WO2024036962A1 - 一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统 - Google Patents

一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统 Download PDF

Info

Publication number
WO2024036962A1
WO2024036962A1 PCT/CN2023/083654 CN2023083654W WO2024036962A1 WO 2024036962 A1 WO2024036962 A1 WO 2024036962A1 CN 2023083654 W CN2023083654 W CN 2023083654W WO 2024036962 A1 WO2024036962 A1 WO 2024036962A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
train device
bearing
rolling motion
gear
Prior art date
Application number
PCT/CN2023/083654
Other languages
English (en)
French (fr)
Inventor
张春巍
Original Assignee
沈阳工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳工业大学 filed Critical 沈阳工业大学
Publication of WO2024036962A1 publication Critical patent/WO2024036962A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • G01M17/10Suspensions, axles or wheels

Definitions

  • the invention relates to the technical field of railway engineering, and in particular to a test system for simulating the unfavorable dynamic behavior of high-speed train roll and its active control.
  • the invention provides a test system for simulating unfavorable dynamic behavior of high-speed train side roll and its active control, which includes a load-bearing device, a train device, a processing device and an adjustment device.
  • the train device is arranged on the load-bearing device, and the load-bearing device It is used to cause the train device to roll sideways, the processing device is connected to the adjustment device, the processing device and the adjustment device are both arranged on the train device, and the plane where the adjustment device is located is in line with the The plane on which the train device is located is arranged at an angle.
  • the processing device is used to obtain the data of the rolling motion of the train device and control the adjusting device according to the data.
  • the adjusting device outputs to the train device A moment opposite to the rolling motion direction of the train device to adjust the rolling motion of the train device.
  • the carrying device includes at least one of the following:
  • one side of the train device is disposed on the first carrying mechanism, and the The first bearing mechanism drives the train device to generate a first displacement, so that the train device undergoes a side rolling motion;
  • the second bearing mechanism, the other side of the train device is disposed on the second bearing mechanism, and the second bearing mechanism drives the train device to generate a second displacement, so that the train device undergoes a side rolling motion.
  • the first bearing mechanism includes a first bearing member and a first driving member.
  • the first bearing member is connected to the first driving member.
  • One side of the train device is disposed on the first bearing member.
  • the first driving member drives the first bearing member to move to drive the train device to generate a first displacement.
  • the first load-bearing mechanism further includes a first elastic member, one end of the first elastic member is connected to the first load-bearing member, and the other end of the first elastic member is connected to the first driving member.
  • the second bearing mechanism includes a second bearing member and a second driving member, the second bearing member is connected to the second driving member, and the other side of the train device is disposed on the second bearing member.
  • the second driving component drives the second bearing component to drive the train device to generate a second displacement.
  • the processing device includes a sensor and a control module.
  • the sensor is electrically connected to the control module.
  • the sensor and the control module are both arranged on the train device.
  • the control module is connected to the regulating device. connection, the sensor is used to obtain the data of the rolling motion of the train device, and send the data to the control module.
  • the control module controls the adjustment device according to the data, and the adjustment device controls the The train device outputs a moment opposite to the rolling motion direction of the train device.
  • control module includes a controller, a development board and a control board.
  • the input end of the development board is electrically connected to the controller and the sensor, and the output end of the development board is electrically connected to the control board.
  • the controller, the development board and the control board are all arranged on the train device, the control board is connected to the adjustment device, and the controller is used to receive the data sent by the sensor, and generate instructions according to the data and send the instructions to the development board.
  • the development board is used to receive the instructions sent by the controller, process the instructions and send the instructions to the
  • the control board is used to accept the instruction sent by the development board and control the adjustment device according to the instruction, and the adjustment device outputs the rolling motion direction of the train device in accordance with the direction of the train device. Opposite torque.
  • the adjustment device includes a driving component and a moment of inertia body.
  • the driving component is transmission connected with the moment of inertia body.
  • the driving component is connected with the processing device.
  • the driving component and the moment of inertia body are connected. are arranged on the train device, and the plane where the rotational inertia body is located and the plane where the train device is located are arranged at an angle, and the driving assembly drives the rotational inertia body to rotate, so that the rotational inertia body A moment opposite to the rolling motion direction of the train device is output to the train device.
  • the driving assembly includes a second driving member and a gear assembly, the second driving member is connected to the gear assembly, the second driving member is connected to the processing device, and the rotational inertia body is provided with a The second driving member drives the gear assembly to rotate, and the gear assembly engages with the saw teeth to drive the rotational inertia body to rotate.
  • the gear assembly includes a first gear and a second gear, the first gear meshes with the second gear, the second driving member is connected with the first gear, and the moment of inertia body The saw teeth mesh with the second gear, and the diameter of the first gear is larger than the diameter of the second gear.
  • the present invention proposes a test system for simulating the unfavorable dynamic behavior of high-speed train roll and its active control.
  • the train device is caused to roll.
  • the processing device obtains the roll data of the train device and controls and adjusts it according to the roll data.
  • the device outputs a torque to the train device in the direction opposite to the rolling motion of the train device to adjust the rolling motion of the train device.
  • Figure 1 is a schematic structural diagram of a test system for simulating unfavorable dynamic behavior of high-speed train side roll and its active control in an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a carrying device in an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of the adjusting device in the embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a driving assembly in an embodiment of the present invention.
  • a high-speed train roll adverse dynamic behavior simulation and its The actively controlled test system includes a bearing device 100, a train device 200, a processing device 300 and an adjustment device 400.
  • the train device 200 is arranged on the bearing device 100.
  • the bearing device 100 is used to cause the train device 200 to roll.
  • the processing device 300 and The adjusting device 400 is connected.
  • the processing device 300 and the adjusting device 400 are both arranged on the train device 200, and the plane where the adjusting device 400 is located and the plane where the train device 200 is located are set at an angle.
  • the processing device 300 is used to obtain the side roll of the train device 200.
  • the adjustment device 400 is controlled based on the motion data, and the adjustment device 400 outputs a torque to the train device 200 in the direction opposite to the rolling motion of the train device 200, so as to adjust the rolling motion of the train device 200.
  • the rolling motion of the train is effectively reduced.
  • the carrying device 100 includes at least one of the following:
  • the first bearing mechanism 110 has one side of the train device 200 disposed on the first bearing mechanism 110.
  • the first bearing mechanism 110 drives the train device 200 to generate a first displacement, so that the train device 200 undergoes a side rolling motion;
  • the second bearing mechanism 120 has the other side of the train device 200 disposed on the second bearing mechanism 120.
  • the second bearing mechanism 120 drives the train device 200 to generate a second displacement, so that the train device 200 undergoes a side rolling motion.
  • one side of the train device 200 is disposed on the first bearing mechanism 110, and the other side of the train device 200 is disposed on the second bearing mechanism 120.
  • the first bearing mechanism 110 drives the train device 200 to generate a first displacement
  • the second The bearing mechanism 120 drives the train device 200 to generate a second displacement.
  • the first displacement and the second displacement are different, so the train device 200 will have a height difference in the horizontal direction, and the train device 200 will roll.
  • the first bearing mechanism 110 includes a first bearing member 111 and a first driving member 112.
  • the first bearing member 111 is connected to the first driving member 112.
  • One side of the train device 200 is disposed on the first bearing member 111.
  • the first driving member 112 drives the first bearing member 111 to move to drive the train device 200 to generate a first displacement.
  • the train device 200 includes a first wheel 210.
  • the first bearing member 111 is provided with a first groove 1111.
  • the first wheel 210 is clamped with the first groove 1111, thereby fixing the train device 200 to the bearing device 100. , to prevent the first wheel 210 from detaching from the first bearing member 111 when the train device 200 rolls.
  • the first driving member 112 may be, but is not limited to, a servo hydraulic actuator.
  • the first carrying mechanism 110 also includes a first fastener 114.
  • the first fastener 114 is To fix the first bearing member 111 and the train device 200. Furthermore, the first fastener 114 is used to fix the first bearing member 111 and the first wheel 210 to more effectively prevent the first wheel 210 from being separated from the first bearing member 111 when the train device 200 rolls.
  • the first bearing mechanism 110 further includes a first elastic member 113 , one end of the first elastic member 113 is connected to the first bearing member 111 , and the other end of the first elastic member 113 is connected to the first driving member 112 .
  • the first elastic member 113 is used to simulate the rolling motion process of the train more accurately.
  • the second bearing mechanism 120 includes a second bearing member 121 and a third driving member 122.
  • the second bearing member 121 is connected to the third driving member 122.
  • the other side of the train device 200 is disposed on the second bearing member. 121, the third driving member 122 drives the second bearing member 121 to drive the train device 200 to generate the second displacement.
  • the train device 200 also includes a second wheel.
  • the second bearing member 121 is provided with a second groove 1211.
  • the second wheel is clamped with the second groove 1211, thereby fixing the train device 200 to the bearing device 100. This prevents the second wheel from detaching from the second bearing member 121 when the train device 200 rolls.
  • the third driving member 122 may be, but is not limited to, a servo hydraulic actuator.
  • the second bearing mechanism 120 also includes a second fastener 124, which is used to fix the second bearing member 121 and the train device 200. Further, the second fastener 124 is used to fix the second bearing member 121 and the second wheel to more effectively prevent the second wheel from being separated from the second bearing member 121 when the train device 200 rolls.
  • the second bearing mechanism 120 further includes a second elastic member 123 , one end of the second elastic member 123 is connected to the second bearing member 121 , and the other end of the second elastic member 123 is connected to the third driving member 122 .
  • the second elastic member 123 is used to simulate the rolling motion process of the train more accurately.
  • the processing device 300 includes a sensor and a control module.
  • the sensor is electrically connected to the control module.
  • the sensor and the control module are both arranged on the train device 200 .
  • the control module is connected to the regulating device 400 .
  • the sensor is used to obtain the side information of the train device 200 .
  • the rolling motion data is collected and sent to the control module.
  • the control module controls the regulating device 400 to output a torque to the train device 200 that is opposite to the rolling motion direction of the train device 200 based on the data.
  • the control module includes a controller, a development board and a control board.
  • the input end of the development board is electrically connected to the controller and the sensor.
  • the output end of the development board is electrically connected to the control board.
  • the controller, development board and control board are all arranged on On the train device 200, the control board is connected to the regulating device 400.
  • the controller is used to receive data sent by the sensor, generate instructions based on the data, and send the instructions to the development board.
  • the development board is used to receive the instructions sent by the controller and process the instructions. and sends instructions to the control panel to control
  • the board is used to receive instructions sent by the development board and control the adjustment device 400 according to the instructions, and output a torque to the train device 200 that is opposite to the rolling motion direction of the train device 200 . More specifically, the control board is electrically connected to the adjustment device 400 .
  • the senor is arranged in a horizontal direction, and the sensor may be arranged on the top of the train device 200 .
  • the sensor acquires data on the roll angle of the train device 200 and sends the data to the controller and the development board.
  • the controller matches the control algorithm to generate instructions based on the data and sends the instructions to the development board.
  • the development board processes the instructions to comply with the instructions of the control board, and sends them to the control board, and the control board controls the adjustment device 400 according to the instructions.
  • the adjusting device 400 outputs a torque opposite to the direction of the rolling motion of the train device 200 to the train device 200 to adjust the rolling motion of the train device 200.
  • the adjusting device 400 feeds back the adjustment of the rolling motion of the train to the controller, and the controller adjusts the rolling motion of the train according to The adjustment situation issues new instructions, thereby forming a closed-loop control system, effectively eliminating errors of the adjustment device 400.
  • the control board may be, but is not limited to, a motor control board.
  • the sensor may be, but is not limited to, a gyroscope sensor.
  • the adjusting device 400 includes a driving component assembly and a moment of inertia body 420.
  • the driving component 410 and the moment of inertia body 420 are transmission connected.
  • the driving component 410 is connected to the processing device 300.
  • the driving component 410 and the moment of inertia body 420 are both arranged on the train device 200, and the plane where the moment of inertia 420 is located is set at an angle with the plane where the train device 200 is located.
  • the driving assembly 410 drives the moment of inertia body 420 to rotate, so that the moment of inertia body 420 A moment opposite to the rolling motion direction of the train device 200 is output to the train device 200 .
  • the moment of inertia body 420 has a circular ring structure, and there may be four drive assemblies 410 .
  • the four drive assemblies 410 are respectively arranged on the outer periphery of the moment of inertia body 420 , thereby improving the rotation efficiency of the moment of inertia body 420 .
  • the driving assembly 410 includes a second driving member 411 and a gear assembly 412.
  • the second driving member 411 is connected to the gear assembly 412.
  • the second driving member 411 is connected to the processing device 300.
  • the rotational inertia body 420 is provided with an outer periphery.
  • the gear assembly 412 meshes with the saw teeth 421, and the second driving member 411 drives the gear assembly 412 to rotate.
  • the gear assembly 412 engages with the saw teeth 421 for transmission, so as to drive the rotational inertia body 420 to rotate.
  • the second driving member 411 may be, but is not limited to, a motor.
  • the adjusting device 400 also includes a package body 430, which is disposed on the train device 200.
  • the driving assembly 410 and the moment of inertia body 420 are disposed in the package body 430.
  • the gear assembly 412 includes a first gear 4121 and a second gear 4122.
  • the first gear 4121 and the second gear 4122 mesh with each other.
  • the second driving member 411 is connected to the first gear 4121 to rotate.
  • the saw teeth 421 of the inertia body 420 mesh with the second gear 4122, and the diameter of the first gear 4121 is larger than the diameter of the second gear 4122.
  • the diameter of the first gear 4121 is smaller than the diameter of the second gear 4122, so the rotation speed of the second gear 4122 will be faster than the rotation speed of the first gear 4121.
  • the saw teeth 421 of the rotational inertia body 420 are in phase with the second gear 4122. Engage, thereby increasing the rotation speed of the moment of inertia body 420.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统,包括承载装置、列车装置、处理装置和调节装置,列车装置设置于承载装置上,承载装置用于使得列车装置发生侧滚运动,处理装置与调节装置连接,处理装置和调节装置均设置于列车装置上,且调节装置所在的平面与列车装置所在的平面呈夹角设置,处理装置用于获取列车装置侧滚运动的数据,并根据数据控制调节装置,调节装置对列车装置输出与列车装置侧滚运动方向相反的力矩,以调节列车装置的侧滚运动。通过有效模拟出列车的侧滚运动,并控制列车的侧滚运动,从而有效地降低列车的侧滚运动。

Description

一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统 技术领域
本发明涉及铁路工程的技术领域,特别涉及一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统。
背景技术
高速列车在运行过程中,轮轨在长时间动力相互作用下会产生磨损和损伤,引起高速列车产生复杂的动态行为,而在列车直线行驶过程中,受轨道不平顺的影响,列车会产生具有转动的侧滚运动,在列车内部安装控制系统可以有效地降低列车的侧滚运动,对于现有的控制装置大多采用悬挂系统,目前的控制系统大多侧重于轮轨和悬挂系统的加载试验,并不能有效模拟出列车的侧滚运动。因此,如何控制列车的侧滚运动的试验系统成为亟需解决的技术问题。
发明内容
基于此,有必要提供一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统,模拟列车的侧滚运动,并控制列车的侧滚运动的试验系统。
本发明提供一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统,包括承载装置、列车装置、处理装置和调节装置,所述列车装置设置于所述承载装置上,所述承载装置用于使得所述列车装置发生侧滚运动,所述处理装置与所述调节装置连接,所述处理装置和所述调节装置均设置于所述列车装置上,且所述调节装置所在的平面与所述列车装置所在的平面呈夹角设置,所述处理装置用于获取所述列车装置侧滚运动的数据,并根据所述数据控制所述调节装置,所述调节装置对所述列车装置输出与所述列车装置侧滚运动方向相反的力矩,以调节所述列车装置的侧滚运动。
进一步地,所述承载装置包括如下中的至少一个:
第一承载机构,所述列车装置的一侧设置于所述第一承载机构上,所述 第一承载机构驱动所述列车装置产生第一位移,以使所述列车装置发生侧滚运动;及
第二承载机构,所述列车装置的另一侧设置于所述第二承载机构上,所述第二承载机构驱动所述列车装置产生第二位移,以使所述列车装置发生侧滚运动。
进一步地,所述第一承载机构包括第一承载件和第一驱动件,所述第一承载件与所述第一驱动件连接,所述列车装置的一侧设置于所述第一承载件上,所述第一驱动件驱动所述第一承载件移动以带动所述列车装置产生第一位移。
进一步地,所述第一承载机构还包括第一弹性件,所述第一弹性件的一端连接于第一承载件,所述第一弹性件的另一端连接于第一驱动件。
进一步地,所述第二承载机构包括第二承载件和第二驱动件,所述第二承载件与所述第二驱动件连接,所述列车装置的另一侧设置于所述第二承载件上,所述第二驱动件驱动所述第二承载件以带动所述列车装置产生第二位移。
进一步地,所述处理装置包括传感器和控制模块,所述传感器与所述控制模块电连接,所述传感器和所述控制模块均设置于所述列车装置上,所述控制模块与所述调节装置连接,所述传感器用于获取所述列车装置侧滚运动的数据,并将所述数据发送给所述控制模块,所述控制模块根据所述数据控制所述调节装置,所述调节装置对所述列车装置输出与所述列车装置侧滚运动方向相反的力矩。
进一步地,所述控制模块包括控制器、开发板和控制板,所述开发板的输入端与所述控制器和所述传感器电连接,所述开发板的输出端与所述控制板电连接,所述控制器、所述开发板和所述控制板均设置于所述列车装置上,所述控制板与所述调节装置连接,所述控制器用于接收所述传感器发送的所述数据,并根据所述数据生成指令,并将所述指令发送至所述开发板,所述开发板用于接收所述控制器发送的所述指令,并处理所述指令且将所述指令发送至所述控制板,所述控制板用于接受所述开发板发送的所述指令并根据所述指令控制所述调节装置,所述调节装置对所述列车装置输出与所述列车装置侧滚运动方向相反的力矩。
进一步地,所述调节装置包括驱动件组件和转动惯量体,所述驱动组件和所述转动惯量体传动连接,所述驱动组件与所述处理装置连接,所述驱动组件和所述转动惯量体均设置于所述列车装置上,且所述转动惯量体所在的平面与所述列车装置所在的平面呈夹角设置,所述驱动组件驱动所述转动惯量体转动,以使所述转动惯量体对所述列车装置输出与所述列车装置侧滚运动方向相反的力矩。
进一步地,所述驱动组件包括第二驱动件和齿轮组件,所述第二驱动件与所述齿轮组件连接,所述第二驱动件与所述处理装置连接,所述转动惯量体外周设置有与所述齿轮组件相啮合的锯齿,所述第二驱动件驱动所述齿轮组件转动,所述齿轮组件与所述锯齿啮合传动,以带动所述转动惯量体转动。
进一步地,所述齿轮组件包括第一齿轮和第二齿轮,所述第一齿轮和所述第二齿轮相啮合,所述第二驱动件与所述第一齿轮连接,所述转动惯量体的所述锯齿与所述第二齿轮相啮合,所述第一齿轮的直径大于所述第二齿轮的直径。
本发明提出的一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统,通过承载装置使得列车装置发生侧滚运动,处理装置获取列车装置的侧滚数据,并根据侧滚数据控制调节装置对列车装置输出与列车装置侧滚运动方向相反的力矩,以调节列车装置的侧滚运动,通过有效模拟出列车的侧滚运动,并控制列车的侧滚运动,从而有效地降低列车的侧滚运动。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例中一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统的结构示意图;
图2为本发明实施例中承载装置的结构示意图;
图3为本发明实施例中调节装置的结构示意图;
图4为本发明实施例中驱动组件的结构示意图。
主要元件:
100、承载装置;110、第一承载机构;111、第一承载件;1111、第一凹
槽;112、第一驱动件;113、第一弹性件;114、第一紧固件;120、第二承载机构;121、第二承载件;1211、第二凹槽;122、第三驱动件;123、第二弹性件;124、第二紧固件;200、列车装置;210、第一车轮;300、处理装置;400、调节装置;410、驱动组件;411、第二驱动件;412、齿轮组件;4121、第一齿轮;4122、第二齿轮;420、转动惯量体;421、锯齿;430、封装体。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中的“和/或”包括三个方案,以A和/或B为例,包括A技术方案、B技术方案,以及A和B同时满足的技术方案;另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
如图1所示,在一些实施例中,一种高速列车侧滚不利动态行为模拟及其 主动控制的试验系统包括承载装置100、列车装置200、处理装置300和调节装置400,列车装置200设置于承载装置100上,承载装置100用于使得列车装置200发生侧滚运动,处理装置300与调节装置400连接,处理装置300和调节装置400均设置于列车装置200上,且调节装置400所在的平面与列车装置200所在的平面呈夹角设置,处理装置300用于获取列车装置200侧滚运动的数据,并根据数据控制调节装置400,调节装置400对列车装置200输出与列车装置200侧滚运动方向相反的力矩,以调节列车装置200的侧滚运动。通过有效模拟出列车的侧滚运动,并控制列车的侧滚运动,从而有效地降低列车的侧滚运动。
如图2所示,在一些实施例中,承载装置100包括如下中的至少一个:
第一承载机构110,列车装置200的一侧设置于第一承载机构110上,第一承载机构110驱动列车装置200产生第一位移,以使列车装置200发生侧滚运动;及
第二承载机构120,列车装置200的另一侧设置于第二承载机构120上,第二承载机构120驱动列车装置200产生第二位移,以使列车装置200发生侧滚运动。
具体地,列车装置200的一侧设置于第一承载机构110上,列车装置200的另一侧设置于第二承载机构120上,第一承载机构110驱动列车装置200产生第一位移,第二承载机构120驱动列车装置200产生第二位移,第一位移和第二位移不相同,所以列车装置200在水平方向会有高度差,从而列车装置200会发生侧滚运动。
在一些实施例中,第一承载机构110包括第一承载件111和第一驱动件112,第一承载件111与第一驱动件112连接,列车装置200的一侧设置于第一承载件111上,第一驱动件112驱动第一承载件111移动以带动列车装置200产生第一位移。具体地,列车装置200包括第一车轮210,第一承载件111开设有第一凹槽1111,第一车轮210与第一凹槽1111相卡持,从而将列车装置200固定于承载装置100上,防止列车装置200发生侧滚运动时第一车轮210脱离第一承载件111。更具体地,第一驱动件112可以但不限于为伺服液压作动器。
进一步地,第一承载机构110还包括第一紧固件114,第一紧固件114用 于固定第一承载件111与列车装置200。进一步地,第一紧固件114用于固定第一承载件111与第一车轮210,更有效地防止列车装置200发生侧滚运动时第一车轮210脱离第一承载件111。
在一些实施例中,第一承载机构110还包括第一弹性件113,第一弹性件113的一端连接于第一承载件111,第一弹性件113的另一端连接于第一驱动件112。第一弹性件113用于更加精确地模拟列车的侧滚运动过程。
在一些实施例中,第二承载机构120包括第二承载件121和第三驱动件122,第二承载件121与第三驱动件122连接,列车装置200的另一侧设置于第二承载件121上,第三驱动件122驱动第二承载件121以带动列车装置200产生第二位移。具体地,列车装置200还包括第二车轮,第二承载件121开设有第二凹槽1211,第二车轮与第二凹槽1211相卡持,从而将列车装置200固定于承载装置100上,防止列车装置200发生侧滚运动时第二车轮脱离第二承载件121。更具体地,第三驱动件122可以但不限于为伺服液压作动器。
进一步地,第二承载机构120还包括第二紧固件124,第二紧固件124用于固定第二承载件121与列车装置200。进一步地,第二紧固件124用于固定第二承载件121与第二车轮,更有效地防止列车装置200发生侧滚运动时第二车轮脱离第二承载件121。
在一些实施例中,第二承载机构120还包括第二弹性件123,第二弹性件123的一端连接于第二承载件121,第二弹性件123的另一端连接于第三驱动件122。第二弹性件123用于更加精确地模拟列车的侧滚运动过程。
在一些实施例中,处理装置300包括传感器和控制模块,传感器与控制模块电连接,传感器和控制模块均设置于列车装置200上,控制模块与调节装置400连接,传感器用于获取列车装置200侧滚运动的数据,并将数据发送给控制模块,控制模块根据数据控制调节装置400对列车装置200输出与列车装置200侧滚运动方向相反的力矩。
具体地,控制模块包括控制器、开发板和控制板,开发板的输入端与控制器和传感器电连接,开发板的输出端与控制板电连接,控制器、开发板和控制板均设置于列车装置200上,控制板与调节装置400连接,控制器用于接收传感器发送的数据,并根据数据生成指令,并将指令发送至开发板,开发板用于接收控制器发送的指令,并处理指令且将指令发送至控制板,控制 板用于接受开发板发送的指令并根据指令控制调节装置400,对列车装置200输出与列车装置200侧滚运动方向相反的力矩。更具体地,控制板与调节装置400电连接。
进一步地,传感器设置于水平方向,传感器可以设置于列车装置200的顶部。当列车装置200发生侧滚运动时,传感器获取列车装置200的侧滚角度的数据,并将数据发送至控制器和开发板,控制器匹配控制算法根据数据生成指令,并将指令发送至开发板,开发板将指令处理为符合控制板的指令,并发送至控制板,控制板根据指令控制调节装置400。调节装置400对列车装置200输出与列车装置200侧滚运动方向相反的力矩,以调节列车装置200的侧滚运动,调节装置400将列车的侧滚运动的调节情况反馈给控制器,控制器根据调节情况发出新的指令,从而形成闭环的控制系统,有效地消除调节装置400的误差。更进一步地,控制板可以但不限于为电机控制板。传感器可以但不限于为陀螺仪传感器。
如图3和图4所示,在一些实施例中,调节装置400包括驱动件组件和转动惯量体420,驱动组件410和转动惯量体420传动连接,驱动组件410与处理装置300连接,驱动组件410和转动惯量体420均设置于列车装置200上,且转动惯量体420所在的平面与列车装置200所在的平面呈夹角设置,驱动组件410驱动转动惯量体420转动,以使转动惯量体420对列车装置200输出与列车装置200侧滚运动方向相反的力矩。具体地,转动惯量体420为圆环结构,驱动组件410可以为四个,四个驱动组件410分别布设于转动惯量体420的外周,从而提高转动惯量体420转动的效率。
在一些实施例中,驱动组件410包括第二驱动件411和齿轮组件412,第二驱动件411与齿轮组件412连接,第二驱动件411与处理装置300连接,转动惯量体420外周设置有与齿轮组件412相啮合的锯齿421,第二驱动件411驱动齿轮组件412转动,齿轮组件412与锯齿421啮合传动,以带动转动惯量体420转动。具体地,第二驱动件411可以但不限于为电机。
调节装置400还包括封装体430,封装体430设置于列车装置200上,驱动组件410和转动惯量体420设置于封装体430内。
更具体地,齿轮组件412包括第一齿轮4121和第二齿轮4122,第一齿轮4121和第二齿轮4122相啮合,第二驱动件411与第一齿轮4121连接,转动 惯量体420的锯齿421与第二齿轮4122相啮合,第一齿轮4121的直径大于第二齿轮4122的直径。进一步地,第一齿轮4121的直径小于第二齿轮4122的直径,所以第二齿轮4122的转动速度会比第一齿轮4121的转动速度更快,转动惯量体420的锯齿421与第二齿轮4122相啮合,从而提高转动惯量体420的转动速度。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统,其特征在于,包括承载装置、列车装置、处理装置和调节装置,所述列车装置设置于所述承载装置上,所述承载装置用于使得所述列车装置发生侧滚运动,所述处理装置与所述调节装置连接,所述处理装置和所述调节装置均设置于所述列车装置上,且所述调节装置所在的平面与所述列车装置所在的平面呈夹角设置,所述处理装置用于获取所述列车装置侧滚运动的数据,并根据所述数据控制所述调节装置,所述调节装置对所述列车装置输出与所述列车装置侧滚运动方向相反的力矩,以调节所述列车装置的侧滚运动。
  2. 根据权利要求1所述的试验系统,其特征在于,所述承载装置包括如下中的至少一个:
    第一承载机构,所述列车装置的一侧设置于所述第一承载机构上,所述第一承载机构驱动所述列车装置产生第一位移,以使所述列车装置发生侧滚运动;及
    第二承载机构,所述列车装置的另一侧设置于所述第二承载机构上,所述第二承载机构驱动所述列车装置产生第二位移,以使所述列车装置发生侧滚运动。
  3. 根据权利要求2所述的试验系统,其特征在于,所述第一承载机构包括第一承载件和第一驱动件,所述第一承载件与所述第一驱动件连接,所述列车装置的一侧设置于所述第一承载件上,所述第一驱动件驱动所述第一承载件移动以带动所述列车装置产生第一位移。
  4. 根据权利要求3所述的试验系统,其特征在于,所述第一承载机构还包括第一弹性件,所述第一弹性件的一端连接于第一承载件,所述第一弹性件的另一端连接于第一驱动件。
  5. 根据权利要求2所述的试验系统,其特征在于,所述第二承载机构包括第二承载件和第二驱动件,所述第二承载件与所述第二驱动件连接,所述列车装置的另一侧设置于所述第二承载件上,所述第二驱动件驱动所述第二承载件以带动所述列车装置产生第二位移。
  6. 根据权利要求1所述的试验系统,其特征在于,所述处理装置包括传 感器和控制模块,所述传感器与所述控制模块电连接,所述传感器和所述控制模块均设置于所述列车装置上,所述控制模块与所述调节装置连接,所述传感器用于获取所述列车装置侧滚运动的数据,并将所述数据发送给所述控制模块,所述控制模块根据所述数据控制所述调节装置,所述调节装置对所述列车装置输出与所述列车装置侧滚运动方向相反的力矩。
  7. 根据权利要求6所述的试验系统,其特征在于,所述控制模块包括控制器、开发板和控制板,所述开发板的输入端与所述控制器和所述传感器电连接,所述开发板的输出端与所述控制板电连接,所述控制器、所述开发板和所述控制板均设置于所述列车装置上,所述控制板与所述调节装置连接,所述控制器用于接收所述传感器发送的所述数据,并根据所述数据生成指令,并将所述指令发送至所述开发板,所述开发板用于接收所述控制器发送的所述指令,并处理所述指令且将所述指令发送至所述控制板,所述控制板用于接受所述开发板发送的所述指令并根据所述指令控制所述调节装置,所述调节装置对所述列车装置输出与所述列车装置侧滚运动方向相反的力矩。
  8. 根据权利要求1所述的试验系统,其特征在于,所述调节装置包括驱动件组件和转动惯量体,所述驱动组件和所述转动惯量体传动连接,所述驱动组件与所述处理装置连接,所述驱动组件和所述转动惯量体均设置于所述列车装置上,且所述转动惯量体所在的平面与所述列车装置所在的平面呈夹角设置,所述驱动组件驱动所述转动惯量体转动,以使所述转动惯量体对所述列车装置输出与所述列车装置侧滚运动方向相反的力矩。
  9. 根据权利要求8所述的试验系统,其特征在于,所述驱动组件包括第二驱动件和齿轮组件,所述第二驱动件与所述齿轮组件连接,所述第二驱动件与所述处理装置连接,所述转动惯量体外周设置有与所述齿轮组件相啮合的锯齿,所述第二驱动件驱动所述齿轮组件转动,所述齿轮组件与所述锯齿啮合传动,以带动所述转动惯量体转动。
  10. 根据权利要求9所述的试验系统,其特征在于,所述齿轮组件包括第一齿轮和第二齿轮,所述第一齿轮和所述第二齿轮相啮合,所述第二驱动件与所述第一齿轮连接,所述转动惯量体的所述锯齿与所述第二齿轮相啮合,所述第一齿轮的直径大于所述第二齿轮的直径。
PCT/CN2023/083654 2022-08-15 2023-03-24 一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统 WO2024036962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210976294.6A CN115406683A (zh) 2022-08-15 2022-08-15 一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统
CN202210976294.6 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024036962A1 true WO2024036962A1 (zh) 2024-02-22

Family

ID=84159986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083654 WO2024036962A1 (zh) 2022-08-15 2023-03-24 一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统

Country Status (2)

Country Link
CN (1) CN115406683A (zh)
WO (1) WO2024036962A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115406683A (zh) * 2022-08-15 2022-11-29 沈阳工业大学 一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070260372A1 (en) * 2006-05-08 2007-11-08 Langer William J Dynamic vehicle suspension system testing and simulation
CN103698139A (zh) * 2013-12-03 2014-04-02 南车青岛四方机车车辆股份有限公司 轨道车辆柔度系数测试方法
CN104006940A (zh) * 2014-05-30 2014-08-27 长春轨道客车股份有限公司 轨道车辆振动特性试验装置及方法
CN110641501A (zh) * 2019-10-31 2020-01-03 青岛理工大学 高速列车侧滚、点头、摇头动态行为的力矩控制方法
CN110654412A (zh) * 2019-10-31 2020-01-07 青岛理工大学 抑制高速列车侧滚、点头、摇头行为的主被动复合控制系统
CN112810651A (zh) * 2021-01-14 2021-05-18 中车长春轨道客车股份有限公司 一种轨道车辆抗侧滚装置及其控制方法
CN112896215A (zh) * 2021-02-04 2021-06-04 中车青岛四方车辆研究所有限公司 一种轨道交通用主动倾摆系统
CN115406683A (zh) * 2022-08-15 2022-11-29 沈阳工业大学 一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070260372A1 (en) * 2006-05-08 2007-11-08 Langer William J Dynamic vehicle suspension system testing and simulation
CN103698139A (zh) * 2013-12-03 2014-04-02 南车青岛四方机车车辆股份有限公司 轨道车辆柔度系数测试方法
CN104006940A (zh) * 2014-05-30 2014-08-27 长春轨道客车股份有限公司 轨道车辆振动特性试验装置及方法
CN110641501A (zh) * 2019-10-31 2020-01-03 青岛理工大学 高速列车侧滚、点头、摇头动态行为的力矩控制方法
CN110654412A (zh) * 2019-10-31 2020-01-07 青岛理工大学 抑制高速列车侧滚、点头、摇头行为的主被动复合控制系统
CN112810651A (zh) * 2021-01-14 2021-05-18 中车长春轨道客车股份有限公司 一种轨道车辆抗侧滚装置及其控制方法
CN112896215A (zh) * 2021-02-04 2021-06-04 中车青岛四方车辆研究所有限公司 一种轨道交通用主动倾摆系统
CN115406683A (zh) * 2022-08-15 2022-11-29 沈阳工业大学 一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐洋 (XU, YANG): "基于直接力矩驱动的高速列车侧滚动态行为新型主动控制系统及其相关理论与试验研究 (Non-official translation: A New Active Control System for the Roll Dynamic Behavior of High-speed Trains Based on Direct Torque Drive and its Related Theoretical and Experimental Research)", 中国优秀硕士学位论文全文数据库 工程科技II辑 (ENGINEERING SCIENCE AND TECHNOLOGY II, CHINA MASTER'S THESES FULL-TEXT DATABASE), no. 2, 15 February 2022 (2022-02-15), ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN115406683A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2024036962A1 (zh) 一种高速列车侧滚不利动态行为模拟及其主动控制的试验系统
JP5064779B2 (ja) 姿勢制御装置
US6408230B2 (en) Omnidirectional vehicle and method of controlling the same
CN111717278B (zh) 一种电动汽车转向失效的容错控制方法及系统
JP2008297127A (ja) エレベータの箱の振動を減衰させる装置および方法
JP6843665B2 (ja) 自動運転制御装置
WO2020093719A1 (zh) 一种四模块无轨电车及其转向控制铰接系统
Yao Vehicle steer-by-wire system control
CN103112602A (zh) 一种基于推力器和动量轮联合的三轴角速度阻尼控制方法
WO2024036967A1 (zh) 一种工程结构或机械系统减摇止摆的主动控制系统
JP2017064802A (ja) ロボットアーム、ロボット装置、およびロボットアームの制御方法
JP2007112186A (ja) トー角・キャンバー角可変機構
EP3040251B1 (en) Method of decreasing lateral pressure in railroad vehicle
CN105814502A (zh) 轨迹测定装置、数控装置以及轨迹测定方法
JP3271989B2 (ja) 関節継手を備えた軌条車両
CN113635300B (zh) 一种基于轨迹规划的变刚度柔性臂抑振控制方法
TWI726498B (zh) 龍門機構線上慣量匹配同步控制方法
JP2009069763A (ja) 運転模擬試験装置
JPS62120514A (ja) 位置制御駆動方法
US10604182B2 (en) Apparatus and method for controlling rear-wheel steering
CN101153649A (zh) 传动机构
JP2013018073A (ja) マニピュレーター、マニピュレーターの駆動方法およびロボット
CN110103995A (zh) 一种轨道车辆及其轨道车轮系统
JP2016120537A (ja) マニピュレータ装置及び駆動制御プログラム
WO2024024578A1 (ja) ロボットの制御方法及びロボットの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853875

Country of ref document: EP

Kind code of ref document: A1