WO2024036677A1 - 一种仿生环境适应性自修复涂层及其制备方法与应用 - Google Patents

一种仿生环境适应性自修复涂层及其制备方法与应用 Download PDF

Info

Publication number
WO2024036677A1
WO2024036677A1 PCT/CN2022/118366 CN2022118366W WO2024036677A1 WO 2024036677 A1 WO2024036677 A1 WO 2024036677A1 CN 2022118366 W CN2022118366 W CN 2022118366W WO 2024036677 A1 WO2024036677 A1 WO 2024036677A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
healing
preparation
coating
bonds
Prior art date
Application number
PCT/CN2022/118366
Other languages
English (en)
French (fr)
Inventor
王立平
朱小波
赵海超
卢光明
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2024036677A1 publication Critical patent/WO2024036677A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present application relates to a self-healing coating, in particular to a bionic environmentally adaptable self-healing coating and its preparation method and application, which belongs to the technical field of self-healing coatings.
  • Self-healing polyurethane is widely used in functional coatings, wearable flexible electronics, soft robots, electronic skin, artificial muscles, etc. due to its inherent reprocessability and self-healing properties due to reversible non-covalent and covalent interactions. field.
  • repairable elastomers require external energy to achieve healing.
  • the most effective strategy for synthesizing tough self-healing materials is to use noncovalent interactions as sacrificial and reversible cross-links.
  • these autonomous self-healing materials usually exhibit weak mechanical strength ( ⁇ 10MPa). Therefore, how to resolve the contradiction between high mechanical properties and self-healing ability in non-covalent self-healing materials remains a huge challenge.
  • the "brick-mud" structure of natural nacre is composed of 96wt% inorganic aragonite and 4wt% bio-organic polymer, which has excellent fracture toughness.
  • it is difficult to obtain excellent tensile properties in the above composite materials. Therefore, it is of great significance to develop functional self-healing coatings that integrate high mechanical strength, excellent tensile properties, and rapid environmental adaptability and self-healing capabilities.
  • the main purpose of this application is to provide a bionic environmentally adaptable self-healing coating and its preparation method to overcome the shortcomings of the existing technology.
  • Another object of the present application is to provide the application of the bionic environment adaptable self-healing coating.
  • the embodiments of the present application provide a method for preparing a bionic environment-adaptive self-healing coating, which includes:
  • the composite coating with imitation pearl layer structure is solidified to obtain the bionic environment adaptable self-healing coating.
  • Embodiments of the present application also provide a biomimetic environmentally adaptable self-healing coating, which includes modified graphene material and polyurethane material.
  • the modified graphene material is distributed in the polyurethane material in a parallel arrangement.
  • the biomimetic The environmentally adaptable self-healing coating is formed through at least two types of connections: non-covalent hydrogen bonds, covalent disulfide bonds, and graphene interface bonds.
  • graphene interfacial interaction bonds include at least any one of interfacial non-covalent hydrogen bonds and interfacial covalent disulfide bonds.
  • the embodiments of the present application also provide the application of the aforementioned bionic environment-adaptive self-healing coating in the field of metal anti-corrosion or the field of flexible robot preparation.
  • the modified graphene can be distributed in the polyurethane in a parallel arrangement due to the existence of abundant interaction bonds at the interface, thus having high ultimate tensile strength. It has excellent mechanical properties due to the existence of covalent bonds or covalent bonds;
  • biomimetic environmentally adaptable self-healing coating prepared in this application shows super mechanical properties and outstanding self-healing behavior in room temperature and even salt water environments due to the synergistic effect of dynamic hydrogen bonds, flexible disulfide bonds and interfacial hydrogen bonds. .
  • Figure 1 is a synthesis route diagram of polyurethane materials prepared in Example 1, Comparative Example 1, and Comparative Example 2 of the present application;
  • Figure 2 is a cross-sectional scan of the bionic environmentally adaptable self-healing coating containing parallel-arranged graphene in Example 1 of the present application;
  • Figure 3 is a stress-strain curve of the biomimetic environmentally adaptable self-healing coating prepared in Comparative Example 1 of the present application;
  • Figure 4 is a surface scan of the biomimetic environmentally adaptable self-healing coating prepared in Example 1 of the present application after being cut into two sections and exposed to room temperature for 24 hours;
  • Figure 5 is a stress-strain curve of the biomimetic environmentally adaptable self-healing coating prepared in Comparative Example 1 of the present application after being cut into two sections and exposed to room temperature for 24 hours;
  • Figure 6 is a schematic diagram of the crawling behavior process of the bionic environmentally adaptable self-healing coating prepared in Example 1 of the present application under near-infrared light.
  • the inventor of the present case was able to propose the technical solution of the present application after long-term research and extensive practice, aiming to provide a bionic environment-adaptive self-healing coating inspired by natural spider silk and nacre and its
  • the preparation method mainly includes steps such as preparation of modified graphene materials, preparation of self-healing polyurethane materials, and preparation of bionic environmentally adaptable self-healing coatings.
  • Graphene oxide (GO) nanosheets are favored due to their abundant surface oxygen-containing functional groups and excellent mechanical strength.
  • the inventor of this case was inspired by natural spider silk and nacre, and synergistically introduced flexible disulfide bonds and dynamic sixfold hydrogen bonds into polyurethane.
  • modified graphene nanomaterials were incorporated into the above-mentioned polyurethane matrix. High-density interaction bonds are introduced at the interface between them, and a room temperature self-healing polyurethane coating with super mechanical properties and ultra-high stretchability is designed.
  • the resulting supramolecular composite material with an anti-artificial nacre structure greatly improves the strength and toughness of the composite material due to the presence of modified graphene.
  • acyl semicarbazide, urea and urethane motifs in the polyurethane backbone are connected to flexible alicyclic six-atom spacers, giving the composite excellent tensile properties and toughness, while the aromatic aromatic content in polyurethane Group disulfide bonds mainly contribute to room temperature self-healing properties.
  • One aspect of the embodiments of the present application provides a biomimetic environmentally adaptable self-healing coating inspired by natural spider silk and nacre, including modified graphene materials and polyurethane materials, at least through non-covalent hydrogen bonds, covalent disulfide Two types of connections are formed: bonds and graphene interface interaction bonds.
  • bonds and graphene interface interaction bonds The interface between the modified graphene material and the polyurethane material is arranged in parallel in the polyurethane material due to the existence of abundant interaction bonds.
  • the biomimetic environmentally adaptable self-healing coating is formed through a variety of interaction bonds, wherein the multiple interactions include at least non-covalent hydrogen bonds, covalent disulfide bonds, and graphene interface bonds.
  • the graphene interfacial interaction bonds include at least any one of interfacial non-covalent hydrogen bonds and interfacial covalent disulfide bonds.
  • the non-covalent hydrogen bonds are made by introducing adipic acid dihydrazide containing dynamic sixfold hydrogen bonds into the polyurethane material.
  • the covalent disulfide bonds are produced by introducing 4,4'-diaminodiphenyl disulfide containing flexible disulfide bonds into the polyurethane material.
  • the modified graphene material includes at least one of adipic acid dihydrazide containing dynamic sixfold hydrogen bonds and 4,4′-diaminodiphenyl disulfide containing flexible disulfide bonds. A kind of modified graphene oxide is produced.
  • the biomimetic environmentally adaptable self-healing coating has rapid environmentally adaptable mechanical property self-healing capabilities due to the rupture, reorganization, and metathesis of internal dynamic bonds while consuming energy.
  • Another aspect of the embodiment of the present application provides a method for preparing a bionic environment-adaptive self-healing coating, which includes:
  • the composite coating with imitation pearl layer structure is solidified to obtain a bionic environment adaptable self-healing coating.
  • the preparation method includes: using polycondensation reaction to add isocyanate to polyol to obtain a prepolymer; and then introducing one or two combinations of non-covalent hydrogen bonds and covalent disulfide bonds.
  • the polyurethane material is obtained from the above prepolymer, and finally the modified graphene material is added, and due to the existence of rich interaction bonds at the interface, the modified graphene is distributed in the polyurethane material in a parallel arrangement, and a composite coating with an imitation pearl layer structure is obtained.
  • the preparation method includes: adding polyol to an organic solvent under a nitrogen atmosphere, stirring at 80-130°C for 20-60 minutes to remove water vapor in the system, and then adding isocyanate Stir for 1 to 6 hours at 40 to 90°C, and obtain a prepolymer through polycondensation reaction.
  • the molar ratio of the polyol to isocyanate is 2:1 to 1:4.
  • the mass ratio of the polyol to the organic solvent is 1:1 to 1:10.
  • the organic solvent may include any one or a combination of two or more of N,N-dimethylformamide, N,N-dimethylacetamide, butyl acetate, etc., but is not limited thereto.
  • the isocyanate includes at least any one or two of isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), 4,4'-dicyclohexylmethane diisocyanate (HMDI), etc. combinations of the above, but not limited to these.
  • IPDI isophorone diisocyanate
  • HDI hexamethylene diisocyanate
  • HMDI 4,4'-dicyclohexylmethane diisocyanate
  • PTMEG polytetrahydrofuran
  • PPG polypropylene glycol
  • the preparation method includes: adding any one or both of adipic acid dihydrazide and 4,4′-diaminodiphenyl disulfide to the prepolymer. The combination of the two is stirred at 20 to 60°C for 1 to 24 hours to obtain a polyurethane material.
  • the molar ratio of any one or a combination of two of the adipic acid dihydrazide, 4,4'-diaminodiphenyl disulfide and the polyol is 1:3 to 3:1.
  • the preparation method includes: adding a modifier containing an interaction bond into EDC/NHS (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide/N- Hydroxysuccinimide) chemically activated graphene oxide dispersion and stirred at 10 to 40°C for more than 6 hours to obtain a modified graphene material.
  • EDC/NHS 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide/N- Hydroxysuccinimide
  • the modifier containing functional bonds includes any one or a combination of two of adipic acid dihydrazide, 4,4′-diaminodiphenyl disulfide, etc., but is not limited thereto.
  • the mass ratio of the modifier containing functional bonds to the graphene oxide in the graphene oxide dispersion is 100:1 to 2000:1.
  • the mass ratio of EDC, NHS and graphene oxide in the graphene oxide dispersion activated by the EDC/NHS chemical method is 1:1:1 to 20:20:1.
  • the graphene oxide dispersion is a graphene oxide/water dispersion with a concentration of 0.1 to 10 mg/mL.
  • the diameter of the graphene oxide is 0.5-20 ⁇ m, and the thickness is 0.4-4 nm.
  • the preparation method includes: adding modified graphene material into polyurethane material and mixing. Due to the existence of abundant interaction bonds at the polyurethane/graphene interface, the modified graphene is distributed in the polyurethane in a parallel arrangement. , obtain a self-healing coating with imitation pearl layer structure;
  • the composite coating is cured to obtain the bionic environment adaptable self-healing coating.
  • the mixing temperature is 20-60°C
  • the stirring time is 1-6 hours.
  • the preparation method includes: mixing polyurethane material and modified graphene material, stirring at 20-60°C for 1-6 hours to obtain a composite coating with an imitation pearl layer structure, and finally making the imitation pearl layer
  • the structural composite coating is cured to obtain a bionic environmentally adaptable self-healing coating.
  • the mass ratio of the polyurethane material to the modified graphene material is 10:1 to 1000:1.
  • the curing temperature is 30-90°C and the curing time is 12-48 hours.
  • the preparation method includes: introducing adipic acid dihydrazide containing dynamic sixfold hydrogen bonds and 4,4′-diaminodiphenyl disulfide containing flexible disulfide bonds into the polyurethane main chain , and finally a modified graphene material including at least one of non-covalent hydrogen bonds and covalent disulfide bonds is added.
  • the preparation method includes:
  • a polycondensation reaction is used to add isocyanate to polyol to obtain a prepolymer; then one or two combinations of non-covalent hydrogen bonds and covalent disulfide bonds are introduced into the above-mentioned prepolymer to obtain a polyurethane material, and finally the modified Modified graphene material, and due to the existence of abundant interaction bonds at the interface, the modified graphene is distributed in the polyurethane in a parallel arrangement, obtaining a composite coating with an imitation pearl layer structure.
  • the preparation method of the bionic environmentally adaptable self-healing coating of this application includes the following steps:
  • Another aspect of the embodiments of the present application also provides a biomimetic environmentally adaptable self-healing coating prepared by the aforementioned preparation method.
  • the interface between the modified graphene material and the polyurethane material is rich in interaction bonds (interfacial hydrogen interaction bonds).
  • the existence of parallel arrangement in the polyurethane material is crucial to the manufacture of the polyurethane material.
  • the biomimetic environmentally adaptable self-healing coating has high ultimate tensile strength due to the presence of parallel-aligned graphene.
  • the ultimate tensile strength is adjustable from 5 to 90 MPa, and the elongation rate is from 900 to 1400 % adjustable.
  • biomimetic environmentally adaptable self-healing coating provided by this application has excellent mechanical properties due to the presence of abundant non-covalent bonds or covalent bonds.
  • the biomimetic environmentally adaptable self-healing coating has rapid environmentally adaptable mechanical property self-healing capabilities due to the breaking, reorganization, and metathesis of internal dynamic bonds while consuming energy.
  • the environment includes at least any one or a combination of two or more of low temperature environment, room temperature environment, high temperature environment, salt water environment and other environments.
  • the ultimate tensile strength of the biomimetic environmentally adaptable self-healing coating can be restored by 80% to 92% after being cut into two sections and exposed to room temperature for 2 to 36 hours.
  • biomimetic environmentally adaptable self-healing coating prepared in this application exhibits super strong mechanical properties and outstanding performance in room temperature and even salt water environments due to the synergistic effect of dynamic hydrogen bonds, flexible disulfide bonds and interfacial hydrogen bonds. self-healing behavior.
  • Another aspect of the embodiments of the present application also provides the application of the bionic environment adaptable self-healing coating in the field of metal anti-corrosion, flexible robot preparation and other fields.
  • this application prepares a biomimetic environmentally adaptable self-healing coating by synergistically combining at least two types of non-covalent hydrogen bonds, covalent disulfide bonds, and graphene interface bonds.
  • modified graphene can be distributed in polyurethane in a parallel arrangement due to the existence of abundant interaction bonds at the interface.
  • the biomimetic environmentally adaptable self-healing coating has high ultimate tensile strength due to the presence of parallel-aligned graphene, and at the same time, has excellent mechanical properties due to the presence of abundant non-covalent bonds or covalent bonds.
  • the biomimetic environment-adaptive self-healing coating By virtue of the breaking, reorganization, and metathesis of internal dynamic bonds while consuming energy, the biomimetic environment-adaptive self-healing coating also exhibits rapid environmentally adaptable mechanical property self-healing capabilities; specifically, the biomimetic environment-adaptive self-healing coating
  • the ultimate tensile strength is adjustable from 5 to 90MPa, and the elongation is adjustable from 900 to 1400%; and after being cut into two sections and exposed to room temperature for 2 to 36 hours, the ultimate tensile strength can recover 80% to 92%, which is a successful solution
  • the contradiction between high mechanical properties and rapid room temperature self-healing ability in self-healing materials is solved.
  • a method for preparing a biomimetic environmentally adaptable self-healing coating including the following steps:
  • Graphene modification Add adipic acid dihydrazide, a non-covalent hydrogen bond-containing modifier with a mass ratio of 1000:1, into 1 mg/mL EDC/NHS chemically activated graphene oxide dispersion. Stir for 24 hours at 25°C, where the mass ratio of EDC:NHS:graphene oxide is 5:15:1;
  • Figure 1 is the synthesis route of the polyurethane material in this embodiment.
  • the cross-sectional scanning diagram of the bionic environment adaptable self-healing coating is shown in Figure 2.
  • the modified graphene material is arranged in parallel in polyurethane, which is beneficial to improving the ultimate tensile strength of the composite material.
  • it has excellent mechanical properties due to the existence of abundant dynamic sixfold hydrogen bonds at the polyurethane/graphene interface.
  • the stress-strain curve of the composite material in this embodiment is shown in Figure 3. Its ultimate tensile strength and elongation are as high as 78.3Mpa and 1273.2% respectively, showing excellent mechanical properties.
  • the dynamic sixfold hydrogen bonds, flexible disulfide bonds, and abundant hydrogen bonds at the polyurethane/graphene interface in the polyurethane material of this embodiment consume energy while consuming energy, it has rapid room temperature mechanical property self-healing ability. , its ultimate tensile strength can recover 88.6% after being cut into two sections and exposed to room temperature for 24 hours.
  • the surface scan and stress-strain curve after self-healing are shown in Figures 4 and 5 respectively.
  • the bionic environment-adaptive self-healing coating described in this embodiment can also achieve autonomous healing at low temperatures and in 3.5wt% salt water, showing excellent environmentally adaptive repair capabilities.
  • the inventor of this case assembled a crawling robot that can exhibit crawling behavior driven by near-infrared light. Its optical The process is shown in Figure 6. Therefore, the bionic environment-adaptive self-healing coating prepared in this embodiment has broad application prospects in the field of metal anti-corrosion, flexible robots and other fields.
  • a method for preparing a biomimetic environmentally adaptable self-healing coating including the following steps:
  • Graphene modification Add the covalent disulfide bond-containing modifier 4,4′-diaminodiphenyl disulfide with a mass ratio of 100:1 into 0.1 mg/mL EDC/NHS chemical activation. In the graphene oxide dispersion, stir for 48 hours at 10°C, where the mass ratio of EDC:NHS:graphene oxide is 1:1:1;
  • bionic environmentally adaptable self-healing coating Mix polyurethane material and modified graphene material with a mass ratio of 1000:1, stir at 20°C for 6 hours to obtain a self-healing coating with imitation pearl layer structure, and finally make all The composite coating was cured at 30°C for 48 hours to obtain a biomimetic environmentally adaptable self-healing coating.
  • a method for preparing a biomimetic environmentally adaptable self-healing coating including the following steps:
  • Graphene modification Add adipic acid dihydrazide, a non-covalent hydrogen bond-containing modifier with a mass ratio of 2000:1, into 10 mg/mL EDC/NHS chemically activated graphene oxide dispersion. Stir for 6 hours at 40°C, where the mass ratio of EDC:NHS:graphene oxide is 20:20:1;
  • a method for preparing a biomimetic environmentally adaptable self-healing coating including the following steps:
  • Graphene modification Mix the non-covalent hydrogen bond-containing modifier adipic acid dihydrazide and the covalent disulfide bond-containing modifier 4,4′-diaminodihydrazide in a mass ratio of 500:1. Phenyl disulfide was added to 5 mg/mL EDC/NHS chemically activated graphene oxide dispersion, and stirred at 30°C for 18 hours. The mass ratio of EDC: NHS: graphene oxide was 10: 10: 1. The molar ratio of acid dihydrazide and 4,4′-diaminodiphenyl disulfide is 1:1;
  • a method for preparing a biomimetic environmentally adaptable self-healing coating including the following steps:
  • Graphene modification Add adipic acid dihydrazide, a non-covalent hydrogen bond-containing modifier with a mass ratio of 500:1, into 2 mg/mL EDC/NHS chemically activated graphene oxide dispersion. Stir for 20 hours at 28°C, where the mass ratio of EDC:NHS:graphene oxide is 1:3:1;
  • a method for preparing a biomimetic environmentally adaptable self-healing coating including the following steps:
  • Graphene modification Add the covalent disulfide bond-containing modifier 4,4′-diaminodiphenyl disulfide with a mass ratio of 200:1 into 0.2 mg/mL EDC/NHS chemical activation. In the graphene oxide dispersion, stir for 36 hours at 20°C, where the mass ratio of EDC:NHS:graphene oxide is 10:20:1;
  • a method for preparing a biomimetic environmentally adaptable self-healing coating including the following steps:
  • Graphene modification Use the non-covalent hydrogen bond-containing modifier adipic acid dihydrazide and the covalent disulfide bond-containing modifier 4,4′-diaminodiphenyl at a mass ratio of 300:1. Disulfide was jointly added to 4 mg/mL EDC/NHS chemically activated graphene oxide dispersion, and stirred at 25°C for 24 hours. The mass ratio of EDC: NHS: graphene oxide was 20: 10: 1, and adipic acid The molar ratio of dihydrazide and 4,4′-diaminodiphenyl disulfide is 2:1;
  • a method for preparing a biomimetic environmentally adaptable self-healing coating including the following steps:
  • Graphene modification Combine the non-covalent hydrogen bond-containing modifier adipic acid dihydrazide and the covalent disulfide bond-containing modifier 4,4′-diaminodiphenyl at a mass ratio of 1500:1 Disulfide was jointly added to 8 mg/mL EDC/NHS chemically activated graphene oxide dispersion, and stirred at 35°C for 12 hours.
  • the molar ratio of dihydrazide and 4,4′-diaminodiphenyl disulfide is 1:2;
  • step 2 is replaced with:
  • step 3 is replaced with:
  • a method for preparing a coating including the following steps:
  • the polyurethane material is used to prepare and form a coating.
  • a method for preparing a coating including the following steps:
  • the polyurethane material is used to prepare and form a coating.
  • the repair efficiency in the table is the ratio of the ultimate tensile strength of the sample after repair to the initial ultimate tensile strength.
  • Comparative Example 1 The repair conditions of Comparative Example 1 above are different from those of Example 1. It requires heating to repair, and there is almost no repair effect at room temperature. Comparative Example 2 had poor mechanical properties.
  • Example 1 Compared with Example 1, the difference between this comparative example and Example 1 lies in the unmodified graphene oxide used in step 1.
  • the ultimate tensile strength of the finally obtained coating was 66.4 ⁇ 2.1MPa, the elongation at break was 1180.3 ⁇ 11.8%, the toughness was 322.4 ⁇ 3.7MJ m -3 , and the Young's modulus was 60.4 ⁇ 2.3MPa. After 2 hours at room temperature The repair efficiency is 12.4 ⁇ 0.4%.
  • this application prepares a biomimetic environmentally adaptable self-healing coating by synergistically combining at least two types of non-covalent hydrogen bonds, covalent disulfide bonds, and graphene interface bonds.
  • modified graphene can be distributed in polyurethane in a parallel arrangement due to the existence of abundant interaction bonds at the interface.
  • the biomimetic environmentally adaptable self-healing coating has high ultimate tensile strength due to the presence of parallel-aligned graphene, and at the same time, has excellent mechanical properties due to the presence of abundant non-covalent bonds or covalent bonds.
  • the biomimetic environment-adaptive self-healing coating By virtue of the breaking, reorganization, and metathesis of internal dynamic bonds while consuming energy, the biomimetic environment-adaptive self-healing coating also exhibits rapid environmentally adaptable mechanical property self-healing capabilities; specifically, the biomimetic environment-adaptive self-healing coating
  • the ultimate tensile strength is adjustable from 5 to 90MPa, and the elongation is adjustable from 900 to 1400%; and after being cut into two sections and exposed to room temperature for 2 to 36 hours, the ultimate tensile strength can recover 80% to 92%, which is a successful solution
  • the contradiction between high mechanical properties and rapid room temperature self-healing ability in self-healing materials is solved.

Abstract

本申请公开了一种仿生环境适应性自修复涂层及其制备方法与应用。所述制备方法包括:使包含异氰酸酯、多元醇的第一混合反应体系进行缩聚反应,获得预聚物;使包含含非共价氢键的材料和/或含共价双硫键的材料、预聚物的第二混合反应体系进行反应,获得聚氨酯材料;将聚氨酯材料与改性石墨烯材料混合,使改性石墨烯材料以平行排列的方式分布在聚氨酯材料中,获得仿珍珠层结构复合涂层,之后进行固化,获得仿生环境适应性自修复涂层。本申请制备的仿生环境适应性自修复涂层具有高的极限抗拉强度以及优异的机械性能;同时,由于动态氢键、柔性双硫键和界面氢键的协同作用,表现出超强的机械性能和杰出的室温甚至盐水环境下的自修复行为。

Description

一种仿生环境适应性自修复涂层及其制备方法与应用
本申请基于并要求于2022年8月15日递交的申请号为202210983932.7、发明名称为“一种仿生环境适应性自修复涂层及其制备方法与应用”的中国专利申请的优先权。
技术领域
本申请涉及一种自修复涂层,尤其涉及一种仿生环境适应性自修复涂层及其制备方法与应用,属于自修复涂层技术领域。
背景技术
自修复聚氨酯因其可逆的非共价、共价相互作用而具有固有的可再加工性和自修复性而广泛应用于功能涂层、可穿戴柔性电子设备、软机器人、电子皮肤和人造肌肉等领域。然而,这些可修复弹性体中的大多数都需要外部能量实现愈合。目前,合成坚韧的自愈材料最有效的策略是使用非共价相互作用作为牺牲和可逆的交联键。不幸的是,这些自主自愈材料通常表现出较弱的机械强度(≤10MPa)。因此,如何解决非共价自愈材料中高机械性能与自愈能力之间的矛盾仍然是巨大的挑战。
近年来,研究人员建议在自主自修复弹性体中引入多重动态键,以平衡上述制备具有优异综合性能的自修复复合材料的问题。然而,对于大多数自愈弹性体而言,其较低的机械强度仍不能满足结构材料的要求。众所周知,自然界中的许多生物大分子都表现出基于非共价自组装的矛盾力学性能的奇妙组合。例如,由氢键阵列形成的蜘蛛丝独特的两相结构均匀嵌入无定形有机生物基质中,使其成为自然界中最强的材料之一。致密氢键的动态断裂和重组可以耗散大量能量,使材料具有很强的韧性。天然珍珠层的“砖-泥”结构由96wt%的无机文石和4wt%的生物有机聚合物组成,具有优异的断裂韧性。但是上述复合材料很难获得优异的拉伸性能。故如何开发集高机械强度、优异拉伸性能、快速环境适应性自修复能力于一体的功能自修复涂层具有重要意义。
发明内容
本申请的主要目的在于提供一种仿生环境适应性自修复涂层及其制备方法,以克服现有技术的不足。
本申请的另一目的在于提供所述仿生环境适应性自修复涂层的应用。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种仿生环境适应性自修复涂层的制备方法,其包括:
使包含异氰酸酯、多元醇的第一混合反应体系进行缩聚反应,获得预聚物;
使包含含非共价氢键的材料和/或含共价双硫键的材料、预聚物的第二混合反应体系进行反应,获得聚氨酯材料;
将聚氨酯材料与改性石墨烯材料混合,使改性石墨烯材料以平行排列的方式分布在聚氨酯材料中,获得仿珍珠层结构复合涂层;
使所述仿珍珠层结构复合涂层固化,获得所述仿生环境适应性自修复涂层。
本申请实施例还提供了一种仿生环境适应性自修复涂层,其包括改性石墨烯材料和聚氨酯材料,所述改性石墨烯材料以平行排列的方式分布在聚氨酯材料中,所述仿生环境适应性自修复涂层至少通过非共价氢键、共价双硫键、石墨烯界面作用键中的两种连接形成。
进一步地,所述石墨烯界面作用键包括界面非共价氢键、界面共价双硫键中的至少任意一种。
本申请实施例还提供了前述的仿生环境适应性自修复涂层于金属防腐领域或柔性机器人制备领域中的应用。
与现有技术相比,本申请的有益效果在于:
1)本申请提供的仿生环境适应性自修复涂层中,改性石墨烯由于界面丰富作用键的存在能以平行排列的方式分布在聚氨酯中,从而具有高的极限抗拉强度,由于丰富非共价键或共价键的存在而具有优异的机械性能;
2)本申请制备的仿生环境适应性自修复涂层由于动态氢键、柔性双硫键和界面氢键的协同作用,表现出超强的机械性能和杰出的室温甚至盐水环境下的自修复行为。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1、对比例1、对比例2所制备的聚氨酯材料合成路线图;
图2是本申请实施例1中所述仿生环境适应性自修复涂层包含平行排列石墨烯的断面扫描图;
图3是本申请对比例1所制备的仿生环境适应性自修复涂层的应力应变曲线图;
图4是本申请实施例1所制备的仿生环境适应性自修复涂层在切成两段后于室温下接触24h后的表面扫描图;
图5是本申请对比例1所制备的仿生环境适应性自修复涂层在切成两段后于室温下接触24h后的应力应变曲线图;
图6是本申请实施例1所制备的仿生环境适应性自修复涂层在近红外灯下爬行行为过程示意图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案,旨在提供一种受天然蜘蛛丝和珍珠层启发的仿生环境适应性自修复涂层及其制备方法,主要包括改性石墨烯材料制备、自修复聚氨酯材料制备、仿生环境适应性自修复涂层制备等步骤。
氧化石墨烯(GO)纳米片因其丰富的表面含氧官能团和优异的机械强度而受到青睐。在此,本案发明人受天然蜘蛛丝和珍珠层的启发,将柔性二硫键和动态六重氢键协同引入聚氨酯中,同时,将改性的石墨烯纳米材料掺入上述聚氨酯基质中,在它们之间的界面处引入高密度作用键,设计了一种具有超强机械性能和超高拉伸性的室温自修复聚氨酯涂层。所得到的具有反人造珍珠层结构的超分子复合材料由于改性石墨烯的存在使得复合材料的强度和韧性大大提升。此外,聚氨酯主链中多个酰基氨基脲、脲和氨基甲酸酯基序连接到柔韧的脂环族六原子间隔基上,赋予了复合材料优异的拉伸性能和韧性,而聚氨酯中的芳香族二硫键主要有助于室温自愈合性能。
如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例的一个方面提供的一种受天然蜘蛛丝和珍珠层启发的仿生环境适应性自修复涂层包括改性石墨烯材料和聚氨酯材料,至少通过非共价氢键、共价双硫键、石墨烯界面作用键中的两种连接形成,其中改性石墨烯材料和聚氨酯材料之间的界面处由于丰富作用键的存在而平行排列在聚氨酯材料中。
在一些实施方案中,所述仿生环境适应性自修复涂层通过多种作用键连接形成,其中多种作用键至少包括非共价氢键、共价双硫键、石墨烯界面作用键中的两种,所述石墨烯界面作用键至少包括界面非共价氢键、界面共价双硫键中的至少任意一种。
在一些实施方案中,所述非共价氢键通过在聚氨酯材料中引入含有动态六重氢键的己二酸二酰肼制得。
在一些实施方案中,所述共价双硫键通过在聚氨酯材料中引入含有柔性双硫键的4,4′-二 氨基二苯二硫醚制得。
在一些实施方案中,所述改性石墨烯材料包括通过含有动态六重氢键的己二酸二酰肼、含有柔性双硫键的4,4′-二氨基二苯二硫醚中的至少一种改性氧化石墨烯制得。
在一些实施例中,所述仿生环境适应性自修复涂层由于内部动态作用键的断裂、重组、复分解的同时消耗能量而具有快速的环境适应性机械性能自修复能力。
本申请实施例的另一个方面提供的一种仿生环境适应性自修复涂层的制备方法包括:
使包含异氰酸酯、多元醇的第一混合反应体系进行缩聚反应,获得预聚物;
使包含含非共价氢键的材料和/或含共价双硫键的材料、预聚物的第二混合反应体系进行反应,获得聚氨酯材料;
将聚氨酯材料与改性石墨烯材料混合,使改性石墨烯材料以平行排列的方式分布在聚氨酯材料中,获得仿珍珠层结构复合涂层;
使所述仿珍珠层结构复合涂层固化,获得仿生环境适应性自修复涂层。
在一些实施方案中,所述制备方法包括:采用缩聚反应将异氰酸酯加入多元醇中获得预聚物;然后将所述非共价氢键、共价双硫键中的一种或两种组合引入上述预聚物中获得聚氨酯材料,最后加入改性石墨烯材料,且由于界面丰富作用键的存在,改性石墨烯以平行排列的方式分布在聚氨酯材料中,获得仿珍珠层结构复合涂层。
在一些更为具体的实施方案中,所述制备方法包括:在氮气氛围下,将多元醇加入有机溶剂中,于80~130℃下搅拌20~60min以去除体系中的水蒸气,之后加入异氰酸酯于40~90℃下搅拌1~6h,经缩聚反应获得预聚物。
进一步地,所述多元醇与异氰酸酯的摩尔比为2∶1~1∶4。
进一步地,所述多元醇与有机溶剂的质量比为1∶1~1∶10。
进一步地,所述有机溶剂可以包括N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、乙酸丁酯等中的任意一种或两种以上的组合,但不限于此。
进一步地,所述异氰酸酯包括异佛尔酮二异氰酸酯(IPDI)、六亚甲基二异氰酸酯(HDI)、4,4′-二环己基甲烷二异氰酸酯(HMDI)等中的至少任意一种或两种以上的组合,但不限于此。
进一步地,所述多元醇包括聚四氢呋喃(PTMEG,Mn=250~3000g/mol)、聚丙二醇(PPG,Mn=400~3000g/mol)等中的任意一种或两种的组合,但不限于此。
在一些更为具体的实施方案中,所述制备方法包括:向所述预聚物中加入己二酸二酰肼、4,4′-二氨基二苯二硫醚中的任意一种或两种的组合于20~60℃下搅拌1~24h,获得聚氨酯材料。
进一步地,所述己二酸二酰肼、4,4′-二氨基二苯二硫醚中的任意一种或两种的组合与多 元醇的摩尔比为1∶3~3∶1。
在一些实施方案中,所述制备方法包括:将含作用键的改性剂加入经EDC/NHS(1-(3-二甲基氨基丙基)-3-乙基碳二亚胺/N-羟基丁二酰亚胺)化学法活化的氧化石墨烯分散液中,并于10~40℃搅拌6h以上,获得改性石墨烯材料。
进一步地,所述含作用键的改性剂包括己二酸二酰肼、4,4′-二氨基二苯二硫醚等中的任意一种或两种的组合,但不限于此。
进一步地,所述含作用键的改性剂与氧化石墨烯分散液中的氧化石墨烯的质量比为100∶1~2000∶1。
进一步地,所述经EDC/NHS化学法活化的氧化石墨烯分散液中EDC、NHS与氧化石墨烯的质量比为1∶1∶1~20∶20∶1。
进一步地,所述氧化石墨烯分散液为浓度为0.1~10mg/mL的氧化石墨烯/水分散液。
进一步地,所述氧化石墨烯的直径为0.5~20μm,厚度为0.4~4nm。
在一些实施方案中,所述制备方法包括:将改性石墨烯材料加入聚氨酯材料中混合,由于聚氨酯/石墨烯界面处丰富作用键的存在,改性石墨烯以平行排列的方式分布在聚氨酯中,获得仿珍珠层结构自修复涂层;
使所述复合涂层固化,获得所述仿生环境适应性自修复涂层。
进一步地,所述混合的温度为20~60℃,搅拌时间为1~6h。
在一些实施方案中,所述制备方法包括:将聚氨酯材料和改性石墨烯材料混合,于20~60℃下搅拌1~6h,获得仿珍珠层结构复合涂层,最后使所述仿珍珠层结构复合涂层固化,获得仿生环境适应性自修复涂层。
进一步地,所述聚氨酯材料与改性石墨烯材料的质量比为10∶1~1000∶1。
进一步地,所述固化的温度为30~90℃,时间为12~48h。
在一些实施方案中,所述制备方法包括:将含有动态六重氢键的己二酸二酰肼、含有柔性双硫键的4,4′-二氨基二苯二硫醚引入聚氨酯主链中,最后再加入至少包括非共价氢键、共价双硫键中一种的改性石墨烯材料。
在一些更具体的实施方案中,所述制备方法包括:
采用缩聚反应将异氰酸酯加入多元醇中获得预聚物;然后将所述非共价氢键、共价双硫键中的一种或两种组合引入上述预聚物中获得聚氨酯材料,最后加入改性石墨烯材料,且由于界面丰富作用键的存在,改性石墨烯以平行排列的方式分布在聚氨酯中,获得仿珍珠层结构复合涂层。
在一些更为典型的具体实施案例之中,本申请的仿生环境适应性自修复涂层的制备方法 包括如下步骤:
1)石墨烯改性:将质量比为100∶1~2000∶1的含作用键的改性剂加入EDC/NHS化学法活化的氧化石墨烯分散液中,并于10~40℃搅拌6h以上;
2)自修复聚氨酯材料制备:采用缩聚反应在氮气氛围下将多元醇加入有机溶剂中于80~130℃下搅拌20~60min以去除体系中的水蒸气,然后加入异氰酸酯于40~90℃下搅拌1~6h获得预聚物;往所述预聚物中加入己二酸二酰肼、4,4′-二氨基二苯二硫醚中的一种或两种组合于20~60℃下搅拌1~24h获得聚氨酯材料。
3)仿生环境适应性自修复涂层制备:将质量比为10∶1~1000∶1的聚氨酯材料和改性石墨烯材料混合,于20~60℃下搅拌1~6h获得仿珍珠层结构自修复涂层,最后将使所述复合涂层固化获得仿生环境适应性自修复涂层;其中,固化温度为30~90℃,时间为12~48h。
本申请实施例的另一个方面还提供了由前述制备方法制得的仿生环境适应性自修复涂层,改性石墨烯材料和聚氨酯材料之间的界面处由于丰富作用键(界面氢作用键)的存在而平行排列在聚氨酯材料中。
在一些实施方案中,所述仿生环境适应性自修复涂层由于平行排列石墨烯的存在而具有高的极限抗拉强度,该极限抗拉强度5~90MPa可调,伸长率为900~1400%可调。
进一步地,本申请提供的仿生环境适应性自修复涂层由于丰富非共价键或共价键的存在而具有优异的机械性能。
在一些优选实施例中,所述仿生环境适应性自修复涂层由于内部动态作用键的断裂、重组、复分解的同时消耗能量而具有快速的环境适应性机械性能自修复能力。其中,所述环境包含低温环境、室温环境、高温环境、盐水环境等环境中的至少任意一种或两种以上的组合。
进一步地,所述仿生环境适应性自修复涂层在切成两段后于室温下接触2~36h后其极限抗拉强度能恢复80%~92%。
综上所述,本申请所制备的仿生环境适应性自修复涂层由于动态氢键、柔性双硫键和界面氢键的协同作用,表现出超强的机械性能和杰出的室温甚至盐水环境下的自修复行为。
本申请实施例的另一个方面还提供了所述的仿生环境适应性自修复涂层于金属防腐领域、柔性机器人制备等领域中的应用。
综上所述,本申请通过协同结合非共价氢键、共价双硫键、石墨烯界面作用键至少两种制备仿生环境适应性自修复涂层。其中,改性石墨烯由于界面丰富作用键的存在能以平行排列的方式分布在聚氨酯中。仿生环境适应性自修复涂层由于平行排列石墨烯的存在而具有高的极限抗拉强度,同时,由于丰富非共价键或共价键的存在而具有优异的机械性能。借助内部动态作用键的断裂、重组、复分解的同时消耗能量,仿生环境适应性自修复涂层还表现出 快速的环境适应性机械性能自修复能力;具体地,仿生环境适应性自修复涂层的极限抗拉强度5~90MPa可调,伸长率900~1400%可调;且在切成两段后于室温下接触2~36h后其极限抗拉强度能恢复80%~92%,成功解决了自修复材料中高机械性能和快速室温自修复能力之间的矛盾。
下面通过具体实施例及附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
一种仿生环境适应性自修复涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量比为1000∶1的含非共价氢键的改性剂己二酸二酰肼加入1mg/mL的EDC/NHS化学法活化的氧化石墨烯分散液中,于25℃搅拌24h,其中EDC∶NHS∶氧化石墨烯的质量比为5∶15∶1;
2.自修复聚氨酯材料制备:采用缩聚反应在氮气氛围下将20g PTMEG-2000(10mM)加入150mL N,N-二甲基乙酰胺中于110℃下搅拌30min以去除体系中的水蒸气,然后加入5.26g HMDI(20mM)于80℃下搅拌3h获得预聚物;往所述预聚物中加入1.31g己二酸二酰肼(7.5mM)和0.62g 4,4′-二氨基二苯二硫醚(2.5mM)于40℃下搅拌12h获得聚氨酯材料,其中mM=10 -3mol;
3.仿生环境适应性自修复涂层制备:将质量比为200∶1的聚氨酯材料和改性石墨烯材料混合,于40℃下搅拌3h获得仿珍珠层结构自修复涂层,最后将使所述复合涂层在80℃下固化24h,获得仿生环境适应性自修复涂层。
图1是本实施例中所述聚氨酯材料的合成路线,所述仿生环境适应性自修复涂层的断面扫描图如图2所示。显然,改性石墨烯材料平行排列在聚氨酯中,这有利于提升复合材料的极限抗拉强度,同时,由于聚氨酯/石墨烯界面处丰富的动态六重氢键的存在而具有优异的机械性能。本实施例中复合材料的应力应变曲线如图3所示,其极限抗拉强度和伸长率分别高达78.3Mpa和1273.2%,展现出优异的机械性能。此外,由于本实施例聚氨酯材料中动态六重氢键、柔性双硫键、以及聚氨酯/石墨烯界面处丰富氢键的断裂、重组、复分解的同时消耗能量而具有快速的室温机械性能自修复能力,其在切成两段后于室温下接触24h后极限抗拉强度能恢复88.6%。其自愈合后的表面扫描图和应力应变曲线图分别如图4和5所示。此外,本实施例中所述仿生环境适应性自修复涂层在低温下和3.5wt%盐水中也能实现自主愈合,表现出优异的环境自适应性修复能力。借助本实施例中所述仿生环境适应性自修复涂层和改性 石墨烯材料热膨胀系数的差异,本案发明人组装了爬行机器人,其能在近红外灯的驱动下表现出爬行行为,其光学过程如图6所示。因此,本实施例所制备的仿生环境适应性自修复涂层在金属防腐领域、柔性机器人等领域具有广阔的应用前景。
实施例2
一种仿生环境适应性自修复涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量比为100∶1的含共价双硫键的改性剂4,4′-二氨基二苯二硫醚加入0.1mg/mL的EDC/NHS化学法活化的氧化石墨烯分散液中,于10℃搅拌48h,其中EDC∶NHS∶氧化石墨烯的质量比为1∶1∶1;
2.自修复聚氨酯材料制备:采用缩聚反应在氮气氛围下将40.0g PPG-400(100mM)加入25mL乙酸丁酯中于80℃下搅拌60min以去除体系中的水蒸气,然后加入11.1g IPDI(50mM)于40℃下搅拌6h获得预聚物;往所述预聚物中加入8.27g 4,4′-二氨基二苯二硫醚(33mM)于20℃下搅拌24h获得聚氨酯材料,其中mM=10 -3mol;
3.仿生环境适应性自修复涂层制备:将质量比为1000∶1的聚氨酯材料和改性石墨烯材料混合,于20℃下搅拌6h获得仿珍珠层结构自修复涂层,最后将使所述复合涂层在30℃下固化48h,获得仿生环境适应性自修复涂层。
实施例3
一种仿生环境适应性自修复涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量比为2000∶1的含非共价氢键的改性剂己二酸二酰肼加入10mg/mL的EDC/NHS化学法活化的氧化石墨烯分散液中,于40℃搅拌6h,其中EDC∶NHS∶氧化石墨烯的质量比为20∶20∶1;
2.自修复聚氨酯材料制备:采用缩聚反应在氮气氛围下将25g PTMEG-250(100mM)加入200mL N,N-二甲基甲酰胺中于130℃下搅拌20min以去除体系中的水蒸气,然后加入67.28g HDI(400mM)于90℃下搅拌1h获得预聚物;往所述预聚物中加入52.41g己二酸二酰肼(300mM)于60℃下搅拌1h获得聚氨酯材料,其中mM=10 -3mol;
3.仿生环境适应性自修复涂层制备:将质量比为10∶1的聚氨酯材料和改性石墨烯材料混合,于60℃下搅拌1h获得仿珍珠层结构自修复涂层,最后将使所述复合涂层在90℃下固化12h,获得仿生环境适应性自修复涂层。
实施例4
一种仿生环境适应性自修复涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量比为500∶1的含非共价氢键的改性剂己二酸二酰肼和含共价双硫键的改性剂4,4′-二氨基二苯二硫醚共同加入5mg/mL的EDC/NHS化学法活化的氧化石墨 烯分散液中,于30℃搅拌18h,其中EDC∶NHS∶氧化石墨烯的质量比为10∶10∶1,己二酸二酰肼和4,4′-二氨基二苯二硫醚的摩尔比为1∶1;
2.自修复聚氨酯材料制备:采用缩聚反应在氮气氛围下将20.0g PPG-2000(10mM)加入50mL N,N-二甲基乙酰胺中于100℃下搅拌40min以去除体系中的水蒸气,然后加入1.68g HDI(10mM)于70℃下搅拌4h获得预聚物;往所述预聚物中加入0.87g己二酸二酰肼(5mM)和1.24g 4,4′-二氨基二苯二硫醚(5mM)于50℃下搅拌16h获得聚氨酯材料,其中mM=10 -3mol;
3.仿生环境适应性自修复涂层制备:将质量比为50∶1的聚氨酯材料和改性石墨烯材料混合,于50℃下搅拌2h获得仿珍珠层结构自修复涂层,最后将使所述复合涂层在70℃下固化40h,获得仿生环境适应性自修复涂层。
实施例5
一种仿生环境适应性自修复涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量比为500∶1的含非共价氢键的改性剂己二酸二酰肼加入2mg/mL的EDC/NHS化学法活化的氧化石墨烯分散液中,于28℃搅拌20h,其中EDC∶NHS∶氧化石墨烯的质量比为1∶3∶1;
2.自修复聚氨酯材料制备:采用缩聚反应在氮气氛围下将30g PTMEG-3000(10mM)加入120mL N,N-二甲基甲酰胺中于90℃下搅拌40min以去除体系中的水蒸气,然后加入5.26g HMDI(20mM)于50℃下搅拌5h获得预聚物;往所述预聚物中加入0.44g己二酸二酰肼(2.5mM)和1.86g 4,4′-二氨基二苯二硫醚(7.5mM)于50℃下搅拌4h获得聚氨酯材料,其中mM=10 -3mol;
3.仿生环境适应性自修复涂层制备:将质量比为500∶1的聚氨酯材料和改性石墨烯材料混合,于50℃下搅拌2h获得仿珍珠层结构自修复涂层,最后将使所述复合涂层在50℃下固化42h,获得仿生环境适应性自修复涂层。
实施例6
一种仿生环境适应性自修复涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量比为200∶1的含共价双硫键的改性剂4,4′-二氨基二苯二硫醚加入0.2mg/mL的EDC/NHS化学法活化的氧化石墨烯分散液中,于20℃搅拌36h,其中EDC∶NHS∶氧化石墨烯的质量比为10∶20∶1;
2.自修复聚氨酯材料制备:采用缩聚反应在氮气氛围下将10g PTMEG-1000(10mM)加入120mL乙酸乙酯中于90℃下搅拌40min以去除体系中的水蒸气,然后加入7.89g HMDI(30mM)于60℃下搅拌4.5h获得预聚物;往所述预聚物中加入2.64g己二酸二酰肼(15mM) 和1.24g 4,4′-二氨基二苯二硫醚(5mM)于30℃下搅拌18h获得聚氨酯材料,其中mM=10 -3mol;
3.仿生环境适应性自修复涂层制备:将质量比为100∶1的聚氨酯材料和改性石墨烯材料混合,于30℃下搅拌4h获得仿珍珠层结构自修复涂层,最后将使所述复合涂层在40℃下固化45h,获得仿生环境适应性自修复涂层。
实施例7
一种仿生环境适应性自修复涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量比为300∶1的含非共价氢键的改性剂己二酸二酰肼和共价双硫键的改性剂4,4′-二氨基二苯二硫醚共同加入4mg/mL的EDC/NHS化学法活化的氧化石墨烯分散液中,于25℃搅拌24h,其中EDC∶NHS∶氧化石墨烯的质量比为20∶10∶1,己二酸二酰肼和4,4′-二氨基二苯二硫醚的摩尔比为2∶1;
2.自修复聚氨酯材料制备:采用缩聚反应在氮气氛围下将42g PTMEG-1400(30mM)加入100mL N,N-二甲基乙酰胺中于120℃下搅拌25min以去除体系中的水蒸气,然后加入3.36g HDI(20mM)于70℃下搅拌4h获得预聚物;往所述预聚物中加入2.64g己二酸二酰肼(15mM)于40℃下搅拌12h获得聚氨酯材料,其中mM=10 -3mol;
3.仿生环境适应性自修复涂层制备:将质量比为400∶1的聚氨酯材料和改性石墨烯材料混合,于40℃下搅拌3h获得仿珍珠层结构自修复涂层,最后将使所述复合涂层在60℃下固化44h,获得仿生环境适应性自修复涂层。
实施例8
一种仿生环境适应性自修复涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量比为1500∶1的含非共价氢键的改性剂己二酸二酰肼和共价双硫键的改性剂4,4′-二氨基二苯二硫醚共同加入8mg/mL的EDC/NHS化学法活化的氧化石墨烯分散液中,于35℃搅拌12h,其中EDC∶NHS∶氧化石墨烯的质量比为15∶5∶1,己二酸二酰肼和4,4′-二氨基二苯二硫醚的摩尔比为1∶2;
2.自修复聚氨酯材料制备:采用缩聚反应在氮气氛围下将30g PPG-3000(10mM)加入120mL N,N-二甲基甲酰胺中于100℃下搅拌40min以去除体系中的水蒸气,然后加入4.44g IPDI(20mM)于80℃下搅拌3h获得预聚物;往所述预聚物中加入2.48g 4,4′-二氨基二苯二硫醚(10mM)于50℃下搅拌4h获得聚氨酯材料,其中mM=10 -3mol;
3.仿生环境适应性自修复涂层制备:将质量比为800∶1的聚氨酯材料和改性石墨烯材料混合,于25℃下搅拌5h获得仿珍珠层结构自修复涂层,最后将使所述复合涂层在80℃下固化24h,获得仿生环境适应性自修复涂层。
实施例9
本实施例与实施例2相比基本一致,区别在于步骤2替换为:
采用缩聚反应在氮气氛围下将20.0g PPG-400(200mM)加入25mL乙酸丁酯中于80℃下搅拌60min以去除体系中的水蒸气,然后加入22.2g IPDI(100mM)于40℃下搅拌6h获得预聚物;往所述预聚物中加入24.8g 4,4′-二氨基二苯二硫醚(100mM)于20℃下搅拌24h获得聚氨酯材料,其中mM=10 -3mol。
实施例10
本实施例与实施例2相比基本一致,区别在于步骤3替换为:
采用缩聚反应在氮气氛围下将25g PTMEG-250(100mM)加入200mL N,N-二甲基甲酰胺中于130℃下搅拌20min以去除体系中的水蒸气,然后加入16.82g HDI(100mM)于90℃下搅拌1h获得预聚物;往所述预聚物中加入17.47g己二酸二酰肼(100mM)于60℃下搅拌1h获得聚氨酯材料,其中mM=10 -3mol。
对比例1
一种涂层的制备方法,包括如下步骤:
采用缩聚反应在氮气氛围下将10g PTMEG-2000(5mM)加入20mL N,N-二甲基乙酰胺中于110℃下搅拌30min以去除体系中的水蒸气,然后加入2.63g HMDI(10mM)于80℃下搅拌3h获得预聚物;往所述预聚物中加入0.87g己二酸二酰肼(5mM)于40℃下搅拌12h获得聚氨酯材料,其中mM=10 -3mol。
采用该聚氨酯材料制备形成涂层。
对比例2
一种涂层的制备方法,包括如下步骤:
采用缩聚反应在氮气氛围下将20g PTMEG-2000(10mM)加入20mL N,N-二甲基乙酰胺中于110℃下搅拌30min以去除体系中的水蒸气,然后加入5.26g HMDI(20mM)于80℃下搅拌3h获得预聚物;往所述预聚物中加入2.48g4,4′-二氨基二苯二硫醚(10mM)于40℃下搅拌3h获得聚氨酯材料,其中mM=10 -3mol。
采用该聚氨酯材料制备形成涂层。
以上实施例1制备的仿生环境适应性自修复涂层、对比例1、对比例2所制备的涂层的机械性能和自修复行为如下:
Figure PCTCN2022118366-appb-000001
Figure PCTCN2022118366-appb-000002
注:表中修复效率为样品修复后极限拉伸强度和初始极限拉伸强度的比值大小。
以上对比例1修复条件与实施例1不同,需要加热才能修复,室温下几乎无修复效果。对比例2的机械性能差。
对比例3
本对比例与实施例1相比,不同之处在于:步骤1采用的未改性的氧化石墨烯。
最终所获涂层的极限拉伸强度为66.4±2.1MPa,断裂伸长率为1180.3±11.8%,韧性为322.4±3.7MJ m -3,杨氏模量为60.4±2.3MPa,室温2h后的修复效率为12.4±0.4%。
综上所述,本申请通过协同结合非共价氢键、共价双硫键、石墨烯界面作用键至少两种制备仿生环境适应性自修复涂层。其中,改性石墨烯由于界面丰富作用键的存在能以平行排列的方式分布在聚氨酯中。仿生环境适应性自修复涂层由于平行排列石墨烯的存在而具有高的极限抗拉强度,同时,由于丰富非共价键或共价键的存在而具有优异的机械性能。借助内部动态作用键的断裂、重组、复分解的同时消耗能量,仿生环境适应性自修复涂层还表现出快速的环境适应性机械性能自修复能力;具体地,仿生环境适应性自修复涂层的极限抗拉强度5~90MPa可调,伸长率900~1400%可调;且在切成两段后于室温下接触2~36h后其极限抗拉强度能恢复80%~92%,成功解决了自修复材料中高机械性能和快速室温自修复能力之间的矛盾。
本申请的各方面、实施例、特征及实例应视为在所有方面为说明性的且不打算限制本申请,本申请的范围仅由权利要求书界定。在不背离所主张的本申请的精神及范围的情况下,所属领域的技术人员将明了其它实施例、修改及使用。
此外,本案发明人还参照前述实施例,以本说明书述及的其它原料、工艺操作、工艺条件进行了试验,并均获得了较为理想的结果。
尽管已参考说明性实施例描述了本申请,但所属领域的技术人员将理解,在不背离本申请的精神及范围的情况下可做出各种其它改变、省略及/或添加且可用实质等效物替代所述实 施例的元件。另外,可在不背离本申请的范围的情况下做出许多修改以使特定情形或材料适应本申请的教示。因此,本文并不打算将本申请限制于用于执行本申请的所揭示特定实施例,而是打算使本申请将包含归属于所附权利要求书的范围内的所有实施例。此外,除非具体陈述,否则术语第一、第二等的任何使用不表示任何次序或重要性,而是使用术语第一、第二等来区分一个元素与另一元素。

Claims (15)

  1. 一种仿生环境适应性自修复涂层的制备方法,其特征在于,包括:
    使包含异氰酸酯、多元醇的第一混合反应体系进行缩聚反应,获得预聚物;
    使包含含非共价氢键的材料和/或含共价双硫键的材料、预聚物的第二混合反应体系进行反应,获得聚氨酯材料;
    将聚氨酯材料与改性石墨烯材料混合,使改性石墨烯材料以平行排列的方式分布在聚氨酯材料中,获得仿珍珠层结构复合涂层;
    使所述仿珍珠层结构复合涂层固化,获得仿生环境适应性自修复涂层。
  2. 根据权利要求1所述的制备方法,其特征在于,包括:在氮气氛围下,将多元醇加入有机溶剂中,于80~130℃下搅拌20~60min,之后加入异氰酸酯于40~90℃下搅拌1~6h,经缩聚反应获得预聚物。
  3. 根据权利要求2所述的制备方法,其特征在于:所述多元醇与异氰酸酯的摩尔比为2∶1~1∶4;和/或,所述多元醇与有机溶剂的质量比为1∶1~1∶10;和/或,所述有机溶剂包括N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、乙酸丁酯中的任意一种或两种以上的组合;
    和/或,所述异氰酸酯包括异佛尔酮二异氰酸酯、六亚甲基二异氰酸酯、4,4′-二环己基甲烷二异氰酸酯中的至少任意一种或两种以上的组合;
    和/或,所述多元醇包括聚四氢呋喃、聚丙二醇中的任意一种或两种的组合。
  4. 根据权利要求1所述的制备方法,其特征在于,包括:向所述预聚物中加入己二酸二酰肼、4,4′-二氨基二苯二硫醚中的任意一种或两种的组合于20~60℃下搅拌1~24h,获得聚氨酯材料。
  5. 根据权利要求4所述的制备方法,其特征在于:所述己二酸二酰肼、4,4′-二氨基二苯二硫醚中的任意一种或两种的组合与多元醇的摩尔比为1∶3~3∶1。
  6. 根据权利要求1所述的制备方法,其特征在于,包括:将含作用键的改性剂加入经EDC/NHS化学法活化的氧化石墨烯分散液中,并于10~40℃搅拌6h以上,获得改性石墨烯材料;其中,所述含作用键的改性剂包括己二酸二酰肼、4,4′-二氨基二苯二硫醚中的任意一种或两种的组合。
  7. 根据权利要求6所述的制备方法,其特征在于:所述含作用键的改性剂与氧化石墨烯分散液中的氧化石墨烯的质量比为100∶1~2000∶1;
    和/或,所述经EDC/NHS化学法活化的氧化石墨烯分散液中EDC、NHS与氧化石墨烯的质量比为1∶1∶1~20∶20∶1;
    和/或,所述氧化石墨烯分散液为浓度为0.1~10mg/mL的氧化石墨烯/水分散液。
  8. 根据权利要求7所述的制备方法,其特征在于:所述氧化石墨烯的直径为0.5~20μm,厚度为0.4~4nm。
  9. 根据权利要求1所述的制备方法,其特征在于,包括:将聚氨酯材料和改性石墨烯材料混合,于20~60℃下搅拌1~6h,获得仿珍珠层结构复合涂层,最后使所述仿珍珠层结构复合涂层固化,获得仿生环境适应性自修复涂层。
  10. 根据权利要求1所述的制备方法,其特征在于:所述聚氨酯材料与改性石墨烯材料的质量比为10∶1~1000∶1。
  11. 根据权利要求1所述的制备方法,其特征在于:所述固化的温度为30~90℃,时间为12~48h。
  12. 由权利要求1-11中任一项所述制备方法制得的仿生环境适应性自修复涂层,所述仿生环境适应性自修复涂层包括改性石墨烯材料和聚氨酯材料,所述改性石墨烯材料以平行排列的方式分布在聚氨酯材料中,所述仿生环境适应性自修复涂层至少通过非共价氢键、共价双硫键、石墨烯界面作用键中的两种连接形成。
  13. 根据权利要求12所述的仿生环境适应性自修复涂层,其特征在于:所述石墨烯界面作用键包括界面非共价氢键、界面共价双硫键中的至少任意一种。
  14. 根据权利要求12所述的仿生环境适应性自修复涂层,其特征在于:所述非共价氢键通过在聚氨酯材料中引入含有动态六重氢键的己二酸二酰肼制得;
    和/或,所述共价双硫键通过在聚氨酯材料中引入含有柔性双硫键的4,4′-二氨基二苯二硫醚制得;
    和/或,所述改性石墨烯材料包括通过含有动态六重氢键的己二酸二酰肼、含有柔性双硫键的4,4′-二氨基二苯二硫醚中的至少一种改性氧化石墨烯制得;
    和/或,所述仿生环境适应性自修复涂层的极限抗拉强度5~90MPa,伸长率为900~1400%;
    和/或,所述仿生环境适应性自修复涂层具有环境适应性机械性能自修复能力,其中,所述环境包含低温环境、室温环境、高温环境、盐水环境中的至少任意一种;所述机械性能自修复能力为2~36h后其极限抗拉强度恢复80%~92%。
  15. 权利要求12-14中任一项所述的仿生环境适应性自修复涂层于金属防腐或柔性机器人制备领域中的应用。
PCT/CN2022/118366 2022-08-15 2022-09-13 一种仿生环境适应性自修复涂层及其制备方法与应用 WO2024036677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210983932.7A CN115216219B (zh) 2022-08-15 2022-08-15 一种仿生环境适应性自修复涂层及其制备方法与应用
CN202210983932.7 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024036677A1 true WO2024036677A1 (zh) 2024-02-22

Family

ID=83615214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118366 WO2024036677A1 (zh) 2022-08-15 2022-09-13 一种仿生环境适应性自修复涂层及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115216219B (zh)
WO (1) WO2024036677A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746689A (zh) * 2022-11-11 2023-03-07 吉林大学 一种仿生自修复、防污、防腐多功能涂层及其制备方法
CN117050266A (zh) * 2023-07-27 2023-11-14 广东海洋大学 一种有机硅弹性体基底材料制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106674996A (zh) * 2017-01-04 2017-05-17 华南理工大学 一种自修复氧化石墨烯/聚氨酯复合材料及其制备方法
CN110591542A (zh) * 2019-08-28 2019-12-20 山东大学 用于隐形车衣的含二硫键与氢键双重自修复聚氨酯涂层及其制备方法
CN111423602A (zh) * 2020-05-27 2020-07-17 青岛科技大学 一种基于氢键和动态双硫键的自修复聚氨酯及其制备方法与应用
WO2021179069A1 (en) * 2020-03-10 2021-09-16 National Research Council Of Canada Polyurethane compositions and elastomers therefrom
CN114685756A (zh) * 2022-05-06 2022-07-01 西北工业大学 一种高性能自修复聚脲及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180062243A (ko) * 2016-11-30 2018-06-08 삼성전자주식회사 페이스트 재료와 이로부터 형성된 배선 부재 및 배선 부재를 포함하는 전자소자
WO2020142578A1 (en) * 2019-01-02 2020-07-09 Board Of Trustees Of Michigan State University Self-healing, self-cleaning omniphobic composition, related articles and related methods
US11529648B2 (en) * 2019-01-31 2022-12-20 Board Of Trustees Of Michigan State University Self-healing laminate composition, related articles and related methods
CN110511344B (zh) * 2019-07-25 2020-09-22 华南理工大学 基于多重动态可逆作用的自修复聚氨酯弹性体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106674996A (zh) * 2017-01-04 2017-05-17 华南理工大学 一种自修复氧化石墨烯/聚氨酯复合材料及其制备方法
CN110591542A (zh) * 2019-08-28 2019-12-20 山东大学 用于隐形车衣的含二硫键与氢键双重自修复聚氨酯涂层及其制备方法
WO2021179069A1 (en) * 2020-03-10 2021-09-16 National Research Council Of Canada Polyurethane compositions and elastomers therefrom
CN111423602A (zh) * 2020-05-27 2020-07-17 青岛科技大学 一种基于氢键和动态双硫键的自修复聚氨酯及其制备方法与应用
CN114685756A (zh) * 2022-05-06 2022-07-01 西北工业大学 一种高性能自修复聚脲及其制备方法

Also Published As

Publication number Publication date
CN115216219A (zh) 2022-10-21
CN115216219B (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2024036677A1 (zh) 一种仿生环境适应性自修复涂层及其制备方法与应用
Ling et al. Self-healing and shape memory linear polyurethane based on disulfide linkages with excellent mechanical property
CN110790888B (zh) 基于多重动态可逆作用的高强度室温自修复聚氨酯弹性体及其制备与应用
Lin et al. A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels
CN107082862A (zh) 自修复有机硅改性聚氨酯弹性体及其制备方法
CN109836596B (zh) 强氢键作用高强度与高粘附的支链淀粉复合水凝胶的制备方法
CN114685756B (zh) 一种高性能自修复聚脲及其制备方法
CN109337043B (zh) 一种无溶剂型自修复聚氨酯及其制备方法
WO2022041614A1 (zh) 一种微孔可修复tpu薄膜材料及其制备方法
US8846801B1 (en) Self-healing polycarbonate containing polyurethane nanotube composite
CN112724358B (zh) 一种基于改性石墨烯的水性阻燃自修复聚氨酯的制备方法
CN104312411A (zh) 一种耐水高硬水性聚氨酯涂料
CN103275481A (zh) 一种自修复型形状记忆聚氨酯复合材料及其制备方法
CN115353609B (zh) 一种可修复增强的高性能聚氨酯弹性体及制备方法
CN101698695B (zh) 耐热性环氧树脂改性的热塑性聚氨酯弹性体的合成方法
CN114940740A (zh) 一种基于多重可逆作用的高性能透明室温自修复聚氨酯弹性体及制备方法
CN109880050B (zh) 一种石墨烯类物质改性的弹性体材料及其制备方法
CN115232465A (zh) 一种可在海水中实现自修复的强韧自修复材料的制备方法
CN109322008B (zh) 一种提高氨纶产品性能稳定性的方法
WO2024087413A1 (zh) 利用刚柔超分子片段协同增韧热塑性聚(氨酯-脲)的方法及其应用
CN112898611A (zh) 一种高强度、光响应自修复纳米复合聚氨酯薄膜的制备方法
CN110372825B (zh) 一种聚丙烯酰基甘氨酰胺-聚氨酯自修复弹性体
CN111187507A (zh) 一种石墨烯基杂化阻燃剂/自修复聚氨酯阻燃复合材料的制备方法
CN106977880B (zh) 一种苝酐非共价修饰石墨烯的制备方法及其应用
CN114907541A (zh) 一种自修复聚氨酯材料、双层自修复聚氨酯薄膜及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955453

Country of ref document: EP

Kind code of ref document: A1