WO2024036590A1 - 电池单体、电池及用电装置 - Google Patents

电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024036590A1
WO2024036590A1 PCT/CN2022/113514 CN2022113514W WO2024036590A1 WO 2024036590 A1 WO2024036590 A1 WO 2024036590A1 CN 2022113514 W CN2022113514 W CN 2022113514W WO 2024036590 A1 WO2024036590 A1 WO 2024036590A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
tab
battery cell
detection
conductive
Prior art date
Application number
PCT/CN2022/113514
Other languages
English (en)
French (fr)
Inventor
薛龙飞
曹俊琪
赵俊强
周仓
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/113514 priority Critical patent/WO2024036590A1/zh
Publication of WO2024036590A1 publication Critical patent/WO2024036590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery cell, a battery and an electrical device.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • Batteries are the power source of electric vehicles. Electric vehicles need to know the temperature inside the battery's electrode assembly to estimate the battery's state of charge, life, power and other parameters.
  • a temperature detector is usually provided inside the electrode assembly, and the temperature detector is used to measure the temperature of the electrode assembly. In this way, the manufacturing process of the electrode assembly is complicated.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of the present application is to propose a battery cell, a battery and an electrical device to solve the problem of complicated manufacturing processes of electrode assemblies.
  • the embodiment of the first aspect of the present application provides a battery cell, including: a casing, an electrode assembly and a detection assembly.
  • the casing has a sealed cavity, the electrode assembly is disposed in the sealed cavity, and the electrode assembly includes a first pole with opposite polarity.
  • the first pole piece is provided with a first pole piece and a second pole piece.
  • the detection component is connected in series between the first pole tab and the second pole tab to form a detection loop.
  • the detection component is used for detection.
  • the total voltage and total current of the circuit are detected to obtain the resistance value of the conductive area formed between the first pole tab and the second pole tab of the first pole piece, and the detection temperature is obtained according to the resistance-temperature relationship.
  • the first pole piece of the battery cell is provided with a first pole and a second pole.
  • the first pole and the second pole are connected in series with the detection component to form a detection loop.
  • the voltage and current detected by the component can obtain the resistance value of the conductive area between the first pole piece and the second pole piece on the first pole piece.
  • the characteristic of the resistivity changing with temperature can be used to indirectly obtain the resistance value of the first pole piece.
  • the battery cell uses a non-contact temperature measurement method to measure the temperature. Compared with the method of setting a temperature detector inside the electrode assembly to measure the temperature, the electrode assembly of the battery cell does not need to add additional processes when manufacturing. Connecting a temperature detector will help avoid the increase and complexity of the manufacturing process of the electrode assembly.
  • the detection component includes: a power supply, a first detection unit, a second detection unit and a calculation unit.
  • the power supply is used to provide power for the detection loop.
  • the first detection unit is used to measure the current of the detection loop.
  • the second detection unit is used to measure the current of the detection loop.
  • the detection unit is used to detect the voltage of the conductive area, and the calculation unit is used to calculate the resistance value of the conductive area based on the current of the detection loop and the voltage of the conductive area, and obtain the detection temperature based on the resistance-temperature relationship.
  • the detection component is disposed outside the sealed cavity, that is, the detection component is not disposed inside the electrode assembly, which is beneficial to avoid increasing the manufacturing process of the electrode assembly and to avoid being damaged by the detection component when the electrode assembly is wound, and The detection component does not occupy the sealed cavity.
  • the housing is provided with a first pole and a second pole with opposite polarities, and both the first pole and the second pole are insulated from the shell; the first pole is insulated from the shell and has the same polarity.
  • the first pole is electrically connected
  • the second pole is electrically connected to the shell
  • the shell is electrically connected to the first pole through a first wire
  • a detection component is connected in series on the first wire.
  • the battery cell connects the second tab and the first tab through the casing to realize the series connection of the first tab and the second tab without the need to provide an additional adapter to connect the second tab and the third tab.
  • One pole lug to prevent the battery from having a complicated structure due to the increase in components.
  • the housing is provided with a first pole and a second pole with opposite polarities; the first tab is electrically connected to the first pole with the same polarity, and the housing is provided with a first opening.
  • the battery cell also includes a first insulating ring, the first insulating ring is installed in the first opening, the second tab extends into the first insulating ring and is sealingly connected with the first insulating ring, and the second tab passes through the first insulating ring.
  • the two wires are electrically connected to the first pole, and the second wire is connected in series with a detection component.
  • the second pole can be directly connected to the first pole connected to the first pole through the second wire, without using an intermediate medium to connect the second pole and the first pole. In this way, as much as possible Avoid the influence of intermediate media on the internal resistance of the detection loop.
  • the housing is provided with a first pole and a second pole with opposite polarities; the first pole is electrically connected to the first pole with the same polarity, and the housing is also provided with a conductive pole, At least part of the conductive posts are located outside the sealed cavity, and the conductive posts are insulated from the shell; the second pole is electrically connected to the conductive posts, and the conductive posts are electrically connected to the first poles through a third wire, and a detection device is connected in series to the third wire. components. In this way, the second tab can be electrically connected to the first tab through the conductive post.
  • the housing is provided with a second opening, a second insulating ring is disposed in the second opening, and the conductive post passes through the second insulating ring.
  • the conductive post is also insulated from the casing.
  • the second tab is electrically connected to the conductive post through a connecting cable; or the second tab is adhesively connected to the conductive post through conductive glue; or the second tab is welded to the conductive post.
  • the first pole piece is provided with a plurality of first poles and a plurality of second poles, and a detection component is connected in series between each second pole and the first pole.
  • the battery cell has multiple detection circuits, which can detect the temperature of different conductive areas on the first pole piece, so that the temperature of each conductive area of the first pole piece can be measured, which in turn helps improve the efficiency of temperature measurement of the electrode assembly. accuracy.
  • the battery cell further includes a control component; wherein the detection component is communicatively connected to the control component through a communication cable; or the detection component is communicatively connected to the control component through a wireless communication module.
  • the detection component transmits the detected resistance value and temperature to the control component, so that the control component can learn the temperature of the electrode assembly.
  • the battery cell also includes a conductive cable.
  • the conductive cable is connected in parallel with the detection component on the detection loop.
  • a switch is connected in series on the conductive cable.
  • the switch is electrically connected to the control component.
  • the control component can control the switch. Open and closed status.
  • the first tab is electrically connected to an external load, by controlling the opening and closing state of the switch, the first tab can be controlled to switch between the function of participating in power supply and the function of participating in detection.
  • the first pole piece includes a first current collector and a first active material layer disposed on the first current collector
  • the second pole piece includes a second current collector and a second current collector disposed on the second current collector.
  • Active material layer wherein, the portion of the first current collector between the first tab and the second tab forms a conductive region, and the conductive region is made of a thermocouple material.
  • the first pole tab and the second pole tab on the first pole piece are located on different sides of the first pole piece.
  • the relative positional relationship between the first and second poles connected in series is diverse. Therefore, according to the different positions of the first and second poles connected in series, the third pole can be detected.
  • the temperature at different positions on a pole piece further helps to improve the accuracy of temperature measurement.
  • the embodiment of the second aspect of the application provides a battery, which includes the battery cell provided by the embodiment of the first aspect of the application.
  • the third embodiment of the present application provides an electrical device, which includes the battery provided by the second embodiment of the present application, and the battery is used to provide electric energy.
  • Figure 1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • Figure 2 is a schematic diagram of the exploded structure of a battery according to some embodiments of the present application.
  • Figure 3 is an exploded schematic diagram of a battery cell provided by some embodiments of the present application.
  • Figure 4 is a schematic diagram of the first pole piece of a battery cell provided by some embodiments of the present application.
  • FIG. 5 is a circuit schematic diagram of the detection loop shown in Figure 4.
  • Figure 6 is a schematic diagram of the mapping relationship between temperature and resistivity of aluminum resistors in battery cells according to some embodiments of the present application.
  • Figure 7a is a schematic cross-sectional view of a battery cell provided by some embodiments of the present application.
  • Figure 7b is a schematic cross-sectional view of a battery cell provided by other embodiments of the present application.
  • Figure 8 is a partial structural schematic diagram of a battery cell provided by other embodiments of the present application.
  • Figure 9 is a schematic structural diagram of a conductive pillar in a battery cell provided by some embodiments of the present application.
  • Figure 10 is a schematic structural diagram of the connection between the conductive pillar and the third conductor shown in Figure 9;
  • Figure 11 is a schematic structural diagram of a battery cell according to some embodiments of the present application.
  • Figure 12 is a schematic diagram of the principle of a battery cell provided by other embodiments of the present application.
  • Figure 13 is a schematic diagram of the principle of a battery cell provided in some embodiments of the present application.
  • Figure 14 is a schematic structural diagram of a battery cell provided by some embodiments of the present application.
  • Figure 15 is a schematic diagram of communication between a battery cell and a control component provided by other embodiments of the present application.
  • Figure 16 is a schematic diagram of the principle of a battery cell provided by some embodiments of the present application.
  • Figure 17 is a schematic structural diagram of a battery cell provided by other embodiments of the present application.
  • 20-battery cell 21-casing; 210-end cover; 211-casing; 22-electrode assembly; 220-first pole piece; 2201-first current collector; 2202-first active material layer; 2203-conductive Area; 221-second pole piece; 2211-second current collector; 2212-second active material layer; 222-first conductor; 223-second conductor; 224-conductive cable; 225-switch; 226-third Wire; 227-first pole; 228-second pole; 229-third pole; 23-first pole; 24-detection component; 241-first detection unit; 242-second detection unit; 243 -Power supply; 244-detection circuit; 25-conductive column; 251-second insulating ring; 252-conducting tube; 253-insulator; 26-connecting cable; 27-communication cable; 28-wireless communication module; 29 -Second pole;
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Secondary batteries have the characteristics of high energy density, green and environmental protection and have become a new trend in energy development.
  • the temperature of the power battery will affect the performance of the battery. For example, when the battery temperature is too low, the battery capacity will decay quickly, the charge and discharge efficiency will be low, and in severe cases, lithium precipitation may even occur. When the battery temperature is too high, the battery will Problems such as expansion and electrolyte decomposition may occur, and in severe cases, it may even explode. Therefore, monitoring battery temperature has become a research hotspot.
  • batteries are usually equipped with a temperature detector on the surface, and the temperature detector is used to monitor the temperature of the battery.
  • the temperature detector cannot detect changes in the battery's internal temperature in time.
  • the temperature detector is arranged inside the electrode assembly of the battery. Specifically, the temperature detector is adhered and installed on the pole piece of the electrode assembly.
  • the electrode assembly of such a battery requires an additional process to attach a temperature detector during manufacturing, resulting in a complicated manufacturing process of the electrode assembly.
  • the temperature detector is easily damaged as the pole piece is wound, and the pole piece is easily damaged by the temperature detector.
  • the inventor found that the reason for the above problems caused by setting a temperature detector inside the electrode assembly of the battery to measure the temperature is that it uses a contact temperature measurement method, and the temperature detector needs to be in contact with the pole pieces of the electrode assembly. To achieve temperature measurement, this will affect the production and manufacturing of electrode components. Based on this, the inventor thought of using a non-contact temperature measurement method to measure the temperature of the electrode assembly.
  • the inventor finally designed a battery cell in which multiple tabs on the pole piece are connected in series with a detection component to form a detection loop, and the detection component is used to detect the detection
  • the current and voltage of the loop are used to obtain the resistance value of the area where the pole piece is located in the detection loop, and then the temperature of the pole piece is indirectly measured based on the resistance-temperature relationship to achieve the measurement of the internal temperature of the battery.
  • the batteries disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the battery disclosed in this application. In this way, the temperature inside the battery can be understood in a timely manner to estimate the state of charge, life, power and other parameters of the battery.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • the electrical device may also be an energy storage cabinet.
  • an electric device 1000 according to an embodiment of the present application is used as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded schematic diagram of the battery 100 provided in some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 , and the battery cells 20 are accommodated in the case 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving space.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the box 10 ; of course, the battery 100 can also be a plurality of battery cells 20 First, the battery modules are connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • Each battery cell 20 can be a secondary battery or a primary battery; it can also be a lithium-ion battery, a lithium metal battery, a lithium-sulfur battery, a lithium-air battery, a sodium-ion battery, a potassium-ion battery, a magnesium-ion battery, or a calcium-ion battery. Battery or aluminum ion, but not limited to this.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • Figure 3 is an exploded schematic diagram of the battery cell 20 provided by some embodiments of the present application
  • Figure 4 is a schematic diagram of the first pole piece 220 of the battery cell 20 provided by some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit that constitutes the battery 100 .
  • the battery cell 20 includes a casing 21, an electrode assembly 22 and a detection assembly 24.
  • the casing 21 has a sealed cavity, and the electrode assembly 22 is disposed in the sealed cavity.
  • the electrode assembly 22 includes a first pole piece 220 and a second pole with opposite polarities.
  • the first pole piece 220 is provided with a first pole tab 227 and a second pole tab 228.
  • the detection component 24 is connected in series between the first pole tab 227 and the second pole tab 228 to form a detection loop 244.
  • the detection component 24 is used to measure the total voltage and total current of the detection loop 244 to obtain the voltage of the first pole piece 220.
  • the resistance value of the conductive area 2203 formed between the first tab 227 and the second tab 228 is determined, and the detection temperature is obtained according to the resistance-temperature relationship.
  • the housing 21 may specifically include a housing 211 and an end cover 210.
  • the housing 211 is a hollow structure formed with an opening.
  • the end cover 210 covers the opening of the housing 211 to isolate the sealed cavity from the external environment.
  • the housing 211 is not limited to the rectangular parallelepiped shape shown in FIG. 3 , but may also be in the shape of a flat body, a cylinder, or other shapes. Without limitation, the shape of the end cap 210 may be adapted to the shape of the housing 211 to fit the housing 211 .
  • the outer casing 211 and the end cover 210 can be made of materials with a certain hardness and strength.
  • the end cover 210 is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have higher structural strength and better safety performance. Can be improved.
  • the material of the housing 211 and the end cover 210 may include one or more of aluminum, steel, and polymer materials.
  • the first pole piece 220 can be a positive pole piece
  • the second pole piece 221 can be a negative pole piece.
  • the detection component 24 is connected in series to the first pole tab 227 and the second pole tab 228 of the positive pole piece. in between to detect the temperature of the positive electrode piece; alternatively, the first pole piece 220 can be the negative electrode piece, and the second pole piece 221 can be the positive electrode piece. At this time, the detection component 24 is connected in series to the first of the negative electrode piece. between the pole tab 227 and the second pole tab 228 to detect the temperature of the negative electrode piece.
  • FIG. 5 is a schematic circuit diagram of the detection loop 244 in FIG. 4 .
  • the detection component 24 is connected in series between the first tab 227 and the second tab 228 to form a detection loop 244.
  • a current I flows along the detection loop 244.
  • the first pole piece 220 itself has a certain resistance. Therefore, when the current I flows from the first pole piece 227 to the second pole piece 228 along the first pole piece 220, it is equivalent to flowing through the resistor R.
  • the resistance R That is, it is regarded as being connected in series in the detection loop 244.
  • the resistance value of the resistor R is related to the resistivity and cross-sectional area of the area through which the current in the detection circuit 244 flows on the first pole piece 220 .
  • the area through which the current in the detection circuit 244 flows on the first pole piece 220 is called the conductive area 2203
  • the resistance value of the conductive area 2203 is the resistance value of the resistor R.
  • the resistance value of the conductive region 2203 is related to the resistivity of the conductive region 2203
  • the resistivity of the conductive region 2203 is related to the material and temperature of the conductive region 2203, and the relationship between the resistivity and temperature of different materials is known. Therefore, this embodiment utilizes the characteristic that the resistivity changes with temperature, and the temperature of the conductive region 2203 can be indirectly obtained based on the resistance value of the conductive region 2203 .
  • the resistor is an aluminum resistor
  • the resistivity of the aluminum resistor increases by 0.3875% for every 1°C increase in temperature.
  • the temperature of the aluminum resistor rises from 20°C to 100°C, the resistivity increases by 31%.
  • the relationship between the resistivity of the conductive region 2203 and the temperature may be linear or nonlinear.
  • the mapping relationship between the temperature and resistivity of the aluminum resistance is shown in Figure 6.
  • the working principle of measuring the temperature of the conductive region 2203 on the electrode assembly 22 is to: connect the battery 100 is placed in the environment of the reference temperature Tv for a long time, so that the electrode assembly 22 reaches the reference temperature Tv.
  • the corresponding reference resistivity ⁇ v of the electrode assembly 22 can be obtained from the mapping relationship shown in Figure 6, and is detected by the detection component 24
  • the current temperature Ti of the conductive area 2203 can be obtained.
  • the detection component 24 detects that the reference resistance value Rv of the conductive area 2203 is 20 ⁇ , and the corresponding reference resistivity ⁇ v can be obtained from the mapping relationship to be 1.1%.
  • the battery 100 of this embodiment can indirectly obtain the temperature of the conductive area 2203 on the pole piece by detecting the resistance of the conductive region 2203 on the pole piece according to the resistance-temperature relationship, so as to measure the internal temperature of the battery 100 .
  • the temperature of the battery 100 is measured using a non-contact temperature measurement method.
  • the method of arranging a temperature detector inside the electrode assembly 22 of the battery 100 to measure the temperature there is no need to add additional processes to attach the temperature detector when manufacturing the electrode assembly 22 , which is beneficial to avoid increasing the number of manufacturing processes of the electrode assembly 22 . complex.
  • no additional components are provided inside the electrode assembly 22 of the battery 100 to detect the temperature, even if the electrode assembly 22 has a rolled structure, the electrode assembly 22 will not be damaged during the manufacturing process.
  • the above-mentioned detection component 24 may specifically include a power supply 243, a first detection unit 241, a second detection unit 242 and a calculation unit.
  • the power supply 243 is used to provide power for the detection loop 244.
  • the first detection unit 241 is used to The current of the detection loop 244 is measured.
  • the second detection unit 242 is used to detect the voltage of the conductive area 2203.
  • the calculation unit calculates the resistance value of the conductive area 2203 based on the current of the detection loop 244 and the voltage of the conductive area 2203, and obtains it based on the resistance-temperature relationship. Check the temperature.
  • the first detection unit 241 is not limited to the ammeter shown in FIG. 5 , but may also be a shunt or a current Hall sensor. When the first detection unit 241 is an ammeter, the ammeter is connected in series to the detection circuit 244 .
  • the second detection unit 242 is not limited to the voltmeter shown in FIG. 5 , but may also be a voltage collection chip or the like. When the second detection unit 242 is a voltmeter, the voltmeter is connected in parallel to the detection circuit 244 .
  • the computing unit may be, for example, a microprocessor, or may be a digital computing operating electronic system with computing functions.
  • the digital computing operating electronic system may perform operations such as logical operations and arithmetic operations.
  • the detection method is simple.
  • the installation position of the above-mentioned detection component 24 is not limited.
  • the detection component 24 can be installed in a sealed cavity.
  • the above-mentioned detection component 24 can be arranged outside the sealed cavity.
  • Figure 7a is a schematic cross-sectional view of a battery cell 20 provided by some embodiments of the present application
  • Figure 7b is a schematic cross-sectional view of a battery cell 20 provided by other embodiments of the present application.
  • the first tab 227 and the second tab 228 need to be configured to be electrically connected to the detection component 24 outside the sealed cavity.
  • the detection component 24 By arranging the detection component 24 outside the sealed cavity, it not only ensures that the detection component 24 is not located inside the electrode assembly 22 , but also helps avoid an increase in the manufacturing process of the electrode assembly 22 and avoids the electrode assembly 22 being damaged by the detection component 24 when it is wound. , and the detection component 24 does not occupy the sealed cavity.
  • the following takes the detection component 24 installed outside the sealed cavity as an example.
  • the first tab 227 and the second tab 228 are configured to be electrically connected to the detection component 24 outside the sealed cavity, including but not limited to the following possible implementations:
  • the housing 21 is provided with a first pole 23 and a second pole 29 with opposite polarities.
  • the first pole 23 and the second pole 29 is installed on the casing 21 and located outside the sealed cavity.
  • the first pole 23 and the second pole 29 are both insulated from the casing 21 .
  • the first tab 227 can be electrically connected to the first pole 23 of the same polarity
  • the second tab 228 is electrically connected to the shell 21
  • the shell 21 is electrically connected to the first pole 23 through the first wire 222.
  • the detection component 24 is connected in series to the first wire 222 .
  • the first pole 23 and the second pole 29 can be connected to the positive and negative poles of the electrical device respectively, so as to output the electric energy of the battery 100 to the electrical device.
  • the installation positions of the first pole 23 and the second pole 29 on the housing 21 are not limited.
  • the first pole 23 and the second pole 29 can both be mounted on the end cover 210 .
  • the first pole 23 may be mounted on the end cap 210 and the second pole 29 may be mounted on the housing 211 .
  • the first tab 227 is connected to the negative pole
  • one end of the first wire 222 is connected to the housing 21 to be electrically connected to the second tab 228, and the first wire 222 The other end is connected to the negative pole.
  • the first tab 227 , the negative pole, the first wire 222 , the housing 21 , the second tab 228 and the conductive area 2203 of the first pole piece 220 together form a detection loop 244 .
  • the first pole piece 220 is a positive pole piece
  • the first pole 227 is connected to the positive pole
  • one end of the first wire 222 is connected to the housing 21 to be electrically connected to the second pole 228.
  • the other end of 222 is connected to the positive pole.
  • the first tab 227 , the positive pole, the first wire 222 , the housing 21 , the second tab 228 and the conductive area 2203 of the first pole piece 220 together form a detection loop 244 .
  • the second tab 228 can be electrically connected to the end cover 210, or as shown in Figure 7b, the second tab 228 can also be electrically connected to the housing 211.
  • the way in which the second tab 228 is electrically connected to the case 21 is not limited.
  • the second tab 228 can be connected to the case 21 by welding, or the second tab 228 can be adhered to the case 21 through conductive glue. catch.
  • the battery cell 20 uses its own component (ie, the casing 21) to connect the second tab 228 and the first tab 227 to realize the series connection of the first tab 227 and the second tab 228 without the need for
  • An additional adapter is provided to connect the second tab 228 and the first tab 227 to prevent the battery cell 20 from having a complicated structure due to an increase in components.
  • the battery 100 may also include a first pole 23 and a second pole 29 with opposite polarities, and the first tab 227 is electrically connected to the first pole 23 with the same polarity;
  • the housing 21 is provided with a first opening
  • the battery cell 20 also includes a first insulating ring, the first insulating ring is installed in the first opening, and the second tab 228 extends into the first insulating ring and is insulated from the first The ring is sealed and connected, and the second tab 228 is electrically connected to the first pole 23 through the second wire 223, and the detection component 24 is connected in series to the second wire 223.
  • the first pole 23 and the second pole 29 are respectively connected to the positive and negative poles of the electrical device to output the electric energy of the battery 100 to the electrical device.
  • the second tab 228 passes through the first insulating ring and is exposed on the outer surface of the battery cell 20 .
  • One end of the second wire 223 can be directly connected to the second tab 228 , and the other end of the second wire 223 can be directly connected to the second tab 228 .
  • One end is connected to the first pole 23 .
  • the first opening can be provided on the end cover 210 or the housing 211, and the first insulating ring can be installed on the end cover 210 or the housing 211 correspondingly.
  • the first insulating ring can block the second tab 228 from contacting the housing 21. , so that the second tab 228 is insulated from the housing 21 .
  • colloid may be filled between the second tab 228 and the inner wall of the first insulating ring.
  • the colloid may be, for example, structural glue or sealant.
  • the colloid can play a connecting role, so that the second pole tab 228 can be fixedly connected to the first insulating ring, and the second pole tab 228 can be prevented from contacting the housing 21 as much as possible.
  • the colloid can also seal the gap between the second tab 228 and the inner wall of the first insulating ring to ensure that the sealing performance of the housing 21 is not lost.
  • the second tab 228 is inserted into the first insulating ring installed in the first opening, so that the second tab 228 is led out to be exposed on the outer surface of the battery cell 20 , the second pole tab 228 can be directly connected to the first pole post 23 connected to the first pole tab 227 through the second wire 223, without using an intermediate medium to connect the second pole tab 228 and the first pole post 23. In this way, The influence of the intermediate medium on the internal resistance of the detection loop 244 is avoided as much as possible.
  • the housing 21 is provided with a first pole 23 and a second pole 29 with opposite polarities, and the first pole 227 is the same as the first pole 227 with the same polarity.
  • the pillars 23 are electrically connected, and the housing 21 is also provided with a conductive pillar 25. At least part of the conductive pillar 25 is located outside the sealed cavity, and the conductive pillar 25 is insulated from the shell 21.
  • the second pole tab 228 is electrically connected to the conductive post 25, the conductive post 25 is electrically connected to one end of the third conductor 226, the other end of the third conductor 226 is electrically connected to the first pole 23, and the third conductor 226 A detection component 24 is connected in series.
  • FIG. 8 is a partial structural schematic diagram of a battery cell 20 provided by other embodiments of the present application.
  • first pole 23 and the second pole 29 are respectively connected to the positive and negative poles of the electrical device to output the electric energy of the battery 100 to the electrical device.
  • the conductive pillar 25 can be installed on the end cover 210 or on the housing 211 .
  • the second tab 228 is electrically connected to the first tab 227 via the conductive post 25 .
  • the housing 21 may be provided with a second opening, a second insulating ring 251 is provided in the second opening, and the conductive post 25 is passed through the second insulating ring. 251.
  • the second insulating ring 251 insulates the conductive pillar 25 from the housing 21 .
  • the second opening can be opened on the end cover 210 or the housing 211, and the conductive post 25 can be installed on the end cover 210 or the housing 211 accordingly.
  • the conductive pillar 25 can be made of metal materials such as copper, iron, silver, etc., or can also be made of other conductive materials.
  • the conductive post 25 By arranging the conductive post 25 to penetrate the second insulating ring 251 installed on the housing 21 , the conductive post 25 is also insulated on the premise of ensuring that the second tab 228 can be electrically connected to the first tab 227 through the conductive post 25 on the housing 21.
  • the housing 21 may be provided with a third opening
  • the conductive pillar 25 may include an insulator 253 and a flow guide 252
  • the insulator 253 is installed on the third opening.
  • the insulator 253 is provided with a through hole
  • the guide tube 252 is inserted into the through hole.
  • the third opening can be opened on the end cover 210 or the housing 211, and the conductive post 25 can be installed on the end cover 210 or the housing 211 accordingly.
  • FIG. 9 is a schematic structural diagram of the conductive pillar 25 in the battery cell 20 provided by some embodiments of the present application
  • FIG. 10 is a schematic structural diagram of the connection between the conductive pillar 25 and the third conductor 226 shown in FIG. 9 .
  • the conductive post 25 is also insulated from the housing 21 on the premise of ensuring that the second tab 228 can be electrically connected to the first tab 227 through the conductive post 25.
  • the insulator 253 can be provided with multiple through holes, and the guide tubes 252 can also be provided with multiple guide tubes 252.
  • the multiple guide tubes 252 correspond to the multiple through holes, and the insulator 253 insulates and isolates multiple guide tubes 252 .
  • the first pole piece 220 is provided with a plurality of first pole tabs 227 and a plurality of second pole tabs 228, the plurality of second pole tabs 228 are connected to the plurality of first pole tabs 227 in a one-to-one correspondence.
  • the plurality of second tabs 228 can be connected to the plurality of guide tubes 252 in one-to-one correspondence, so that the plurality of second tabs 228 are connected to the corresponding first tabs 227 through the same conductive post 25 electrical connection to simplify the structure of the battery 100.
  • multiple conductive pillars 25 may also be provided.
  • two conductive posts 25 may be provided. If the first pole piece 220 and the second pole piece 221 are each provided with a plurality of first pole tabs 227 and a plurality of second pole tabs 228, the first pole piece 220 will have The plurality of second tabs 228 can be electrically connected to the corresponding first tabs 227 on the first pole piece 220 through a conductive post 25, and the plurality of second tabs 228 on the second pole piece 221 can be electrically connected through another conductive post. 25 is electrically connected to the corresponding first tab 227 on the second pole piece 221 . In this way, it is easy to distinguish the detection loop 244 formed by the first tab 227 and the second tab 228 on the pole pieces of different polarities, so as to facilitate subsequent maintenance.
  • the second pole tab 228 is electrically connected to the first pole post 23 connected to the first pole tab 227 through the conductive post 25 .
  • the second tab 228 can be electrically connected to the conductive post 25 through the connecting cable 26.
  • the second tab 228 may be electrically connected to the conductive post 25 through conductive glue.
  • the second tab 228 may be welded to the conductive post 25 .
  • the second tab 228 and the conductive post 25 may be welded using ultrasonic welding, laser welding, friction welding or other welding methods.
  • connection methods between the second tab 228 and the conductive post 25 are diversified, and while ensuring the connection between the second tab 228 and the conductive post 25, it can also ensure the electrical connection between the second tab 228 and the conductive post 25.
  • the casing 21 of the battery cell 20 can be provided with a first pole 23 and a second pole 29 with opposite polarities.
  • the first pole 23 and the second pole The posts 29 serve as two output poles of the battery cell 20 with opposite polarities, and the first tabs 227 can be electrically connected to the first poles 23 of the same polarity.
  • FIG. 11 is a schematic structural diagram of a battery cell 20 according to some embodiments of the present application.
  • the second pole piece 221 may also be provided with a first pole tab 227.
  • the first pole tab 227 on the first pole piece 220 is electrically connected to the first pole post 23.
  • the second pole piece 221 may also be provided with a first pole tab 227.
  • the first tab 227 on the piece 221 is electrically connected to the second pole 29 , and both the first pole 23 and the second pole 29 are electrically connected to an external load for outputting electric energy of the battery 100 .
  • the function of the first tab 227 can be regarded as providing electrical energy
  • the function of the second tab 228 can be regarded as detecting temperature.
  • FIG. 12 is a schematic diagram of the principle of a battery cell 20 provided by other embodiments of the present application.
  • a plurality of first pole pieces 227 may be provided on both the first pole piece 220 and the second pole piece 221 , and the first pole pieces 227 are configured to electrically connect to an external load; and the first pole piece 220
  • a plurality of second pole tabs 228 are provided on the top, and a detection component 24 is connected in series between each second pole tab 228 and the first pole tab 227 respectively.
  • each detection component 24 is connected in series between a second tab 228 and a first tab 227 to form a detection loop 244 .
  • the battery cell 20 has multiple detection circuits 244, and each detection circuit 244 is provided with a detection component 24. In this way, the voltage and current detected by each detection component 24 can be used to obtain the resistance value of the conductive area 2203 of the corresponding detection loop 244, and then determine the temperature of the conductive area 2203.
  • the two first pole tabs 227 of the first pole piece 220 are respectively connected in series with the two second pole tabs 228 to form two detection loops 244.
  • the resistance values obtained by the detection components 24a and 24b can obtain the temperature of the conductive area 2203a and the temperature of the conductive area 2203b.
  • the conductive area 2203a is used to connect the first tab 227 and the second tab 228 of one of the detection circuits 244, and the conductive area 2203b is used to connect the first tab 227 and the second tab 228 of the other detection circuit 244. 228.
  • each of the plurality of first tabs 227 is used to electrically connect with an external load, which can play a shunt role to reduce the flow through each first tab 227. current, thereby helping to prevent excessive current from passing through the first tab 227 and causing the first tab 227 to fuse;
  • the battery cell 20 has multiple detection circuits 244 that can detect the first pole piece 220 temperature of different conductive areas 2203 on the first pole piece 220, so that the temperature of each conductive area 2203 of the first pole piece 220 can be measured, thereby improving the accuracy of temperature measurement of the electrode assembly 22.
  • FIG. 13 is a schematic diagram of the principle of a battery cell 20 provided in some embodiments of the present application.
  • the first pole piece 220 and the second pole piece 221 may also be provided with a plurality of third pole tabs 229 , and the third pole tabs 229 on the first pole piece 220 229 is electrically connected to the first pole 23, the third pole 229 on the second pole piece 221 is electrically connected to the second pole 29, and both the first pole 23 and the second pole 29 are electrically connected to the external load.
  • the third tab 229 is connected to an external load.
  • the function of the third tab 229 is regarded as being used to output the electric energy of the battery 100.
  • the first tab 227 and the second tab 228 are connected in series.
  • the first tab 227 and the second tab 228 are both detection tabs, and the two detection tabs are connected in series to form a detection loop 244.
  • the temperature of the conductive area 2203 between the two detection tabs on the pole piece can be obtained.
  • the third tab 229 for outputting electric energy is not connected in series to the detection circuit 244 to prevent the current of the detection circuit 244 from shunting along the tab.
  • the two output poles of the battery cell 20 with opposite polarity can also be replaced by the case 21 and insulating poles mounted on the housing 21.
  • the first pole tabs on the second pole piece 221 are electrically connected to the housing 21 of the same polarity
  • the first pole tabs 227 on the first pole piece 220 are electrically connected to the pole posts of the same polarity
  • the second pole tabs 228 on the first pole pieces 220 can pass through
  • the conductive post 25 is electrically connected to the pole
  • the second tab 228 is insulated from the case 21 to prevent the second tab 228 from being electrically connected to the case 21 of opposite polarity and causing a short circuit in the battery cell 20 .
  • the third pole tab 229 on the first pole piece 220 has the same polarity.
  • the poles of the same polarity are electrically connected, and the third tab 229 on the second pole piece 221 is electrically connected to the housing 21 of the same polarity.
  • the battery cell 20 may also include a control component 30.
  • the detection component 24 is communicatively connected with the control component 30 to transmit the detected resistance value and temperature to the control component 30 so that the control component 30 can learn the temperature of the electrode assembly 22.
  • FIG. 14 is a schematic structural diagram of a battery cell 20 provided by some embodiments of the present application.
  • the detection component 24 can be communicatively connected with the control component 30 through a communication cable 27 .
  • the installation position of the conductive post 25 on the housing 21 is not limited. It should be understood that depending on the installation position of the conductive post 25 on the housing 21, the position of the detection component 24 can also be different, and the connection position of the communication cable 27 and the detection component 24 can be different accordingly.
  • the communication cable 27 and the detection component 24 can be connected in different positions.
  • the connection locations for components 24 may be on either side of housing 21 .
  • FIG. 15 is a schematic diagram of communication between the battery cell 20 and the control component 30 provided by other embodiments of the present application.
  • the detection component 24 can be communicatively connected with the control component 30 through the wireless communication module 28 .
  • the wireless communication module 28 can be mounted on the end cap 210, and the detection assembly 24 can be mounted within the sealed cavity.
  • the battery 100 of this embodiment omits the communication cable 27 to avoid the communication cable 27 from affecting the visual effect of the battery cell 20 .
  • the communication cables 27 of the multiple battery cells 20 will not be entangled with each other, so as to facilitate subsequent maintenance of the battery 100 .
  • the wireless communication module 28 may be a wireless fidelity (WIreless-Fidelity, WiFi for short) module or a Bluetooth module, or other short-range wireless communication module 28.
  • WIreless-Fidelity WiFi for short
  • Bluetooth Wireless Fidelity
  • the above-mentioned battery 100 may also include a battery management system, and the control component 30 may be integrated on the battery management system (Battery Management System, referred to as BMS).
  • BMS Battery Management System
  • the battery management system can monitor the temperature of the electrode assembly 22, and further manage the battery 100 based on the monitored temperature of the electrode assembly 22.
  • FIG. 16 is a schematic diagram of the principle of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 may further include a conductive cable 224 connected in parallel with the detection component 24 on the detection loop 244 .
  • both ends of the conductive cable 224 are connected to the detection loop 244 , and the detection component 24 is located between the two ends of the conductive cable 224 and the connection point connected to the detection loop 244 .
  • a switch 225 is provided on the conductive cable 224. The switch 225 is electrically connected to the control component 30, and the control component 30 can control the opening and closing state of the switch 225.
  • the conductive cable 224 and the switch 225 together form a connection branch, and the switch 225 and the detection component 24 are connected in parallel.
  • the control component 30 controls the switch 225 to be turned off, the connecting branch is not conductive and the detection loop 244 is conductive.
  • the resistance of the conductive area 2203 on the first pole piece 220 can be obtained according to the total voltage and total current detected by the detection component 24 value, and then the temperature of the conductive area 2203 can be measured to measure the internal temperature of the battery 100 .
  • the connecting branch is conductive, and the detection component 24 is equivalent to being short-circuited.
  • the first tab 227 can play a role in transmitting current to the external load. In this way, when the switch 225 is in the off state, the branch circuit is detected to be conductive, and the temperature of the conductive area 2203 of the second pole piece 221 can be measured at this time.
  • the connecting branch is conductive, and the first pole piece is 227 and the second pole 228 can participate in the power supply.
  • the first tab 227 is electrically connected to an external load, by controlling the opening and closing state of the switch 225, the first tab 227 can be controlled to switch between the function of participating in power supply and the function of participating in detection.
  • the first pole piece 220 includes a first current collector 2201 and a first active material layer 2202 disposed on the first current collector 2201
  • the second pole piece 221 includes a second current collector 2211 and a first active material layer 2202 disposed on the first current collector 2201 .
  • the second active material layer 2212 on the second current collector 2211.
  • the materials of the first current collector 2201 and the second current collector 2211 may be one or more of alloys such as copper, aluminum, nickel, iron, zinc, and polymer materials.
  • the first current collector 2201 can be made of aluminum, and the first active material layer 2202 can be lithium cobalt oxide. , lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the second current collector 2211 can be made of copper, and the second active material layer 2212 can be carbon or silicon.
  • first active material layer 2202 may be provided on the entire surface of the first current collector 2201 , or the first active material layer 2202 may be provided on part of the surface of the first current collector 2201 , for example, as shown in FIG. 11 .
  • second active material layer 2212 may be provided on the entire surface of the second current collector 2211, or the second active material layer 2212 may be provided on part of the surface of the second current collector 2211.
  • thermocouple materials have good temperature sensing capabilities. According to the resistance-temperature relationship of thermocouple materials, for every 1°C increase in temperature, the resistivity of the resistor made of thermocouple materials increases significantly.
  • the conductive region 2203 Compared with the conductive region 2203 made of aluminum or copper, by setting the conductive region 2203 to be made of a thermocouple material, in this way, even if the temperature of the conductive region 2203 rises slightly, the resistivity of the conductive region 2203 changes greatly, and the detection component 24 can be more sensitive.
  • the resistance value of the conductive area 2203 is easy to detect, and the temperature inside the electrode assembly 22 can be accurately measured with high temperature measurement accuracy.
  • first current collector 2201 can also be made of thermocouple material.
  • other areas on the first current collector 2201 can be made of copper, aluminum, nickel, iron, zinc, polymer materials and other materials.
  • the first current collector 2201 is made of a variety of materials. . In this way, on the premise of ensuring that the conductive region 2203 has good temperature sensing capability, the cost of the first current collector 2201 can also be reduced to a certain extent.
  • FIG. 17 is a schematic structural diagram of a battery cell 20 provided by other embodiments of the present application.
  • the electrode assembly 22 may include a plurality of first pole pieces 220 and a plurality of second pole pieces 221 .
  • the plurality of first pole pieces 220 and the plurality of second pole pieces 221 are stacked and formed into a laminate. formula structure.
  • a plurality of first pole pieces 220 and a plurality of second pole pieces 221 are stacked, and the plurality of first pole pieces 220 and the plurality of second pole pieces 221 can be formed into a rolled shape through winding. structure, the electrode assembly 22 at this time is the wound electrode assembly 22.
  • the first tab 227 and the second tab 228 located on the same first pole piece 220 in the electrode assembly 22 can be disposed on the first pole piece 220 .
  • the same side or different sides of the pole piece 220 are located on the same side of the first pole piece 220a, and the first pole tab 227 and the second pole tab 228 on the first pole piece 220b are located on the same side of the first pole piece 220a.
  • the two pole tabs 228 are located on opposite sides of the first pole piece 220b.
  • the relative positional relationship between the first pole 227 and the second pole 228 connected in series is diverse. Therefore, according to the different positions of the first pole 227 and the second pole 228 connected in series, The temperature at different positions on the first pole piece 220 can be detected, which further helps to improve the accuracy of temperature measurement.
  • the battery cell 20 includes an electrode assembly 22 and a detection assembly 24.
  • the electrode assembly 22 includes a plurality of first pole pieces 220 and a plurality of second pole pieces 221.
  • the first pole Each of the piece 220 and the second pole piece 221 may be provided with a plurality of first pole tabs 227 and a plurality of second pole tabs 228.
  • One pole 227 is respectively connected to the two output poles of the battery cell 20 with opposite polarity to electrically connect with the external load and is used to output the electric energy of the battery 100. It is located on the same first pole 220 or on the same second pole.
  • the plurality of first tabs 227 of 228 are respectively connected in series with the plurality of second tabs 228 to form a detection circuit 244.
  • the detection circuit 244 is provided with a detection component 24.
  • the detection component 24 can be used to detect the total voltage of the detection circuit 244 and The total current is used to obtain the resistance value of the conductive area 2203 between the first tab 227 and the second tab 228 on the corresponding pole piece, and the detection temperature is obtained according to the resistance-temperature relationship.
  • the battery cell 20 also includes a casing 21. There is a sealed cavity inside the casing 21.
  • the detection component 24 is located outside the sealed cavity.
  • the end cover 210 of the casing 21 is provided with a conductive pillar 25.
  • the conductive pillar 25 specifically includes an insulator 253 and a plurality of guide tubes 252.
  • the insulator 253 is installed in the third opening of the end cover 210.
  • the insulator 253 has a plurality of through holes, and the plurality of guide tubes 252 are respectively inserted into the plurality of through holes.
  • each second tab 228 on the electrode assembly 22 is connected to a flow tube 252 through conductive glue or a connecting cable 26, and each flow tube 252 is electrically connected to the first tab 227 through a third wire 226. , so that each second pole 228 is connected in series with a corresponding first pole 227 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供一种电池单体、电池及用电装置,该电池单体包括壳体、电极组件和检测组件,壳体具有密封腔,电极组件设置于密封腔内,电极组件包括极性相反的第一极片和第二极片,第一极片上设有第一极耳和第二极耳,检测组件串接在第一极耳和第二极耳之间,以形成检测回路,检测组件用于检测检测回路的总电压及总电流,以获取第一极片的第一极耳和第二极耳之间形成的导电区域的电阻值,并根据阻值温度关系获得检测温度。与在电极组件内部设置温度检测器来测量温度相比,本申请的电池单体通过非接触式测温方法来测温,电极组件制造时无需增加额外的工序来附接温度检测器,有利于避免电极组件的制作工序增多而复杂。

Description

电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,尤其涉及一种电池单体、电池及用电装置。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
电池作为电动车辆的动力源,电动车辆需要了解电池的电极组件内部的温度,以对电池的荷电状态、寿命和功率等参数进行预估。相关技术中,通常在电极组件内部设置温度检测器,利用温度检测器来测量电极组件的温度。这样,电极组件的制作工序复杂。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种电池单体、电池及用电装置,以解决电极组件的制作工序复杂的问题。
本申请第一方面的实施例提供一种电池单体,包括:壳体、电极组件和检测组件,壳体具有密封腔,电极组件设置于密封腔内,电极组件包括极性相反的第一极片和第二极片,第一极片上设有第一极耳和第二极耳,检测组件串接在第一极耳和第二极耳之间,以形成检测回路,检测组件用于检测检测回路的总电压及总电流,以获取第一极片的第一极耳和第二极耳之间形成的导电区域的电阻值,并根据阻值温度关系获得检测温度。
本申请实施例的技术方案中,该电池单体的第一极片上设有第一极耳和第二极耳,第一极耳、第二极耳与检测组件串接形成检测回路,根据检测组件检测到的电压和电流能够获取第一极片上位于第一极耳和第二极耳之间的导电区域的电阻值,利用电阻率随温度变化的特性可以间接地获取到第一极片的温度,以实现对电池内部温度的测量。该电池单体是利用非接触式测温方法来测温,与在电极组件的内部设置温度检测器来测量温度的方式相比,该电池单体的电极组件制造时无需增加额外的工序来附接温度检测器,有利于避免电极组件的制作工序增多而复杂。
在一些实施例中,检测组件包括:供电电源、第一检测单元、第二检测单元和计算单元,供电电源用于为检测回路提供电能,第一检测单元用于测量检测回路的电流,第二检测单元用于检测导电区域的电压,计算单元用于根据检测回路的电流和导电区域的电压计算导电区域的电阻值,并根据阻值温度关系获得检测温度。通过测量检测回路的电流和导电区域的电压,利用电阻、电压与电流的关系来确定导电区域的电阻值,检测方式简单。
在一些实施例中,检测组件设置在密封腔外,也即检测组件不设置于电极组件内部,进而有利于避免电极组件的制造工序增加以及有利于避免电极组件卷绕时被检测组件破坏,且检测组件不占用密封腔。
在一些实施例中,壳体上设置有极性相反的第一极柱和第二极柱,且第一极柱和第二极柱均与壳体绝缘;第一极耳与极性相同的第一极柱电连接,第二极耳与壳体电连接,壳体通过第一导线与第一极柱电连接,第一导线上串接有检测组件。这样,电池单体借助壳体来连接第二极耳与第一极耳,以实现第一极耳与第二极耳的串联,而无需设置额外的转接件来连接第二极耳与第一极耳,以免电池因部件增多而导致结构复杂。
在一些实施例中,壳体上设置有极性相反的第一极柱和第二极柱;第一极耳与极性相同的第一极柱电连接,壳体上设有第一开孔,电池单体还包括第一绝缘环,第一绝缘环安装在第一开孔内,第二极耳伸入至第一绝缘环内并与第一绝缘环密封连接,第二极耳通过第二导线与第一极柱电连接,第二导线上串接有检测组件。
本实施例中,第二极耳可以通过第二导线直接连接于和第一极耳相连的第一极柱,无需利用中间媒介来连接第二极耳与第一极柱,这样,尽可能地避免中间媒介对检测回路的内阻的影响。
在一些实施例中,壳体上设置有极性相反的第一极柱和第二极柱;第一极耳与极性相同的第一极柱电连接,壳体上还设置有导电柱,至少部分导电柱位于密封腔外,导电柱与壳体绝缘;其中,第二极耳与导电柱电连接,导电柱通过第三导线与第一极柱电连接,第三导线上串接有检测组件。如此,第二极耳通过导电柱可以与第一极耳电连接。
在一些实施例中,壳体上设有第二开孔,第二开孔内设置有第二绝缘环,导电柱穿设于第二绝缘环。在确保第二极耳通过导电柱能够与第一极耳电连接的前提下,导电柱还绝缘于壳体。
在一些实施例中,第二极耳通过连接线缆与导电柱电连接;或者,第二极耳通过导电胶与导电柱粘接连接;或者,第二极耳与导电柱焊接连接。如此设计,第二极耳与导电 柱的连接方式多样化,且在确保第二极耳与导电柱连接的同时,还能确保第二极耳与导电柱电连接。
在一些实施例中,第一极片上设有多个第一极耳和多个第二极耳,各第二极耳与第一极耳之间分别串接有检测组件。这样,电池单体具有多个检测回路,可以检测出第一极片上不同导电区域的温度,以利于使第一极片各个导电区域的温度均能够被测量,进而有利于提高电极组件温度测量的准确性。
在一些实施例中,电池单体还包括控制组件;其中,检测组件通过通讯线缆与控制组件通信连接;或者,检测组件通过无线通信模块与控制组件通信连接。这样,检测组件将检测到的电阻值、温度传递给控制组件,以便于控制组件获知电极组件的温度。
在一些实施例中,电池单体还包括导电线缆,导电线缆与检测回路上的检测组件并联连接,导电线缆上串接有开关,开关与控制组件电连接,控制组件能够控制开关的开闭状态。在第一极耳电连接至外部负载的实施方案中,通过控制开关的开闭状态,可以控制第一极耳在参与供电的功能和参与检测的功能之间切换。
在一些实施例中,第一极片包括第一集流体和设置在第一集流体上的第一活性物质层,第二极片包括第二集流体和设置在第二集流体上的第二活性物质层;其中,第一集流体上位于第一极耳和第二极耳之间的部分形成导电区域,导电区域的材质为热电偶材质。这样,即使导电区域的温度小幅上升,导电区域的电阻率变化大,检测组件能够更易于检测出导电区域的电阻值,进而可以准确地测量出电极组件内部的温度,测温精度高。
在一些实施例中,第一极片上的第一极耳与第二极耳位于第一极片的不同侧。通过这样设置,串接相连的第一极耳和第二极耳的相对位置关系是多样的,因此,根据串接相连的第一极耳和第二极耳的位置的不同,可以检测出第一极片上不同位置的温度,进一步有利于提高温度测量的准确性。
本申请第二方面的实施例提供一种电池,其包括本申请第一方面的实施例提供的电池单体。
本申请第三方面的实施例提供一种用电装置,其包括本申请第二方面的实施例提供的电池,电池用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。
图1为本申请一些实施例的车辆的结构示意图;
图2为本申请一些实施例的电池的分解结构示意图;
图3为本申请一些实施例提供的电池单体的分解示意图;
图4为本申请一些实施例提供的电池单体的第一极片示意图;
图5为图4示出的检测回路的电路原理图;
图6为本申请一些实施例的电池单体中铝电阻的温度与电阻率的映射关系的示意图;
图7a为本申请一些实施例提供的电池单体的剖面示意图;
图7b为本申请另一些实施例提供的电池单体的剖面示意图;
图8为本申请另一些实施例提供的电池单体的部分结构示意图;
图9为本申请一些实施例提供的电池单体中导电柱的结构示意图;
图10为图9所示的导电柱与第三导线连接的结构示意图;
图11为本申请一些实施例的电池单体的结构原理图;
图12为本申请另一些实施例提供的电池单体的原理示意图;
图13为本申请再一些实施例提供的电池单体的原理示意图;
图14为本申请一些实施例提供的电池单体的结构示意图;
图15为本申请另一些实施例提供的电池单体与控制组件通信的示意图;
图16为本申请又一些实施例提供的电池单体的原理示意图;
图17为本申请另一些实施例提供的电池单体的结构原理图。
附图标记说明:
1000-车辆;
100-电池;
10-箱体;11-第一部分;12-第二部分;
20-电池单体;21-壳体;210-端盖;211-外壳;22-电极组件;220-第一极片;2201-第一集流体;2202-第一活性物质层;2203-导电区域;221-第二极片;2211-第二集流体; 2212-第二活性物质层;222-第一导线;223-第二导线;224-导电线缆;225-开关;226-第三导线;227-第一极耳;228-第二极耳;229-第三极耳;23-第一极柱;24-检测组件;241-第一检测单元;242-第二检测单元;243-供电电源;244-检测回路;25-导电柱;251-第二绝缘环;252-导流管;253-绝缘体;26-连接线缆;27-通讯线缆;28-无线通信模块;29-第二极柱;
30-控制组件;
200-控制器;
300-马达。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
二次电池具有高能量密度、绿色环保等特点成为能源发展新趋势。动力电池的温度会影响电池的性能,例如,当电池的温度过低时,电池的容量衰减快、充放电效率低,严重时甚至会出现析锂现象,当电池的温度过高时,电池会出现膨胀、电解液分解等问题,严重时甚至会爆炸。因此,监控电池的温度成为研究的热点。
目前,电池通常在表面上设置有温度检测器,利用温度检测器来监测电池的温度。但是,温度检测器无法及时察觉电池内部温度的变化。
为了解决这一问题,相关技术的一些示例中,将温度检测器设置在电池的电极组件的内部,具体是将温度检测器黏附安装在电极组件的极片上。但是,这种电池的电极组件在制造时需要额外的工序来附接温度检测器,导致电极组件的制作工序复杂。并且,当电极组件为卷绕式结构时,采用卷绕工艺来制备电极组件时,温度检测器随极片卷绕而容易损坏,且极片容易被温度检测器破坏。
经过仔细研究,本发明人发现在电池的电极组件的内部设置温度检测器来测量温度造成上述问题的原因在于:其采用的是接触式测温方法,温度检测器需要与电极组件的极片接触来实现测温,这样会影响电极组件的生产制造。基于此,本发明人想到利用非接触式测温方法来测量电极组件的温度。在这一技术构思的启发下,最终,发明人设计了一种电池单体,该电池单体通过将极片上的多个极耳与检测组件串接以形成检测回路,利用检测组件检测该检测回路的电流和电压以获取极片位于检测回路的区域的电阻值,进而根据阻值温度关系间接地测出极片的温度,实现对电池内部温度的测量。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池等组成该用电装置的电源系统,这样,能够及时地了解电池内部的温度,以对电池的荷电状态、寿命和功率等参数进行预估。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。在一些实施例中,用电装置还可以为储能柜。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的分解示意图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电 池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂离子电池、锂金属电池、锂硫电池、锂空电池、钠离子电池、钾离子电池、镁离子电池、钙离子电池或者铝离子,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图3和图4,图3为本申请一些实施例提供的电池单体20的分解示意图,图4为本申请一些实施例提供的电池单体20的第一极片220的示意图。电池单体20是指组成电池100的最小单元。电池单体20包括壳体21、电极组件22和检测组件24,壳体21具有密封腔,电极组件22设置于密封腔内,电极组件22包括极性相反的第一极片220和第二极片221,第一极片220上设有第一极耳227和第二极耳228。
检测组件24串接在第一极耳227和第二极耳228之间,以形成检测回路244,检测组件24用于测量检测回路244的总电压及总电流,以获取第一极片220的第一极耳227和第二极耳228之间形成的导电区域2203的电阻值,并根据阻值温度关系获得检测温度。
壳体21具体可以包括外壳211和端盖210,外壳211是形成有开口的空心结构,端盖210盖合于外壳211的开口以将密封腔隔绝于外部环境。外壳211不限于呈图3所示的长方体状,也可以呈扁平体状、圆柱体状或其它形状等。不限地,端盖210的形状可以与外壳211的形状相适应以配合外壳211。外壳211和端盖210可以由具有一定硬度和强度的材质制成,这样,端盖210在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。举例来说,外壳211和端盖210的材料可以包括铝、钢、高分子材料中的一种或者多种。
示例性地,第一极片220可以为正极极片,第二极片221则为负极极片,此时的检测组件24串接于正极极片的第一极耳227和第二极耳228之间,以检测正极极片的温度;或者,第一极片220可以为负极极片,第二极片221则为正极极片,此时的检测组件24串接于负极极片的第一极耳227和第二极耳228之间,以检测负极极片的温度。
请参照图5,图5为图4中检测回路244的电路原理图。检测组件24串接于第一极耳227和第二极耳228之间,以形成检测回路244,检测回路244导通时,存在电流I沿检测回路244流动。可以理解的是,第一极片220自身具有一定的电阻,因此,电流I从第一极耳227沿第一极片220流到第二极耳228时,相当于流经电阻R,电阻R即视 为串接在检测回路244中。其中,电阻R的电阻值与检测回路244中的电流在第一极片220上所流经区域的电阻率、截面积有关。为了便于描述,将检测回路244中的电流在第一极片220上所流经区域称为导电区域2203,则导电区域2203的电阻值即为电阻R的电阻值。其中,根据检测组件24检测到检测回路244的总电压和总电流,结合公式R=U÷I可以获取导电区域2203的电阻值。
应理解,导电区域2203的电阻值与导电区域2203的电阻率有关,而导电区域2203的电阻率与导电区域2203的材料以及温度有关,且不同材料的电阻率与温度的关系已知。因此,本实施例利用电阻率随温度变化的特性,依据导电区域2203的电阻值可以间接地获取导电区域2203的温度。例如,电阻为铝电阻时,温度每升高1℃,铝电阻的电阻率增加0.3875%,铝电阻由20℃升温至100℃时电阻率增加31%。
根据导电区域2203的材料的不同,导电区域2203的电阻率与温度的关系可以是线性的,也可以是非线性的。以导电区域2203的材料为铝为例进行说明,铝电阻的温度与电阻率的映射关系如图6所示,本实施例中测量电极组件22上导电区域2203的温度的工作原理在于:将电池100长时间放置在参考温度Tv的环境下,使得电极组件22达到参考温度Tv,从图6所示的映射关系可以获取到电极组件22对应的参考电阻率ρ v,并且利用检测组件24检测到的检测回路244的总电流和总电压可以获取得到导电区域2203在参考温度Tv时对应的参考阻值Rv;根据检测组件24检测到的导电区域2203的当前阻值Ri、参考电阻率ρ v和参考阻值Rv,通过公式Rv/Ri=ρ vi,可以计算出导电区域2203的当前电阻率ρ i;根据导电区域2203的当前电阻率ρ i,从图6所示的映射关系中可以获取导电区域2203的当前温度Ti。
设定参考温度Tv为25℃时检测组件24检测得到导电区域2203的参考阻值Rv为20Ω,且从映射关系可以获取到对应的参考电阻率ρ v为1.1%。电池100工作过程中,当检测组件24检测到导电区域2203的当前阻值Ri为30Ω时,通过公式Rv/Ri=ρ vi,可以计算出导电区域2203的当前电阻率ρ i为1.32%,从映射关系可以获取到导电区域2203的当前温度Ti为45℃。
综上,本实施例的电池100通过检测极片上导电区域2203的阻值,根据阻值温度关系可以间接地获取到极片上导电区域2203的温度,以实现对电池100内部温度的测量。可见,该电池100是利用非接触式测温方法来测温。与在电池100的电极组件22的内部设置温度检测器来测量温度的方式相比,电极组件22制造时无需增加额外的工序来附接温度检测器,有利于避免电极组件22的制作工序增多而复杂。并且,由于该电池100 的电极组件22内部没有设置额外的部件来检测温度,因此,即使电极组件22为卷绕式结构,电极组件22制造过程中也不会被破坏。
请参照图5,上述检测组件24具体可以包括供电电源243、第一检测单元241、第二检测单元242和计算单元,供电电源243用于为检测回路244提供电能,第一检测单元241用于测量检测回路244的电流,第二检测单元242用于检测导电区域2203的电压,计算单元根据检测回路244的电流和导电区域2203的电压计算导电区域2203的电阻值,并根据阻值温度关系获得检测温度。
其中,第一检测单元241不限于为图5所示的电流表,也可以为分流器或者电流霍尔传感器。当第一检测单元241为电流表时,电流表串联在检测回路244上。其中,第二检测单元242不限于为图5所示的电压表,也可以为电压采集芯片等。当第二检测单元242为电压表时,电压表并联在检测回路244上。计算单元根据检测回路244的电流和导电区域2203的电压,通过公式R=U÷I可以计算出导电区域2203的电阻值,再根据阻值温度关系获得检测温度。
示例性地,计算单元例如可以为微处理器,也可以为具有运算功能的数字运算操作电子系统,数字运算操作电子系统可执行逻辑运算和算术运算等操作。
这样设置,通过测量检测回路244的电流和导电区域2203的电压,利用电阻、电压与电流的关系来确定导电区域2203的电阻值,检测方式简单。
上述检测组件24的安装位置是非限制性地,例如,检测组件24可以安装在密封腔内。或者,请参照图7a和图7b所示,上述检测组件24可以设置在密封腔外。图7a为本申请一些实施例提供的电池单体20的剖面示意图,图7b为本申请另一些实施例提供的电池单体20的剖面示意图。
需要指出的是,在检测组件24设置在密封腔外的实施方案中,第一极耳227和第二极耳228需要配置成与密封腔外的检测组件24电连接。
通过设置检测组件24设置在密封腔外,不仅可以确保检测组件24不位于电极组件22内部,进而有利于避免电极组件22的制造工序增加以及有利于避免电极组件22卷绕时被检测组件24破坏,且检测组件24不占用密封腔。
下面以检测组件24设置在密封腔外为例,第一极耳227和第二极耳228配置成与密封腔外的检测组件24电连接包括但不限于如下可能的实现方式:
在第一种可能的示例中,如图7a和图7b所示,壳体21上设置有极性相反的第一极柱23和第二极柱29,第一极柱23和第二极柱29安装在壳体21上并位于密封腔外, 第一极柱23以及第二极柱29均与壳体21绝缘。其中,第一极耳227可以与极性相同的第一极柱23电连接,第二极耳228与壳体21电连接,壳体21通过第一导线222与第一极柱23电连接,第一导线222上串接有检测组件24。
其中,第一极柱23和第二极柱29可以分别与用电装置的正负极连接,以将电池100的电能输出至用电装置。第一极柱23和第二极柱29在壳体21上的安装位置是非限制性地,举例来说,第一极柱23和第二极柱29均可以安装在端盖210上。或者,在其他可替换的实施例中,第一极柱23可以安装在端盖210上,第二极柱29可以安装在外壳211上。
例如,当第一极片220为负极极片时,第一极耳227与负极极柱连接,第一导线222的一端与壳体21连接以与第二极耳228电连接,第一导线222的另一端与负极极柱连接。这样,第一极耳227、负极极柱、第一导线222、壳体21、第二极耳228和第一极片220的导电区域2203共同构成检测回路244。再例如,当第一极片220为正极极片时,第一极耳227与正极极柱连接,第一导线222的一端与壳体21连接以与第二极耳228电连接,第一导线222的另一端与正极极柱连接。这样,第一极耳227、正极极柱、第一导线222、壳体21、第二极耳228和第一极片220的导电区域2203共同构成检测回路244。
其中,如图7a所示,第二极耳228可以与端盖210电连接,或者,如图7b所示,第二极耳228也可以与外壳211电连接。并且,第二极耳228与壳体21电连接的方式是不限地,例如第二极耳228可以与壳体21焊接相连,或者,第二极耳228可以通过导电胶与壳体21粘接。
本实施例中电池单体20借助本身的部件(即壳体21)来连接第二极耳228与第一极耳227,以实现第一极耳227与第二极耳228的串联,而无需设置额外的转接件来连接第二极耳228与第一极耳227,以免电池单体20因部件增多而导致结构复杂。
在第二种可能的示例中,电池100还可以包括极性相反的第一极柱23和第二极柱29,第一极耳227与极性相同的第一极柱23电连接;壳体21上设有第一开孔,电池单体20还包括第一绝缘环,第一绝缘环安装在第一开孔内,第二极耳228伸入至第一绝缘环内并与第一绝缘环密封连接,第二极耳228通过第二导线223与第一极柱23电连接,第二导线223上串接有检测组件24。
第一极柱23和第二极柱29分别与用电装置的正负极连接,以将电池100的电能输出至用电装置。
本示例中,第二极耳228穿过第一绝缘环并在电池单体20的外表面上显露出来,第二导线223的一端可以直接和第二极耳228连接,第二导线223的另一端和第一极柱23连接。其中,第一开孔可以设置在端盖210或者外壳211上,第一绝缘环对应地可以安装在端盖210或者外壳211上,第一绝缘环能够阻隔第二极耳228与壳体21接触,使得第二极耳228与壳体21绝缘。
为了实现第二极耳228与第一绝缘环密封连接,第二极耳228与第一绝缘环的内壁之间可以填充有胶体。其中,胶体例如可以为结构胶或者密封胶。胶体可以起到连接作用,使得第二极耳228可以固定连接于第一绝缘环,尽可能地避免第二极耳228接触壳体21。胶体还可以封堵第二极耳228与第一绝缘环的内壁之间的间隙,起到密封作用,以确保壳体21的密封性能不会丧失。
通过设置壳体21上具有第一开孔,第二极耳228穿设至安装在第一开孔的第一绝缘环内,使得第二极耳228引出至显露于电池单体20的外表面,第二极耳228可以通过第二导线223直接连接于和第一极耳227相连的第一极柱23,无需利用中间媒介来连接第二极耳228与第一极柱23,这样,尽可能地避免中间媒介对检测回路244的内阻的影响。
在第三种可能的示例中,如图8所示,壳体21上设置有极性相反的第一极柱23和第二极柱29,第一极耳227与极性相同的第一极柱23电连接,壳体21上还设置有导电柱25,至少部分导电柱25位于密封腔外,导电柱25与壳体21绝缘。本示例中,第二极耳228与导电柱25电连接,导电柱25与第三导线226的一端电连接,第三导线226的另一端与第一极柱23电连接,第三导线226上串接有检测组件24。其中,图8为本申请另一些实施例提供的电池单体20的部分结构示意图。
这里,第一极柱23和第二极柱29分别与用电装置的正负极连接,以将电池100的电能输出至用电装置。导电柱25具体可以安装在端盖210上,也可以安装在外壳211上。本实施例中,第二极耳228借助导电柱25与第一极耳227电连接。
下面可以结合附图对导电柱25的结构进行描述。
在一种可行的实施例中,如图8所示,壳体21上可以设有第二开孔,第二开孔内设置有第二绝缘环251,导电柱25穿设于第二绝缘环251。本示例中,第二绝缘环251将导电柱25与壳体21绝缘开来。
第二开孔可以开设在端盖210或者外壳211上,导电柱25对应地可以安装在端盖210或者外壳211上。导电柱25例如可以由铜、铁、银等金属材质制成,也可以由其他导电材质制成。
通过设置导电柱25穿设在安装于壳体21的第二绝缘环251内,在确保第二极耳228通过导电柱25能够与第一极耳227电连接的前提下,导电柱25还绝缘于壳体21。
在另一种可行的实施例中,如图9和图10所示,壳体21上可以设有第三开孔,导电柱25可以包括绝缘体253和导流管252,绝缘体253安装在第三开孔内,绝缘体253上设有通孔,导流管252插装在通孔内。第三开孔可以开设在端盖210或者外壳211上,导电柱25对应地可以安装在端盖210或者外壳211上。本示例中,第二极耳228与导流管252电连接,第三导线226的一端伸入至导流管252内并与导流管252电连接,第三导线226的另一端与同第一极耳227相连的第一极柱23连接。其中,图9为本申请一些实施例提供的电池单体20中导电柱25的结构示意图,图10为图9所示的导电柱25与第三导线226连接的结构示意图。
通过设置导电柱25包括绝缘体253和导流管252,在确保第二极耳228通过导电柱25能够与第一极耳227电连接的前提下,导电柱25还绝缘于壳体21。
根据图9、图10以及下文描述可知,绝缘体253上可以设有多个通孔,导流管252也可以设有多个,多个导流管252与多个通孔一一对应,且绝缘体253将多个导流管252绝缘隔离开来。这样,当第一极片220上设有多个第一极耳227和多个第二极耳228时,多个第二极耳228分别与多个第一极耳227一一对应地连接,以形成多个检测回路244时,多个第二极耳228可以与多个导流管252一一对应连接,使得多个第二极耳228通过同一导电柱25与对应地第一极耳227电连接,以利于简化电池100的结构。
当然,在一些实施例中,导电柱25也可以设置有多个。例如,导电柱25可以设有两个,若第一极片220和第二极片221上均设有多个第一极耳227和多个第二极耳228,第一极片220上的多个第二极耳228可以通过一个导电柱25与第一极片220上对应地第一极耳227电连接,第二极片221上的多个第二极耳228可以通过另一个导电柱25与第二极片221上对应地第一极耳227电连接。这样,容易区分不同极性的极片上第一极耳227和第二极耳228形成的检测回路244,以便于后续维护。
由上文可知,第二极耳228通过导电柱25与同第一极耳227连接的第一极柱23电连接。其中,实现第二极耳228与导电柱25电连接的方式是不限地。例如,如图8所 示,第二极耳228可以通过连接线缆26与导电柱25电连接。再例如,第二极耳228可以通过导电胶与导电柱25电连接。又例如,第二极耳228可以与导电柱25焊接连接。
示例性地,第二极耳228与导电柱25可以采用超声焊接、激光焊接、摩擦焊或者其他焊接方式进行焊接。
如此设计,第二极耳228与导电柱25的连接方式多样化,且在确保第二极耳228与导电柱25连接的同时,还能确保第二极耳228与导电柱25电连接。
根据上述三种可能的示例,总的来说,电池单体20的壳体21上可以设有极性相反的第一极柱23和第二极柱29,第一极柱23和第二极柱29作为电池单体20的两个极性相反的输出极,第一极耳227可以极性相同的第一极柱23电连接。
图11为本申请一些实施例的电池单体20的结构原理图。参照图11,在一些实施例中,第二极片221上也可以设有第一极耳227,第一极片220上的第一极耳227与第一极柱23电连接,第二极片221上的第一极耳227与第二极柱29电连接,第一极柱23和第二极柱29均与外部负载电连接,用于输出电池100的电能。本示例中,第一极耳227的功能可以视作为提供电能,第二极耳228的功能可以视作为用于检测温度。
图12为本申请另一些实施例提供的电池单体20的原理示意图。继续参考图12所示,第一极片220和第二极片221上均可以设有多个第一极耳227,第一极耳227被配置为电连接外部负载;且第一极片220上设有多个第二极耳228,各第二极耳228分别与第一极耳227之间分别串接有检测组件24。
本实施例中,检测组件24也设有多个,每个检测组件24串接在一个第二极耳228与一个第一极耳227之间,以形成检测回路244。这样,电池单体20具有多个检测回路244,且每个检测回路244上均设有检测组件24。如此,利用每个检测组件24所检测到的电压和电流可以获取到对应地检测回路244的导电区域2203的阻值,进而确定该导电区域2203的温度。
具体地,在图12中,第一极片220的两个第一极耳227分别与两个第二极耳228串接,以形成两个检测回路244,这样,根据各检测回路244上的检测组件24a、24b获取的阻值可以获取到导电区域2203a的温度和导电区域2203b的温度。其中,导电区域2203a用于导通其中一个检测回路244的第一极耳227和第二极耳228,导电区域2203b用于导通另一个检测回路244的第一极耳227和第二极耳228。
这样,一方面,通过设置多个第一极耳227,多个第一极耳227均用于与外部负载电连接,能够起到分流的作用,以降低每个第一极耳227所流经的电流,进而有助于避 免过大的电流通过第一极耳227而造成第一极耳227熔断;另一方面,电池单体20具有多个检测回路244,可以检测出第一极片220上不同导电区域2203的温度,以利于使第一极片220各个导电区域2203的温度均能够被测量,进而有利于提高电极组件22温度测量的准确性。
图13为本申请再一些实施例提供的电池单体20的原理示意图。在本申请的其他实施例中,参考图13所示,第一极片220和第二极片221上还可以设有多个第三极耳229,第一极片220上的第三极耳229与第一极柱23电连接,第二极片221上的第三极耳229与第二极柱29电连接,第一极柱23和第二极柱29均与外部负载电连接。
本示例中,第三极耳229连接至外部负载,此时,第三极耳229的功能视作为用于输出电池100的电能,第一极耳227和第二极耳228串接,其功能视作为用于检测温度,第一极耳227和第二极耳228均为检测极耳,两个检测极耳串接以形成检测回路244,此时,根据检测组件24检测到的电压和电流可以获取到极片上位于两个检测极耳之间的导电区域2203的温度。这样,用于输出电能的第三极耳229不串接在检测回路244中,以免检测回路244的电流沿该极耳分流。
电池单体20上两个极性相反的输出极除了分别为第一极柱23和第二极柱29之外,电池单体20上两个极性相反的输出极也可以替换为壳体21和绝缘安装在壳体21上的极柱。在本示例中,当第一极片220和第二极片221上均设有第一极耳227,第一极耳227连接至外部负载以提供电能时,第二极片221上的第一极耳227与极性相同的壳体21电连接,第一极片220上的第一极耳227与极性相同的极柱电连接,第一极片220上的第二极耳228可以通过导电柱25与极柱电连接,且第二极耳228与壳体21绝缘隔离,以免第二极耳228与极性相反的壳体21电连接而造成电池单体20短路。当第一极片220和第二极片221上均设有多个第三极耳229,第三极耳229连接至外部负载时,第一极片220上的第三极耳229与极性相同的极柱电连接,第二极片221上的第三极耳229与极性相同的壳体21电连接。
电池单体20还可以包括控制组件30,检测组件24与控制组件30通信连接,以将检测到的电阻值、温度传递给控制组件30,以便于控制组件30获知电极组件22的温度。
图14为本申请一些实施例提供的电池单体20的结构示意图。在本申请的一些实施例中,请参照图14,检测组件24可以通过通讯线缆27与控制组件30通信连接。这里,在电池单体20包括导电柱25,第二极耳228通过导电柱25与第一极耳227连通的实施方案中,导电柱25在壳体21上的安装位置是不限地。应理解,根据导电柱25在壳 体21上的安装位置的不同,检测组件24的位置也可以不同,通讯线缆27与检测组件24的连接位置相应地可以不同,例如通讯线缆27与检测组件24的连接位置可以位于壳体21的任一侧。
图15为本申请另一些实施例提供的电池单体20与控制组件30通信的示意图。在本申请的其他实施例中,请参照图15,检测组件24可以通过无线通信模块28与控制组件30通信连接。
在图15所示的示例中,无线通信模块28可以安装在端盖210上,且检测组件24可以安装在密封腔内。此时,与检测组件24通过通讯线缆27与控制组件30通信连接相比,本实施例的电池100省去了通讯线缆27,以利于避免通讯线缆27影响电池单体20的视觉效果。并且,在电池单体20设有多个的实施方案中,不会出现多个电池单体20的通讯线缆27相互缠绕的现象,以便于电池100后续的维护。
示例性地,无线通信模块28可以为无线保真(WIreless-Fidelity,简称WiFi)模块或蓝牙模块、等近距离无线通信模块28。
其中,上述电池100还可以包括电池管理系统,控制组件30可以集成在电池管理系统(Battery Management System,简称BMS)上。如此设置,电池管理系统能够监控电极组件22的温度,进而可以根据监测到的电极组件22温度管理电池100。
图16为本申请又一些实施例提供的电池单体20的原理示意图。参照图16所示,在一些实施例中,电池单体20还可以包括导电线缆224,导电线缆224与检测回路244上的检测组件24并联连接。换句话说,导电线缆224的两端均连接于检测回路244,检测组件24位于导电线缆224的两端与连接于检测回路244的连接点之间。并且,导电线缆224上设有开关225,开关225与控制组件30电连接,控制组件30能够控制开关225的开闭状态。
这样,导电线缆224与开关225共同构成连接支路,开关225与检测组件24并联连接。当控制组件30控制开关225断开时,连接支路不导通,检测回路244导通,根据检测组件24检测出的总电压和总电流可以获取到第一极片220上导电区域2203的电阻值,进而可以测量出导电区域2203的温度,以实现对电池100内部温度的测量。
当控制组件30控制开关225闭合时,连接支路导通,检测组件24相当于被短路。在第一极耳227电连接至外部负载的实施方案中,由于检测组件24短路,检测回路244不导通,第一极耳227能够起到将电流传递给外部负载的作用。这样设置,开关225处 于断开状态时,检测支路导通,此时能够测量第二极片221的导电区域2203的温度,开关225处于闭合状态时,连接支路导通,第一极耳227和第二极耳228可以参与供电。
可见,在第一极耳227电连接至外部负载的实施方案中,通过控制开关225的开闭状态,可以控制第一极耳227在参与供电的功能和参与检测的功能之间切换。
如图3所示,上述第一极片220包括第一集流体2201和设置在第一集流体2201上的第一活性物质层2202,第二极片221包括第二集流体2211和设置在第二集流体2211上的第二活性物质层2212。
其中,第一集流体2201和第二集流体2211的材料可以为铜、铝、镍、铁、锌等合金、以及高分子材料中的一种或者多种。例如,在第一极片220为正极极片、第二极片221为负极极片的实施例中,第一集流体2201具体可以由铝制成,第一活性物质层2202可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等,第二集流体2211可以由铜制成,第二活性物质层2212可以为碳或者硅等。应理解,第一集流体2201的全部表面上均可以设有第一活性物质层2202,或者,第一集流体2201的部分表面上设有第一活性物质层2202,例如图11所示。同理,第二集流体2211的全部表面上均可以设有第二活性物质层2212,或者,第二集流体2211的部分表面上设有第二活性物质层2212。
本实施例中,第一集流体2201上位于第一极耳227和第二极耳228之间的部分形成导电区域2203,导电区域2203的材质为热电偶材质。其中,热电偶材料具有良好的感温能力,根据热电偶材料的阻值温度关系,温度每升高1℃,热电偶材料制成的电阻的电阻率增加幅度较大。
相比于导电区域2203的材质为铝或铜,通过设置导电区域2203为热电偶材质制成,这样,即使导电区域2203的温度小幅上升,导电区域2203的电阻率变化大,检测组件24能够更易于检测出导电区域2203的电阻值,进而可以准确地测量出电极组件22内部的温度,测温精度高。
第一集流体2201上的其他区域也可以由热电偶材质制成。或者,示例性地,第一集流体2201上的其他区域可以由铜、铝、镍、铁、锌、高分子材料等材料制成,此时的第一集流体2201由多种材质拼接而成。如此,在确保导电区域2203具有良好的感温能力的前提下,还能在一定程度上降低第一集流体2201的成本。
图17为本申请另一些实施例提供的电池单体20的结构原理图。请参考图17所示,电极组件22可以包括多个第一极片220以及多个第二极片221,多个第一极片220以及多个第二极片221层叠设置并形成为叠片式结构。
当然,在一些实施例中,多个第一极片220以及多个第二极片221层叠设置,且多个第一极片220以及多个第二极片221可以经过卷绕形成为卷绕式结构,此时的电极组件22即为卷绕式电极组件22。
在图17所示的示例中,当电极组件22为叠片式结构时,电极组件22中位于同一第一极片220上的第一极耳227和第二极耳228可以设置在该第一极片220的同侧或不同侧。例如,在图17中,第一极片220a上的第一极耳227与第二极耳228位于该第一极片220a的同侧,第一极片220b上的第一极耳227与第二极耳228位于该第一极片220b的相对两侧。
通过这样设置,串接相连的第一极耳227和第二极耳228的相对位置关系是多样的,因此,根据串接相连的第一极耳227和第二极耳228的位置的不同,可以检测出第一极片220上不同位置的温度,进一步有利于提高温度测量的准确性。
在一个具体的实施例中,如图17所示,电池单体20包括电极组件22和检测组件24,电极组件22包括多个第一极片220和多个第二极片221,第一极片220和第二极片221上均可以设有多个第一极耳227和多个第二极耳228,第一极片220上的第一极耳227和第二极片221上的第一极耳227分别与电池单体20的两个极性相反的输出极连接,以与外部负载电连接,用于输出电池100的电能,位于同一第一极片220或位于同一第二极耳228的多个第一极耳227分别与多个第二极耳228串接并形成检测回路244,检测回路244上设有检测组件24,检测组件24能够用于检测检测回路244的总电压及总电流,以获取对应极片上第一极耳227和第二极耳228之间的导电区域2203的电阻值,并根据阻值温度关系获得检测温度。
其中,如图10所示,电池单体20还包括壳体21,壳体21内具有密封腔,检测组件24位于密封腔外,壳体21的端盖210上设有导电柱25,导电柱25具体包括绝缘体253和多个导流管252,绝缘体253安装在端盖210的第三开孔内,绝缘体253上多个通孔,多个导流管252分别对应地插装在多个通孔内,电极组件22上的各个第二极耳228均通过导电胶或者连接线缆26与一个导流管252连接,每个导流管252通过第三导线226与第一极耳227电连接,使得每个第二极耳228与对应的一个第一极耳227串接。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施 例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种电池单体,包括:
    壳体,具有密封腔;
    电极组件,设置于所述密封腔内,所述电极组件包括极性相反的第一极片和第二极片,所述第一极片上设有第一极耳和第二极耳;
    检测组件,串接在所述第一极耳和所述第二极耳之间,以形成检测回路,所述检测组件用于检测所述检测回路的总电压及总电流,以获取所述第一极片的所述第一极耳和所述第二极耳之间形成的导电区域的电阻值,并根据阻值温度关系获得检测温度。
  2. 根据权利要求1所述的电池单体,其中,所述检测组件包括:
    供电电源,用于为所述检测回路提供电能;
    第一检测单元,用于测量所述检测回路的电流;
    第二检测单元,用于检测所述导电区域的电压;以及
    计算单元,用于根据所述检测回路的电流和所述导电区域的电压计算所述导电区域的电阻值,并根据阻值温度关系获得检测温度。
  3. 根据权利要求1或2所述的电池单体,其中,所述检测组件设置在所述密封腔外。
  4. 根据权利要求1至3中任一项所述的电池单体,其中,所述壳体上设置有极性相反的第一极柱和第二极柱,且所述第一极柱和所述第二极柱均与所述壳体绝缘;
    所述第一极耳与极性相同的所述第一极柱电连接,所述第二极耳与所述壳体电连接,所述壳体通过第一导线与所述第一极柱电连接,所述第一导线上串接有所述检测组件。
  5. 根据权利要求1至3中任一所述的电池单体,其中,所述壳体上设置有极性相反的第一极柱和第二极柱;
    所述第一极耳与极性相同的所述第一极柱电连接,所述壳体上设有第一开孔,所述电池单体还包括第一绝缘环,所述第一绝缘环安装在所述第一开孔内,所述第二极耳伸入至所述第一绝缘环内并与所述第一绝缘环密封连接,所述第二极耳通过第二导线与所述第一极柱电连接,所述第二导线上串接有所述检测组件。
  6. 根据权利要求1至3中任一项所述的电池单体,其中,所述壳体上设置有极性相反的第一极柱和第二极柱;
    所述第一极耳与极性相同的所述第一极柱电连接,所述壳体上还设置有导电柱,至少部分所述导电柱位于所述密封腔外,所述导电柱与所述壳体绝缘;
    其中,所述第二极耳与所述导电柱电连接,所述导电柱通过第三导线与所述第一极柱电连接,所述第三导线上串接有所述检测组件。
  7. 根据权利要求6所述的电池单体,其中,
    所述壳体上设有第二开孔,所述第二开孔内设置有第二绝缘环,所述导电柱穿设于所述第二绝缘环。
  8. 根据权利要求6或7所述的电池单体,其中,
    所述第二极耳通过连接线缆与所述导电柱电连接;或者,
    所述第二极耳通过导电胶与所述导电柱粘接连接;或者,
    所述第二极耳与所述导电柱焊接连接。
  9. 根据权利要求1至8中任一项所述的电池单体,其中,
    所述第一极片上设有多个所述第一极耳和多个所述第二极耳,各所述第二极耳与所述第一极耳之间分别串接有所述检测组件。
  10. 根据权利要求1至9中任一项所述的电池单体,其中,所述电池单体还包括控制组件;
    其中,所述检测组件通过通讯线缆与所述控制组件通信连接;或者,所述检测组件通过无线通信模块与所述控制组件通信连接。
  11. 根据权利要求10所述的电池单体,其中,
    所述电池单体还包括导电线缆,所述导电线缆与所述检测回路上的所述检测组件并联连接,所述导电线缆上串接有开关,所述开关与所述控制组件电连接,所述控制组件能够控制所述开关的开闭状态。
  12. 根据权利要求1至11中任一项所述的电池单体,其中,
    所述第一极片包括第一集流体和设置在所述第一集流体上的第一活性物质层,所述第二极片包括第二集流体和设置在所述第二集流体上的第二活性物质层;
    其中,所述第一集流体上位于所述第一极耳和所述第二极耳之间的部分形成所述导电区域,所述导电区域的材质为热电偶材质。
  13. 根据权利要求1至12中任一项所述的电池单体,其中,
    所述第一极片上的所述第一极耳与所述第二极耳位于所述第一极片的不同侧。
  14. 一种电池,所述电池包括1至13中任一项所述的电池单体。
  15. 一种用电装置,所述用电装置包括如权利要求14所述的电池,所述电池用于提供电能。
PCT/CN2022/113514 2022-08-19 2022-08-19 电池单体、电池及用电装置 WO2024036590A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113514 WO2024036590A1 (zh) 2022-08-19 2022-08-19 电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113514 WO2024036590A1 (zh) 2022-08-19 2022-08-19 电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024036590A1 true WO2024036590A1 (zh) 2024-02-22

Family

ID=89940413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113514 WO2024036590A1 (zh) 2022-08-19 2022-08-19 电池单体、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024036590A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484295A (zh) * 2009-09-02 2012-05-30 丰田自动车株式会社 硫化物系全固体锂二次电池系统
CN106711551A (zh) * 2016-12-28 2017-05-24 北京新能源汽车股份有限公司 电池的加热监控装置、方法及电池系统
CN214043766U (zh) * 2020-12-14 2021-08-24 湖北亿纬动力有限公司 一种软包电池
CN113782811A (zh) * 2021-09-13 2021-12-10 宁德新能源科技有限公司 用电设备及电化学装置的加热方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484295A (zh) * 2009-09-02 2012-05-30 丰田自动车株式会社 硫化物系全固体锂二次电池系统
CN106711551A (zh) * 2016-12-28 2017-05-24 北京新能源汽车股份有限公司 电池的加热监控装置、方法及电池系统
CN214043766U (zh) * 2020-12-14 2021-08-24 湖北亿纬动力有限公司 一种软包电池
CN113782811A (zh) * 2021-09-13 2021-12-10 宁德新能源科技有限公司 用电设备及电化学装置的加热方法

Similar Documents

Publication Publication Date Title
KR101923091B1 (ko) 전지
US9929434B2 (en) Lithium-ion conductive sulfide, solid electrolyte secondary battery and battery pack
KR20200053522A (ko) 이차 전지의 이상 검지 시스템 및 이차 전지의 이상 검출 방법
US8917095B2 (en) Vehicle system and method for detecting hydrogen sulfide
KR101943493B1 (ko) 배터리 모듈 어셈블리 및 이를 포함하는 배터리 팩
US9419313B2 (en) Lithium battery with reference electrode plated on an interior surface of a neutral metal can
JP5922793B2 (ja) 電流測定回路、バッテリ、及び車両
JP2023502691A (ja) 電池、電池モジュール、電池パック及び電気自動車
CN105409052A (zh) 具有锂离子和铅酸电池单元的双存储系统和方法
CN108630988B (zh) 复合电解质、二次电池、电池包及车辆
US20220077705A1 (en) Protection circuit for secondary battery and secondary battery module
CN204885311U (zh) 一种锂电池
CN107749444B (zh) 电池组模块和用于监测电池组模块的方法
EP4195356A1 (en) Three-electrode battery and energy storage system
US20160111727A1 (en) Metal-Ion Battery with Offset Potential Material
JP5353339B2 (ja) 電池システム、及び、ハイブリッド自動車
CN110247101A (zh) 用于对电池快速充电的方法
CN105556318B (zh) 电压感测组件和包括该电压感测组件的电池模块
CN111403647A (zh) 一种采用本安屏操作箱的矿用隔爆型锂离子蓄电池电源
EP2860792A2 (en) Non-aqueous electrolyte secondary battery and battery pack
CN109417187A (zh) 电池、电池组、电子设备、电动车辆、蓄电装置及电力系统
CN113258147B (zh) 智能电池
WO2015040684A1 (ja) 温度計機能付き参照極、温度計機能付き参照極入りリチウムイオン二次電池、温度計機能付き参照極入りリチウムイオン二次電池システム、および、リチウムイオン二次電池の制御方法
WO2024036590A1 (zh) 电池单体、电池及用电装置
CN108011141A (zh) 航空用蓄电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955370

Country of ref document: EP

Kind code of ref document: A1