WO2024036793A1 - 分流器组件、阀箱和柱塞泵 - Google Patents

分流器组件、阀箱和柱塞泵 Download PDF

Info

Publication number
WO2024036793A1
WO2024036793A1 PCT/CN2022/132556 CN2022132556W WO2024036793A1 WO 2024036793 A1 WO2024036793 A1 WO 2024036793A1 CN 2022132556 W CN2022132556 W CN 2022132556W WO 2024036793 A1 WO2024036793 A1 WO 2024036793A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
liquid inlet
diverter
end surface
valve body
Prior art date
Application number
PCT/CN2022/132556
Other languages
English (en)
French (fr)
Inventor
李晓斌
王继鑫
崔文平
王宝杰
魏小淞
郭子蒙
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Publication of WO2024036793A1 publication Critical patent/WO2024036793A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves

Definitions

  • the present application relates to the technical field of oil and gas production equipment, and in particular to a flow diverter assembly, a valve box and a plunger pump.
  • the plunger pump is an important piece of equipment in the oil and gas extraction process.
  • the plunger pump usually includes a liquid end and a power end.
  • the power end can transfer kinetic energy to the liquid end through a deceleration transmission system, etc.
  • the high-pressure liquid inside the liquid end The force generated acts on the power end housing through components such as the plunger.
  • an upper valve assembly and a lower valve assembly are usually provided.
  • the power end drives the plunger to move in the direction away from the fluid end
  • the upper valve assembly closes and the lower valve assembly opens to complete the liquid inlet action.
  • the lower valve assembly opens. The assembly is closed and the upper valve assembly is opened to complete the draining action.
  • the openings in the valve box in the plunger pump are in a cross-shaped shape. Distribution, between the axial hole used to provide activity space for the plunger and the radial hole used to install the upper and lower valve assemblies, it is easy for stress concentration to occur during liquid flow, and the location with greater stress is located The alternating zone makes it easy for fatigue cracks to occur at the intersection line of the valve box, which may lead to damage to the valve box, seriously affecting the service life of the valve box and plunger pump.
  • This application discloses a diverter assembly, a valve box and a plunger pump to solve the problem that the current valve box is provided with openings in a cross-shaped structure to accommodate the plunger and the valve assembly. During the liquid flow process It is prone to stress concentration and the valve box is easily damaged.
  • this application discloses a flow diverter assembly for use in a plunger pump.
  • the flow diverter assembly includes a flow diverter, a first valve body, a second valve body, a first valve rubber and a second valve rubber,
  • the diverter is provided with a drain hole and a liquid inlet.
  • the drain hole is connected to the first end face and the second end face of the diverter that are opposite to each other along its own axial direction.
  • the liquid inlet hole is connected to the splitter.
  • the side surface of the device and the first end surface, the side surface is connected between the first end surface and the second end surface, and the liquid inlet hole is located on the side surface and can be connected with the valve of the plunger pump.
  • the liquid inlet channel of the box is connected, and the drainage hole located on the second end face can be connected with the liquid drainage channel of the valve box;
  • the first valve body is provided with a hole that runs through itself along the axial direction.
  • the connecting hole, the first valve body can be opened and closed and the ground contacts the first end surface of the diverter to block the liquid inlet hole and communicate with the connecting hole and the drain hole, and the second valve body is connected to the first end surface of the diverter.
  • the opening and closing ground of the valve body contacts the second end surface of the diverter to block the drainage hole; the first valve rubber and the second valve rubber surround the drainage hole.
  • the first Ver rubber is spaced between the liquid inlet hole and the drain hole, and the first Ver rubber can be squeezed between the first Ver body and the first end surface.
  • the second Val rubber can be squeezed between the second Val body and the second end surface.
  • valve box for use in a plunger pump.
  • the valve box has an inner cavity, a liquid inlet channel and a liquid discharge channel.
  • the inner cavity is used to install a diverter assembly, and the The liquid inlet channel is connected with the liquid inlet hole of the flow divider assembly, and the liquid discharge channel can be connected with the liquid discharge hole of the flow divider assembly.
  • an embodiment of the present application discloses a plunger pump, which includes a plunger, the above-mentioned diverter assembly and the above-mentioned valve box, and the plunger and the diverter assembly are both installed in the inner cavity of the valve box, The plunger is drivingly connected to the first valve body.
  • Figure 1 is a schematic structural diagram of the diverter assembly disclosed in the embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the diverter in the diverter assembly disclosed in the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the structure shown in Figure 2 in another direction;
  • Figure 4 is a schematic cross-sectional view of the structure shown in Figure 2;
  • Figure 5 is a schematic diagram of a partial structure including a first valve body in the diverter assembly disclosed in the embodiment of the present application;
  • Figure 6 is a schematic structural diagram of the structure shown in Figure 5 in another direction;
  • Figure 7 is a schematic cross-sectional view of the structure shown in Figure 5;
  • Figure 8 is a schematic diagram of a partial structure including a second valve body in the diverter assembly disclosed in the embodiment of the present application;
  • Figure 9 is a schematic structural diagram of the structure shown in Figure 8 in another direction;
  • Figure 10 is a schematic cross-sectional view of the structure shown in Figure 8.
  • FIG 11 is a schematic structural diagram of the valve box disclosed in the embodiment of the present application.
  • Figure 12 is a schematic cross-sectional view of the plunger pump disclosed in the embodiment of the present application.
  • Figure 13 is another structural schematic diagram of the plunger pump disclosed in the embodiment of the present application.
  • Figure 14 is another structural schematic diagram of the plunger pump disclosed in the embodiment of the present application.
  • Figure 15 is a schematic diagram of the liquid feeding process of the plunger pump disclosed in the embodiment of the present application.
  • Figure 16 is a schematic diagram of the liquid discharge process of the plunger pump disclosed in the embodiment of the present application.
  • Figure 17 is another structural schematic diagram of the diverter assembly disclosed in the embodiment of the present application.
  • Figure 18 is yet another structural schematic diagram of the diverter assembly disclosed in the embodiment of the present application.
  • Figure 19 is another structural schematic diagram of the diverter assembly disclosed in the embodiment of the present application.
  • Figure 20 is another structural schematic diagram of the diverter assembly disclosed in the embodiment of the present application.
  • Figure 21 is another structural schematic diagram of the diverter assembly disclosed in the embodiment of the present application.
  • Figure 22 is another structural schematic diagram of the diverter assembly disclosed in the embodiment of the present application.
  • Figure 23 is another structural schematic diagram of the diverter assembly disclosed in the embodiment of the present application.
  • Figure 24 is another structural schematic diagram of the diverter assembly disclosed in the embodiment of the present application.
  • Figure 25 is another structural schematic diagram of the diverter assembly disclosed in the embodiment of the present application.
  • an embodiment of the present application discloses a flow diverter assembly, which can be applied in a plunger pump.
  • the plunger pump also includes a valve box 500 and a plunger 710.
  • the valve box 500 is provided with an inner cavity 510, a liquid inlet channel 520 and a liquid discharge channel 530.
  • the diverter assembly can be installed in the inner cavity 510 of the valve box 500.
  • the flow divider assembly is connected with both the liquid inlet channel 520 and the liquid discharge channel 530 of the valve box 500.
  • the flow divider assembly cooperates with the plunger 710, and the plunger 710 is transmission connected with the power end of the plunger pump to drive the power end.
  • the plunger pump also includes components such as a gland 720, a pressure cap 730, and a packing assembly 740. Considering the simplicity of the text, we will not introduce them one by one here.
  • the diverter assembly includes a diverter 100, a first Val body 210, a second Val body 220, a first Val rubber 310 and a second Val rubber 320.
  • the first Vertical Rubber 310 and the second Vertical Rubber 320 are used to provide a sealing effect.
  • both can be made of relatively elastic materials such as rubber, and their cross-sectional shapes, sizes and other parameters are the same. It can be determined according to actual needs and is not limited here.
  • both can be ring-shaped structural members.
  • the flow divider 100 is provided with a drain hole 110 and a liquid inlet hole 120 , and the drain hole 110 and the liquid inlet hole 120 are spaced apart from each other. That is, the liquid discharge hole 110 and the liquid inlet hole 120 are independent channels formed on the diverter 100 to ensure that the liquid discharge process and the liquid inlet process do not interfere with each other.
  • the diverter 100 may also be provided with structures such as detachable threads 150 to facilitate the disassembly of the diverter 100 .
  • the drain hole 110 is connected to the first end face and the second end face of the diverter 100 that are opposite to each other along the axial direction of the diverter 100 . That is, the drain hole 110 is disposed through the diverter 100 along the axial direction of the diverter 100 , thereby making the diverter The spaces at opposite ends of 100 can be connected to each other through the drain hole 110.
  • the cross section of the drain hole 110 can be triangular or rectangular. In order to reduce the obstruction to the flow of liquid, the cross section of the drain hole 110 can be circular.
  • the liquid inlet hole 120 is connected to the side surface and the first end surface of the diverter 100, and the side surface is connected between the first end surface and the second end surface of the diverter 100, so that the space between the first end surface and the side surface of the diverter 100 can be entered.
  • the liquid holes 120 are connected, so that the sides of the diverter 100 can be used as a liquid inlet space, the space on the first end side of the diverter 100 can be used as a temporary storage space for the liquid, and the space on the second end side of the diverter 100 can be used as a temporary storage space for the liquid. Drainage space.
  • the orifice of the liquid inlet hole 120 located on the side can be connected with the liquid inlet channel 520 of the valve box 500 of the plunger pump, and the orifice of the liquid discharge hole 110 located on the second end surface can be connected with the valve box 500
  • the liquid discharge channel 530 is connected, thereby ensuring that the liquid can flow into the space on the side of the first end face of the diverter 100 through the liquid inlet channel 520 of the valve box 500 through the liquid inlet hole 120 to complete the liquid feeding process; then, in the liquid inlet hole When 120 is closed, the liquid temporarily stored in the space on the side of the first end face can flow from the drain hole 110 of the diverter 100 to the space on the side of the second end face of the diverter 100 to complete the draining process.
  • the first valve body 210, the second valve body 220, the first valve rubber 310, the second valve rubber 320 and other components need to be used as the diverter 100 Provides blocking effect.
  • at least one end of the liquid drain hole 110 needs to be closed, and since one hole of the liquid drain hole 110 is located on the same side as the liquid inlet hole 120, and the liquid filling process and The switching power source of the liquid discharge process is the plunger 710 that reciprocates in the axial direction.
  • the orifice of the liquid discharge hole 110 on the second end surface can be moved.
  • the component used to block the opening of the liquid inlet hole 120 may include the above-mentioned first valve body 210
  • the part used to block the opening of the liquid discharge hole 110 may be the above-mentioned second valve body 220 .
  • the first valve body 210 can be provided with Corresponding through-structure.
  • the first valve body 210 is provided with a communication hole 211 (that is, the aforementioned through structure) that penetrates the first valve body 210 along the axial direction of the diverter 100 to pass through the first valve body 211 .
  • the communication hole 211 is used to avoid the drainage hole 110 of the diverter 100.
  • the communication hole 211 and the drainage hole 110 are arranged oppositely along the axial direction of the diverter 100, and the communication hole 211 can be
  • the cross-sectional area of the drain hole 110 is larger or smaller than the cross-sectional area of the drain hole 110 .
  • the cross-sectional areas of the communicating hole 211 and the draining hole 110 can be made similar or the cross-sectional shapes of the two are similar or the same, and the connecting hole 211 and the draining hole 110 can be made The axes coincide.
  • the first valve body 210 can be opened and closed and the ground contacts the first end surface to block the liquid inlet hole 120 and communicate with the communication hole 211 and the liquid discharge hole 110 . That is to say, in the diverter assembly, the first valve body 210 and the diverter 100 have the ability of relative movement, and during the movement of the first valve body 210 in the direction close to the diverter 100, the third valve body 210 moves in a direction close to the diverter 100.
  • a valve body 210 can move to a state of surface contact with the first end surface of the diverter 100, and in this state, the first valve body 210 can position the liquid inlet 120 in the liquid inlet 120 through surface contact fit. The orifice on the first end surface is blocked, and ensures that the communication hole 211 and the drainage hole 110 can form a communication relationship by being connected to each other, thereby facilitating the normal progress of the drainage process.
  • the surface of the first valve body 210 facing the first end face includes a first portion used to cooperate with the area where the opening of the liquid inlet hole 120 is located on the first end face, and the first valve body 210 faces the first end face.
  • the surface also includes a second part used to cooperate with the area where the orifice of the liquid discharge hole 110 is located on the first end surface, by making the first part and the area where the orifice of the liquid inlet hole 120 is located on the first end surface are copied. Design, and make the area where the aforesaid second part and the orifice of the drain hole 110 on the first end face are in a profiling design can ensure that the first valve body 210 can form a surface contact and matching relationship with the first end face.
  • the first valve body 210 is used to block the liquid inlet hole 120 and connect the communication hole 211 and the liquid discharge hole 110 .
  • a specific embodiment is that the first end surface has a planar structure, and the surface of the first valve body 210 facing the first end surface can also have a planar structure, that is, the first valve body 210 is in surface contact with the first end surface. At this time, the purpose of blocking the liquid inlet hole 120 and connecting the liquid discharge hole 110 with the space on the side of the first valve body 210 away from the diverter 100 is achieved.
  • the second valve body 220 can open and close and contact the second end surface of the diverter 100 to block the drain hole 110 . That is to say, in the diverter assembly, the second valve body 220 and the diverter 100 also have the ability of relative movement, and in the process of the second valve body 220 moving in the direction close to the diverter 100, The second valve body 220 can move to a state of surface contact with the second end surface of the diverter 100, and in this state, the second valve body 220 can move the drain hole 110 into the drain hole 110 through surface contact and fit. The orifice located on the second end face is blocked to ensure the normal progress of the liquid inlet process.
  • the second valve body 220 facing the second end face and the part of the second end face where the drain hole 110 is located be designed to be contoured, it can be ensured that the second valve body 220 is formed with the second end face.
  • the second valve body 220 can be used to block the drain hole 110 .
  • the second end surface has a planar structure
  • the surface of the second valve body 220 facing the second end surface can also have a planar structure, that is, the second valve body 220 is in surface contact with the second end surface.
  • the first valve rubber 310 can be extruded against the first valve body. 210 and the first end surface, the second Val rubber 320 can be squeezed between the second Val body 220 and the second end surface.
  • both the first valve body 210 and the second valve body 220 have the ability to move relative to the diverter 100.
  • the elastic first valve rubber 310 and the second valve rubber 320 can be moved by the first valve.
  • the valve body 210 and the second valve body 220 are respectively pressed against the first end surface and the second end surface of the diverter 100.
  • the opening of the drain hole 110 at the second end face can always be sealed during the liquid filling process, thereby ensuring that the drain hole 110
  • the sealing performance is relatively high.
  • the first Verle rubber 310 separates the liquid inlet hole 120 and the drain hole 110 , and the first Verle rubber 310 surrounds the drain hole 110 , so that the first Verle rubber 310 is surrounded by the liquid inlet hole 120 and the drain hole 110 .
  • the first valve rubber 310 can be used to isolate the liquid inlet hole 120 and the liquid discharge hole 110 to ensure that the reliability of their independent operation is relatively high.
  • the flow divider 100 and the valve box 500 can be assembled using an interference fit, so that the flow divider 100 can be A reliable isolation relationship can be formed between the side surface and the first end surface of the diverter 100 .
  • the embodiment of the present application discloses a flow diverter assembly, which can be applied in a plunger pump and installed in the valve box 500 of the plunger pump.
  • the diverter 100 is provided with a drain hole 110 that connects its first end face and a second end face that are axially opposite to each other, and the liquid inlet hole 120 of the diverter 100 communicates with the first end face and the second end face of the diverter 100.
  • the flow divider 100 is used to perform the liquid inlet process and the liquid discharge process, the liquid has a tendency to flow along the axial direction of the flow divider 100.
  • valve box 500 corresponding to the flow divider assembly, as shown in Figures 10, 13 and 14, so that the alternating chamber 503, low pressure chamber 502 and high pressure chamber 501 in the valve box 500 can be distributed along a certain linear direction (ie, the axial direction of the flow divider 100), and then in During the operation of the plunger pump including the diverter assembly, the force exerted by the liquid on the diverter 100 (and the valve box 500) in the direction perpendicular to the axial direction of the diverter 100 can be relatively small or even zero. This can prevent stress concentration problems in the flow divider 100 and the valve box 500 and improve the service life of the valve box 500 .
  • both the first valve body 210 and the second valve body 220 can move relative to the flow divider 100, so that the flow divider assembly can switch between the liquid inlet state and the liquid discharge state.
  • the first valve body 210 and the second valve body 220 can both pass through the surface.
  • the ground contact mode cooperates with the first end face and the second end face respectively to provide sealing effect for the liquid inlet hole 120 and the liquid discharge hole 110 respectively, ensuring that the sealing reliability of the liquid inlet hole 120 or the liquid discharge hole 110 is high.
  • the diverter assembly disclosed in the embodiment of the present application may also include a third Verle rubber 330 , and the third Verle rubber 330 is arranged around the liquid inlet 120 outside the opening of the first end surface. , and the third valve rubber 330 can be squeezed between the first valve body 210 and the first end surface. That is to say, a third Verle rubber 330 is also provided on the outer periphery of the first Verle rubber 310, and the third Verle rubber 330 has an annular structure, and the opening of the liquid inlet 120 located on the first end face is sandwiched Between the first Vertex rubber 310 and the third Vertex rubber 330 .
  • the first valve body 210 when the first valve body 210 moves in the direction close to the diverter 100, the first valve body 210 can also squeeze the third valve rubber 310 while squeezing the first valve rubber 310. Rubber 330. Under the action of the third Val rubber 330, the two openings located at the first end face and the side surface of the liquid inlet hole 120 can be isolated, further improving the isolation reliability between the two openings of the liquid inlet hole 120.
  • an installation groove can be provided to provide a limiting function for the first Vertex rubber 310.
  • the diverter 100 or the The aforementioned installation groove can be provided on a valve body 210, and the cross-sectional shape of the installation groove can be the same as the cross-sectional shape and size of the part of the first valve rubber 310 accommodated in the installation groove, thereby ensuring that the installation groove can be the first Verrubber 310 provides reliable accommodation and installation.
  • corresponding installation slots may be provided for the second Verle rubber 320 and the third Verle rubber 330 .
  • another installation groove can also be provided on the diverter 100 or the first valve body 210 to provide an accommodating and installation function for the third valve rubber 330 .
  • a mounting groove can be provided on the diverter 100 or the second valve body 220 to provide an accommodating and installation function for the second valve rubber 320, thereby ensuring that both the second valve rubber 320 and the third valve rubber 330 have Relatively high positional stability.
  • the diverter assembly disclosed in the embodiment of the present application may also include a sealing ring 410. Sealing rings 410 are provided on opposite sides of the hole located on the side along the axial direction.
  • At least two sealing rings 410 are set on the side of the diverter 100 , and the liquid inlet hole 120 is located on the side of the diverter 100 and is located between the two sealing rings 410 .
  • the sealing ring 410 can be used to seal the wall of the inner cavity 510 of the valve box 500 and the side of the diverter 100, thereby sealing the liquid inlet.
  • the orifice 120 located on the side of the diverter 100 can be isolated to prevent the liquid that needs to flow into the liquid inlet 120 from flowing to other areas along the gap between the diverter 100 and the valve box 500 .
  • the sealing ring 410 can be made of elastic materials such as rubber, and the size and other parameters of the sealing ring 410 can be determined according to actual conditions, and are not limited here.
  • a plurality of limiting grooves 140 are provided on the side of the flow divider 100, and parts of the plurality of sealing rings 410 can be accommodated in one-to-one correspondence. in a plurality of limiting grooves 140 .
  • the side of the diverter 100 is provided with a limiting groove 140 that is recessed relative to the side of the diverter 100 , and a part of the sealing ring 410 extends into the limiting groove 140 , so that the limiting groove 140 can provide a limit for the sealing ring 410 .
  • the plurality of limiting grooves 140 can provide limiting functions for multiple sealing rings 410 respectively, ensuring that the limiting effect of each sealing ring 410 is relatively good.
  • the first end surface may have a planar structure.
  • the first end surface may be formed from inward to The outside is a flared structure. That is to say, in the first end surface, in the axial direction of the flow divider 100 , the distance between the portion closer to the drain hole 110 and the second Val body 220 is smaller.
  • the first valve body 210 has a convex structure, and along the axial direction of the diverter 100, The distance between the part of the first valve body 210 that is closer to the communication hole 211 and the second valve body 220 is smaller, so that the first valve body 210 can "extend" into the first end surface and be in contact with the first end surface.
  • Forming a surface contact matching relationship ensures that the first valve body 210 and the diverter 100 can form a limited fitting relationship in a direction perpendicular to the axial direction of the diverter 100 (ie, the radial direction of the diverter 100).
  • the first end surface can be (approximately) a side-shaped structure of a truncated cone.
  • the side surface of the first Vertical body 210 can also be (approximately) a side-shaped structure of a truncated cone, ensuring that the first Vertical body A reliable surface matching relationship can be formed between 210 and the first end surface.
  • the second end surface has a flare-like structure from the inside to the outside, and by making the second valve body 220 have a structure corresponding to the second end surface, it is ensured that the two end surfaces form a reliable structure.
  • the second valve body 220 and the diverter 100 can also form a limited fitting relationship in a direction perpendicular to the axial direction of the diverter 100 .
  • the first end surface may be a side-shaped structure of a truncated cone.
  • the line segment of the first end surface intercepted by the plane of the axis of the diverter 100 is a straight segment.
  • the first end face can also be of other special-shaped structures.
  • a recessed area is provided on the first end face. Specifically, the area where the opening of the liquid inlet hole 120 is located in the first end face can be evenly spaced relative to the inner edge and outer edge of the first end face. It is recessed in a direction close to the location of the second body 220 .
  • the line segment in the area of the first end surface corresponding to the orifice of the liquid inlet 120 that is intercepted by the plane of the axis of the diverter 100 may include two mutually spaced arc segments ( or a straight line segment), the area spaced apart from each other is the area where the orifice of the liquid inlet hole 120 is located, and the two mutually spaced arc segments extend outwardly from the orifice of the liquid inlet hole 120 relative to the axis of the diverter 100 , and are respectively connected to the outer edge of the diverter 100 and the side wall of the drain hole 110 .
  • the drain hole 110 is located in the area where the axis of the diverter 100 is located, and the liquid inlet hole 120 is also provided with an opening on the first end face. For this reason, the opening of the liquid inlet hole 120 on the first end face can be is regarded as being located around the drain hole 110 .
  • the liquid inlet hole 120 is located on one side of the liquid discharge hole 110. As shown in FIG.
  • the liquid inlet holes 120 are arranged around the liquid discharge hole 110, and the plurality of liquid inlet holes 120 can be arranged evenly and at intervals around the liquid discharge hole 110, so that during the liquid feeding process of the diverter assembly, the liquid can be discharged from the plurality of liquid inlet holes 120.
  • the liquid inlet hole 120 is evenly fed into the space on one side where the first end face of the diverter 100 is located.
  • the liquid inlet efficiency can be improved, and on the other hand, the liquid inlet rate at any position on the first end face can be ensured to be basically the same, thus improving the efficiency of the liquid inlet. Operational stability of the diverter assembly.
  • the number of liquid inlet holes 120 on the diverter 100 may be two, three or more, and the specific number of the liquid inlet holes 120 may be based on the diameter of the liquid inlet hole 120 and the diameter of the diverter 100, etc.
  • the parameters are determined and are not limited here.
  • the specific structures of the regions corresponding to the openings of each liquid inlet hole 120 on the first end surface can be made different or partially different from each other.
  • the specific structure of the area corresponding to the opening of each liquid inlet hole 120 on the first end surface can be made the same, which can reduce the risk of the first Val body 210 .
  • the formation difficulty is reduced, and the assembly difficulty between the first valve body 210 and the first end face is reduced.
  • the two line segments where the liquid inlet hole 120 is located on the first end face are intercepted by the plane of the axis of the diverter 100 may be arc segments or straight segments.
  • the line segment in which the surface of the first Valve body 210 used to cooperate with the first end face is intercepted by the plane of the axis of the diverter 100 may also include an arc segment or a straight segment, respectively, and may be connected with the first end face respectively. Corresponding areas on the end faces are in contact.
  • the surface of the first valve body 210 facing the first end surface includes contact with the first end surface.
  • the part used to block the liquid inlet hole 120 is connected to each other.
  • the part of the first valve body 210 used to block the liquid inlet 120 is cut by the plane of the axis of the diverter 100 and includes a first line segment, that is, the first line segment is in the first valve body 210 .
  • the corresponding area of the surface of the body 210 facing the first end surface is used to block the liquid inlet hole 120 .
  • the first line segment is a straight line segment, and the straight line segment is perpendicular to the axial direction of the orifice located on the first end surface of the liquid inlet hole 120.
  • the first valve body 210 can provide the liquid inlet hole 120 with a blocking force opposite to its liquid outlet direction, which makes the first valve body 210 have a relatively good blocking effect on the liquid inlet hole 120 and improves the flow rate. The liquid hole 120 is blocked.
  • the above-mentioned first line segment may also be an arc segment, and the middle part of the first line segment is located along the axial direction of the liquid inlet hole 120 at the opening of the first end surface toward the liquid inlet hole 120
  • the internal protrusion is provided, so that the part of the first valve body 210 used to cooperate with the liquid inlet hole 120 can provide a "bottle plug" type function, so as to partially extend into the inside of the liquid inlet hole 120 to enhance the first valve body 210 .
  • both the first valve body 210 and the second valve body 220 are in surface contact with the diverter 100.
  • the diverter 100 can be formed of a metal material with a relatively high hardness through integral die-casting or other methods to improve the performance of the diverter. The service life of the diverter 100 is ensured, and the surface matching relationship between the first end face and the first valve body 210 and the second end face and the second valve body 220 can always remain in a relatively stable state.
  • the flow divider 100 may include a base body 101 and a first wear-resistant ring 102 .
  • the first wear-resistant ring 102 may be made of a material with greater hardness and wear resistance than the base body. 101 materials formed.
  • the first wear-resistant ring 102 can be formed of at least one of hard alloys such as zirconia, nickel-based tungsten carbide, cobalt-based tungsten carbide, titanium carbide, boron nitride, etc., to ensure that the first wear-resistant ring 102 has It has strong wear resistance and hardness, and by using a material with relatively small hardness and wear resistance to form the base body 101, the production cost of the entire diverter 100 can be reduced.
  • hard alloys such as zirconia, nickel-based tungsten carbide, cobalt-based tungsten carbide, titanium carbide, boron nitride, etc.
  • the base body 101 is provided with a first receiving groove, and the first wear-resistant ring 102 is embedded in the first receiving groove, so as to utilize the first wear-resistant ring 102 and the first receiving groove.
  • the valve bodies 210 are in surface contact, thereby improving the local strength and wear resistance of the diverter 100, thereby reducing the overall cost of the separator while ensuring a relatively good service life and sealing effect of the diverter 100.
  • the liquid inlet hole 120 may include a first hole section 121. and the second hole section 122, the first hole section 121 and the second hole section 122 are connected with each other to ensure that the liquid on the side of the diverter 100 can still be sent into the diverter 100 through the first hole section 121 and the second hole section 122.
  • the first hole section 121 is located in the base body 101, and the second hole section 122 is located in the first wear-resistant ring 102, so that the first wear-resistant ring 102 can be in surface contact with the first Val body 210 to ensure frequent contact between the two. Still has a long service life and sealing effect.
  • the diameters of the first hole section 121 and the second hole section 122 can be different. In order to improve the smoothness of the liquid inlet process, the diameters of the first hole section 121 and the second hole section 122 can be made the same, and the diameters of the first hole section 121 and the second hole section 122 can be made the same.
  • the outer edge of 121 and the outer edge of the second hole section 122 are butted with each other.
  • the flow divider 100 can also include a second wear-resistant ring 103, at least a part of the second end surface is located on the second wear-resistant ring 103, and the second The wear-resistant ring 103 is configured to be in surface contact with the second Valve body 220, so that the second wear-resistant ring 103 is used as the side of the diverter 100 away from the first Valve body 210 that directly contacts the second Valve body 220. device to ensure that both the second valve body 220 and the second wear-resistant ring 103 can still have a long service life and sealing effect when the second valve body 220 is in frequent contact with the second wear-resistant ring 103 for a long time. .
  • the material of the second wear-resistant ring 103 can be the same as the material of the first wear-resistant ring 102, and a second receiving groove can be formed correspondingly on the second end surface, so that the first wear-resistant ring 102 and the second wear-resistant ring 102 can be made of the same material.
  • the rings 103 can be embedded in the first receiving groove and the second receiving groove respectively through interference fit, etc., so that the first wear-resistant ring 102 and the second wear-resistant ring 103 form a stable relative fixation with the base body 101 relation.
  • the liquid inlet hole 120 communicates with the side and the first end surface of the diverter 100.
  • the liquid inlet hole 120 can have a linear structure, And by arranging the liquid inlet hole 120 to be inclined relative to the axial direction of the diverter 100, it can be ensured that the liquid inlet hole 120 can communicate with the side and the first end surface of the diverter 100, and the liquid to be transported can be transported in the liquid inlet hole 120.
  • the process is smoother, and the obstruction to the flow of liquid in the liquid inlet hole 120 is reduced.
  • the processing difficulty of the liquid inlet hole 120 can be reduced.
  • the liquid inlet hole 120 may include an axial end and an inclined section, and the axial end and inclined section Segments are connected to each other. That is, the liquid inlet hole 120 includes at least two sections, and the axial directions of the two sections are non-parallel. Moreover, by extending the axial section along the axial direction of the diverter 100 and communicating with the first end surface, the inclined section extends obliquely with respect to the axial direction of the diverter 100 and communicates with the side surface, so that the liquid outlet direction of the liquid inlet hole 120 is consistent with the axial direction of the diverter 100 .
  • the axial direction of the flow divider 100 is parallel, thereby making the liquid outlet direction of the liquid inlet hole 120 parallel to the movement direction of the first valve body 210, thereby improving the force uniformity of the first valve body 210.
  • the axial section of the liquid inlet hole 120 can be processed from the first end surface, and the inclined section can be processed obliquely from the side of the diverter 100 to ensure that the axial section and the inclined section are connected to each other, so that the protection claimed in this embodiment can be formed. liquid inlet hole 120.
  • the technical solutions can be combined with each other.
  • the diverter 100 includes a base body 101, a first wear-resistant ring 102 and a second wear-resistant ring 103
  • the first end surface of the entire diverter 100 can be made into a flared structure or a planar structure, or the first end surface can be recessed in the middle of its radial direction toward the direction where the second Val body 220 is located.
  • the above-mentioned third valve body and/or sealing ring 410 can be provided in the diverter assembly of any structure to improve the sealing effect between the spatial structures in the diverter assembly. In order to keep the text concise, we will not repeat the descriptions one by one here.
  • valve box 500 Based on the above diverter assembly, the embodiment of the present application also discloses a valve box 500.
  • the valve box 500 is used in conjunction with the diverter assembly. Both of them can be applied in plunger pumps.
  • the diverter assembly may be installed within the valve box 500.
  • the valve box 500 has an inner cavity 510, a liquid inlet channel 520, and a liquid discharge channel 530.
  • the inner cavity 510 is used to install a diverter assembly, so that the part in the inner cavity 510 is divided into a high-pressure chamber 501 and a high-pressure chamber 501 by the diverter assembly.
  • Low-pressure chamber 502 and alternating chamber 503 Figure 13 and Figure 14
  • the valve box 500 is divided into four parts by three dotted lines. The four parts from right to left can be respectively high-pressure chamber 501, low-pressure chamber 502,
  • the alternating cavity 503 and the plunger cavity are used to accommodate the plunger 710 .
  • the alternating chamber 503 of the above-mentioned valve box 500 does not have a cross-intersecting line structure, and the transition between different chambers is smooth, which can reduce the stress of the valve box 500 and increase the service life of the valve box 500 .
  • the liquid inlet channel 520 is connected to the liquid inlet hole 120 of the diverter assembly, and the liquid drain channel 530 can be connected to the drain hole 110 of the diverter assembly.
  • the liquid in the liquid inlet channel 520 can be sent from the liquid inlet hole 120 of the diverter assembly into the side space where the first end surface of the diverter 100 is located, and then, The liquid in the space on one side where the first end surface of the diverter 100 is located can be sent from the communication hole 211 of the first valve body 210 and the drain hole 110 of the diverter 100 into the space on one side where the second end surface of the diverter 100 is located. , complete the liquid filling and draining processes.
  • embodiments of the present application also disclose a plunger pump.
  • the plunger pump includes a plunger 710, any of the above diverter assemblies.
  • the plunger 710 and the diverter assembly are installed in the inner cavity 510 of the valve box 500.
  • the plunger 710 and the diverter assembly are distributed along the axial direction of the rotating shaft, and the plunger 710 is driven by the first valve body 210. Connection, the power end can realize force transmission through the plunger 710 and the first valve body 210.
  • the plunger pump can also include a pressure cover 720, a pressure cap 730, a packing assembly 740, a packing pressure cap 751, a packing pressure ring 752, a packing spacer ring 753, and a packing resistant ring. Grinding sleeve 760 and clamp 770 and other components.
  • sealing rings 410 can be provided on opposite sides of the axial direction of the opening of the liquid inlet hole 120 located on the side, so that the sealing rings 410 can be used to further seal the liquid inlet hole 120 located on the side.
  • the orifice provides sealing isolation.
  • a sealing ring 420 can be provided on the outside of each sealing ring 410 on the outer circumference of the diverter 100 .
  • the sealing ring 420 is sealed between the valve box 500 and the diverter 100 , that is, between the diverter 100
  • a sealing ring 410 and a sealing ring 420 are provided on the outer circumference of the sealing ring 410.
  • the sealing ring 410 is sandwiched between two adjacent sealing rings 420.
  • the sealing ring 410 is sandwiched between the liquid inlet hole 120 and the orifice on the side of the diverter 100, so that The sealing ring 420 is used to further enhance the reliability of the sealing connection between the side surface of the diverter 100 and the cavity wall of the inner cavity 510 of the valve box 500 .
  • a drain hole 540 can be provided on the valve box 500, and the orifice of the drain hole 540 is connected to the sealing ring 410 and the sealing ring 410 located on the same side of the liquid inlet hole 120. between sealing rings 420.
  • the sealing ring 410 corresponding to the position of the leakage hole 540 is damaged, so that the staff can promptly replace the sealing ring 410 at the corresponding position. This prevents damage to the valve box 500 and other components in the diverter assembly due to failure to replace the damaged sealing ring 410 in time.
  • the liquid inlet hole 120 when the liquid inlet hole 120 is located on the side and the sealing ring 410 and the sealing ring 420 are provided on both sides of the opening, as shown in Figure 12, the liquid inlet hole 120 can be provided on both sides of the hole.
  • the leakage hole 540 ensures that when any sealing ring 410 is damaged, the information can be obtained through the corresponding leakage hole 540 .
  • the number of leak holes 540 can be one, and a connecting hole 160 can be provided on the diverter 100, and one end of the connecting hole 160 is connected to Between the sealing ring 420 and the sealing ring 410 located on the side of the liquid inlet hole 120 away from the drain hole 540, the other end of the connecting hole 160 is connected to the drain hole 540. Then, the space between the sealing ring 410 and the sealing ring 420 on one side of the liquid inlet hole 120 can be directly connected to the outside of the valve box 500 through the leakage hole 540, and the sealing ring 410 and the sealing ring 420 on the other side of the liquid inlet hole 120.
  • the space in between can be indirectly connected to the drain hole 540 through the connecting hole 160 and connected to the outside of the valve box 500. This can also ensure that when any sealing ring 410 on the opposite sides of the liquid inlet hole 120 is damaged, It can be judged by whether the leakage holes 540 are overflowing with liquid, and the number of the leakage holes 540 can be reduced, and the overall structural strength of the valve box 500 can be improved, thereby improving its stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种分流器组件、阀箱和柱塞泵,其中分流器组件包括分流器(100)、第一凡尔体(210)、第二凡尔体(220)、第一凡尔胶皮(310)和第二凡尔胶皮(320),分流器(100)设有排液孔(110)和进液孔(120),排液孔(110)连通于分流器(100)沿自身轴向相背的第一端面和第二端面,进液孔(120)连通于分流器(100)的侧面和第一端面,第一凡尔体(210)用以封堵进液孔(120),第二凡尔体(220)用以封堵排液孔(110);第一凡尔胶皮(310)用以密封连接第一凡尔体(210)和第一端面,第二凡尔胶皮(320)用以密封第二凡尔体(220)与第二端面。该分流器组件可安装在柱塞泵的阀箱内,液体沿着分流器的轴向流动,使得阀箱中的交变腔、低压腔和高压腔能够沿着分流器的轴向分布,可防止液体流动的过程中出现应力集中现象。

Description

分流器组件、阀箱和柱塞泵
交叉引用
本发明要求在2022年08月15日提交中国专利局、申请号为202210974401.1、发明名称为“分流器组件、阀箱和柱塞泵”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请涉及油气开采设备技术领域,尤其涉及一种分流器组件、阀箱和柱塞泵。
背景技术
柱塞泵是油气开采过程中的一种重要的设备,柱塞泵通常包括液力端和动力端,动力端可以将动能通过减速传动系统等传递至液力端,液力端内部的高压液体产生的力通过柱塞等零部件作用至动力端壳体。在一些情形下的柱塞泵中,通常设有上凡尔总成和下凡尔总成。在动力端驱动柱塞向远离液力端的方向运动时,上凡尔总成关闭,下凡尔总成打开,完成进液动作,在动力端驱动柱塞向靠近液力端的方向运动时,下凡尔总成关闭,上凡尔总成打开,完成排液动作。
由于在一些情形下的柱塞泵中,上凡尔总成和下凡尔总成沿垂直于柱塞的轴向的方向分布,使得柱塞泵中的阀箱中的开孔呈十字相贯状分布,用以为柱塞提供活动空间的轴向孔和用于安装上凡尔总成和下凡尔总成的径向孔之间容易在液体流动时出现应力集中现象,且应力较大的位置位于交变区,使得阀箱的相贯线位置处容易产生疲劳裂纹,进而出现阀箱损坏的情况,严重影响阀箱和柱塞泵的使用寿命。
发明内容
本申请公开一种分流器组件、阀箱和柱塞泵,以解决目前的阀箱中为容纳柱塞和凡尔总成设置有呈十字相贯状结构的开孔,在液体流动的过程中容易出现应力集中现象,阀箱易损坏的问题。
为了解决上述问题,本申请采用下述技术方案:
第一方面,本申请公开一种分流器组件,应用于柱塞泵,分流器组件包括分流器、第一凡尔体、第二凡尔体、第一凡尔胶皮和第二凡尔胶皮,所述分流器设有排液孔和进液孔,所述排液孔连通于所述分流器沿自身轴向相背的第一端面和第二端面,所述进液孔连通于所述分流器的侧面和所述第一端面,所述侧面连接于所述第一端面和所述第二端面之间,所述进 液孔位于所述侧面的孔口可与所述柱塞泵的阀箱的进液通道连通,所述排液孔位于所述第二端面的孔口可与所述阀箱的排液通道连通;所述第一凡尔体设有沿所述轴向贯穿自身的连通孔,所述第一凡尔体可启闭地面接触于所述分流器的第一端面,以封堵进液孔,且连通所述连通孔和所述排液孔,所述第二凡尔体可启闭地面接触于所述分流器的第二端面,以封堵所述排液孔;所述第一凡尔胶皮和所述第二凡尔胶皮均环绕于所述排液孔之外,且所述第一凡尔胶皮间隔所述进液孔和所述排液孔,所述第一凡尔胶皮可被挤压于所述第一凡尔体和所述第一端面之间,所述第二凡尔胶皮可被挤压于所述第二凡尔体与所述第二端面之间。
第二方面,本申请实施例公开一种阀箱,应用于柱塞泵,所述阀箱具有内腔、进液通道和排液通道,所述内腔用于安装分流器组件,且所述进液通道与所述分流器组件的进液孔连通,所述排液通道可与所述分流器组件的排液孔连通。
第三方面,本申请实施例公开一种柱塞泵,其包括柱塞、上述分流器组件和上述阀箱,所述柱塞和所述分流器组件均安装于所述阀箱的内腔,所述柱塞与所述第一凡尔体传动连接。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例公开的分流器组件的一种结构示意图;
图2是本申请实施例公开的分流器组件中分流器的结构示意图;
图3是图2示出的结构在另一方向上的结构示意图;
图4是图2示出的结构的剖面示意图;
图5是本申请实施例公开的分流器组件中包括第一凡尔体的部分结构的示意图;
图6是图5示出的结构在另一方向上的结构示意图;
图7是图5示出的结构的剖面示意图;
图8是本申请实施例公开的分流器组件中包括第二凡尔体的部分结构的示意图;
图9是图8示出的结构在另一方向上的结构示意图;
图10是图8示出的结构的剖面示意图;
图11是本申请实施例公开的阀箱的结构示意图;
图12是本申请实施例公开的柱塞泵的剖面示意图;
图13是本申请实施例公开的柱塞泵的另一种结构示意图;
图14是本申请实施例公开的柱塞泵的再一种结构示意图;
图15是本申请实施例公开的柱塞泵的进液过程的示意图;
图16是本申请实施例公开的柱塞泵的排液过程的示意图;
图17是本申请实施例公开的分流器组件的另一种结构示意图;
图18是本申请实施例公开的分流器组件的再一种结构示意图;
图19是本申请实施例公开的分流器组件的又一种结构示意图;
图20是本申请实施例公开的分流器组件的又一种结构示意图;
图21是本申请实施例公开的分流器组件的又一种结构示意图;
图22是本申请实施例公开的分流器组件的又一种结构示意图;
图23是本申请实施例公开的分流器组件的又一种结构示意图;
图24是本申请实施例公开的分流器组件的又一种结构示意图;
图25是本申请实施例公开的分流器组件的又一种结构示意图。
附图标记说明:
100-分流器、101-基体、102-第一耐磨环、103-第二耐磨环、110-排液孔、120-进液孔、121-第一孔段、122-第二孔段、140-限位槽、150-拆装螺纹、160-连接孔、210-第一凡尔体、211-连通孔、220-第二凡尔体、230-凡尔弹簧、240-弹簧支架、310-第一凡尔胶皮、320-第二凡尔胶皮、330-第三凡尔胶皮、410-密封圈、420-密封环、500-阀箱、501-高压腔、502-低压腔、503-交变腔、510-内腔、520-进液通道、530-排液通道、540-泄流孔、710-柱塞、720-压盖、730-压帽、740-盘根总成、751-盘根压帽、752-盘根压环、753-盘根隔环、760-盘根耐磨套、770-卡箍。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各个实施例公开的技术方案。
如图1所示,本申请实施例公开一种分流器组件,该分流器组件可以应用在柱塞泵中。具体来说,柱塞泵还包括阀箱500和柱塞710,阀箱500设有内腔510、进液通道520和排液通道530,分流器组件可以安装在阀箱500的内腔510中,且分流器组件与阀箱500的进液通道520和排液通道530均连通,分流器组件与柱塞710配合,柱塞710与柱塞泵中的动力端传动连接,以在动力端的驱动下,使柱塞710在阀箱500的内腔510中作往复运动,以使分流器组件在进液过程和排液过程之间循环切换(如图15和图16所示)。 当然,柱塞泵中还包括压盖720、压帽730和盘根总成740等部件,考虑文本简洁,此处暂时不再一一介绍。
如图1~图10所示,分流器组件包括分流器100、第一凡尔体210、第二凡尔体220、第一凡尔胶皮310和第二凡尔胶皮320。其中,第一凡尔胶皮310和第二凡尔胶皮320均用以提供密封作用,为此,二者均可以采用橡胶等弹性相对较好的材料形成,二者的截面形状和尺寸等参数均可以根据实际需求确定,此处不作限定。当然,为了保证第一凡尔胶皮310和第二凡尔胶皮320均可以提供可靠的密封效果,二者均可以为环状结构件。
如图2-图4所示,分流器100设有排液孔110和进液孔120,排液孔110和进液孔120相互间隔。也即,排液孔110和进液孔120均为形成于分流器100上的独立通道,以保证排液过程和进液过程能够互不干涉。另外,分流器100上还可以设有便于拆卸分流器100的拆装螺纹150等结构。
其中,排液孔110连通于分流器100沿自身轴向相背的第一端面和第二端面,也即,排液孔110沿分流器100的轴向贯穿分流器100设置,从而使分流器100相背两端的空间可以通过排液孔110相互连通,排液孔110的截面可以为三角形或矩形等,为了降低液体流动时所受到的阻碍,排液孔110的截面可以为圆形。
进液孔120连通于分流器100的侧面和第一端面,侧面连接于分流器100的第一端面和第二端面之间,从而使分流器100的第一端面与侧面所在的空间可以被进液孔120连通,使得分流器100的侧面周围可以作为进液空间,分流器100的第一端面一侧的空间可以作为液体的暂存空间,分流器100的第二端面一侧的空间可以作为排液空间。
相应地,为了保证分流器组件在被安装至柱塞泵的阀箱500内之后,能够正常地进行进液过程和排液过程,在不受其他因素干扰的情况下,结合图11、图12、图15和图16,可以使进液孔120位于侧面的孔口与柱塞泵的阀箱500的进液通道520连通,且使排液孔110位于第二端面的孔口与阀箱500的排液通道530连通,进而保证液体可以通过阀箱500的进液通道520经进液孔120流入分流器100的第一端面所在侧的空间内,完成进液过程;之后,在进液孔120被封闭的情况下,使暂存于第一端面所在一侧空间内的液体能够自分流器100的排液孔110流向分流器100的第二端面所在一侧的空间,完成排液过程。
当然,为了保证排液过程和进液过程相互独立,需要利用上述第一凡尔体210、第二凡尔体220、第一凡尔胶皮310和第二凡尔胶皮320等部件为分流器100提供封堵作用。具体来说,在进液过程进行时,需要使排液孔110的至少一端的孔口被封闭,且由于排液孔110的一个孔口与进液孔120位于 同侧,以及进液过程和排液过程的切换动力源为沿轴向作往复运动的柱塞710,为此,如图15所示,在进液过程进行时,可以使排液孔110位于第二端面上的孔口被封堵;相似地,由于进液过程和排液过程的切换动力源为沿轴向作往复运动的柱塞710,为此,如图16所示,在排液过程进行时,可以使进液孔120位于第一端面上的孔口被封堵。当然,为了保证第一凡尔体210和第二凡尔体220能够在进液过程和排液过程产生相应的位移,如图12所示,二者均可以配设有凡尔弹簧230,且凡尔弹簧230可以安装在弹簧支架240上。
详细地说,用以封堵进液孔120的孔口的部件可以包括上述第一凡尔体210,用以封堵排液孔110的孔口的部分可以为上述第二凡尔体220。当然,为了保证在利用第一凡尔体210封堵进液孔120的孔口的过程中,不会将排液孔110的孔口一并封堵,可以在第一凡尔体210上设置相应的贯通结构。
具体来说,如图7所示,第一凡尔体210设有沿分流器100的轴向贯穿第一凡尔体210的连通孔211(即前述贯通结构),以在通过第一凡尔体210封堵进液孔120的过程中,利用连通孔211避让分流器100的排液孔110,连通孔211与排液孔110沿分流器100的轴向相对设置,且可以使连通孔211的截面积大于或小于排液孔110的截面积。为了提升排液过程的顺畅性,可以使连通孔211和排液孔110的截面积相差不大,且可以使二者的截面形状相似或相同,以及可以使连通孔211和排液孔110的轴线重合。
如图1所示,第一凡尔体210可启闭地面接触于第一端面,以封堵进液孔120,且连通连通孔211和排液孔110。也就是说,在分流器组件中,第一凡尔体210和分流器100之间具备相对运动的能力,且在第一凡尔体210向靠近分流器100所在的方向运动的过程中,第一凡尔体210可以运动至与分流器100的第一端面面接触的状态,且在这种状态下,使得第一凡尔体210能够通过面接触配合的方式,将进液孔120中位于第一端面的孔口封堵,且保证连通孔211和排液孔110能够通过相互连接的方式形成连通关系,从而利于排液过程的正常进行。
具体来说,第一凡尔体210朝向第一端面的表面中包括用以与第一端面上进液孔120的孔口所在的区域配合的第一部分,且第一凡尔体210朝向第一端面的表面中还包括用以与第一端面上排液孔110的孔口所在的区域配合的第二部分,通过使前述第一部分与第一端面上进液孔120的孔口所在的区域呈仿形设计,且使前述第二部分与第一端面上排液孔110的孔口所在的区域呈仿形设计,即可保证第一凡尔体210在与第一端面形成面接触配合关系时,能够利用第一凡尔体210封堵进液孔120,且连通连通孔211和排液孔110。一种具体地实施例是,第一端面为平面状结构,第一凡尔体210朝向第 一端面的表面亦可以为平面状结构,即可在第一凡尔体210与第一端面面接触时,实现封堵进液孔120,且连通排液孔110与第一凡尔体210背离分流器100的一侧空间的目的。
如图1所示,第二凡尔体220可启闭地面接触于分流器100的第二端面,以封堵排液孔110。也就是说,在分流器组件中,第二凡尔体220和分流器100之间亦具备相对运动的能力,且在第二凡尔体220向靠近分流器100所在的方向运动的过程中,第二凡尔体220可以运动至与分流器100的第二端面面接触的状态,且在这种状态下,使得第二凡尔体220能够通过面接触配合的方式,将排液孔110中位于第二端面的孔口封堵,保证进液过程的正常进行。
具体来说,通过使第二凡尔体220朝向第二端面的表面与第二端面中排液孔110所在的部分呈仿形设计,即可保证第二凡尔体220在与第二端面形成面接触配合关系时,能够利用第二凡尔体220封堵排液孔110。一种具体地实施例是,第二端面为平面状结构,第二凡尔体220朝向第二端面的表面亦可以为平面状结构,即可在第二凡尔体220与第二端面面接触时,实现封堵排液孔110的目的。
同时,为了保证进液孔120和排液孔110被封堵时均具有较高的可靠性,如图1~图6所示,第一凡尔胶皮310可被挤压于第一凡尔体210和第一端面之间,第二凡尔胶皮320可被挤压于第二凡尔体220和第二端面之间。如上所述,第一凡尔体210和第二凡尔体220均具备相对分流器100活动的能力,为此,弹性的第一凡尔胶皮310和第二凡尔胶皮320可以被第一凡尔体210和第二凡尔体220分别挤压于分流器100的第一端面和第二端面。
并且,通过使第二凡尔胶皮320环绕于排液孔110之外,可以在进行进液过程时,保证排液孔110位于第二端面的孔口可以始终被密封,进而保证排液孔110的密封性能相对较高。
如图1所示,第一凡尔胶皮310间隔进液孔120和排液孔110,且使第一凡尔胶皮310环绕于排液孔110之外,从而使得第一凡尔胶皮310在被第一凡尔体210挤压于第一端面的情况下,可以利用第一凡尔胶皮310隔绝进液孔120和排液孔110,保证二者独立运行的可靠性相对较高。
另外,为了保证进液孔120中分别位于第一端面和侧面的孔口之间的隔绝性相对较好,可以利用过盈配合的方式组装分流器100和阀箱500,从而使分流器100的侧面与分流器100的第一端面之间能够形成可靠的隔绝关系。
本申请实施例公开一种分流器组件,其可以被应用在柱塞泵中,且被安装在柱塞泵中的阀箱500内。分流器组件中,分流器100上设有连通自身沿轴向相背的第一端面和第二端面的排液孔110,且分流器100的进液孔120 连通分流器100的第一端面和侧面,进而在利用该分流器100执行进液过程和排液过程时,液体均具有沿分流器100的轴向流动的趋势,从而在与该分流器组件对应的阀箱500的设计加工过程中,如图10、图13和图14所示,使得阀箱500中的交变腔503、低压腔502和高压腔501能够沿某一直线方向(即分流器100的轴向)分布,进而在包括该分流器组件的柱塞泵的工作过程中,可以使液体沿垂直于分流器100的轴向的方向作用于分流器100(和阀箱500)上的力相对较小,甚至为零,这可以防止分流器100和阀箱500出现应力集中的问题,提升阀箱500的使用寿命。
并且,在上述分流器组件中,第一凡尔体210和第二凡尔体220均可以相对分流器100运动,使分流器组件能够在进液状态和排液状态之间切换。同时,在分别进行进液过程和排液过程时,为了保证排液孔110和进液孔120均可以被稳定地封堵,第一凡尔体210和第二凡尔体220均可以通过面接触地方式分别与第一端面和第二端面配合,以为进液孔120和排液孔110分别提供密封作用,保证进液孔120或排液孔110的密封可靠性较高。
进一步地,如图1所示,本申请实施例公开的分流器组件还可以包括第三凡尔胶皮330,第三凡尔胶皮330环绕设置于进液孔120位于第一端面的孔口之外,且第三凡尔胶皮330可被挤压于第一凡尔体210和第一端面之间。也就是说,在第一凡尔胶皮310的外周还设有第三凡尔胶皮330,且第三凡尔胶皮330为环状结构,进液孔120中位于第一端面的孔口被夹设于第一凡尔胶皮310和第三凡尔胶皮330之间。相应地,在第一凡尔体210向靠近分流器100所在的方向运动的过程中,第一凡尔体210亦可以在挤压第一凡尔胶皮310时,一并挤压第三凡尔胶皮330。在第三凡尔胶皮330的作用下,可以隔绝进液孔120中分别位于第一端面和侧面的两个孔口,进一步提升进液孔120的两个孔口之间的隔绝可靠性。
为了保证第一凡尔胶皮310的位置稳定性相对较高,可以设置安装槽用以为第一凡尔胶皮310提供限位作用,具体地,如图1和图17所示,分流器100或第一凡尔体210上可以设置前述安装槽,且可以使安装槽的截面形状与第一凡尔胶皮310中容纳于安装槽内的部分的截面形状和尺寸相同,从而保证安装槽可以为第一凡尔胶皮310提供可靠的容纳安装作用。
相似地,为了保证第二凡尔胶皮320和第三凡尔胶皮330的位置稳定性均相对较高,亦可以为第二凡尔胶皮320和第三凡尔胶皮330对应设置安装槽。具体地,如图1所示,亦可以在分流器100上或第一凡尔体210上设置另一安装槽,以为第三凡尔胶皮330提供容纳安装作用。相应地,可以在分流器100上或第二凡尔体220上设置安装槽,为第二凡尔胶皮320提供容纳安装作用,从而保证第二凡尔胶皮320和第三凡尔胶皮330均具有相对较高 的位置稳定性。
为了进一步提升进液孔120位于分流器100的侧面的孔口的隔绝效果,可选地,如图12所示,本申请实施例公开的分流器组件还可以包括密封圈410,进液孔120位于侧面的孔口沿轴向的相背两侧均设有密封圈410。
也即,分流器100的侧面套设有至少两个密封圈410,且进液孔120位于分流器100的侧面的孔口位于两个密封圈410之间。在这种情况下的,当分流器100组装至阀箱500的内腔510后,可以利用密封圈410密封阀箱500的内腔510的腔壁和分流器100的侧面,进而使进液孔120位于分流器100的侧面的孔口能够被隔绝开,防止需要流入进液孔120内的液体沿分流器100和阀箱500之间的间隙流动至其他区域处。
密封圈410可以采用橡胶等弹性材料形成,密封圈410的尺寸等参数可以根据实际情况确定,此处不作限定。为了降低密封圈410的安装难度,可选地,如图1所示,分流器100的侧面设有多个限位槽140,且可以使多个密封圈410的一部分分别一一对应地容纳于多个限位槽140内。也即,分流器100的侧面设置有相对分流器100的侧面凹陷的限位槽140,密封圈410的一部分通过伸入限位槽140的方式,使得限位槽140可以为密封圈410提供限位作用,多个限位槽140可以分别为多个密封圈410提供限位作用,保证每一密封圈410的被限位效果均相对较好。
如上所述,第一端面可以为平面状结构,为了提升第一端面与第一凡尔体210之间的配合稳定性,可选地,如图4和图17所示,第一端面自内向外呈扩口状结构。也就是说,第一端面中,在分流器100的轴向上,越靠近排液孔110的部分与第二凡尔体220之间的间距越小。对应地,为了保证第一凡尔体210能够与第一端面形成面接触的配合关系,如图7所示,第一凡尔体210为外凸状结构,且沿分流器100的轴向,第一凡尔体210中越靠近连通孔211的部分与第二凡尔体220之间的间距越小,从而使第一凡尔体210能够“伸入”第一端面内,且与第一端面形成面接触的配合关系,进而保证第一凡尔体210和分流器100之间能够在垂直于分流器100的轴向的方向(即分流器100的径向)上形成限位配合关系。
更具体地说,第一端面可以为(近似于)圆台的侧面状结构,相似地,第一凡尔体210的侧面亦可以为(近似于)圆台的侧面状结构,保证第一凡尔体210和第一端面之间能够形成可靠的面配合关系。
可选地,如图4和图10所示,第二端面自内向外呈扩口状结构,且通过使第二凡尔体220具有与第二端面对应的结构,保证二者在形成可靠的面配合关系的同时,还可以使第二凡尔体220与分流器100在垂直于分流器100的轴向的方向上形成限位配合关系。
如上所述,第一端面可以为圆台的侧面状结构,在这种情况下,第一端面被过分流器100的轴线的平面截得的线段为直线段,在本申请的另一实施例中,第一端面亦可以为其他异形结构。可选地,如图19所示,第一端面上设置有凹陷区域,具体来说,可以使第一端面中进液孔120的孔口所在的区域相对第一端面的内缘和外缘均向靠近第二凡尔体220所在的方向凹陷。换句话说,在本实施例中,第一端面中对应于进液孔120的孔口所在的区域被过分流器100的轴线的平面截得的线段可以包括两个相互间隔的弧线段(或直线段),二者相互间隔的区域即为进液孔120的孔口所在的区域,且两个相互间隔的弧线段自进液孔120的孔口相对分流器100的轴线向外扩张地延伸,且分别连接于分流器100的外缘和排液孔110的侧壁。
在采用这种技术方案的情况下,如图19所示,通过使第一凡尔体210对应的区域呈凸起状结构,可以保证第一端面与第一凡尔体210仍能够形成可靠的面接触配合关系;同时,在采用上述技术方案的情况下,第一端面上的“凹陷结构”可以为第一凡尔体210的安装过程提供一定的导向作用,且使第一端面与第一凡尔体210能够在分流器100的径向上形成限位配合关系,进而提升第一凡尔体210与第一端面之间的配合关系的稳定性。
如上所述,排液孔110位于分流器100的轴线所在的区域,且进液孔120在第一端面上亦设有孔口,为此,进液孔120在第一端面上的孔口可以被看作位于排液孔110的周围。在进液孔120的数量为一个的情况下,进液孔120位于排液孔110的一侧,如图2示,在进液孔120的数量为两个或更多个的情况下,多个进液孔120围绕排液孔110设置,且可以使多个进液孔120均匀且间隔地环绕于排液孔110设置,从而在分流器组件的进液过程中,可以使液体自多个进液孔120均匀地被送入分流器100的第一端面所在的一侧空间,一方面可以提升进液效率,另一方面可以保证第一端面任一位置处的进液速率基本相当,提升分流器组件的工作稳定性。更具体地说,分流器100上的进液孔120的数量可以为两个、三个或更多个,进液孔120的具体数量可以根据进液孔120的孔径和分流器100的直径等参数确定,此处不作限定。
在进液孔120的数量为多个的情况下,可以使每一进液孔120在第一端面上的孔口对应的区域的具体结构互不相同或部分不同。在本申请的另一实施例中,如图2所示,可以使每一进液孔120在第一端面上的孔口对应的区域的具体结构相同,这可以降低第一凡尔体210的形成难度,且降低第一凡尔体210和第一端面之间的组装难度。
如上所述,第一端面上进液孔120所在的区域被过分流器100的轴线的平面截得的两线段可以为弧线段,亦可以为直线段。对应地,第一凡尔体210中用以与第一端面配合的表面被过分流器100的轴线的平面所截得的线段亦 可以对应地包括弧线段或直线段,且分别与第一端面上对应的区域面接触。
如图1所示,在利用第一凡尔体210封堵进液孔120中位于第一端面的孔口的过程中,第一凡尔体210朝向第一端面的表面包括与第一端面接触的部分以及用以封堵进液孔120的部分,两类结构之间相互连接。其中,第一凡尔体210中用以封堵进液孔120的部分被过分流器100的轴线的平面截得的图形包括第一线段,也即,第一线段在第一凡尔体210朝向第一端面的表面中所对应的区域用以封堵进液孔120。
可选地,如图1、图17和图21等所示,第一线段为直线段,且该直线段垂直于进液孔120中位于第一端面的孔口的轴向,在这种情况下,第一凡尔体210可以为进液孔120提供与其出液方向相反的封堵作用力,这使得第一凡尔体210对进液孔120的封堵效果相对较好,提升进液孔120的被封堵效果。
或者,如图19和图20所示,上述第一线段还可以为弧线段,且第一线段的中部沿进液孔120位于第一端面的孔口的轴向向进液孔120的内部凸出设置,从而使第一凡尔体210中用以与进液孔120配合的部分可以提供“瓶塞”类作用,以通过部分伸入进液孔120内部的方式,提升第一凡尔体210对进液孔120的封堵效果。
如上所述,第一凡尔体210和第二凡尔体220均与分流器100面接触,可选地,分流器100可以采用硬度相对较高的金属材料经一体压铸等方式形成,以提升分流器100的使用寿命,且保证第一端面和第一凡尔体210之间,以及第二端面和第二凡尔体220之间的面配合关系始终可以保持相对稳定的状态。
在本申请的另一实施例中,如图22-图25所示,分流器100可以包括基体101和第一耐磨环102,第一耐磨环102可以采用硬度和耐磨性均大于基体101的材料形成。具体地,第一耐磨环102可以采用如氧化锆、镍基碳化钨、钴基碳化钨、碳化钛和氮化硼等硬质合金中的至少一者形成,保证第一耐磨环102具备较强的耐磨性和硬度,且通过使用硬度和耐磨性均相对较小的材料形成基体101,可以降低整个分流器100的生产成本。
在组装基体101和第一耐磨环102的过程中,基体101设有第一容纳槽,第一耐磨环102嵌设于第一容纳槽内,以利用第一耐磨环102与第一凡尔体210面接触,提升分流器100的局部的强度和耐磨性,以在保证分流器100的使用寿命和被密封效果均相对较好的同时,降低分离器的整体成本。
并且,由于进液孔120位于分流器100上,继而,在分流器100包括第一耐磨环102的情况下,如图23-图25所示,进液孔120可以包括第一孔段121和第二孔段122,第一孔段121和第二孔段122相互连通,以保证分流器 100侧面的液体仍能够经第一孔段121和第二孔段122被送入分流器100的第一端面所在的一侧空间。
其中,第一孔段121位于基体101,第二孔段122位于第一耐磨环102,以使第一耐磨环102能够与第一凡尔体210面接触,保证二者之间频繁接触仍具有较长的使用寿命和密封效果。另外,第一孔段121和第二孔段122的直径可以不同,为了提升进液过程的顺畅性,可以使第一孔段121和第二孔段122的直径相同,且使第一孔段121的外缘与第二孔段122的外缘相互对接。
基于上述实施例,相应地,如图22-图25所示,还可以使分流器100包括第二耐磨环103,第二端面的至少一部分位于第二耐磨环103上,且使第二耐磨环103被配置为与第二凡尔体220面接触,从而利用第二耐磨环103作为分流器100背离第一凡尔体210的一侧中直接与第二凡尔体220接触的器件,保证第二凡尔体220在长时间频繁与第二耐磨环103接触的情况下,第二凡尔体220和第二耐磨环103均仍可以具有较长的使用寿命和密封效果。
相应地,第二耐磨环103的材质可以与第一耐磨环102的材质相同,且可以在第二端面上对应地形成第二容纳槽,使得第一耐磨环102和第二耐磨环103均可以通过过盈配合等方式分别嵌设于第一容纳槽和第二容纳槽之内,进而使第一耐磨环102和第二耐磨环103均与基体101形成稳定的相对固定关系。
如上所述,进液孔120连通分流器100的侧面和第一端面,在这种情况下,如图1、图17、图20和图22所示,进液孔120可以为直线状结构,且通过使进液孔120相对分流器100的轴向倾斜设置,即可保证进液孔120能够连通分流器100的侧面和第一端面,且使被输送的液体在进液孔120内的输送过程较为顺畅,降低液体在进液孔120内流动的阻碍,并且,在采用上述技术方案的情况下,可以降低进液孔120的加工难度。
在本申请的另一实施例中,如图18、图19、图21、图23、图24和图25所示,进液孔120可以包括轴向端和倾斜段,且轴向端和倾斜段相互连通。也即,进液孔120包括至少两段,两段的轴向非平行设置。并且,通过使轴向段沿分流器100的轴向延伸,且连通于第一端面,倾斜段相对分流器100的轴向倾斜延伸,且连通于侧面,使得进液孔120的出液方向与分流器100的轴向平行,进而使进液孔120的出液方向与第一凡尔体210的运动方向平行,提升第一凡尔体210的受力均匀性。具体地,可以通过自第一端面加工进液孔120的轴向段,且自分流器100的侧面倾斜地加工倾斜段,保证轴向段与倾斜段相互连通,即可形成本实施例请求保护的进液孔120。
在本申请上述实施例公开的多种结构的分流器组件中,技术方案之间可 以相互组合,例如,在分流器100包括基体101、第一耐磨环102和第二耐磨环103的情况下,亦可以使整个分流器100的第一端面为扩口状结构或平面状结构,或者,还可以使第一端面在自身径向的中部向靠近第二凡尔体220所在的方向凹陷设置。再比如,任一种结构的分流器组件中均可以设置有上述第三凡尔体和/或密封圈410,以提升分流器组件中各空间结构之间的密封效果。考虑文本简洁,此处不再一一组合后重复描述。
基于上述分流器组件,本申请实施例还公开一种阀箱500,该阀箱500与分流器组件配合使用,二者均可以被应用在柱塞泵内,作为柱塞泵中的两类主要部件,分流器组件可以安装在阀箱500内。
具体来说,阀箱500具有内腔510、进液通道520和排液通道530,内腔510用于安装分流器组件,进而使得内腔510中的部分被分流器组件分为高压腔501、低压腔502和交变腔503(如图13和图14),在图11中,阀箱500被三条虚线分为四部分,四部分自右向左分别可以为高压腔501、低压腔502、交变腔503和柱塞腔,柱塞腔用以容纳柱塞710。显然,上述阀箱500的交变腔503不存在十字相贯线结构,且不同腔室之间过渡圆滑,从而可以降低阀箱500的应力,提升阀箱500的使用寿命。
并且,如图11和图12所示,进液通道520和分流器组件的进液孔120连通,排液通道530可与分流器组件的排液孔110连通。继而,如图15和图16所示,进液通道520内的液体可以自分流器组件的进液孔120被送入分流器100的第一端面所在的一侧空间内,之后,被送入分流器100的第一端面所在的一侧空间的液体可以自第一凡尔体210的连通孔211和分流器100的排液孔110被送入分流器100的第二端面所在的一侧空间,完成进液过程和排液过程。
基于上述实施例公开的分流器组件和上述阀箱500,如图12-图16所示,本申请实施例还公开一种柱塞泵,柱塞泵包括柱塞710、上述任一分流器组件和上述阀箱500,柱塞710和分流器组件均安装于阀箱500的内腔510,柱塞710与分流器组件沿转轴的轴向分布,且柱塞710与第一凡尔体210传动连接,动力端可以通过柱塞710与第一凡尔体210实现力的传递。当然,如图12所示,柱塞泵中还可以包括压盖720、压帽730、盘根总成740、盘根压帽751、盘根压环752、盘根隔环753、盘根耐磨套760和卡箍770等部件。
基于上述柱塞泵,如图12所示,可以在进液孔120位于侧面的孔口沿轴向的相背两侧均设置密封圈410,以利用密封圈410进一步为进液孔120位于侧面的孔口提供密封隔绝作用。
进一步地,如图12所示,可以使分流器100外周的各密封圈410的外侧均设置密封环420,密封环420密封于阀箱500和分流器100之间,也即, 在分流器100的外周设有密封圈410和密封环420,密封圈410被夹设在相邻的两个密封环420之间,密封圈410夹设进液孔120位于分流器100的侧面的孔口,从而利用密封环420进一步加强分流器100的侧面与阀箱500的内腔510的腔壁之间的密封连接可靠性。
同时,基于上述技术方案,如图12-图14所示,可以在阀箱500上设置泄流孔540,且泄流孔540的孔口连通于位于进液孔120同一侧的密封圈410和密封环420之间。在这种情况下,如果泄流孔540内出现液体溢流的情况,则可以确定该泄流孔540所在的位置对应的密封圈410发生损坏,便于工作人员及时更换对应位置的密封圈410,防止因损坏的密封圈410未能被及时更换而导致阀箱500和分流器组件内的其他器件损坏。
相应地,在进液孔120位于侧面的孔口的相背两侧均设有密封圈410和密封环420的情况下,如图12所示,可以使进液孔120相背两侧均设置泄流孔540,保证任一密封圈410损坏的情况下,均可以通过对应的泄流孔540获知该信息。
为了减少所需监控的泄流孔540的数量,如图13和图14所示,泄流孔540的数量可以为一个,且可以在分流器100上设置连接孔160,连接孔160的一端连通于位于进液孔120背离泄流孔540一侧的密封环420和密封圈410之间,连接孔160的另一端与泄流孔540连通。继而,进液孔120一侧的密封圈410和密封环420之间的空间可以通过泄流孔540直接与阀箱500之外连通,进液孔120另一侧的密封圈410和密封环420之间的空间则可以通过连接孔160间接地连通于泄流孔540,且与阀箱500之外连通,这亦可以保证进液孔120相背两侧的任一密封圈410损坏时,均可以通过泄流孔540是否溢流液体判断,且可以减少泄流孔540的设置数量,还可以提升阀箱500的整体结构强度,进而提升其稳定性。
本申请上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1. 一种分流器组件,应用于柱塞泵,包括分流器(100)、第一凡尔体(210)、第二凡尔体(220)、第一凡尔胶皮(310)和第二凡尔胶皮(320),
    所述分流器(100)设有排液孔(110)和进液孔(120),所述排液孔(110)连通于所述分流器(100)沿自身轴向相背的第一端面和第二端面,所述进液孔(120)连通于所述分流器(100)的侧面和所述第一端面,所述侧面连接于所述第一端面和所述第二端面之间,所述进液孔(120)位于所述侧面的孔口可与所述柱塞泵的阀箱的进液通道连通,所述排液孔(110)位于所述第二端面的孔口可与所述阀箱的排液通道连通;
    所述第一凡尔体(210)设有沿所述轴向贯穿自身的连通孔(211),所述第一凡尔体(210)可启闭地面接触于所述分流器的第一端面,以封堵进液孔(120),且连通所述连通孔(211)和所述排液孔(110),所述第二凡尔体(220)可启闭地面接触于所述分流器的第二端面,以封堵所述排液孔(110);
    所述第一凡尔胶皮(310)和所述第二凡尔胶皮(320)均环绕于所述排液孔(110)之外,且所述第一凡尔胶皮(310)间隔所述进液孔(120)和所述排液孔(110),所述第一凡尔胶皮(310)可被挤压于所述第一凡尔体(210)和所述第一端面之间,所述第二凡尔胶皮(320)可被挤压于所述第二凡尔体(220)与所述第二端面之间。
  2. 根据权利要求1所述的分流器组件,其中,所述分流器组件还包括第三凡尔胶皮(330),所述第三凡尔胶皮(330)环绕设置于所述进液孔(120)位于所述第一端面的孔口之外,且所述第三凡尔胶皮(330)可被挤压于所述第一凡尔体(210)和所述第一端面之间。
  3. 根据权利要求1所述的分流器组件,其中,所述分流器组件还包括密封圈,所述进液孔(120)位于所述侧面的孔口沿所述轴向的相背两侧均设有所述密封圈,所述分流器(100)的侧面设有多个限位槽(140),各所述密封圈的一部分分别一一对应地容纳于多个所述限位槽(140)内。
  4. 根据权利要求1所述的分流器组件,其中,所述第一端面自内向外呈扩口状结构,和/或所述第二端面自内向外呈扩口状结构。
  5. 根据权利要求1所述的分流器组件,其中,所述第一端面中所述进液孔(120)的孔口所在的区域相对所述第一端面的内缘和外缘均向靠近所述第二凡尔体(220)所在的方向凹陷。
  6. 根据权利要求1所述的分流器组件,其中,所述第一凡尔体(210)中用以封堵所述进液孔(120)的部分被过所述分流器(100)的轴线的平面截得的图形包括第一线段,所述第一线段为直线段,所述直线段垂直于所述 进液孔中位于所述第一端面的孔口的轴向;或者,所述第一线段为弧线段,且所述第一线段的中部沿所述进液孔(120)位于所述第一端面的孔口的轴向向所述进液孔(120)的内部凸出设置。
  7. 根据权利要求1所述的分流器组件,其中,所述分流器(100)包括基体(101)和第一耐磨环(102),所述基体(101)设有第一容纳槽,所述第一耐磨环(102)嵌设于所述第一容纳槽内;所述进液孔(120)包括相互连通的第一孔段(121)和第二孔段(122),所述第一孔段(121)位于所述基体(101),所述第二孔段(122)位于所述第一耐磨环(102),且所述第一耐磨环(102)配置为与所述第一凡尔体(210)面接触;
    和/或所述分流器(100)还包括第二耐磨环(103),所述第二端面的至少一部分位于所述第二耐磨环(103),所述第二耐磨环(103)配置为与所述第二凡尔体(220)面接触。
  8. 根据权利要求1所述的分流器组件,其中,所述分流器(100)或所述第一凡尔体(210)上设有安装槽,所述第一凡尔胶皮(310)的一部分安装于所述安装槽内。
  9. 根据权利要求1所述的分流器组件,其中,所述进液孔(120)为直线状结构,且所述进液孔(120)相对所述分流器(100)的轴向倾斜设置;
    或者,所述进液孔(120)包括相互连通的轴向段和倾斜段,所述轴向段沿所述分流器(100)的轴向延伸,且连通于所述第一端面;所述倾斜段相对所述分流器(100)的轴向倾斜,且连通于所述侧面。
  10. 根据权利要求1所述的分流器组件,其中,所述进液孔(120)的数量为多个,多个所述进液孔(120)均匀且间隔地环绕于所述排液孔(110)之外。
  11. 一种阀箱,应用于柱塞泵,所述阀箱具有内腔、进液通道和排液通道,所述内腔用于安装分流器组件,且所述进液通道与所述分流器组件的进液孔(120)连通,所述排液通道可与所述分流器组件的排液孔(110)连通。
  12. 一种柱塞泵,包括柱塞、权利要求1-10任意一项所述分流器组件和权利要求11所述的阀箱,所述柱塞和所述分流器组件均安装于所述阀箱的内腔,所述柱塞与所述第一凡尔体(210)传动连接。
  13. 根据权利要求12所述的柱塞泵,其中,所述进液孔(120)位于所述侧面的孔口沿所述轴向的相背两侧均设有密封圈,所述分流器外周的各所述密封圈的外侧均设有密封环,所述密封环密封于所述阀箱和所述分流器之间,所述阀箱设有泄流孔,且所述泄流孔的孔口连通于位于所述进液孔同一侧的所述密封圈和所述密封环之间。
  14. 根据权利要求13所述的柱塞泵,其中,所述泄流孔的数量为一个, 且所述分流器设有连接孔,所述连接孔的一端连通于位于所述进液孔(120)背离所述泄流孔一侧的所述密封环和所述密封圈之间,所述连接孔的另一端与所述泄流孔连通。
PCT/CN2022/132556 2022-08-15 2022-11-17 分流器组件、阀箱和柱塞泵 WO2024036793A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210974401.1A CN115163478A (zh) 2022-08-15 2022-08-15 分流器组件、阀箱和柱塞泵
CN202210974401.1 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024036793A1 true WO2024036793A1 (zh) 2024-02-22

Family

ID=83480313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132556 WO2024036793A1 (zh) 2022-08-15 2022-11-17 分流器组件、阀箱和柱塞泵

Country Status (2)

Country Link
CN (1) CN115163478A (zh)
WO (1) WO2024036793A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115163478A (zh) * 2022-08-15 2022-10-11 烟台杰瑞石油装备技术有限公司 分流器组件、阀箱和柱塞泵

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203560085U (zh) * 2013-11-19 2014-04-23 天津市通洁高压泵制造有限公司 一种用于超高压柱塞泵的一体式进排液阀组
US9188122B1 (en) * 2011-06-22 2015-11-17 Glen E. Reed Valve and seat assembly for high pressure pumps and method of use
CN105952633A (zh) * 2016-07-07 2016-09-21 天津市海盛泵业制造有限公司 一种高压往复柱塞泵液力端用直通式组合阀
CN205592126U (zh) * 2016-05-05 2016-09-21 天津爱博生技术开发股份有限公司 一种新型柱塞泵凡尔体
CN111664087A (zh) * 2020-06-30 2020-09-15 烟台杰瑞石油装备技术有限公司 一种长寿命分体式凡尔座
CN211598974U (zh) * 2019-12-30 2020-09-29 北京协同创新食品科技有限公司 一种高压柱塞泵阀座及应用该阀座的高压柱塞泵
CN113790151A (zh) * 2021-11-01 2021-12-14 烟台杰瑞石油装备技术有限公司 液力端和柱塞泵
CN115163478A (zh) * 2022-08-15 2022-10-11 烟台杰瑞石油装备技术有限公司 分流器组件、阀箱和柱塞泵

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413647A (en) * 1972-11-27 1983-11-08 Lorenzo Bruce L De Leak detection arrangement for valve having sealing means
CN206753890U (zh) * 2017-05-16 2017-12-15 华美孚泰油气增产技术服务有限责任公司 压裂车用新型高压凡尔
CN207278237U (zh) * 2017-08-16 2018-04-27 濮阳市中信激扬机械制造有限公司 一种新型球式凡尔阀组件
CN110617211B (zh) * 2019-10-23 2024-07-23 卫玮 抽油泵及凡尔结构
CN214196636U (zh) * 2020-09-17 2021-09-14 建湖金拓机械制造有限公司 一种压裂车用整体式柱塞泵凡尔体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188122B1 (en) * 2011-06-22 2015-11-17 Glen E. Reed Valve and seat assembly for high pressure pumps and method of use
CN203560085U (zh) * 2013-11-19 2014-04-23 天津市通洁高压泵制造有限公司 一种用于超高压柱塞泵的一体式进排液阀组
CN205592126U (zh) * 2016-05-05 2016-09-21 天津爱博生技术开发股份有限公司 一种新型柱塞泵凡尔体
CN105952633A (zh) * 2016-07-07 2016-09-21 天津市海盛泵业制造有限公司 一种高压往复柱塞泵液力端用直通式组合阀
CN211598974U (zh) * 2019-12-30 2020-09-29 北京协同创新食品科技有限公司 一种高压柱塞泵阀座及应用该阀座的高压柱塞泵
CN111664087A (zh) * 2020-06-30 2020-09-15 烟台杰瑞石油装备技术有限公司 一种长寿命分体式凡尔座
CN113790151A (zh) * 2021-11-01 2021-12-14 烟台杰瑞石油装备技术有限公司 液力端和柱塞泵
CN115163478A (zh) * 2022-08-15 2022-10-11 烟台杰瑞石油装备技术有限公司 分流器组件、阀箱和柱塞泵

Also Published As

Publication number Publication date
CN115163478A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
RU2696167C1 (ru) Герметизирующие устройства для управления потоком высокого давления
US12044234B2 (en) Cover, fluid end and plunger pump
CN102803801B (zh) 流动管线挡板阀
WO2024036793A1 (zh) 分流器组件、阀箱和柱塞泵
US3742976A (en) Valves
US9027906B2 (en) Filler assembly for a valve
US10309416B2 (en) Seal system for centrifugal pumps having axially split casings
NO345310B1 (en) Multi-way valve and multi-way valve skid thereof
EP4443029A1 (en) Solenoid valve
CN211975943U (zh) 一种防泄露两片式球阀
KR101248382B1 (ko) 다단 밀봉구조를 갖는 밸브장치
TW202102792A (zh) 一種高密封性高壓針閥
US20170130850A1 (en) Valve seat ring and multi-way valve having valve seat ring
KR101852478B1 (ko) 버터플라이 밸브
TW202045842A (zh) 滑軸式切換閥
KR200334648Y1 (ko) 세그먼트 플러그형 이중편심 메탈시트 볼밸브
RU2496041C1 (ru) Шиберная задвижка
CN115263225B (zh) 一种井口增效防磨节能型密封系统
KR20200098358A (ko) 이중의 씰링부재가 마련되어 기밀성이 강화된 볼 밸브
CN217272187U (zh) 一种流量增大且寿命长的换向阀
CN219035578U (zh) 电子膨胀阀
CN211951448U (zh) 一种排污阀
CN209959921U (zh) 一种防止球阀阀杆飞出的复合结构
CN217130380U (zh) 球阀密封件
CN213776478U (zh) 一种高温截止止回阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955563

Country of ref document: EP

Kind code of ref document: A1