WO2024034512A1 - METHOD FOR GROWING β-GA2O3-BASED SINGLE CRYSTAL FILM - Google Patents

METHOD FOR GROWING β-GA2O3-BASED SINGLE CRYSTAL FILM Download PDF

Info

Publication number
WO2024034512A1
WO2024034512A1 PCT/JP2023/028415 JP2023028415W WO2024034512A1 WO 2024034512 A1 WO2024034512 A1 WO 2024034512A1 JP 2023028415 W JP2023028415 W JP 2023028415W WO 2024034512 A1 WO2024034512 A1 WO 2024034512A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
single crystal
crystal film
hcl
gacl
Prior art date
Application number
PCT/JP2023/028415
Other languages
French (fr)
Japanese (ja)
Inventor
研太郎 江間
家弘 林
アムタ タンガラジャ
尚 村上
理紗 長野
Original Assignee
株式会社ノベルクリスタルテクノロジー
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノベルクリスタルテクノロジー, 国立大学法人東京農工大学 filed Critical 株式会社ノベルクリスタルテクノロジー
Publication of WO2024034512A1 publication Critical patent/WO2024034512A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy

Definitions

  • the present invention relates to a method for growing a ⁇ -Ga 2 O 3 -based single crystal film.
  • Patent Document 1 a method for growing a ⁇ -Ga 2 O 3 -based single crystal film using the HVPE (Halide Vapor Phase Epitaxy) method is known (see Patent Document 1).
  • a Ga 2 O 3 -based substrate is exposed to a gallium chloride-based gas as a source gas for Ga and an oxygen-containing gas as a source gas for oxygen.
  • a ⁇ -Ga 2 O 3 -based single crystal film is grown on the main surface of the Ga 2 O 3 -based substrate.
  • An object of the present invention is to provide a method for growing a ⁇ -Ga 2 O 3 -based single crystal film that can grow a ⁇ -Ga 2 O 3 -based single crystal film at a high deposition rate while suppressing the occurrence of powder falling. It's about doing.
  • one embodiment of the present invention provides the following method for growing a ⁇ -Ga 2 O 3 -based single crystal film.
  • a method for growing a ⁇ -Ga 2 O 3- based single crystal film by HVPE in which a substrate is exposed to GaCl gas and an oxygen-containing gas as raw material gases, and a Cl-containing gas, and a film is grown on the main surface of the substrate.
  • a ⁇ -Ga 2 O 3 -based single crystal film comprising the step of growing a ⁇ -Ga 2 O 3-based single crystal film, wherein the Cl-containing gas is HCl gas, Cl 2 gas, or a mixed gas of HCl gas and Cl 2 gas. How to grow single crystal films.
  • a method for growing a ⁇ -Ga 2 O 3 -based single crystal film which can grow a ⁇ -Ga 2 O 3 -based single crystal film at a high deposition rate while suppressing the occurrence of powder falling. can do.
  • FIG. 1 is a vertical cross-sectional view of a crystal laminated structure according to an embodiment of the present invention.
  • FIG. 2 is a vertical sectional view of a vapor phase growth apparatus according to an embodiment of the present invention.
  • FIG. 3 is a table showing the relationship between the amount of HCl gas supplied and the state of the ⁇ -Ga 2 O 3 single crystal film.
  • Figure 4 shows the deposition rates of R HCl and ⁇ - Ga 2 O 3 single crystal films when the partial pressure P of GaCl gas is 1.3 ⁇ 10 ⁇ 3 atm and 2.7 ⁇ 10 ⁇ 3 atm. It is a graph showing the relationship between FIG. 5 is a graph showing preferred ranges of R HCl .
  • FIG. 6 is a graph showing the impurity concentration in the crystal laminated structure measured by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • FIG. 1 is a vertical cross-sectional view of a crystal laminated structure 1 according to an embodiment of the present invention.
  • the crystal laminated structure 1 has a substrate 10 and a ⁇ -Ga 2 O 3 -based single crystal film 12 formed on the main surface 11 of the substrate 10 by epitaxial crystal growth.
  • the ⁇ -Ga 2 O 3 -based single crystal film 12 is a film made of a Ga 2 O 3 -based single crystal having a ⁇ -type crystal structure.
  • the Ga 2 O 3 single crystal refers to a Ga 2 O 3 single crystal or a Ga 2 O 3 single crystal to which elements such as Al and In are added.
  • Al is added, the band gap is widened, and when In is added, the band gap is narrowed.
  • the ⁇ -Ga 2 O 3 single crystal film 12 may contain conductive impurities such as Si. Furthermore, since the ⁇ -Ga 2 O 3 -based single crystal film 12 is formed by the HVPE method using a gas containing Cl as a source gas, it contains Cl at a concentration of 1 ⁇ 10 15 cm ⁇ 3 or more.
  • the substrate 10 is a substrate that can be used as a base substrate for epitaxial growth of the ⁇ -Ga 2 O 3 single crystal film 12, such as a sapphire substrate or a Ga 2 O 3 single crystal substrate made of a Ga 2 O 3 single crystal. be.
  • the substrate 10 may contain conductivity type impurities.
  • FIG. 2 is a vertical sectional view of the vapor phase growth apparatus 2 according to the embodiment of the present invention.
  • the vapor phase growth apparatus 2 is a vapor phase growth apparatus for the HVPE (Halide Vapor Phase Epitaxy) method, and includes a first gas introduction port 21, a second gas introduction port 22, a third gas introduction port 23, and an exhaust gas It has a reactor 20 having a port 24 and a heating means 26 that is installed around the reactor 20 and heats the inside of the reactor 20.
  • HVPE Hydrode Vapor Phase Epitaxy
  • the reactor 20 includes a reaction vessel 25 containing a Ga raw material, a raw material reaction region R1 where a gallium raw material gas is generated, a substrate 10, and a reaction chamber 25 for forming a ⁇ -Ga 2 O 3 single crystal film 12. It has a crystal growth region R2 where growth is performed.
  • the reactor 20 is made of quartz glass, for example.
  • the reaction vessel 25 is, for example, quartz glass, and the Ga raw material contained in the reaction vessel 25 is metallic gallium.
  • the heating means 26 can heat the raw material reaction region R1 and the crystal growth region R2 of the reactor 20.
  • the heating means 26 is, for example, a resistance heating type or a radiation heating type heating device.
  • the first gas introduction port 21 supplies a Cl-containing gas such as Cl 2 gas or HCl gas to a raw material reaction region R1 of the reactor 20 using a carrier gas (N 2 gas, Ar gas, or He gas) that is an inert gas.
  • a carrier gas N 2 gas, Ar gas, or He gas
  • the second gas introduction port 22 uses an oxygen-containing gas such as O 2 gas or H 2 O gas, which is a raw material gas for oxygen, using a carrier gas (N 2 gas, Ar gas, or He gas), which is an inert gas.
  • This is a port for introducing into the crystal growth region R2 of the reactor 20.
  • the third gas introduction port 23 is provided with a Cl-containing gas, which is HCl gas, Cl 2 gas, or a mixed gas of HCl gas and Cl 2 gas, to suppress the occurrence of powder falling, and ⁇ -Ga 2 O 3- based single crystal.
  • a chloride gas for example, silicon tetrachloride, etc.
  • an inert carrier gas N 2 gas, Ar gas, or He gas. This is a port for introducing into the crystal growth region R2.
  • a carrier gas is used to contain Cl from the first gas introduction port 21.
  • a gas is introduced, and the metal gallium in the reaction vessel 25 is reacted with the Cl-containing gas at the above atmospheric temperature in the raw material reaction region R1 to generate GaCl gas.
  • GaCl gas which is the raw material gas for the ⁇ -Ga 2 O 3 -based single crystal film 12
  • Cl 2 gas that does not contain hydrogen
  • gallium chloride-based gases other than GaCl gas such as GaCl 2 gas, GaCl 3 gas, and (GaCl 3 ) 2 gas, are also produced. Since the partial pressure of GaCl gas is overwhelmingly high, gases other than GaCl gas hardly contribute to the growth of the Ga 2 O 3 single crystal.
  • the raw material reaction region R1 is heated.
  • GaCl gas, an oxygen-containing gas introduced from the second gas introduction port 22, and a Cl-containing gas such as HCl gas introduced from the third gas introduction port 23 are mixed, and the substrate 10 is added to the mixed gas.
  • a ⁇ -Ga 2 O 3 single crystal film 12 is epitaxially grown on the main surface 11 of the substrate 10 .
  • the pressure in the crystal growth region R2 in the furnace housing the reactor 20 is maintained at, for example, 1 atm.
  • ⁇ -Ga 2 O 3 single crystal film 12 containing additive elements such as Si, GaCl gas as a raw material gas, oxygen-containing gas, and HCl gas to suppress the occurrence of powder fall are used.
  • a raw material gas for an additive element for example, a chloride-based gas such as silicon tetrachloride (SiCl 4 )
  • SiCl 4 silicon tetrachloride
  • the Cl-containing gas for generating GaCl gas introduced into the raw material reaction region R1 from the first gas introduction port 21 is used in the crystal growth region in the process of forming the ⁇ -Ga 2 O 3 -based single crystal film 12.
  • the amount flowing into the crystal growth region R2 is the same as the amount of Cl-containing gas introduced from the third gas introduction port 23 into the crystal growth region R2 to suppress the occurrence of powder falling.
  • the amount is sufficiently small in comparison and can be ignored. That is, the Cl-containing gas for generating GaCl gas flowing from the raw material reaction region R1 to the crystal growth region R2 does not contribute to suppressing the occurrence of powder falling.
  • FIG. 3 is a table showing the relationship between the amount of HCl gas supplied and the state of the ⁇ -Ga 2 O 3 single crystal film 12 for suppressing the occurrence of powder falling.
  • FIG. 3 includes SEM (scanning electron microscopy) images of cross sections of a plurality of types of ⁇ -Ga 2 O 3 -based single crystal films 12 formed under conditions with different amounts of HCl gas supplied.
  • the ⁇ -Ga 2 O 3 single crystal film 12 included in the SEM observation image of FIG. 3 is a ⁇ -Ga 2 O 3 single crystal film formed on a sapphire substrate as the substrate 10.
  • GaCl gas which is a raw material gas, and oxygen-containing gas react in the gas phase
  • Ga oxide powder is generated in the gas phase and adheres to the substrate, that is, when powder falling occurs
  • the ⁇ -Ga 2 O 3 single crystal film 12 grows abnormally in three dimensions, and in the SEM image of its cross section, it is observed as a film with many voids and low density.
  • the partial pressure of GaCl gas P GaCl is 1.3 ⁇ 10 ⁇ 3 atm, 2.7 ⁇ 10 ⁇ 3 atm or 5.3 ⁇ 10 -3 atm, the deposition rate of the ⁇ -Ga 2 O 3 single crystal film 12 to suppress powder fall is such that HCl gas is not supplied during film formation. It was found that the film formation rate was significantly higher than that of the conventional method (less than 5 ⁇ m/h).
  • the relationship between the amount of HCl gas supplied and the state of the ⁇ -Ga 2 O 3 single crystal film 12 and the relationship between the amount of HCl gas supplied and the deposition rate of the ⁇ -Ga 2 O 3 single crystal film 12 are as follows: ⁇ The same holds true even when the -Ga 2 O 3 single crystal film 12 is a ⁇ -Ga 2 O 3 single crystal film other than the ⁇ -Ga 2 O 3 single crystal film. Further, even when using Cl 2 gas instead of HCl gas to suppress the occurrence of powder falling, the same results as those obtained when using HCl gas described above can be obtained.
  • the relationship between the amount of Cl 2 gas supplied and the state of the ⁇ -Ga 2 O 3 single crystal film 12 and the relationship between the amount of Cl 2 gas supplied and the deposition rate of the ⁇ -Ga 2 O 3 single crystal film 12 are as follows. , approximately the same as the relationship between the amount of HCl gas supplied and the state of the ⁇ -Ga 2 O 3 single crystal film 12 and the relationship between the amount of HCl gas supplied and the deposition rate of the ⁇ -Ga 2 O 3 single crystal film 12. It will be the same. Furthermore, the same applies even when a mixed gas of HCl gas and Cl 2 gas is used instead of HCl gas to suppress the occurrence of powder falling. However, when HCl gas is used, the effect of suppressing the occurrence of powder precipitation tends to be greater than when using Cl 2 gas or a mixed gas of HCl gas and Cl 2 gas.
  • FIG. 4 shows the formation of R HCl and ⁇ -Ga 2 O 3 single crystal film 12 when the partial pressure P GaCl of GaCl gas is 1.3 ⁇ 10 ⁇ 3 atm and 2.7 ⁇ 10 ⁇ 3 atm. It is a graph showing the relationship with speed.
  • FIG. 4 shows that the deposition rate of the ⁇ -Ga 2 O 3 single crystal film 12 decreases as R HCl increases, that is, the amount of HCl gas supplied during film deposition increases. That is, by supplying HCl gas during the formation of the ⁇ -Ga 2 O 3 -based single crystal film 12, abnormal growth of the ⁇ -Ga 2 O 3 -based single crystal film 12 due to the occurrence of powder precipitation can be suppressed. However, if the amount of HCl gas supplied is too large, the deposition rate of the ⁇ -Ga 2 O 3 -based single crystal film 12 will become low.
  • the lower limit of R HCl at which abnormal growth can be almost completely suppressed is set to 100%.
  • R HCl is approximately 150% or less.
  • FIG. 5 is a graph showing preferred ranges of R HCl .
  • the solid line R HCl 357.13 ⁇ P GaCl in FIG . This is an approximate straight line drawn based on the lower limit value of R HCl when abnormal growth is almost completely suppressed.
  • R Cl2 and R mix are preferably 187.57 ⁇ P GaCl or more, and 357.13 ⁇ More preferably, it is equal to or higher than P GaCl .
  • R Cl 2 or R mix is preferably 562.7 ⁇ P GaCl or less.
  • FIG. 6 is a graph showing the impurity concentration in the crystal laminated structure 1 measured by secondary ion mass spectrometry (SIMS).
  • the substrate 10 of the crystal laminated structure 1 according to FIG. 6 is a ⁇ -Ga 2 O 3 single-crystal substrate, and the ⁇ -Ga 2 O 3 -based single crystal film 12 is formed by using HCl gas to suppress the occurrence of powder falling. This is a deposited ⁇ -Ga 2 O 3 single crystal film.
  • the horizontal axis in FIG. 6 represents the depth ( ⁇ m) from the surface 13 of the ⁇ -Ga 2 O 3 single crystal film 12 of the crystal laminated structure 1, and the vertical axis represents the concentration of each impurity (cm ⁇ 3 ). .
  • the depth of the interface between the substrate 10 of the crystal laminated structure 1 and the ⁇ -Ga 2 O 3 single crystal film 12 is approximately 15 ⁇ m, and the impurity concentration shown in the graph of FIG . This is the concentration of impurities in the 3 -system single crystal film 12.
  • FIG. 6 shows the concentrations of H, C, Cl, N, and Si in the crystal laminated structure 1.
  • the concentrations of H, C, N, and Si in the ⁇ -Ga 2 O 3 single crystal film 12 are close to the measurable lower limit values
  • the concentrations in the ⁇ -Ga 2 O 3 single crystal film 12 are close to the measurable lower limit values.
  • the concentration is equivalent to that of a conventional growth method in which HCl gas is not supplied during the formation of a single crystal film. This shows that the ⁇ -Ga 2 O 3 -based single crystal film 12 is a highly pure film. Furthermore, from the concentration of H shown in FIG.
  • a method for growing a ⁇ -Ga 2 O 3 -based single crystal film which can grow the ⁇ -Ga 2 O 3 -based single crystal film at a high deposition rate while suppressing the occurrence of powder falling.
  • SYMBOLS 1 Crystal laminated structure, 10... Substrate, 11... Main surface, 12... ⁇ -Ga 2 O 3 system single crystal film, 2... Vapor phase growth apparatus, 20... Reactor, 21... First gas introduction port, 22...Second gas introduction port, 23...Third gas introduction port, 24...Exhaust port, 25...Reaction container, 26...Heating means

Abstract

Provided is a method for growing a β-Ga2O3-based single crystal film in which the β-Ga2O3-based single crystal film is grown by an HVPE process. This method for growing a β-Ga2O3-based single crystal film comprises a step for growing a β-Ga2O3-based single crystal film 12 on a main surface 11 of a substrate 10 by exposing the substrate 10 to a GaCl gas and an oxygen-containing gas, which are the starting gases, and a Cl-containing gas, wherein the Cl-containing gas is HCl gas, Cl2 gas, or a mixed gas of HCl gas and Cl2 gas.

Description

β-Ga2O3系単結晶膜の成長方法Growth method of β-Ga2O3 single crystal film
 本発明は、β-Ga系単結晶膜(β-Ga-based single crystal film)の成長方法に関する。 The present invention relates to a method for growing a β-Ga 2 O 3 -based single crystal film.
 従来、HVPE(Halide Vapor Phase Epitaxy)法によるβ-Ga系単結晶膜の成長方法が知られている(特許文献1を参照)。特許文献1に記載のβ-Ga系単結晶膜の成長方法においては、Ga系基板をGaの原料ガスとしての塩化ガリウム系ガス及び酸素の原料ガスである酸素含有ガスに曝し、Ga系基板の主面上にβ-Ga系単結晶膜を成長させる。 Conventionally, a method for growing a β-Ga 2 O 3 -based single crystal film using the HVPE (Halide Vapor Phase Epitaxy) method is known (see Patent Document 1). In the method for growing a β-Ga 2 O 3 -based single crystal film described in Patent Document 1, a Ga 2 O 3 -based substrate is exposed to a gallium chloride-based gas as a source gas for Ga and an oxygen-containing gas as a source gas for oxygen. A β-Ga 2 O 3 -based single crystal film is grown on the main surface of the Ga 2 O 3 -based substrate.
特開2015-91740号公報JP2015-91740A
 しかしながら、特許文献1に記載のβ-Ga系単結晶膜の成長方法などの、従来のHVPE法によるβ-Ga系単結晶膜の成長方法によれば、β-Ga系単結晶膜の成膜速度を大きくすると、成膜中に原料ガスが気相反応することによりGa酸化物の粉が気相中で生成されて基板に付着する粉降りと呼ばれる現象が生じる。 However, according to a conventional method for growing a β-Ga 2 O 3 single crystal film using the HVPE method, such as the method for growing a β-Ga 2 O 3 single crystal film described in Patent Document 1, β-Ga 2 When the deposition rate of an O 3 -based single crystal film is increased, a phenomenon called powder falling occurs in which Ga oxide powder is generated in the gas phase and adheres to the substrate due to a gas phase reaction of the source gas during film deposition. arise.
 粉降りが生じると、基板に付着したGa酸化物の粉を起点とする、β-Ga系単結晶の三次元的な異常成長が生じ、エッチピットとして現れる結晶欠陥の密度が5×10cm-3以上に増加してしまう。このため、従来のHVPE法によるβ-Ga系単結晶膜の成長方法によれば、粉降りの発生を抑えるために、成膜速度を5μm/h未満に抑えなければならない。 When powder falls, three-dimensional abnormal growth of β-Ga 2 O 3 single crystals starts from the Ga oxide powder attached to the substrate, and the density of crystal defects appearing as etch pits increases by 5×. This increases to more than 10 4 cm -3 . Therefore, according to the conventional method for growing a β-Ga 2 O 3 -based single crystal film using the HVPE method, the film formation rate must be kept below 5 μm/h in order to suppress the occurrence of powder falling.
 本発明の目的は、粉降りの発生を抑えつつ高い成膜速度でβ-Ga系単結晶膜を成長させることのできる、β-Ga系単結晶膜の成長方法を提供することにある。 An object of the present invention is to provide a method for growing a β-Ga 2 O 3 -based single crystal film that can grow a β-Ga 2 O 3 -based single crystal film at a high deposition rate while suppressing the occurrence of powder falling. It's about doing.
 本発明の一態様は、上記目的を達成するために、下記のβ-Ga系単結晶膜の成長方法を提供する。 In order to achieve the above object, one embodiment of the present invention provides the following method for growing a β-Ga 2 O 3 -based single crystal film.
[1]HVPE法によるβ-Ga系単結晶膜の成長方法であって、基板を原料ガスであるGaClガス及び酸素含有ガス、並びにCl含有ガスに曝し、前記基板の主面上にβ-Ga系単結晶膜を成長させる工程を含み、前記Cl含有ガスが、HClガス、Clガス、又はHClガスとClガスの混合ガスである、β-Ga系単結晶膜の成長方法。
[2]前記GaClガスの分圧PGaClに対する前記Cl含有ガスの分圧の比の値であるRが、187.57×PGaCl以上である、上記[1]に記載のβ-Ga系単結晶膜の成長方法。
[3]前記GaClガスの分圧PGaClに対する前記Cl含有ガスの分圧の比の値であるRが、357.13×PGaCl以上である、上記[1]に記載のβ-Ga系単結晶膜の成長方法。
[4]前記Rが、562.7×PGaCl以下である、上記[2]又は[3]に記載のβ-Ga系単結晶膜の成長方法。
[1] A method for growing a β-Ga 2 O 3- based single crystal film by HVPE, in which a substrate is exposed to GaCl gas and an oxygen-containing gas as raw material gases, and a Cl-containing gas, and a film is grown on the main surface of the substrate. A β-Ga 2 O 3 -based single crystal film comprising the step of growing a β-Ga 2 O 3-based single crystal film, wherein the Cl-containing gas is HCl gas, Cl 2 gas, or a mixed gas of HCl gas and Cl 2 gas. How to grow single crystal films.
[2] β-Ga 2 O according to [1] above, wherein R, which is the ratio of the partial pressure of the Cl-containing gas to the partial pressure P GaCl of the GaCl gas, is 187.57×P GaCl or more. A method for growing a 3 -system single crystal film.
[3] β-Ga 2 O according to [1] above, wherein R, which is the ratio of the partial pressure of the Cl-containing gas to the partial pressure P GaCl of the GaCl gas, is 357.13×P GaCl or more. Growth method of 3 -system single crystal film.
[4] The method for growing a β-Ga 2 O 3 single crystal film according to [2] or [3] above, wherein the R is 562.7×P GaCl or less.
 本発明によれば、粉降りの発生を抑えつつ高い成膜速度でβ-Ga系単結晶膜を成長させることのできる、β-Ga系単結晶膜の成長方法を提供することができる。 According to the present invention, there is provided a method for growing a β-Ga 2 O 3 -based single crystal film, which can grow a β-Ga 2 O 3 -based single crystal film at a high deposition rate while suppressing the occurrence of powder falling. can do.
図1は、本発明の実施の形態に係る結晶積層構造体の垂直断面図である。FIG. 1 is a vertical cross-sectional view of a crystal laminated structure according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る気相成長装置の垂直断面図である。FIG. 2 is a vertical sectional view of a vapor phase growth apparatus according to an embodiment of the present invention. 図3は、HClガスの供給量とβ-Ga系単結晶膜の状態の関係を示す表である。FIG. 3 is a table showing the relationship between the amount of HCl gas supplied and the state of the β-Ga 2 O 3 single crystal film. 図4は、GaClガスの分圧PGaClが1.3×10-3atm、2.7×10-3atmであるときのRHClとβ-Ga系単結晶膜の成膜速度との関係を示すグラフである。Figure 4 shows the deposition rates of R HCl and β- Ga 2 O 3 single crystal films when the partial pressure P of GaCl gas is 1.3×10 −3 atm and 2.7×10 −3 atm. It is a graph showing the relationship between 図5は、RHClの好ましい範囲を示すグラフである。FIG. 5 is a graph showing preferred ranges of R HCl . 図6は、二次イオン質量分析法(SIMS)により測定した、結晶積層構造体中の不純物濃度を表すグラフである。FIG. 6 is a graph showing the impurity concentration in the crystal laminated structure measured by secondary ion mass spectrometry (SIMS).
(結晶積層構造体の構成)
 図1は、本発明の実施の形態に係る結晶積層構造体1の垂直断面図である。結晶積層構造体1は、基板10と、基板10の主面11上にエピタキシャル結晶成長により形成されたβ-Ga系単結晶膜12を有する。
(Configuration of crystal laminated structure)
FIG. 1 is a vertical cross-sectional view of a crystal laminated structure 1 according to an embodiment of the present invention. The crystal laminated structure 1 has a substrate 10 and a β-Ga 2 O 3 -based single crystal film 12 formed on the main surface 11 of the substrate 10 by epitaxial crystal growth.
 β-Ga系単結晶膜12は、β型の結晶構造を有するGa系単結晶からなる膜である。ここで、Ga系単結晶とは、Ga単結晶、又は、Al、In等の元素が添加されたGa単結晶をいう。例えば、Al及びInが添加されたGa単結晶である(GaAlIn(1-x-y)(0<x≦1、0≦y≦1、0<x+y≦1)単結晶であってもよい。Alを添加した場合にはバンドギャップが広がり、Inを添加した場合にはバンドギャップが狭くなる。また、β-Ga系単結晶膜12は、Si等の導電型不純物を含んでもよい。また、β-Ga系単結晶膜12は、Clが含まれるガスを原料ガスとして用いるHVPE法により形成されるため、1×1015cm-3以上の濃度のClを含む。 The β-Ga 2 O 3 -based single crystal film 12 is a film made of a Ga 2 O 3 -based single crystal having a β-type crystal structure. Here, the Ga 2 O 3 single crystal refers to a Ga 2 O 3 single crystal or a Ga 2 O 3 single crystal to which elements such as Al and In are added. For example, Ga 2 O 3 single crystal doped with Al and In (Ga x Al y In (1-x-y) ) 2 O 3 (0<x≦1, 0≦y≦1, 0<x+y ≦1) It may be a single crystal. When Al is added, the band gap is widened, and when In is added, the band gap is narrowed. Furthermore, the β-Ga 2 O 3 single crystal film 12 may contain conductive impurities such as Si. Furthermore, since the β-Ga 2 O 3 -based single crystal film 12 is formed by the HVPE method using a gas containing Cl as a source gas, it contains Cl at a concentration of 1×10 15 cm −3 or more.
 基板10は、サファイア基板、Ga系単結晶からなるGa系単結晶基板などの、β-Ga系単結晶膜12のエピタキシャル成長の下地基板として用いることのできる基板である。基板10は、導電型不純物を含んでいてもよい。 The substrate 10 is a substrate that can be used as a base substrate for epitaxial growth of the β-Ga 2 O 3 single crystal film 12, such as a sapphire substrate or a Ga 2 O 3 single crystal substrate made of a Ga 2 O 3 single crystal. be. The substrate 10 may contain conductivity type impurities.
(気相成長装置の構造)
 以下に、本実施の形態に係るβ-Ga系単結晶膜12の成長に用いる気相成長装置の構造の一例について説明する。
(Structure of vapor phase growth apparatus)
An example of the structure of a vapor phase growth apparatus used for growing the β-Ga 2 O 3 single crystal film 12 according to this embodiment will be described below.
 図2は、本発明の実施の形態に係る気相成長装置2の垂直断面図である。気相成長装置2は、HVPE(Halide Vapor Phase Epitaxy)法用の気相成長装置であり、第1のガス導入ポート21、第2のガス導入ポート22、第3のガス導入ポート23、及び排気ポート24を有する反応炉20と、反応炉20の周囲に設置され、反応炉20の内部を加熱する加熱手段26を有する。 FIG. 2 is a vertical sectional view of the vapor phase growth apparatus 2 according to the embodiment of the present invention. The vapor phase growth apparatus 2 is a vapor phase growth apparatus for the HVPE (Halide Vapor Phase Epitaxy) method, and includes a first gas introduction port 21, a second gas introduction port 22, a third gas introduction port 23, and an exhaust gas It has a reactor 20 having a port 24 and a heating means 26 that is installed around the reactor 20 and heats the inside of the reactor 20.
 反応炉20は、Ga原料が収容された反応容器25が配置され、ガリウムの原料ガスが生成される原料反応領域R1と、基板10が配置され、β-Ga系単結晶膜12の成長が行われる結晶成長領域R2を有する。反応炉20は、例えば、石英ガラスからなる。 The reactor 20 includes a reaction vessel 25 containing a Ga raw material, a raw material reaction region R1 where a gallium raw material gas is generated, a substrate 10, and a reaction chamber 25 for forming a β-Ga 2 O 3 single crystal film 12. It has a crystal growth region R2 where growth is performed. The reactor 20 is made of quartz glass, for example.
 反応容器25は、例えば、石英ガラスであり、反応容器25に収容されるGa原料は金属ガリウムである。 The reaction vessel 25 is, for example, quartz glass, and the Ga raw material contained in the reaction vessel 25 is metallic gallium.
 加熱手段26は、反応炉20の原料反応領域R1と結晶成長領域R2を加熱することができる。加熱手段26は、例えば、抵抗加熱式や輻射加熱式の加熱装置である。 The heating means 26 can heat the raw material reaction region R1 and the crystal growth region R2 of the reactor 20. The heating means 26 is, for example, a resistance heating type or a radiation heating type heating device.
 第1のガス導入ポート21は、Clガス又はHClガスであるCl含有ガスを不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応炉20の原料反応領域R1内に導入するためのポートである。第2のガス導入ポート22は、酸素の原料ガスであるOガスやHOガス等の酸素含有ガスを不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応炉20の結晶成長領域R2へ導入するためのポートである。第3のガス導入ポート23は、粉降りの発生を抑えるためのHClガス、Clガス、又はHClガスとClガスの混合ガスであるCl含有ガス、及びβ-Ga系単結晶膜12にSi等のドーパントを添加するための塩化物系ガス(例えば、四塩化ケイ素等)を不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応炉20の結晶成長領域R2へ導入するためのポートである。 The first gas introduction port 21 supplies a Cl-containing gas such as Cl 2 gas or HCl gas to a raw material reaction region R1 of the reactor 20 using a carrier gas (N 2 gas, Ar gas, or He gas) that is an inert gas. This is a port for introducing into The second gas introduction port 22 uses an oxygen-containing gas such as O 2 gas or H 2 O gas, which is a raw material gas for oxygen, using a carrier gas (N 2 gas, Ar gas, or He gas), which is an inert gas. This is a port for introducing into the crystal growth region R2 of the reactor 20. The third gas introduction port 23 is provided with a Cl-containing gas, which is HCl gas, Cl 2 gas, or a mixed gas of HCl gas and Cl 2 gas, to suppress the occurrence of powder falling, and β-Ga 2 O 3- based single crystal. A chloride gas (for example, silicon tetrachloride, etc.) for adding a dopant such as Si to the film 12 is added to the reactor 20 using an inert carrier gas (N 2 gas, Ar gas, or He gas). This is a port for introducing into the crystal growth region R2.
(β-Ga系単結晶膜の成長)
 以下に、本実施の形態に係るβ-Ga系単結晶膜12の成長工程の一例について説明する。
(Growth of β-Ga 2 O 3 -based single crystal film)
An example of the growth process of the β-Ga 2 O 3 -based single crystal film 12 according to the present embodiment will be described below.
 まず、加熱手段26を用いて反応炉20の原料反応領域R1の雰囲気温度を所定の温度、例えば500~900℃に保った状態で、第1のガス導入ポート21からキャリアガスを用いてCl含有ガスを導入し、原料反応領域R1において、上記の雰囲気温度下で反応容器25内の金属ガリウムとCl含有ガスを反応させ、GaClガスを生成する。 First, while maintaining the atmospheric temperature of the raw material reaction region R1 of the reactor 20 at a predetermined temperature, for example, 500 to 900°C using the heating means 26, a carrier gas is used to contain Cl from the first gas introduction port 21. A gas is introduced, and the metal gallium in the reaction vessel 25 is reacted with the Cl-containing gas at the above atmospheric temperature in the raw material reaction region R1 to generate GaCl gas.
 なお、β-Ga系単結晶膜12の原料ガスであるGaClガスの生成においては、水素を含まないClガスをCl含有ガスとして用いることが好ましい。 Note that in the generation of GaCl gas, which is the raw material gas for the β-Ga 2 O 3 -based single crystal film 12, it is preferable to use Cl 2 gas that does not contain hydrogen as the Cl-containing gas.
 また、金属ガリウムとCl含有ガスの反応から、GaClガス以外の塩化ガリウム系ガスであるGaClガス、GaClガス、及び(GaClガスも生成されるが、これらの塩化ガリウム系ガスのうちでGaClガスの分圧が圧倒的に高くなるため、GaClガス以外のガスはGa系単結晶の成長にほとんど寄与しない。 In addition, from the reaction of metallic gallium and Cl-containing gas, gallium chloride-based gases other than GaCl gas, such as GaCl 2 gas, GaCl 3 gas, and (GaCl 3 ) 2 gas, are also produced. Since the partial pressure of GaCl gas is overwhelmingly high, gases other than GaCl gas hardly contribute to the growth of the Ga 2 O 3 single crystal.
 次に、加熱手段26を用いて反応炉20の結晶成長領域R2の雰囲気温度を所定の温度、例えば800~1100℃に保った状態で、結晶成長領域R2において、原料反応領域R1で生成されたGaClガスと、第2のガス導入ポート22から導入された酸素含有ガスと、第3のガス導入ポート23から導入されたHClガス等のCl含有ガスとを混合させ、その混合ガスに基板10を曝し、基板10の主面11上にβ-Ga系単結晶膜12をエピタキシャル成長させる。このとき、反応炉20を収容する炉内の結晶成長領域R2における圧力を、例えば、1atmに保つ。 Next, while maintaining the atmospheric temperature of the crystal growth region R2 of the reactor 20 at a predetermined temperature, for example, 800 to 1100° C., using the heating means 26, in the crystal growth region R2, the raw material reaction region R1 is heated. GaCl gas, an oxygen-containing gas introduced from the second gas introduction port 22, and a Cl-containing gas such as HCl gas introduced from the third gas introduction port 23 are mixed, and the substrate 10 is added to the mixed gas. Then, a β-Ga 2 O 3 single crystal film 12 is epitaxially grown on the main surface 11 of the substrate 10 . At this time, the pressure in the crystal growth region R2 in the furnace housing the reactor 20 is maintained at, for example, 1 atm.
 ここで、Si等の添加元素を含むβ-Ga系単結晶膜12を形成する場合には、原料ガスであるGaClガス、酸素含有ガス、及び粉降りの発生を抑える為のHClガス等のCl含有ガスに加えて、第3のガス導入ポート23より、添加元素の原料ガス(例えば、四塩化ケイ素(SiCl)等の塩化物系ガス)も結晶成長領域R2に導入する。 Here, when forming the β-Ga 2 O 3 single crystal film 12 containing additive elements such as Si, GaCl gas as a raw material gas, oxygen-containing gas, and HCl gas to suppress the occurrence of powder fall are used. In addition to the Cl-containing gases, a raw material gas for an additive element (for example, a chloride-based gas such as silicon tetrachloride (SiCl 4 )) is also introduced into the crystal growth region R2 from the third gas introduction port 23.
 なお、β-Ga系単結晶膜12を成長させる際は、酸素含有ガスとして水素を含まないOガスを用いることが好ましい。 Note that when growing the β-Ga 2 O 3 based single crystal film 12, it is preferable to use O 2 gas that does not contain hydrogen as the oxygen-containing gas.
 第1のガス導入ポート21から原料反応領域R1内に導入された、GaClガスを生成するためのCl含有ガスが、β-Ga系単結晶膜12を成膜する工程において結晶成長領域R2へ流れ込む可能性があるが、その結晶成長領域R2へ流れ込む量は、第3のガス導入ポート23から結晶成長領域R2に導入される、粉降りの発生を抑えるためのCl含有ガスの量と比較して十分に少なく、無視できる量である。すなわち、原料反応領域R1から結晶成長領域R2へ流れ込むGaClガスを生成するためのCl含有ガスは、粉降りの発生の抑制に寄与しない。 The Cl-containing gas for generating GaCl gas introduced into the raw material reaction region R1 from the first gas introduction port 21 is used in the crystal growth region in the process of forming the β-Ga 2 O 3 -based single crystal film 12. However, the amount flowing into the crystal growth region R2 is the same as the amount of Cl-containing gas introduced from the third gas introduction port 23 into the crystal growth region R2 to suppress the occurrence of powder falling. The amount is sufficiently small in comparison and can be ignored. That is, the Cl-containing gas for generating GaCl gas flowing from the raw material reaction region R1 to the crystal growth region R2 does not contribute to suppressing the occurrence of powder falling.
 図3は、粉降りの発生を抑制するためのHClガスの供給量とβ-Ga系単結晶膜12の状態の関係を示す表である。図3には、HClガスの供給量が異なる条件で成膜された複数種のβ-Ga系単結晶膜12の断面のSEM(走査電子顕微鏡)観察画像が含まれている。図3のSEM観察画像に含まれるβ-Ga系単結晶膜12は、いずれも基板10としてのサファイア基板上に成膜されたβ-Ga単結晶膜である。 FIG. 3 is a table showing the relationship between the amount of HCl gas supplied and the state of the β-Ga 2 O 3 single crystal film 12 for suppressing the occurrence of powder falling. FIG. 3 includes SEM (scanning electron microscopy) images of cross sections of a plurality of types of β-Ga 2 O 3 -based single crystal films 12 formed under conditions with different amounts of HCl gas supplied. The β-Ga 2 O 3 single crystal film 12 included in the SEM observation image of FIG. 3 is a β-Ga 2 O 3 single crystal film formed on a sapphire substrate as the substrate 10.
 図3に含まれるRHClは、反応炉20内のGaClガスの分圧PGaClに対するHClガスの分圧PHClの比の値である。すなわち、RHCl=PHCl/PGaClである。 R HCl included in FIG. 3 is a value of the ratio of the partial pressure of HCl gas P HCl to the partial pressure P GaCl of GaCl gas in the reactor 20. That is, R HCl = P HCl /P GaCl .
 HVPE法による成膜中に原料ガスであるGaClガスと酸素含有ガスが気相反応することによりGa酸化物の粉が気相中で生成されて基板に付着する現象、すなわち粉降りが発生すると、β-Ga系単結晶膜12が三次元的に異常成長し、その断面のSEM観察画像では空隙が多く密度の低いような膜として観察される。 During film formation by the HVPE method, when GaCl gas, which is a raw material gas, and oxygen-containing gas react in the gas phase, Ga oxide powder is generated in the gas phase and adheres to the substrate, that is, when powder falling occurs, The β-Ga 2 O 3 single crystal film 12 grows abnormally in three dimensions, and in the SEM image of its cross section, it is observed as a film with many voids and low density.
 図3によれば、RHCl=0、すなわちβ-Ga系単結晶膜12の成膜の際にHClガスを供給しない場合は、β-Ga系単結晶膜12が粉降りにより異常成長している。 According to FIG. 3, when R HCl = 0, that is, when HCl gas is not supplied during the formation of the β-Ga 2 O 3 -based single crystal film 12, the β-Ga 2 O 3 -based single crystal film 12 becomes a powder. Abnormal growth due to rain.
 また、図3によれば、GaClガスの分圧PGaClが1.3×10-3atmであるときには、RHClがおよそ0.25以上でβ-Ga系単結晶膜12の異常成長が効果的に抑えられ、RHClがおよそ0.50以上でほぼ完全に抑えられることがわかる。また、GaClガスの分圧PGaClが2.7×10-3atmであるときには、RHClがおよそ0.50以上でβ-Ga系単結晶膜12の異常成長が効果的に抑えられ、RHClがおよそ1.0以上でほぼ完全に抑えられることがわかる。 Further, according to FIG. 3, when the partial pressure P GaCl of GaCl gas is 1.3×10 −3 atm, abnormality in the β-Ga 2 O 3 single crystal film 12 occurs when R HCl is approximately 0.25 or more. It can be seen that growth is effectively suppressed and almost completely suppressed when R HCl is approximately 0.50 or higher. Furthermore, when the partial pressure P GaCl of the GaCl gas is 2.7×10 −3 atm, the abnormal growth of the β-Ga 2 O 3 single crystal film 12 is effectively suppressed when the R HCl is approximately 0.50 or more. It can be seen that R HCl is almost completely suppressed when it is approximately 1.0 or more.
 さらに、GaClガスの分圧PGaClが5.3×10-3atmであるときには、RHClがおよそ1.0以上でβ-Ga系単結晶膜12の異常成長が効果的に抑えられ、RHClがおよそ2.0以上でほぼ完全に抑えられることが確認されている。 Furthermore, when the partial pressure P GaCl of the GaCl gas is 5.3×10 −3 atm, abnormal growth of the β-Ga 2 O 3 single crystal film 12 is effectively suppressed when R HCl is approximately 1.0 or more. It has been confirmed that R HCl can be almost completely suppressed at approximately 2.0 or higher.
 これらの結果から、β-Ga系単結晶膜12の成膜の際にHClガスを供給することにより、粉降りの発生によるβ-Ga系単結晶膜12の異常成長を抑えることができ、また、HClガスの供給量を増やす、すなわちRHClを増加させることにより、より効果的に異常成長が抑えられることがわかった。HClガスの供給により粉降りの発生が抑えられるのは、HClガスが気相中で生成されるGa酸化物の粉を分解するためであると考えられる。 From these results, it is possible to prevent the abnormal growth of the β-Ga 2 O 3 single crystal film 12 due to the occurrence of powder by supplying HCl gas during the formation of the β-Ga 2 O 3 single crystal film 12. It has also been found that abnormal growth can be suppressed more effectively by increasing the amount of HCl gas supplied, that is, by increasing R HCl . The reason why the supply of HCl gas suppresses the occurrence of powder falling is considered to be because HCl gas decomposes Ga oxide powder generated in the gas phase.
 また、異常成長がほぼ完全に抑えられるときのRHClの下限値を100%としたときに、RHClをおよそ50%以上とすることにより、ある程度効果的に異常成長を抑えられることがわかった。 In addition, when the lower limit of R HCl at which abnormal growth is almost completely suppressed is 100%, it was found that abnormal growth can be suppressed to some extent effectively by increasing R HCl to approximately 50% or more. .
 また、β-Ga系単結晶膜12の成膜の際にHClガスを供給することにより、GaClガスの分圧PGaClが1.3×10-3atm、2.7×10-3atm、5.3×10-3atmのいずれである場合にも、粉降りを抑えるためのβ-Ga系単結晶膜12の成膜速度が、成膜時にHClガスを供給しない従来の方法における成膜速度(5μm/h未満)よりも格段に大きくなることがわかった。 In addition, by supplying HCl gas during the formation of the β-Ga 2 O 3 single crystal film 12, the partial pressure of GaCl gas P GaCl is 1.3×10 −3 atm, 2.7×10 − 3 atm or 5.3×10 -3 atm, the deposition rate of the β-Ga 2 O 3 single crystal film 12 to suppress powder fall is such that HCl gas is not supplied during film formation. It was found that the film formation rate was significantly higher than that of the conventional method (less than 5 μm/h).
 なお、HClガスの供給量とβ-Ga系単結晶膜12の状態の関係及びHClガスの供給量とβ-Ga系単結晶膜12の成膜速度の関係は、β-Ga系単結晶膜12がβ-Ga単結晶膜以外のβ-Ga系単結晶膜である場合にも同様に成り立つ。また、粉降りの発生を抑えるためにHClガスの代わりにClガスを用いる場合であっても、上記のHClガスを用いる場合の結果と同様の結果が得られる。すなわち、Clガスの供給量とβ-Ga系単結晶膜12の状態の関係及びClガスの供給量とβ-Ga系単結晶膜12の成膜速度の関係は、上記のHClガスの供給量とβ-Ga系単結晶膜12の状態の関係及びHClガスの供給量とβ-Ga系単結晶膜12の成膜速度の関係とほぼ同じになる。さらに、粉降りの発生を抑えるためにHClガスの代わりにHClガスとClガスの混合ガスを用いる場合であっても同様である。ただし、HClガスを用いる場合、ClガスやHClガスとClガスの混合ガスを用いる場合よりも粉降りの発生を抑制する効果が大きくなる傾向がある。 The relationship between the amount of HCl gas supplied and the state of the β-Ga 2 O 3 single crystal film 12 and the relationship between the amount of HCl gas supplied and the deposition rate of the β-Ga 2 O 3 single crystal film 12 are as follows: β The same holds true even when the -Ga 2 O 3 single crystal film 12 is a β-Ga 2 O 3 single crystal film other than the β-Ga 2 O 3 single crystal film. Further, even when using Cl 2 gas instead of HCl gas to suppress the occurrence of powder falling, the same results as those obtained when using HCl gas described above can be obtained. That is, the relationship between the amount of Cl 2 gas supplied and the state of the β-Ga 2 O 3 single crystal film 12 and the relationship between the amount of Cl 2 gas supplied and the deposition rate of the β-Ga 2 O 3 single crystal film 12 are as follows. , approximately the same as the relationship between the amount of HCl gas supplied and the state of the β-Ga 2 O 3 single crystal film 12 and the relationship between the amount of HCl gas supplied and the deposition rate of the β-Ga 2 O 3 single crystal film 12. It will be the same. Furthermore, the same applies even when a mixed gas of HCl gas and Cl 2 gas is used instead of HCl gas to suppress the occurrence of powder falling. However, when HCl gas is used, the effect of suppressing the occurrence of powder precipitation tends to be greater than when using Cl 2 gas or a mixed gas of HCl gas and Cl 2 gas.
 図4は、GaClガスの分圧PGaClが1.3×10-3atm、2.7×10-3atmであるときのRHClとβ-Ga系単結晶膜12の成膜速度との関係を示すグラフである。 FIG. 4 shows the formation of R HCl and β-Ga 2 O 3 single crystal film 12 when the partial pressure P GaCl of GaCl gas is 1.3×10 −3 atm and 2.7×10 −3 atm. It is a graph showing the relationship with speed.
 図4は、RHClが大きい、すなわち成膜時のHClガスの供給量が大きいほど、β-Ga系単結晶膜12の成膜速度が低下することを示している。すなわち、β-Ga系単結晶膜12の成膜の際にHClガスを供給することにより、粉降りの発生によるβ-Ga系単結晶膜12の異常成長を抑えることができるが、HClガスの供給量が大きすぎると、β-Ga系単結晶膜12の成膜速度が小さくなってしまう。 FIG. 4 shows that the deposition rate of the β-Ga 2 O 3 single crystal film 12 decreases as R HCl increases, that is, the amount of HCl gas supplied during film deposition increases. That is, by supplying HCl gas during the formation of the β-Ga 2 O 3 -based single crystal film 12, abnormal growth of the β-Ga 2 O 3 -based single crystal film 12 due to the occurrence of powder precipitation can be suppressed. However, if the amount of HCl gas supplied is too large, the deposition rate of the β-Ga 2 O 3 -based single crystal film 12 will become low.
 HClガスの供給量の増加に伴うβ-Ga系単結晶膜12の成膜速度の低下を抑えるためには、異常成長がほぼ完全に抑えられるときのRHClの下限値を100%としたときに、RHClをおよそ150%以下とすることが好ましい。 In order to suppress the decrease in the deposition rate of the β-Ga 2 O 3 -based single crystal film 12 due to an increase in the supply amount of HCl gas, the lower limit of R HCl at which abnormal growth can be almost completely suppressed is set to 100%. Preferably, R HCl is approximately 150% or less.
 図5は、RHClの好ましい範囲を示すグラフである。図5の実線RHCl=357.13×PGaClは、GaClガスの分圧PGaClが1.3×10-3atm、2.7×10-3atm、5.3×10-3atmであるときの、異常成長がほぼ完全に抑えられるときのRHClの下限値に基づいて引かれた近似直線である。 FIG. 5 is a graph showing preferred ranges of R HCl . The solid line R HCl = 357.13×P GaCl in FIG . This is an approximate straight line drawn based on the lower limit value of R HCl when abnormal growth is almost completely suppressed.
 図5の下側の点線RHCl=187.57×PGaClは、実線RHCl=357.13×PGaClのRHClを50%にした直線である。また、図5の上側の点線RHCl=562.7×PGaClは、実線RHCl=357.13×PGaClのRHClを150%にした直線である。 The dotted line R HCl =187.57×P GaCl on the lower side of FIG. 5 is a straight line with the R HCl of the solid line R HCl =357.13×P GaCl set to 50%. Further, the dotted line R HCl =562.7×P GaCl on the upper side of FIG. 5 is a straight line with R HCl of the solid line R HCl =357.13×P GaCl set to 150%.
 このため、粉降りの発生によるβ-Ga系単結晶膜12の異常成長を抑えるためには、RHClが187.57×PGaCl以上、すなわちPGaClとRHClをプロットした点が図5の点線RHCl=187.57×PGaClの線上又は上側に位置することが好ましく、RHClが357.13×PGaCl以上、すなわちPGaClとRHClをプロットした点が図5の実線RHCl=357.13×PGaClの線上又は上側に位置することがより好ましい。 Therefore, in order to suppress the abnormal growth of the β-Ga 2 O 3 single crystal film 12 due to the occurrence of powder falling, R HCl must be 187.57×P GaCl or more, that is, the point where P GaCl and R HCl are plotted is It is preferable that the dotted line R HCl = 187.57×P GaCl in FIG. 5 be located on or above the line , and the solid line in FIG . It is more preferable that R HCl =357.13×P be located on or above the line of GaCl .
 また、HClガスの供給量の増加に伴うβ-Ga系単結晶膜12の成膜速度の低下を抑えるためには、RHClが562.7×PGaCl以下、すなわちPGaClとRHClをプロットした点が図5の点線RHCl=562.7×PGaClの線上又は下側に位置することが好ましい。 In addition, in order to suppress the decrease in the deposition rate of the β-Ga 2 O 3 series single crystal film 12 due to an increase in the supply amount of HCl gas, it is necessary to set R HCl to 562.7×P GaCl or less, that is, P GaCl and R It is preferable that the point where HCl is plotted is located on or below the dotted line R HCl =562.7×P GaCl in FIG.
 上述のように、粉降りの発生を抑えるためにHClガスの代わりにClガスやHClガスとClガスの混合ガスを用いる場合であっても、上記のHClガスを用いる場合の結果と同様の結果が得られるため、PGaClに対するClガスの分圧PCl2の比の値RCl2やPGaClに対するClガスとClガスの混合ガスの分圧Pmixの比の値Rmixの好ましい値は、RHClの好ましい値と同様である。すなわち、粉降りの発生によるβ-Ga系単結晶膜12の異常成長を抑えるためには、RCl2やRmixが187.57×PGaCl以上であることが好ましく、357.13×PGaCl以上であることがより好ましい。また、ClガスやHClガスとClガスの混合ガスの供給量の増加に伴うβ-Ga系単結晶膜12の成膜速度の低下を抑えるためには、RCl2やRmixが562.7×PGaCl以下であることが好ましい。 As mentioned above, even when using Cl 2 gas or a mixed gas of HCl gas and Cl 2 gas instead of HCl gas to suppress the occurrence of powder falling, the same result as when using HCl gas described above is obtained. Since the result is obtained, the value of the ratio of the partial pressure P Cl2 of Cl 2 gas to P GaCl , the value R mix of the partial pressure P mix of the mixed gas of Cl 2 gas and Cl 2 gas to P Cl2 and P GaCl , Preferred values are similar to those for R HCl . That is, in order to suppress abnormal growth of the β-Ga 2 O 3 single crystal film 12 due to occurrence of powder falling, R Cl2 and R mix are preferably 187.57×P GaCl or more, and 357.13× More preferably, it is equal to or higher than P GaCl . In addition, in order to suppress the decrease in the deposition rate of the β-Ga 2 O 3 -based single crystal film 12 due to an increase in the supply amount of Cl 2 gas or a mixed gas of HCl gas and Cl 2 gas, R Cl 2 or R mix is preferably 562.7×P GaCl or less.
 また、粉降りはβ-Ga系単結晶膜12の成膜中に原料ガスが気相反応することにより生じる現象であるため、上記のHClガスなどのCl含有ガスにより粉降りの発生を抑制する効果は、基板の材料に依らず同様に得られる。例えば、図3~5に示される結果は、基板10としてサファイア基板を用いた実験により得られたものであるが、基板10としてサファイア基板の代わりにβ-Ga系単結晶などの他の材料からなる基板を用いた場合であっても、同様の結果が得られる。 In addition, since powder falling is a phenomenon caused by a gas phase reaction of the raw material gas during the formation of the β-Ga 2 O 3 single crystal film 12, powder falling may occur due to Cl-containing gas such as the HCl gas mentioned above. The effect of suppressing this can be obtained in the same way regardless of the material of the substrate. For example, the results shown in FIGS. 3 to 5 were obtained through experiments using a sapphire substrate as the substrate 10, but instead of the sapphire substrate, other materials such as β-Ga 2 O 3 single crystal were used as the substrate 10. Similar results can be obtained even when using a substrate made of a material of
 図6は、二次イオン質量分析法(SIMS)により測定した、結晶積層構造体1中の不純物濃度を表すグラフである。図6に係る結晶積層構造体1の基板10はβ-Ga単結晶基板であり、β-Ga系単結晶膜12は粉降りの発生を抑えるためにHClガスを用いて成膜されたβ-Ga単結晶膜である。 FIG. 6 is a graph showing the impurity concentration in the crystal laminated structure 1 measured by secondary ion mass spectrometry (SIMS). The substrate 10 of the crystal laminated structure 1 according to FIG. 6 is a β-Ga 2 O 3 single-crystal substrate, and the β-Ga 2 O 3 -based single crystal film 12 is formed by using HCl gas to suppress the occurrence of powder falling. This is a deposited β-Ga 2 O 3 single crystal film.
 図6の横軸は結晶積層構造体1のβ-Ga系単結晶膜12の表面13からの深さ(μm)を表し、縦軸は各不純物の濃度(cm-3)を表す。なお、結晶積層構造体1の基板10とβ-Ga系単結晶膜12の界面の深さはおよそ15μmであり、図6のグラフに示される不純物の濃度は、β-Ga系単結晶膜12中の不純物の濃度である。 The horizontal axis in FIG. 6 represents the depth (μm) from the surface 13 of the β-Ga 2 O 3 single crystal film 12 of the crystal laminated structure 1, and the vertical axis represents the concentration of each impurity (cm −3 ). . The depth of the interface between the substrate 10 of the crystal laminated structure 1 and the β-Ga 2 O 3 single crystal film 12 is approximately 15 μm, and the impurity concentration shown in the graph of FIG . This is the concentration of impurities in the 3 -system single crystal film 12.
 図6は、H、C、Cl、N、Siの結晶積層構造体1中の濃度を表す。図6によれば、H、C、N、Siについては、β-Ga系単結晶膜12中の濃度が測定可能な下限値に近く、Clについては、β-Ga系単結晶膜の成膜の際にHClガスを供給しない従来の成長手法と同等の濃度である。このことは、β-Ga系単結晶膜12が純度の高い膜であることを示している。また、図6に示されるHの濃度から、β-Ga系単結晶膜12の成膜時に供給されるHClに由来するHのβ-Ga系単結晶膜12への混入がないことが確認された。また、図6に示されるSiの濃度から、石英からなる反応炉20からβ-Ga系単結晶膜12へのSiの混入がないことが確認された。 FIG. 6 shows the concentrations of H, C, Cl, N, and Si in the crystal laminated structure 1. According to FIG. 6, the concentrations of H, C, N, and Si in the β-Ga 2 O 3 single crystal film 12 are close to the measurable lower limit values, and for Cl, the concentrations in the β-Ga 2 O 3 single crystal film 12 are close to the measurable lower limit values. The concentration is equivalent to that of a conventional growth method in which HCl gas is not supplied during the formation of a single crystal film. This shows that the β-Ga 2 O 3 -based single crystal film 12 is a highly pure film. Furthermore, from the concentration of H shown in FIG. 6, it can be seen that H derived from HCl supplied during the formation of the β-Ga 2 O 3 -based single crystal film 12 is mixed into the β-Ga 2 O 3 -based single crystal film 12. It was confirmed that there was no Further, from the Si concentration shown in FIG. 6, it was confirmed that no Si was mixed into the β-Ga 2 O 3 single crystal film 12 from the quartz reactor 20.
 図6によれば、β-Ga系単結晶膜12中におよそ1.5×1016(cm-3)以下のClが含まれている。これは、β-Ga系単結晶膜12がCl含有ガスを用いるHVPE法により形成されることに起因する。通常、HVPE法以外の方法によりβ-Ga系単結晶膜を形成する場合には、Cl含有ガスを用いないため、β-Ga系単結晶膜中にClが含まれることはなく、少なくとも、1×1015cm-3以上のClが含まれることはない。 According to FIG. 6, approximately 1.5×10 16 (cm −3 ) or less of Cl is contained in the β-Ga 2 O 3 single crystal film 12. This is because the β-Ga 2 O 3 single crystal film 12 is formed by the HVPE method using a Cl-containing gas. Normally, when forming a β-Ga 2 O 3 single-crystal film by a method other than the HVPE method, Cl-containing gas is not used, so Cl is not included in the β-Ga 2 O 3 -based single crystal film. At least, it does not contain more than 1×10 15 cm −3 of Cl.
(実施の形態の効果)
 上記本発明の実施の形態によれば、β-Ga系単結晶膜の成膜の際にHClガス、Clガス、又はHClガスとClガスの混合ガスを供給することにより、粉降りの発生を抑えつつ高い成膜速度でβ-Ga系単結晶膜を成長させることができる。
(Effects of embodiment)
According to the embodiment of the present invention, by supplying HCl gas, Cl 2 gas, or a mixed gas of HCl gas and Cl 2 gas when forming a β-Ga 2 O 3 -based single crystal film, A β-Ga 2 O 3 -based single crystal film can be grown at a high deposition rate while suppressing the occurrence of powder falling.
 以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。また、発明の主旨を逸脱しない範囲内において上記実施の形態の構成要素を任意に組み合わせることができる。また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. Furthermore, the constituent elements of the embodiments described above can be arbitrarily combined without departing from the spirit of the invention. Furthermore, the embodiments described above do not limit the claimed invention. Furthermore, it should be noted that not all combinations of features described in the embodiments are essential for solving the problems of the invention.
 粉降りの発生を抑えつつ高い成膜速度でβ-Ga系単結晶膜を成長させることのできる、β-Ga系単結晶膜の成長方法を提供する。 Provided is a method for growing a β-Ga 2 O 3 -based single crystal film, which can grow the β-Ga 2 O 3 -based single crystal film at a high deposition rate while suppressing the occurrence of powder falling.
1…結晶積層構造体、 10…基板、 11…主面、 12…β-Ga系単結晶膜、 2…気相成長装置、 20…反応炉、 21…第1のガス導入ポート、 22…第2のガス導入ポート、 23…第3のガス導入ポート、 24…排気ポート、 25…反応容器、 26…加熱手段 DESCRIPTION OF SYMBOLS 1... Crystal laminated structure, 10... Substrate, 11... Main surface, 12... β-Ga 2 O 3 system single crystal film, 2... Vapor phase growth apparatus, 20... Reactor, 21... First gas introduction port, 22...Second gas introduction port, 23...Third gas introduction port, 24...Exhaust port, 25...Reaction container, 26...Heating means

Claims (4)

  1.  HVPE法によるβ-Ga系単結晶膜の成長方法であって、
     基板を原料ガスであるGaClガス及び酸素含有ガス、並びにCl含有ガスに曝し、前記基板の主面上にβ-Ga系単結晶膜を成長させる工程を含み、
     前記Cl含有ガスが、HClガス、Clガス、又はHClガスとClガスの混合ガスである、
     β-Ga系単結晶膜の成長方法。
    A method for growing a β-Ga 2 O 3 single crystal film by HVPE method, the method comprising:
    A step of exposing the substrate to GaCl gas and oxygen-containing gas, which are source gases, and Cl-containing gas, and growing a β-Ga 2 O 3 -based single crystal film on the main surface of the substrate,
    The Cl-containing gas is HCl gas, Cl 2 gas, or a mixed gas of HCl gas and Cl 2 gas,
    A method for growing a β-Ga 2 O 3 single crystal film.
  2.  前記GaClガスの分圧PGaClに対する前記Cl含有ガスの分圧の比の値であるRが、187.57×PGaCl以上である、
     請求項1に記載のβ-Ga系単結晶膜の成長方法。
    R, which is the ratio of the partial pressure of the Cl-containing gas to the partial pressure P GaCl of the GaCl gas, is 187.57×P GaCl or more;
    The method for growing a β-Ga 2 O 3 single crystal film according to claim 1.
  3.  前記GaClガスの分圧PGaClに対する前記Cl含有ガスの分圧の比の値であるRが、357.13×PGaCl以上である、
     請求項1に記載のβ-Ga系単結晶膜の成長方法。
    R, which is the ratio of the partial pressure of the Cl-containing gas to the partial pressure P GaCl of the GaCl gas, is 357.13×P GaCl or more;
    The method for growing a β-Ga 2 O 3 single crystal film according to claim 1.
  4.  前記Rが、562.7×PGaCl以下である、
     請求項2又は3に記載のβ-Ga系単結晶膜の成長方法。
    The R is 562.7×P GaCl or less,
    The method for growing a β-Ga 2 O 3 single crystal film according to claim 2 or 3.
PCT/JP2023/028415 2022-08-10 2023-08-03 METHOD FOR GROWING β-GA2O3-BASED SINGLE CRYSTAL FILM WO2024034512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022128500A JP2024025233A (en) 2022-08-10 2022-08-10 Growth method of β-Ga2O3 single crystal film
JP2022-128500 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034512A1 true WO2024034512A1 (en) 2024-02-15

Family

ID=89851713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028415 WO2024034512A1 (en) 2022-08-10 2023-08-03 METHOD FOR GROWING β-GA2O3-BASED SINGLE CRYSTAL FILM

Country Status (2)

Country Link
JP (1) JP2024025233A (en)
WO (1) WO2024034512A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020073425A (en) * 2013-09-30 2020-05-14 株式会社タムラ製作所 Crystal laminated structure, and method for manufacturing the same
JP2021172555A (en) * 2020-04-24 2021-11-01 株式会社Flosfia Production method of crystal film
JP7083139B1 (en) * 2021-08-06 2022-06-10 株式会社タムラ製作所 Semiconductor substrates, semiconductor wafers, and methods for manufacturing semiconductor wafers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020073425A (en) * 2013-09-30 2020-05-14 株式会社タムラ製作所 Crystal laminated structure, and method for manufacturing the same
JP2021172555A (en) * 2020-04-24 2021-11-01 株式会社Flosfia Production method of crystal film
JP7083139B1 (en) * 2021-08-06 2022-06-10 株式会社タムラ製作所 Semiconductor substrates, semiconductor wafers, and methods for manufacturing semiconductor wafers

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EMA K.; SASAKI K.; KURAMATA A.; MURAKAMI H.: "Homo- and hetero-epitaxial growth of β-gallium oxide via GaCl3-O2-N2 system", JOURNAL OF CRYSTAL GROWTH, ELSEVIER, AMSTERDAM, NL, vol. 564, 29 March 2021 (2021-03-29), AMSTERDAM, NL , XP086545706, ISSN: 0022-0248, DOI: 10.1016/j.jcrysgro.2021.126129 *
NAGANO RISA, EMA KENTARO, SASAKI KOHEI, KURAMATA AKITO, MURAKAMI HISASHI: "Effect of etching gas addition on β-Ga 2 O 3 HVPE growth", 20P-B203-17. PROCEEDINGS OF THE 83RD JAPAN SOCIETY OF APPLIED PHYSICS AUTUMN ACADEMIC CONFERENCE, 26 August 2022 (2022-08-26), pages 16 - 030, XP093138418, Retrieved from the Internet <URL:https://confit.atlas.jp/guide/event-img/jsap2022a/20p-B203-17/public/pdf?type=in> [retrieved on 20240306] *
OSHIMA TAKAYOSHI, OSHIMA YUICHI: "Selective area growth of β-Ga 2 O 3 by HCl-based halide vapor phase epitaxy", APPLIED PHYSICS EXPRESS, JAPAN SOCIETY OF APPLIED PHYSICS; JP, JP, vol. 15, no. 7, 1 July 2022 (2022-07-01), JP , pages 075503, XP093138408, ISSN: 1882-0778, DOI: 10.35848/1882-0786/ac75c8 *

Also Published As

Publication number Publication date
JP2024025233A (en) 2024-02-26

Similar Documents

Publication Publication Date Title
US20210404086A1 (en) Method for growing beta-ga2o3-based single crystal film, and crystalline layered structure
US11047067B2 (en) Crystal laminate structure
JP5665094B2 (en) n-type group III nitride compound semiconductor
US20080083970A1 (en) Method and materials for growing III-nitride semiconductor compounds containing aluminum
WO2012042961A1 (en) Growth method for gan crystal and gan crystal substrate
JP2009126723A (en) Growing method of group iii nitride semiconductor crystal, fabrication method of group iii nitride semiconductor crystal substrate, and group iii nitride semiconductor crystal substrate
JP2006111478A (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and its manufacturing method
WO2016152536A1 (en) High withstand voltage schottky barrier diode
WO2023013696A1 (en) Semiconductor substrate, semiconductor wafer, and method for manufacturing semiconductor wafer
JP6875708B2 (en) Crystallized structure and method for manufacturing it
US20120104557A1 (en) Method for manufacturing a group III nitride crystal, method for manufacturing a group III nitride template, group III nitride crystal and group III nitride template
JP2019048766A (en) α-Ga 2O3 SINGLE CRYSTAL, METHOD FOR MANUFACTURING THE SAME AND SEMICONDUCTOR ELEMENT USING α-Ga2O3 SINGLE CRYSTAL
JP6842128B2 (en) α-Ga2O3 single crystal manufacturing equipment
WO2024034512A1 (en) METHOD FOR GROWING β-GA2O3-BASED SINGLE CRYSTAL FILM
JP6052465B2 (en) Method for manufacturing epitaxial silicon carbide wafer
WO2022059669A1 (en) β-GA2O3-BASED SINGLE CRYSTAL FILM AND METHOD OF MANUFACTURING SAME
US20220056614A1 (en) Method of manufacturing group-iii nitride crystal
WO2024075430A1 (en) Epitaxial wafer, and method for producing same
JP2020200223A (en) Production method and production apparatus of group iii element nitride crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852478

Country of ref document: EP

Kind code of ref document: A1