WO2024036992A1 - 风路组件及制冷设备 - Google Patents

风路组件及制冷设备 Download PDF

Info

Publication number
WO2024036992A1
WO2024036992A1 PCT/CN2023/087217 CN2023087217W WO2024036992A1 WO 2024036992 A1 WO2024036992 A1 WO 2024036992A1 CN 2023087217 W CN2023087217 W CN 2023087217W WO 2024036992 A1 WO2024036992 A1 WO 2024036992A1
Authority
WO
WIPO (PCT)
Prior art keywords
air duct
air
component
return air
outlet
Prior art date
Application number
PCT/CN2023/087217
Other languages
English (en)
French (fr)
Inventor
王剑
胡明松
许婷婷
朱涛
Original Assignee
湖北美的电冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北美的电冰箱有限公司 filed Critical 湖北美的电冰箱有限公司
Publication of WO2024036992A1 publication Critical patent/WO2024036992A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Definitions

  • the present application relates to the field of refrigeration technology, and in particular to an air duct assembly and refrigeration equipment.
  • the wide-range temperature change of refrigeration equipment usually adopts three systems or a single system.
  • the three systems namely refrigeration, freezing, and temperature change, all have independent evaporators.
  • the manufacturing process of such refrigeration equipment is relatively complex, and the volume ratio of the refrigeration equipment is relatively large. Low.
  • the evaporator is located inside the freezer, and the evaporators are arranged in 4 or 5 rows, which affects the volume of the freezer.
  • This application aims to solve at least one of the technical problems existing in the related art. To this end, this application proposes an air duct assembly to solve the problem of low volume ratio in existing refrigeration equipment.
  • This application also proposes a refrigeration equipment.
  • the air duct component is arranged in the box body.
  • An accommodating cavity is formed inside the air duct component.
  • An evaporator component is provided in the accommodating cavity.
  • the air duct component is formed with a first inlet communicating with the accommodating cavity. Return air outlet and first air supply outlet;
  • the air supply pipe component is connected with the first air supply port
  • the return air duct component is connected with the first return air outlet.
  • the refrigeration equipment according to the second embodiment of the present application includes a casing, a tank body and an air duct assembly as described in any one of the above.
  • the tank body is arranged in the casing, and the air supply duct component is connected to the casing.
  • the return air duct component is disposed between the housing and the box body.
  • the air duct assembly of the embodiment of the present application by arranging the evaporator component inside the air duct component, the ineffective space inside the air duct component is effectively utilized and the volumetric ratio of the refrigeration equipment is improved.
  • the air duct system composed of air duct components and air supply duct components minimizes the air circulation path and improves cooling efficiency.
  • Figure 1 is a schematic structural diagram of an air duct assembly provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the air supply duct component and the return air duct component provided by the embodiment of the present application;
  • Figure 3 is a schematic structural view from below of the return air duct component provided by the embodiment of the present application.
  • Figure 4 is a schematic exploded structural diagram of the return air duct component provided by the embodiment of the present application.
  • Figure 5 is a schematic structural diagram of an air supply duct component provided by an embodiment of the present application.
  • Figure 6 is a schematic exploded structural view of the air supply duct component provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of the assembly relationship between the box body and the air duct components provided by the embodiment of the present application.
  • Figure 8 is a schematic three-dimensional structural diagram of the box body provided by the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of the box body and the air duct component provided by the embodiment of the present application in a separated state;
  • Figure 10 is a schematic diagram of the exploded structure of the air duct component provided by the embodiment of the present application.
  • Figure 11 is a schematic cross-sectional structural diagram of an air duct component provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a water receiving tray provided by an embodiment of the present application.
  • Figure 13 is a schematic front structural view of the box body provided by the embodiment of the present application.
  • Figure 14 is a schematic cross-sectional structural diagram at section line A-A in Figure 13;
  • Figure 15 is a schematic cross-sectional structural diagram at section line C-C in Figure 13;
  • FIG. 16 is a schematic cross-sectional structural diagram along the section line B-B in FIG. 15 .
  • First return air outlet; 60 Air supply duct components; 61. Second air supply outlet; 62. Third air supply outlet; 64. First air door; 65. Second air door; 66. First air supply duct housing ; 67. Second air supply duct housing; 68. Freezer compartment air supply outlet, 69. Variable temperature compartment air supply outlet; 70. Return air duct components; 71. First refrigeration return air outlet; 72. First temperature variable return air outlet; 73. The second variable temperature return air outlet; 74. The second refrigeration return air outlet; 75. The upper shell of the return air duct; 76. The lower shell of the return air duct.
  • serial numbers of the components in the embodiments of this application are only used to distinguish the described objects. Does not have any sequential or technical meaning.
  • plural means two or more.
  • the words “including”, “including”, “having”, “containing”, etc. used in the embodiments of this application are all open terms, which mean including but not limited to.
  • the term “and/or” in the embodiment of this application is only an association relationship describing associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, and A and B exist simultaneously. , there are three situations of B alone.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection. Or integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection should be understood in specific situations.
  • the first feature "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are in intermediate contact. Indirect media contact.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Figure 1 illustrates a schematic structural diagram of an air duct component provided by an embodiment of the present application.
  • Figure 10 illustrates an exploded structural diagram of an air duct component provided by an embodiment of the present application.
  • the air duct assembly includes an air duct. Component 20, air supply duct component 60 and return duct component 70.
  • the air duct component 20 is arranged in the compartment of the box body 10.
  • An accommodating cavity 25 is formed inside the air duct component 20, and an evaporator component is arranged in the accommodating cavity 25. 40.
  • the air duct component 20 is formed with a first return air opening 57 and a first air supply opening (not shown) that communicate with the accommodation cavity 25 .
  • the air supply duct component 60 is connected to the first air supply port
  • the return air duct component 70 is connected to the first return air port 57 .
  • the air duct assembly of the embodiment of the present application by arranging the evaporator component 40 inside the air duct component 20, the ineffective space inside the air duct component 20 is effectively utilized, thereby improving the volume ratio of the refrigeration equipment.
  • the air duct system formed by the air duct component 20 and the air supply duct component 60 maximizes the shortening of the air circulation path and improves the cooling efficiency.
  • the air duct component 20 only needs to be installed in the compartment of the box body 10, and there is no need to install an evaporator separately. This simplifies the installation steps of the air duct component 20 and improves production efficiency.
  • a first opening communicating with the compartment is formed on one side of the box body 10, and the first return air outlet 57 is formed on a side of the top of the air duct component 20 close to the first opening.
  • the first air supply opening is formed on a side of the top of the air duct component 20 away from the first opening.
  • the first opening is an article removal outlet of the refrigeration equipment, and the first opening is located on a side close to the door body of the refrigeration equipment.
  • Figure 2 illustrates a schematic structural diagram of the air supply duct component and the return air duct component provided by the embodiment of the present application.
  • the air supply duct component 60 and the return air duct component 70 are located at The air supply duct component 60 and the return air duct component 70 are arranged outside the top of the box body 10 , thereby reducing the gap between the air supply duct component 60 , the return duct component 70 and the refrigerator compartment. distance, shortening the circulation path of the air duct system and improving refrigeration efficiency.
  • the top of the box body 10 is provided with a plurality of through holes.
  • the air supply duct component 60 is disposed on the side of the top of the air duct component 20 away from the first opening.
  • the air supply duct component 60 passes through the corresponding through holes and the corresponding compartments.
  • the return air duct component 70 is disposed on a side of the top of the air duct component 20 close to the first opening.
  • the return air duct component 70 passes through the corresponding through hole to communicate with the corresponding compartment and the first return air outlet 57 .
  • the foaming material can completely isolate the air supply duct component 60 and the return air duct component 70 to avoid the alternation of hot and cold. Risk of frost.
  • the air supply duct component 60 is provided with a positioning pin on a side close to the return air duct component 70
  • the return air duct component 70 is provided with a positioning pin on a side close to the air supply duct component 60 .
  • the positioning pins are inserted into the corresponding positioning holes 53 to realize the connection between the air supply duct component 60 and the return air duct component 70 .
  • the air supply duct component 60 and the return air duct component 70 can be assembled offline and then assembled with the air duct component 20 , or they can be assembled separately and independently with the air duct component 20 .
  • the box assembly includes two box bodies 10, the two box bodies 10 are distributed up and down, each box body 10 has a compartment inside, the two compartments are distributed up and down, and the air duct component 20 is arranged in the compartment of the lower box body 10 .
  • the upper compartment is a refrigeration compartment, and the refrigeration compartment and the lower compartment are two independent compartments.
  • the air duct component 20 divides the lower compartment into a freezing compartment and a variable temperature compartment. In order to meet the different needs of users, an ice-temperature compartment can also be provided in the cold storage compartment.
  • Figure 3 illustrates a schematic bottom structural view of the return air duct component provided by an embodiment of the present application
  • Figure 4 illustrates an exploded structural schematic view of the return air duct component provided by an embodiment of the present application.
  • the return air duct component 70 includes a return air duct, and a first refrigeration return air outlet 71 is formed on the upper part.
  • the first refrigeration return air outlet 71 is suitable for communicating with the return air outlet of the upper refrigeration compartment.
  • the lower part of the return duct is formed with a first temperature changing return air outlet 72, a second temperature changing return air outlet 73 and a second refrigeration return air outlet 74.
  • the first refrigeration return air outlet 71 is connected with the second refrigeration return air outlet 74, and the first temperature changing return air outlet 72 is connected with the second refrigeration return air outlet 74.
  • the second temperature-changing return air outlet 73 is connected; the first temperature-changing return air outlet 72 and the second refrigeration return air outlet 74 are both connected with the first return air outlet 57 .
  • the second temperature-changing return air outlet 73 is suitable for communicating with the temperature-changing chamber. Since the cold storage room and the variable temperature room share a return air duct, this integrated design simplifies the structure of the return air piping, reduces production costs, and improves the reliability of the return air piping.
  • the return air duct component 70 is located in the foam layer between the lower compartment and the upper compartment. The distance between the return air duct component 70 and the cold storage compartment or the temperature changing compartment is the shortest, effectively reducing the length of the return air duct path. length.
  • the second temperature-changing return air outlet 73 is provided with a plurality of air guide fins at intervals, and the air guide fins are inclined toward the first temperature-changing return air outlet 72, so that after the air in the temperature-changing chamber enters the second temperature-changing return air outlet 73, it is guided Under the action of the air blades, the air flows directly to the first variable temperature return air outlet 72, which reduces the air flow path and wind resistance, further improving the refrigeration efficiency.
  • the return air duct includes an upper return duct casing 75 and a lower return duct casing 76, and the first refrigeration return air inlet 71 is formed on the upper casing 75 of the return air duct.
  • the first refrigeration return air outlet 71 is a rectangular air outlet.
  • the first temperature-changing return air outlet 72 and the second refrigeration return air outlet 74 are formed at the lower part of the upper housing 75 of the return duct.
  • the first temperature-changing return air outlet 72 and the second refrigeration return air outlet 74 are rectangular air outlets.
  • the first temperature-changing return air outlet 72 is suitable for To transport the air in the temperature changing room to the first return air outlet 57.
  • the air in the refrigeration room first enters the first refrigeration return air outlet 71, and then is transported to the first return air outlet 57 through the second refrigeration return air outlet 74.
  • the air in the refrigeration room and the air in the temperature-changing room finally enters through the first return air outlet 57.
  • Heat exchange is carried out with the evaporator components in the accommodation cavity 25 .
  • the return air duct lower housing 76 is disposed below the return air duct upper housing 75 .
  • the second temperature changing return air outlet 73 is formed at the lower part of the return air duct lower housing 76 .
  • the second temperature changing return air outlet 73 is located above the temperature changing chamber.
  • the return air duct lower housing 76 and the return air duct upper housing 75 form a second flow channel, and the second flow channel is connected to the first temperature changing return air outlet 72 and the second temperature changing return air outlet 73 respectively.
  • the communication method between the first temperature-changing return air outlet 72 and the second temperature-changing return air outlet 73 is not limited to this.
  • the first temperature-changing return air outlet 72 can also be It is directly connected with the second temperature-changing return air outlet 73 .
  • the lower housing 76 of the return air duct is connected to the lower part of the upper housing 75 of the return air duct through buckles to facilitate the installation and disassembly of the return air duct.
  • connection method of the return air duct lower housing 76 and the return air duct upper housing 75 is not limited to this, and bolts or integrally formed connection methods may also be used.
  • Figure 13 illustrates a schematic front structural view of the box body provided by the embodiment of the present application
  • Figure 14 illustrates a schematic cross-sectional structural view of the section line A-A in Figure 13
  • Figure 15 illustrates a section line C-C of Figure 13
  • Figure 16 is a schematic cross-sectional structural diagram at section line B-B in Figure 15.
  • the air supply duct component 60 is connected to the air supply outlet 68 of the freezing compartment and the air supply outlet of the refrigeration compartment respectively.
  • the air supply port of the ice temperature room and the air supply port 69 of the variable temperature room are connected. Since the pipelines that deliver cold air to each room are integrated into the air supply ducts, such an integrated design simplifies the structure of the air supply pipelines and reduces production costs. cost.
  • Figure 5 illustrates a schematic structural diagram of the air supply duct component provided by the embodiment of the present application
  • Figure 6 illustrates an exploded structural schematic diagram of the air supply duct component provided by the embodiment of the present application
  • the air supply duct component 60 includes an air supply duct, a first air door 64 and a second air door 65.
  • a first flow channel is formed inside the air supply duct.
  • the air supply duct is formed with an air inlet and a second air supply outlet 61 connected with the first flow channel.
  • the third air supply port 62 and the fourth air supply port wherein the air inlet is connected with the first air supply port, and the cold air with reduced temperature enters the first flow channel through the first air supply port and the air inlet in sequence, and then passes through the second air supply port. 61.
  • the third air supply port 62 and the fourth air supply port send cold air into the corresponding rooms.
  • the first damper 64 is disposed at the second air supply port 61.
  • the air inlet port of the first damper 64 is connected with the second air supply port 61.
  • the second damper 65 is disposed at the third air supply port 62.
  • the air inlet port of the second damper 65 is connected with the third air supply port 62.
  • the three air supply outlets 62 are connected.
  • the first air door 64 is a double air door.
  • the first air outlet port of the first air door 64 is connected to the air outlet of the cold storage room.
  • the second air outlet port of the first air door 64 is connected to the air supply outlet of the ice and greenhouse room.
  • the first air door 64 is suitable for To control the amount of cold entering the cold storage room and the ice-warming room respectively.
  • the second air door 65 is a single air door, and the air outlet of the second air door 65 is connected with the air supply port 69 of the temperature-changing chamber.
  • the second damper 65 is suitable for controlling the cooling amount entering the variable temperature chamber.
  • the fourth air supply port is connected with the freezing compartment air supply port 68 .
  • the type of the first damper 64 is not limited to this, and may also be a single damper or a three- damper, which is specifically determined according to the temperature zone setting requirements of the refrigeration compartment.
  • the air supply duct includes a first air supply duct housing 66 and a second air supply duct housing 67, and the first air supply duct housing 66 and the second air supply duct housing 67 form a first flow channel,
  • the first air supply duct housing 66 and the second air supply duct housing 67 are connected through buckles to facilitate the installation and removal of the air supply duct.
  • the second air supply port 61 is formed by splicing the opening on the first air supply duct housing 66 and the opening on the second air supply duct housing 67 .
  • the second air supply port 61 can also be provided separately in the first air supply duct housing 66 or the second air supply duct housing 67.
  • the air inlet, the third air supply port 62 and the fourth air supply port can be connected through the first air supply port.
  • the opening on the air duct housing 66 and the opening on the second air supply duct housing 67 are spliced together.
  • the first air supply duct housing 66 or the second air supply duct housing 67 can also be provided separately.
  • the air in the cold storage room first enters the first
  • the refrigeration return air outlet 71 then enters the first return air outlet 57 through the second refrigeration return air outlet 74; the air in the temperature-changing room enters the first return air outlet 57 through the second temperature-changing return air outlet 73 and the first temperature-changing return air outlet 72 in sequence.
  • the air in the refrigerating room and the air in the temperature changing room finally enters the accommodation cavity 25 through the first return air port 57 to exchange heat with the evaporator component. After heat exchange, the temperature of the air further decreases and becomes cold air.
  • the cold air (solid wide arrow) enters the first flow channel through the first air supply port under the action of the fan 31.
  • the cold air is divided into four parts. path; among them, the first path of cold air (hollow dotted line wide arrow) enters the freezing compartment through the fourth air supply port for cooling; the second path of cold air (dashed line narrow arrow) enters the first damper 64 and finally passes through the first
  • the first air outlet port of the air door 64 enters the refrigerator compartment for cooling; the third cold air (solid line narrow arrow) enters the first air door 64 and finally enters the ice temperature through the second air outlet port of the first air door 64
  • the chamber is cooled; the fourth cold air (solid hollow wide arrow) enters the second damper 65 and finally enters the variable temperature chamber for cooling.
  • Figure 7 illustrates a schematic diagram of the assembly relationship between the box body and the air duct component provided by the embodiment of the present application.
  • the evaporator component 40 is disposed on Inside the air duct component 20, during the final assembly stage, it is only necessary to install the air duct component 20 in the compartment of the box body 10, and then weld the pipelines of the evaporator component 40 to the pipelines of the refrigeration system. There is no need to install a separate The post for installing the evaporator reduces labor costs, simplifies the installation steps of air duct components, and improves production efficiency.
  • the air duct component 20 is disposed in a compartment inside the box body 10.
  • the air duct component 20 divides the compartment into a first compartment 14 and a second compartment 15.
  • the air duct component 20 includes at least two removable compartments. After the connected cover is removed, an accommodating cavity 25 is formed inside the air duct component 20 , and the evaporator component 40 is disposed in the accommodating cavity 25 .
  • the air duct component 20 of the embodiment of the present application by disposing the evaporator component 40 in the accommodating cavity 25, when disassembling the evaporator component 40, you only need to remove the cover plate, and then the evaporator component 40 can be disassembled, which simplifies the evaporator.
  • the disassembly steps of the component 40 facilitate the maintenance of the evaporator component 40 .
  • the air duct component 20 is disposed in a compartment of the box body 10.
  • the air duct component 20 is formed with a glue-containing groove 26 on the side of the inner wall of the box body 10.
  • the inner wall of the box body 10 is formed with a glue-containing groove 26.
  • the through holes 16 communicate with the grooves 26, and the glue-containing grooves 26 are filled with foam materials connected to the inner wall and the sides of the air duct component 20 respectively.
  • the air duct component 20 includes a first cover plate 21 , a second cover plate 22 , a vacuum insulation panel 23 and a vacuum insulation panel cover 24 .
  • the second cover plate 22 is connected with the first cover plate 22 .
  • the cover plates 21 are arranged oppositely, and the vacuum heat insulation panel 23 is arranged between the second cover plate 22 and the first cover plate 21 .
  • the vacuum heat insulation panel cover 24 is disposed on the side of the vacuum heat insulation panel 23 away from the second cover 22 .
  • the shape of the vacuum heat insulation panel cover 24 is consistent with the shape of the first cover 21 and the second cover 22 .
  • the area of the vacuum heat insulation panel cover 24 and the area of the second cover 22 are both larger than the area of the vacuum heat insulation panel 23 to ensure that the vacuum heat insulation panel cover 24 and the second cover 22 connect the vacuum heat insulation panel 23 When clamped in the middle, the vacuum insulation panel 23 can be completely wrapped.
  • the accommodation cavity 25 is formed between the vacuum insulation panel cover 24 and Between the first cover plates 21 , that is, the accommodating cavity 25 is surrounded by the vacuum insulation panel cover 24 and the first cover plate 21 .
  • the accommodating cavity 25 is used to install the fan component, the evaporator component 40 and the fan mounting plate 33 .
  • the vacuum heat insulation panel cover 24 is connected to the first cover 21 and the second cover 22 respectively through screws, snap connection, or other detachable connection methods.
  • the glue-containing groove 26 is formed on the rear side 27 and the lower side 28 of the vacuum insulation panel cover 24 , and the position of the glue-containing groove 26 corresponds to the position of the positioning groove 13 .
  • the first return air opening 57 and the first air supply opening are formed on the top of the vacuum insulation panel cover 24 .
  • the evaporator component 40 is located at the rear side of the freezing air duct assembly.
  • the evaporator component 40 By arranging the evaporator component 40 in the accommodating cavity 25, not only the installation steps of the refrigeration equipment are simplified, but also the disassembly steps of the evaporator component 40 are simplified.
  • disassembling the evaporator component 40 first take out the freezer drawer on one side of the freezing air duct, then remove the screws of the first cover 21 or the second cover 22, then remove the first cover 21 or the second cover 22, and finally Remove evaporator assembly 40.
  • arranging the evaporator component 40 in the accommodation cavity 25 not only increases the capacity of the refrigeration equipment, simplifies the installation steps of the refrigeration equipment, but also simplifies the installation of the evaporator component 40 step.
  • the air duct component 20 is arranged vertically in the compartment, the first cover plate 21 is located on the side of the air duct component 20 facing the first compartment 14, and the second cover plate 22 is located on the side of the air duct component 20 facing away from the first compartment. side of room 14.
  • Figure 8 illustrates a schematic three-dimensional structural diagram of the box body provided by the embodiment of the present application.
  • Figure 9 illustrates a schematic structural diagram of the box body and the air duct component provided by the embodiment of the present application in a separated state, as shown in Figures 7 to 10
  • the application also provides a box assembly including a box body 10.
  • a compartment is formed inside the box body 10.
  • a first opening communicating with the compartment is formed on one side of the box body 10.
  • the box body 10 has a A through hole 16 is formed in the inner wall.
  • the air duct component 20 is arranged in the compartment.
  • the side of the air duct component 20 facing the inner wall and the inner wall of the box body 10 form a cavity.
  • the cavity is connected with the through hole 16 and the cavity is filled with the inner wall and the air duct component respectively. 20 side connected foam material.
  • the air duct component 20 is installed in the compartment of the box body 10 before foaming. A cavity is formed between them, and the foaming material will flow into the cavity through the through hole 16 during foaming. Since the foaming material is a flowing liquid during foaming, even if the box body 10 or the air duct component 20 is deformed, the foaming process will not occur.
  • the material can also effectively seal the gap between the box body 10 and the air duct component 20, preventing cold leakage from the freezing air duct, enhancing the cooling effect, and effectively preventing the air duct from freezing.
  • the cavity includes a glue-containing groove 26, which is formed on the side of the air duct component 20 facing the inner wall.
  • the glue-containing groove 26 26 is the entire cavity.
  • the side of the air duct component 20 facing the inner wall is in contact with the inner wall of the box body 10.
  • the through hole 16 of the inner wall is connected with the glue container 26, and the foam material can enter the container through the through hole 16. in the glue tank 26, and fill the entire glue tank 26 to realize the air duct component 20 Sealing with the tank body 10.
  • the glue-containing groove 26 is connected to the positioning mechanism. At this time, the cavity is composed of the glue-containing groove 26 and the positioning mechanism.
  • the air duct component 20 is installed in place, the side of the air duct component 20 facing the inner wall is snap-fitted with the positioning structure.
  • the through hole 16 of the inner wall is connected with the glue containing groove 26 and the positioning mechanism.
  • the foam material enters the container through the through hole 16.
  • the glue tank 26, in addition to filling the entire glue tank 26, will also be filled with a positioning mechanism.
  • the positioning mechanism can be a groove, a positioning ridge or other positioning mechanism.
  • the air duct component 20 is arranged vertically in the compartment.
  • the air duct component 20 divides the compartment into a first compartment 14 and a second compartment 15 , where the first compartment 14 is The first compartment 14 of the compartment on the left side in Figure 1 is a freezing compartment, the second compartment 15 is the compartment on the right side of Figure 1 , and the second compartment 15 is a temperature changing compartment.
  • the capacity of the first chamber 14 and the capacity of the second chamber 15 may be the same or different.
  • the capacities of the first chamber 14 and the second chamber 15 are determined according to actual needs.
  • the arrangement manner of the air duct component 20 is not limited to the vertical arrangement, and can also be arranged horizontally, in which case the two compartments are distributed in the vertical direction.
  • the evaporator and the freezing air duct are arranged on the rear wall 11 of the box.
  • This arrangement occupies the space in the freezing compartment and reduces the depth of the freezing compartment in the front and rear directions.
  • the air duct component 20 vertically in the compartment, the space in the front and rear directions of the freezing compartment is increased, and the space utilization rate of the refrigeration equipment is improved. At the same time, it also facilitates the installation and removal of evaporator components.
  • the glue-containing groove 26 is formed on the rear side 27 and the lower side 28 of the air duct component 20.
  • the glue-containing groove 26 of the rear side 27 is connected with the glue-containing groove 26 of the lower side 28.
  • the glue-containing groove 26 of the rear side 27 The groove 26 and the glue-containing groove 26 of the lower side 28 can also be independent of each other, that is, the glue-containing groove 26 of the rear side 27 and the glue-containing groove 26 of the lower side 28 are not connected.
  • the location of the glue-containing groove 26 is not limited to the rear side 27 and the lower side 28 of the air duct component 20.
  • the glue-containing groove 26 can also be provided on the upper side of the air duct component 20, and the upper side can contain glue.
  • the foam material in the groove 26 is connected with the top wall of the tank body 10 .
  • front-to-back direction in the embodiment of the present application means that when the user opens or closes the door of the refrigeration equipment, the direction the user faces is the rear, the direction the user's back is to is the front, the user's left hand side is the left side, and the right hand side is the left side. The side is the right side.
  • the cavity also includes a positioning groove 13 , the positioning groove 13 is formed on the inner wall of the tank body 10 , and the positioning groove 13 on the rear wall 11 of the tank body 10 is along the edge of the tank body 10 .
  • the positioning groove 13 of the bottom wall 12 of the box body 10 extends along the front and rear direction.
  • the side of the air duct component 20 facing the inner wall is clamped in the positioning groove 13 , and the positioning groove 13 is connected with the glue-containing groove 26 .
  • the foam material enters the glue-containing groove 26 through the through hole 16, and fills the entire glue-containing groove 26 and the positioning groove 13. After the foaming material is cured, the cavity can be filled and sealed, thereby achieving sealing between the air duct component 20 and the box body 10 .
  • the foaming material can also play a certain role in fixing the air duct component 20 .
  • the positioning groove 13 is formed on the rear wall 11 and the bottom wall 12 of the box body 10.
  • the positioning groove 13 of the rear wall 11 is connected with the positioning groove 13 of the bottom wall 12.
  • the rear wall The positioning groove 13 of the rear wall 11 and the positioning groove 13 of the bottom wall 12 can also be arranged relatively independently, that is, the positioning groove 13 of the rear wall 11 and the positioning groove 13 of the bottom wall 12 are not connected.
  • the rear side 27 is engaged in the positioning groove 13 of the rear wall 11
  • the lower side 28 is engaged in the positioning groove 13 of the bottom wall 12 .
  • the positioning groove 13 can also be formed on the top wall of the box body 10. In this case, the upper side of the air duct component 20 is engaged in the positioning groove 13 of the top wall.
  • the width of the positioning groove 13 is greater than or equal to the width of the air duct component 20 .
  • the through holes 16 are arranged at intervals along the length direction of the positioning groove 13, so that the foaming material can enter each area of the glue containing groove 26 during the foaming process, thereby improving the connection between the air duct component 20 and the box body 10.
  • the sealing between the refrigeration air ducts avoids cold leakage and reduces the energy consumption of the refrigeration equipment.
  • the through holes 16 can be circular holes or rectangular holes. In this case, a plurality of through holes 16 are arranged at intervals along the length direction of the positioning groove 13. Of course, the through holes can also be strip-shaped through holes. In this case, the through holes 16 are arranged along the length direction of the positioning groove 13.
  • the groove 13 extends lengthwise.
  • the water tray 50 is installed first and then the evaporator assembly is installed. After the evaporator is welded, the air duct assembly is finally installed.
  • the final assembly section has many and complicated processes. The more, the more it affects production efficiency.
  • an accommodating cavity 25 is formed inside the air duct component 20 , and the evaporator component 40 is disposed in the accommodating cavity 25 . Since the evaporator component 40 is pre-installed inside the air duct component 20, the air duct component 20 only needs to be installed in the chamber of the tank body 10 before foaming, and the final assembly section only needs to connect the pipelines of the evaporator component 40 to the refrigeration system. The pipelines are welded, which simplifies the installation steps of the refrigeration equipment and improves the production efficiency; because the number of workers who assemble the evaporator and the water receiving tray 50 is reduced, the labor cost is reduced.
  • the air duct component 20 is formed with a welding window 34 corresponding to the welding position of the evaporator component 40.
  • the provision of the welding window 34 can facilitate workers to weld the pipeline of the evaporator component 40, reduce welding time, and improve Productivity.
  • the welding window 34 is covered with a cover, and the cover is detachably connected to the air duct component 20 .
  • the cover body and the air duct component 20 can be connected by buckles or screws.
  • the air duct component 20 is arranged vertically in the chamber, and the welding window 34 is located at an edge of the air duct component 20 close to the first opening. Since the welding window 34 is close to the first opening, it is more convenient for workers to perform welding through the welding window 34, which puts the workers' bodies in a comfortable state during welding, reduces physical fatigue of the workers, and improves work efficiency.
  • the box assembly of the present application is provided with a refrigeration return air outlet 30 connected to the accommodation cavity 25 at the bottom of the air duct component 20. After the cold air comes out of the air outlet, it surrounds the drawer at the bottom and returns to the evaporator component 40 through the refrigeration return air outlet 30. , effectively solving the problem of substandard temperature in the bottom drawer of a vertical refrigeration system.
  • the fan component is disposed in the accommodation cavity 25, and the fan component also includes a fan 31 and volute 32.
  • the volute 32 is located above the evaporator component 40 .
  • the interior of the volute 32 is hollow, and the volute 32 is formed with an air inlet and an air outlet.
  • the fan 31 is disposed in the volute 32.
  • the fan 31 is used to drive the air flow into the accommodation cavity 25 through the refrigeration return air outlet 30 and contact the evaporator. After the air flow contacts the evaporator, the temperature further decreases and is finally discharged through the air outlet.
  • a fan installation cover 33 is also provided in the accommodation cavity 25.
  • the fan installation cover 33 is located between the evaporator and the vacuum insulation board cover 24.
  • the fan installation cover 33 and The vacuum heat insulation board cover 24 is connected by screws, and the volute 32 is fixed to the upper part of the fan installation cover 33 by screws.
  • Figure 11 illustrates a schematic cross-sectional structural diagram of the air duct component provided by the embodiment of the present application
  • Figure 12 illustrates a schematic structural diagram of the water receiving tray provided by the embodiment of the present application.
  • the box The tank assembly also includes a water receiving tray 50 , which is disposed in the accommodating cavity 25 , and is located below the evaporator component 40 .
  • the water receiving tray 50 is used to accommodate the condensed water generated by the evaporator component 40. After the condensed water is generated, it automatically flows into the water receiving tray 50 under the action of gravity.
  • the water receiving tray 50 is formed with a water receiving tray return air outlet 51 connected to the freezing return air outlet 30 at the lower part.
  • the water receiving tray 50 includes a connecting portion 54 and a water receiving tray main body 55 .
  • the top of the connecting portion 54 is open, and the connecting portion 54 is sleeved on the bottom of the evaporator component 40 .
  • the water receiving tray main body 55 is disposed below the connecting portion 54.
  • the water receiving tray main body 55 is connected to the connecting portion 54.
  • the water receiving tray main body 55 and the connecting portion 54 are integrally formed.
  • the water receiving tray main body 55 and the connecting portion 54 can also be two independent components, and the water receiving tray main body 55 and the connecting portion 54 are connected by screws or buckles.
  • a water receiving tank communicating with the inside of the connecting portion 54 is formed inside the water receiving tray main body 55 .
  • the water receiving tray air return port 51 is formed on the side wall of the water receiving tray main body 55 .
  • the connecting portion 54 can not only guide the water generated by the evaporator component 40 to the water receiving tank, but also guide the air flow entering through the water return tray air return port 51 to the evaporator component 40 .
  • the cold air at the bottom of the compartment enters the accommodation cavity 25 through the refrigeration return air outlet 30, then enters the water receiving tray 50 through the water receiving tray return air outlet 51, and finally enters the evaporator component 40 through the top of the connecting portion 54 for heat exchange. . Since there is no need to set up a separate air duct, the structure of the box assembly is effectively simplified and the production cost is reduced.
  • a drain port 52 connected to the water tank is formed on the bottom of the water receiving tray body 55 , and the drain port 52 is used to drain the condensed water in the water tank.
  • the bottom surface of the water receiving tray main body 55 is tilted downward toward the drain port 52. Inclining the bottom surface of the water receiving tray main body 55 downward can drain the water in the water tank as quickly as possible to prevent the condensed water from freezing.
  • the main body 55 of the water receiving tray is V-shaped, and of course can also be C-shaped.
  • a support portion is formed on the lower portion of the vacuum insulation panel cover 24 toward the first cover 21 , and the bottom of the water tray body 55 is in contact with the top of the support portion.
  • the width of the connecting portion 54 is greater than the width of the water receiving tray main body 55. Since the width of the water receiving tray main body 55 is narrow, an interlayer air duct 56 is formed between the water receiving tray main body 55 and the first cover 21. The interlayer air duct 56 is connected to the refrigeration return air outlet 30 and the water tray return air outlet 51 respectively.
  • the rear side 27 of the air duct component 20 is formed with a positioning hole 53, the drainage port 52 is inserted through the positioning hole 53, and the drainage port 52 is plug-connected to the drainage pipe.
  • the connection method between the drainage port 52 and the drainage pipe is not limited to this.
  • the drainage pipe can also be passed through the positioning hole 53 and then introduced into the accommodation cavity 25 and then connected to the drainage port 52 .
  • the welding window 34 is located at the edge of the first cover 21 close to the first opening, and the freezing return air outlet 30 is located at the lower part of the second cover 22 .
  • the first compartment 14 is a freezing compartment
  • the second compartment 15 is a temperature-changing compartment.
  • the refrigeration return air outlet 30 can also be provided on the second cover 22.
  • the first compartment 14 is a temperature-changing compartment
  • the second compartment 15 is a freezing compartment. room.
  • the sides of the air duct component 20 are detachably connected to the inner wall of the box body 10 through a plurality of connectors.
  • the sides of the vacuum insulation panel cover 24 and the inner wall of the box body 10 are connected through multiple knobs.
  • the knobs can be used to conveniently secure the vacuum insulation cover 35.
  • the side is quickly connected to the inner wall of the box body 10 .
  • the two methods are used to jointly fix the air duct component 20, which effectively improves the efficiency of the air duct.
  • Component 20 stability Of course, screws or buckles can also be used to connect the sides of the vacuum heat insulation cover 35 to the inner wall of the box body 10 .
  • This application also provides a refrigeration equipment, including a casing, a tank body and an air duct assembly as described in any of the above embodiments.
  • the tank body is arranged in the casing, and the air supply duct component and the return duct component are arranged in the casing. Between the body and the box body.

Abstract

本申请涉及制冷技术领域,提供一种风路组件及制冷设备。风路组件包括风道部件、送风管部件和回风管部件,风道部件设置于箱胆本体的间室内,所述风道部件的内部形成有容纳腔,所述容纳腔内设置有蒸发器部件,所述风道部件形成有与所述容纳腔连通的第一回风口和第一送风口;送风管部件与所述第一送风口连通,回风管部件与所述第一回风口连通。通过将蒸发器部件设置于风道部件的内部,有效利用了风道部件内部的无效空间,提高了制冷设备的容积率。风道部件与送风管部件构成的风路系统,最大化的缩短了风循环路径,提高了制冷效率。

Description

风路组件及制冷设备
相关申请的交叉引用
本申请要求于2022年08月18日提交的申请号为202210995455.6,发明名称为“风路组件及制冷设备”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及制冷技术领域,尤其涉及一种风路组件及制冷设备。
背景技术
在相关技术中,制冷设备的宽幅变温通常采用三系统或单系统,三系统即冷藏、冷冻、变温均有独立的蒸发器,这样的制冷设备制造工艺较为复杂,且制冷设备的容积率较低。单系统即蒸发器位于冷冻室内部,蒸发器做到4排或者5排,影响冷冻室的容积。
发明内容
本申请旨在至少解决相关技术中存在的技术问题之一。为此,本申请提出一种风路组件,用于解决现有的制冷设备存在容积率低的问题。
本申请还提出一种制冷设备。
根据本申请第一方面实施例的风路组件,包括:
风道部件,设置于箱胆本体内,所述风道部件的内部形成有容纳腔,所述容纳腔内设置有蒸发器部件,所述风道部件形成有与所述容纳腔连通的第一回风口和第一送风口;
送风管部件,与所述第一送风口连通;
回风管部件,与所述第一回风口连通。
根据本申请第二方面实施例的制冷设备,包括壳体、箱胆本体和上述任意一项所述的风路组件,所述箱胆本体设置于所述壳体内,所述送风管部件与所述回风管部件设置于所述壳体与所述箱胆本体之间。
本申请实施例中的上述一个或多个技术方案,至少具有如下技术效果之一:
根据本申请实施例的风路组件,通过将蒸发器部件设置于风道部件的内部,有效利用了风道部件内部的无效空间,提高了制冷设备的容积率。风道部件与送风管部件构成的风路系统,最大化的缩短了风循环路径,提高了制冷效率。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的风路组件的结构示意图;
图2是本申请实施例提供的送风管部件与回风管部件的结构示意图;
图3是本申请实施例提供的回风管部件的仰视结构示意图;
图4是本申请实施例提供的回风管部件的爆炸结构示意图;
图5是本申请实施例提供的送风管部件的结构示意图;
图6是本申请实施例提供的送风管部件的爆炸结构示意图;
图7是本申请实施例提供的箱胆本体与风道部件的装配关系示意图;
图8是本申请实施例提供的箱胆本体的立体结构示意图;
图9是本申请实施例提供的箱胆本体与风道部件处于分离状态下的结构示意图;
图10是本申请实施例提供的风道部件的爆炸结构示意图;
图11是本申请实施例提供的风道部件的剖面结构示意图;
图12是本申请实施例提供的接水盘的结构示意图;
图13是本申请实施例提供的箱胆本体的主视结构示意图;
图14是图13中剖面线A-A处的剖面结构示意图;
图15是图13中剖面线C-C处的剖面结构示意图;
图16是图15中剖面线B-B处的剖面结构示意图。
附图标记:
10、箱胆本体;11、后壁;12、底壁;13、定位槽;14、第一间室;
15、第二间室;16、通孔;20、风道部件;21、第一盖板;22、第二盖板;23、真空隔热板;24、真空隔热板盖板;25、容纳腔;26、容胶槽;27、后侧边;28、下侧边;30、冷冻回风口;31、风机;32、蜗壳;33、风机安装盖板;34、焊接窗口;35、盖板;40、蒸发器部件;50、接水盘;51、接水盘回风口;52、排水端口;53、定位孔;54、连接部;55、接水盘主体;56、夹层风道;57、第一回风口;60、送风管部件;61、第二送风口;62、第三送风口;64、第一风门;65、第二风门;66、第一送风管壳体;67、第二送风管壳体;68、冷冻间室送风口、69、变温间室送风口;70、回风管部件;71、第一冷藏回风口;72、第一变温回风口;73、第二变温回风口;74、第二冷藏回风口;75、回风管上壳体;76、回风管下壳体。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下 实施例用于说明本申请,但不能用来限制本申请的范围。
本申请实施例中部件所编序号本身,例如“第一”、“第二”;(1)、(2)、(3);步骤一、步骤二等,仅用于区分所描述的对象,不具有任何顺序或技术含义。除非另有说明,“多个”的含义是指两个或两个以上。本申请实施例中所使用的“包含”、“包括”、“具有”、“含有”等,均为开放性的用语,即意指包含但不限于。本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。除非另有定义,本申请实施例所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。如有不一致,以本说明书中所说明的含义或者根据本说明书中记载的内容得出的含义为准。
在本申请实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、 “示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
图1示例了本申请实施例提供的风路组件的结构示意图,图10示例了本申请实施例提供的风道部件的爆炸结构示意图,如图1和图10所示,风路组件包括风道部件20、送风管部件60和回风管部件70,风道部件20设置于箱胆本体10的间室内,风道部件20的内部形成有容纳腔25,容纳腔25内设置有蒸发器部件40,风道部件20形成有与容纳腔25连通的第一回风口57和第一送风口(未示出)。送风管部件60与第一送风口连通,回风管部件70与第一回风口57连通。
根据本申请实施例的风路组件,通过将蒸发器部件40设置于风道部件20的内部,有效利用了风道部件20内部的无效空间,提高了制冷设备的容积率。风道部件20与送风管部件60构成的风路系统,最大化的缩短了风循环路径,提高了制冷效率。在总装阶段时,只需将风道部件20设置于箱胆本体10的间室内,无需单独安装蒸发器,简化了风道部件20的安装步骤,提高了生产效率。
可以理解的是,如图7所示,箱胆本体10的一侧形成有与间室连通的第一开口,第一回风口57形成于风道部件20的顶部靠近第一开口的一侧,第一送风口形成于风道部件20的顶部远离第一开口的一侧。第一开口为制冷设备的物品取出口,第一开口位于靠近制冷设备门体的一侧。
可以理解的是,图2示例了本申请实施例提供的送风管部件与回风管部件的结构示意图,如图1和图2所示,送风管部件60与回风管部件70均位于箱胆本体10顶部的外侧,将送风管部件60与回风管部件70设置于箱胆本体10顶部的外侧,减小了送风管部件60、回风管部件70与冷藏室之间的距离,缩短了风路系统的循环路径,提高了制冷效率。
箱胆本体10的顶部设置有多个通孔,送风管部件60设置于风道部件20的顶部远离第一开口的一侧,送风管部件60穿过对应的通孔与对应的间室以及第一送风口连通。回风管部件70设置于风道部件20的顶部靠近第一开口的一侧,回风管部件70穿过对应的通孔与对应的间室以及第一回风口57连通。由于送风管部件60与回风管部件70为两个独立设置的部件,在发泡过程中,发泡料可将送风管部件60与回风管部件70完全隔离,避免冷热交替所带来的结霜风险。
可以理解的是,如图1和图2所示,送风管部件60靠近回风管部件70的一侧设置有定位销,回风管部件70靠近送风管部件60的一侧设置有 定位孔53,定位销插入于对应的定位孔53,实现了送风管部件60与回风管部件70之间的连接。送风管部件60与回风管部件70可以线下一体化装配后再与风道部件20装配,也可以分开独立与风道部件20进行装配。
可以理解的是,箱胆组件包括两个箱胆本体10,两个箱胆本体10呈上下分布,每个箱胆本体10的内部具有一个间室,两个间室呈上下分布,风道部件20设置于下部箱胆本体10的间室内。上部的间室为冷藏间室,冷藏间室与下部的间室为两个独立的间室。风道部件20将下部的间室分隔为冷冻间室和变温间室,为了满足用户不同的需求,还可在冷藏间室内设置冰温间室。
可以理解的是,图3示例了本申请实施例提供的回风管部件的仰视结构示意图,图4示例了本申请实施例提供的回风管部件的爆炸结构示意图,如图3和图4所示,回风管部件70包括回风管,上部形成有第一冷藏回风口71,第一冷藏回风口71适于与上方的冷藏间室的回风口连通。回风管的下部形成有第一变温回风口72、第二变温回风口73和第二冷藏回风口74,第一冷藏回风口71与第二冷藏回风口74连通,第一变温回风口72与第二变温回风口73连通;第一变温回风口72以及第二冷藏回风口74均与第一回风口57连通。第二变温回风口73适于与变温间室连通。由于冷藏间室与变温间室共用一个回风管,这种一体化设计简化了回风管路的结构,降低了生产成本,提高了回风管路的可靠性。回风管部件70位于下部间室与上部间室之间的发泡层,回风管部件70无论到冷藏间室还是变温间室的距离都是最短的,有效减小了回风管路径的长度。
还可以理解的是,第二变温回风口73间隔设置有多个导风片,导风片朝向第一变温回风口72倾斜,这样使得变温室内的空气进入第二变温回风口73之后,在导风片的作用下,空气直接流向第一变温回风口72,减小了空气的流动路径和风阻,进一步提高了制冷效率。
可以理解的是,如图3和图4所示,回风管包括回风管上壳体75和回风管下壳体76,第一冷藏回风口71形成于回风管上壳体75的上部,第一冷藏回风口71为矩形风口。第一变温回风口72和第二冷藏回风口74形成于回风管上壳体75的下部,第一变温回风口72和第二冷藏回风口74均为矩形风口,第一变温回风口72适于将变温间室内的空气输送至第一回风口57。冷藏间室内的空气先进入第一冷藏回风口71,再通过第二冷藏回风口74输送至第一回风口57,冷藏间室内的空气和变温间室内的空气最终通过第一回风口57进入到容纳腔25内与蒸发器部件进行热交换。
回风管下壳体76设置于回风管上壳体75的下方,第二变温回风口73形成于回风管下壳体76的下部,第二变温回风口73位于变温间室的上方。回风管下壳体76与回风管上壳体75围成第二流道,第二流道分别与第一变温回风口72以及第二变温回风口73连通。当然,第一变温回风口72与第二变温回风口73的连通方式并不限定于此,也可将第一变温回风口72 与第二变温回风口73直接连通。回风管下壳体76与回风管上壳体75的下部通过卡扣连接,以方便回风管的安装和拆卸。当然,回风管下壳体76与回风管上壳体75的连接方式并不限定于此,也可采用螺栓或者一体成型的连接方式。
可以理解的是,图13示例了本申请实施例提供的箱胆本体的主视结构示意图,图14示例了图13中剖面线A-A处的剖面结构示意图,图15示例了图13中剖面线C-C处的剖面结构示意图,图16示例了图15中剖面线B-B处的剖面结构示意图,如图13至图16所示,送风管部件60分别与冷冻间室送风口68、冷藏间室送风口、冰温间室送风口以及变温间室送风口69连通,由于将给各个间室输送冷风的管路集成于送风管,这样的一体化设计简化了送风管路的结构,减低了生产成本。
可以理解的是,图5示例了本申请实施例提供的送风管部件的结构示意图,图6示例了本申请实施例提供的送风管部件的爆炸结构示意图,如图5和图6所示,送风管部件60包括送风管、第一风门64和第二风门65,送风管内部形成有第一流道,送风管形成有与第一流道连通的进风口、第二送风口61、第三送风口62和第四送风口,其中,进风口与第一送风口连通,温度降低后的冷空气依次通过第一送风口、进风口进入到第一流道内,再通过第二送风口61、第三送风口62和第四送风口将冷空气送入对应的间室内。第一风门64设置于第二送风口61,第一风门64的进风端口与第二送风口61连通,第二风门65设置于第三送风口62,第二风门65的进风端口与第三送风口62连通。
第一风门64为双风门,第一风门64的第一出风端口与冷藏室的出风口连通,第一风门64的第二出风端口与冰温间室送风口连通,第一风门64适于控制分别进入冷藏间室以及冰温间室的冷量。第二风门65为单风门,第二风门65的出风口与变温间室送风口69连通。第二风门65适于控制进入变温间室的冷量。第四送风口与冷冻间室送风口68连通。当然,第一风门64的类型并不限定于此,也可以为单风门或者三风门,具体根据冷藏间室的温区设定需求进行确定。
可以理解的是,送风管包括第一送风管壳体66和第二送风管壳体67,第一送风管壳体66与第二送风管壳体67围成第一流道,第一送风管壳体66和第二送风管壳体67通过卡扣连接,以方便送风管的安装和拆卸。第二送风口61通过第一送风管壳体66上的开口和第二送风管壳体67上的开口拼接构成。当然第二送风口61也可单独设置于第一送风管壳体66或者第二送风管壳体67,同样地进风口、第三送风口62以及第四送风口,可以通过第一送风管壳体66上的开口和第二送风管壳体67上的开口拼接构成,也可单独设置第一送风管壳体66或者第二送风管壳体67。
风路组件的工作原理:
如图1至图6所示,空气循环过程中,冷藏间室内的空气先进入第一 冷藏回风口71,再通过第二冷藏回风口74进入第一回风口57;变温间室内的空气依次通过第二变温回风口73、第一变温回风口72进入第一回风口57。冷藏间室内的空气和变温间室内的空气最终通过第一回风口57进入到容纳腔25内与蒸发器部件进行热交换。进行热量交换之后空气的温度进一步降低成为冷空气,如图5所示,冷空气(实心宽箭头)分别在风机31作用下通过第一送风口进入到第一流道内,此时冷空气分为四路;其中,第一路冷空气(空心虚线宽箭头)通过第四送风口进入到冷冻间室内进行降温;第二路冷空气(虚线窄箭头)进入到第一风门64内,最终通过第一风门64的第一出风端口进入到冷藏室进行降温;第三路冷空气(实线窄箭头)进入到第一风门64内,最终通过第一风门64的第二出风端口进入到冰温间室进行降温;第四路冷空气(实线空心宽箭头)进入到第二风门65最终进入到变温间室内进行降温。
图7示例了本申请实施例提供的箱胆本体与风道部件的装配关系示意图,如图7和图10所示,根据本申请实施例的风道部件20,通过将蒸发器部件40设置于风道部件20的内部,在总装阶段时,只需将风道部件20设置于箱胆本体10的间室内,再将蒸发器部件40的管路与制冷系统的管路进行焊接,无需设置单独安装蒸发器步骤的岗位,降低了人力成本,简化了风道部件的安装步骤,提高了生产效率。
可以理解的是,风道部件20设置于箱胆本体10内部的间室内,风道部件20将间室分隔成第一间室14和第二间室15,风道部件20包括至少两个可拆卸连接的盖板,风道部件20的内部形成有容纳腔25,蒸发器部件40设置于容纳腔25内。
根据本申请实施例的风道部件20,通过将蒸发器部件40设置于容纳腔25内,拆卸蒸发器部件40时只需要将盖板拆卸下来,便可拆卸蒸发器部件40,简化了蒸发器部件40的拆卸步骤,方便对蒸发器部件40进行维护。
可以理解的是,风道部件20设置于箱胆本体10的间室内,风道部件20朝向箱胆本体10内壁的侧边形成有容胶槽26,箱胆本体10的内壁形成有与容胶槽26连通的通孔16,容胶槽26内填充有分别与内壁以及风道部件20的侧边连接的发泡料。
可以理解的是,如图10所示,风道部件20包括第一盖板21、第二盖板22、真空隔热板23和真空隔热板盖板24,第二盖板22与第一盖板21相对设置,真空隔热板23设置于第二盖板22与第一盖板21之间。真空隔热板盖板24设置于真空隔热板23背离第二盖板22的一侧,真空隔热板盖板24的形状与第一盖板21的形状以及第二盖板22的形状相匹配,真空隔热板盖板24的面积与第二盖板22的面积均大于真空隔热板23的面积,以确保真空隔热板盖板24与第二盖板22将真空隔热板23夹持于中间时可将真空隔热板23完全包裹。容纳腔25形成于真空隔热板盖板24与 第一盖板21之间,即容纳腔25由真空隔热板盖板24与第一盖板21围成,容纳腔25用于安装风机部件、蒸发器部件40以及风机安装板33。真空隔热板盖板24分别与第一盖板21以及第二盖板22通过螺钉连接,也可通过卡扣连接,还可通过其他可拆卸连接方式连接。容胶槽26形成于真空隔热板盖板24的后侧边27和下侧边28,容胶槽26的位置与定位槽13的位置对应。第一回风口57和第一送风口形成于真空隔热板盖板24的顶部。
在相关技术中,蒸发器部件40位于冷冻风道组件的后侧,拆卸蒸发器部件40时,需要先取出两侧的冷冻抽屉,再拆掉冷冻箱胆中隔板的螺钉,再取下中隔板,再拆掉冷冻风道组件的螺钉,再取下冷冻风道组件,最后拆掉蒸发器。由于蒸发器的拆卸步骤较多,蒸发器维护难度较大。
通过将蒸发器部件40设置于容纳腔25中,不仅简化了制冷设备的安装步骤,还简化了蒸发器部件40的拆卸步骤。拆卸蒸发器部件40时,先取出冷冻风道单侧的冷冻抽屉,再拆卸第一盖板21或者第二盖板22的螺钉,再取下第一盖板21或者第二盖板22,最后拆掉蒸发器部件40。相较于上述相关技术中蒸发器的拆卸方式,将蒸发器部件40设置于容纳腔25中,不仅提高了制冷设备的容量,简化了制冷设备的安装步骤,还简化了蒸发器部件40的安装步骤。
可以理解的是,风道部件20竖直设置于间室内,第一盖板21位于风道部件20朝向第一间室14的一侧,第二盖板22位于风道部件20背离第一间室14的一侧。
图8示例了本申请实施例提供的箱胆本体的立体结构示意图,图9示例了本申请实施例提供的箱胆本体与风道部件处于分离状态下的结构示意图,如图7至图10所示,本申请还提供一种箱胆组件包括箱胆本体10,箱胆本体10内部形成有间室,箱胆本体10的一侧形成有与间室连通的第一开口,箱胆本体10的内壁形成有通孔16。风道部件20设置于间室内,风道部件20朝向内壁的侧边与箱胆本体10的内壁围成空腔,空腔与通孔16连通,空腔内填充有分别与内壁以及风道部件20的侧边连接的发泡料。
根据本申请实施例的箱胆组件,发泡前将风道部件20安装于箱胆本体10的间室内,通过在风道部件20朝向箱胆本体10内壁的侧边与箱胆本体10的内壁之间围成空腔,发泡时发泡料会通过通孔16流入空腔内,由于发泡时发泡料是流动的液体,即使箱胆本体10或者风道部件20发生形变,发泡料也能将箱胆本体10与风道部件20之间的间隙进行有效密封,避免了冷冻风道漏冷,增强了制冷效果,有效防止风道结冰。
可以理解的是,如图9所示,空腔包括容胶槽26,容胶槽26形成于风道部件20朝向内壁的侧边,当箱胆本体10的侧壁为平面时,容胶槽26为空腔的全部。风道部件20安装到位后,风道部件20朝向内壁的侧边与箱胆本体10的内壁抵接,内壁的通孔16与容胶槽26连通,发泡料可通过通孔16进入到容胶槽26中,并将整个容胶槽26填充,实现风道部件20 与箱胆本体10之间的密封。
箱胆本体10的侧壁形成有定位机构(即定位槽13)时,容胶槽26与定位机构连通,此时空腔由容胶槽26与定位机构构成。当风道部件20安装到位后,风道部件20朝向内壁的侧边与定位结构卡接配合,内壁的通孔16与容胶槽26以及定位机构连通,发泡料通过通孔16进入到容胶槽26,除了将整个容胶槽26填充之外还会填充定位机构。定位机构可以是凹槽,也可是定位凸楞或者其他定位机构。
可以理解的是,如图7所示,风道部件20竖直设置于间室内,风道部件20将间室分隔成第一间室14和第二间室15,其中第一间室14为图1中左侧的间室,第一间室14为冷冻间室,第二间室15为图1中右侧的间室,第二间室15为变温间室。第一间室14的容量与第二间室15的容量可以相同,也可不同,具体根据实际需要确定第一间室14和第二间室15的容量。当然风道部件20的设置方式并不限定于竖直设置,也可以水平设置,此时两个间室在竖直方向上分布。
相关技术中蒸发器和冷冻风道设置于箱胆的后壁11,这样的布置方式占用了冷冻间室内的空间,减小了冷冻间室在前后方向的深度。本申请实施例的箱胆组件,通过将风道部件20竖直设置于间室内,增加了冷冻间室的前后方向的空间,提高了制冷设备的空间利用率。同时,还方便蒸发器部件的安装和拆卸。
容胶槽26形成于风道部件20的后侧边27和下侧边28,后侧边27的容胶槽26与下侧边28的容胶槽26连通,当然后侧边27的容胶槽26与下侧边28的容胶槽26也可相互独立,即后侧边27的容胶槽26与下侧边28的容胶槽26不连通。当然,容胶槽26的设置位置并不限定于风道部件20的后侧边27和下侧边28,也可以在风道部件20的上侧边设置容胶槽26,上侧边容胶槽26内的发泡料与箱胆本体10的顶壁连接。
这里需要说明的是,本申请实施例中的前后方向指用户打开或关闭制冷设备门体时,用户面对的方向为后方,用户背对的方向为前方,用户的左手边为左侧,右手边为右侧。
可以理解的是,如图8所示,空腔还包括定位槽13,定位槽13形成于箱胆本体10的内壁,箱胆本体10的后壁11的定位槽13沿着箱胆本体10的高度方向延伸,箱胆本体10的底壁12的定位槽13沿着前后方向延伸。风道部件20朝向内壁的侧边卡接于定位槽13内,定位槽13与容胶槽26连通。发泡料通过通孔16进入到容胶槽26内,将整个容胶槽26和定位槽13填充。发泡料固化后可将空腔填充密封,从而实现风道部件20与箱胆本体10之间的密封,同时发泡料还可对风道部件20起到一定的固定作用。
可以理解的是,如图9所示,定位槽13形成于箱胆本体10的后壁11和底壁12,后壁11的定位槽13与底壁12的定位槽13连通,当然,后壁 11的定位槽13与底壁12的定位槽13也可相对独立设置,即后壁11的定位槽13与底壁12的定位槽13不连通。后侧边27卡接于后壁11的定位槽13内,下侧边28卡接于底壁12的定位槽13内。当然,在定位槽13也可形成于箱胆本体10的顶壁,此时,风道部件20的上侧卡接于顶壁的定位槽13中。定位槽13的宽度大于或等于风道部件20的宽度。
可以理解的是,通孔16沿着定位槽13的长度方向间隔布置,以使得发泡过程中发泡料可以进入容胶槽26的每个区域,提高风道部件20与箱胆本体10之间的密封性,避免了冷冻风道漏冷,降低了制冷设备的能耗。通孔16可以为圆形孔或者矩形孔,此时多个通孔16沿着定位槽13的长度方向间隔设置,当然,通孔还可以为条形通孔,此时通孔16沿着定位槽13的长度方向延伸。
在相关技术中,需要在箱体发泡后总装段安装,先安装接水盘50然后安装蒸发器组件,蒸发器焊接完成后,最后在安装风道组件,总装段工序较多并且复杂,工序越多越影响生产效率。
可以理解的是,如图10所示,风道部件20的内部形成有容纳腔25,蒸发器部件40设置于容纳腔25内。由于蒸发器部件40是预先设置于风道部件20内部,发泡前只需将风道部件20安装于箱胆本体10的间室内,总装段只需将蒸发器部件40的管路与制冷系统的管路进行焊接,简化了制冷设备的安装步骤,提高了生产效率;由于减少了装配蒸发器和接水盘50的工人,降低了人工成本。
可以理解的是,风道部件20上形成有与蒸发器部件40的焊接位对应的焊接窗口34,设置焊接窗口34可方便工作人员对蒸发器部件40的管路进行焊接,减少焊接时间,提高生产效率。
可以理解的是,如图10所示,焊接窗口34盖合有盖体,盖体与风道部件20可拆卸连接。盖体与风道部件20可以通过卡扣连接,也可通过螺钉连接。在对蒸发器进行焊接时打开盖体,焊接结束后将盖体盖合于焊接窗口34。
可以理解的是,风道部件20竖直设置于间室内,焊接窗口34位于风道部件20靠近第一开口的边缘。由于焊接窗口34靠近第一开口,工作人员可通过焊接窗口34进行焊接时操作更方便,使工作人员焊接时身体处于舒服的状态,减小了工作人员身体的疲劳度,提高了工作效率。
可以理解的是,相关技术中竖置制冷系统由于回风口的位置高于底部抽屉,往往易造成冷冻室底部抽屉的温度偏高,温度不达标,影响冷冻效果。本申请的箱胆组件通过在风道部件20的底部设置与容纳腔25连通的冷冻回风口30,冷风从出风口出来后,环绕底部的抽屉后,通过冷冻回风口30回到蒸发器部件40中,有效解决竖置制冷系统底部抽屉温度不达标的问题。
可以理解的是,风机部件设置于容纳腔25内,风机部件还包括风机31 和蜗壳32。蜗壳32位于蒸发器部件40的上方。蜗壳32的内部中空,蜗壳32形成有进气口和出气口。风机31设置于蜗壳32内,风机31用于驱动气流通过冷冻回风口30进入到容纳腔25内并与蒸发器接触,气流与蒸发器接触后,气温进一步降低,最后通过出风口排出。
可以理解的是,为了方便风机31的安装,容纳腔25内还设置有风机安装盖板33,风机安装盖板33位于蒸发器与真空隔热板盖板24之间,风机安装盖板33与真空隔热板盖板24通过螺钉连接,蜗壳32通过螺钉固定于风机安装盖板33的上部。
可以理解的是,图11示例了本申请实施例提供的风道部件的剖面结构示意图,图12示例了本申请实施例提供的接水盘的结构示意图,如图11和图12所示,箱胆组件还包括接水盘50,接水盘50设置于容纳腔25内,接水盘50位于蒸发器部件40的下方。接水盘50用于容纳蒸发器部件40产生的冷凝水,冷凝水产生后在重力的作用下自动流入接水盘50。
可以理解的是,接水盘50的下部形成有与冷冻回风口30连通的接水盘回风口51。
可以理解的是,如图12所示,接水盘50包括连接部54和接水盘主体55,连接部54的顶部开口,连接部54套设于蒸发器部件40的底部。接水盘主体55设置于连接部54的下方,接水盘主体55与连接部54连接,接水盘主体55与连接部54一体成型。当然,接水盘主体55与连接部54也可为两个独立的部件,接水盘主体55与连接部54通过螺钉或者卡扣连接。接水盘主体55的内部形成有与连接部54内部连通的容水槽,接水盘回风口51形成于接水盘主体55的侧壁。连接部54既能将蒸发器部件40产生的水引导至容水槽,又能将通过接水盘回风口51进入的气流引导蒸发器部件40。
间室底部的冷风通过冷冻回风口30进入到容纳腔25中,再通过接水盘回风口51进入到接水盘50中,最后通过连接部54的顶部进入到蒸发器部件40中进行热量交换。由于无需单独设置风道,有效简化了箱胆组件的结构,降低了生产成本。
可以理解的是,如图12所示,接水盘主体55的底部形成有与容水槽连通的排水端口52,排水端口52用于将容水槽中的冷凝水排出。接水盘主体55的底面朝向排水端口52向下倾斜,将接水盘主体55的底面向下倾斜可使得容水槽中的水尽快排出,避免冷凝水结冰。接水盘主体55呈V字型,当然也可以呈C字型。
可以理解的是,真空隔热板盖板24朝向第一盖板21一侧的下部形成有支撑部,接水盘主体55的底部抵接于支撑部的顶部。连接部54的宽度大于接水盘主体55的宽度,由于接水盘主体55的宽度较窄,这就使得接水盘主体55与第一盖板21之间形成夹层风道56,夹层风道56分别与冷冻回风口30以及接水盘回风口51连通。
可以理解的是,风道部件20的后侧边27形成有定位孔53,排水端口52穿设于定位孔53,排水端口52与排水管插接连接。当然,排水端口52与排水管的连接方式并不限定于此,也可将排水管穿过定位孔53之后引入容纳腔25内再与排水端口52连接。
可以理解的是,焊接窗口34位于第一盖板21靠近第一开口的边缘,冷冻回风口30位于第二盖板22的下部。此时第一间室14为冷冻间室,第二间室15为变温间室。当然,冷冻回风口30的位置并不限定于此,也可将冷冻回风口30设置于第二盖板22,此时,第一间室14为变温间室,第二间室15为冷冻间室。
可以理解的是,风道部件20的侧边通过多个连接件与箱胆本体10的内壁可拆卸连接。
可以理解的是,为了对风道部件20进行有效固定,真空隔热板盖板24的侧边与箱胆本体10的内壁通过多个旋钮连接,使用旋钮可方便将真空隔热盖板35的侧边与箱胆本体10的内壁进行快速连接。由于真空隔热盖板35的侧边与箱胆本体10的内壁除了通过发泡料连接之外,还通过旋钮连接,采用两种方式共同配合对风道部件20进行固定,有效提高了风道部件20的稳定性。当然,也可采用螺钉或者卡扣将真空隔热盖板35的侧边与箱胆本体10的内壁进行连接。
本申请还提供一种制冷设备,包括壳体、箱胆本体和上述任意一项实施例所述的风路组件,箱胆本体设置于壳体内,送风管部件与回风管部件设置于壳体与箱胆本体之间。
以上实施方式仅用于说明本申请,而非对本申请的限制。尽管参照实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,对本申请的技术方案进行各种组合、修改或者等同替换,都不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围中。

Claims (15)

  1. 一种风路组件,包括:
    风道部件,设置于箱胆本体内,所述风道部件的内部形成有容纳腔,所述容纳腔内设置有蒸发器部件,所述风道部件形成有与所述容纳腔连通的第一回风口和第一送风口;
    送风管部件,与所述第一送风口连通;
    回风管部件,与所述第一回风口连通。
  2. 根据权利要求1所述的风路组件,其中,所述箱胆本体的一侧形成有与所述箱胆本体内部连通的第一开口,所述第一回风口形成于所述风道部件的顶部靠近所述第一开口的一侧,所述第一送风口形成于所述风道部件的顶部远离所述第一开口的一侧。
  3. 根据权利要求2所述的风路组件,其中,所述送风管部件设置于所述风道部件的顶部远离所述第一开口的一侧,所述回风管部件设置于所述风道部件的顶部靠近所述第一开口的一侧。
  4. 根据权利要求1至3中任意一项所述的风路组件,其中,所述回风管部件包括:
    回风管,上部形成有第一冷藏回风口,所述回风管的下部形成有第一变温回风口、第二变温回风口和第二冷藏回风口,所述第一冷藏回风口与所述第二冷藏回风口连通,所述第一变温回风口与所述第二变温回风口连通;所述第一变温回风口以及所述第二冷藏回风口均与所述第一回风口连通。
  5. 根据权利要求4所述的风路组件,其中,所述回风管包括:
    回风管上壳体,所述第一冷藏回风口形成于所述回风管上壳体的上部,所述第一变温回风口和所述第二冷藏回风口形成于所述回风管上壳体的下部;
    回风管下壳体,设置于所述回风管上壳体的下方,并与所述回风管上壳体的下部可拆卸连接,所述第二变温回风口形成于所述回风管下壳体的下部。
  6. 根据权利要求1至3中任意一项所述的风路组件,其中,所述送风管部件包括:
    送风管,内部形成有第一流道,所述送风管形成有与所述第一流道连通的进风口、第二送风口、第三送风口和第四送风口,所述进风口与所述第一送风口连通;
    第一风门,设置于所述第二送风口;
    第二风门,设置于所述第三送风口。
  7. 根据权利要求6所述的风路组件,其中,所述第一风门为单风门、双风门或者三风门。
  8. 根据权利要求2或3所述的风路组件,其中,所述风道部件上形 成有与所述蒸发器部件的焊接位对应的焊接窗口。
  9. 根据权利要求8所述的风路组件,其中,所述焊接窗口盖合有盖体,所述盖体与所述风道部件可拆卸连接。
  10. 根据权利要求8所述的风路组件,其中,所述风道部件竖直设置于所述箱胆本体内部,所述焊接窗口位于所述风道部件靠近所述第一开口的边缘。
  11. 根据权利要求8所述的风路组件,其中,所述容纳腔内设置有接水盘,所述接水盘位于所述蒸发器部件的下方。
  12. 根据权利要求11所述的风路组件,其中,所述风道部件的底部形成有与所述容纳腔连通的冷冻回风口,所述接水盘的下部形成有与所述冷冻回风口连通的接水盘回风口。
  13. 根据权利要求12所述的风路组件,其中,所述接水盘包括:
    连接部,所述连接部的顶部开口,所述连接部套设于所述蒸发器部件的底部;
    接水盘主体,设置于所述连接部的下方,并与所述连接部连接,所述接水盘主体的内部形成有与所述连接部内部连通的接水槽,所述接水盘回风口形成于所述接水盘主体的侧壁。
  14. 根据权利要求8所述的风路组件,其中,所述风道部件包括:
    第一盖板;
    第二盖板,与所述第一盖板相对设置;
    真空隔热板,设置于所述第二盖板与所述第一盖板之间;
    真空隔热板盖板,设置于所述真空隔热板背离所述第二盖板的一侧,所述真空隔热板盖板分别与所述第一盖板以及所述第二盖板可拆卸连接,所述容纳腔形成于所述真空隔热板盖板与所述第一盖板之间,所述第一回风口和所述第一送风口形成于所述真空隔热板盖板的顶部。
  15. 一种制冷设备,包括壳体、箱胆本体和权利要求1至14中任意一项所述的风路组件,其中,所述箱胆本体设置于所述壳体内,所述送风管部件与所述回风管部件设置于所述壳体与所述箱胆本体之间。
PCT/CN2023/087217 2022-08-18 2023-04-10 风路组件及制冷设备 WO2024036992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210995455.6 2022-08-18
CN202210995455.6A CN115540457A (zh) 2022-08-18 2022-08-18 风路组件及制冷设备

Publications (1)

Publication Number Publication Date
WO2024036992A1 true WO2024036992A1 (zh) 2024-02-22

Family

ID=84725616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087217 WO2024036992A1 (zh) 2022-08-18 2023-04-10 风路组件及制冷设备

Country Status (2)

Country Link
CN (1) CN115540457A (zh)
WO (1) WO2024036992A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115540457A (zh) * 2022-08-18 2022-12-30 湖北美的电冰箱有限公司 风路组件及制冷设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100919822B1 (ko) * 2008-04-02 2009-10-01 엘지전자 주식회사 냉장고
KR20110085589A (ko) * 2010-01-21 2011-07-27 엘지전자 주식회사 냉장고
CN103047813A (zh) * 2013-01-07 2013-04-17 合肥华凌股份有限公司 冰箱及其安装方法
CN107883644A (zh) * 2016-09-29 2018-04-06 Lg电子株式会社 冰箱
CN110966826A (zh) * 2019-12-24 2020-04-07 珠海格力电器股份有限公司 冰箱
CN111609616A (zh) * 2019-02-26 2020-09-01 青岛海尔电冰箱有限公司 送风机位于蒸发器前方的冰箱
CN111664629A (zh) * 2020-06-18 2020-09-15 长虹美菱股份有限公司 一种风道组件及冰箱
CN115540457A (zh) * 2022-08-18 2022-12-30 湖北美的电冰箱有限公司 风路组件及制冷设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100919822B1 (ko) * 2008-04-02 2009-10-01 엘지전자 주식회사 냉장고
KR20110085589A (ko) * 2010-01-21 2011-07-27 엘지전자 주식회사 냉장고
CN103047813A (zh) * 2013-01-07 2013-04-17 合肥华凌股份有限公司 冰箱及其安装方法
CN107883644A (zh) * 2016-09-29 2018-04-06 Lg电子株式会社 冰箱
CN111609616A (zh) * 2019-02-26 2020-09-01 青岛海尔电冰箱有限公司 送风机位于蒸发器前方的冰箱
CN110966826A (zh) * 2019-12-24 2020-04-07 珠海格力电器股份有限公司 冰箱
CN111664629A (zh) * 2020-06-18 2020-09-15 长虹美菱股份有限公司 一种风道组件及冰箱
CN115540457A (zh) * 2022-08-18 2022-12-30 湖北美的电冰箱有限公司 风路组件及制冷设备

Also Published As

Publication number Publication date
CN115540457A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
AU2018372734B2 (en) Ice maker-integrated refrigerator
WO2024036992A1 (zh) 风路组件及制冷设备
WO2009072773A2 (en) Refrigerator
WO2023078147A1 (zh) 制冷设备
WO2023011133A1 (zh) 制冷设备
WO2024021618A1 (zh) 制冷设备
US10837693B2 (en) Refrigerator
CN111306865A (zh) 一种冰箱
US11415356B2 (en) Refrigerator
KR101740333B1 (ko) 냉장고
WO2024036993A1 (zh) 冰箱和冰箱的箱胆模块
CN218523825U (zh) 风道部件、箱胆组件及制冷设备
CN216716730U (zh) 制冷设备的箱胆及制冷设备
CN216347262U (zh) 冰箱
JP4095164B2 (ja) 間接冷却式の冷蔵庫
WO2023123939A1 (zh) 制冷设备
CN216897980U (zh) 冰箱
CN218846593U (zh) 一种冰箱
WO2023236277A1 (zh) 制冷设备的风道系统和制冷设备
CN220017836U (zh) 冰箱
WO2023123937A1 (zh) 风道组件及制冷设备
WO2023123936A1 (zh) 风道组件及制冷设备
WO2023109160A1 (zh) 送回风组件及冰箱
CN218583539U (zh) 风道部件及制冷设备
WO2023123938A1 (zh) 排水板、风道组件、箱胆及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853903

Country of ref document: EP

Kind code of ref document: A1