WO2013176009A1 - 摺動部品 - Google Patents

摺動部品 Download PDF

Info

Publication number
WO2013176009A1
WO2013176009A1 PCT/JP2013/063498 JP2013063498W WO2013176009A1 WO 2013176009 A1 WO2013176009 A1 WO 2013176009A1 JP 2013063498 W JP2013063498 W JP 2013063498W WO 2013176009 A1 WO2013176009 A1 WO 2013176009A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
groove
ultra
shallow parallel
shallow
Prior art date
Application number
PCT/JP2013/063498
Other languages
English (en)
French (fr)
Inventor
井上 秀行
猛 細江
雄大 根岸
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2014516764A priority Critical patent/JP6076971B2/ja
Priority to EP13793111.9A priority patent/EP2853785B1/en
Priority to CN201380013947.XA priority patent/CN104185755B/zh
Priority to US14/385,913 priority patent/US9964216B2/en
Publication of WO2013176009A1 publication Critical patent/WO2013176009A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3424Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with microcavities

Definitions

  • the present invention relates to a sliding part suitable for a sliding part, for example, a mechanical seal, a bearing, and the like.
  • the present invention relates to a sliding component such as a seal ring or a bearing that requires a fluid to be interposed in the sliding surface to reduce friction and prevent fluid from leaking from the sliding surface.
  • the horizontal axis of FIG. 5 is a viscosity eta ⁇ velocity v / load F N, if the viscosity and the load is constant, the speed. If the viscosity and load are constant, the mixed lubrication region “second: h (gap) ⁇ R (surface roughness)” in the medium speed region and the fluid lubrication region “first 1: h (gap) in the high speed region. ) >> R (surface roughness) ”, the friction coefficient is small, but in the boundary lubrication region“ 3: h (gap) ⁇ 0 ”at the time of start-up, the friction coefficient becomes extremely large.
  • the relationship between the groove depth applied to the sliding surface and the friction coefficient of the sliding surface is as shown in FIG.
  • the relationship between the groove depth and the friction coefficient of the sliding surface varies depending on the sliding speed.
  • the dynamic pressure generating groove applied to the mechanical seal is designed so as to be effective in the normal rotational speed range and sufficiently introduce the fluid into the sliding surface.
  • the machining was performed by machining, blasting, and laser, and the groove depth was several ⁇ m or more. Therefore, although the friction is low in the medium speed range and the high speed range, the load capacity cannot be obtained in the low speed range, and it is difficult to realize the low friction.
  • sufficient dynamic pressure cannot be generated at the time of starting or stopping, sufficient lubrication characteristics cannot be exhibited, and there is a problem that squealing or excessive contact of the sliding surface occurs at the time of starting or stopping.
  • Patent Documents 1 and 2 are intended to generate dynamic pressure between the sliding surfaces by relative rotation of the sliding surface with the mating sliding material. Although there is low friction at high speeds, there is a problem in that sufficient lubrication characteristics cannot be exhibited because sufficient dynamic pressure cannot be generated at low / medium / high speeds or at start / stop. In addition, since the fluid to be sealed is introduced between the sliding surfaces by the dynamic pressure generating groove, an annular groove for preventing leakage is provided on the low pressure side of the sliding surface in order to reduce the amount of leakage. There was a need.
  • the present invention provides a sliding component that can significantly improve the lubrication characteristics at the time of start or stop while reducing the amount of leakage of the sealed fluid, and can be operated by fluid lubrication at the time of rotation to achieve both sealing and lubrication. It is intended to do.
  • the sliding component of the present invention firstly has a submicron step substantially parallel to the sliding surface on one sliding surface of the pair of sliding components that slide relative to each other.
  • a plurality of positive pressure generating mechanisms comprising ultra-shallow parallel grooves having a circumferential shape are provided independently in the circumferential direction, and the ultra-shallow parallel grooves communicate with the high-pressure fluid side and are separated from the low-pressure fluid side by a sealing surface. It is characterized by that.
  • the sealed fluid entering the ultra-shallow parallel grooves forms an extremely thin fluid film, and the pressure of the fluid that can be sealed without increasing leakage is increased by the action of surface tension.
  • the ultra-shallow parallel groove has a groove depth h of 10 nm to 1 ⁇ m, a groove bottom surface roughness a of 1 to 100 nm, and h> a It is characterized by having a relationship.
  • the ultra-shallow parallel groove preferably has a groove depth h of 50 to 500 nm and a surface roughness a of the groove bottom of 1 to 30 nm. It is characterized by a relationship of h> a. According to the second and third features, the lubrication characteristics at the time of starting or stopping can be remarkably improved without further increasing leakage.
  • the ultra-shallow parallel groove is formed of a plurality of grooves having different depths.
  • the fourth feature for example, when a plurality of grooves having different depths are formed adjacent to each other in the circumferential direction, a difference in the generation of positive pressure can be caused depending on the rotation direction of the mating sliding surface.
  • the ability to retain the lubricating liquid is improved by providing a shallow groove on the outer diameter side and a deep groove on the inner diameter side of the sliding surface. can do.
  • the ultra-shallow parallel groove is preferably in the range of 5 to 70% with respect to the area of the sliding surface. It is characterized by being provided by. According to the fifth feature, it is possible to keep the surface pressure of the sliding surface in a good state, reduce leakage, and remarkably improve the lubrication characteristics at the time of starting or stopping.
  • the sliding component according to any one of the first to fifth features.
  • a positive pressure generating mechanism comprising an ultra-shallow parallel groove having a submicron step substantially parallel to the sliding surface is provided on the sliding surface on one side of the pair of sliding parts that slide relative to each other in the circumferential direction.
  • a plurality of the ultra-shallow parallel grooves communicate with the high-pressure fluid side and are separated from the low-pressure fluid side by a sealing surface, so that the sealed fluid that enters the ultra-shallow parallel grooves can be provided.
  • the surface tension can increase the pressure range where the fluid can be sealed without increasing leakage, and during rotation, the relative sliding with the mating sliding surface Since dynamic pressure is generated and the sliding surface can be lifted to the minimum necessary due to the dynamic pressure effect, good lubrication performance can be maintained without increasing leakage, and especially the lubrication characteristics at the start or stop are remarkably improved. can do.
  • the ultra-shallow parallel grooves are formed from a plurality of grooves having different depths, for example, when a plurality of grooves having different depths are formed adjacent to each other in the circumferential direction, Differences in the generation of positive pressure can occur depending on the direction of rotation. Furthermore, for example, when a plurality of grooves having different depths are formed adjacent to each other in the radial direction, the ability to retain the lubricating liquid is improved by providing a shallow groove on the outer diameter side and a deep groove on the inner diameter side of the sliding surface. can do.
  • the ultra-shallow parallel grooves are preferably provided in the range of 5 to 70% of the area of the sliding surface, so that the surface pressure of the sliding surface is kept in a good state and leakage is reduced.
  • the lubrication characteristics at the start or stop can be remarkably improved.
  • a pair of sliding parts is made of an annular body used as a stationary side sliding member or a rotating side sliding member of a mechanical seal that rotates relative to each other.
  • a mechanical seal with significantly improved lubrication characteristics can be obtained.
  • FIG. 4 is a cross-sectional view taken along the line BB. It is a figure explaining a dynamic pressure effect, Comprising: (a) In the case of this invention, (b) shows the case of a prior art.
  • FIG. 5 shows the planar shape of the ultra-shallow parallel groove formed on the sliding surface, where (a) shows a case where the distance between the inner circumference of the ultra-shallow parallel groove and the inner circumference of the sliding surface is narrow, (b) Shows the case where the inner circumference of the ultra-shallow parallel groove and the inner circumference of the sliding surface are wide, and (c) shows a modification of the planar shape of the ultra-shallow parallel groove.
  • 4A and 4B are diagrams for explaining a sliding surface of a sliding component according to Embodiment 2 of the present invention, in which FIG. 5A is a plan view of the sliding surface, and FIG.
  • a horizontal axis shows bearing characteristic number G (dimensionless), and a vertical axis shows friction coefficient f.
  • G bearing characteristic number
  • a vertical axis shows friction coefficient f.
  • Embodiment 1 A sliding component according to Embodiment 1 of the present invention will be described with reference to FIG.
  • the sliding component 1 forms an annular body, and usually a high-pressure sealed fluid exists on one side of the inner and outer circumferences of the sliding surface S of the sliding component 1, The other side is the atmosphere.
  • the sealed fluid can be effectively sealed using the sliding component 1.
  • the sliding component 1 is used in any one of a pair of rotation sealing rings and fixing sealing rings in a mechanical seal device. The sliding surface of the sealing ring for rotation and the sliding surface of the sealing ring for fixing opposite thereto are brought into close contact with each other to seal the sealed fluid existing on either the inner or outer periphery of the sliding surface.
  • the cross-sectional shape of the sliding component 1 is a convex shape as shown in FIG. 1 (c), and the top surface constitutes the sliding surface S.
  • a positive pressure generating mechanism comprising an ultra-shallow parallel groove 2 having a submicron step substantially parallel to the sliding surface S as shown in FIG. A plurality are provided.
  • the ultra-shallow parallel groove 2 is provided near the high-pressure fluid side rather than the entire radial width of the sliding surface S, communicates with the high-pressure fluid side, and is separated from the low-pressure fluid side by the seal surface 3. .
  • the ultra-shallow parallel groove 2 has a groove depth h in the range of 10 nm to 1 ⁇ m, a groove bottom surface roughness a in the range of 1 to 100 nm, and groove depth h> groove bottom surface roughness a. Set to be in a relationship.
  • the ultra-shallow parallel groove 2 preferably has a groove depth h of 50 to 500 nm, a groove bottom surface roughness a of 1 to 30 nm, and groove depth h> groove bottom.
  • the relation of the surface roughness a is set.
  • the ultra-shallow parallel grooves 2 constituting the positive pressure generating mechanism are extremely shallow, for example, the groove depth h is in the range of 10 nm to 1 ⁇ m, and the surface roughness a of the groove bottom is in the range of 1 to 100 nm. Since the groove depth h is greater than the surface roughness a of the groove bottom, the sealed fluid that enters the ultra-shallow parallel grooves 2 forms an extremely thin fluid film, and leaks due to the effect of surface tension. The pressure range in which the fluid can be sealed without increasing can be increased.
  • the positive pressure generating mechanism configured by the ultra-shallow parallel grooves 2 can remarkably improve the lubrication characteristics at the time of starting or stopping without increasing leakage.
  • the ultra-shallow parallel groove 2 is extremely shallow and has a relationship of groove depth h> groove bottom surface roughness a.
  • the distribution of dynamic pressure generated by sliding relative to the surface increases.
  • the dynamic pressure generating groove is formed by the same height as the depth of the groove.
  • the pressure distribution of the dynamic pressure generated by the relative sliding is smaller than that in the case of the present invention because the fluid introduction efficiency is low.
  • fluid introduction efficiency is high and a lubricating effect can be exhibited during rotation.
  • the ultra-shallow parallel grooves 2 are preferably provided in the range of 5 to 70% with respect to the area of the sliding surface S.
  • the ultra-shallow parallel grooves 2 are arranged at 16 equal intervals in the circumferential direction, but the present invention is not limited to this, and may be arranged at, for example, 4 equal intervals or more.
  • the sliding surface S itself is set to such a surface roughness that the ultra-shallow parallel grooves 2 become clear by mirror finishing.
  • Such ultra-shallow parallel grooves are processed by etching, for example.
  • the groove depth h is in the range of 10 nm to 1 ⁇ m
  • the surface roughness a of the groove bottom is in the range of 1 to 100 nm
  • Other processing methods may be used as long as they can be processed.
  • FIG. 3A shows that the ultra-shallow parallel groove 2 has a substantially sector shape, and its outer periphery 4 communicates with the high-pressure fluid side, between the inner periphery 5 of the ultra-shallow parallel groove 2 and the inner periphery 6 of the sliding surface S. Shows the case where is narrow. In the case of this shape, the lubrication characteristics are good, but it is relatively easy to leak.
  • FIG. 3B shows that the ultra-shallow parallel groove 2 has a substantially sector shape, and its outer periphery 4 communicates with the high-pressure fluid side, between the inner periphery 5 of the ultra-shallow parallel groove 2 and the inner periphery 6 of the sliding surface S. Shows a wide case. In the case of this shape, it is difficult to leak, but the lubrication characteristics are relatively poor.
  • FIG. 3C shows a modification of the planar shape of the ultra-shallow parallel groove 2.
  • the ultra-shallow parallel grooves 2 in FIGS. 3 (a) and 3 (b) are substantially fan-shaped, but the ultra-shallow parallel grooves 2 in FIG. 3 (c) are substantially elliptical and have an outer periphery 4 communicating with the high-pressure fluid side.
  • Narrow, diverging toward the inner peripheral side, the inner periphery 5 has an arc-shaped convex toward the low-pressure fluid side, and the vicinity of the arc-shaped apex is narrow between the inner periphery 6 of the sliding surface S, The space between the inner periphery 6 of the sliding surface S is wide on both sides.
  • Embodiment 2 A sliding component according to Embodiment 2 of the present invention will be described with reference to FIG. 4, the same reference numerals as those in the first embodiment indicate the same members as those in the first embodiment, and detailed description thereof is omitted.
  • the ultra-shallow parallel groove 10 includes an ultra-shallow parallel groove (shallow groove) 10-1 having a first step and an ultra-shallow parallel groove (deep groove) 10-2 having a second step adjacent to each other in the circumferential direction. Is formed.
  • the groove depth h of the ultra-shallow parallel groove (deep groove) 10-2 having the second step is in the range of 10 nm to 1 ⁇ m, and the surface roughness a of the groove bottom is in the range of 1 to 100 nm. H> surface roughness a at the bottom of the groove.
  • the depth of the ultra shallow parallel groove (shallow groove) 10-1 having the first step is about half the depth h of the ultra shallow parallel groove (deep groove) 10-2 having the second step. Is set to Also in the ultra shallow parallel groove (shallow groove) 10-1 having the first step, the groove depth is about h / 2> the surface roughness a of the groove bottom portion.
  • the positive pressure is generated differently depending on the rotation direction of the mating sliding surface. That is, when the rotation direction of the mating sliding surface is the direction indicated by the arrow R, a larger positive pressure is generated.
  • the ultra-shallow parallel groove 10 includes an ultra-shallow parallel groove (shallow groove) 10-1 having a first step and an ultra-shallow parallel groove (deep groove) 10-2 having a second step.
  • the ultra shallow parallel groove (deep groove) 10-2 having the second step is formed on the inner diameter side, but the ultra shallow parallel groove (shallow groove) 10-1 having the first step is formed on the inner diameter side. May be disposed on the outer diameter side and may be adjacent to each other. In this case, the function of retaining the lubricating liquid on the seal surface 3 can be improved. Therefore, it is suitable for the planar shallow shallow parallel groove shown in FIG.
  • the actions and effects of the sliding component according to the embodiment of the present invention are as follows.
  • the ultra-shallow parallel grooves 2 constituting the positive pressure generating mechanism are extremely shallow, for example, the groove depth h is in the range of 10 nm to 1 ⁇ m, and the surface roughness a of the groove bottom is in the range of 1 to 100 nm. Since the groove depth h is greater than the surface roughness a of the groove bottom, the sealed fluid that enters the ultra-shallow parallel grooves 2 forms an extremely thin fluid film, and leaks due to the effect of surface tension.
  • the pressure range in which the fluid can be sealed without increasing can be increased.
  • dynamic pressure is generated by relative sliding with the mating sliding surface, and the sliding surface is lifted by the dynamic pressure effect.
  • the minimum required positive pressure generating mechanism constituted by the ultra-shallow parallel grooves 2 can remarkably improve the lubrication characteristics at the start or stop without increasing the leakage.
  • the ultra-shallow parallel groove 2 preferably has a groove depth h of 50 to 500 nm, a groove bottom surface roughness a of 1 to 30 nm, and groove depth h> groove bottom. Since the relation of the surface roughness a is set, the lubrication characteristics at the time of starting or stopping can be remarkably improved without further increasing the leakage.
  • channel 2 is formed from several groove
  • the direction can make a difference in the generation of positive pressure.
  • a plurality of grooves having different depths are formed adjacent to each other in the radial direction, for example, when the shallow groove 10-1 is formed on the outer side and the deep groove 10-2 is formed on the inner diameter side, Therefore, the lubricating effect on the sliding surface S can be improved.
  • the ultra-shallow parallel grooves 2 are preferably provided in a range of 5 to 70% with respect to the area of the sliding surface S, the surface pressure of the sliding surface S is maintained in a good state and leakage is reduced. In addition, it is possible to remarkably improve the lubrication characteristics when starting or stopping.
  • a pair of sliding parts is an annular body that is used as a stationary sliding member or a rotating sliding member of a mechanical seal that rotates relative to each other, lubrication characteristics at the time of starting or stopping without increasing leakage It is possible to obtain a mechanical seal that is significantly improved.
  • the sliding component is used as one of the pair of rotation sealing rings and the fixing sealing ring in the mechanical seal device has been described, but lubrication is performed on one axial side of the cylindrical sliding surface. It can also be used as a sliding part of a bearing that slides on a rotating shaft while sealing oil.
  • the present invention can also be applied to a case where the inner peripheral side is a high-pressure fluid. It is only necessary to communicate with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 被密封流体の漏洩量をより少なくしつつ、起動または停止時の潤滑特性を著しく向上させ、回転時には流体潤滑で作動させ、密封と潤滑を両立させることのできる摺動部品を提供する。 一対の摺動部品の互いに相対摺動する一方側の摺動面には、前記摺動面とほぼ平行にサブミクロンの段差を有する極浅平行溝からなる正圧発生機構が周方向に独立して複数設けられ、前記極浅平行溝は、高圧流体側とは連通し、低圧流体側とはシール面により隔離されていることを特徴としている。

Description

摺動部品
 本発明は、たとえば、メカニカルシール、軸受、その他、摺動部に適した摺動部品に関する。特に、摺動面に流体を介在させて摩擦を低減させるとともに、摺動面から流体が漏洩するのを防止する必要のある密封環または軸受などの摺動部品に関する。 
 摺動部品の一例である、メカニカルシールにおいて、密封性を長期的に維持させるためには、「密封」と「潤滑」という相反する条件を両立させなければならない。特に、近年においては、環境対策などのために、被密封流体の漏れ防止を図りつつ、機械的損失を低減させるべく、より一層、低摩擦化の要求が高まっている。低摩擦化の手法としては、回転により摺動面間に動圧を発生させ、液膜を介在させた状態で摺動する、いわゆる流体潤滑状態とすることにより達成できる。しかしながら、この場合、摺動面間に正圧が発生するため、流体が正圧部分から摺動面外へ流出する。軸受でいう側方漏れであり、シールの場合の漏れに該当する。シール面外周側に密封流体、内周側に大気があり、外周側の流体を密封している場合(「インサイド形」といわれている。)の内周側漏れ量は、次の式により表される。 
Figure JPOXMLDOC01-appb-M000001
 Q:摺動面内径r1における内周側漏れ量(マイナスで漏れ方向) 
 h:隙間高さ 
 η:流体粘度 
 p:圧力 
 上記式より、流体潤滑を促進し、動圧を発生させ、液膜を形成させるほど、内周端側の圧力勾配∂p/∂rが大きくなり、hが大きくなった結果、漏れ量Qが増大することがわかる。 
 したがって、シールの場合、漏れ量Qを減少させるには、隙間hおよび圧力勾配∂p/∂rを小さくする必要がある。 
 また、メカニカルシールの摩擦特性と類似の技術であるすべり軸受の摩擦特性については、図5に示す「ストライベック曲線」というものが知られている(参考文献:講談社、「トライボロジー」H.チコス著)。 
 図5の横軸は、粘度η×速度v/荷重Fであって、粘度及び荷重が一定の場合、速度になる。今、粘度及び荷重を一定とした場合、中速域である混合潤滑領域「第2:h(隙間)≒R(表面粗さ)」及び高速域である流体潤滑領域「第1:h(隙間)>>R(表面粗さ)」では、摩擦係数は小さいが、起動時である境界潤滑領域「第3:h(隙間)→0」では摩擦係数はきわめて大きくなる。 
 一方、本願の発明者らの数値解析によれば、メカニカルシールにおいて、摺動面に施された溝深さと摺動面の摩擦係数の関係は、図6に示すとおりであり、摺動面の摺動速度によって溝深さと摺動面の摩擦係数の関係は異なっている。 
 そして、一般に、メカニカルシールに施される動圧発生溝は、常用回転数域で効果が出るように、また十分に流体を摺動面へ導入するという観点で設計されており、動圧発生溝の加工は、機械加工、ブラスト、及びレーザで行われ、数μm以上の溝深さであった。そのため、中速域及び高速域では低摩擦になるが、低速域では負荷容量を得ることはできず、低摩擦を実現することは困難であった。特に、起動または停止時に十分な動圧が発生できないために十分な潤滑特性を発揮できず、起動または停止時に鳴きの発生や摺動面の過度な接触が生起されるという問題があった。 
 また、近年、摺動面間への被封止流体の導入及びその保持を良好に行えるようにすることで、過大な漏洩を発生させることなく、摩擦係数を低減させるようにしたメカニカルシール摺動材として、摺動面に相手摺動材との相対回転によって摺動面間に動圧を生成する動圧生成溝が周方向に複数設けられたものにおいて、動圧生成溝が摺動方向に対して傾斜角を有する直線状の溝あるいは曲線状のスパイラル溝から形成され、動圧生成溝の加工がフェムト秒レーザによって行われ、溝深さが1μm以下のものも提案されている(例えば、特許文献1及び2参照。)。 
 しかし、特許文献1及び2に記載の発明は、摺動面に相手摺動材との相対回転によって摺動面間に動圧を生成することを目的とするものであって、高圧で中・高速域では低摩擦になるが、低圧で中・高速域、または起動・停止時に十分な動圧が発生できないために十分な潤滑特性を発揮できないという問題があった。また、動圧生成溝により摺動面間への被封止流体の導入を図るものであるため、漏洩量を少なくするためには摺動面の低圧側に漏洩防止用の環状溝などを設ける必要があった。 
国際公開第2009/087995号 特開2011-196429号公報
 本発明は、被密封流体の漏洩量をより少なくしつつ、起動または停止時の潤滑特性を著しく向上させ、回転時には流体潤滑で作動させ、密封と潤滑を両立させることのできる摺動部品を提供することを目的とするものである。 
 上記目的を達成するため本発明の摺動部品は、第1に、一対の摺動部品の互いに相対摺動する一方側の摺動面には、前記摺動面とほぼ平行にサブミクロンの段差を有する極浅平行溝からなる正圧発生機構が周方向に独立して複数設けられ、前記極浅平行溝は、高圧流体側とは連通し、低圧流体側とはシール面により隔離されていることを特徴としている。 
 第1の特徴により、極浅平行溝内に浸入する被密封流体が極薄の流体膜を形成し、表面張力の作用により、漏れを増大することなく流体をシールできる圧力域を高くすることができ、回転時には、相手側摺動面との相対的な摺動により動圧が発生され、動圧効果で摺動面を必要最低限浮上させることができるので、漏れを増大することなく良好な潤滑性能を維持でき、特に、起動または停止時の潤滑特性を著しく向上することができる。 
 また、本発明の摺動部品は、第2に、前記極浅平行溝は、溝深さhが10nm~1μmであり、溝底部の表面粗さaが1~100nmであって、h>aの関係にあることを特徴としている。 
 また、本発明の摺動部品は、第3に、前記極浅平行溝は、好ましくは、溝深さhが50~500nmであり、溝底部の表面粗さaが1~30nmであって、h>aの関係にあることを特徴としている。 
 第2及び第3の特徴により、より一層、漏れを増大することなく、起動または停止時の潤滑特性を著しく向上することができる。 
 また、本発明の摺動部品は、第4に、第1乃至第3のいずれか特徴において、前記極浅平行溝は、深さの異なる複数の溝から形成されていることを特徴としている。 
 第4の特徴により、例えば、深さの異なる複数の溝を周方向に隣接して形成した場合、相手側摺動面の回転方向により正圧の発生に差異をもたらすことができる。さらに、例えば、深さの異なる複数の溝を径方向に隣接して形成した場合、摺動面の外径側に浅溝を、内径側に深溝を設けることで、潤滑液保持能力機能が向上することができる。 
 また、本発明の摺動部品は、第5に、第1乃至第4のいずれかの特徴において、前記極浅平行溝は、摺動面の面積に対し、好ましくは、5~70%の範囲で設けられることを特徴としている。 
 第5の特徴により、摺動面の面圧を良好な状態に保つとともに、漏れを少なくし、起動または停止時の潤滑特性を著しく向上することができる。 
 また、本発明の摺動部品は、第6に、第1乃至第5のいずれかの特徴において、一対の摺動部品が互いに相対回転するメカニカルシールの静止側摺動部材又は回転側摺動部材として使用される環状体からなることを特徴としている。 
 第6の特徴により、漏れを増大することなく、起動または停止時の潤滑特性が著しく向上されたメカニカルシールを得ることができる。 
 本発明は、以下のような優れた効果を奏する。 
(1)一対の摺動部品の互いに相対摺動する一方側の摺動面には、前記摺動面とほぼ平行にサブミクロンの段差を有する極浅平行溝からなる正圧発生機構が周方向に独立して複数設けられ、前記極浅平行溝は、高圧流体側とは連通し、低圧流体側とはシール面により隔離されていることにより、極浅平行溝内に浸入する被密封流体が極薄の流体膜を形成し、表面張力の作用により、漏れを増大することなく流体をシールできる圧力域を高くすることができ、回転時には、相手側摺動面との相対的な摺動により動圧が発生され、動圧効果で摺動面を必要最低限浮上させることができるので、漏れを増大することなく良好な潤滑性能を維持でき、特に、起動または停止時の潤滑特性を著しく向上することができる。 
(2)極浅平行溝は、深さの異なる複数の溝から形成されていることにより、例えば、深さの異なる複数の溝を周方向に隣接して形成した場合、相手側摺動面の回転方向により正圧の発生に差異をもたらすことができる。さらに、例えば、深さの異なる複数の溝を径方向に隣接して形成した場合、摺動面の外径側に浅溝を、内径側に深溝を設けることで、潤滑液保持能力機能が向上することができる。 
(3)極浅平行溝は、摺動面の面積に対し、好ましくは、5~70%の範囲で設けられることにより、摺動面の面圧を良好な状態に保つとともに、漏れを少なくし、起動または停止時の潤滑特性を著しく向上することができる。 
(4)一対の摺動部品が互いに相対回転するメカニカルシールの静止側摺動部材又は回転側摺動部材として使用される環状体からなることにより、漏れを増大することなく、起動または停止時の潤滑特性が著しく向上されたメカニカルシールを得ることができる。 
本発明の実施の形態1に係る摺動部品の摺動面を説明するためのものであって、(a)は摺動面の平面図、(b)はA-A断面図、(c)はB-B断面図である。 動圧効果を説明する図であって、(a)本発明の場合を、(b)は従来技術の場合を示すものである。 摺動面に形成された極浅平行溝の平面形状を示すものであって、(a)は極浅平行溝の内周と摺動面の内周との間が狭い場合を、(b)は極浅平行溝の内周と摺動面の内周との間が広い場合を示したものであり、また、(c)は極浅平行溝の平面形状の変形例を示したものである。 本発明の実施の形態2に係る摺動部品の摺動面を説明するためのものであって、(a)は摺動面の平面図、(b)はC-C断面図である。 軸受の摩擦特性を説明する図であって、横軸が軸受け特性数G(無次元)、縦軸が摩擦係数fを示している。 メカニカルシールにおいて、摺動面に施された溝深さと摺動面の摩擦係数の関係を摺動面の摺動速度に応じて求めたものである。
 本発明に係る摺動部品を実施するための形態を図面を参照しながら詳細に説明するが、本発明はこれに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加えうるものである。  
〔実施形態1〕 
 本発明の実施の形態1に係る摺動部品を図1を参照しながら説明する。 
 図1(a)に示すように、摺動部品1は環状体を成しており、通常、摺動部品1の摺動面Sの内外周の一方側に高圧の被密封流体が存在し、また、他方側は大気である。 
 そして、この被密封流体を摺動部品1を用いて効果的にシールすることができる。例えば、この摺動部品1をメカニカルシール装置における一対の回転用密封環及び固定用密封環のいずれかに用いる。回転用密封環の摺動面と、これに対向する固定用密封環の摺動面とを密接させて摺動面の内外周のいずれか一方に存在する被密封流体をシールする。また、円筒状摺動面の軸方向一方側に潤滑油を密封しながら回転軸と摺動する軸受の摺動部品として利用することも可能である。 
 図1においては、説明の都合上、外周側に高圧の被密封流体が存在する場合について説明する。 
 図示例では、摺動部品1の断面形状は、図1(c)に示すように凸形状をしており、その頂面が摺動面Sを構成している。この摺動面Sには、図1(b)に示すような摺動面Sとほぼ平行にサブミクロンの段差を有する極浅平行溝2からなる正圧発生機構が、周方向に独立して複数設けられている。極浅平行溝2は、摺動面Sの径方向の幅全体ではなく、高圧流体側寄りに設けられるもので、高圧流体側と連通し、低圧流体側とはシール面3により隔離されている。 
 極浅平行溝2は、溝深さhが10nm~1μmの範囲にあり、溝底部の表面粗さaが1~100nmの範囲にあって、溝深さh>溝底部の表面粗さaの関係にあるように設定される。 
 また、極浅平行溝2は、好ましくは、溝深さhが50~500nmの範囲であり、溝底部の表面粗さaが1~30nmの範囲であって、溝深さh>溝底部の表面粗さaの関係に設定される。 
 ここで、本発明における「極浅平行溝からなる正圧発生機構」について説明する。 
 正圧発生機構を構成する極浅平行溝2は、極浅であること、例えば、溝深さhが10nm~1μmの範囲にあり、溝底部の表面粗さaが1~100nmの範囲であって、溝深さh>溝底部の表面粗さaの関係にあるため、極浅平行溝2内に浸入する被密封流体が極薄の流体膜を形成し、表面張力の作用により、漏れを増大することなく流体をシールできる圧力域を高くすることができる。回転時には、相手側摺動面との相対的な摺動により動圧が発生され、動圧効果で摺動面を浮上させる。このように、極浅平行溝2により構成された正圧発生機構により、漏れを増大することなく、起動または停止時の潤滑特性を著しく向上することができる。 
 回転時には、相手側摺動面との相対的な摺動により動圧が発生され、動圧効果で摺動面を浮上させる点について、図2に基づいて説明する。 
 図2(a)に示すように、本発明の場合、極浅平行溝2は、極浅であって、溝深さh>溝底部の表面粗さaの関係にあるため、相手側摺動面との相対的な摺動により発生する動圧の圧力分布は大きくなる。 
 一方、図2(b)に示すように、従来技術の場合、動圧発生溝は、溝の深さとほぼ同じ高さ分、動圧発生溝が形成されているため、相手側摺動面との相対的な摺動により発生する動圧の圧力分布は、流体の導入効率が低いため本発明の場合に比べて小さい。 
 本発明においては、極浅であるため起動又は停止時における漏れが少なく、また、極浅であるにもかかわらず、回転時においては、流体の導入効率が高く潤滑効果を発揮することができる。 
 また、極浅平行溝2は、摺動面Sの面積に対し、好ましくは、5~70%の範囲で設けられる。図示の例では、極浅平行溝2は周方向に16等配に配設されているが、これに限定されることなく、例えば、4等配以上に配設されてもよい。 
 摺動面S自体は鏡面加工によって、極浅平行溝2が明瞭になる程度の表面粗さに設定される。 
 このような極浅平行溝は、例えば、エッチングによって加工される。しかし、エッチングに限らず、溝深さhが10nm~1μmの範囲にあり、溝底部の表面粗さaが1~100nmの範囲にあって、溝深さh>溝底部の表面粗さaになるように加工できるものであれば他の加工方法でもよい。 
  次に、摺動面Sに設けられた極浅平行溝2の形状について、図3を参照しながら説明する。 
 図3(a)は、極浅平行溝2は略扇形をなし、その外周4は高圧流体側に連通し、極浅平行溝2の内周5と摺動面Sの内周6との間が狭い場合を示したものである。この形状の場合、潤滑特性は良いが、比較的漏れやすくなる。 
 図3(b)は、極浅平行溝2は略扇形をなし、その外周4は高圧流体側に連通し、極浅平行溝2の内周5と摺動面Sの内周6との間が広い場合を示したものである。この形状の場合、漏れにくくなるが、潤滑特性は比較的悪くなる。 
 図3(c)は、極浅平行溝2の平面形状の変形例を示したものである。 
 図3(a)(b)の極浅平行溝2は略扇型であるが、図3(c)の極浅平行溝2は、略楕円形をなし、高圧流体側と連通する外周4が狭く、内周側に向かって末広がりをなし、内周5は低圧流体側に向かって円弧状の凸をなし、円弧状の頂点付近は摺動面Sの内周6との間が狭く、その両側では摺動面Sの内周6との間が広くなっている。この形状の場合、高圧流体側から極浅平行溝2内への浸入はしづらいが、一旦浸入した被密封流体は溝内に閉じ込められ、低圧流体側には漏れにくい。このため、比較的漏れにくく、特に停止時の潤滑特性は良い。 
〔実施形態2〕 
 本発明の実施の形態2に係る摺動部品を図4を参照しながら説明する。 
 なお、図4において、実施の形態1の符号と同じ符号は実施の形態1と同じ部材を示しており、詳しい説明は省略する。 
 摺動面Sには、図4(b)に示すような摺動面Sとほぼ平行にサブミクロンの段差を有する極浅平行溝10からなる正圧発生機構が、周方向に独立して複数設けられている。極浅平行溝10は、1段目の段差を有する極浅平行溝(浅溝)10-1と2段目の段差を有する極浅平行溝(深溝)10-2が周方向に隣接して形成されている。2段目の段差を有する極浅平行溝(深溝)10-2の溝深さhは10nm~1μmの範囲にあり、溝底部の表面粗さaは1~100nmの範囲であって、溝深さh>溝底部の表面粗さaの関係にある。また、1段目の段差を有する極浅平行溝(浅溝)10-1の溝深さは2段目の段差を有する極浅平行溝(深溝)10-2の溝深さhの約半分に設定されている。この1段目の段差を有する極浅平行溝(浅溝)10-1においても、溝深さ約h/2>溝底部の表面粗さaの関係にある。 
 極浅平行溝が図4(b)のような2つの段差を有する場合、相手側摺動面の回転方向により正圧の発生に差異が生じる。すなわち、相手側摺動面の回転方向が矢印Rで示す方向である場合、より大きな正圧が発生する。 
 図4では、極浅平行溝10が、1段目の段差を有する極浅平行溝(浅溝)10-1と2段目の段差を有する極浅平行溝(深溝)10-2が周方向に隣接して形成されているが、2段目の段差を有する極浅平行溝(深溝)10-2を内径側に、1段目の段差を有する極浅平行溝(浅溝)10-1を外径側に配設し、両者を隣接させるようにしてもよい。この場合、シール面3の潤滑液保持能力機能が向上することができる。したがって、図3(a)に示した平面形状の極浅平行溝に適している。 
 本発明の実施の形態に係る摺動部品の作用・効果は以下のとおりである。 
 正圧発生機構を構成する極浅平行溝2は、極浅であること、例えば、溝深さhが10nm~1μmの範囲にあり、溝底部の表面粗さaが1~100nmの範囲であって、溝深さh>溝底部の表面粗さaの関係にあるため、極浅平行溝2内に浸入する被密封流体が極薄の流体膜を形成し、表面張力の作用により、漏れを増大することなく流体をシールできる圧力域を高くすることができる。回転時には、相手側摺動面との相対的な摺動により動圧が発生され、動圧効果で摺動面を浮上させる。このように、極浅平行溝2により構成された必要最低限の正圧発生機構により、漏れを増大することなく、起動または停止時の潤滑特性を著しく向上することができる。 
 また、極浅平行溝2は、好ましくは、溝深さhが50~500nmの範囲であり、溝底部の表面粗さaが1~30nmの範囲であって、溝深さh>溝底部の表面粗さaの関係に設定されるため、より一層、漏れを増大することなく、起動または停止時の潤滑特性を著しく向上することができる。 
 また、極浅平行溝2は、深さの異なる複数の溝から形成されているため、例えば、深さの異なる複数の溝を周方向に隣接して形成した場合、相手側摺動面の回転方向により正圧の発生に差異をもたらすことができる。さらに、例えば、深さの異なる複数の溝を径方向に隣接して形成した場合、例えば、浅溝10-1を外形側、深溝10-2を内径側に形成した場合、潤滑液保持能力機能が向上することができるので、摺動面Sでの潤滑効果を良好なものとすることができる。 
 また、極浅平行溝2は、摺動面Sの面積に対し、好ましくは、5~70%の範囲で設けられるため、摺動面Sの面圧を良好な状態に保つとともに、漏れを少なくし、起動または停止時の潤滑特性を著しく向上することができる。 
 また、一対の摺動部品を互いに相対回転するメカニカルシールの静止側摺動部材又は回転側摺動部材として使用される環状体とした場合、漏れを増大することなく、起動または停止時の潤滑特性が著しく向上されたメカニカルシールを得ることができる。 
 以上、本発明の実施の形態を図面により説明してきたが、具体的な構成はこれら実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 
 例えば、前記実施の形態では、摺動部品をメカニカルシール装置における一対の回転用密封環及び固定用密封環のいずれかに用いる例について説明したが、円筒状摺動面の軸方向一方側に潤滑油を密封しながら回転軸と摺動する軸受の摺動部品として利用することも可能である。 
 また、例えば、前記実施の形態では、外周側に高圧の被密封流体が存在する場合について説明したが、内周側が高圧流体の場合にも適用でき、その場合、極浅平行溝を内周側に連通させて配設すればよい。 
  1  摺動部品 
  2  極浅平行溝 
  3  シール面 
  4  極浅平行溝の外周 
  5  極浅平行溝の内周 
  6  摺動面の内周 
 10  極浅平行溝 
 S   摺動面 

Claims (6)

  1.  一対の摺動部品の互いに相対摺動する一方側の摺動面には、前記摺動面とほぼ平行にサブミクロンの段差を有する極浅平行溝からなる正圧発生機構が周方向に独立して複数設けられ、前記極浅平行溝は、高圧流体側とは連通し、低圧流体側とはシール面により隔離されていることを特徴とする摺動部品。 
  2.  前記極浅平行溝は、溝深さhが10nm~1μmであり、溝底部の表面粗さaが1~100nmであって、h>aの関係にあることを特徴とする請求項1記載の摺動部品。 
  3.  前記極浅平行溝は、好ましくは、溝深さhが50~500nmであり、溝底部の表面粗さaが1~30nmであって、h>aの関係にあることを特徴とする請求項2記載の摺動部品。 
  4.  前記極浅平行溝は、深さの異なる複数の溝から形成されていることを特徴とする請求項1乃至3のいずれか1項に記載の摺動部品。 
  5.  前記極浅平行溝は、摺動面の面積に対し、好ましくは、5~70%の範囲で設けられることを特徴とする請求項1乃至4のいずれか1項に記載の摺動部品。 
  6.  一対の摺動部品が互いに相対回転するメカニカルシールの静止側摺動部材又は回転側摺動部材として使用される環状体からなることを特徴とする請求項1乃至5のいずれか1項に記載の摺動部品。 
PCT/JP2013/063498 2012-05-21 2013-05-15 摺動部品 WO2013176009A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014516764A JP6076971B2 (ja) 2012-05-21 2013-05-15 摺動部品
EP13793111.9A EP2853785B1 (en) 2012-05-21 2013-05-15 Sliding component
CN201380013947.XA CN104185755B (zh) 2012-05-21 2013-05-15 滑动部件
US14/385,913 US9964216B2 (en) 2012-05-21 2013-05-15 Sliding component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-116033 2012-05-21
JP2012116033 2012-05-21

Publications (1)

Publication Number Publication Date
WO2013176009A1 true WO2013176009A1 (ja) 2013-11-28

Family

ID=49623703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063498 WO2013176009A1 (ja) 2012-05-21 2013-05-15 摺動部品

Country Status (5)

Country Link
US (1) US9964216B2 (ja)
EP (1) EP2853785B1 (ja)
JP (1) JP6076971B2 (ja)
CN (1) CN104185755B (ja)
WO (1) WO2013176009A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062445A (zh) * 2014-06-26 2016-10-26 伊格尔工业股份有限公司 滑动部件
JPWO2015125950A1 (ja) * 2014-02-24 2017-03-30 イーグル工業株式会社 摺動部品および摺動部品の加工方法
WO2020166589A1 (ja) * 2019-02-14 2020-08-20 イーグル工業株式会社 摺動部品
US11221071B2 (en) 2017-09-05 2022-01-11 Eagle Industry Co., Ltd. Sliding component
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component
US11821461B2 (en) 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713376B (zh) * 2010-03-15 2015-09-09 伊格尔工业股份有限公司 滑动件
US9234594B2 (en) * 2012-05-21 2016-01-12 Eagle Industry Co., Ltd. Sliding component
FR3009124A1 (fr) * 2013-07-24 2015-01-30 Areva Np Glace pour garniture d'etancheite pour systeme d'etancheite d'arbre
WO2015031474A1 (en) * 2013-08-27 2015-03-05 Eaton Corporation Seal ring composite for improved hydrodynamic seal performance
EP3270016B1 (en) * 2015-03-11 2022-03-02 Eagle Industry Co., Ltd. Method of processing a sliding component
US11125334B2 (en) 2016-12-21 2021-09-21 Eaton Intelligent Power Limited Hydrodynamic sealing component and assembly
WO2018212108A1 (ja) * 2017-05-19 2018-11-22 イーグル工業株式会社 摺動部品
CN107228196B (zh) * 2017-07-06 2018-08-21 浙江工业大学 强化传热型三元弯扭微凸体端面机械密封结构
CN107269847B (zh) * 2017-07-11 2019-10-11 浙江工业大学 龟背状织构形状的仿贝壳型槽液体润滑机械密封结构
US11255205B2 (en) * 2019-03-05 2022-02-22 Raytheon Technologies Corporation Systems and methods for improving start up wear performance of carbon seals
US11913454B2 (en) * 2020-07-06 2024-02-27 Eagle Industry Co., Ltd. Sliding component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260009A (ja) * 1994-03-22 1995-10-13 Nippon Pillar Packing Co Ltd 非接触形軸封装置
JP2009014183A (ja) * 2007-07-09 2009-01-22 Canon Machinery Inc 摺動面構造
JP2009087995A (ja) 2007-09-27 2009-04-23 Hitachi Via Mechanics Ltd マスクレス露光装置
WO2011115073A1 (ja) * 2010-03-15 2011-09-22 イーグル工業株式会社 摺動部材
JP2011196429A (ja) 2010-03-18 2011-10-06 Eagle Industry Co Ltd メカニカルシールの摺動材及びメカニカルシール

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822066A (en) * 1969-03-07 1974-07-02 Caterpillar Tractor Co Seal
US3640541A (en) * 1970-06-12 1972-02-08 Koppers Co Inc Hydrodynamic lift-type face seal
US3804424A (en) * 1972-04-24 1974-04-16 Crane Packing Co Gap seal with thermal and pressure distortion compensation
US4212475A (en) * 1979-01-15 1980-07-15 Crane Packing Co. Self aligning spiral groove face seal
US4973068A (en) * 1988-03-15 1990-11-27 University Of New Mexico Differential surface roughness dynamic seals and bearings
US4834400A (en) * 1988-03-15 1989-05-30 University Of New Mexico Differential surface roughness dynamic seals and bearings
DE4209484A1 (de) * 1991-06-12 1993-10-21 Heinz Konrad Prof Dr I Mueller Gleitringdichtung mit Rückförderwirkung
DE4303237A1 (de) * 1992-02-06 1993-10-21 Eagle Ind Co Ltd Gasdichtung
DE10015633A1 (de) * 2000-03-29 2001-10-04 Mitsubishi Polyester Film Gmbh Siegelfähige biaxial orientierte Polyesterfolie
US7194803B2 (en) * 2001-07-05 2007-03-27 Flowserve Management Company Seal ring and method of forming micro-topography ring surfaces with a laser
AU2003227434A1 (en) * 2002-04-23 2003-11-10 Nsk Ltd. Seal device for water pump, rotation supporting device for water pump, and assembly method for water pump
WO2006051702A1 (ja) * 2004-11-09 2006-05-18 Eagle Industry Co., Ltd. メカニカルシール装置
JP5278970B2 (ja) * 2008-01-11 2013-09-04 イーグル工業株式会社 メカニカルシール摺動材及びメカニカルシール
WO2012046749A1 (ja) * 2010-10-06 2012-04-12 イーグル工業株式会社 摺動部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260009A (ja) * 1994-03-22 1995-10-13 Nippon Pillar Packing Co Ltd 非接触形軸封装置
JP2009014183A (ja) * 2007-07-09 2009-01-22 Canon Machinery Inc 摺動面構造
JP2009087995A (ja) 2007-09-27 2009-04-23 Hitachi Via Mechanics Ltd マスクレス露光装置
WO2011115073A1 (ja) * 2010-03-15 2011-09-22 イーグル工業株式会社 摺動部材
JP2011196429A (ja) 2010-03-18 2011-10-06 Eagle Industry Co Ltd メカニカルシールの摺動材及びメカニカルシール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015125950A1 (ja) * 2014-02-24 2017-03-30 イーグル工業株式会社 摺動部品および摺動部品の加工方法
CN106062445A (zh) * 2014-06-26 2016-10-26 伊格尔工业股份有限公司 滑动部件
US11221071B2 (en) 2017-09-05 2022-01-11 Eagle Industry Co., Ltd. Sliding component
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component
WO2020166589A1 (ja) * 2019-02-14 2020-08-20 イーグル工業株式会社 摺動部品
US11767916B2 (en) 2019-02-14 2023-09-26 Eagle Industry Co., Ltd. Sliding components
US11821461B2 (en) 2019-02-15 2023-11-21 Eagle Industry Co., Ltd. Sliding components

Also Published As

Publication number Publication date
JP6076971B2 (ja) 2017-02-08
US9964216B2 (en) 2018-05-08
JPWO2013176009A1 (ja) 2016-01-12
CN104185755B (zh) 2016-08-17
US20150097341A1 (en) 2015-04-09
EP2853785A1 (en) 2015-04-01
EP2853785B1 (en) 2017-08-02
CN104185755A (zh) 2014-12-03
EP2853785A4 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP6076971B2 (ja) 摺動部品
JP6080845B2 (ja) 摺動部品
JP6861730B2 (ja) しゅう動部品
JP5995967B2 (ja) 摺動部品
US11603934B2 (en) Sliding component
US10132411B2 (en) Sliding component
EP3321548B1 (en) Sliding part
US9677670B2 (en) Sliding parts
WO2020166589A1 (ja) 摺動部品
US20150123350A1 (en) Sliding component
JP6138132B2 (ja) 摺動部品
JPWO2019221227A1 (ja) シールリング
KR20190053946A (ko) 슬라이딩 부품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516764

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013793111

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14385913

Country of ref document: US

Ref document number: 2013793111

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE