterized by.
The eighth aspect of the present invention is
The torsion angle and the extension of the rear curve are such that the side edges of the side walls of the phase reservoir, through which the fluid overflows as the phase reservoir rotates, are parallel to the axis of rotation. It is characterized by having set corners.
The ninth aspect of the present invention is
The on-off valve is characterized in that it is composed of an on-off door that is driven by the action of gravity.
 本発明の第10態様に係る連設型タービンシステムは、
 前記位相貯溜体は前記回転軸を中心軸として回転する円筒形シェルを用いて形成され、
 前記円筒形シェルは、前側円形板と後側円形板と円筒板とから構成され、
 前記円筒形シェルに、前記開口を前記位相貯溜体の前側又は後側の端部位置に設けた、ことを特徴とする。
 本発明の基本的な第11態様は、請求項2に記載された前記タービン装置を複数設けた、ことを特徴とする。
 本発明の第12態様は、
 複数の前記タービン装置は、前記流体の流れにおいて、少なくとも上流側から下流側に前記流体を流す流体路連通路を有している、ことを特徴とする。
The connected turbine system according to the tenth aspect of the present invention includes:
The phase reservoir is formed using a cylindrical shell that rotates about the rotation axis,
The cylindrical shell is composed of a front circular plate, a rear circular plate, and a cylindrical plate,
The cylindrical shell is characterized in that the opening is provided at a front end position or a rear end position of the phase reservoir.
A basic eleventh aspect of the present invention is characterized in that a plurality of the turbine devices according to claim 2 are provided.
The twelfth aspect of the present invention is
The plurality of turbine devices are characterized in that, in the flow of the fluid, each of the plurality of turbine devices has a fluid path communication path that allows the fluid to flow from at least an upstream side to a downstream side.
 本発明の第13態様は、
 前記流体路連通路の少なくとも一部にサイフォン現象を用いたサイフォン式連通路を設けた、ことを特徴とする。
 本発明の第14態様は、
 下流側の前記タービン装置の前記流体を上流側の前記タービン装置に戻す戻し通路と、前記流体を循環させるポンプと、を設けた、ことを特徴とする。
 本発明の第15態様は、
 水平方向に前記タービン装置を複数並べた構成を有する連設型タービンシステムであって、
 上流側の第1のタービン装置の上方位置に設けられ、上方から落下する前記流体を入れる第1の上部貯溜槽と、
 前記第1のタービン装置の下方位置に設けられ、前記第1のタービン装置から排出される前記流体を入れる第1の下部貯溜槽と、
 前記第1の下部貯溜槽の下方位置から下流側の第2のタービン装置の前記流体の前記供給口とを連通するサイフォン式連通路と、
 前記第2のタービン装置の下方位置に前記第2のタービン装置から排出される前記流体を入れる第2の下部貯溜槽と、を設け、
 サイフォン現象を用いて前記第2の下部貯溜槽から前記流体を流すことで、前記第1のタービン装置及び前記第2のタービン装置を回転させる、ことを特徴とする。
The thirteenth aspect of the present invention is
A siphon type communication path using a siphon phenomenon is provided in at least a part of the fluid communication path.
The fourteenth aspect of the present invention is
The present invention is characterized in that it includes a return passage that returns the fluid from the turbine device on the downstream side to the turbine device on the upstream side, and a pump that circulates the fluid.
The fifteenth aspect of the present invention is
A serial turbine system having a configuration in which a plurality of the turbine devices are arranged horizontally,
a first upper storage tank provided above the first turbine device on the upstream side and containing the fluid falling from above;
a first lower reservoir provided at a position below the first turbine device and containing the fluid discharged from the first turbine device;
a siphon-type communication path that communicates from a lower position of the first lower storage tank to the supply port of the fluid of the second turbine device on the downstream side;
a second lower reservoir containing the fluid discharged from the second turbine device at a position below the second turbine device;
The first turbine device and the second turbine device are rotated by flowing the fluid from the second lower storage tank using a siphon phenomenon.
 本発明の第16態様は、
 前記第2のタービン装置の上方位置に第2の上部貯溜槽を設け、前記サイフォン式連通路を前記第2の上部貯溜槽に連通した、ことを特徴とする。
 本発明の第17態様は、
 前記第2の下部貯溜槽から流れ出る前記流体を前記第1の上部貯溜槽に戻す戻し通路を設け、流れ出る前記流体を循環させるポンプを設けた、ことを特徴とする。
 本発明の第18態様は、
 前記流体路連通路を介して、複数の前記タービン装置は、上下方向に連設されている、ことを特徴とする。
The sixteenth aspect of the present invention is
A second upper storage tank is provided above the second turbine device, and the siphon type communication path is communicated with the second upper storage tank.
The seventeenth aspect of the present invention is
A return passage is provided for returning the fluid flowing out from the second lower storage tank to the first upper storage tank, and a pump is provided for circulating the fluid flowing out.
The eighteenth aspect of the present invention is
The plurality of turbine devices are vertically connected via the fluid communication path.
 本発明の第19態様は、
 前記分配機能部は、複数の前記貯溜体間を連通する貯溜体間連通口を有している、ことを特徴とする。
 本発明の第20態様は、
 前記回転トルク変化に有効なように複数の前記貯溜体間で前記流体を分配する分配ポンプを有している、ことを特徴とする。
The nineteenth aspect of the present invention is
The distribution function section is characterized in that it has an inter-reservoir communication port that communicates between the plurality of reservoirs.
The 20th aspect of the present invention is
The present invention is characterized in that it includes a distribution pump that distributes the fluid between the plurality of reservoirs in a manner effective for changing the rotational torque.
 本発明であれば、簡単な構成で流体の位置エネルギーなどの物理動力エネルギーを発電等に利用するタービンを回す動力に効率的に変換できるタービン装置及び連設型タービンシステムを提供できる。 According to the present invention, it is possible to provide a turbine device and a connected turbine system that can efficiently convert physical power energy such as potential energy of a fluid into power for rotating a turbine used for power generation or the like with a simple configuration.
本実施形態に係るタービン装置の一例を示す斜視図である。It is a perspective view showing an example of the turbine device concerning this embodiment. (a)は従来のタービン羽根を示す図、(b)(c)(d)は本発明に採用できる4本又は3本のタービン羽根を示す図である。(a) is a diagram showing a conventional turbine blade, and (b), (c), and (d) are diagrams showing four or three turbine blades that can be adopted in the present invention. 図2における(b)(c)(d)のタービン羽根において、回転トルクを生み出す場合の各位相貯溜体に蓄えられる流体の量や状態を回転シーケンスで比較した図である。In the turbine blades (b), (c), and (d) in FIG. 2, the amount and state of fluid stored in each phase storage body when generating rotational torque are compared in the rotation sequence. 回転トルクを得るための三角関数による瞬間的なベクトル解析を示す図である。FIG. 3 is a diagram showing instantaneous vector analysis using trigonometric functions to obtain rotational torque. ブレード羽根の回転に考慮すべき重力、慣性モーメント、及び有効重力によって得られる回転トルクを説明するための模式図である。FIG. 2 is a schematic diagram for explaining rotational torque obtained by gravity, moment of inertia, and effective gravity that should be taken into account when rotating a blade. (a)は上方から落下する流体によって直線的な平板が回転させられる状態を示す模式図、(b)は流体の流れと滞留が起こるような貯溜体を使用した状態を示す模式図である。(a) is a schematic diagram showing a state in which a linear flat plate is rotated by fluid falling from above, and (b) is a schematic diagram showing a state in which a reservoir is used in which fluid flows and stagnates. (a)(b)(c)は図3の各タービン羽根において横軸に回転角を取り、縦軸にトルク変換の値を示す図である。(a), (b), and (c) are diagrams in which the horizontal axis represents the rotation angle of each turbine blade in FIG. 3, and the vertical axis represents the value of torque conversion. (a)は前側曲線を前方側から見た図、(b)はタービン装置の要部を斜めから見た斜視図、(c)は後側曲線を後方側から見た図、(d)(e)(f)はそれぞれ回転軸回りに形成される位相貯溜体を分解して示した斜視図である。(a) is a view of the front curve seen from the front side, (b) is a perspective view of the main part of the turbine device seen from an angle, (c) is a view of the rear curve seen from the rear side, (d) ( e) and (f) are exploded perspective views showing phase reservoirs formed around the rotation axis, respectively. (a)(b)(c)(d)はそれぞれタービン装置の一例の分解斜視図である。(a), (b), (c), and (d) are exploded perspective views of an example of a turbine device, respectively. (a)(b)(c)はそれぞれタービン装置の一例の分解斜視図である。(a), (b), and (c) are exploded perspective views of an example of a turbine device, respectively. 分解されたタービン装置を組み立てた状態を示す斜視図である。FIG. 2 is a perspective view showing an assembled state of the disassembled turbine device. 本タービン装置の一例において、開口の構成と開閉弁の構成を説明するための斜視図である。FIG. 2 is a perspective view for explaining the configuration of an opening and the configuration of an on-off valve in an example of the present turbine device. 落下する流体が各位相貯溜体に入り、排出口から出るまでに流れる流体の前後方向の動きと滞留を模式的に示した図である。FIG. 6 is a diagram schematically showing the movement and retention of the fluid in the front-rear direction until the falling fluid enters each phase storage body and exits from the discharge port. (a)(b)(c)(d)はそれぞれ各位相貯溜体において側方壁に設けられる開閉弁の回転時の動きを説明するために、前方側から見た模式図である。(a), (b), (c), and (d) are schematic diagrams viewed from the front side in order to explain the movement of the on-off valves provided on the side walls of each phase storage body during rotation. (a)(b)(c)はそれぞれ回転角度が30゜の時の各位相貯溜体への流体の流れ込みの様子を示す図である。(a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 30 degrees. (a)(b)(c)はそれぞれ回転角度が60゜の時の各位相貯溜体への流体の流れ込みの様子を示す図である。(a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 60 degrees. (a)(b)(c)はそれぞれ回転角度が90゜の時の各位相貯溜体への流体の流れ込みの様子を示す図である。(a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 90 degrees. (a)(b)(c)はそれぞれ回転角度が120゜の時の各位相貯溜体への流体の流れ込みの様子を示す図である。(a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 120 degrees. (a)(b)(c)はそれぞれ回転角度が150゜の時の各位相貯溜体への流体の流れ込みの様子を示す図である。(a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 150°. (a)(b)(c)はそれぞれ回転角度が180゜の時の各位相貯溜体への流体の流れ込みの様子を示す図である。(a), (b), and (c) are diagrams each showing how fluid flows into each phase reservoir when the rotation angle is 180 degrees. 本実施形態に係る他のタービン装置の斜視図である。FIG. 3 is a perspective view of another turbine device according to the present embodiment. 他のタービン装置を前方側から見た図である。FIG. 3 is a diagram of another turbine device viewed from the front side. (a)(b)(c)(d)はそれぞれ他のタービン装置の動作を説明するための図である。(a), (b), (c), and (d) are diagrams for explaining operations of other turbine devices, respectively. 横方向に複数の水貯溜槽を設けた場合にサイフォン現象を説明するための図であり、弁が閉じられた状態を示す図である。It is a figure for explaining a siphon phenomenon when a plurality of water storage tanks are provided in the horizontal direction, and is a figure showing a state where a valve is closed. 図24において、弁が開かれた状態において、サイフォン現象を説明するための図である。FIG. 24 is a diagram for explaining the siphon phenomenon in a state where the valve is opened. 流体の貯溜槽を上下方向に連結した構成を示す図である。FIG. 3 is a diagram showing a configuration in which fluid reservoirs are connected in the vertical direction. サイフォン現象を利用した、本実施形態に係る連設型のタービン装置を説明するための概略的な斜視図である。FIG. 2 is a schematic perspective view for explaining a serially connected turbine device according to the present embodiment that utilizes a siphon phenomenon. 自然落下する流体の位置エネルギーを用い、サイフォン現象を利用した連設型のタービン装置の一例を示す図である。FIG. 2 is a diagram showing an example of a continuous turbine device that utilizes the siphon phenomenon using the potential energy of naturally falling fluid. サイフォン現象を利用し、流体の戻し通路を設けるとともに流体を循環させたるポンプを設けた構成に係る連設型のタービン装置の一例を示す図である。FIG. 2 is a diagram illustrating an example of a serially connected turbine device that uses a siphon phenomenon to provide a fluid return passage and a pump that circulates the fluid. 横軸に角度、縦軸に相対的なトルク出力を示した図である。It is a diagram showing angle on the horizontal axis and relative torque output on the vertical axis.
[第1実施形態]
 以下、本発明において、重力トルク変換に係るタービン装置の実施形態を説明する前に本実施形態における重要な観点について説明する。
 本実施形態における重要な観点としては以下の観点が挙げられる。
(観点1)貯溜体の構成
 貯溜体は回転軸の延びる方向(前後方向)に広がりを持つとともに、幅方向(横方向,半径方向)にも広がりを持った流体を同じ貯溜体内や他の貯溜体間において移動、対流及び滞留させる流体の受体である。貯溜体は容器形にも構成できる。各貯溜体は、通常、上方から供給される供給口からの流体を受け入れる開口を有している。開口は主に流体の貯溜体への入口として機能する。なお、開口を入口だけでなく、貯溜体の出口としても使用する構成も採用できる。
 図6又は図13に示すように、単位時間当たりの所定量の落下流体が生み出す回転トルクを考える場合に、効率的に大きな回転トルクを生み出すために、システムが許容する時間内において、回転軸方向に延びる方向及び回転軸の半径方向に延びる方向において、流体が移動し、できる限り長時間、流体が貯溜体内に滞留する構成を採用し、その滞留した流体に対して重力が生み出す力を回転トルクとして変換する構成を採用することが好ましい。この考え方は、複数の貯溜体間の流体の移動においても成り立つ。
[First embodiment]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, important aspects of this embodiment will be described below before describing an embodiment of a turbine device related to gravity torque conversion.
Important viewpoints in this embodiment include the following viewpoints.
(Aspect 1) Structure of the reservoir The reservoir has an expanse in the direction in which the rotating shaft extends (front-back direction), and also in the width direction (lateral and radial directions). It is a receptor for fluid that moves, convects, and stagnates between bodies. The reservoir can also be constructed in the form of a container. Each reservoir has an opening that receives fluid from an inlet, typically supplied from above. The aperture primarily functions as an inlet for fluid into the reservoir. Note that a configuration in which the opening is used not only as an inlet but also as an outlet of the reservoir can be adopted.
As shown in Fig. 6 or Fig. 13, when considering the rotational torque generated by a predetermined amount of falling fluid per unit time, in order to efficiently generate large rotational torque, it is necessary to A configuration is adopted in which the fluid moves in the direction extending in the direction of the axis of rotation and in the direction extending in the radial direction of the rotating shaft, and the fluid remains in the reservoir for as long as possible, and the force generated by gravity on the retained fluid is converted into rotational torque It is preferable to adopt a configuration in which the conversion is performed as follows. This concept also holds true for fluid movement between multiple reservoirs.
 なお、この考え方によれば、貯溜体の形状によって、回転トルク出力、即ち回転エネルギーへの変換効率が著しく影響を受けることになる。図6(a)に示すように上方から落下する流体4によって直線的な平板52が回転させられる状態と、図6(b)に示すように重力による水量の力を回転トルクに変換する場合のように、重力に影響を受ける時間を長くすることを目途とした「低速」で回転させる状態とを比較することは重要である。トルク出力を増加させることを前提として、「対流」をしながら「滞留」する自然の「流れ」を生み出す構成の容器51(貯溜体)と平板52を使用した状態の構成との比較を考えれば、本実施形態の構成の利点が容易に理解できる。
 つまり、後述する本実施形態の構成であれば、瞬間的な稼働状態(予め滞留水がある状態)で、注ぎ込まれる水と排出される水が全く同等の稼働状態、即ち同等の位置エネルギーの消費条件において、回転トルクへの変換効率を数倍どころか数十倍、数百倍に高めることができるものである。
According to this idea, the rotational torque output, that is, the conversion efficiency into rotational energy is significantly affected by the shape of the storage body. As shown in FIG. 6(a), the linear flat plate 52 is rotated by the fluid 4 falling from above, and as shown in FIG. 6(b), the force of water volume due to gravity is converted into rotational torque. It is important to compare this with a state in which the object is rotated at a "low speed" with the aim of prolonging the time it is affected by gravity. On the premise of increasing torque output, if we consider a comparison between a container 51 (reservoir) that creates a natural "flow" that "stagnates" while performing "convection" and a structure that uses a flat plate 52. , the advantages of the configuration of this embodiment can be easily understood.
In other words, with the configuration of this embodiment, which will be described later, in an instantaneous operating state (in which there is accumulated water in advance), the injected water and the discharged water are in exactly the same operating state, that is, they consume the same potential energy. Under certain conditions, the efficiency of conversion into rotational torque can be increased not only several times, but tens of times, even hundreds of times.
(観点2)分配機能部
 図8~図13に示すように、貯溜体に重力の作用によって上方にある流体が流れ込む、貯溜体から重力の作用によって流体が流れ出る場合において、貯溜体への流体の供給、排出を回転軸回りの構成において継続的かつ効率的に実現できる貯溜体の構成を考えることが大事である。なお、本明細書において、「流体の分配」とは、異なる貯溜体間の流体の移動、分割(分岐)などを含む概念である。
 後述する部材を例に取って説明すれば、分配機能部36としては、例えば貯溜体間連通口38だけでも構成できる場合がある。貯溜体間連通口38は、ある程度の長さを有した貯溜体間連通路39である場合も含む。なお、供給口22から貯溜体内に前記流体を取り入れる開口40の一部又は全部が分配機能部36の一部として機能する場合がある。
 また、分配機能部36の好ましい構成として、分配具を含んだ構成が例示できる。分配具としては後述する具体的な構成で示すように、弁体、開閉弁5、水路(ゲート機構)などが例示できる。
(Aspect 2) Distribution function section As shown in FIGS. 8 to 13, when fluid flows upward into the reservoir due to the action of gravity, and when fluid flows out from the reservoir due to the action of gravity, the flow of fluid into the reservoir is It is important to consider a reservoir configuration that can continuously and efficiently realize supply and discharge around a rotation axis. Note that in this specification, "distribution of fluid" is a concept that includes movement of fluid between different reservoirs, division (branching), and the like.
Taking as an example a member to be described later, the distribution function section 36 may be configured by, for example, only the inter-reservoir communication port 38. The inter-reservoir communication port 38 may also be an inter-reservoir communication path 39 having a certain length. Note that part or all of the opening 40 that takes the fluid into the reservoir from the supply port 22 may function as part of the distribution function section 36.
Further, as a preferable configuration of the distribution function section 36, a configuration including a distribution tool can be exemplified. Examples of the distributing device include a valve body, an on-off valve 5, a water channel (gate mechanism), etc., as shown in the specific configuration described later.
(観点3)供給口
 上方から流体を前記貯溜体に供給する供給口が、開口に臨んで流体の供給に好ましい位置に配設される。流体の供給口は流体供給管34(例えば、図1、図14参照)などで構成される。供給口の前後方向の長さ、及び横方向の長さ、供給口の上方から見た断面形状は、それぞれ、例えば開口の構成と、例えば分配具の構成に応じて、回転トルクの生成において最適になるように設計される。
(観点4)回転トルクを最大化する角度範囲
 図2~図5に示すように、回転トルクを最も効率的に発生できる角度範囲である、回転軸の回転中心を通る水平線に対して上下30゜、即ち60゜の角度範囲において滞留する流体の量を大きくする形状の貯溜体を構成することが好ましい。
(Aspect 3) Supply Port A supply port for supplying fluid to the reservoir from above is disposed at a position facing the opening and suitable for supplying the fluid. The fluid supply port is constituted by a fluid supply pipe 34 (see, for example, FIGS. 1 and 14). The length of the supply port in the longitudinal direction, the length in the lateral direction, and the cross-sectional shape of the supply port when viewed from above are optimal for generating rotational torque depending on, for example, the configuration of the opening and, for example, the configuration of the distributor. is designed to be.
(Aspect 4) Angular range that maximizes rotational torque As shown in Figures 2 to 5, the angle range that can most efficiently generate rotational torque is 30 degrees above and below the horizontal line passing through the center of rotation of the rotating shaft. In other words, it is preferable to configure the reservoir with a shape that increases the amount of fluid retained in an angular range of 60 degrees.
(観点5)タービン装置の連設化による重力エネルギーの効率利用
 流体の位置エネルギーの利用形態において、タービン装置を複数設けることで、高い位置にある流体の重力エネルギーを従来の構成に比べて有効利用できる。
 この複数のタービン装置は、流体の流れにおいて、少なくとも上流側から下流側に流体を流す流体路連通路80を有している点も大きな特徴である。
 位置エネルギーを効率利用できる最も簡単な理由付けとして、例えば、図26に示すような、複数の流体の貯溜槽70a,70b,70cにおいて、単純に流体の貯溜槽70a,70b,70cのそれぞれを後述するタービン装置1a,1b,1cに置換すれば、最も下側の貯溜槽70aの位置にタービン装置1aを1つだけ設けた場合に比べて、流体の位置エネルギー利用の効率を大きくすることができる。
 その理由は、最も高い水の供給位置、即ち、貯溜槽70cの繋ぎ管路77の下端から水が落下する場合に、最も低い位置にある1つのタービン装置1aのみがある構成であれば、タービン装置1aのタービン羽根と落下する水の衝突の衝撃、振動、水の飛び散り、音の発生等の現象によって、高い位置の水が有する位置エネルギーが損なわれ、エネルギー変換効率が低下してしまうことになるからである。これに対して、貯溜槽70a,70b,70cのそれぞれを置き換えるように、3個のタービン装置1a,1b,1cを上下方向に連接した構成であれば、低速であるが、回転トルクを大きくして安定して発電効率を向上させることができる。
 なお、後述するサイフォン式連通通路を設ける構成は、連設型のタービン装置の下位概念に係る一構成例である。
 本実施形態の考え方の一特徴点としては、上方から落下等する流体の位置エネルギーをタービン軸の回転軸のトルクに変換する場合に、タービン羽根に当たる瞬間的な運動エネルギーを回転トルクに変換していた構成と比較すると、個々の貯溜体又は複数の貯溜体間を流体が流れ、対流かつ貯溜させるための各種構成及び工夫を採用することで、流体の位置エネルギーを効率的に回転エネルギーに変換できることを見出した点がある。
(Aspect 5) Efficient use of gravitational energy by connecting turbine devices In terms of utilizing the potential energy of fluids, by installing multiple turbine devices, the gravitational energy of fluids located at high positions can be used more effectively than in conventional configurations. can.
Another major feature of these plurality of turbine devices is that they have a fluid path communication path 80 that allows fluid to flow at least from the upstream side to the downstream side.
As the simplest rationale for efficiently utilizing potential energy, for example, in a plurality of fluid reservoirs 70a, 70b, 70c as shown in FIG. 26, each of the fluid reservoirs 70a, 70b, 70c will be simply described below. If the turbine devices 1a, 1b, and 1c are replaced with the turbine devices 1a, 1b, and 1c, the efficiency of utilizing the potential energy of the fluid can be increased compared to the case where only one turbine device 1a is provided at the lowermost storage tank 70a. .
The reason is that when water falls from the highest water supply position, that is, the lower end of the connecting pipe 77 of the storage tank 70c, if there is only one turbine device 1a at the lowest position, the turbine Due to phenomena such as impact, vibration, water splashing, and sound generation caused by the collision of the falling water with the turbine blades of the device 1a, the potential energy of the water at a higher position is lost, and the energy conversion efficiency is reduced. Because it will be. On the other hand, if the three turbine devices 1a, 1b, and 1c are connected vertically to replace each of the storage tanks 70a, 70b, and 70c, the rotational torque will be increased although the speed will be low. It is possible to stably improve power generation efficiency.
Note that the configuration in which a siphon-type communication passage, which will be described later, is provided is an example of a configuration related to a subordinate concept of a continuous type turbine device.
One of the features of the concept of this embodiment is that when converting the potential energy of a fluid falling from above into the torque of the rotating shaft of the turbine shaft, the instantaneous kinetic energy hitting the turbine blades is converted into rotational torque. Compared to other configurations, the potential energy of the fluid can be efficiently converted into rotational energy by adopting various configurations and devices for allowing fluid to flow between individual reservoirs or between multiple reservoirs, causing convection and storage. There are some points that I have found.
 次に、貯溜体の形状設計についてさらに説明する。
 図2(a)(b)(c)(d)はそれぞれタービンブレード(タービン羽根)の形状を示した図、図3は、図2(b)(c)(d)における各タービンブレードの回転シーケンスを例示した図である。
 図4は、三角関数による回転角度による重力効果率を考えるための図であり、実線はサインカーブ、破線はコサインカーブを示している。
 図5は回転トルクを生じさせる要因を模式的に示した図であり、図5において矢印Gは重力を示し、矢印EGは有効重力を示し、矢印Mは慣性モーメントを示している。また、Tは回転トルクを示している。
 図4に示す実線の曲線42において、15゜間隔の角度を考え、加速度差と重力効果率を記載すると、表1のようになる。図4において符号48の矢印幅は、30゜間隔の角度範囲を示す領域を示している。
Next, the shape design of the reservoir will be further explained.
Figures 2(a), (b), (c), and (d) are diagrams showing the shapes of turbine blades (turbine blades), respectively, and Figure 3 is the rotation of each turbine blade in Figures 2(b), (c, and d). FIG. 3 is a diagram illustrating a sequence.
FIG. 4 is a diagram for considering the gravitational effect rate depending on the rotation angle using trigonometric functions, where the solid line indicates a sine curve and the broken line indicates a cosine curve.
FIG. 5 is a diagram schematically showing factors that cause rotational torque. In FIG. 5, arrow G indicates gravity, arrow EG indicates effective gravity, and arrow M indicates moment of inertia. Further, T indicates rotational torque.
In the solid curve 42 shown in FIG. 4, considering angles at intervals of 15 degrees, and describing the acceleration difference and the gravitational effect ratio, Table 1 is obtained. In FIG. 4, the width of the arrow 48 indicates a region indicating an angular range at 30° intervals.
 また、図4に示す破線の曲線43において、15゜間隔の角度を考え、加速度差と重力効果率を記載すると、表2のようになる。 Further, in the broken curve 43 shown in FIG. 4, if we consider angles at intervals of 15 degrees and describe the acceleration difference and the gravitational effect rate, Table 2 will be obtained.
 図2に示すように、タービンブレードを用いて誘電発電装置を回すためにはタービンブレードを回す原動力のシステム形態によって様々な形態がある。高圧で流れる水蒸気や水などの流体から回転エネルギーに変換するには多数のブレードを装着し圧力を受ける表面面積を増やすことが必要になる。流体圧力が高ければ高いほど一枚のブレードホイールでは圧力エネルギーを回転エネルギーに変換しきれないので、何重にもブレードホイールを重ねる方式がとられている。また、ブレードホイールの数が少なければ、圧力を吸収して回転動力に変換する効率を落とし圧力を無駄に放出することになり、逆にブレードホイールを増やしすぎると流体抵抗を増して全体の流体速度を落とし、同時にタービン回転数を落とすことにもなるので、タービンの回転効率を向上させるタービンブレードの設計だけでも極めて複雑かつ繊細な設計と設置と運用を要する。 As shown in FIG. 2, there are various ways to rotate a dielectric power generator using turbine blades, depending on the system configuration of the motive force that rotates the turbine blades. To convert fluids such as steam or water flowing at high pressure into rotational energy, it is necessary to install a large number of blades to increase the surface area that receives pressure. The higher the fluid pressure, the less pressure energy can be converted into rotational energy with a single blade wheel, so a method of stacking blade wheels in multiple layers is used. In addition, if the number of blade wheels is small, the efficiency of absorbing pressure and converting it into rotational power will be reduced, and the pressure will be wasted. On the other hand, if the number of blade wheels is too large, fluid resistance will increase and the overall fluid velocity will increase. At the same time, the turbine speed is also reduced, so just designing the turbine blades to improve the rotational efficiency of the turbine requires extremely complex and delicate design, installation, and operation.
 前記したように、本実施形態の貯溜体を一種のブレードとして考えると、圧力を受けるためのものではなく、重力によって落ちて来る水を受け止めて、その水の重さによる力をトルク変換に有効な位置に可能な限り長く滞留させられるかが大事である。したがって、貯溜体の形によってそのトルク変換特性に大きな差が生まれてくることになる。
 例えば、以下の図3のb・c・dの3つタイプの見た目には大した差異のない貯溜体でも、0°から90°の回転範囲でのトルク変換効率には著しい差が出てくる。
 具体的には、誘電発電機軸を回すための回転動力負荷がかかって、それによって重力加速度が吸収されて低速で回転するブレードに対して、落ちてくる水が瞬間的に溜まり、その水の重さによって回転トルクに変換される最も効率的な回転角帯域は、図5と表1に示す重力ベクトルと慣性モーメントの相関図に示されるように、回転中心点から水平に伸ばした線の前後30°の回転帯域である。そこに水が落ちて当たり、瞬間的に溜まり、ブレードの傾きによって溢れ出る間において発生するトルクを利用することが大事になる。
As mentioned above, if we consider the storage body of this embodiment as a type of blade, it is not intended to receive pressure, but to receive water falling due to gravity, and the force due to the weight of the water is effective for torque conversion. It is important to be able to stay in a certain position for as long as possible. Therefore, there will be a large difference in the torque conversion characteristics depending on the shape of the reservoir.
For example, even though the three types of reservoirs shown in Figure 3 below, b, c, and d, do not have much difference in appearance, there is a significant difference in torque conversion efficiency in the rotation range from 0° to 90°. .
Specifically, when a rotational power load is applied to rotate the dielectric generator shaft, the gravitational acceleration is absorbed and the blades rotate at a low speed. The most efficient rotational angle band, which is converted into rotational torque depending on rotation band of °. It is important to utilize the torque that is generated when water falls and hits the blade, momentarily accumulating and overflowing due to the tilt of the blade.
 また、図7に示すように、このトルク出力(Tcon)特性は、図7(a)に示す半円形4枚羽ブレード「Type b」と、図7(b)に示す半円形3枚羽の「Type c」のそれぞれの構成に比べ、図7(c)に示す外殻に向かって渦巻き状に展開角度が広がる「位相曲線形」の「Type d」の位相曲線形3枚羽ブレードは、性能が良好であることが分かる。つまり、トルク出力を比べると、「Type d」の位相曲線ブレードのトルク出力は他の2タイプに対して、圧倒的に偏差が少なく「安定性」としては全回転域において良いことが分かる。
 このトルク変換特性からエネルギー変換率を求めるとすれば、図7において示す縦横の軸と曲線で囲まれた面積がエネルギー吸収率となるので、結果として、「Type d」は他のタイプのプレードの0~60°の回転域において数倍以上の効率のエネルギー変換効率が得られることが分かる。
In addition, as shown in Fig. 7, this torque output (Tcon) characteristic is different between the semicircular 4-blade blade "Type b" shown in Fig. 7(a) and the semicircular 3-blade blade shown in Fig. 7(b). Compared to each configuration of "Type c", the three-blade phase curve-shaped blade of "Type d" has a "phase curve shape" in which the deployment angle expands in a spiral shape toward the outer shell, as shown in Fig. 7(c). It can be seen that the performance is good. In other words, when comparing the torque output, it can be seen that the torque output of the "Type d" phase curve blade has far less deviation than the other two types, and has good "stability" over the entire rotation range.
If we calculate the energy conversion rate from this torque conversion characteristic, the area surrounded by the vertical and horizontal axes and the curved line shown in Fig. 7 will be the energy absorption rate.As a result, "Type d" is different from other types of blades. It can be seen that an energy conversion efficiency several times higher than that in the rotation range of 0 to 60 degrees can be obtained.
 つまり、上方から落下する水の直線運動エネルギーを回転エネルギーに変換するには、円運動の回転中心点から水平に延ばした線(回転円を上下半円に2等分する線)の上下30゜の60゜の弧の面積の範囲に水を貯めて貯溜時間を長くしながら回転させることが最も効率的であり、運動エネルギーの瞬間的な時間ではなく、実効的に作用する回転時間を考慮して積分計算すれば、仮にこの60゜の範囲に常に重量を待つ流体を保てれば流体が落下する運動エネルギーを高効率の変換効率で、効率的に回転エネルギーに変換できることになる。
 また、回転中心から円半径が大きくなり外周に伸びてゆく「渦巻き曲線」を採用した、図3(d)に示すようなブレード形状であって、回転軸回りに120゜間隔で渦巻き曲線が3枚設けられている羽根構成のブレード形状が、効率が良いことになる。
In other words, in order to convert the linear kinetic energy of water falling from above into rotational energy, it is necessary to move 30 degrees above and below a line extending horizontally from the center of rotation of the circular motion (the line that bisects the rotation circle into upper and lower semicircles). The most efficient way is to store water in the area of a 60° arc and rotate it while increasing the storage time, considering the effective rotation time rather than the instantaneous time of kinetic energy. If we perform an integral calculation, we can see that if we can always keep the fluid waiting for its weight within this 60° range, we can efficiently convert the kinetic energy of the falling fluid into rotational energy with a high conversion efficiency.
In addition, the blade shape adopts a "spiral curve" in which the radius increases from the rotation center and extends to the outer periphery, as shown in Figure 3(d), with three spiral curves arranged at 120° intervals around the rotation axis. This means that the blade shape with the blade configuration is more efficient.
 さらに、説明する。
 回転トルクから発生できるエネルギー(出力エネルギー)の物理公式は、発生出力P[kW],トルクT[Nm]の相関関係として、トルクT[Nm]と回転数N[rps]から出力P[W]を算出する公式としてはP=2πTNとなる。つまり、回転トルクが安定しなければ、安定したエネルギーは発生できず、単位時間あたりのエネルギー出力量も必然的に減少することになる。
 発電システムとして発電効率を注視するポイントとしては、回転トルクの安定性は必須要素である。本実施形態のように重力で落ちてくる水を受け止め、ある程度それを溜めて、その水の重さの力を利用してタービンを回す仕組みにおいては、常に変動する水の重量バランスの変異を回転トルクに変換して、誘電装置を効率よく回す構成が重要になる。この場合、一定回転負荷に対し、可能な限り一定の回転速度で回転し、かつ一定の回転トルク出力になるような構成及び機能システムを付加することを考えることが要点になる。また、安定かつ高効率な発電性能を実現するにおいて、可能な限りシンプルなシステム構成で実現することが重要なポイントとなる。
Further explanation.
The physical formula for the energy (output energy) that can be generated from rotational torque is the correlation between generated output P [kW] and torque T [Nm], and output P [W] from torque T [Nm] and rotational speed N [rps]. The formula for calculating is P=2πTN. In other words, unless the rotational torque is stable, stable energy cannot be generated, and the amount of energy output per unit time will inevitably decrease.
The stability of rotational torque is an essential element when considering the power generation efficiency of a power generation system. In a system like this embodiment, which catches water falling due to gravity, stores it to a certain extent, and uses the force of the weight of that water to turn a turbine, it is possible to rotate the constantly changing weight balance of water. It is important to have a configuration that converts torque into torque and rotates the dielectric device efficiently. In this case, it is important to consider adding a configuration and a functional system that will rotate at a constant rotational speed as much as possible and provide a constant rotational torque output for a constant rotational load. Furthermore, in order to achieve stable and highly efficient power generation performance, it is important to achieve this with the simplest possible system configuration.
 具体的にはその安定的なトルクを発生するためには、図3のようにブレードの形状によって、トルク発生(トルク変換)の効率、即ちエネルギー変換の効率は著しく変わることが分かる。そして、図3(b)(c)の半円形ブレード形状ではトルク出力は図5の重力方向ベクトルに対する回転トルク変換の有効ベクトルは、図4のようにサインカーブになるので、図3(b)(c)のブレードを利用している場合は、図4に示すように0~90°の回転角におけるサインカーブの曲線42の内側の領域84がトルク変換、即ち吸収されたエネルギーの量として示される。
 但し、サインカーブの曲線42の内側の領域84以外の埋められない空白の領域83をロス(無駄に消費されている)しているように見えるが、現代の一般物理法則としては、通常の位置エネルギーと運動エネルギーの変換法則で言えば、位置エネルギーが100%運動エネルギーに変換された場合のエネルギー量を示すものであり、変換ロスが生じていない状態を示したものとなる。ちなみに、このような90°の回転角で凹凸が激しいトルク出力を平坦にして扱いやすくするために、従来から現代の最新型の発電方式は高速回転化に特化している現実がある。
 これに対して、本実施形態では上記空白の領域83も補完可能領域として利用することを一つの目的としている。なお、図4に示す空白の領域83は「埋められない空白の領域」の一例である。
Specifically, in order to generate stable torque, it can be seen that the efficiency of torque generation (torque conversion), that is, the efficiency of energy conversion, changes significantly depending on the shape of the blade as shown in FIG. In the semicircular blade shapes shown in FIGS. 3(b) and 3(c), the torque output is as shown in FIG. When using the blade of (c), as shown in FIG. 4, a region 84 inside the sine curve 42 at a rotation angle of 0 to 90 degrees is represented as torque conversion, that is, the amount of absorbed energy. It will be done.
However, although it seems that the blank area 83 that cannot be filled in other than the area 84 inside the curve 42 of the sine curve is lost (wasted), according to modern general laws of physics, it is in the normal position. In terms of the law of conversion between energy and kinetic energy, it indicates the amount of energy when 100% of potential energy is converted to kinetic energy, and indicates a state where no conversion loss occurs. Incidentally, in order to flatten out the highly uneven torque output at a 90° rotation angle and make it easier to handle, the latest power generation systems of today have traditionally specialized in high-speed rotation.
In contrast, in this embodiment, one purpose is to use the blank area 83 as a complementable area. Note that the blank area 83 shown in FIG. 4 is an example of a "blank area that cannot be filled."
 以下、本実施形態に係るタービン装置を利用した、重力トルク変換式の発電システムについて図面を参照しつつ、上記観点についての検討を踏まえた、タービン装置のより具体的な構成についてさらに説明する。
 図1は本実施形態に係るタービン装置1(以下、簡便のためタービンと称することもある)の外観を示す外観斜視図、図9~図11はそれぞれ本タービンの分解図、図12は開閉弁付近の構成を説明するための斜視図である。
 図1に示すように、この実施形態で例示するタービン1は、流体としての水4の自然落下による水流をタービン装置1内に取り込み、回転軸2を回転させ、その回転軸2の回転動力をダイナモ又はオルタレータ等の発電機3に連結することで、発電を行う装置である。
 本明細書において、図1に示すように、水4が落ちる方向を上下方向(図1においてX方向で示すと称し)、回転軸2の延びる方向を前後方向(図1においてY方向で示す)と称し、上下方向と前後方向の両方に直交する方向を側方向、横方向(半径方向)又は左右方向(図1においてZ方向で示す)と称する。
Hereinafter, a more specific configuration of the turbine device will be further described based on the consideration of the above viewpoints, with reference to the drawings regarding a gravity torque conversion type power generation system using the turbine device according to the present embodiment.
FIG. 1 is an external perspective view showing the external appearance of a turbine device 1 (hereinafter sometimes referred to as a turbine for simplicity) according to the present embodiment, FIGS. 9 to 11 are exploded views of the turbine, and FIG. 12 is an on-off valve. FIG. 3 is a perspective view for explaining the configuration of the vicinity.
As shown in FIG. 1, the turbine 1 exemplified in this embodiment takes a water flow caused by the natural fall of water 4 as a fluid into the turbine device 1, rotates the rotating shaft 2, and generates the rotational power of the rotating shaft 2. This is a device that generates electricity by connecting to a generator 3 such as a dynamo or alternator.
In this specification, as shown in FIG. 1, the direction in which water 4 falls is the vertical direction (referred to as the X direction in FIG. 1), and the direction in which the rotating shaft 2 extends is the front-rear direction (referred to as the Y direction in FIG. 1). The direction perpendicular to both the up-down direction and the front-back direction is called the lateral direction, the lateral direction (radial direction), or the left-right direction (shown as the Z direction in FIG. 1).
(位相貯溜体)
 図1に一例として示すように、位相貯溜体6はタービン装置1の回転軸2に固定された貯溜容器であり、回転軸の延びる方向(前後方向)に複数の容器部分に区画する3次元的に捻れた側方壁16(回転羽根)によって構成されている。
 また、各位相貯溜体6は、前方壁14と後方壁15と側方壁16を有し、流体としての水を蓄える容器である。前方壁14及び後方壁15の形状は、側方壁16と共同して、システムが定める所定定時間内において、水が移動し、貯溜できる形状であれば、特に限定されない。平面でも又は前後方向に延びる曲面で構成されてもよい。
 位相貯溜体6は、後述する前側曲線30と、前記前側曲線30を所定方向に捻り角θ(図8(b)参照)だけ回転させ、所定方向に延出角φ(図8(b)参照)だけ延ばした後側曲線31との間を前後方向に延びる側方壁16で接続することで形成してある。
 各位相貯溜体6の側方壁16は、回転中心から半径方向に延びるような曲率の大きな中心域部と内側円筒シェルの内周壁に沿うように延びる曲率の小さな周辺域部とを有していることが好ましい。
(Phase reservoir)
As shown in FIG. 1 as an example, the phase storage body 6 is a storage container fixed to the rotating shaft 2 of the turbine device 1, and is a three-dimensional storage container divided into a plurality of container parts in the direction in which the rotating shaft extends (front-back direction). It is composed of side walls 16 (rotating blades) that are twisted in a circular motion.
Moreover, each phase storage body 6 has a front wall 14, a rear wall 15, and a side wall 16, and is a container that stores water as a fluid. The shapes of the front wall 14 and the rear wall 15 are not particularly limited as long as they are shapes that allow water to move and accumulate together with the side walls 16 within a predetermined time period determined by the system. It may be a flat surface or a curved surface extending in the front-rear direction.
The phase storage body 6 rotates the front curve 30 described later and the front curve 30 in a predetermined direction by a twist angle θ (see FIG. 8(b)), and rotates the front curve 30 in a predetermined direction by an extension angle φ (see FIG. 8(b)). ) is connected to the rear curve 31 by a side wall 16 extending in the front-rear direction.
The side wall 16 of each phase reservoir 6 has a central region with a large curvature extending radially from the center of rotation and a peripheral region with a small curvature extending along the inner circumferential wall of the inner cylindrical shell. Preferably.
(渦巻き曲線)
 なお、前側曲線30及び後側曲線31は、「回転羽根の半径距離が周方向に回転しながら大きくなる渦巻き曲線」で構成することが好ましい。本明細書において、「渦巻き曲線」という表現には、エネルギー効率を高めることができる程度の、近似曲線又は渦巻き曲線に近い複数の直線をつないだような折れ線形状を含む意味で用いている。
 渦巻き曲線の種類としては、各種考えられるが、例えばアルキメデスの渦巻き曲線や、対数渦巻き曲線、フィボナッチ線、又は流体の利用形態に対応して発電効率を向上できるように計算された公知でない適応型渦巻き曲線等が例示できる。
 どの曲線を使用するかは、各タービン装置の要求される能力・性質・周辺状況などに応じて選択される。本発明においては、渦巻き曲線に沿って形成される羽根の数は3個には限定されないが、高いエネルギー効率を実現するには、図3及び図7を用いて説明したように羽根の数は3個で構成することが好ましい。
(spiral curve)
In addition, it is preferable that the front curve 30 and the rear curve 31 be configured as "a spiral curve in which the radial distance of the rotary blade increases as it rotates in the circumferential direction." In this specification, the expression "spiral curve" is used to include a polygonal line shape that connects a plurality of straight lines close to an approximate curve or a spiral curve to the extent that energy efficiency can be improved.
Various types of spiral curves are possible, including Archimedean spiral curves, logarithmic spiral curves, Fibonacci lines, and unknown adaptive spirals that are calculated to improve power generation efficiency in accordance with the usage pattern of fluid. Examples include curves.
Which curve to use is selected depending on the required capacity, properties, surrounding conditions, etc. of each turbine device. In the present invention, the number of blades formed along the spiral curve is not limited to three, but in order to achieve high energy efficiency, the number of blades is increased as explained using FIGS. 3 and 7. It is preferable to consist of three pieces.
(捻り角)
 前記した前側曲線30と後側曲線31の関係において、回転軸回りの位相において、後側曲線31の位相を前側曲線30の位相に比べて、例えば回転軸回りの捻り角θだけ、回転方向に進めるようにずらしている。捻り角θは、前記した水平軸に対して上下30゜、即ち60゜の角度範囲において滞留する流体の量を大きくする形状の観点から決定することが好ましく、3個~5個の位相貯溜体を有する場合は、適宜、捻り角θが設定される。
(延出角)
 延出角φは水を貯溜する場合に水容器としての容量を大きくするとともに、一面の見方として側方壁16の側方縁33(例えば図17(a)参照)を水平線又は回転軸2に対して平行に構成するために、位相貯溜体6の側方壁16の周方向の終端を規定する角度とも言える。120゜間隔で3個の貯溜体を有する場合は、約60゜の延出角φを有していることが好ましい。延出角φに伴って延長される側方壁16は、側方壁16の周辺域部を円周面方向に従って延長することが単純で好ましい。
 後述する具体的な実施形態では、3個の貯溜体を有するので、捻り角θと延出角φは、共に約60゜に設定してある。
(twist angle)
In the relationship between the front curve 30 and the rear curve 31 described above, in the phase around the rotation axis, the phase of the rear curve 31 is compared to the phase of the front curve 30, for example, by a twist angle θ around the rotation axis in the rotation direction. I'm shifting it so I can move forward. The torsion angle θ is preferably determined from the viewpoint of a shape that increases the amount of fluid retained in an angular range of 30° above and below the horizontal axis, that is, 60°. , the twist angle θ is appropriately set.
(extension angle)
The extension angle φ increases the capacity of the water container when storing water, and also allows the side edge 33 of the side wall 16 (for example, see FIG. 17(a)) to be aligned with the horizontal line or the rotation axis 2. Since it is configured in parallel to the other, it can also be said to be an angle that defines the circumferential end of the side wall 16 of the phase storage body 6. In the case of three reservoirs spaced apart by 120°, it is preferred to have an extension angle φ of about 60°. It is simple and preferable for the side wall 16 to extend along the extension angle φ to extend the peripheral area of the side wall 16 along the circumferential direction.
In the specific embodiment described below, since there are three reservoirs, the twist angle θ and the extension angle φ are both set to about 60°.
(開口と排出口の位置)
 上方から落下する水を、容器としての位相貯溜体6に回転軸の延びる方向(前後方向)に均一に供給すると、前後方向の水の流れは起こりにくく、滞留時間は短くなる。また、タービン装置の全体の構成として考えた場合、水の供給口と排出口を貯溜体の前後方向の端部位置に設けた構成であると、各貯溜体に供給された水は貯溜体の前後方向の高低差にしたがって、水は低い位置に向かって移動する。また、排出箇所を前側又は後側の端部位置に限定すれば、タービン装置の前後方向の中央位置に供給口又は排出口を設ける構成に比較すれば、各貯溜体における滞留時間を長くでき、回転トルクを大きくできると言える。この場合、貯溜体の前後方向の側方壁の高低差によって、水が流れる方向と水が排出される排出口の方向とは逆方向であることが貯溜時間を長くする上で好ましい。
 そのような観点から、各貯溜体の側方壁の底部の高さ位置の傾斜を設計するとともに、各貯溜体における水の供給口と排出口をタービン装置の前後方向の端部側寄り位置に設けることが好ましい。
 なお、図13は、上記で説明した側方壁16の底部高さ位置の違いによる後方への水の流れと排出時に行われる前方への水の流れが各位相貯溜体内において連続的に行われる様子を模式的に示した図である。
(Position of opening and outlet)
If water falling from above is uniformly supplied to the phase reservoir 6 as a container in the direction in which the rotating shaft extends (front-back direction), water flow in the front-back direction is less likely to occur, and the residence time is shortened. In addition, when considering the overall configuration of the turbine device, if the water supply port and the water discharge port are provided at the ends of the storage bodies in the front and rear direction, the water supplied to each storage body is Water moves toward lower positions according to the height difference in the front and rear direction. In addition, if the discharge point is limited to the front or rear end position, the residence time in each reservoir can be increased compared to a configuration in which the supply port or the discharge port is provided at the center position in the longitudinal direction of the turbine device. It can be said that the rotational torque can be increased. In this case, in order to lengthen the storage time, it is preferable that the direction in which the water flows and the direction of the discharge port from which the water is discharged are opposite directions due to the difference in height between the side walls of the storage body in the front and rear directions.
From this point of view, we designed the slope of the height position of the bottom of the side wall of each reservoir, and also positioned the water supply and discharge ports of each reservoir at positions closer to the ends of the turbine device in the longitudinal direction. It is preferable to provide one.
In addition, FIG. 13 shows that the rearward flow of water due to the difference in the bottom height position of the side wall 16 explained above and the forward flow of water at the time of discharge are performed continuously in each phase reservoir. FIG. 3 is a diagram schematically showing the situation.
(開閉弁)
 位相貯溜体の周辺域部に沿って、各位相貯溜体に上方から水を供給する弁体又は分配具としての開閉弁を設けることが好ましい。
 各位相貯溜体が、図6(b)に示すような下に凹んだお碗状の水容器で構成され、上方の全面が完全に開放された構成であれば、各貯溜体における、上方から落下する水が供給されるタイミングは最適化されず、また、水が位相貯溜体上に落下する位置も最適化できないので、回転トルクを大きくすることができない。つまり、供給口22の構成と開口40の構成と、前記分配機能部36の構成の組み合わせ、換言すれば、それらの各パラメータの最適化が重要になる。
 図8~図12に示される本実施形態に限定して説明すれば、開閉弁の好ましい主な機能は以下の通りである。
(A)位相貯溜体の周辺域部に沿って設けられた開閉弁は各位相貯溜体が上方に向かうにつれて各位相貯溜体内に上方の水を導き入れる開口を形成するように動作する。
(B)上方位置から下方位置に向かうにつれて各位相貯溜体内に貯まる水を漏らさないように開口を塞ぐように動作する。
 タービン装置1に設けられる開閉弁は、各位相貯溜体に蓄えられる水量の配分及び貯溜時間が長くなるように構成される。また、各位相貯溜体にそれぞれ開閉弁を設けることが好ましい。
(on-off valve)
It is preferable to provide an on-off valve as a valve body or a distributor for supplying water to each phase reservoir from above along the peripheral region of the phase reservoir.
If each phase storage body is composed of a bowl-shaped water container concave downward as shown in FIG. 6(b), and the entire upper surface is completely open, the Since the timing at which the falling water is supplied is not optimized and the position at which the water falls onto the phase reservoir cannot be optimized, it is not possible to increase the rotational torque. In other words, the combination of the configuration of the supply port 22, the configuration of the opening 40, and the configuration of the distribution function section 36, in other words, optimization of each of these parameters is important.
If the description is limited to the present embodiment shown in FIGS. 8 to 12, the preferred main functions of the on-off valve are as follows.
(A) Opening/closing valves provided along the peripheral region of the phase reservoirs operate to form openings into each phase reservoir for introducing upward water as each phase reservoir moves upwardly.
(B) It operates to close the openings so that the water accumulated in each phase reservoir does not leak out as it moves from the upper position to the lower position.
The on-off valve provided in the turbine device 1 is configured so that the distribution of the amount of water stored in each phase storage body and the storage time are extended. Further, it is preferable that each phase storage body is provided with an on-off valve.
 開閉弁として、各位相貯溜体の周辺域部の円周側位置に前後方向に延びる支軸を設け、その支軸回りに回りに回動する開閉弁で構成することもできる。
 回転扉のような開閉弁は、各位相貯溜体の周辺域部の曲率に沿うように、前方向から見たときに湾曲した曲線を有することが好ましい。
 また、開閉弁は、重力などの作用によってその開閉角度(支軸から見た垂れ下がり角度)が、変化するように構成することが好ましい。なお、開閉弁の駆動力として重力を用いる構成が安価かつ簡単に構成できるが、本発明においては、タイミング調整や開口の塞ぎ程度を向上させるために、重力以外の開閉弁の駆動手段(例えば、各種アクチュエータ等)を設ける構成を除外するものではない。
The on-off valve may also be constructed by providing a support shaft extending in the front-rear direction at a circumferential position in the peripheral area of each phase storage body, and rotating the on-off valve around the support shaft.
It is preferable that the on-off valve such as a revolving door has a curved line when viewed from the front so as to follow the curvature of the peripheral area of each phase storage body.
Further, it is preferable that the opening/closing valve is configured so that its opening/closing angle (hanging angle viewed from the support shaft) changes due to the action of gravity or the like. Although a configuration using gravity as the driving force for the on-off valve can be constructed inexpensively and easily, in the present invention, in order to improve the timing adjustment and the degree of closing of the opening, it is preferable to use a driving means for the on-off valve other than gravity (for example, This does not exclude configurations in which various actuators, etc.) are provided.
(複数の貯溜体への流体の分配具)
 上方から落下した水は回転する複数の位相貯溜体に連続的に供給されないと、効率的な回転トルクを全角度範囲において得ることはできない。このため、上方から供給される水を落下位置において、回転角度において進んだ位置の位相貯溜体と回転角度において遅れた位相貯溜体の間で水量を効率が高くなるように分割(振分)する分配具を設けることが好ましい。
 なお、後述する図8~図12に示す実施形態では開閉弁5が分配具を兼用している。
(Fluid distribution device to multiple reservoirs)
Unless the water falling from above is continuously supplied to the rotating plurality of phase reservoirs, efficient rotational torque cannot be obtained over the entire angular range. For this reason, at the falling position of the water supplied from above, the amount of water is divided (allocated) between the phase reservoir at the advanced position in the rotation angle and the phase reservoir at the position delayed in the rotation angle so as to increase the efficiency. Preferably, a dispensing device is provided.
In the embodiment shown in FIGS. 8 to 12, which will be described later, the on-off valve 5 also serves as a dispensing device.
 以上、前述した観点に基づいて、本実施形態の構成要素について説明したが、より具体的な構成で示されるタービン装置の一例について図面にしたがって、さらに詳しく説明する。
 図9に示すように、この実施形態に係るタービン装置1は、内側円筒シェル11に収容されている。また、その内側円筒シェル11は外側円筒シェル18に収容されている。
 図9(b)に示すようにタービン装置1は、中心から周方向に向かうについて半径が大きくなる側方壁16を三次元的に捻れた状態で、回転軸2回りに120゜間隔で3個、取付けた構成になっており、外周を内側円筒シェル11で包んだ構成になっている。内側円筒シェル11は、後側円形板12に円筒板13を取付けた円筒容器のような形状をしている。前側の側方壁16は前側円形板17に固定されるとともに、後側の側方壁16は後側円形板12に固定されている。
 側方壁16の前後方向の大部分は内側円筒シェル11の円筒板13内に収容され、円筒板13の内周壁に固定されている。したがって、内側円筒シェル11は回転軸2の回転に伴って回転する。
The components of this embodiment have been described above based on the above-mentioned viewpoints, but an example of a turbine device having a more specific configuration will be described in more detail with reference to the drawings.
As shown in FIG. 9, the turbine device 1 according to this embodiment is housed in an inner cylindrical shell 11. As shown in FIG. Further, the inner cylindrical shell 11 is accommodated in the outer cylindrical shell 18.
As shown in FIG. 9(b), the turbine device 1 has three side walls 16 arranged at 120° intervals around the rotating shaft 2, with the side walls 16 increasing in radius from the center in the circumferential direction. , and the outer periphery is surrounded by an inner cylindrical shell 11. The inner cylindrical shell 11 has a shape like a cylindrical container in which a cylindrical plate 13 is attached to a rear circular plate 12. The front side wall 16 is fixed to the front circular plate 17, and the rear side wall 16 is fixed to the rear circular plate 12.
Most of the side wall 16 in the front-rear direction is accommodated within the cylindrical plate 13 of the inner cylindrical shell 11 and fixed to the inner peripheral wall of the cylindrical plate 13. Therefore, the inner cylindrical shell 11 rotates as the rotating shaft 2 rotates.
 図12に示すように、内側円筒シェル11の円筒板13の前後方向の長さは、タービン羽根の前後方向の長さ(側方壁16が回転軸2に取付けられている長さ)よりも図12に示す、前後方向の長さdだけ短く形成されているので、タービン装置1の前側には円筒板13の円周壁がない開口40が回転軸2回りに360゜にわたって形成されている。
 図9~図11に示すように、外側円筒シェル18は回転軸2において、内側円筒シェル11と同心で、略相似形に大きく形成され、その外側円筒シェル18は、タービン装置1の貯溜体の水が洩れないように前側円形板19と後側円形板20と円筒板21によって容器形に構成されている。
 内側円筒シェル11の外周壁と外側円筒シェル18の内周壁の間が、各位相貯溜体の側方壁16から漏れた水が下方に流れ落ちる排出通路24として機能する(図17(a)参照)。
 図11に示すように、外側円筒シェル18の前側端部寄りの上部位置(好ましくは最上部位置)には、動力水のタービン装置1へ供給口22が設けられている。また、外側円筒シェル18の前側端部寄りの下部位置(好ましくは最下部位置)には、動力水の排出口23が設けられている。
 なお、外側円筒シェル18については、内部に良好に水を供給、排出できる構成ならば、別の形状の外郭シェルや漏斗等で代用できる。また、タービン装置1の利用形態によっては、適宜、外側円筒シェル18自体を省略することも可能である。
As shown in FIG. 12, the length of the cylindrical plate 13 of the inner cylindrical shell 11 in the front-rear direction is longer than the length of the turbine blade in the front-rear direction (the length of the side wall 16 attached to the rotating shaft 2). Since the opening 40 is formed to be shorter by the length d in the longitudinal direction shown in FIG. 12, an opening 40 having no circumferential wall of the cylindrical plate 13 is formed on the front side of the turbine device 1 over 360 degrees around the rotating shaft 2.
As shown in FIGS. 9 to 11, the outer cylindrical shell 18 is concentrically formed with the inner cylindrical shell 11 and has a substantially similar shape on the rotating shaft 2. It is constructed into a container shape by a front circular plate 19, a rear circular plate 20, and a cylindrical plate 21 to prevent water from leaking.
The space between the outer circumferential wall of the inner cylindrical shell 11 and the inner circumferential wall of the outer cylindrical shell 18 functions as a discharge passage 24 through which water leaking from the side wall 16 of each phase storage body flows downward (see FIG. 17(a)). .
As shown in FIG. 11, a supply port 22 for power water to the turbine device 1 is provided at an upper position (preferably at the uppermost position) near the front end of the outer cylindrical shell 18. Further, a power water outlet 23 is provided at a lower position near the front end of the outer cylindrical shell 18 (preferably at the lowermost position).
Note that the outer cylindrical shell 18 may be replaced by an outer shell of another shape, a funnel, or the like, as long as it has a structure that allows water to be supplied and discharged well inside. Moreover, depending on the usage form of the turbine device 1, it is also possible to omit the outer cylindrical shell 18 itself as appropriate.
 次に、具体的な開閉弁5について説明する。
 図12に示すように、前側の開口40に臨む捻れた側方壁16の周辺域部の終端域には前後方向に延びる支軸7が、弁体の本体部の端部位置に設けられた軸受体8に差し込まれることにより、開閉弁5としての開閉扉10を構成している。開閉扉10は120゜間隔で3個設けられている。開閉扉10は図14(a)に例示するように、重力によって支軸7を中心軸として円筒体内部側に垂れ下がる内開き構造の開閉弁5となっている。また、開閉弁5が側方壁16の周辺域部に支えられた場合には位相貯溜体6内の水圧や重力の働きによって、側方壁16の周辺域部に弾性体などで構成される密着部が密着して、位相貯溜体6内の水をほとんど漏らさない開閉弁としてある。
 実施形態の構成では、開閉弁5の形状は、前方向から見た場合に側方壁16の周辺域部とほぼ同じ曲線形状を有し、前後方向に略幅dを持つ略曲板形状に形成してある。
Next, the specific on-off valve 5 will be explained.
As shown in FIG. 12, a support shaft 7 extending in the front-rear direction is provided at the end of the peripheral area of the twisted side wall 16 facing the front opening 40 at an end position of the main body of the valve body. By being inserted into the bearing body 8, an opening/closing door 10 serving as the opening/closing valve 5 is configured. Three opening/closing doors 10 are provided at 120° intervals. As illustrated in FIG. 14(a), the opening/closing door 10 is an opening/closing valve 5 having an inward-opening structure that hangs down toward the inside of a cylindrical body around a support shaft 7 as a central axis due to gravity. In addition, when the on-off valve 5 is supported by the peripheral area of the side wall 16, due to the action of water pressure and gravity in the phase reservoir 6, the peripheral area of the side wall 16 is made of an elastic body, etc. The close contact portions are in close contact with each other to form an on-off valve that hardly leaks water in the phase storage body 6.
In the configuration of the embodiment, the on-off valve 5 has a substantially curved shape that is substantially the same as the peripheral area of the side wall 16 when viewed from the front, and has a substantially curved plate shape with a substantially width d in the front-rear direction. It has been formed.
 次に、具体的な位相貯溜体6の構成について説明する。
 図8(b)に示すように、3個の位相貯溜体6を有する構成では、時計回りに回転する場合は、捻り角θは時計回り方向に60゜進んだ位置になるように設定され、延出角φは時計回りと反対方向に60゜延出された構成になる。
 図8(d)~(f)に示すように、各側方壁16a,16b,16cの間の3つの空間が位相空間28となり、各位相空間28内に開閉弁5及び開口40(図12参照)から水等の流体が各位相空間28内に流れ込み、各位相空間28内で貯溜しながら回転する。
 個々の位相空間28を構成する側方壁16の前後方向の接続形態は、前側曲線30の中心側線の部分は後側曲線31の中心側線の部分に接続され、前側曲線30の外周側線の部分は後側曲線31の外周側線の部分に接続されるので、図8(e)~(f)に示すような3次元的に捻れた3個の位相貯溜体6a・6b・6cがそれぞれ形成される。
Next, a specific configuration of the phase storage body 6 will be explained.
As shown in FIG. 8(b), in a configuration having three phase storage bodies 6, when rotating clockwise, the twist angle θ is set to a position advanced by 60° in the clockwise direction. The extension angle φ is extended by 60° in the opposite direction to the clockwise direction.
As shown in FIGS. 8(d) to 8(f), the three spaces between the side walls 16a, 16b, and 16c become phase spaces 28, and each phase space 28 includes an on-off valve 5 and an opening 40 (see FIG. 12). Fluid such as water flows into each phase space 28 from the water (reference) and rotates while being stored in each phase space 28.
The connection form of the side walls 16 constituting each phase space 28 in the front-rear direction is such that the central side line part of the front curve 30 is connected to the central side line part of the rear curve 31, and the outer peripheral side line part of the front curve 30 is connected to the central side line part of the rear curve 31. are connected to the outer circumferential side line portion of the rear curve 31, so three three-dimensionally twisted phase reservoirs 6a, 6b, and 6c as shown in FIGS. 8(e) to 8(f) are formed, respectively. Ru.
 個々の位相貯溜体6を構成する後方壁15は内側円筒シェル11の後側円形板12を利用して構成している。つまり、図8(c)に示すように、3つの渦巻き形のそれぞれの後方壁15は後側円形板12(図9(c)参照)の壁面を利用することで形成してある。また、同様に、個々の位相貯溜体6を構成する前方壁14は前側円形板17(図9(b)参照)を利用して構成している。つまり、図8(a)に示すように、3つの渦巻き形のそれぞれの前方壁14は前側円形板17の壁面を利用することで形成してある。
 この位相貯溜体の構成によって、水の自重(重力)によって生み出される水流、即ち水の自動的な移動と、その水の移動による重力バランスの変化が常に高効率でのトルク変換によって有効な回転域に自然に「対流と滞留」を作り出すことになる。即ち、制御系を必要としない、自動調整機能を持つことになり、ポンプシステムや調整制御装置を不要にし、システム構造をシンプルにしながら更に安定した高精度な稼働を実現することができる。
The rear wall 15 constituting each phase reservoir 6 is constructed using the rear circular plate 12 of the inner cylindrical shell 11. That is, as shown in FIG. 8(c), each of the three spiral rear walls 15 is formed by using the wall surface of the rear circular plate 12 (see FIG. 9(c)). Similarly, the front wall 14 constituting each phase storage body 6 is constructed using a front circular plate 17 (see FIG. 9(b)). That is, as shown in FIG. 8(a), each of the three spiral-shaped front walls 14 is formed by using the wall surface of the front circular plate 17.
The configuration of this phase storage body allows for automatic movement of the water flow generated by the water's own weight (gravity), and changes in the gravity balance due to the movement of the water, which is always effective in the rotation range by highly efficient torque conversion. This naturally creates ``convection and stagnation.'' In other words, it has an automatic adjustment function that does not require a control system, eliminates the need for a pump system or adjustment control device, and makes it possible to realize more stable and highly accurate operation while simplifying the system structure.
 次に、このタービン装置によって、ポンプや制御装置を使わずになぜ自動的に最適な形で「対流」と「滞留」を作り出し、安定的なトルクを生み出せるかを説明する。
 3つの各位相空間28の貯溜体の外殻形状としては、位相角の遅れた側面(図面では内側円筒シェル11の左側)から、捻れた形で位相角が進んだ側面に沿って、全回転域で「末広がり」の「緩やかな下り坂」の「水路」が形成された空間になっている。
 重力による自然の自動的な水の移動として、水路の「下り角度」と「幅」の調整によって「対流」と「滞留」を意図的に調整することができる。これは貯溜体の形状を決めてしまえば流量は必然的に決まることがある。他の要件としては、水の空間移動のタイミングや、空間形状や空間移動の水路(ゲート機構)の位置、水路の開閉や切替ポイントもある。最も効率的な結果を出す位置関係やバランス設定を行えば、重力を全ての動力源にして他の制御装置を不要として、ほぼ正確に継続的に動作させることができる。
Next, we will explain how this turbine device can automatically create "convection" and "retention" in the optimal form and generate stable torque without using a pump or control device.
The shape of the outer shell of the storage body in each of the three phase spaces 28 is such that the phase angle continues from the side where the phase angle lags (the left side of the inner cylindrical shell 11 in the drawing) to the side where the phase angle advances in a twisted manner. The space is shaped like a ``waterway'' that ``spreads out at the end'' and ``gently descends.''
As water moves naturally and automatically due to gravity, it is possible to intentionally adjust convection and stagnation by adjusting the descending angle and width of waterways. This is because once the shape of the reservoir is determined, the flow rate may be determined inevitably. Other requirements include the timing of the spatial movement of water, the spatial shape, the position of the spatial movement waterway (gate mechanism), and the opening/closing and switching points of the waterway. By optimizing the positioning and balance settings to produce the most efficient results, gravity can be used as the power source, eliminating the need for any other control equipment and allowing near-accurate, continuous operation.
(タービン装置の動作の一例)
 以下、図14~図20を参照しつつ、タービン装置1の動作の一例を説明する。
 図14(a)~(d)はそれぞれタービン装置の回転0゜,30゜,60゜,90゜によって行われる、側方壁16a,16b,16cと開閉弁5a,5b,5cのタービン装置内の動きを模式的に示した図である。
 図15~図20の各図面において、(a)は前面側から見た流入状態を示し、(b)は斜め方向から見た流入状態を示し、(c)は後面側から見た流入状態をそれぞれ示している。
 図15に示すように、第1の側方壁16aに対応する開閉弁5aの軸受体8aの位置が始動時0°、即ち、(図14(a)参照)から時計回り方向に30゜回転した状態では、開口40(図12参照)を介して、上方から落下する水は第1の側方壁16a内に流れ込み、流れ込む水圧と重力の作用により、第1の開閉弁5aは閉じた状態になる。この状態では、図15(a)と図15(c)を比較すれば分かるように、後方側の第1の側方壁16aの底部高さ位置の方が前方側の第1の側方壁16aの底部高さ位置よりも、低い位置になるように底部壁が傾いているので、流れ込んだ水は後方に下がるように移動する。一方、第2の開閉弁5bは、重力の作用によって開いた状態になり、第2の側方壁16bに沿う状態を離れて、第3の側方壁16cの中心側の壁面に当接した状態になっている。
 また、供給口22から落下する水は、第2の側方壁16bの中心側壁に当たり、第1の側方壁16aの半径方向に拡散されつつ、第1の側方壁16aの下方位置に徐々に溜まっていく。
 この場合、第1の側方壁16bに向けて落下する水は、第1の側方壁16bの中心部の大きな曲率部分に当たるように構成されているので、跳ね返った水のほとんどは、位相貯溜体6a内に流れ込むように設計されている。
(Example of operation of turbine device)
An example of the operation of the turbine device 1 will be described below with reference to FIGS. 14 to 20.
14(a) to (d) show the inside of the turbine device of the side walls 16a, 16b, 16c and the on-off valves 5a, 5b, 5c, which are performed by rotating the turbine device by 0°, 30°, 60°, and 90°, respectively. FIG. 2 is a diagram schematically showing the movement of.
15 to 20, (a) shows the inflow state seen from the front side, (b) shows the inflow state seen from an oblique direction, and (c) shows the inflow state seen from the rear side. are shown respectively.
As shown in FIG. 15, the position of the bearing body 8a of the on-off valve 5a corresponding to the first side wall 16a is 0° at the time of startup, that is, rotated 30° clockwise from (see FIG. 14(a)). In this state, water falling from above flows into the first side wall 16a through the opening 40 (see FIG. 12), and the first on-off valve 5a is closed due to the action of water pressure and gravity. become. In this state, as can be seen by comparing FIGS. 15(a) and 15(c), the bottom height position of the first side wall 16a on the rear side is higher than that of the first side wall on the front side. Since the bottom wall is inclined to be at a lower position than the bottom height position of 16a, the water flowing in moves downward to the rear. On the other hand, the second on-off valve 5b is brought into an open state by the action of gravity, leaves the state along the second side wall 16b, and comes into contact with the wall surface on the center side of the third side wall 16c. is in a state.
Further, the water falling from the supply port 22 hits the center side wall of the second side wall 16b, and is gradually diffused in the radial direction of the first side wall 16a to a position below the first side wall 16a. It accumulates in
In this case, since the water falling toward the first side wall 16b is configured to hit a large curvature part at the center of the first side wall 16b, most of the water that bounces back is absorbed into the phase reservoir. It is designed to flow into the body 6a.
 次に、図16に示すように、第1の側方壁16aの軸受体8aの位置が始動時から60゜回転した状態では、第2の開閉弁5bが、図15に示す平行状態から、さらに内方に傾いた状態になり、第2の側方壁16bの外周側壁には第2の開閉弁5bによる開口が形成されるので、落下する水は2つに分岐され、第1の側方壁16aと第2の側方壁16bとで構成される位相貯溜体6aと、第2の側方壁16bと第3の側方壁16cとで構成される位相貯溜体6bの両方の位相貯溜体6内に水が流れ込み始める。なお、位相貯溜体6bにおいても後方側の高さ位置が低いので、後方側に向かって水は流れて徐々に貯溜される。 Next, as shown in FIG. 16, when the position of the bearing body 8a of the first side wall 16a is rotated by 60 degrees from the time of startup, the second on-off valve 5b is rotated from the parallel state shown in FIG. The second side wall 16b is further tilted inward, and an opening is formed in the outer peripheral side wall of the second side wall 16b by the second on-off valve 5b. The phase of both the phase reservoir 6a composed of a side wall 16a and a second side wall 16b and the phase reservoir 6b composed of a second side wall 16b and a third side wall 16c. Water begins to flow into the reservoir 6. In addition, since the height position on the rear side of the phase storage body 6b is also low, water flows toward the rear side and is gradually stored.
 次に、図17に示すように、第1の側方壁16aの軸受体8aの位置が始動時から90゜回転した状態では、第1の側方壁16aの側方縁33は水平位置になり、90゜以上回転することで、位相貯溜体6aの側方縁33から水が開口40を介して、溢れ出ることになる。タービン装置1の前方側に設けられた開口40の部分しか内側円筒シェル11には、水が出る開口はないので、流れ出るときに水は位相貯溜体6aにおいて、前方側に流れる水流ができることになる。一方、図17(c)に示すように、位相貯溜体6a・6bの後方側には大量の水が蓄えられているので安定した回転トルクを生み出すことができる。
 図17(a)に示すように、内側円筒シェル11と外側円筒シェル18の間の円環空間が排出通路24として機能し、排出口23から水は排出されることになる。
 また、図17の状態では落下する水の全てが位相貯溜体6bに流れ込むことになる。
 このように、位相貯溜体6a・6bへの注水,対流,滞留,側方縁33からの溢出,開口40及び排出口23からの排出のパターンが、0゜~90゜(90゜は流体が側方縁33から溢れ出る瞬間)の範囲において起こる。また、このような現象が、開閉弁5による流体の位相貯溜体6a・6bへの流入の「時間差」を作ることになる。さらに、回転において前後する複数の位相貯溜体6a・6bへの、第2の開閉弁5bによる流体の供給は同時的、並行的に行われることになる。
 なお、360゜の1回転では合計4回の回転トルク発生パターンが、常に繰り返される状態になる。
Next, as shown in FIG. 17, when the position of the bearing body 8a of the first side wall 16a is rotated by 90 degrees from the time of startup, the side edge 33 of the first side wall 16a is in a horizontal position. By rotating the phase reservoir 6a by more than 90 degrees, water will overflow from the side edge 33 of the phase reservoir 6a through the opening 40. Since the inner cylindrical shell 11 has no opening through which water exits except the opening 40 provided on the front side of the turbine device 1, when the water flows out, a water flow is created in the phase storage body 6a to the front side. . On the other hand, as shown in FIG. 17(c), since a large amount of water is stored on the rear side of the phase storage bodies 6a and 6b, stable rotational torque can be generated.
As shown in FIG. 17(a), the annular space between the inner cylindrical shell 11 and the outer cylindrical shell 18 functions as a discharge passage 24, and water is discharged from the discharge port 23.
Further, in the state shown in FIG. 17, all of the falling water flows into the phase reservoir 6b.
In this way, the pattern of water injection into the phase reservoirs 6a and 6b, convection, retention, overflow from the side edge 33, and discharge from the opening 40 and the discharge port 23 is 0° to 90° (90° is the fluid flow rate). This occurs in the range of the instant of overflowing from the lateral edge 33). Moreover, such a phenomenon creates a "time difference" in the flow of fluid into the phase reservoirs 6a and 6b by the on-off valve 5. Furthermore, the supply of fluid by the second on-off valve 5b to the plurality of phase reservoirs 6a and 6b which are arranged before and after the rotation is performed simultaneously and in parallel.
Note that in one rotation of 360 degrees, a total of four rotational torque generation patterns are constantly repeated.
 次に、図18に示すように軸受体8aの位置が始動時から120゜に回転した状態では、第2の開閉弁5bは位相貯溜体6b内でほぼ垂直に垂れ下がった状態になり、位相貯溜体6b内で後方側に向けて水は流れるように溜まっていく。また、図17(a)の状態と図18(a)の状態と比較し、図17(c)の状態と図18(c)の状態を比較すれば分かるように、回転に伴って位相貯溜体6a・6b内の水は、その水の存在する位置が横方向(左右方向)にも移動するので、滞留時間を長くでき、回転トルクを生み出しやすくなる。
 次に、図19に示すように軸受体8aの位置が始動時から150゜に回転した状態では、位相貯溜体6a内の水はほとんど流出しつつあって、重力がかかりにくい状態になっているが、位相貯溜体6bに貯まる水の量が多くなるので、安定した回転状態を維持できる。
 次に、図20に示すように軸受体8aの位置が始動時から180゜に回転した状態では、第3の開閉弁5cが開いていることにより、複数の位相貯溜体6b・6cにおいて、水量の振分けを行うことができる。このように順次、位相貯溜体6a,6b,6cへの水の分配、流入、排出が連続し、180゜から360゜の状態も同様に動作することで、継続的に回転を行うことができる。
 なお、図15~図20に示すように、開閉弁5が開いたり、閉じたりする動きによって、開閉弁5自体が位相貯溜体6a,6b,6cに供給する流体の分配具としても機能していることが分かる。
Next, as shown in FIG. 18, when the position of the bearing body 8a is rotated by 120 degrees from the time of startup, the second on-off valve 5b hangs down almost vertically within the phase reservoir 6b, and the phase reservoir Water flows and collects toward the rear side within the body 6b. Furthermore, as can be seen by comparing the state of FIG. 17(a) with the state of FIG. 18(a), and comparing the state of FIG. 17(c) with the state of FIG. 18(c), the phase accumulation occurs with rotation. Since the position of the water in the bodies 6a and 6b also moves in the lateral direction (left and right direction), the residence time can be increased and rotational torque can be easily generated.
Next, as shown in FIG. 19, when the bearing body 8a is rotated by 150 degrees from the time of startup, most of the water in the phase storage body 6a is flowing out, and gravity is not easily applied. However, since the amount of water stored in the phase storage body 6b increases, a stable rotational state can be maintained.
Next, as shown in FIG. 20, when the position of the bearing body 8a is rotated by 180 degrees from the time of startup, the third on-off valve 5c is open, so that the amount of water is increased in the plurality of phase reservoirs 6b and 6c. can be distributed. In this way, distribution, inflow, and discharge of water to the phase reservoirs 6a, 6b, and 6c are continuous, and rotation can be performed continuously by operating in the same manner from 180° to 360°. .
In addition, as shown in FIGS. 15 to 20, as the on-off valve 5 opens and closes, the on-off valve 5 itself also functions as a distributor for the fluid supplied to the phase reservoirs 6a, 6b, and 6c. I know that there is.
 本実施形態に係る分配機能部36が有する水路(ゲート機構)は、垂直直下に向かう重力ベクトルを阻害することなく高効率で回転トルクに変換するためには重要な要素である。具体的には重力によって直線的に流れ落ちてくる水を効率的に円周軌道に変えてトルク変換をするには、流れ落ちてくる水が衝突して跳ね返るような水の貯溜形態は可能な限り避ける構造でなければならない。水が流れ落ちる水がブレードの貯溜のために凹んでいる側面に当たれば、エネルギーは全て吸収できるので問題はないが、回転過程で、凹んでいる側面が下向きになって、逆に盛り上がっている側面に水が流れ落ちると、水が衝突して跳ね返ったり、飛び散ったりすることで、エネルギーが無駄に消費されてしまうことが避けられない回転域がどうしても生まれてしまう。
 これを抑制するのが前記した水路(ゲート機構)であり、流れ落ちてくる水の垂直直下ベクトルに対して、基本的には30°以上の角度で当たって回転トルクに有効な方向以外に飛び散ることがないように無理なく空間を跨ぐゲートホールを築いている。但し、そのゲートホールが開き放しであると、貯溜することが難しくなり、結果的に回転トルクに変換するには大きな弊害が出てくる。故に、分配機能部16を重力作用による「可動式の開閉弁5」で構成し、それらの問題を解決している。
 なお、前記したように本発明においては、「可動式の開閉弁5」の駆動・制御手段は重力に限定されない構成を採用することも可能である。
The water channel (gate mechanism) included in the distribution function section 36 according to the present embodiment is an important element in order to convert the vertically directed gravity vector into rotational torque with high efficiency without disturbing it. Specifically, in order to efficiently convert water that flows down in a straight line due to gravity into a circular orbit and convert it into torque, avoid as much as possible the form of water storage where the falling water collides and bounces back. Must be a structure. If the falling water hits the concave side of the blade for storage, all of the energy can be absorbed, so there is no problem, but during the rotation process, the concave side turns downward and the concave side becomes conversely raised When water flows down, there is inevitably a rotational range where energy is unavoidably wasted due to the water colliding with the engine and bouncing off or splashing around.
The above-mentioned water channel (gate mechanism) suppresses this, and basically hits the falling water at an angle of 30 degrees or more with respect to the vertical vector, preventing it from scattering in directions other than those that are effective for rotational torque. A gate hall has been constructed that straddles the space effortlessly to avoid any problems. However, if the gate hole is left open, it will be difficult to store it, and as a result, there will be a big problem in converting it into rotational torque. Therefore, the distribution function section 16 is configured with a "movable on-off valve 5" that is operated by gravity to solve these problems.
As described above, in the present invention, it is also possible to adopt a configuration in which the drive/control means for the "movable on-off valve 5" is not limited to gravity.
 また、本実施形態の利点は、上下方向において短い距離の水の落差、位置エネルギーの発現によって流れる小川、滝等の従来、見過ごされてきた流体が蓄える位置エネルギー資源を高効率で活用できるタービン装置を提供できる点がある。
 流体の位置エネルギーを回転エネルギーに高効率で変換できる構成を有しているので、本実施形態は、水に限らず、各種流体の位置エネルギーを運動エネルギーに変換して利用する広範囲の技術分野において、実施可能である。
Further, the advantage of this embodiment is that the turbine device can highly efficiently utilize potential energy resources stored in fluids that have been overlooked in the past, such as short vertical drops of water, streams that flow due to the development of potential energy, and waterfalls. There are some points that can be provided.
Since it has a configuration that can convert the potential energy of a fluid into rotational energy with high efficiency, this embodiment is applicable not only to water but also to a wide range of technical fields that convert the potential energy of various fluids into kinetic energy. , it is possible to implement.
[第2実施形態]
 図21~図23は、分配機能部36を複数の貯溜体を連結する貯溜体間連通路39と、分配ポンプ37で構成したタービン装置を説明するための図である。
 図21に示すように、このタービン装置は第1実施形態の構成のダービン装置と同じような内側円筒シェル11を有し、側方壁16が前側円形板17と後側円形板12にそれぞれ前側曲線30・30として現れる構成になっている。つまり、この3個の貯溜体90a,90b,90cはそれぞれ捻れ角θ、延出角φを設けていない貯溜体である。
 図22に示すように、第1貯溜体90aにある第1入口92と第2貯溜体90bにある第1出口93とを連通する貯溜体間連通路39と、第2貯溜体90bにある第2入口94と第3貯溜体90cにある第2出口95とを連通する貯溜体間連通路39と、第3貯溜体90cにある第3入口96と第1貯溜体90aにある第3出口97とを連通する貯溜体間連通路39とを設けている。分配ポンプP1,P2,P3は前記入口と前記出口の間の流体を移動させることができる所定位置にそれぞれ設けられる。図22では、貯溜体間連通路39に分配ポンプP1,P2,P3を設けた構成が示してある。また、図21に示すような各貯溜体間連通路39と分配ポンプP1,P2,P3は、タービン装置の前側寄りに設けた構成が示してある。
[Second embodiment]
21 to 23 are diagrams for explaining a turbine device in which the distribution function section 36 is composed of an inter-reservoir communication path 39 that connects a plurality of reservoirs, and a distribution pump 37.
As shown in FIG. 21, this turbine device has an inner cylindrical shell 11 similar to the Durbin device configured in the first embodiment, and a side wall 16 is provided on the front side of the front circular plate 17 and the rear side circular plate 12, respectively. It has a configuration that appears as a curve 30.30. In other words, these three reservoirs 90a, 90b, and 90c are reservoirs each having no twist angle θ and no extension angle φ.
As shown in FIG. 22, an inter-reservoir communication passage 39 that communicates a first inlet 92 in the first reservoir 90a with a first outlet 93 in the second reservoir 90b, and a first inlet 92 in the second reservoir 90b communicate with each other. An inter-reservoir communication path 39 that communicates the second inlet 94 with the second outlet 95 in the third reservoir 90c, and the third inlet 96 in the third reservoir 90c and the third outlet 97 in the first reservoir 90a. An inter-storage body communication path 39 is provided to communicate with the storage bodies. Distribution pumps P1, P2, and P3 are each provided at a predetermined position capable of moving fluid between the inlet and the outlet. FIG. 22 shows a configuration in which distribution pumps P1, P2, and P3 are provided in the inter-reservoir communication path 39. Furthermore, as shown in FIG. 21, the respective inter-reservoir communication passages 39 and the distribution pumps P1, P2, P3 are shown to be provided closer to the front side of the turbine device.
 図22に示す構成において、このタービン装置を稼働させるシーケンスとしては図23のように水を移動させることで、強力で安定した回転トルクを全回転域で発生させることができる。
 図23(a)に示すように0゜の始動時には予め右上に位置する第1貯溜体90aに水が溜まっている。仮に時計回り方向へ回転トルクの力がかかっている状態を0゜の始動として考えた場合、この0°状態において誘電発電機の軸を回すための回転軸抵抗を受けながらゆっくり回転を始める。0゜の時点での水の重さが最も回転トルク変換に有効である貯溜状態のピーク時点であり、この図23(a)の0゜時点でP1ポンプが作動し始め、水は左側に位置する第2貯溜体90b内に水の移動が開始される。
 また、図23(a)から(b)に示す、0゜から30゜の回転域では、水が流れる方向は重力がフォロー又は平行になる状態になるのでP1のポンプ稼働負荷はほとんどなく、他のP2及びP3ポンプは稼働していないので、当然の如く稼働負荷はかかっていない。
 これに対して、図23(b)から(c)に示す、30゜から60゜の回転域においては、若干の揚水負荷がかかる。
In the configuration shown in FIG. 22, the sequence for operating this turbine device is to move water as shown in FIG. 23, thereby making it possible to generate strong and stable rotational torque over the entire rotation range.
As shown in FIG. 23(a), at the time of starting at 0°, water has already accumulated in the first reservoir 90a located at the upper right. If we assume that a state in which rotational torque is applied in the clockwise direction is considered as a 0° start, then in this 0° state, the dielectric generator begins to rotate slowly while receiving resistance from the rotating shaft to rotate the shaft. The weight of water at 0° is the peak point of the storage state that is most effective for rotational torque conversion, and at 0° in Fig. 23(a), the P1 pump starts operating, and the water is located on the left side. Water starts moving into the second storage body 90b.
In addition, in the rotation range from 0° to 30° shown in Figures 23(a) to (b), the gravity follows or parallels the direction of water flow, so there is almost no pump operating load on P1, and other P2 and P3 pumps are not in operation, so naturally there is no operating load on them.
On the other hand, in the rotation range from 30 degrees to 60 degrees shown in FIGS. 23(b) to 23(c), a slight pumping load is applied.
 また、図23(c)から(d)に示す、60゜から90゜にかけては最大の揚水負荷はかかるが、この90゜の回転域では第2貯溜体90bに向けて水が空間移動することによって、貯溜体全体が回転する方向の力を得て、単一空間内の水の貯溜位置が回転トルク変換に不利な位置になっても、別の貯溜体90に最小限の移動負荷で常に安定した最高効率でトルク変換状態にできる。つまり、重量バランスとしては「全回転域」で「恒常的」に最大に重要負荷がかかる力を回転トルクに変換することを可能できる。
 360゜の1回転においては、P2及びP3のポンプが適時、図23に示すP1と同じ動作をすることで、この90゜回転パターンが4回繰り返されることで、全回転域で安定したトルク変換を可能できる。
 なお、図21~図23では上方から水は入らない構成になっているが、適宜、供給口22(図示せず),排出口23(図示せず)や、外側円筒シェル18(図示せず)を設けて、供給口22から水が入り、排出口23から排出する構成も採用できる。
 この構成では、第1実施形態の構成に加えて、より多くの回転トルクを生み出すために、適宜、複数の貯溜体間に貯溜体板連結路39と設けるとともに分配ポンプ37を駆動することになる。
Furthermore, although the maximum pumping load is applied from 60° to 90° as shown in FIGS. 23(c) to 23(d), water spatially moves toward the second storage body 90b in this 90° rotation range. As a result, even if the entire storage body obtains a force in the direction of rotation, and the water storage position in a single space becomes a position unfavorable to rotational torque conversion, another storage body 90 is always moved with a minimum moving load. Torque conversion state can be achieved with stable maximum efficiency. In other words, in terms of weight balance, it is possible to convert the force that is constantly subjected to the most important load in the entire rotation range into rotational torque.
During one 360° rotation, P2 and P3 pumps operate in the same way as P1 shown in Figure 23 at appropriate times, and this 90° rotation pattern is repeated four times, resulting in stable torque conversion over the entire rotation range. can be made possible.
In addition, in FIGS. 21 to 23, the structure is such that water does not enter from above, but the supply port 22 (not shown), the discharge port 23 (not shown), and the outer cylindrical shell 18 (not shown) may be ), and water enters from the supply port 22 and is discharged from the discharge port 23.
In this configuration, in addition to the configuration of the first embodiment, in order to generate more rotational torque, a reservoir plate connecting path 39 is provided between the plurality of reservoirs as appropriate, and the distribution pump 37 is driven. .
[第3実施形態]
 第3実施形態は、サイフォン現象を利用した連設型のタービン装置である。
 この第3実施形態は、各種形状のタービン羽根(貯溜体)を有し、流体の位置エネルギーを運動エネルギーとして取り出すタービン装置を、略水平方向に複数個、配置するとともに、各タービン装置を連通する流体路連通路を設けて、その流体路連通路の少なくとも一部にサイフォン現象を用いたサイフォン式連通路を設け、サイフォン現象に基づいて複数のタービン装置の回転を実現する構成である。
 なお、広い概念としては、「各種形状のタービン羽根(貯溜体)」は落下する流体の位置エネルギーを回転エネルギー等の実用的な運動エネルギーに変換する変換手段の一例としても理解することができる。
 そのようなエネルギー変換手段は、運動エネルギーを取り出すタービン装置のような、落下する流体がある容器内に収容される。
 前記エネルギー変換手段の例としては、流体によって引き起こされる圧力変動、流体の落下に伴う変換具の位置変動、コイル等に対する電磁界変動をエネルギーに変換する手段などの装置、素子が例示できる。そのような一例としてピエゾ素子等が例示できる。
[Third embodiment]
The third embodiment is a continuous type turbine device that utilizes a siphon phenomenon.
In this third embodiment, a plurality of turbine devices having turbine blades (storage bodies) of various shapes and extracting the potential energy of a fluid as kinetic energy are arranged in a substantially horizontal direction, and each turbine device is communicated with each other. In this configuration, a fluid communication passage is provided, a siphon type communication passage using a siphon phenomenon is provided in at least a part of the fluid communication passage, and rotation of a plurality of turbine devices is realized based on the siphon phenomenon.
In addition, as a broad concept, "turbine blades (storage bodies) of various shapes" can also be understood as an example of a conversion means that converts the potential energy of falling fluid into practical kinetic energy such as rotational energy.
Such energy conversion means are housed in a container with falling fluid, such as a turbine arrangement that extracts kinetic energy.
Examples of the energy conversion means include devices and elements such as means for converting pressure fluctuations caused by a fluid, positional fluctuations of a converter due to falling fluid, and electromagnetic field fluctuations for a coil or the like into energy. A piezo element etc. can be illustrated as such an example.
 本第3実施形態を説明する前に、複数の水貯溜槽を備えた場合のサイフォン現象について説明する。
 サイフォン現象は、一般的には、「水を高い位置の出発地点と低い位置の目的地点を管でつないで流す場合、管内が水で満たされていれば、管の途中に出発地点より高い地点があってもポンプでくみ上げることなく流れ続ける働き」とされる
 サイフォン現象が生じる説明については、大気圧を重視した説明や、管路内の高低差による管内の水量に係る重力の差による説明など多々あるが、本実施形態については、実際に起こる現象を重視する。
Before describing the third embodiment, the siphon phenomenon when a plurality of water storage tanks is provided will be described.
The siphon phenomenon generally occurs when water is flowed through a pipe connecting a high starting point and a low destination point. Explanations for the occurrence of the siphon phenomenon include those that emphasize atmospheric pressure and the difference in gravity that affects the amount of water in the pipe due to height differences within the pipe. Although there are many cases, in this embodiment, emphasis is placed on phenomena that actually occur.
 現象面のサイフォン現象の一例としては、図24に示すように、略同じ高さ位置にある3つの水貯溜槽70a,70b,70cにおいて、上流側の水貯溜槽70の下部位置から下流側にある水貯溜槽70の上部位置に連通する連通路71を設け、各水貯溜槽70a,70b,70c内に水69を満たした場合を考える。そのような場合は、各水貯溜槽70a,70b,70c内と連通路71の全ての空間が水で満たされた状態(図示せず)、又は図24に示すように、各水貯溜槽70a,70b,70c内の下部側に一定量の水と上部側が空気で満されている状態がある。そして、図24に示すように、最も下流側の水貯溜槽70aにつながる排出路74を設け、その排出路74に設けられた弁体72が閉じられた状態から、図25に示すように、その弁体72が開かれた状態にすると、水貯溜槽70cの上部位置に設けられた連通路71から空気73を吸入して水貯溜槽70a,70bの水の高さ位置はほとんど変化せず、排出路74から継続的に水が流れ出るような現象が起こる。 As an example of the siphon phenomenon, as shown in FIG. 24, in three water storage tanks 70a, 70b, and 70c located at approximately the same height, a siphon phenomenon occurs from the lower position of the water storage tank 70 on the upstream side to the downstream side. Consider a case where a communicating path 71 is provided in the upper part of a certain water storage tank 70 and each water storage tank 70a, 70b, 70c is filled with water 69. In such a case, all the spaces in each water storage tank 70a, 70b, 70c and the communication path 71 are filled with water (not shown), or as shown in FIG. , 70b, 70c are filled with a certain amount of water on the lower side and air on the upper side. Then, as shown in FIG. 24, a discharge path 74 connected to the water storage tank 70a on the most downstream side is provided, and when the valve body 72 provided in the discharge path 74 is closed, as shown in FIG. When the valve body 72 is opened, air 73 is sucked in from the communication passage 71 provided at the upper part of the water storage tank 70c, and the height position of the water in the water storage tanks 70a and 70b hardly changes. , a phenomenon occurs in which water continuously flows out from the discharge channel 74.
 図26は、水貯溜槽70a,70b,70cを繋ぎ管路77を介して上下方向に連接した構成を示す図である。
 図24及び図25のサイフォン現象と図26を比較すれば分かるように、各水貯溜槽70a,70b,70c70を略水平に並べて、前記のようなサイフォン現象を繰り返す構成を採用すれば、図26のように上下方向に積み上げる形とほぼ同等の流体の流れ現象を起こせることになる。
 図24及び図25のサイフォン現象を用いた構成であれば、揚水エネルギーを使うことなく、各貯溜槽を略水平方向に並べるだけでその分の位置エネルギーを繰り返し得られるシステムとすることが各種条件を整えれば達成できる。
FIG. 26 is a diagram showing a configuration in which water storage tanks 70a, 70b, and 70c are connected and connected in the vertical direction via a conduit 77.
As can be seen by comparing the siphon phenomenon in FIGS. 24 and 25 with FIG. 26, if the water storage tanks 70a, 70b, 70c70 are arranged approximately horizontally and the siphon phenomenon as described above is repeated, the structure shown in FIG. This creates a fluid flow phenomenon that is almost the same as stacking up and down in the vertical direction.
If the configuration uses the siphon phenomenon shown in Figures 24 and 25, various conditions must be met to create a system that can repeatedly obtain potential energy by simply arranging each storage tank in a substantially horizontal direction without using pumping energy. This can be achieved by preparing the following.
 さらに、サイフォン式連通路を利用した連設式のタービンシステムについて、サイフォン現象の考え方の一例について説明する。なお、この考え方は一つの思考実験であり、本発明は、この考え方に拘束されるものではない。
 本来、重力の自然作用では、水は上から下へにしか絶対に流れないというのが当たり前の定説である。図24及び図25に示すようなサイフォン現象では、水の位置関係と配管の仕方や周辺環境によって、ポンプなどの外的な加圧をしなくとも、重力方向とは真逆の下から上へと、かなり流量の水流でもある程度の高さ位置に登り上がっていく現象が起こることは、実際に簡単に検証し、確認でき得る現象である。
Furthermore, an example of the concept of the siphon phenomenon will be explained regarding a continuous turbine system using a siphon type communication passage. Note that this way of thinking is just a thought experiment, and the present invention is not limited to this way of thinking.
Originally, it is an accepted theory that under the natural action of gravity, water absolutely only flows from top to bottom. In the siphon phenomenon shown in Figures 24 and 25, depending on the positional relationship of the water, the way of piping, and the surrounding environment, water flows from the bottom to the top in the exact opposite direction of gravity, even without external pressurization such as a pump. The fact that even a stream of water with a considerable flow rate rises to a certain height is a phenomenon that can be easily verified and confirmed in practice.
 但し、この現象は「エネルギー保存の法則」においては、上部に蓄えられた位置エネルギーが重力によって一時的に上部に吸い上げられ、水が元々あった位置よりも下部に流れ落下することで位置エネルギーが消費されたことで起こることとされ、新たに上部に落下して消費された分の位置エネルギー分の水を補充しない限り、当然のようにサイフォン現象のその流れは途切れる。
 この一連の現象を実際に見る限りでは「エネルギー保存の法則は絶対に正しい」とされることであるが、時間軸をも考慮した視点で考えた場合には、そのエネルギー保存の法則には矛盾があり、エネルギー算出計算としては不完全であると考える。
 それは、1次元的な位置関係による極端な静止状態の結果論でしか検証していないからと考える。
However, according to the law of conservation of energy, this phenomenon is caused by the potential energy stored at the top being temporarily sucked up by gravity, and the water flowing and falling below its original position, causing the potential energy to decrease. It is said that this happens when the water is consumed, and unless water falls to the top and replenishes the amount of potential energy consumed, the flow of the siphon phenomenon will naturally stop.
As long as we actually observe this series of phenomena, it is said that ``the law of conservation of energy is absolutely true,'' but when we consider the time axis as well, the law of conservation of energy is contradictory. Therefore, it is considered to be incomplete as an energy calculation calculation.
I think this is because they are only validating the results of an extreme stationary state due to one-dimensional positional relationships.
 一般の検証への疑問として、サイフォン現象が作用して水が移動している際には、質量を持った相当量の水が上下に移動して動いているので、瞬間的なe=mv2の運動エネルギーが相当量発生していることが無視されている点がまず、挙げられる。
 次に、水の落下が終わりサイフォン現象が終了した時点で、その質量の落下によって消費された位置エネルギーの総量を回生利用して、落下前の位置に吸い上げることができるかといえば不可能である点が挙げられる。
 次に、誤差や摩擦損失が無く、他にエネルギーが他に消費されていなくとも、落下にかかった同じ時間で、元の位置に落下した全量の水を戻す、即ち重力加速度に逆らい、同じ加速度で上向に速度を上げて揚水するのに要する「揚水エネルギー」を考えると、全く釣り合うものではない点が挙げられる。
As a question for general verification, when water is moving due to the siphon effect, a considerable amount of water with mass is moving up and down, so instantaneous e = mv 2 First, the fact that a considerable amount of kinetic energy is generated is ignored.
Next, when the water stops falling and the siphon phenomenon ends, it is impossible to regenerate the total amount of potential energy consumed by the falling mass and suck it up to the position before it fell. There are several points.
Then, in the same amount of time it took to fall, with no errors or frictional losses, and no other energy expended, return the entire amount of water that fell to its original position, i.e., with the same acceleration, against the gravitational acceleration. If you consider the "pumping energy" required to pump water upward at an increased speed, it is completely out of proportion.
 具体的に実際の計算においても、例えば、1メートルの高さに1kgの質量を持つ固体物質があった場合、ワット計算による位置エネルギーは9.8W(W=J/s)である。1Jは1kgの物体が重力加速度9.8m/s2の1Nの力で、1m下に到達する1秒後での物体の速度が1m/sに達した運動エネルギーであるとすると、確かにそれに近い現象は起こり、参考にはなるが、水などの極めて微細な分子の流体運動では成り立たないと考える。
 1kgの水、つまり1リットルの水を1メートルの高さに1秒で揚水して戻すには、地上標準の一気圧の通常の雰囲気空間では「爆発的」なエネルギーを要することは想像に難しくない。
 また、爆発的な形でなくとも、例えば、10秒かけて1リットルの水を1mの位置に揚水できる比較的、適切な揚水力を有するポンプを利用することで揚水して元の位置エネルギーを持つ状態に戻すには、仮にそのポンプが100%の動力効率を有する非現実的な超高性能なものでも、位置エネルギーを回生させるためには9.8W×10秒の98Wの優に10倍以上のエネルギーを要することになる。
Specifically, in actual calculations, for example, if there is a solid substance with a mass of 1 kg at a height of 1 meter, the potential energy calculated by Watts is 9.8 W (W=J/s). If 1J is the kinetic energy of a 1kg object with a force of 1N at a gravitational acceleration of 9.8m/s 2 and the object's velocity reaches 1m/s 1 second after it reaches 1m below, then it is true that Phenomena similar to this occur and are useful as a reference, but I don't think it holds true in the fluid motion of extremely minute molecules such as water.
It is difficult to imagine that it would take an "explosive" amount of energy to pump 1 kg of water, or 1 liter of water, to a height of 1 meter in 1 second and return it in a normal atmosphere of 1 atmospheric pressure on the ground. do not have.
In addition, even if it is not explosive, for example, by using a pump with a relatively appropriate pumping power that can pump 1 liter of water to a position of 1 meter in 10 seconds, the original potential energy can be recovered by pumping water. Even if the pump is an unrealistically high-performance pump with 100% power efficiency, in order to regenerate potential energy, it will require 9.8W x 10 seconds, which is well 10 times 98W. This would require more energy.
 つまり、「時間軸」を基準にしたそれぞれの物質の運動状態を加味した計算が必要であり、動力システムを設計する場合はそれらの固有の特性に応じた設計を行うことが好ましいと言える。
 なお、サイフォン現象によって有効なエネルギーが発生している現象面を重視し、サイフォン現象を有効に活用することを目的として、以下に説明する、本実施形態の構成を考えている。
 即ち、図27~図29に一例として示すような複数のタービン装置をほぼ同じ高さ位置に連結したタービンシステムを提案する。
In other words, it is necessary to perform calculations that take into account the state of motion of each substance based on the "time axis," and when designing a power system, it is preferable to design according to their unique characteristics.
Note that the configuration of this embodiment, which will be described below, is considered with emphasis on the phenomenon in which effective energy is generated by the siphon phenomenon, and for the purpose of effectively utilizing the siphon phenomenon.
That is, we propose a turbine system in which a plurality of turbine devices are connected at approximately the same height position as shown in FIGS. 27 to 29 as an example.
(流体の自然落下による連設型タービンシステム)
 以下、図27を参照しつつ、第3実施形態の一例である、流体の自然落下による連設型タービンシステム62を説明する。
 図27に示すように、上方の水(流体4)が流れ込む第1の上部貯溜槽54aを第1のタービン装置1aの上方位置に設け、上部貯溜槽54aの下部位置に第1のタービン装置1aの供給口22aに水を供給する上側接続通路55aを設けている。第1のタービン装置1aの排出口23aから排出された水は下側接続通路56aを介して第1の下部貯溜槽57aで貯溜される。ここで、上側接続通路55a,下側接続通路56aは適宜、省略することも可能である。
(Connected turbine system using natural fluid fall)
Hereinafter, with reference to FIG. 27, a continuous turbine system 62 using natural fluid fall, which is an example of the third embodiment, will be described.
As shown in FIG. 27, a first upper reservoir 54a into which the upper water (fluid 4) flows is provided above the first turbine device 1a, and a first turbine device 1a is provided at a lower position of the upper reservoir 54a. An upper connection passage 55a for supplying water to the supply port 22a is provided. Water discharged from the discharge port 23a of the first turbine device 1a is stored in the first lower storage tank 57a via the lower connection passage 56a. Here, the upper connection passage 55a and the lower connection passage 56a may be omitted as appropriate.
 また、第1の下部貯溜槽57aに入れられる水の高さよりも低い位置の取出口45に取付けられた上昇通路58と、第2のタービン装置1bの供給口22bによりも高い位置にある接続通路59とを連通させている。そして、接続通路59の下流側は第2のタービン装置1bの供給口22bに接続されている。接続通路59はU字形であるものが示してある。
 上昇通路58と接続通路59は、前記したサイフォン式連通路の一例を構成する。
 また、第2のタービン装置1bの下側には第2の下部貯溜槽57bが設けられ、その排出口46から排出通路61を介して、第2の下部貯溜槽57の水が排出される。
 このように構成することで、サイフォンの原理によって第2の下部貯溜槽57bに設けられた排出通路61から水が流れ出すと、2個のタービン装置1a,1bのタービン羽根は回転して、それぞれ発電を行うことができる。
 なお、図27において、流体路連通路80は、少なくとも上流側から下流側に流体を流す通路を含んで構成してある。この実施形態では、流体路連通路80は、第1の上部貯溜槽54a、下部貯溜槽57a・b、サイフォン式連通路、戻し通路65などを含む概念として使用している。
Furthermore, a rising passage 58 attached to the outlet 45 at a position lower than the height of the water put into the first lower storage tank 57a and a connecting passage located at a position higher than the supply port 22b of the second turbine device 1b. It communicates with 59. The downstream side of the connection passage 59 is connected to the supply port 22b of the second turbine device 1b. The connecting passage 59 is shown to be U-shaped.
The rising passage 58 and the connecting passage 59 constitute an example of the above-mentioned siphon type communication passage.
Further, a second lower storage tank 57b is provided below the second turbine device 1b, and the water in the second lower storage tank 57 is discharged from the discharge port 46 of the second lower storage tank 57b through the discharge passage 61.
With this configuration, when water flows out from the discharge passage 61 provided in the second lower storage tank 57b according to the siphon principle, the turbine blades of the two turbine devices 1a and 1b rotate, and each generates electricity. It can be performed.
In addition, in FIG. 27, the fluid path communication passage 80 is configured to include at least a passage through which fluid flows from the upstream side to the downstream side. In this embodiment, the fluid path communication path 80 is used as a concept including the first upper storage tank 54a, the lower storage tanks 57a and 57b, the siphon type communication path, the return path 65, and the like.
 本システム62では、動力水の重力による自然落下によって注ぎ込まれる僅かな流量の水源から、連鎖的に多くの発電装置を同時に回していくことを実現し、発電出力を簡易に増やしていくことができる。
 図27に示される動力水を貯め置く上部貯溜槽54aは、タービンモジュールに余計な空気が侵入したり漏れ出ることで、下流のサイフォン現象を機能させる貯溜槽等の水位の安定が阻害されないようにするために設置している。
 また、自然落下で注ぎ込まれる元の水源量は、例えば、サイフォン連鎖の最終の排出口46から出る水量と同等以上であれば、このサイフォン現象を利用した連設型タービンシステム62は安定して動作し、結果として安定した発電をし続けることができる。
In this system 62, it is possible to simultaneously run many power generation devices in a chain from a water source with a small flow rate that is poured by the natural fall of power water due to gravity, and it is possible to easily increase the power generation output. .
The upper storage tank 54a shown in FIG. 27, which stores power water, is designed to prevent excess air from entering or leaking from the turbine module, thereby preventing the stabilization of the water level in the downstream storage tank that functions as a siphon. It is set up to do so.
Furthermore, if the amount of the original water source poured by gravity is equal to or greater than the amount of water coming out from the final outlet 46 of the siphon chain, the connected turbine system 62 using this siphon phenomenon will operate stably. As a result, stable power generation can continue.
 なお、図27に示す構成においては、第2の上部貯溜槽54b(図示せず)は省略されており、第2の下部貯溜槽57bのみ設けられた構成が示してある。
 しかし、1段目の構成のように、第2のタービン装置1bの供給口22bよりも高い位置に第2の上部貯溜槽54b(図示せず)を設け、サイフォン式連通路を第2の上部貯溜槽54b(図示せず)に連通する構成も採用できる。
 また、図27に示す構成においては、接続通路59の最も高い位置は第1の上部貯溜槽54aに達する位置にある構成が示してあるが、最低限、第2のタービン装置1bの供給口22bよりも高い位置にあり、供給口22bに水を供給できる構成であればよい。
Note that in the configuration shown in FIG. 27, the second upper storage tank 54b (not shown) is omitted, and a configuration in which only the second lower storage tank 57b is provided is shown.
However, like the first stage configuration, the second upper storage tank 54b (not shown) is provided at a higher position than the supply port 22b of the second turbine device 1b, and the siphon type communication path is connected to the second upper storage tank 54b. A configuration in which it communicates with a storage tank 54b (not shown) can also be adopted.
In addition, in the configuration shown in FIG. 27, the highest position of the connection passage 59 is shown to reach the first upper storage tank 54a, but at least the highest position of the connection passage 59 reaches the first upper storage tank 54a. Any configuration may be used as long as it is located at a higher position and can supply water to the supply port 22b.
 なお、1段目及び2段目の各タービン装置1の回転軸2には発電機3が取付けられている。
 図27に示す、2段目以降のエレメント67の数は1個にとどまらず、サイフォン現象が再現できる範囲内において、エレメント67の数を2,3,……というように同じ構成で、複数個、連接することができる。
 図28はそのような構成を例示したものであり、4個のタービン装置1a,1b,1c,1dを連設した構成を示す図である。なお、図28において、前記した前側曲線と、捻り角θで捻られた後側曲線の両方を描いているので、前側3個、後側3個、合計6個の側方壁16を描いた図となっている。
Note that a generator 3 is attached to the rotating shaft 2 of each of the first-stage and second-stage turbine devices 1.
The number of elements 67 in the second and subsequent stages shown in FIG. , can be concatenated.
FIG. 28 illustrates such a configuration, and is a diagram showing a configuration in which four turbine devices 1a, 1b, 1c, and 1d are arranged in series. In addition, in FIG. 28, since both the aforementioned front curve and the rear curve twisted at the twist angle θ are drawn, a total of six side walls 16 are drawn, three on the front side and three on the rear side. It is shown in the figure.
(流体の戻し通路とポンプを備えた連設型タービンシステム)
 この第3実施形態の変形例として、図27及び図29に示すように、下流側の前記タービン装置の流体を上流側のタービン装置に戻す戻し通路65と、流体を循環させるポンプ66とを設けた連設型タービンシステムについて説明する。
 この構成の特徴を図27の例で説明すれば、図27において破線で示す戻し通路65を設け、タービン装置1の連設において、最終的な排出通路61から排出された水を再び1第1の上部貯溜槽54aに戻している。
 即ち、連設型タービンシステムの最終的な排出通路61から出た水を小さな電力で稼働する小規模な揚水機能を有するポンプ66を利用して、サイフォン連鎖の最初の取水部に繋ぐことで、より多くのサイフォン連鎖に係るエレメント67を連接することができる。
 また、図29に示す構成では、4個のタービン装置1a,1b,1c,1dを流体路連通路80で連通したタービンシステムを示している。この構成では、第1のタービン装置1aの上部には第1の上部貯溜槽54aを設けず、ポンプ66によって戻された水を直接的に第1のタービン装置1aの供給口22に連通させている。
(Connected turbine system with fluid return passage and pump)
As a modification of the third embodiment, as shown in FIGS. 27 and 29, a return passage 65 for returning fluid from the turbine device on the downstream side to the turbine device on the upstream side and a pump 66 for circulating the fluid are provided. A continuous turbine system will be explained.
To explain the features of this configuration using the example of FIG. 27, a return passage 65 shown by a broken line in FIG. The water is returned to the upper storage tank 54a.
That is, by connecting the water discharged from the final discharge passage 61 of the connected turbine system to the first water intake part of the siphon chain using a pump 66 that operates with small electric power and has a small-scale pumping function. More siphon chain elements 67 can be connected.
Further, the configuration shown in FIG. 29 shows a turbine system in which four turbine devices 1a, 1b, 1c, and 1d are connected through a fluid path communication path 80. In this configuration, the first upper storage tank 54a is not provided in the upper part of the first turbine device 1a, and the water returned by the pump 66 is directly communicated with the supply port 22 of the first turbine device 1a. There is.
 この戻し通路65とポンプ66を備えたシステムの利点は以下の通りである。
 まず、第1点として、水は連設型タービンシステム内を循環するので、落下する新しい水を常に確保することが必要がなくなり、高い位置の水の供給を考慮する必要がなくなる利点がある。
 次に、第2点として、前記した自然落下によるサイフォンの原理の利用であれば、連設できるタービン装置1の数は、サイフォン現象で生じる減圧時に水に溶け込んだ気体の発生や、水と通路内の表面張力などの各種の抵抗要素が少なからず影響するので、その点を考慮する必要がある。本実施形態であれば、積極的に連鎖的なサイフォン現象を助けるための動力として、小さな電力で稼働する小規模な揚水機能を有するポンプ66を追加することで、連設の数を自然落下の構成に比べて増やすことができる。
 また、減圧時に流体に溶け込む気体の量を減らせるとともに、その流体と通路内の表面張力などの各種の抵抗要素を減ずることができる種類の流体を採用することでシステムの発電効率を向上することもできる。
The advantages of this system including return passage 65 and pump 66 are as follows.
First, since the water circulates within the connected turbine system, there is no need to constantly secure fresh water to fall, and there is no need to consider the supply of water from a high location.
Next, as a second point, if the above-mentioned principle of siphoning due to natural fall is used, the number of turbine devices 1 that can be installed in series will be limited due to the generation of gas dissolved in water during the depressurization caused by the siphon phenomenon, and the passage between water and water. Since various resistance factors such as internal surface tension have a considerable influence, it is necessary to take this into consideration. In this embodiment, by adding a pump 66 that has a small-scale pumping function that operates with small electric power as a power source to actively support the chain siphon phenomenon, the number of continuous installations can be reduced compared to natural fall. It can be increased compared to the configuration.
In addition, the power generation efficiency of the system can be improved by using a type of fluid that can reduce the amount of gas that dissolves into the fluid when the pressure is reduced, and reduce various resistance factors such as surface tension between the fluid and the passage. You can also do it.
 本発明においては、固体物質が持つ位置エネルギーと、水などの流体が持つ位置エネルギーとでは、前述したように、現実に起きている物理現象として、重力に影響を受ける時間軸によって、「位置エネルギー」の「消費」と「変換による発生(回生)」の相関関係においては全く異なる性質や変遷形態がある。
 特に水や空気などの固形でない液体物質に関しては、対流や滞留などの特殊な流れを変えたり作り出したりすることで、時間軸による質量を持つ流体物質の動体変化をオーバーラップさせて重ねるような作用を起こすことで、一般的な現代物理論本来は埋められない空白のトルク領域を埋めることを可能にしている。
 具体的に、本発明の考え方では「埋められない空白の領域」を例えば、以下の4つの方法論とシステムで効率的に補完し、埋めていくことを可能にしている。
In the present invention, the potential energy possessed by solid substances and the potential energy possessed by fluids such as water are determined based on the time axis affected by gravity as a physical phenomenon that actually occurs, as described above. There are completely different characteristics and transition forms in the correlation between ``consumption'' and ``generation (regeneration) through conversion.''
In particular, for non-solid liquid substances such as water and air, by changing or creating special flows such as convection and stagnation, we can create an effect that overlaps the dynamic changes of fluid substances with mass over time. By causing this, it is possible to fill in the blank torque area that cannot be filled in by the general modern theory.
Specifically, the idea of the present invention makes it possible to efficiently supplement and fill in "blank areas that cannot be filled" using, for example, the following four methodologies and systems.
 第1の方法論としては、図2(d)に示す位相曲線を利用したブレード形状を利用することで、時間の経過に対する溜める量を増加させることで、図7(c)に示すように、かなりの空白の部分を補うことを可能にしている。
 第2の方法論としては、第1の方法論の構成に、主に第1実施形態で説明したような2次元位相曲線を3次元で位相角を持たせて「捻り」を加えた「歪んだ空間」を作っている。そして各「歪んだ空間」を一体化した形で設けて、自然の重力による正確な水の流れを利用して、適時に各空間への流入口への開閉を制御し、動力水の流入タイミングを遅らせたり早めたりするように構成してある。この構成によって、水の「流体の重心」が常に回転トルク変換に有効な位置に滞留させ、単純な位置エネルギー以上の瞬間動体エネルギーを抽出した上で、排出させることで、ほとんどの空白の領域を埋めることを可能にしている。例えば、位相角60°の捻りを入れた歪んだ空間に上記のようなタイミングで貯留水路を切り替えることで、360°の全回転域において安定したトルク出力を性能を実現できる。
 図30はその説明図であり、0°~180°回転域βで示される領域において、縦軸で相対トルク1.0に対応した領域である四角形領域87は、4つの山形曲線86によってほぼ埋まっており、前記したように分配機能部を設け、貯溜水路を切り替えることで、安定したトルク出力を得られることを示している。
The first methodology is to use a blade shape that utilizes the phase curve shown in Figure 2(d) to increase the amount of storage over time, resulting in a significant amount of water as shown in Figure 7(c). This makes it possible to fill in the blank areas.
The second methodology is a "distorted space" in which a two-dimensional phase curve as explained in the first embodiment is given a three-dimensional phase angle and a "twist" is added to the configuration of the first methodology. ” is being created. Then, each "distorted space" is installed in an integrated form, and by using the accurate flow of water due to natural gravity, the opening and closing of the inlet to each space is controlled in a timely manner, and the inflow timing of powered water is controlled. It is configured to delay or accelerate the With this configuration, the "fluid center of gravity" of water always stays at a position that is effective for rotational torque conversion, and by extracting instantaneous motion energy that exceeds simple potential energy and then discharging it, most blank areas can be removed. It makes it possible to fill in. For example, by switching the reservoir waterway at the above timing to a distorted space with a twist of 60° phase angle, stable torque output performance can be achieved over the entire 360° rotation range.
FIG. 30 is an explanatory diagram thereof. In the region indicated by the 0° to 180° rotation range β, a rectangular region 87 corresponding to a relative torque of 1.0 on the vertical axis is almost filled by four chevron curves 86. This shows that stable torque output can be obtained by providing a distribution function section and switching the reservoir waterway as described above.
 第3の方法論としては、主に第2実施形態において説明したように、第2の方法論の様に捻りを加えた歪んだ空間を使わない構成である。つまり、電動ポンプ等のポンプ手段を利用して、適時に各空間への動力水の「流体の重心」が常に回転トルク変換に有効な位置になるように、貯溜体間連通路39などを設けること、及び適切なタイミングで空間移動される単位時間あたりの流量を設定することによって、各種設定条件によっては第2の方法よりも優れたトルク変換性能を実現することも可能になる。
 但し、ポンプを稼働させるエネルギーが別途必要になるため、特に瞬間的に発生する「揚水高低差による揚水量に対する負荷」がポンプ稼働に必要なエネルギーのほとんどを占めることに注意する必要がある。移動工程の大半はその負荷は掛からないので、発生エネルギー総量とポンプ稼働のためのエネルギーの差し引いた利得電力はプラスとなる構成も存在し得ると思われる。
 なお、ポンプの性能や配管の仕方にも大きく影響をうけるので、このシステム単独では、上記第1、第2の方法論のように明らかにトルク変換効率の向上、つまり、単位時間あたりのエネルギー発生量の安定化には寄与できない場合もある。
As mainly explained in the second embodiment, the third methodology is a configuration that does not use a distorted space that is twisted like the second methodology. In other words, by using a pump means such as an electric pump, the inter-reservoir communication passage 39 is provided so that the "center of gravity" of the power water flowing into each space is always at a position effective for rotational torque conversion. By setting the flow rate per unit time that is spatially moved at appropriate timing, it is possible to achieve torque conversion performance superior to that of the second method depending on various setting conditions.
However, since additional energy is required to operate the pump, it must be noted that the ``load on the amount of water pumped due to the difference in pumping height'' that occurs instantaneously accounts for most of the energy required to operate the pump. Since most of the moving process does not require this load, there may be a configuration in which the total amount of generated energy and the gain power obtained by subtracting the energy for operating the pump are positive.
Furthermore, since it is greatly affected by the performance of the pump and the way the piping is installed, this system alone cannot clearly improve the torque conversion efficiency as shown in the first and second methodologies above, that is, the amount of energy generated per unit time. In some cases, it may not be possible to contribute to the stabilization of
 第4の方法論としては、主に第3実施形態において説明したようなサイフォン現象を利用した連接型システムを利用することである。なお、必要により、上記第1、第2、第3の方法と組み合わせることで、違う観点からトルク変換効率をさらに高めることが可能になる。
 第1、第2、第3の方法論で説明した各システムも、それぞれの独特なシステム構成において、重力からのトルク変換効率を高めることを可能にしている。そして、各方法論において、概観すれば、重力による水の位置エネルギー及び「水の流れの運動エネルギー」即ち対流等と、滞留による時間差による重量バランスを利用して、更にトルク増幅を可能とする点において共通するとも言える。この基本的な考え方は図6(a)(b)の比較において説明した通りである。
 特に第2、第3の方法論の構成と、第3実施形態で説明した連接型システムの構成と、を連動させることで、重力や気圧による他の動力エネルギーを必要としないサイフォン現象を利用するさらに好ましい構成が実現できる。つまり、従来までの一般的なエネルギー保存則の枠に囚われず、トルク変換効率、即ちエネルギー変換効率を別次元で向上することが可能になる。
The fourth methodology is to use an articulated system that mainly utilizes the siphon phenomenon as described in the third embodiment. Note that, if necessary, by combining the above-mentioned first, second, and third methods, it is possible to further increase the torque conversion efficiency from a different perspective.
Each of the systems described in the first, second, and third methodologies also makes it possible to increase the efficiency of torque conversion from gravity in each unique system configuration. In each methodology, if you look at it roughly, it is possible to further amplify torque by using the potential energy of water due to gravity, the ``kinetic energy of water flow'', i.e., convection, etc., and the weight balance due to the time difference due to retention. It can also be said that they have something in common. This basic idea is as explained in the comparison of FIGS. 6(a) and 6(b).
In particular, by linking the configurations of the second and third methodologies with the configuration of the articulated system described in the third embodiment, it is possible to utilize the siphon phenomenon that does not require other motive energy due to gravity or atmospheric pressure. A preferred configuration can be realized. In other words, it becomes possible to improve torque conversion efficiency, that is, energy conversion efficiency, to another dimension without being bound by the conventional general law of conservation of energy.
 以上、実施形態を例示して本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の構成には限定されない。本発明の技術的範囲は、特許請求の範囲の記載に基づいて判断されるべきであり、その範囲内であれば、多様な変形や構成の追加、又は改良が行えることは言うまでもない。 Although the present invention has been described above by exemplifying the embodiments, the technical scope of the present invention is not limited to the configuration described in the above embodiments. The technical scope of the present invention should be determined based on the claims, and it goes without saying that various modifications, additions of configurations, and improvements can be made within that scope.
 1:タービン装置
 2:回転軸
 4:流体
 5:開閉弁(分配機能部の一例)
 6,6a,6b,6c:位相貯溜体
10:開閉扉(開閉弁の一例)
11:内側円筒シェル
12:後側円形板
13:円筒板
14:前方壁
15:後方壁
16:側方壁
17:前側円形板
22:供給口
30:前側曲線
31:後側曲線
33:側方壁の側方縁
36:分配機能部
37:分配ポンプ
38:貯溜体間連通口(分配機能部の一例)
39:貯溜体間連通路(分配機能部の一例)
40:開口
54a:第1の上部貯溜槽
57a:第1の下部貯溜槽
57b:第2の下部貯溜槽
58:上昇通路(サイフォン式連通路の一部を構成する通路)
59:接続通路(サイフォン式連通路の一部を構成する通路)
65:戻し通路
66:ポンプ
80:流体路連通路
90,90a,90b,90c:貯溜体
 θ:捻り角
 φ:延出角
1: Turbine device 2: Rotating shaft 4: Fluid 5: Opening/closing valve (an example of a distribution function part)
6, 6a, 6b, 6c: Phase storage body 10: Opening/closing door (an example of an opening/closing valve)
11: Inner cylindrical shell 12: Rear circular plate 13: Cylindrical plate 14: Front wall 15: Rear wall 16: Side wall 17: Front circular plate 22: Supply port 30: Front curve 31: Back curve 33: Side Side edge of wall 36: Distribution function section 37: Distribution pump 38: Communication port between reservoirs (an example of distribution function section)
39: Inter-reservoir communication path (an example of a distribution function part)
40: Opening 54a: First upper storage tank 57a: First lower storage tank 57b: Second lower storage tank 58: Rising passage (passage forming part of the siphon communication passage)
59: Connection passage (passage that forms part of the siphon type communication passage)
65: Return passage 66: Pump 80: Fluid communication passage 90, 90a, 90b, 90c: Reservoir θ: Torsion angle φ: Extension angle

Claims (20)

  1.  流体に係る重力によって、回転軸に固定された、前記流体を溜める複数の貯溜体を回転させるタービン装置であって、
     前記回転軸回りの回転トルク変化に有効なように、複数の前記貯溜体間で前記流体を分配する分配機能部を有していることを特徴とするタービン装置。
    A turbine device that rotates a plurality of reservoirs that store the fluid and that are fixed to a rotating shaft by gravity related to the fluid,
    A turbine device comprising: a distribution function section that distributes the fluid between the plurality of reservoirs so as to effectively change the rotational torque around the rotational axis.
  2.  上方から供給される前記流体を前記貯溜体に供給する供給口と、
     前記供給口から前記貯溜体内に前記流体を取り入れる開口と、を有し、
     前記貯溜体が位相貯溜体で構成され、
     前記位相貯溜体は前方壁と後方壁と側方壁とを含んで構成され、前記回転軸の延びる方向に広がる前記流体の貯溜体であり、
     前方側から見たときに現れる前記側方壁の前側曲線と、後方側から見たときに現れる前記側方壁の後側曲線とにおいて、前記後側曲線の位相は前側曲線の位相に比べて、前記回転軸回りの捻り角だけ、回転方向に進めるように回転させるとともに、前記後側曲線の周辺域部を延出角だけ延ばしており、
     前記位相貯溜体の前記側方壁は、前記前側曲線と、前記捻り角だけ回転させ前記延出角だけ延ばした前記後側曲線と、の間を3次元的に捻れた壁面で前後方向に接続することで構成されている、ことを特徴とする請求項1に記載のタービン装置。
    a supply port for supplying the fluid supplied from above to the reservoir;
    an opening for introducing the fluid into the reservoir from the supply port;
    the reservoir is comprised of a phase reservoir;
    The phase reservoir is a reservoir for the fluid that is configured to include a front wall, a rear wall, and a side wall, and spreads in the direction in which the rotation axis extends,
    In the front curve of the side wall that appears when viewed from the front side and the rear curve of the side wall that appears when viewed from the rear side, the phase of the rear curve is compared to the phase of the front curve. , rotated so as to advance in the rotation direction by a twist angle around the rotation axis, and extend a peripheral area of the rear curve by an extension angle;
    The side wall of the phase storage body connects the front curve and the rear curve rotated by the twist angle and extended by the extension angle in the front-rear direction with a three-dimensionally twisted wall surface. The turbine device according to claim 1, characterized in that the turbine device is configured by:
  3.  前記分配機能部を開閉弁で構成し、前記位相貯溜体の前記側方壁の周辺域部に、前記開閉弁を設け、前記開閉弁は、前記位相貯溜体が上部位置にある場合は、前記開閉弁を開いて前記流体を前記位相貯溜体内に取り入れ、下方側へ回転する場合は溜まった前記流体を洩れないように前記開閉弁を閉じるように機能する、ことを特徴とする請求項2に記載のタービン装置。 The distribution function section is configured with an on-off valve, and the on-off valve is provided in a peripheral area of the side wall of the phase storage body, and the on-off valve is configured such that when the phase storage body is in an upper position, Claim 2, characterized in that the opening/closing valve is opened to take the fluid into the phase reservoir, and when rotating downward, the opening/closing valve is closed so as not to leak the accumulated fluid. The turbine device described.
  4.  前記開閉弁が、回転角度において進んだ位置の前記位相貯溜体と回転角度において遅れた前記位相貯溜体の間で前記流体を配分する、ことを特徴とする請求項3に記載のタービン装置。 The turbine apparatus according to claim 3, wherein the on-off valve distributes the fluid between the phase reservoir at a position advanced in rotation angle and the phase reservoir at a position delayed in rotation angle.
  5.  前記前側曲線と前記後側曲線は共に、回転中心から延びる曲線の半径位置が、周方向に回転するに従って徐々に大きくなる渦巻き曲線に構成してある、ことを特徴とする請求項2に記載のタービン装置。 3. The front curve and the rear curve are both spiral curves in which the radial position of the curve extending from the center of rotation gradually increases as it rotates in the circumferential direction. Turbine equipment.
  6.  複数の前記位相貯溜体は、前記回転軸の回りに120゜間隔で取付けられる3個の前記位相貯溜体で構成した、ことを特徴とする請求項5に記載のタービン装置。 6. The turbine apparatus according to claim 5, wherein the plurality of phase reservoirs are comprised of three phase reservoirs mounted at 120° intervals around the rotating shaft.
  7.  前記位相貯溜体の回転に伴って前記流体が溢れ出る前記位相貯溜体の前記側方壁の側方縁が水平となるように、前記後側曲線の前記捻り角及び前記延出角を設定した、ことを特徴とする請求項2に記載のタービン装置。 The torsion angle and the extension angle of the rear curve were set so that the side edges of the side walls of the phase reservoir, through which the fluid overflows as the phase reservoir rotates, are horizontal. The turbine device according to claim 2, characterized in that: .
  8.  前記位相貯溜体の回転に伴って前記流体が溢れ出る前記位相貯溜体の前記側方壁の側方縁が前記回転軸と平行となるように、前記後側曲線の前記捻り角及び前記延出角を設定した、ことを特徴とする請求項2に記載のタービン装置。 The torsion angle and the extension of the rear curve are such that the side edges of the side walls of the phase reservoir, through which the fluid overflows as the phase reservoir rotates, are parallel to the axis of rotation. The turbine device according to claim 2, characterized in that the turbine device has an angle.
  9.  前記開閉弁は、重力の作用によって駆動する開閉扉で構成されている、ことを特徴とする請求項3に記載のタービン装置。 The turbine device according to claim 3, wherein the on-off valve is configured with an on-off door that is driven by the action of gravity.
  10.  前記位相貯溜体は前記回転軸を中心軸として回転する円筒形シェルを用いて形成され、
     前記円筒形シェルは、前側円形板と後側円形板と円筒板とから構成され、
     前記円筒形シェルに、前記開口を前記位相貯溜体の前側又は後側の端部位置に設けた、ことを特徴とする請求項2に記載のタービン装置。
    The phase reservoir is formed using a cylindrical shell that rotates about the rotation axis,
    The cylindrical shell is composed of a front circular plate, a rear circular plate, and a cylindrical plate,
    3. The turbine apparatus according to claim 2, wherein the cylindrical shell is provided with the opening at a front or rear end position of the phase reservoir.
  11.  請求項2に記載された前記タービン装置を複数設けた、ことを特徴とする連設型タービンシステム。 A serially connected turbine system comprising a plurality of the turbine devices according to claim 2.
  12.  複数の前記タービン装置は、前記流体の流れにおいて、少なくとも上流側から下流側に前記流体を流す流体路連通路を有している、ことを特徴とする請求項11に記載の連設型タービンシステム。 12. The connected turbine system according to claim 11, wherein the plurality of turbine devices each have a fluid path communication path that allows the fluid to flow from at least an upstream side to a downstream side in the flow of the fluid. .
  13.  前記流体路連通路の少なくとも一部にサイフォン現象を用いたサイフォン式連通路を設けた、ことを特徴とする請求項12に記載の連設型タービンシステム。 13. The continuous turbine system according to claim 12, wherein at least a portion of the fluid passage communication passage is provided with a siphon type communication passage using a siphon phenomenon.
  14.  下流側の前記タービン装置の前記流体を上流側の前記タービン装置に戻す戻し通路と、前記流体を循環させるポンプと、を設けた、ことを特徴とする請求項12に記載の連設型タービンシステム。 The continuous turbine system according to claim 12, further comprising: a return passage that returns the fluid of the turbine device on the downstream side to the turbine device on the upstream side; and a pump that circulates the fluid. .
  15.  水平方向に前記タービン装置を複数並べた構成を有する連設型タービンシステムであって、
     上流側の第1のタービン装置の上方位置に設けられ、上方から落下する前記流体を入れる第1の上部貯溜槽と、
     前記第1のタービン装置の下方位置に設けられ、前記第1のタービン装置から排出される前記流体を入れる第1の下部貯溜槽と、
     前記第1の下部貯溜槽の下方位置から下流側の第2のタービン装置の前記流体の前記供給口とを連通するサイフォン式連通路と、
     前記第2のタービン装置の下方位置に前記第2のタービン装置から排出される前記流体を入れる第2の下部貯溜槽と、を設け、
     サイフォン現象を用いて前記第2の下部貯溜槽から前記流体を流すことで、前記第1のタービン装置及び前記第2のタービン装置を回転させる、ことを特徴とする請求項12に記載の連設型タービンシステム。
    A serial turbine system having a configuration in which a plurality of the turbine devices are arranged horizontally,
    a first upper storage tank provided above the first turbine device on the upstream side and containing the fluid falling from above;
    a first lower reservoir provided at a position below the first turbine device and containing the fluid discharged from the first turbine device;
    a siphon-type communication path that communicates from a lower position of the first lower storage tank to the supply port of the fluid of the second turbine device on the downstream side;
    a second lower reservoir containing the fluid discharged from the second turbine device at a position below the second turbine device;
    The continuous arrangement according to claim 12, wherein the first turbine device and the second turbine device are rotated by flowing the fluid from the second lower storage tank using a siphon phenomenon. type turbine system.
  16.  前記第2のタービン装置の上方位置に第2の上部貯溜槽を設け、前記サイフォン式連通路を前記第2の上部貯溜槽に連通した、ことを特徴とする請求項15に記載の連設型タービンシステム。 16. The continuous type according to claim 15, wherein a second upper storage tank is provided above the second turbine device, and the siphon type communication passage is communicated with the second upper storage tank. turbine system.
  17.  前記第2の下部貯溜槽から流れ出る前記流体を前記第1の上部貯溜槽に戻す戻し通路を設け、流れ出る前記流体を循環させるポンプを設けた、ことを特徴とする請求項15に記載の連設型タービンシステム。 16. The continuous system according to claim 15, further comprising a return passage for returning the fluid flowing out from the second lower storage tank to the first upper storage tank, and a pump for circulating the fluid flowing out. type turbine system.
  18.  前記流体路連通路を介して、複数の前記タービン装置は、上下方向に連設されている、ことを特徴とする請求項12に記載の連設型タービンシステム。 13. The connected turbine system according to claim 12, wherein the plurality of turbine devices are connected in a vertical direction via the fluid path communication path.
  19.  前記分配機能部は、複数の前記貯溜体間を連通する貯溜体間連通口を有している、ことを特徴とする請求項1に記載のタービン装置。 The turbine device according to claim 1, wherein the distribution function section has an inter-storage body communication port that communicates between the plurality of storage bodies.
  20.  前記回転トルク変化に有効なように複数の前記貯溜体間で前記流体を分配する分配ポンプを有している、ことを特徴とする請求項19に記載のタービン装置。 The turbine device according to claim 19, further comprising a distribution pump that distributes the fluid between the plurality of reservoirs in a manner effective for changing the rotational torque.
PCT/JP2022/030988 2022-08-16 2022-08-16 Turbine device and consecutively connected turbine system WO2024038508A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/030988 WO2024038508A1 (en) 2022-08-16 2022-08-16 Turbine device and consecutively connected turbine system
PCT/JP2023/028898 WO2024038799A1 (en) 2022-08-16 2023-08-08 Turbine device, electromagnetic induction device and consecutively connected turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030988 WO2024038508A1 (en) 2022-08-16 2022-08-16 Turbine device and consecutively connected turbine system

Publications (1)

Publication Number Publication Date
WO2024038508A1 true WO2024038508A1 (en) 2024-02-22

Family

ID=89941536

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/030988 WO2024038508A1 (en) 2022-08-16 2022-08-16 Turbine device and consecutively connected turbine system
PCT/JP2023/028898 WO2024038799A1 (en) 2022-08-16 2023-08-08 Turbine device, electromagnetic induction device and consecutively connected turbine system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028898 WO2024038799A1 (en) 2022-08-16 2023-08-08 Turbine device, electromagnetic induction device and consecutively connected turbine system

Country Status (1)

Country Link
WO (2) WO2024038508A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB529660A (en) * 1939-06-05 1940-11-26 Nils Axel Sparr Improvements in vane rotors
EP1486668A1 (en) * 2003-06-13 2004-12-15 Pietro Barozzi Impulse turbine, particularly of the reversible type

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5714683B1 (en) * 2013-11-01 2015-05-07 小島プレス工業株式会社 Umbrella type spiral turbine
KR101692166B1 (en) * 2014-10-21 2017-01-17 김선회 Hydroelectric power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB529660A (en) * 1939-06-05 1940-11-26 Nils Axel Sparr Improvements in vane rotors
EP1486668A1 (en) * 2003-06-13 2004-12-15 Pietro Barozzi Impulse turbine, particularly of the reversible type

Also Published As

Publication number Publication date
WO2024038799A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
ES2358622T3 (en) A HYDROELECTRIC ENERGY SYSTEM WITH MULTIPLE ENERGY INPUTS.
US9803614B2 (en) Systems and methods for hydroelectric systems
US11162470B2 (en) Energy harvesting from moving fluids using mass displacement
CN103857879A (en) Axial turbine
AU2006252459A1 (en) Transfer of kinetic energy to and from fluids
KR20130100898A (en) Hydrodynamic cycle generation technology
US10221828B2 (en) Hydroelectric power generation device for pipeline
WO2024038508A1 (en) Turbine device and consecutively connected turbine system
JP5666661B1 (en) Buoyancy engine
WO2000036297A1 (en) Hydropowered turbine system
KR101871703B1 (en) Hydroelectric system
KR20100006064A (en) Cyclone waterpower generator
CN106337775B (en) A kind of various dimensions float-type Wave power generation device
JP7488585B2 (en) Power generation equipment
US20160237978A1 (en) Gear Pump for Hydroelectric Power Generation
JP6539074B2 (en) Fluid pumping device
RU2354846C1 (en) Electric power generating unit
RU2672548C2 (en) Torque blade device
Adolfsson Expanding operation ranges using active flow control in Francis turbines
KR20240060251A (en) Power generation appareatus using the weight of water
KR101273647B1 (en) Shaft for tidal power generator and tidal power generator having the same
KR20120055904A (en) Hybrid type micro small hydroelectric power generator
KR100853517B1 (en) Current Power Generation System
KR20050018461A (en) Inertia hydraulic turbine
Zitti et al. Efficiency evaluation of an archimedean-type hydrokinetic turbine in a steady current

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955682

Country of ref document: EP

Kind code of ref document: A1