WO2024037671A1 - Cojinete deslizante con un colchón de fluido, con varias configuraciones - Google Patents

Cojinete deslizante con un colchón de fluido, con varias configuraciones Download PDF

Info

Publication number
WO2024037671A1
WO2024037671A1 PCT/CO2023/000011 CO2023000011W WO2024037671A1 WO 2024037671 A1 WO2024037671 A1 WO 2024037671A1 CO 2023000011 W CO2023000011 W CO 2023000011W WO 2024037671 A1 WO2024037671 A1 WO 2024037671A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
cavity
design
sliding bearing
cavities
Prior art date
Application number
PCT/CO2023/000011
Other languages
English (en)
French (fr)
Inventor
Teodicelo GÓMEZ PUENTES
Original Assignee
Gomez Puentes Teodicelo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gomez Puentes Teodicelo filed Critical Gomez Puentes Teodicelo
Publication of WO2024037671A1 publication Critical patent/WO2024037671A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G39/00Rollers, e.g. drive rollers, or arrangements thereof incorporated in roller-ways or other types of mechanical conveyors 
    • B65G39/02Adaptations of individual rollers and supports therefor
    • B65G39/09Arrangements of bearing or sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/04Devices for feeding articles or materials to conveyors for feeding articles
    • B65G47/12Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles
    • B65G47/14Devices for feeding articles or materials to conveyors for feeding articles from disorderly-arranged article piles or from loose assemblages of articles arranging or orientating the articles by mechanical or pneumatic means during feeding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings

Definitions

  • the present invention is related to a new prototype of a sliding bearing, which reduces the friction between a shaft and the parts connected to this system, which serves as a support or guide for mechanical parts that rotate, oscillate or slide, facilitating operation, formed by two rings and discs (concentric and parallel), with a fluid cushion that maintain a constant distance between the sliding tracks.
  • the applications of this invention are innumerable, vehicles, machines, industries, robotics, etc.
  • the sliding friction bearing is made up of a support perfectly coupled to a metal bushing, which is the bearing itself. They move in direct contact with the shaft, sliding by friction on a lubricating film.
  • Friction bearings can be classified into three groups depending on their lubrication system: Class I. These are bearings that require the application of a lubricant from an external source (oil, grease) Class II. These types of bearings contain lubricant inside the bearing walls (bronze, graphite, etc.).
  • the sliding bearing with rolling elements also called a bearing
  • the British Philip Vaughan obtained the first patent for a shaft with a ball bearing.
  • Henry Timken applied for a patent for the tapered roller bearing.
  • the Swedish engineer Sven Gustaf Wingqvist invented the self-aligning ball bearing.
  • the sliding bearing with rolling elements uses rolling elements balls, cylindrical rollers, conical rollers, needles, to maintain the separation between moving parts.
  • Ball Bearing These bearings use steel (or even ceramic) balls to reduce friction between the inner and outer ring.
  • the three main types are: deep groove ball bearings, axial ball bearings and angular contact ball bearing.
  • Deep groove ball bearing It is the most common bearing. Thanks to its design, this bearing can withstand low or medium radial loads and small axial loads in both. addresses.
  • Axial ball bearings they are designed to withstand large axial loads, but cannot exert any radial reaction.
  • Angular Contact Ball Bearings These bearings are designed to withstand significant axial loads combined with radial forces and high speeds.
  • Cylindrical roller bearing they have cylindrical rollers that are in linear contact with the raceways. This allows working with higher radial loads than ball bearings and better resistance to shocks and vibrations and is also suitable for high speeds.
  • Spherical bearing the special design of these bearings allows self-alignment between the shaft and its housing. This design consists of a spherical raceway for the outer ring and a double raceway for the inner ring. This type of bearing can be designed to be mounted with balls, cylinders, cones or special rollers. Most spherical bearings are suitable for low or medium radial loads and low axial loads.
  • This bearing has frustoconical rollers that provide the ability to withstand high combined loads in a single direction.
  • the axial load capacity depends directly on the contact angle.
  • Needle bearings they are bearings similar to cylindrical ones, but in this case the rollers are cylinders that have a small diameter in relation to their length. These offer a very compact solution for high loading capacities.
  • the objective of the present invention is to provide a sliding bearing with minimal friction, with a high capacity for radial and axial loads, requiring maintenance, changes of guide rings and O-rings and fluid, to extend the useful life with thousands of work hours.
  • the sliding bearing of the present invention is based on the fact that liquids are considered incompressible fluids. It replaces the rolling components with a cushion of fluid (Oil, Grease, Solid Oil, a liquid metal fluid, etc.) inside a cavity formed by two sliding surfaces.
  • a cushion of fluid Oil, Grease, Solid Oil, a liquid metal fluid, etc.
  • the sliding bearing of the invention is designed so that all the moving components do so on a fluid cushion, there are no metallic contacts, the only contact that occurs is with the O-rings and the guide rings, the Friction and the temperature generated are very low compared to the plain bearing.
  • the rolling bearing is designed with tracks for rolling elements (balls, rollers, needles) to rotate, which generates a small friction and temperature, through the contact of the rolling elements, with the static elements.
  • the sliding bearing of the invention is designed with tracks that slide on a layer of molecules of the fluid cushion, there are no metallic contacts, the only contact that occurs is with the O-rings and the guide rings, The friction and temperature generated is reduced compared to the rolling bearing.
  • the sliding bearing of the invention acts as oil seals, not requiring said component.
  • rolling bearings are electrical conductors, rolling bearings made of ceramic are required, to be dielectric, being very expensive to manufacture.
  • the sliding bearing of the invention is electrically insulating, using a dielectric fluid.
  • the sliding bearing of the present invention has three configurations with different types and designs of sliding surfaces, forming different cavities, which is compared to the different types of rolling bearings, in radial load capacity, in axial load capacity and speed capacity.
  • angular for example:
  • Radial sliding bearing with a cavity has six types of sliding races, with different designs: First type of basic sliding races, three designs; circle-shaped cavity, ellipse-shaped cavity and square or rectangular-shaped cavity.
  • Second type of spider sliding track three designs; tower-legged spider-shaped cavity, with flower-legged spider-shaped cavity and wave-legged spider-shaped cavity.
  • Fourth type of slot sliding tracks with a design; with cavity with plurality of slots.
  • Sixth type of sliding tracks holes one design; with a cavity with a row of holes.
  • Radial sliding bearing with double cavity it is divided into three groups: The first group, with two cavities with the same type and design of sliding track.
  • First type of basic sliding tracks three designs; semicircle-shaped cavity, semi-ellipse-shaped cavity and square or rectangular-shaped cavity.
  • Second type of spider sliding track three designs; tower-legged spider-shaped cavity, with flower-legged spider-shaped cavity and wave-legged spider-shaped cavity.
  • Linear radial sliding bearing with one or two cavities, uses three types of sliding race:
  • First type of basic sliding tracks three designs; semicircle-shaped cavity, semi-ellipse-shaped cavity and square or rectangular-shaped cavity.
  • Second type of spider sliding track three designs; tower-legged spider-shaped cavity, with flower-legged spider-shaped cavity and wave-legged spider-shaped cavity.
  • Axial sliding bearing with a cavity divider has five types of sliding races with different designs:
  • First type of basic sliding tracks three designs; double cavity in the shape of a semicircle, double cavity in the shape of a semi-ellipse and double cavity in square or rectangular shapes.
  • Second type of spider sliding tracks three designs; tower-legged spider-shaped double cavity, flower-legged spider-shaped double cavity and wave-legged spider-shaped double cavity.
  • Axial sliding bearing with double cavity divider is divided into four groups:
  • the first group with the first and third cavities with sliding tracks of the same type and design, and the second rectangular cavity.
  • the second and third groups with cavities, the first and third with sliding tracks of different types and designs, and the second rectangular cavity.
  • the fourth group with the three cavities with sliding tracks of different types and designs.
  • Figure 1 shows a perspective view of the exterior of the radial sliding bearing.
  • Figure 2 shows a perspective view of the parts that make up the radial sliding bearing in the assembled position.
  • Figure 3A, B, C, D, E, and F shows a sectional view of the internal parts of the radial sliding bearing, basic type of sliding races, semicircle, semiellipse, square or rectangular design.
  • Figure 4A, B, C and D shows a sectional view of the internal parts of the radial sliding bearing, spider sliding race type, spider-shaped design with tower legs, flower legs and wave legs.
  • Figure 5 shows a sectional view of the internal parts of the radial sliding bearing, deflector sliding track type.
  • Figure 6 shows a sectional view of the internal parts of the radial sliding bearing, slotted sliding track type.
  • Figure 7A and B shows a sectional view of the internal parts of the radial sliding bearing, type of angular sliding races.
  • Figure 8A and B shows a sectional view of the internal parts of the radial sliding bearing, sliding track type holes.
  • Figure 9A, B, and C shows a sectional view of the internal parts of the radial sliding bearing, with sliding races with two cavities.
  • Figure 10 shows a perspective view of the exterior of the spherical radial sliding bearing.
  • Figure 11 shows a perspective view of the parts that make up the spherical radial sliding bearing in the assembled position.
  • Figure 12 shows a sectional view of the internal parts of the spherical radial sliding bearing.
  • Figure 13 shows a perspective view of the exterior of the linear radial sliding bearing.
  • Figure 14 shows a perspective view of the parts that make up the linear radial sliding bearing in the assembled position.
  • Figure 15 shows a sectional view of the internal parts of the linear radial sliding bearing.
  • Figure 16 shows a perspective view of the exterior of the axial sliding bearing.
  • Figure 17 shows a perspective view of the parts that make up the axial sliding bearing in the assembled position.
  • Figure 18A, B and C shows a sectional view of the internal parts of the axial sliding bearing, basic type of sliding races, design in the shape of a semicircle, semiellipse, square or rectangular.
  • Figure 19A, B, C, D shows a sectional view of the internal parts of the axial sliding bearing, spider sliding race type, spider-shaped design with tower legs, flower legs and wave legs.
  • Figure 20 shows a sectional view of the internal parts of the axial sliding bearing, guide sliding track type.
  • Figure 21 shows a sectional view of the internal parts of the axial sliding bearing, slot sliding track type.
  • Figure 22 shows a sectional view of the internal parts of the axial sliding bearing, sliding track type holes.
  • Figure 23A, B, C and D shows a sectional view of the internal parts of the axial sliding bearing, with two cavity dividers.
  • Figure 24 shows a perspective view of the exterior of the precision sliding bearing.
  • Figure 25 shows a perspective view of the parts that make up the precision sliding bearing in the assembly position.
  • Figure 26A, B and C shows a sectional view of the internal parts of the precision sliding bearing.
  • Figure 27A, B, C, D, E, F and G shows a perspective view of the different profile designs for the guide rings.
  • Figure 28A and B shows a sectional view of the profile of the O-ring, backup rings and hydraulic seals.
  • This patent describes the design of a new prototype sliding bearing with a fluid cushion, with several configurations: First configuration, radial sliding bearing.
  • Radial sliding bearing with a cavity 1 either of the two rings is the static one and the other is the dynamic one, or both rings are dynamic, as indicated by the arrows in figure 1.
  • the radial sliding bearing 1 is made up of the outer ring 2 with the sliding race 3 and the cavities 4, the inner ring 5 with the sliding race 6 and the cavities 7, and two 8-1-2 discs that each have In the outer or inner profile 9 two cavities, one to house a guide ring 10 and the other to house an O-ring with two rings, one for backing and the other for scraper 11, as shown in Figure 2.
  • FIG. 3A shows the discs 8-1-2 integral with the outer ring 2, and the guide rings 10-a and the O-rings 11. , slide on the surfaces of the cavities 7 of the inner ring 5.
  • Figure 6A shows the discs 8-1-2 integral with the ring 5, and the guide rings 10-a and the O-rings 11, slide on the surfaces of the cavities 4 of the outer ring 2.
  • Figure 13A shows the disc 8-1 integral with the outer ring 2, and the guide ring 10-b and the O-ring 11 slide on the surface of the cavity 7 of the inner ring 5, and the disc 8-2 integral with said ring, and the guide ring 10-b and the O-ring 11 slide on the surface of the cavity 4 of the outer ring 2.
  • the radial sliding bearing 1 has six types of sliding races, each type with a plurality of designs, said sliding races forming the cavity 12, with a pressurized fluid cushion 13, acting on this force that is transmitted entirely in all the directions, against the walls of the cavity, separating the profile of the discs, which has the housing cavities for the guide rings and the O-rings of the sliding surfaces of the rings, with the clearances 14-1-2, as indicated the arrows in the different figures.
  • sliding tracks 3 and 6 each with a semicircle-shaped cavity 15, forming a circular cavity 12, as shown in Figure 3A.
  • the spider-shaped sliding track 3 with tower legs 20, which has approximately 50% sliding surface and the other approximately 50% are cavities, and the sliding track 6 with smooth surface, forming a spider cavity 12 of tower legs, as shown in Figure 4B.
  • the sliding track 3 with the shape of a flower-legged spider 21, which has about 25% of sliding surface and the other about 75% are cavities, and the sliding track 6 with smooth surface, forming a spider cavity 12 of flower legs, as shown in Figure 4C.
  • the sliding track 3 in the shape of a spider with wave legs 22, which has approximately 10% of sliding surface and the other approximately 90% are cavities and the sliding track 6 with a smooth surface, forming a spider cavity 12 of wave legs, as shown in Figure 4D.
  • the eddies have a supporting effect, to support radial loads and have the outer profile 9 of the discs 8-1-2 separated from the cavities 4 of the outer ring 2 with the clearances 14-1-2, and at the same time supports and distributes the radial load on the sliding surface 6, as indicated by the arrows in Figures 4A, B, C, D.
  • the third type, sliding track with baffle one design:
  • Radial sliding bearing 1 with deflector type sliding race, has the clearance 14-2 with greater distance between the discs 8 and the cavities 7 of the inner ring 5, to create a cavity filled with fluid that has the function of supporting the absorption of axial loads.
  • the sliding track 3 with a plurality of slots 25 are cavities machined on the surface of said track, the percentage of sliding surface depends on the number and width of the slots, the sliding track 6 with a smooth surface, forming a rectangular cavity 12 with a plurality of slots, as shown in figure 6.
  • the radial sliding bearing 1, with a groove-type sliding track when the outer ring 2 enters dynamic loading, the sliding surface 3 slides on a layer of molecules 18 of the fluid 13 that it drags, forming a laminar flow 19 around said surface, with spiral over the length of said grooves, having the outer profile 9 of the discs 8-1-2 separated from the cavities 4 of the outer ring 2, with the clearances 14-1-2, and at the same time supports and distributes the radial load over the sliding surface 6, as indicated by the arrows in figure 6.
  • the fifth type, angular sliding track one design:
  • the sliding tracks 3 and 6 with an inverted L surface 26 form two angles and a rectangular or square cavity 12, each ring is integral with a disc, said inverted L surface can contract towards the center of the cavity, exerting a force of compression to the fluid, as indicated by the arrows in Figures 7A.
  • the radial sliding bearing 1, with angular type sliding races, a double sliding bearing must be used because the rings move in opposite directions, taking into account that a group of rings must be secured with a fastening system to prevent them from moving in opposite directions. On the contrary, for example, with a retaining ring 27, as shown in Figure 7B.
  • the axial loads contract the inverted L surfaces, compressing the fluid 13, which is incompressible, absorbing said loads, having the exterior and interior profiles 9 of the discs, separated from the cavities 4 and 7 of the rings, with clearances 14-1. -2, as indicated by the arrows in Figures 7A.
  • the sixth type, sliding track holes one design:
  • the objective of having a plurality of rows of aligned and diverted holes is to create a turbulent flow 19 with eddies that impinges against the sliding surface 6.
  • the sliding surface 3 slides on a layer of molecules 18 of the fluid 13 that drags, forming a turbulent flow 19.
  • the eddies have a supporting effect, to support radial loads and have the outer profile 9 of the discs 8-1- 2 separated from the cavities 4 of the outer ring 2 with the clearances 14-1-2, and at the same time supports and distributes the radial load on the sliding surface 6, as indicated by the arrows in Figures 8A, B.
  • the double cavity radial sliding bearing 1 has various combinations of sliding race types and designs that are divided into three groups:
  • the sliding tracks 3 and 6 with the same type and design for example, Figure 9A, shows the sliding tracks 3 and 6 with the basic type with the semicircle design 15, forming in each cavity 12-1-2 a circle.
  • the sliding tracks 3 and 6 with the same type and different design shows the sliding tracks 3 and 6 with the basic type with the design of semicircle 15 and semiellipse 16, forming the cavity 12-1 in a circle and the 12-2 cavity in an ellipse, with the advantage of having the characteristics of two designs in the same sliding bearing.
  • sliding tracks 3 and 6 with different types for example, Figure 9C, shows sliding tracks 3 and 6 with the basic type with the semicircle design 15, and the groove type 25 on the sliding track
  • the cavity 12-1 is formed in a circle and the cavity 12-2 is rectangular with a plurality of grooves, with the advantage of having the characteristics of two types in the same sliding bearing.
  • Spherical radial sliding bearing 1 either of the outer ring or the inner spherical ring is static and the other is dynamic, or both are dynamic, as indicated by the arrows in figure 10.
  • the spherical radial sliding bearing 1 is shaped the same as the radial sliding bearing 1, with the difference that the inner ring 5, the sliding track 6 is curved with a spherical shape 29, and has in each machined end a cavity to house a retaining ring 27.
  • the two discs 8-1-2 with the inner profile 9 curved to fit with the curved surface of the spherical sliding track 6, said discs have two cavities, one to house a ring guide 10-c and the other to house an O-ring with two rings, one for backing and the other for scraper 11, as shown in figure 11.
  • the discs 8-1-2 are integral with the outer ring 2, and the function of the two retaining rings 27 is to limit the rotation of the inner ring 5 to the sides, for safety since the cavity 12 is filled with a pressurized fluid 13. .
  • Spherical radial sliding bearing 1 uses one of the sliding race types: Basic with one of three designs; semicircle 15, semiellipse 16, square or rectangular 17.
  • Chandelier with one of three designs; tower spider legs 20, flower spider legs 21, wave spider legs 22.
  • the spherical radial sliding bearing 1, the flow behavior 19 of the fluid cushion 13, upon entering the inner ring 5 with the spherical sliding race 6 under dynamic load, as shown in Figure 12, is the same as the radial sliding bearing 1 , having the inner profile 9 of the discs 8-1-2 separated from the spherical sliding surface 6 with the clearance 14, as shown in Figure 12.
  • the outer ring 2 with the sliding race 3 can have a double cavity 12-1-2 and a double fluid cushion, just like the radial sliding bearing with a double cavity 1.
  • Linear radial sliding bearing 1 either the outer ring or the shaft is static and the other is dynamic, or both are dynamic, as indicated by the arrows in figure 13.
  • the linear radial sliding bearing 1 is shaped the same as the radial sliding bearing 1, with the difference that the inner ring 5 is replaced by an axle 30.
  • the discs 8-1-2 are integral with the outer ring 2, and inner profile of said discs with the guide rings 10-b and the O-rings 11, slide on the surface of the shaft 30, as shown in figure 14.
  • Linear radial sliding bearing 1, sliding race 3 uses one of the sliding race types: Basic with one of three designs; semicircle 15, semiellipse 16, square or rectangular 17.
  • Chandelier with one of three designs; tower spider legs 20, flower spider legs 21, wave spider legs 22.
  • the linear radial sliding bearing 1, the flow behavior 19 of the fluid cushion 13, when the shaft 30 enters dynamic load, as shown in Figure 12, is the same as the radial sliding bearing 1, having the inner profile 9 of the discs 8-1-2 separated from the surface of the shaft with clearance 14, said Axle 30 moves in either of the two axial directions and also rotates about its axis, the fluid cushion 13 supports only radial loads, as shown in Figure 15.
  • the outer ring 2 with the sliding race 3 can have a double cavity 12-1-2 and a double fluid cushion, just like the radial sliding bearing with a double cavity 1.
  • Axial sliding bearing with a cavity divider 31 either of the two rings is the static one and the other is dynamic or the two dynamic rings, as indicated by the arrows in Figure 16.
  • the axial sliding bearing 31 is made up of the outer ring 2, the inner ring 5 with the cavity divider 32 in the center of the outer surface, said cavity divider has two sliding surfaces S-l-2, and in the profile one cavity for an O-ring with two backing rings 11, by two discs 8-1-2 each with a sliding track 3 and 6, said discs in one of the outer or inner profiles 9 have two cavities, one to house a ring guide 10-b and the other to house an O-ring with two rings, one for backing and the other for scraper 11, as shown in figure 17.
  • the 8-1-2 discs are integral with the rim opposite to the rim with the cavity divider.
  • Figure 18A shows the discs 8-1-2 integral with the outer ring 2, and the guide rings 10-b and the O-rings 11, slide on the outer surface of the lower ring 5.
  • the cavity divider 32 divides the cavity into two 12-1-2, each with a cushion of pressurized 13-1-2 fluid, acting this force that is transmitted entirely in the two cavities, against the walls of the sliding tracks. 3, 6 and the sliding surfaces S-l-2, centered on the cavity divider 32, in the center of the surface of the opposite ring, separating the profile of the discs that have the housing cavities for the guide rings and the O-rings, from the surface of the ring, with clearance 14, as indicated by the arrows in the different figures.
  • the axial sliding bearing 31 has five types of sliding races and each type has a plurality of designs.
  • the sliding tracks 3 and 6 each have a semicircle-shaped cavity 15, through the cavity divider 32 two semicircle-shaped cavities 12-1-2 are formed, as shown in Figure 18A.
  • the axial sliding bearing 31, with basic type sliding races when the inner ring 5 enters dynamic loading, the two surfaces S-l-2 of the cavity divider 32 slides on two layers of molecules 18 of the fluids 13-1-2, which drags forming a laminar flow 19 around said surfaces, having the cavity divider 32 in the center of the inner surface of the outer ring 2, and the inner profile 9 of the discs 8-1-2 separated from the outer surface of the ring interior 5 with clearance 14, and at the same time supports and distributes the axial loads on the sliding tracks 3 and 6, as indicated by the arrows in figures 15A, B, C.
  • sliding tracks 3 and 6 each with a tower-legged spider-shaped cavity
  • sliding tracks 3 and 6 each with a wave-legged spider-shaped cavity
  • the axial sliding bearing 31, with a spider-type sliding race when the inner ring 5 enters dynamic loading, the two sliding surfaces S-l-2 of the cavity divider 32 slide over two layers of molecules 18 of the fluids 13-1-2 that drags forming a turbulent flow 19, the first design, the vertices of the tower legs creates the effect of swirls in spiral, the second design, the vertices of the flower legs creates the effect of swirls in spiral inverted conical, and the third design, the rounded vertices of the wave legs creates the effect of spiraling in waves, around said surfaces, having the cavity divider 32 in the center of the inner surface of the outer ring 2, and the inner profile 9 of the discs 8 -1-2 separated from the outer surface of the inner ring 5 with the clearance 14, and at the same time supports and distributes the axial loads on the sliding tracks 3 and 6, as indicated by the arrows in Figure 19A.
  • the third type, guide sliding track one design:
  • the sliding tracks 3 and 6 each with a circle groove 33, and the cavity divider 32 with the sliding surfaces Sl-2 each with a circle guide 34, said sliding surfaces engaging, forming two cavities with a 12-1-2 guide, as shown in figure 20.
  • the axial sliding bearing 31, with a guide-type sliding race when the inner ring 5 enters dynamic loading, the sliding surfaces S-l-2 of the cavity divider 32 slides on two layers of molecules 18 of the fluids 13-1-2, which drags forming a laminar flow 19 around said surfaces, the design of nested guides supports axial and radial loads, having the cavity divider 32 in the center of the inner surface of the outer ring 2, and the inner profile 9 of the discs 8 -1-2 separated from the outer surface of the inner ring 5 with the clearance 14, and at the same time supports and distributes the axial loads on the sliding tracks 3 and 6, as indicated by the arrows in Figure 20.
  • the sliding tracks 3 and 6, each with a plurality of slots in circles 25, are cavities machined on the surface of said track, the percentage of sliding surface depends on the number and width of the slots, and through the cavity divider 32 they are formed.
  • the axial sliding bearing 31, with a groove-type sliding race when the inner ring 5 enters dynamic loading, the two sliding surfaces S-l-2 of the cavity divider 32 slide over two layers of molecules 18 of the fluids 13-1-2 which drags forming a laminar flow 19 around said sliding surfaces, having the cavity divider 32 in the center of the inner surface of the outer ring 2, and the inner profile 9 of the discs 8-1-2 separated from the outer surface of the inner ring 5 with clearance 14, and at the same time supports and distributes the axial loads on the sliding tracks 3 and 6, as indicated by the arrows in figure 21.
  • the fifth type, sliding tracks holes one design:
  • the sliding tracks 3 and 6 each have a plurality of holes 28 in a circular row, and through the cavity divider 32 two rectangular-shaped cavities 12-1-2 with holes are formed, as shown in Figure 22.
  • the axial sliding bearing 31, with hole-type sliding races when the inner ring 5 enters dynamic loading, the two sliding surfaces S-l-2 of the cavity divider 32, slides on two layers of molecules 18 of the fluids 13-1- 2 that drags forming a turbulent flow 19, with eddies that form at the entrance of the holes and collide with said sliding surfaces, having the cavity divider 32 in the center of the inner surface of the outer ring 2, and the inner profile 9 of the discs 8-1-2 separated from the outer surface of the inner ring 5 with the clearance 14, and at the same time supports and distributes the axial loads on the sliding tracks 3 and 6, as indicated by the arrows in figure 22.
  • each 8-1-2 disc is attached to a ring.
  • the axial sliding bearing with double cavity divider 31 has various combinations of types and designs of sliding races that are divided into four groups:
  • the sliding tracks with the same type and design for example, Figure 23A, shows the sliding tracks 3 and 6 with basic type and the semicircle design 15, forming two semicircle cavities 12-1-3 and cavity 12 -2 with a rectangular shape.
  • the sliding tracks with the same type and different design shows the sliding tracks 3 and 6, one with the semicircle design 15 and the other with the semiellipse design 16, forming two cavities 12- 1-3, one with a semicircle shape and the other a semiellipse, and cavity 12-2 with a rectangular shape.
  • the sliding tracks with different types for example, Figure 23C, shows the sliding tracks 3 and 6, one with basic type and with the semicircle design 15, and the other with the slot type 25, forming two cavities 12 -1-3, one with a semicircle shape, and the other rectangular with a plurality of slots, and the cavity 12-2 with a rectangular shape.
  • the two sliding surfaces of the cavity dividers that make up the cavity 12-2, with one of the five types and designs of sliding tracks shows the cavity divider 32-1 with the surface sliding S-l with a circle groove 33, and the cavity divider 32-2 with the sliding surface S-2 with the guide 34, and the sliding tracks 3 and 6 with any of the five types and designs, having the cavity 12- 2 with guide, with the advantage of using the second cavity in support to support greater axial and radial loads.
  • the precision sliding bearing 35 is made up of the outer ring 2, the inner ring 5 with the cavity divider 32 in the center of the outer surface, said cavity divider has two sliding surfaces S-l-2, each with a cavity 37 to house the guide rings 10-d, and in the profile a cavity for an O-ring with two backup rings 11, by two discs 8-1-2 that have a plurality of holes on the sliding surface and the inner profile 9 a cavity with a plurality of holes forming a plurality of elbows 36, said profile also has two cavities, one to house the guide ring 10-b and the other to house the O-ring with two rings, one for backing and the other for scraper 11, said discs 8 -1-2 are integral with the outer ring, as shown in figure 25 and 26B.
  • the 35 precision sliding bearing has four sliding surfaces, two Sl-2 surfaces on the exterior of the inner ring 5, and two sliding surfaces Sl-2 of the cavity divider 32, as shown in Figure 26A.
  • the precision sliding bearing 35 through the cavity divider 32, divides the cavity into two groups; the first group with cavities 12-1-3, and the second group with cavities 12-2-4, in each group the cavities are separated by the guide rings 10-d, through the holes that form the elbows 36 , each group of cavities is connected, said groups are each pressurized with a fluid cushion 13-1-2, as indicated by the arrows in Figure 26B.
  • the precision sliding bearing 35 when the inner ring 5 enters dynamic load, the four sliding surfaces S-l-2-3-4, slide on layers of molecules 18 of the fluids 13-1-2, which drag forming a flow turbulent 19 with eddies that is formed in the holes of the elbows 36 that act on said surfaces, having the cavity divider 32 in the center of the inner surface of the outer ring 2, and the inner profile 9 of the discs 8-1- 2 separated from the outer surface of the inner ring 5 with clearance 14, as indicated by the arrows in Figure 26C.
  • the 35 precision sliding bearing is designed for high precision having minimum axial and radial clearances, balancing radial loads with axial loads.
  • Guide ring or anti-friction band 10 constructed of anti-friction material, which prevents metal-metal contact of the dynamic components with the static components.
  • the guide rings 10 is a component that has all the configurations of sliding bearings, it has two functions:
  • the guide rings have the function of supporting the pressurized fluid cushion 13, to have the clearance 14 between the profile of the discs 8-1-2 on which the guide rings and the O-rings are mounted, with the sliding surfaces, avoided contact between metal-metal surfaces, protecting the O-ring or hydraulic seal from crushing.
  • the function of the guide rings is to support the pressurized fluid cushion 13, to absorb strong vibrations, shocks and blows, which the rings will be subjected to, protecting the O-ring or the hydraulic seal from crushing.
  • L-profile design 10-a as shown in figure 27A and B, is used in the radial sliding bearing, it has two sliding surfaces, the S-l the vertical face supports the axial loads and the S-2 the horizontal face supports radial loads.
  • Rectangle or square profile design with cylindrical design 10-b is used in radial sliding bearing 1, in axial sliding bearing 31 and in precision sliding bearing 35, has a sliding surface Sl, supports radial loads.
  • the guide rings with a rectangular profile with a cylindrical design, and with an oblique profile, have a straight or angled cut to facilitate elastic assembly in their housing.
  • the sealing system of the sliding bearing is made up of two O-rings 11, each one has two rings, the first backup ring 11-a has the function of a scraper preventing the entry of impurities into the interior of the bearing, for this function it has a lip 39, the second ring 11-b is back-up or anti-extrusion, as shown in Figure 28A.
  • the manufacturer can opt for a sealing system, using hydraulic seals, just like hydraulic jacks with a profile for rotary movement determined by the manufacturer, for example, 40-1-2 hydraulic seals, as shown in Figure 25B.
  • the fluid 14, being a liquid component, has the capacity to absorb slight vibrations 41, which transmit the dynamic sliding track to the static sliding track or vice versa, as shown in Figures 3B and 15C.
  • the sliding bearing has a conduit and a plug screw 42 to connect each cavity 12, for filling, purging and pressurizing the fluid, as shown in Figures 3E and 15C.
  • the radial and axial load capacity of the sliding bearing has several factors:
  • Radial sliding bearing 1 With basic type sliding track with design; semicircle 15 and square or rectangular 17.
  • spider type sliding track with design; spider with wave legs 22.
  • This type and design of sliding track has the capacity to withstand small radial loads, the axial load capacity is small, because it is supported by the two guide rings 10-a.
  • Double cavity sliding bearing 1 the radial load capacity is the sum of the radial load capacity of two single cavity sliding bearings, taking the type and design of the sliding races as reference.
  • This type of sliding track has the capacity to withstand large axial and radial loads.
  • spider type sliding track with design; spider with wave legs 22.
  • This type of sliding track has the capacity to withstand small axial loads, the radial load capacity is small, because it is supported by the two guide rings 10-b.
  • the axial sliding bearing with double cavity divider 31 the capacity of axial loads is about twice that of the sliding bearing with one cavity divider, because it is twice the area with two cavity dividers in contact with the fluid cushion, taking as reference the type and design of the sliding tracks.
  • the 35 precision sliding bearing has the capacity to withstand medium radial and axial loads.
  • the angular velocity capacity of the sliding bearing has several factors:
  • spider type sliding track with design; spider with wave legs 22.
  • This type and design of sliding track has the ability to withstand high angular speeds.
  • This type of sliding track has the capacity to withstand high angular speeds.
  • the 35 precision sliding bearing has the ability to withstand moderate angular speeds.

Abstract

Cojinete deslizante con un colchón de fluido, con varias configuraciones, comprende: Dos aros concéntrico, un aro exterior (2) con la pista deslizante (3), un aro interior (5) con la pista deslizante (6), dos discos (8)-(1)-(2) en paralelo solidarios a uno de los aros o cada disco solidario a un aro, cada disco en uno de los perfiles exterior o interior (9) lleva dos cavidades, una para alojar un anillo guía (10) y la otra para alojar una junta tórica con dos anillos uno de respaldo y otro de rascador (11), caracterizada porque las pistas deslizantes (3) y (6) forma la cavidad (12), con un colchón de fluido (13) presurizado, actuando esta fuerza que se transmite íntegramente en todas las direcciones, contra las paredes de la cavidad, separado el perfil de los discos, que tiene las cavidades de alojamiento de los anillos guías y las juntas tóricas de las superficies deslizantes con la holgura (14).

Description

COJINETE DESLIZANTE CON UN COLCHÓN DE FLUIDO, CON VARIAS CONFIGURACIONES
CAMPO DE LA INVENCIÓN
La presente invención está relacionada con un nuevo prototipo de cojinete deslizante, que reduce la fricción entre un eje y las piezas conectadas a este sistema, que sirve de apoyo o guía para piezas mecánicas que giran, oscilan o deslizan, facilitando el funcionamiento, formado por dos aros y discos (concéntricos y paralelos), con un colchón de fluido que mantienen una distancia constante entre las pistas deslizantes.
Las aplicaciones de esta invención son innumerables, vehículos, maquinas, industrias, robótica, etc.
ANTECEDENTES DE LA INVENCIÓN
Hay dos tipos de cojinetes de deslizamiento, por fricción y con elementos rodantes.
El cojinete deslizante por fricción, data del comienzo de la civilización.
El cojinete deslizante por fricción, está conformado por un soporte perfectamente acoplado sobre un casquillo de metal, que es el cojinete propiamente dicho, tienen un movimiento en contacto directo con el eje, realizándose un deslizamiento por fricción sobre una película lubricante.
Los cojinetes de fricción se pueden clasificar en tres grupos dependiendo de su sistema de lubricación: Clase I. Son cojinetes que requieren la aplicación de un lubricante de una fuente externa (aceite, grasa) Clase II. Este tipo de cojinetes contienen lubricante dentro de las paredes del rodamiento (bronce, grafito, etc.).
Clase III. Cojinetes hechos de materiales que son lubricantes. Estos cojinetes son considerados autolubricantes y pueden funcionar correctamente sin lubricante externo.
El cojinete deslizante con elementos rodantes, llamado también como rodamiento, en 1794 el británico Philip Vaughan obtuvo la primera patente de un eje con un rodamiento de bolas. En 1898 Henry Timken solicitó una patente para el rodamiento de rodillos cónicos. En 1907 el ingeniero sueco Sven Gustaf Wingqvist, invento el rodamiento de bolas a rótula.
El cojinete deslizante con elementos rodantes, utiliza elementos rodantes bolas, rodillos cilindricos, rodillos cónicos, agujas, para mantener la separación entre las piezas en movimiento.
Rodamiento de bolas: estos rodamientos emplean bolas de acero (o incluso cerámicas para reducir la fricción entre el anillo interno y el externo.
Los tres tipos principales son: rodamientos de bolas de ranura profunda, rodamientos de bolas axiales y rodamiento de bolas de contacto angular.
Rodamiento de bolas de ranura profunda: es el rodamiento más común. Gracias a su diseño este rodamiento puede soportar cargas radiales bajas o medias y pequeñas cargas de carácter axial en ambas direcciones.
Rodamientos de bolas axiales: son diseñados para soportargrandes cargas axiales, pero no pueden ejercer ninguna reacción radial. Además, existen rodamientos axiales simples que pueden soportar solamente cargas en una dirección y rodamientos axiales de bolas de doble dirección que pueden soportar cargas en ambas direcciones del eje.
Rodamientos de bolas de contacto angular: estos rodamientos son diseñados para soportar cargas axiales significativas combinadas con fuerzas radiales y altas velocidades.
Rodamiento de rodillos cilindricos: presentan rodillos cilindricos que están en contacto lineal con las pistas de rodadura. Esto permite trabajar con mayores cargas radiales que los rodamientos de bolas y mejor resistencia a golpes y vibraciones y también es apropiado para altas velocidades.
Rodamiento esférico: el diseño especial de estos rodamientos permite el auto alineado entre el eje y su alojamiento. Este diseño consiste en un canal de rodadura esférico para el aro exterior y un canal de rodadura doble en el interno. Este tipo de rodamiento puede ser diseñado para ser montado con bolas, cilindros, conos o rodillos especiales. La mayoría de los rodamientos esféricos son adecuados para cargas radiales bajas o medias y para bajas cargas axiales.
Rodamiento cónico: este rodamiento posee rodillos troncocónicos que proporcionan la capacidad de soportar altas cargas combinadas en una sola dirección. La capacidad de carga axial depende directamente del ángulo de contacto.
Rodamiento de agujas: son rodamientos similares a los cilindricos, pero en este caso los rodillos son cilindros que tienen un pequeño diámetro en relación a su longitud. Éstos ofrecen una solución muy compacta para grandes capacidades de carga.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
El objetivo de la presente invención es proporcionar un cojinete deslizante con una mínima fricción, con elevada capacidad de cargas radiales y axiales, requiere de un mantenimiento, cambios de anillos guías y de juntas tóricas y del fluido, para alargar la vida útil con miles de horas de trabajo.
El cojinete deslizante de la presente invención se basa en que los líquidos se consideran fluidos incompresibles. Sustituye los componentes de rodadura por un colchón de fluido (Aceite, Grasa, Solid Oil, un fluido metal liquido etc.) dentro de una cavidad que la forman dos superficies deslizantes.
Problemas técnicos de los cojinetes deslizantes de fricción y de rodadura, y la solución al problema a través del cojinete deslizante con un colchón de fluido.
Cojinete deslizante por fricción:
1. Problema técnico, La resistencia al deslizamiento provoca la conversión de parte de la energía cinética en calor, lo que se traduce en que las partes que sostienen el cojinete deban ser muy resistentes tanto mecánica como térmicamente.
- Solución al problema, el cojinete deslizante de la invención está diseñado para que todos los componentes en movimiento lo hagan sobre un colchón de fluido, no hay contactos metálicos, el único contacto que se da es con las juntas tóricas y los anillos guías, la fricción y la temperatura que se genera son muy reducidas en comparación con el cojinete de fricción.
2. Problema técnico, requiere mantenimiento (lubricación), en periodos corto, y la vida útil es corta, por la fricción entre los componentes.
- Solución al problema, requiere mantenimiento en periodos largos (cambio de junta tórica, anillos guías, fluido), para alargar la vida útil a miles de horas de trabajo.
3. Problema técnico, genera ruidos, vibraciones y transmite las vibraciones entre el eje y las piezas conectadas a este sistema.
- Solución al problema, no genera ruidos porque el componente dinámico va sobre un colchón de fluido, y las vibraciones leves son absorbidas por dicho colchón de fluido.
Cojinete deslizante con rodadura
1. Problema técnico, el cojinete de rodadura está diseñado con unas pistas para que gire elementos rodantes (bolas, rodillos, agujas), que genera una pequeña fricción y temperatura, a través del contacto de los elementos rodantes, con los elementos estáticos.
- Solución al problema, el cojinete deslizante de la invención está diseñado con unas pistas que se deslizan sobre una capa de moléculas del colchón de fluido, no hay contactos metálicos, el único contacto que se da es con las juntas tóricas y los anillos guías, la fricción y temperatura que se genera es reducida en comparación con el cojinete de rodadura.
2. Problema técnico, requiere mantenimiento (lubricación), en periodos largos, la vida útil es de miles de horas de trabajo.
- Solución al problema, no requiere mantenimiento en periodos largos (cambio de junta tórica, anillos guías, fluido), para alargar la vida útil a miles de horas de trabajo.
3. Problema técnico, genera ruido y las vibraciones del componente dinámico son transmitidos a través de los componentes rodantes (bolas o rodillos) al componente estático.
- Solución al problema, no genera ruido porque el componente dinámico va sobre un colchón de fluido, y las vibraciones y ruidos leves son absorbidas por el colchón de fluido.
4. Problema técnico, se requiere para los aros y los componentes rodantes, acero de muy alta calidad y dureza, con tratamientos térmicos para soportar la rodadura de los componentes rodante, la fabricación de las bolas, requiere hacerlas al vacío, para hacerla lo más posible redonda, los rodillos requieren una precisión en las caras para rodar con la menor fricción, generando altos costos en la fabricación del cojinete de rodadura.
- Solución al problema, se requiere aros de acero de calidad, no se requiere que el acero soporte componentes rodantes no los hay, se ahorra la fabricación de los componentes rodantes, ahorrado aproximadamente el 40%, de costos de fabricación.
5. Problema técnico, los cojinetes de rodadura que van en la entra y salida de diferentes mecanismos con cárter de lubricación requiere de retenes de aceite.
- Solución al problema, el cojinete deslizante de la invención hace la función de retenes de aceite, no requiriendo dicho componente.
6. Problema técnico, los cojinetes de rodadura son conductores eléctricos, se requiere cojinetes de rodadura hechos de cerámica, para ser dieléctricos siendo muy costoso su fabricación.
-Solución al problema, el cojinete deslizante de la invención es eléctricamente aislante, utilizando un fluido dieléctrico.
El cojinete deslizante de la presente invención, tiene tres configuraciones con diferentes tipos y diseños de superficies deslizantes, formando diferentes cavidades, que se compara con los diferentes tipos de cojinetes de rodadura, en capacidad de cargas radiales, en capacidad cargas axiales y capacidad de velocidad angular, por ejemplo:
Primera configuración, cojinete deslizante radial.
Cojinete deslizante radial con una cavidad, tiene seis tipos de pistas deslizantes, con diferentes diseños: Primer tipo de pistas deslizantes básico, tres diseños; cavidad en forma de círculo, cavidad en forma de elipse y cavidad en forma cuadrada o rectangular.
Se compara con los rodamientos rígidos de bolas de una hilera de ranura profunda y con rodamientos de rodillos cilindrico de una hilera.
Segundo tipo de pista deslizante araña, tres diseños; cavidad en forma de araña de patas de torre, con cavidad en forma de araña de patas de flor y cavidad en forma de araña de patas de olas.
Se compara con los rodamientos de agujas.
Tercer tipo de pista deslizante deflector, un diseño; cavidad con dos hileras de orificios y un deflector con doble cara.
Se compara con los rodamientos de bolas de cuatro puntos de contacto y con los rodamientos de una hilera de bolas de contacto angular.
Cuarto tipo de pistas deslizantes ranura, con un diseño; con cavidad con pluralidad de ranuras.
Se compara con los rodamientos de agujas.
Quinto tipo de pistas deslizantes angular, un diseño; cavidad con dos superficies en L invertida.
Se compara con los rodamientos de una hilera de rodillos cónicos.
Sexto tipo de pistas deslizantes orificios, un diseño; con cavidad de una hilera de orificios.
Se compara con los rodamientos rígidos de bolas de una hilera de ranura profunda.
Cojinete deslizante radial con doble cavidad, está dividido en tres grupos: El primer grupo, con dos cavidades con igual tipo y diseño de pista deslizante.
Se compara con los rodamientos citados, con dos hileras de componentes de rodadura de igual tipo. El segundo grupo, con dos cavidades con igual tipo y diferente diseño de pista deslizante, y el tercer grupo, con dos cavidades con diferentes tipos de pistas deslizantes.
Se compara con los rodamientos citados, con dos hileras de componentes de rodadura de diferentes tipos. Cojinete deslizante radial esférico, con una o dos cavidades, utiliza tres tipos de pista deslizante:
Primer tipo de pistas deslizantes básico, tres diseños; cavidad en forma de semicírculo, cavidad en forma de semielipse y cavidad en forma cuadrada o rectangular.
Se compara con rodamientos esféricos con una o dos hileras de bolas.
Segundo tipo de pista deslizante araña, tres diseños; cavidad en forma de araña de patas de torre, con cavidad en forma de araña de patas de flor y cavidad en forma de araña de patas de olas.
Se compara con rodamiento esférico con una o dos hileras de rodillos esféricos.
Tercer tipo de pista deslizante ranura, un diseño; cavidad con pluralidad de ranuras.
Se compara con rodamiento esférico con una o dos hileras de rodillos esféricos.
Cojinete deslizante radial lineal, con una o dos cavidades, utiliza tres tipos de pista deslizante:
Primer tipo de pistas deslizantes básico, tres diseños; cavidad en forma de semicírculo, cavidad en forma de semielipse y cavidad en forma cuadrada o rectangular.
Se compara con rodamientos lineal con una o dos hileras de bolas.
Segundo tipo de pista deslizante araña, tres diseños; cavidad en forma de araña de patas de torre, con cavidad en forma de araña de patas de flor y cavidad en forma de araña de patas de olas.
Se compara con rodamiento lineal con una o dos hileras de bolas.
Tercer tipo de pista deslizante ranura, un diseño; cavidad con pluralidad de ranuras.
Se compara con rodamiento lineal con una o dos hileras de bolas.
Segunda configuración, cojinete deslizante axial.
Cojinete deslizante axial con un divisor de cavidad, tiene cinco tipos de pistas deslizantes con diferentes diseños:
Primer tipo de pistas deslizantes básico, tres diseños; doble cavidad en forma de semicírculo, doble cavidad en forma de semielipse y doble cavidad en forma cuadradas o rectangulares.
Se compara con los rodamientos axiales de bolas y de rodillos cilindrico de doble efecto.
Segundo tipo de pistas deslizantes araña, tres diseños; doble cavidad en forma de araña de patas de torre, doble cavidad en forma de araña de patas de flor y doble cavidad en forma de araña de patas de olas.
Se compara con los rodamientos axiales de agujas de doble efecto.
Tercer tipo de pistas deslizantes guía, un diseño; doble cavidad con ranura y guía.
Se compara con los rodamientos axiales de agujas y de rodillos cilindricos de doble efecto.
Cuarto tipo de pista deslizante ranura, un diseño; con doble cavidad con pluralidad de ranuras. Se compara con los rodamientos axiales de agujas de doble efecto.
Quinto tipo de pistas deslizantes orificios, un diseño; con doble cavidad con orificios en círculo. se compara con los rodamientos axiales de bolas de doble efecto.
Cojinete deslizante axial con doble divisor de cavidad, está dividido en cuatro grupos:
El primer grupo, con las cavidades primera y tercera con pistas deslizantes de igual tipo y diseño, y la segunda cavidad rectangular.
Se compara con los rodamientos citados, con la diferencia que tiene pluralidad de jaulas con componentes de rodadura de igual tipo.
El segundo y tercer grupos, con las cavidades, la primera y la tercera con pistas deslizantes de diferente tipo y diseño, y la segunda cavidad rectangular. El cuarto grupo, con las tres cavidades con pistas deslizantes de diferente tipo y diseño.
Se compara con los rodamientos citados, con la diferencia que tiene pluralidad de jaulas con diferentes componentes de rodadura.
Tercera configuración, cojinete deslizante de precisión.
Se compara con los llamados rodamientos de precisión de rodadura con una o dos hileras, son rodamientos con mínimas holguras entre los componentes.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La figura 1, muestra una vista en perspectiva del exterior del cojinete deslizante radial.
La figura 2, muestra una vista en perspectiva de las partes que compone el cojinete deslizante radial en posición de armar.
La figura 3A, B, C, D, E, y F, muestra una vista en corte de las partes internas del cojinete deslizante radial, tipo de pistas deslizantes básico, diseño con forma de semicírculo, semielipse, cuadrada o rectangular.
La figura 4A, B, C y D, muestra una vista en corte de las partes internas del cojinete deslizante radial, tipo de pista deslizante araña, diseño con forma de araña con patas de torre, patas de flor y patas de olas. La figura 5, muestra una vista en corte de las partes internas del cojinete deslizante radial, tipo de pista deslizante deflector.
La figura 6, muestra una vista en corte de las partes internas del cojinete deslizante radial, tipo de pista deslizante ranuras.
La figura 7A y B, muestra una vista en corte de las partes internas del cojinete deslizante radial, tipo de pistas deslizantes angular.
La figura 8A y B, muestra una vista en corte de las partes internas del cojinete deslizante radial, tipo de pista deslizante orificios.
La figura 9A, B, y C, muestra una vista en corte de las partes internas del cojinete deslizante radial, con pistas deslizantes con dos cavidades. La figura 10, muestra una vista en perspectiva del exterior del cojinete deslizante radial esférico.
La figura 11, muestra una vista en perspectiva de las partes que compone el cojinete deslizante radial esférico en posición de armar.
La figura 12, muestra una vista en corte de las partes internas del cojinete deslizante radial esférico.
La figura 13, muestra una vista en perspectiva del exterior del cojinete deslizante radial lineal.
La figura 14, muestra una vista en perspectiva de las partes que compone el cojinete deslizante radial lineal en posición de armar.
La figura 15, muestra una vista en corte de las partes internas del cojinete deslizante radial línea.
La figura 16, muestra una vista en perspectiva del exterior del cojinete deslizante axial.
La figura 17, muestra una vista en perspectiva de las partes que compone el cojinete deslizante axial en posición de armar.
La figura 18A, B y C, muestra una vista en corte de las partes internas del cojinete deslizante axial, tipo de pistas deslizantes básico, diseño con forma de semicírculo, semielipse, cuadrada o rectangular.
La figura 19A, B, C, D, muestra una vista en corte de las partes internas del cojinete deslizante axial, tipo de pista deslizante araña, diseño con forma de araña con patas de torre, patas de flor y patas de olas.
La figura 20, muestra una vista en corte de las partes internas del cojinete deslizante axial, tipo de pista deslizante guía.
La figura 21, muestra una vista en corte de las partes internas del cojinete deslizante axial, tipo de pista deslizante ranura.
La figura 22, muestra una vista en corte de las partes internas del cojinete deslizante axial, tipo de pista deslizante orificios.
La figura 23A, B, C y D, muestra una vista en corte de las partes internas del cojinete deslizante axial, con dos divisores de cavidades.
La figura 24, muestra una vista en perspectiva del exterior del cojinete deslizante de precisión.
La figura 25, muestra una vista en perspectiva de las partes que compone el cojinete deslizante de precisión en posición de armar.
La figura 26A, B y C, muestra una vista en corte de las partes internas del cojinete deslizante de precisión. La figura 27A, B, C, D, E, F y G, muestra una vista en perspectiva de los diferentes diseños de perfil para los anillos guías.
La figura 28A y B, muestra una vista en corte del perfil de la junta tórica anillos de respaldo y sellos hidráulicos.
DESCRIPCIÓN DETALLADA DE LA INVENCION
En esta patente se describe el diseño de un nuevo prototipo de cojinete deslizante con un colchón de fluido, con varias configuraciones: Primera configuración, cojinete deslizante radial.
Cojinete deslizante radial con una cavidad 1, cualquiera de los dos aros, es el estático y otro el dinámico, o ambos aros dinámicos, como lo indican las flechas en la figura 1.
El cojinete deslizante radial 1, está conformado por el aro exterior 2 con la pista deslizante 3 y las cavidades 4, por el aro interior 5 con la pista deslizante 6 y las cavidades 7, por dos discos 8-1-2 que tiene cada uno en el perfil exterior o interior 9 dos cavidades, una para alojar un anillo guía 10 y la otra para alojar una junta tórica con dos anillos uno de respaldo y otro de rascador 11, como se muestra la figura 2.
Los discos van en paralelo solidarios a uno de los dos aros o cada disco a un aro, en la figura 3A, muestra los discos 8-1-2 solidarios con el aro exterior 2, y los anillos guías 10-a y las juntas tóricas 11, se deslizan sobre las superficies de las cavidades 7 del aro interior 5.
La figura 6A, muestra los discos 8-1-2 solidario con el aro 5, y los anillos guías 10-a y las juntas tóricas 11, se deslizan sobre las superficies de las cavidades 4 del aro exterior 2.
La figura 13A, muestra el disco 8-1 solidario con el aro exterior 2, y el anillo guía 10-b y la junta tórica 11 se deslizan sobre la superficie de la cavidad 7 del aro interior 5, y el disco 8-2 solidario con dicho aro, y el anillo guía 10-b y la junta tórica 11 se deslizan sobre la superficie de la cavidad 4 del aro exterior 2.
El cojinete deslizante radial 1, tiene seis tipos de pistas deslizantes, cada uno de los tipos con una pluralidad de diseños, formando dichas pistas deslizantes la cavidad 12, con un colchón de fluido 13 presurizado, actuando esta fuerza que se transmite íntegramente en todas las direcciones, contra las paredes de la cavidad, separado el perfil de los discos, que tiene las cavidades de alojamiento de los anillos guías y las juntas tóricas de las superficies deslizantes de los aro, con las holguras 14-1-2, como lo indican las flechas en las diferentes figuras.
El primer tipo, pista deslizante básico, tres diseños:
Primer diseño, las pistas deslizantes 3 y 6, cada una con una cavidad con forma de semicírculo 15, formando una cavidad 12 en círculo, como se muestra la figura 3A.
Segundo diseño, las pistas deslizantes 3 y 6, cada una con una cavidad con forma de semielipse 16, formando una cavidad 12 en elipse, como se muestra la figura 3C.
Tercer diseño, las pistas deslizantes 3 y 6, cada una con una cavidad con forma rectangular o cuadrada 17, formando una cavidad 12 cuadrada o rectangular, como se muestra la figura 3E.
El cojinete deslizante radial 1, con pistas deslizantes tipo básico, al entrar en carga dinámica el aro interior 5, la superficie deslizante 6 se desliza sobre una capa de moléculas 18 del fluido 13 que arrastra formando un flujo laminar 19 alrededor de dicha superficie, teniendo el perfil interior 9 de los discos 8-1-2 separados de las superficie deslizante de las cavidades 7 del aro interior 5, con las holguras 14-1-2, y a la vez soporta y reparte la carga radial sobre la superficie deslizante 3, como lo indican las flechas en las figuras 3B, D,F. El segundo tipo, pista deslizante araña, tres diseños:
Primer diseño, la pista deslizante 3 con forma de araña de patas de torre 20, que tiene un 50% aproximadamente de superficie deslizante y el otro 50% aproximadamente son cavidades, y la pista deslizante 6 con superficie lisa, formando una cavidad 12 de araña de patas de torre, como se muestra la figura 4B.
Segundo diseño, la pista deslizante 3 con forma de araña de patas de flor 21, que tiene un 25% aproximadamente de superficie deslizante y el otro 75% aproximadamente son cavidades, y la pista deslizante 6 con superficie lisa, formando una cavidad 12 de araña de patas de flor, como se muestra la figura 4C.
Tercer diseño, la pista deslizante 3 con forma de araña de patas de olas 22, que tiene un 10% aproximadamente de superficie deslizante y el otro 90% aproximadamente son cavidades y la pista deslizante 6 con superficie lisa, formando una cavidad 12 de araña de patas de olas, como se muestra la figura 4D.
El cojinete deslizante radial 1, con pistas deslizantes tipo araña, al entrar en carga dinámica el aro exterior 2, la superficie deslizante 3 se desliza sobre una capa de moléculas 18 del fluido 13 que arrastra formando un flujo turbulento 19, el primer diseño, los vértices de las patas de torre crea el efecto de remolinos en espirar, el segundo diseño, los vértices de las patas de flor crea el efecto de remolinos en espirar cónico invertido, y el tercer diseño los vértices redondeados de las patas de olas crea el efecto de espirar en olas. Los remolinos tienen un efecto de apoyo, para soportar cargas radiales y tener el perfil exterior 9 de los discos 8-1-2 separados de las cavidades 4 del aro exterior 2 con las holguras 14-1-2, y a la vez soporta y reparte la carga radial sobre la superficie deslizante 6, como lo indican las flechas en las figuras 4A, B,C,D.
El tercer tipo, pista deslizante con deflector, un diseño:
La pista deslizante 3 con pluralidad de oricios en dos hileras 23, cada hilera de dichos orificios, van inclinados hacía una de las dos caras del deflector 24 de la pista deslizante 6, formando una cavidad que va dividida en dos 12-1-2, a través de la junta tórica con dos anillos de respaldo 11 se divide el cochón de fluido en dos 13-1-2, como se muestra la figura 5.
El cojinete deslizante radial 1, con pista deslizante tipo deflector, al entrar en carga dinámica el aro interior 5, la superficie deslizante 6 se desliza sobre una capa de moléculas 18 del fluido 13 que arrastra formando un flujo turbulento 19, con remolinos que se forma en las dos hileras de los orificios 23 chocando contra las dos caras del reflector 24, soportando las cargas radiales y las axiales en los dos sentidos, para tener el perfil interior 9 de los discos 8-1-2 separados de las cavidades 7 del aro interior 5 con las holguras 14-1-5, y a la vez soporta y reparte la carga radial sobre la superficie deslizante 3, como lo indican las flechas en las figuras 5.
El cojinete deslizante radial 1, con pista deslizante tipo deflector, tiene la holgura 14-2 con mayor distancia entre los discos 8 y las cavidades 7 del aro interior 5, para crear una cavidad llena de fluido que tiene la función de apoyar a absorber las cargas axiales.
El cuarto tipo, pista deslizante ranura, un diseño:
La pista deslizante 3 con pluralidad de ranuras 25, son cavidades maquinadas sobre la superficie de dicha pista, el porcentaje de superficie deslizamiento depende del número y lo ancho de las ranuras, la pista deslizante 6 con superficie lisa, formando una cavidad 12 rectangular con pluralidad de ranuras, como se muestra la figura 6.
El cojinete deslizante radial 1, con pista deslizante tipo ranura, al entrar en carga dinámica el aro exterior 2, la superficie deslizante 3 se desliza sobre una capa de moléculas 18 del fluido 13 que arrastra formando un flujo laminar 19 alrededor de dicha superficie, con espirar sobre la longitud de dichas ranuras, teniendo el perfil exterior 9 de los discos 8-1-2 separados de las cavidades 4 del aro exterior 2, con las holguras 14-1-2, y a la vez soporta y reparte la carga radial sobre la superficie deslizante 6, como lo indican las flechas en la figura 6.
El quinto tipo, pista deslizante angular, un diseño:
Las pistas deslizantes 3 y 6 con una superficie en L invertida 26 formado dos ángulos y una cavidad 12 rectangular o cuadrada, cada aro va solidario a un disco, dichas superficie en L invertida puede contraerse hacia el centro de la cavidad, ejerciendo una fuerza de compresión al fluido, como lo indican las flechas en las figuras 7A.
El cojinete deslizante radial 1, con pistas deslizantes tipo angular, se debe utilizar doble cojinete deslizante porque los aros se desplazan en sentidos opuestos, teniendo en cuenta que un grupo de aros se debe asegurar con un sistema de sujeción para evitar que se desplacen en sentido contrario, por ejemplo, con un anillo de retención 27, como se muestra la figura 7B.
El cojinete deslizante radial 1, con pistas deslizantes con tipo angular, al entrar en carga dinámica el aro interior 5, la superficie deslizante 6 se desliza sobre una capa de moléculas 18 del fluido 13 que arrastra formando un flujo laminar 19 alrededor de dicha superficie, soportado las cargas radiales y axiales en los dos sentidos. Las cargas axiales contraen las superficies en L invertida, comprimiendo el fluido 13 que es incompresible, absorbiendo dichas cargas, teniendo los perfiles exteriores e interiores 9 de los discos, separados de las cavidades 4 y 7 de los aros, con las holguras 14-1-2, como lo indican las flechas en las figuras 7A.
El sexto tipo, pista deslizante orificios, un diseño:
La pista deslizante 3 con pluralidad de orificios 28, con pluralidad de hilera, y la otra pista deslizante 6 con superficie lisa, formando una cavidad 12 rectangular con orificios, dichos orificios tienen tres opciones de alineación con respeto al eje vertical del cojinete: Primero, orificios alineados con el eje vertical.
Segundo, orificios con determinados grados de desviación hacia la derecha con respeto al eje vertical. Tercero, orificios con determinados grados de desviación hacia la izquierda con respeto al eje vertical, como lo indican las flechas en la figura 8B.
El objetivo de tener una pluralidad de hileras de orificios alineados y con desviación, es para crear un flujo turbulento 19 con remolinos que choque contra la superficie deslizante 6.
El cojinete deslizante radial 1, con pista deslizante tipo orificios, al entrar en carga dinámica el aro exterior
2, la superficie deslizante 3 se desliza sobre una capa de moléculas 18 del fluido 13 que arrastra formando un flujo turbulento 19. Los remolinos tienen un efecto de apoyo, para soportar cargas radiales y tener el perfil exterior 9 de los discos 8-1-2 separados de las cavidades 4 del aro exterior 2 con las holguras 14-1-2, y a la vez soporta y reparte la carga radial sobre la superficie deslizante 6, como lo indican las flechas en las figuras 8A, B.
Cojinete deslizante radial con doble cavidad 1, las pistas deslizantes 3 y 6 forman dos cavidades 12-1-2 con un colchón de fluido 13 presurizado, o dividiendo el colchón a través de una junta tórica con dos anillos de respaldo 11, quedando cada cavidad 12-1-2 con un colchón de fluido 13-1-2 presurizado, como lo indican las flechas en la figura 9A, B.
El cojinete deslizante radial con doble cavidad 1, tiene varias combinaciones de tipos y diseños de pistas deslizantes que se divide en tres grupos:
Primer grupo, las pistas deslizantes 3 y 6 con igual tipo y diseño, por ejemplo, la figura 9A, muestra las pistas deslizantes 3 y 6 con el tipo básico con el diseño de semicírculo 15, formando en cada cavidad 12-1-2 un círculo.
Segundo grupo, las pistas deslizantes 3 y 6 con igual tipo y diferente diseño, por ejemplo, la figura 9B, muestra las pistas deslizantes 3 y 6 con el tipo básico con el diseño de semicírculo 15 y semielipse 16, formado la cavidad 12-1 en círculo y la cavidad 12-2 en elipse, con la ventaja de tener las características de dos diseños en un mismo cojinete deslizante.
Tercer grupo, las pistas deslizantes 3 y 6 con diferentes tipos, por ejemplo, la figura 9C, muestra las pistas deslizantes 3 y 6 con el tipo básico con el diseño de semicírculo 15, y el tipo ranura 25 en la pista deslizante
3, formado la cavidad 12-1 en círculo y la cavidad 12-2 rectangular con pluralidad de ranuras, con la ventaja de tener las características de dos tipos en un mismo cojinete deslizante.
Cojinete deslizante radial esférico 1, cualquiera de los dos el aro exterior o el aro interior esférico, es el estático y otro el dinámico, o ambos dinámicos, como lo indican las flechas en la figura 10.
El cojinete deslizante radial esférico 1, está conformado igual que el cojinete deslizante radial 1, con la diferencia que el aro interior 5, la pista deslizante 6 va curvada con forma esférica 29, y tiene en cada extremo maquinado una cavidad para alojar un anillo de retención 27. Los dos discos 8-1-2 con el perfil interior 9 curvado para ajustar con la superficie curvada de la pista deslizante 6 esférica, dichos discos llevan dos cavidades, una para alojar un anillo guía 10-c y la otra para alojar una junta tórica con dos anillos uno de respaldo y otro de rascador 11, como se muestra en la figura 11.
Los discos 8-1-2 van solidarios al aro exterior 2, y la función de los dos anillos de retención 27, es limitar el giro del aro interior 5 hacia los lados, por seguridad ya que la cavidad 12 va con un fluido 13 presurizado.
El cojinete deslizante radial esférico 1, la pista deslizante 3 utiliza uno de los tipos de pista deslizante: Básico con uno de los tres diseños; semicírculo 15, semielipse 16, cuadrada o rectangular 17.
Araña con uno de los tres diseños; patas de araña de torre 20, patas de araña de flor 21, patas de araña de olas 22.
Ranura 25.
El cojinete deslizante radial esférico 1, el comportamiento del flujo 19 del colchón de fluido 13, al entrar el aro interior 5 con la pista deslizante 6 esférica en carga dinámica, como se muestra en la figura 12, es igual que el cojinete deslizante radial 1, teniendo el perfil interior 9 de los discos 8-1-2 separados de la superficie deslizante 6 esférica con la holgura 14, como se muestra en la figura 12.
El aro exterior 2 con la pista deslizante 3, puede tener doble cavidad 12-1-2 y doble colchón de fluido, igual que el cojinete deslizante radial con doble cavidad 1.
Cojinete deslizante radial lineal 1, cualquiera de los dos el aro exterior o el eje, es el estático y otro el dinámico, o ambos dinámicos, como lo indican las flechas en la figura 13.
El cojinete deslizante radial lineal 1, está conformado igual que el cojinete deslizante radial 1, con la diferencia que el aro interior 5, es sustituido por un eje 30. Los discos 8-1-2 van solidarios al aro exterior 2, y perfil interior de dichos discos con los anillos guías 10-b y las juntas tóricas 11, se deslizan sobre la superficie del eje 30, como se muestra en la figura 14.
El cojinete deslizante radial lineal 1, la pista deslizante 3 utiliza uno de los tipos de pista deslizante: Básico con uno de los tres diseños; semicírculo 15, semielipse 16, cuadrada o rectangular 17.
Araña con uno de los tres diseños; patas de araña de torre 20, patas de araña de flor 21, patas de araña de olas 22.
Ranura 25.
El cojinete deslizante radial lineal 1, el comportamiento del flujo 19 del colchón de fluido 13, al entrar el eje 30 en carga dinámica, como se muestra en la figura 12, es igual que el cojinete deslizante radial 1, teniendo el perfil interior 9 de los discos 8-1-2 separados de la superficie del eje con la holgura 14, dicho eje 30 se desplaza en cualquiera de los dos sentidos axiales y también gira sobre su eje, el colchón de fluido 13 soporta únicamente las cargas radiales, como se muestra en la figura 15.
El aro exterior 2 con la pista deslizante 3, puede tener doble cavidad 12-1-2 y doble colchón de fluido, igual que el cojinete deslizante radial con doble cavidad 1.
Segunda configuración, cojinete deslizante axial.
Cojinete deslizante axial con un divisor de cavidad 31, cualquiera de los dos aros es el estático y el otro dinámico o los dos aros dinámicos, como lo indican las flechas en la figura 16.
El cojinete deslizante axial 31, está conformado por el aro exterior 2, por el aro interior 5 con el divisor de cavidad 32 en el centro de la superficie exterior, dicho divisor de cavidad tiene dos superficies deslizantes S-l-2, y en el perfil una cavidad para una junta tórica con dos anillos de respaldo 11, por dos discos 8-1-2 cada uno con una pista deslizante 3 y 6, dichos discos en uno de los perfiles exterior o interior 9 lleva dos cavidades, una para alojar un anillo guía 10-b y la otra para alojar una junta tórica con dos anillos uno de respaldo y otro de rascador 11, como se muestra en la figura 17.
Los discos 8-1-2 van solidarios al aro contrario al aro con el divisor de cavidad.
La figura 18A, muestra los discos 8-1-2 solidarios con el aro exterior 2, y los anillos guías 10-b y las juntas tóricas 11, se deslizan sobre la superficie exterior del aro inferior 5.
El divisor de cavidad 32, divide la cavidad en dos 12-1-2, cada una con un colchón de fluido 13-1-2 presurizado, actuando esta fuerza que se transmite íntegramente en las dos cavidades, contra las paredes de las pistas deslizantes 3, 6 y las superficies deslizantes S-l-2, centrado al divisor de cavidad 32, en el centro de la superficie del aro contrario, separado el perfil de los discos que tiene las cavidades de alojamiento de los anillos guías y las juntas tóricas, de la superficie del aro, con la holgura 14, como lo indican las flechas en las diferentes figuras.
El cojinete deslizante axial 31, tiene cinco tipos de pistas deslizantes y cada uno de los tipos tiene una pluralidad de diseños.
El primer tipo, pista deslizante básico, tres diseños:
Primer diseño, las pistas deslizantes 3 y 6 cada una con una cavidad con forma de semicírculo 15, a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de semicírculo, como se muestra la figura 18A.
Segundo diseño, las pistas deslizantes 3 y 6 cada una con una cavidad con forma de semielipse 16, a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de semielipse, como se muestra la figura 18B.
Tercer diseño, las pistas deslizantes 3 y 6 cada una con una cavidad con forma rectangular o cuadrada 17, a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma cuadrada o rectangular, como se muestra la figura 18C.
El cojinete deslizante axial 31, con pistas deslizantes tipo básico, al entrar en carga dinámica el aro interior 5, las dos superficies S-l-2 del divisor de cavidad 32 se desliza sobre dos capas de moléculas 18 de los fluidos 13-1-2, que arrastra formando un flujo laminar 19 alrededor de dichas superficies, teniendo el divisor de cavidad 32 en el centro de la superficie interior del aro exterior 2, y el perfil interior 9 de los discos 8-1-2 separados de la superficie exterior del aro interior 5 con la holgura 14, y a la vez soporta y reparte las cargas axiales sobre las pistas deslizantes 3 y 6, como lo indican las flechas en las figuras 15A, B, C.
El segundo tipo, pista deslizante araña, tres diseños:
Primer diseño, las pistas deslizantes 3 y 6 cada una con una cavidad con forma de araña de patas de torre
20, que tiene un 50% aproximadamente de superficie deslizante y el otro 50% aproximadamente son cavidades, como se muestra la figura 19B, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de araña de patas de torre, como se muestra la figura 19A.
Segundo diseño, las pistas deslizantes 3y 6 cada una con una cavidad con forma de araña de patas de flor
21, que tiene un 25% aproximadamente de superficie deslizante y el otro 75% aproximadamente son cavidades, como se muestra la figura 19C, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de araña de patas de flor, como se muestra la figura 19A.
Tercer diseño, las pistas deslizantes 3 y 6 cada una con una cavidad con forma de araña de patas de olas
22, que tiene un 10% aproximadamente de superficie deslizante y el otro 90% aproximadamente son cavidades, como se muestra la figura 16D, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de araña de patas de olas, como se muestra la figura 19A.
El cojinete deslizante axial 31, con pista deslizante tipo araña, al entrar en carga dinámica el aro interior 5, las dos superficies deslizantes S-l-2 del divisor de cavidades 32 se desliza sobre dos capas de moléculas 18 de los fluidos 13-1-2 que arrastra formando un flujo turbulento 19, el primer diseño, los vértices de las patas de torre crea el efecto de remolinos en espirar, el segundo diseño, los vértices de las patas de flor crea el efecto de remolinos en espirar cónico invertido, y el tercer diseño los vértices redondeados de las patas de olas crea el efecto de espirar en olas, alrededor de dichas superficies, teniendo el divisor de cavidad 32 en el centro de la superficie interior del aro exterior 2, y el perfil interior 9 de los discos 8-1-2 separados de la superficie exterior del aro interior 5 con la holgura 14, y a la vez soporta y reparte las cargas axiales sobre las pistas deslizantes 3 y 6, como lo indican las flechas en la figura 19A.
El tercer tipo, pista deslizante guía, un diseño:
Las pistas deslizantes 3 y 6 cada una con una ranura en círculo 33, y el divisor de cavidad 32 con las superficies deslizantes S-l-2 cada una con una guía en círculo 34, encajando dichas superficies deslizante, formando dos cavidades con guía 12-1-2, como se muestra la figura 20.
El cojinete deslizante axial 31, con pista deslizante tipo guía, al entrar en carga dinámica el aro interior 5, las superficies deslizantes S-l-2 del divisor de cavidad 32 se desliza sobre dos capas de moléculas 18 de los fluidos 13-1-2, que arrastra formando un flujo laminar 19 alrededor de dichas superficies, el diseño de guías encajadas soporta cargas axiales y radiales, teniendo el divisor de cavidad 32 en el centro de la superficie interior del aro exterior 2, y el perfil interior 9 de los discos 8-1-2 separados de la superficie exterior del aro interior 5 con la holgura 14, y a la vez soporta y reparte las cargas axiales sobre las pistas deslizantes 3 y 6, como lo indican las flechas en las figura 20.
El cuarto tipo, pista deslizante ranura, un diseño:
Las pistas deslizantes 3 y 6 cada una con pluralidad de ranuras en círculos 25, son cavidades maquinadas sobre la superficie de dicha pista, el porcentaje de superficie deslizamiento depende del número y lo ancho de las ranuras, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma con pluralidad de ranuras, como se muestra la figura 21.
El cojinete deslizante axial 31, con pista deslizante tipo ranura, al entrar en carga dinámica el aro interior 5, las dos superficies deslizantes S-l-2 del divisor de cavidades 32 se desliza sobre dos capas de moléculas 18 de los fluidos 13-1-2 que arrastra formando un flujo laminar 19 alrededor de dichas superficies deslizantes, teniendo el divisor de cavidad 32 en el centro de la superficie interior del aro exterior 2, y el perfil interior 9 de los discos 8-1-2 separados de la superficie exterior del aro interior 5 con la holgura 14, y a la vez soporta y reparte las cargas axiales sobre las pistas deslizantes 3 y 6, como lo indican las flechas en la figura 21.
El quinto tipo, pistas deslizantes orificios, un diseño:
Las pistas deslizantes 3 y 6 cada una con pluralidad de orificios 28 en una hilera en círculo, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma rectangular con orificios, como se muestra la figura 22.
El cojinete deslizante axial 31, con pistas deslizantes tipo orificios, al entrar en carga dinámica el aro interior 5, las dos superficies deslizantes S-l-2 del divisor de cavidad 32, se desliza sobre dos capas de moléculas 18 de los fluidos 13-1-2 que arrastra formando un flujo turbulento 19, con remolinos que se forma en la entrada de los orificios y se choca contra dichas superficies deslizantes, teniendo el divisor de cavidad 32 en el centro de la superficie interior del aro exterior 2, y el perfil interior 9 de los discos 8-1-2 separados de la superficie exterior del aro interior 5 con la holgura 14, y a la vez soporta y reparte las cargas axiales sobre las pistas deslizantes 3 y 6, como lo indican las flechas en la figura 22.
El cojinete deslizante axial con doble divisor de cavidad 31, el aro exterior 2 en la superficie interior hacia uno de los extremos va el divisor de cavidad 32-1, y el aro interior 5 en la superficie exterior hacia uno de los extremos va el divisor de cavidad 32-2, cada disco 8-1-2 va solidario a un aro. El cojinete deslizante axial con doble divisor de cavidad 31, a través de los dos divisores de cavidades 32-1-2 forman tres cavidades 12-1-2-3 con tres colchones de fluidos 13-1-2-3, como se muestra la figura 23A.
El cojinete deslizante axial con doble divisor de cavidad 31, tiene varias combinaciones de tipos y de diseños de pistas deslizantes que se divide en cuatro grupos:
Primer grupo, las pistas deslizantes con igual tipo y diseño, por ejemplo, la figura 23A, muestra las pistas deslizantes 3 y 6 con tipo básico y el diseño de semicírculo 15, formando dos cavidades 12-1-3 de semicírculo y la cavidad 12-2 con forma rectangular.
Segundo grupo, las pistas deslizantes con igual tipo y diferente diseño, por ejemplo, la figura 23B, muestra las pistas deslizantes 3 y 6, una con el diseño de semicírculo 15 y la otra con el diseño de semielipse 16, formando dos cavidades 12-1-3, una con forma de semicírculo y la otra semielipse, y la cavidad 12-2 con forma rectangular.
Tercer grupo, las pistas deslizantes con diferentes tipos, por ejemplo, la figura 23C, muestra las pistas deslizantes 3 y 6, una con tipo básico y con el diseño de semicírculo 15, y la otra con el tipo ranura 25, formando dos cavidades 12-1-3 una con forma de semicírculo, y la otra rectangular con pluralidad de ranuras, y la cavidad 12-2 con forma rectangular.
Cuarto grupo, las dos superficies deslizantes de los divisores de cavidades que conforma la cavidad 12-2, con uno de los cinco tipos y diseños de pistas deslizantes, por ejemplo, la figura 23D, muestra el divisor de cavidad 32-1 con la superficie deslizante S-l con una ranura en círculo 33, y el divisor de cavidad 32-2 con la superficie deslizante S-2 con la guía 34, y las pistas deslizantes 3 y 6 con cualquiera de los cinco tipos y diseños, teniendo la cavidad 12-2 con guía, con la ventaja de utilizar la segunda cavidad en apoyo para soportar mayor cargas axiales y radiales.
Tercera configuración, cojinete deslizante de precisión 35, cualquiera de los dos aros, es el estático y el otro dinámico o los dos aros dinámicos, como lo indican las flechas en la figura 24.
El cojinete deslizante de precisión 35, está conformado por el aro exterior 2, por el aro interior 5 con el divisor de cavidad 32 en el centro de la superficie exterior, dicho divisor de cavidad tiene dos superficies deslizantes S-l-2, cada una con una cavidad 37 para alojar los anillos guías 10-d, y en el perfil una cavidad para una junta tórica con dos anillos de respaldo 11, por dos discos 8-1-2 que tiene en la superficie deslizante pluralidad de agujeros y el perfil interior 9 una cavidad con pluralidad de agujeros formando pluralidad de codos 36, dicho perfil también tiene dos cavidades, una para alojar el anillo guía 10-b y la otra para alojar la junta tórica con dos anillos uno de respaldo y otro de rascador 11, dichos discos 8-1-2 van solidarios al aro exterior, como se muestra en la figura 25 y 26B.
El cojinete deslizante de precisión 35, tiene cuatro superficies deslizantes, dos superficies S-l-2 en el exterior del aro interior 5, y dos superficies deslizantes S-l-2 del divisor de cavidad 32, como se muestra la figura 26A.
El cojinete deslizante de precisión 35, a través del divisor de cavidad 32, divide la cavidad en dos grupos; el primer grupo con las cavidades 12-1-3, y el segundo grupo con las cavidades 12-2-4, en cada grupo las cavidades van separadas por los anillos guías 10-d, a través de los agujeros que forman los codos 36, cada grupo de cavidades se conecta, dichos grupos van presurizados cada uno con un colchón de fluido 13-1-2, como lo indican las flechas en la figura 26B.
El cojinete deslizante de precisión 35, al entrar en carga dinámica el aro interior 5, las cuatro superficies deslizantes S-l-2-3-4, se deslizan sobre capas de moléculas 18 de los fluidos 13-1-2, que arrastra formando un flujo turbulento 19 con remolinos que se forma en los agujeros de los codos 36 que actúan sobre dichas superficies, teniendo el divisor de cavidad 32 en el centro de la superficie interior del aro exterior 2, y el perfil interior 9 de los discos 8-1-2 separados de la superficie exterior del aro interior 5 con la holgura 14, como lo indican las flechas en las figura 26C.
El cojinete deslizante de precisión 35, está diseñado para alta precisión teniendo mínimas holguras axiales y radiales, equilibrando las cargas radiales con las cargas axiales.
Anillo guía o banda antifricción 10, construido en material antifricción, que impide el contacto metal-metal de los componentes dinámicos con los componentes estáticos.
Los anillos guías 10 es un componente que tiene todas las configuraciones de cojinetes deslizantes, tiene dos funciones:
1, Los anillos guías tiene la función de apoyar al colchón de fluido 13 presurizado, a tener la holgura 14 entre el perfil de los discos 8-1-2 que van montados los anillos guías y las juntas tóricas, con las superficies deslizantes, evitado el contacto entre las superficies metal-metal, protegiendo a la junta tórica o al sello hidráulico de aplastamiento.
2, Los anillos guías tiene la función de apoyar al colchón de fluido 13 presurizado, a absorber fuertes vibraciones, choques y golpes, que van a estar sometidos los aros, protegiendo a la junta tórica o al sello hidráulico de aplastamiento.
Dependiendo de la configuración del cojinete deslizante y el tipo de pista deslizante, se utiliza uno de los tres perfiles:
1, Diseño de perfil en L 10-a, como se muestra la figura 27A y B, se utiliza en el cojinete deslizante radial, tiene dos superficies deslizantes la S-l la cara vertical soporta las cargas axiales y la S-2 la cara horizontal soporta las cargas radiales.
2, Diseño de perfil en rectángulo o cuadrada con diseño cilindrico 10-b, como se muestra la figura 27C y D, se utiliza en el cojinete deslizante radial 1, en el cojinete deslizante axial 31 y en cojinete deslizante de precisión 35, tiene una superficie deslizante S-l, soporta las cargas radiales.
Con diseño en arandela 10-c, como se muestra la figura 27E, se utiliza en el cojinete deslizante de precisión 35, tiene superficie deslizante S-l, soporta cargas axiales.
3, Diseño de perfil oblicuo 10-d, como se muestra en la figura 27F y G, se utiliza en el cojinete deslizante radial esférico, tiene una superficie deslizante con la cara curvada S-l, soporta cargas radiales y axiales.
Los anillos guías con perfil rectangular con diseño cilindrico, y con perfil oblicuo, tienen un corte recto o en ángulo para facilitar el montaje elástico en su alojamiento.
Entre la superficie deslizante del anillo guía y la superficie de contacto, hay una holgura 38 para reducir la fricción entre las partes, como lo muestra las figuras 27 A, C, F.
El sistema de Estanqueidad del cojinete deslizante, está conformado por dos juntas tóricas 11, cada una lleva dos anillos, el primer anillo de respaldo 11-a tiene la función de rascador evitando la entrada de impurezas al interior del cojinete, para dicha función tiene un labio 39, el segundo anillo 11-b es de respaldo o anti-extrusión, como se muestra la figura 28A.
El fabricante puede optar por un sistema de estanqueidad, utilizado sellos hidráulicos, igual que los gatos hidráulicos con un perfil para movimiento giratorio determinado por el fabricante, por ejemplo, los sellos hidráulicos 40-1-2, como se muestra la figura 25B.
El fluido 14, al ser un componente liquido tiene la capacidad de absorber vibraciones leves 41, que transmita la pista deslizante dinámica a la pista deslizante estática o viceversa, como se muestra en las figuras 3B y 15C.
El cojinete deslizante tiene un conducto y un tornillo tapón 42 para conectar cada cavidad 12, para el llenado, purgado y presurizado del fluido, como se muestra en las figuras 3E y 15C.
La capacidad de cargas radiales y axiales del cojinete deslizante, tiene varios factores:
1, Depende del ancho (A) de los aros, a mayor superficie en contacto con el colchón de fluido, mayor será la capacidad de cargas radiales y axiales, como lo indican las figuras 1, 10, 13, 16 y 24.
2, Dependiendo del índice de la viscosidad del fluido, con un índice alto, el fluido es espeso, la fuerza intermolecular es fuerte, con un índice bajo, el fluido es líquido, la fuerza intermolecular es débil.
Al utilizar un fluido con índice de viscosidad alto, mayor será la capacidad de cargas radiales y axiales.
3, Dependiendo de la presión del fluido 13 dentro de la cavidad 12, teniendo en cuenta el índice de viscosidad, un fluido con índice alto no requiere de presión elevada, un índice bajo requiere alta presión dependiendo la carga a soportar.
4, Dependiendo del tipo y diseño de las superficies deslizantes:
El cojinete deslizante radial 1: Con pista deslizante tipo básico con diseño; semicírculo 15 y cuadrada o rectangular 17.
Con pista deslizante tipo araña con diseño; araña con patas de torre 20.
Con estos tipos de pista deslizante, tiene la capacidad de soportar grandes cargas radiales, la capacidad de cargas axiales es pequeña, porque la soporta los dos anillos guías 10-a.
Con pista deslizante tipo deflector 23-24.
Con pista deslizante tipo angular 26.
Con estos tipos de pista deslizante, tiene la capacidad de soportar grandes cargas radiales y axiales.
Con pista deslizante tipo básico con diseño; semielipse 16.
Con pista deslizante tipo araña con diseño; araña con patas de flor 21.
Con pista deslizante tipo ranura 25.
Con pista deslizante tipo orificios 28.
Con estos tipos de pista deslizante, tiene la capacidad de soportar medianas cargas radiales, la capacidad de cargas axiales es pequeña, porque la soporta los dos anillos guías 10-a.
Con pista deslizante tipo araña con diseño; araña con patas de olas 22.
Este tipo y diseño de pista deslizante, tiene la capacidad de soportar pequeñas cargas radiales, la capacidad de cargas axiales es pequeña, porque la soporta los dos anillos guías 10-a.
El cojinete deslizante con doble cavidad 1, la capacidad de las cargas radiales es la suma de la capacidad de cargas radiales de dos cojinetes deslizante de una cavidad, teniendo como referencia el tipo y el diseño de las pistas deslizante.
El cojinete deslizante axial 31:
Con pista deslizante tipo básico con diseño; semicírculo 15 y cuadrada o rectangular 17.
Con pista deslizante tipo araña con diseño; araña con patas de torre 20.
Estos tipos de pista deslizante, tiene la capacidad de soportar grandes cargas axiales, la capacidad de cargas radiales es pequeña, porque la soporta los dos anillos guías 10-b.
Con pistas deslizantes tipo guía 33-34.
Este tipo de pista deslizante, tiene la capacidad de soportar grandes cargas axiales y radiales.
Con pista deslizante tipo básico con diseño; semielipse 16.
Con pista deslizante tipo araña con diseño; araña con patas de flor 21.
Con pista deslizante tipo ranura 25.
Con pista deslizante tipo orificios 28.
Estos tipos de pista deslizante, tiene la capacidad de soportar medianas cargas axiales, la capacidad de cargas radiales es pequeña, porque la soporta los dos anillos guías 10-b.
Con pista deslizante tipo araña con diseño; araña con patas de olas 22.
Este tipo de pista deslizante, tiene la capacidad de soportar pequeñas cargas axiales, la capacidad de cargas radiales es pequeña, porque la soporta los dos anillos guías 10-b. El cojinete deslizante axial con doble divisor de cavidad 31, la capacidad de las cargas axiales es aproximadamente el doble que el cojinete deslizante con un divisor de cavidad, porque es el doble de área con dos divisores de cavidades en contacto con el colchón de fluido, teniendo como referencia el tipo y el diseño de las pistas deslizante.
El cojinete deslizante de precisión 35, tiene la capacidad de soportar medianas cargas radiales y axiales.
La capacidad de velocidad angular del cojinete deslizante, tiene varios factores:
1, Dependiendo del índice de la viscosidad del fluido, entre más bajo sea el índice menor es la fuerza intermolecular, el aro al entrar en carga dinámica sobre el colchón de fluido, mayores revoluciones por minuto pueden alcanzar, ya que las moléculas se mueven con facilidad no generando fricción.
2, Dependiendo del perfil y calidad de la junta tórica o sello hidráulico, entre mayor sean las revoluciones por minuto del aro dinámico, mayor va ser la fricción entre la junta o sello, con la superficie deslizante.
3, Dependiendo del tipo y diseño de las superficies deslizantes.
El cojinete deslizante radial 1:
Con pista deslizante tipo básico con diseño; semicírculo 15 y cuadrada o rectangular 17.
Con pista deslizante tipo araña con diseño; araña con patas de torre 20.
Con pista deslizante tipo angular 26.
Con estos tipos de pista deslizante, tiene la capacidad de soportar velocidad angular bajas.
Con pista deslizante tipo básico con diseño; semielipse 16.
Con pista deslizante tipo araña con diseño; araña con patas de flor 21.
Con pista deslizante tipo deflector 23-24.
Con pista deslizante tipo orificios 28.
Estos tipos de pista deslizante, tiene la capacidad de soportar velocidad angular moderadas.
Con pista deslizante tipo araña con diseño; araña con patas de olas 22.
Con pista deslizante tipo ranura 25.
Este tipo y diseño de pista deslizante, tiene la capacidad de soportar velocidad angular altas.
El cojinete deslizante axial 31:
Con pista deslizante tipo básico con diseño; semicírculo 15 y cuadrada o rectangular 17.
Con pista deslizante tipo araña con diseño; araña con patas de torre 20.
Con pistas deslizantes tipo guía 33-34.
Estos tipos de pista deslizante, tiene la capacidad de soportar velocidad angular bajas.
Con pista deslizante tipo básico con diseño; semielipse 16.
Con pista deslizante tipo araña con diseño; araña con patas de flor 21.
Con pista deslizante tipo orificios 28.
Estos tipos de pista deslizante, tiene la capacidad de soportar velocidad angular moderadas. Con pista deslizante tipo araña con diseño; araña con patas de olas 22.
Con pista deslizante tipo ranura 25.
Este tipo de pista deslizante, tiene la capacidad de soportar velocidad angular altas.
El cojinete deslizante de precisión 35, tiene la capacidad de soportar velocidad angular moderadas.

Claims

REIVINDICACIONES
1. Cojinete deslizante con un colchón de fluido, con varias configuraciones, comprende:
Dos aros concéntrico, un aro exterior 2 con la pista deslizante 3, un aro interior 5 con la pista deslizante 6, dos discos 8-1-2 en paralelo solidarios a uno de los aros o cada disco solidario a un aro, cada disco en uno de los perfiles exterior o interior 9 lleva dos cavidades, una para alojar un anillo guía 10 y la otra para alojar una junta tórica con dos anillos uno de respaldo y otro de rascador 11, caracterizada porque las pistas deslizantes 3 y 6 forma la cavidad 12, con un colchón de fluido 13 presurizado, actuando esta fuerza que se transmite íntegramente en todas las direcciones, contra las paredes de la cavidad, separado el perfil de los discos, que tiene las cavidades de alojamiento de los anillos guías y las juntas tóricas de las superficies deslizantes con la holgura 14.
2. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante radial 1, el aro exterior 2 lleva en el interior en los extremos las cavidades 4 y el aro interior 5 lleva en el exterior en cada extremo las cavidades 7, sobre dos de dichas cavidades van solidarios los discos 8-1-2 a los aros, y las otras dos cavidades se deslizan los anillos guías 10 y las juntas tóricas 11.
3. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante radial 1, tiene seis tipos de pistas deslizantes, y cada uno de los tipos con una pluralidad de diseños:
El primer tipo de pista deslizante básico, tres diseños:
Primer diseño, las pistas deslizantes 3 y 6, cada una con una cavidad en forma de semicírculo 15, formando una cavidad 12 en círculo.
Segundo diseño, las pistas deslizantes 3 y 6, cada una con una cavidad en forma de semielipse 16, formando una cavidad 12 en elipse.
Tercer diseño, las pistas deslizantes 3 y 6, cada una con una cavidad en forma rectangular o cuadrada 17, formando una cavidad 12 cuadrada o rectangular.
El segundo tipo de pista deslizante araña, tres diseños:
Primer diseño, cualquiera de las dos pistas deslizantes 3 o 6 con forma de araña de patas de torre 20, y la otra pista deslizante con superficie lisa, formando una cavidad 12 de araña de patas de torre.
Segundo diseño, cualquiera de las dos pistas deslizantes 3 o 6 con forma de araña de patas de flor 21, y la otra pista deslizante con superficie lisa, formando una cavidad 12 de araña de patas de flor.
Tercer diseño, cualquiera de las dos pistas deslizantes 3 o 6 con forma de araña de patas de olas 22, y la otra pista deslizante con superficie lisa, formando una cavidad 12 de araña de patas de olas.
El tercer tipo de pistas deslizantes deflector, un diseño:
La pista deslizante 3 con pluralidad de oricios en dos hileras 23, inclinados hacia las caras del deflector, la pista deslizante 6 con el deflector 24 con dos caras, formando dos cavidades 12-1-2, a través de una junta tórica con dos anillos de respaldo 11 se divide el cochón de fluido en dos 13-1-2. El cuarto tipo de pista deslizante ranura, un diseño:
Cualquiera de las dos pistas deslizantes 3 o 6 con pluralidad de ranuras 25, y la otra pista deslizante con superficie lisa, formando una cavidad 12 con pluralidad de ranuras.
El quinto tipo de pistas deslizantes angular, un diseño:
Las dos pistas deslizantes 3 y 6 con una superficie en L invertida 26, formado dos ángulos invertidos con una cavidad 12 rectangular o cuadrada.
El sexto tipo de pistas deslizantes orificios, un diseño:
Cualquiera de las dos pistas deslizantes 3 o 6 con pluralidad de orificios 28 en una hilera, y la otra pista deslizante con superficie lisa, formando una cavidad 12 rectangular con orificios.
4. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante radial 1, las pistas deslizantes 3 y 6 forman dos cavidades 12-1-2, de un solo tipo y diseño de pistas deslizantes o una combinación de tipos y diseños de pistas deslizantes, con un colchón de fluido 13, o dividido por una junta tórica con dos anillos de respaldo 11, formando dos colchones de fluido 13-1-2.
5. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante radial 1, el aro interior 5 la pista deslizante 6 tiene una curvatura esférica 29, y los discos 8-1-2 en el perfil interior 9, va curvado para ajustar con la curvatura de dicha pista.
6. Cojinete deslizante con un colchón de fluido, según la reivindicación 5, caracterizada porque la pista deslizante 6 esférica 29, tiene en cada extremo una cavidad para alojar un anillo de retención 27.
7. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante radial 1, el aro interior 5 es sustituido por el eje 30, que se desplaza en los dos sentidos axiales y gira sobre su eje.
8. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante axial 31, las pistas deslizantes 3 y 6, se forman en los discos 8-1-2 en las caras interior, y en el centro de la superficie exterior del aro interior 5, va el divisor de cavidad 32 que tiene en el perfil una cavidad para alojar una junta tórica con dos anillos de respaldo 11.
9. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante axial 31, tiene cinco tipos de pistas deslizantes, y cada uno de los tipos con una pluralidad de diseños.
El primer tipo de pistas deslizantes básico, tres diseños:
Primer diseño, las pistas deslizantes 3 y 6 cada una con forma de semicírculo 15, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de semicírculo.
Segundo diseño, las pistas deslizantes 3 y 6 cada una con forma de semielipse 16, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de semielipse. Tercer diseño, las pistas deslizantes 3 y 6 cada una con forma rectangular o cuadrada 17, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma cuadrada o rectangular. El segundo tipo de pistas deslizantes araña, tres diseños:
Primer diseño, las pistas deslizantes 3 y 6 cada una con forma de araña de patas de torre 20, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de araña de patas de torre.
Segundo diseño, las pistas deslizantes 3 y 6 cada una con forma de araña de patas de flor 21, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de araña de patas de flor.
Tercer diseño, las pistas deslizantes 3 y 6 cada una con forma de araña de patas de olas 22, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 con forma de araña de patas de olas.
El tercer tipo de pista deslizante guía, un diseño:
Las pistas deslizantes 3 y 6 cada una con una ranura 33 y el divisor de cavidad 32 en las superficies deslizantes S-l-2, cada una con una guía 34, encajando dichas superficies deslizante, formando dos cavidades 12-1-2 con guía.
El cuarto tipo de pistas deslizantes ranura, un diseño:
Las pistas deslizantes 3 y 6 cada una con pluralidad de ranuras en círculos 25, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 rectangulares con pluralidad de ranuras.
El quinto tipo de pista deslizante orificios, un diseño:
Las pistas deslizantes 3 y 6 cada una con pluralidad de orificios 28 en una hilera en círculos, y a través del divisor de cavidad 32 se forman dos cavidades 12-1-2 rectangulares con pluralidad de orificios.
10. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante axial 31, el aro exterior 2 en la superficie interior hacia uno de los extremos lleva el divisor de cavidad 32-1, y el aro interior 5 en la superficie exterior hacia el extremo opuesto de dicho divisor de cavidad 32-1, lleva el divisor de cavidad 32-2.
11. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante axial 31, a través de los divisores de cavidades 32-1-2 y las pistas deslizantes 3 y 6, se forman tres cavidades 12-1-2-3, de un solo tipo y diseño de pistas deslizantes o una combinación de tipos y diseños de pistas deslizantes con la cavidad 12-2 rectangular, o sobre la superficie deslizante S-l del divisor de cavidad 32-1 y la superficie deslizante S-2 del divisor de cavidad 32-2, con un tipo y diseño de pista deslizante.
12. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante de precisión 35, los discos 8-1-2 las pistas deslizantes 3 y 6 de tiene una cavidad en el perfil interior 9 con pluralidad de agujeros y sobre dichas pistas deslizantes una pluralidad de agujeros que se conectan formando una pluralidad de codos 36.
13. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante de precisión 35, el aro interior 5 en la superficie exterior y en centro lleva el divisor de cavidad 32, que tiene en cada superficie deslizante S-l-2, una cavidad 37 para alojar los anillos guías 10.
14. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante de precisión 35, tiene en cada disco 8-1-2 un anillo guía 10 con forma cilindrica, de apoyo para cargas radiales, y en cada cavidad 37 del divisor de cavidad 32, un anillo guía 10 con forma en arandela, de apoyo para cargas axiales.
15. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque los anillos guías tiene tres diferentes perfiles:
Anillos guías con perfil en L 10-a, tiene dos superficies en contacto, la superficie S-l horizontal soporta cargas axiales, la superficie S-2 vertical soporta las cargas radiales.
Anillos guías con perfil rectangular 10-b con forma cilindrica, con una superficie en contacto S-l soporta cargas radiales, y con forma de arandela 10-d soporta cargas axiales.
Anillos guías con perfil oblicuo 10-c, con una superficie S-l curvada, soporta cargas radiales y axiales.
16. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el sistema de estanqueidad por dos juntas tóricas, cada una con dos anillos uno de respaldo y otro de rascador 11, se puede sustituir por sello hidráulico 40 con diseño de perfil para velocidad angular.
17. Cojinete deslizante con un colchón de fluido, según la reivindicación 1, caracterizada porque el cojinete deslizante tiene un conducto que conecta con cada cavidad 12 para el llenado, purgado y presurizado del fluido 13, y un tornillo de tapón 41.
PCT/CO2023/000011 2022-08-13 2023-08-11 Cojinete deslizante con un colchón de fluido, con varias configuraciones WO2024037671A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2022/0011441 2022-08-13
CONC2022/0011441A CO2022011441A1 (es) 2022-08-13 2022-08-13 Cojinete deslizante con un colchón de fluido, con varias configuraciones

Publications (1)

Publication Number Publication Date
WO2024037671A1 true WO2024037671A1 (es) 2024-02-22

Family

ID=83271784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CO2023/000011 WO2024037671A1 (es) 2022-08-13 2023-08-11 Cojinete deslizante con un colchón de fluido, con varias configuraciones

Country Status (2)

Country Link
CO (1) CO2022011441A1 (es)
WO (1) WO2024037671A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CO2022013423A1 (es) * 2022-09-19 2022-10-21 Puentes Teodicelo Gomez Bloque de almohada integrado a un cojinete deslizante con un colchón de fluido

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447841A (en) * 1966-06-03 1969-06-03 Skf Ind Inc Dynamic/static sliding bearing
US4099801A (en) * 1975-12-24 1978-07-11 Kugelfischer Georg Schafer & Co. Heavy-duty hydrostatic bearing
US4834559A (en) * 1983-09-08 1989-05-30 Klein, Schanzlin & Becker Aktiengesellschaft Multiple-face radial plain bearing
CN102305243A (zh) * 2011-08-31 2012-01-04 中国人民解放军国防科学技术大学 自补偿流体静压轴承
US8256964B2 (en) * 2006-05-17 2012-09-04 Sms Siemag Aktiengesellschaft Plain bearing, method for production, and use of the plain bearing
EP2616677B1 (en) * 2010-09-16 2016-04-13 Vestas Wind Systems A/S Convertible bearing for a wind turbine and method for operating same
CN106870562A (zh) * 2017-04-12 2017-06-20 河海大学常州校区 一种轴径表面织构化的锥形动静压轴承组合件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447841A (en) * 1966-06-03 1969-06-03 Skf Ind Inc Dynamic/static sliding bearing
US4099801A (en) * 1975-12-24 1978-07-11 Kugelfischer Georg Schafer & Co. Heavy-duty hydrostatic bearing
US4834559A (en) * 1983-09-08 1989-05-30 Klein, Schanzlin & Becker Aktiengesellschaft Multiple-face radial plain bearing
US8256964B2 (en) * 2006-05-17 2012-09-04 Sms Siemag Aktiengesellschaft Plain bearing, method for production, and use of the plain bearing
EP2616677B1 (en) * 2010-09-16 2016-04-13 Vestas Wind Systems A/S Convertible bearing for a wind turbine and method for operating same
CN102305243A (zh) * 2011-08-31 2012-01-04 中国人民解放军国防科学技术大学 自补偿流体静压轴承
CN106870562A (zh) * 2017-04-12 2017-06-20 河海大学常州校区 一种轴径表面织构化的锥形动静压轴承组合件

Also Published As

Publication number Publication date
CO2022011441A1 (es) 2022-09-20

Similar Documents

Publication Publication Date Title
AU2017216509B2 (en) Sliding part
WO2024037671A1 (es) Cojinete deslizante con un colchón de fluido, con varias configuraciones
US3439962A (en) Reversible sliding bearings of spiral or helical groove type
WO2013176009A1 (ja) 摺動部品
US3361501A (en) Rolling bearings
US3484143A (en) Elastohydrodynamic sliding bearings
CN101696728B (zh) 一种具有跨尺度表面织构特征的液体润滑端面密封结构
EA035325B1 (ru) Гибридный газодинамический радиальный подшипник
JP2015086940A (ja) 転がり軸受
JP2012031979A (ja) スラスト軸受
US3837716A (en) Air, gas or fluid bearings
US3476447A (en) Self-aligning hydrostatic bearing
KR20140023952A (ko) 윈드 터빈에서 사용되는 구름 베어링용 스페이서
CN205605823U (zh) 一种满足正反转的仿鱼鳍型槽端面机械密封结构
CN108916234B (zh) 轴承组件及具有其的压缩机
CN215762795U (zh) 一种带挡圈的高精度转台用重载回转支承装置
US3804474A (en) Journal bearings
RU176026U1 (ru) Подшипник качения
US3754800A (en) Hydrostatic bearing
US3705751A (en) Spherical bearing
US11703079B2 (en) Bearing element with a smooth continuous profile
US3544177A (en) Elastohydrodynamic sliding bearings
CN109563877B (zh) 滚珠轴承和机床用主轴装置
US20230124448A1 (en) Wheelset bearing for a rail vehicle, and rail vehicle
CN203835972U (zh) 滚动轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854566

Country of ref document: EP

Kind code of ref document: A1