JP6875708B2 - Crystallized structure and method for manufacturing it - Google Patents

Crystallized structure and method for manufacturing it Download PDF

Info

Publication number
JP6875708B2
JP6875708B2 JP2019175654A JP2019175654A JP6875708B2 JP 6875708 B2 JP6875708 B2 JP 6875708B2 JP 2019175654 A JP2019175654 A JP 2019175654A JP 2019175654 A JP2019175654 A JP 2019175654A JP 6875708 B2 JP6875708 B2 JP 6875708B2
Authority
JP
Japan
Prior art keywords
gas
crystal film
film
single crystal
gacl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019175654A
Other languages
Japanese (ja)
Other versions
JP2020073425A (en
Inventor
後藤 健
健 後藤
公平 佐々木
公平 佐々木
纐纈 明伯
明伯 纐纈
熊谷 義直
義直 熊谷
尚 村上
尚 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Tamura Corp
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, Tamura Corp filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Publication of JP2020073425A publication Critical patent/JP2020073425A/en
Application granted granted Critical
Publication of JP6875708B2 publication Critical patent/JP6875708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、結晶積層構造体、及びそれを製造する方法に関する。 The present invention relates to a crystal laminated structure and a method for producing the same.

従来、β−Ga単結晶膜の成長方法として、MBE(Molecular Beam Epitaxy)法やPLD(Pulsed Laser Deposition)法が知られている(例えば、特許文献1、2参照)。また、ゾル−ゲル法、MOCVD(Metal Organic Chemical Vapor Deposition)法、ミストCVD法による成長方法も知られている。 Conventionally, the MBE (Molecular Beam Epitaxy) method and the PLD (Pulsed Laser Deposition) method are known as methods for growing a β-Ga 2 O 3 single crystal film (see, for example, Patent Documents 1 and 2). Further, a growth method by a sol-gel method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, or a mist CVD method is also known.

特開2013―56803号公報Japanese Unexamined Patent Publication No. 2013-56803 特許第4565062号公報Japanese Patent No. 4565062

しかしながら、MBE法では高真空チャンバー内で結晶成長を行うため、β−Ga単結晶膜の大口径化が困難である。また、一般的に成長温度を上げると高品質な膜が得られるが、原料ガスの再蒸発が増加するため十分な成膜速度が得られず、大量生産には向かない。 However, in the MBE method, since the crystal grows in the high vacuum chamber, it is difficult to increase the diameter of the β-Ga 2 O 3 single crystal film. Further, in general, when the growth temperature is raised, a high-quality film can be obtained, but since the re-evaporation of the raw material gas increases, a sufficient film forming rate cannot be obtained, which is not suitable for mass production.

また、PLD法に関しては、ソース(基板への原料供給源)が点源であり、ソース直上とそれ以外の場所で成長レートが異なるために、膜厚の面内分布が不均一になりやすく、面積の大きい膜の成長に向かない。また、成膜レートが低く、厚膜の成長には長い時間を要するため、大量生産には向かない。 Further, regarding the PLD method, the source (source of raw material to the substrate) is the point source, and the growth rate differs between the place directly above the source and other places, so that the in-plane distribution of the film thickness tends to be uneven. Not suitable for the growth of large-area membranes. Moreover, since the film formation rate is low and it takes a long time to grow a thick film, it is not suitable for mass production.

ゾル−ゲル法、MOCVD法、ミストCVD法に関しては、大口径化は比較的容易だが、使用原料に含まれている不純物がエピタキシャル成長中にβ−Ga単結晶膜に取り込まれてしまうため、高純度な単結晶膜を得ることが困難である。 Regarding the sol-gel method, MOCVD method, and mist CVD method, it is relatively easy to increase the diameter, but impurities contained in the raw materials used are incorporated into the β-Ga 2 O 3 single crystal film during epitaxial growth. , It is difficult to obtain a high-purity single crystal film.

そのため、本発明の目的の1つは、高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることのできるβ−Ga系単結晶膜の成長方法により成長したβ−Ga系単結晶膜を有する結晶積層構造体、及びその製造方法を提供することにある。 Therefore, one object of the present invention, the method of growing β-Ga 2 O 3 single crystal film which can be grown β-Ga 2 O 3 single crystal film of a high quality and large diameter efficiently It is an object of the present invention to provide a crystal laminated structure having a grown β-Ga 2 O 3 system single crystal film, and a method for producing the same.

本発明の一態様は、上記目的を達成するために、下記[1]及び[2]の結晶積層構造体を提供する。 One aspect of the present invention provides the following crystal laminated structures [1] and [2] in order to achieve the above object.

[1]Ga系基板と、前記Ga系基板の主面上に設けられたβ−Ga系単結晶膜と、を含み、前記β−Ga系単結晶膜は、残留キャリア濃度が1×1013/cm以下である結晶積層構造体。 [1] and Ga 2 O 3 based substrate, anda β-Ga 2 O 3 single crystal film provided on a main surface of the Ga 2 O 3 based substrate, the β-Ga 2 O 3 system single The crystal film is a crystal laminated structure having a residual carrier concentration of 1 × 10 13 / cm 3 or less.

本発明によれば、高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることのできるβ−Ga系単結晶膜の成長方法、及びその成長方法により成長した結晶積層構造体、及びその製造方法を提供することができる。 According to the present invention, according to a method for growing a β-Ga 2 O 3 system single crystal film capable of efficiently growing a high quality and large diameter β-Ga 2 O 3 system single crystal film, and a method for growing the β-Ga 2 O 3 system single crystal film. A grown crystal laminated structure and a method for producing the same can be provided.

図1は、実施の形態に係る結晶積層構造体の垂直断面図である。FIG. 1 is a vertical cross-sectional view of the crystal laminated structure according to the embodiment. 図2は、実施の形態に係る気相成長装置の垂直断面図である。FIG. 2 is a vertical cross-sectional view of the vapor phase growth apparatus according to the embodiment. 図3は、熱平衡計算により得られた、塩化ガリウム系ガスがGaClガスのみからなる場合と、GaClガスのみからなる場合のそれぞれの場合におけるGa結晶の成長駆動力と成長温度との関係を表すグラフである。FIG. 3 shows the growth driving force and the growth temperature of the Ga 2 O 3 crystal in each of the cases where the gallium chloride-based gas is composed of only GaCl gas and the case where it is composed of only GaCl 3 gas, which is obtained by the thermal equilibrium calculation. It is a graph showing a relationship. 図4は、熱平衡計算により得られた、GaとClの反応から得られるGaClガス、GaClガス、GaClガス、及び(GaClガスの平衡分圧と雰囲気温度との関係を表すグラフである。Figure 4 represents obtained by heat balance calculation, GaCl gas obtained from the reaction of Ga and Cl 2, GaCl 2 gas, GaCl 3 gas, and (GaCl 3) the relationship between the equilibrium partial pressure and the ambient temperature of 2 gas It is a graph. 図5は、熱平衡計算により得られた、Ga結晶成長の雰囲気温度が1000℃であるときの、GaClの平衡分圧とO/GaCl供給分圧比との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the equilibrium partial pressure of GaCl and the O 2 / GaCl supply partial pressure ratio when the atmospheric temperature of Ga 2 O 3 crystal growth is 1000 ° C., which is obtained by the thermal equilibrium calculation. 図6は、主面の面方位が(010)であるGa基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。FIG. 6 was obtained by a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film was epitaxially grown on the main surface of a Ga 2 O 3 substrate having a plane orientation of (010). It is a graph which shows the X-ray diffraction spectrum. 図7は、主面の面方位が(−201)であるGa基板の主面上にGa単結晶膜を1000℃でエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。FIG. 7 shows a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film was epitaxially grown at 1000 ° C. on the main surface of a Ga 2 O 3 substrate having a plane orientation of (−201). It is a graph which shows the X-ray diffraction spectrum obtained by. 図8は、主面の面方位が(001)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。FIG. 8 is obtained by a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate having a plane orientation of (001). It is a graph which shows the X-ray diffraction spectrum. 図9は、主面の面方位が(101)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。FIG. 9 is obtained by a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate having a plane orientation of (101). It is a graph which shows the X-ray diffraction spectrum. 図10(a)、(b)は、二次イオン質量分析法(SIMS)により測定した、結晶積層構造体中の不純物濃度を表すグラフである。10 (a) and 10 (b) are graphs showing the concentration of impurities in the crystal laminated structure measured by secondary ion mass spectrometry (SIMS). 図11(a)は、主面の面方位が(001)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。図11(b)は、上記の積層構造体の耐電圧特性を表すグラフである。FIG. 11A shows carriers in the depth direction in a crystal laminated structure in which a β-Ga 2 O 3 crystal film is epitaxially grown on a β-Ga 2 O 3 substrate whose main surface orientation is (001). It is a graph which shows the profile of density. FIG. 11B is a graph showing the withstand voltage characteristics of the above-mentioned laminated structure. 図12は、主面の面方位が(010)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。FIG. 12 shows a profile of carrier concentration in the depth direction in a crystal laminated structure in which a β-Ga 2 O 3 crystal film is epitaxially grown on a β-Ga 2 O 3 substrate whose main surface orientation is (010). It is a graph showing.

〔実施の形態〕
(結晶積層構造体の構成)
図1は、実施の形態に係る結晶積層構造体1の垂直断面図である。結晶積層構造体1は、Ga系基板10と、Ga系基板10の主面11上にエピタキシャル結晶成長により形成されたβ−Ga系単結晶膜12を有する。
[Embodiment]
(Structure of crystal laminated structure)
FIG. 1 is a vertical cross-sectional view of the crystal laminated structure 1 according to the embodiment. The crystal laminated structure 1 has a Ga 2 O 3 system substrate 10 and a β-Ga 2 O 3 system single crystal film 12 formed by epitaxial crystal growth on the main surface 11 of the Ga 2 O 3 system substrate 10.

Ga系基板10は、β型の結晶構造を有するGa系単結晶からなる基板である。ここで、Ga系単結晶とは、Ga単結晶、又は、Al、In等の元素が添加されたGa単結晶をいう。例えば、Al及びInが添加されたGa単結晶である(GaAlIn(1−x−y)(0<x≦1、0≦y≦1、0<x+y≦1)単結晶であってもよい。Alを添加した場合にはバンドギャップが広がり、Inを添加した場合にはバンドギャップが狭くなる。また、Ga系基板10は、Si等の導電型不純物を含んでもよい。 The Ga 2 O 3 system substrate 10 is a substrate made of a Ga 2 O 3 system single crystal having a β-type crystal structure. Here, the Ga 2 O 3 system single crystal refers to a Ga 2 O 3 single crystal or a Ga 2 O 3 single crystal to which an element such as Al or In is added. For example, it is a Ga 2 O 3 single crystal to which Al and In are added (Ga x Al y In (1-xy) ) 2 O 3 (0 <x ≦ 1, 0 ≦ y ≦ 1, 0 <x + y). ≦ 1) It may be a single crystal. When Al is added, the bandgap widens, and when In is added, the bandgap narrows. Further, the Ga 2 O 3 system substrate 10 may contain conductive impurities such as Si.

Ga系基板10の主面11の面方位は、例えば、(010)、(−201)、(001)、又は(101)である。 The plane orientation of main surface 11 of Ga 2 O 3 based substrate 10, for example, (010), (- 201) and (001), or (101).

Ga系基板10は、例えば、FZ(Floating Zone)法やEFG(Edge Defined Film Fed Growth)法等の融液成長法により育成したGa系単結晶のバルク結晶を
スライスし、表面を研磨することにより形成される。
The Ga 2 O 3 system substrate 10 is obtained by slicing a bulk crystal of a Ga 2 O 3 system single crystal grown by a melt growth method such as an FZ (Floating Zone) method or an EFG (Edge Defined Film Fed Growth) method. It is formed by polishing the surface.

β−Ga系単結晶膜12は、Ga系基板10と同様に、β型の結晶構造を有するGa系単結晶からなる。また、β−Ga系単結晶膜12は、Si等の導電型不純物を含んでもよい。 The β-Ga 2 O 3 system single crystal film 12 is composed of a Ga 2 O 3 system single crystal having a β type crystal structure, similarly to the Ga 2 O 3 system substrate 10. Further, the β-Ga 2 O 3 system single crystal film 12 may contain conductive impurities such as Si.

(気相成長装置の構造)
以下に、本実施の形態に係るβ−Ga系単結晶膜12の成長に用いる気相成長装置の構造の一例について説明する。
(Structure of vapor deposition apparatus)
Hereinafter, an example of a structure of a vapor phase growth apparatus used for growing the β-Ga 2 O 3 single crystal film 12 of the present embodiment.

図2は、実施の形態に係る気相成長装置2の垂直断面図である。気相成長装置2は、HVPE(Halide Vapor Phase Epitaxy)法用の気相成長装置であり、第1のガス導入ポート21、第2のガス導入ポート22、第3のガス導入ポート23、及び排気ポート24を有する反応チャンバー20と、反応チャンバー20の周囲に設置され、反応チャンバー20内の所定の領域を加熱する第1の加熱手段26及び第2の加熱手段27を有する。 FIG. 2 is a vertical cross-sectional view of the vapor phase growth apparatus 2 according to the embodiment. The gas phase growth device 2 is a gas phase growth device for the HVPE (Halide Vapor Phase Epitaxy) method, and is a first gas introduction port 21, a second gas introduction port 22, a third gas introduction port 23, and an exhaust gas. It has a reaction chamber 20 having a port 24, and a first heating means 26 and a second heating means 27 that are installed around the reaction chamber 20 and heat a predetermined area in the reaction chamber 20.

HVPE法は、PLD法等と比較して、成膜レートが高い。また、膜厚の面内分布の均一性が高く、大口径の膜を成長させることができる。このため、結晶の大量生産に適している。 The HVPE method has a higher film formation rate than the PLD method and the like. In addition, the in-plane distribution of the film thickness is highly uniform, and a large-diameter film can be grown. Therefore, it is suitable for mass production of crystals.

反応チャンバー20は、Ga原料が収容された反応容器25が配置され、ガリウムの原料ガスが生成される原料反応領域R1と、Ga系基板10が配置され、β−Ga系単結晶膜12の成長が行われる結晶成長領域R2を有する。反応チャンバー20は、例えば、石英ガラスからなる。 In the reaction chamber 20, a reaction vessel 25 containing a Ga raw material is arranged, a raw material reaction region R1 in which a gallium raw material gas is generated, and a Ga 2 O 3 system substrate 10 are arranged, and a β-Ga 2 O 3 system is arranged. It has a crystal growth region R2 in which the single crystal film 12 is grown. The reaction chamber 20 is made of, for example, quartz glass.

ここで、反応容器25は、例えば、石英ガラスであり、反応容器25に収容されるGa原料は金属ガリウムである。 Here, the reaction vessel 25 is, for example, quartz glass, and the Ga raw material contained in the reaction vessel 25 is metallic gallium.

第1の加熱手段26と第2の加熱手段27は、反応チャンバー20の原料反応領域R1と結晶成長領域R2をそれぞれ加熱することができる。第1の加熱手段26及び第2の加熱手段27は、例えば、抵抗加熱式や輻射加熱式の加熱装置である。 The first heating means 26 and the second heating means 27 can heat the raw material reaction region R1 and the crystal growth region R2 of the reaction chamber 20, respectively. The first heating means 26 and the second heating means 27 are, for example, resistance heating type or radiant heating type heating devices.

第1のガス導入ポート21は、Clガス又はHClガスであるCl含有ガスを不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応チャンバー20の原料反応領域R1内に導入するためのポートである。第2のガス導入ポート22は、酸素の原料ガスであるOガスやHOガス等の酸素含有ガス及びβ−Ga系単結晶膜12にSi等のドーパントを添加するための塩化物系ガス(例えば、四塩化ケイ素等)を不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応チャンバー20の結晶成長領域R2へ導入するためのポートである。第3のガス導入ポート23は、不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を反応チャ
ンバー20の結晶成長領域R2へ導入するためのポートである。
The first gas introduction port 21 uses a Cl-containing gas which is Cl 2 gas or an HCl gas as a carrier gas (N 2 gas, Ar gas or He gas) which is an inert gas, and is used as a raw material reaction region R1 of the reaction chamber 20. It is a port for introducing inside. The second gas introduction port 22 is for adding a dopant such as Si to an oxygen-containing gas such as O 2 gas or H 2 O gas which is a raw material gas of oxygen and a β-Ga 2 O 3 system single crystal film 12. chloride-based gas (e.g., silicon tetrachloride, etc.) is the port for introducing the crystal growth region R2 of the reaction chamber 20 using a carrier gas is an inert gas (N 2 gas, Ar gas or He gas) .. The third gas introducing port 23 is a port for introducing the carrier gas is an inert gas (N 2 gas, Ar gas or He gas) into the crystal growth region R2 of the reaction chamber 20.

(β−Ga系単結晶膜の成長)
以下に、本実施の形態に係るβ−Ga系単結晶膜12の成長工程の一例について説明する。
(Growth of β-Ga 2 O 3 system single crystal film)
Hereinafter, an example of a process of growing β-Ga 2 O 3 single crystal film 12 of the present embodiment.

まず、第1の加熱手段26を用いて反応チャンバー20の原料反応領域R1を加熱し、原料反応領域R1の雰囲気温度を所定の温度に保つ。 First, the raw material reaction region R1 of the reaction chamber 20 is heated by using the first heating means 26, and the ambient temperature of the raw material reaction region R1 is kept at a predetermined temperature.

次に、第1のガス導入ポート21からCl含有ガスをキャリアガスを用いて導入し、原料反応領域R1において、上記の雰囲気温度下で反応容器25内の金属ガリウムとCl含有ガスを反応させ、塩化ガリウム系ガスを生成する。 Next, a Cl-containing gas is introduced from the first gas introduction port 21 using a carrier gas, and the metallic gallium in the reaction vessel 25 and the Cl-containing gas are reacted in the raw material reaction region R1 under the above-mentioned atmospheric temperature. Produces gallium chloride-based gas.

このとき、上記の原料反応領域R1内の雰囲気温度は、反応容器25内の金属ガリウムとCl含有ガスの反応により生成される塩化ガリウム系ガスのうち、GaClガスの分圧が最も高くなるような温度であることが好ましい。ここで、塩化ガリウム系ガスには、GaClガス、GaClガス、GaClガス、(GaClガス等が含まれる。 At this time, the atmospheric temperature in the raw material reaction region R1 is such that the partial pressure of the GaCl gas is the highest among the gallium chloride-based gases generated by the reaction of the metallic gallium and the Cl-containing gas in the reaction vessel 25. The temperature is preferred. Here, the gallium chloride-based gas includes GaCl gas, GaCl 2 gas, GaCl 3 gas, (GaCl 3 ) 2 gas and the like.

GaClガスは、塩化ガリウム系ガスに含まれるガスのうち、Ga結晶の成長駆動力を最も高い温度まで保つことのできるガスである。高純度、高品質のGa結晶を得るためには、高い成長温度での成長が有効であるため、高温において成長駆動力の高いGaClガスの分圧が高い塩化ガリウム系ガスを生成することが、β−Ga系単結晶膜12の成長のために好ましい。 The GaCl gas is a gas contained in the gallium chloride-based gas that can maintain the growth driving force of the Ga 2 O 3 crystal up to the highest temperature. Since growth at a high growth temperature is effective for obtaining high-purity, high-quality Ga 2 O 3 crystals, gallium chloride-based gas having a high partial pressure of GaCl gas having a high growth driving force at a high temperature is generated. This is preferable for the growth of the β-Ga 2 O 3 system single crystal film 12.

図3は、熱平衡計算により得られた、塩化ガリウム系ガスがGaClガスのみからなる場合と、GaClガスのみからなる場合のそれぞれの場合におけるGa結晶の成長駆動力と成長温度との関係を表すグラフである。計算条件は、キャリアガスとして例えばN等の不活性ガスを用い、炉内圧力を1atm、GaClガス及びGaClガスの供給分圧を1×10−3atm、O/GaCl分圧比を10とした。 FIG. 3 shows the growth driving force and the growth temperature of the Ga 2 O 3 crystal in each of the cases where the gallium chloride-based gas is composed of only GaCl gas and the case where it is composed of only GaCl 3 gas, which is obtained by the thermal equilibrium calculation. It is a graph showing a relationship. The calculation conditions are that an inert gas such as N 2 is used as the carrier gas, the pressure inside the furnace is 1 atm, the supply partial pressure of GaCl gas and GaCl 3 gas is 1 × 10 -3 atm, and the O 2 / GaCl partial pressure ratio is 10. And said.

図3の横軸はGa結晶の成長温度(℃)を示し、縦軸は結晶成長駆動力(atm)を表す。結晶成長駆動力の値が大きいほど、効率的にGa結晶が成長する。 The horizontal axis of FIG. 3 represents the growth temperature (° C.) of the Ga 2 O 3 crystal, and the vertical axis represents the crystal growth driving force (atm). The larger the value of the crystal growth driving force, the more efficiently the Ga 2 O 3 crystal grows.

図3は、Gaの原料ガスとしてGaClガスを用いる場合の方が、GaClガスを用いる場合よりも、成長駆動力が保たれる温度の上限が高いことを示している。 FIG. 3 shows that the upper limit of the temperature at which the growth driving force is maintained is higher when GaCl gas is used as the raw material gas for Ga than when GaCl 3 gas is used.

なお、β−Ga系単結晶膜12を成長させる際の雰囲気に水素が含まれていると、β−Ga系単結晶膜12の表面の平坦性及び結晶成長駆動力が低下するため、水素を含まないClガスをCl含有ガスとして用いることが好ましい。 If hydrogen is contained in the atmosphere when the β-Ga 2 O 3 system single crystal film 12 is grown, the surface flatness and crystal growth driving force of the β-Ga 2 O 3 system single crystal film 12 will increase. It is preferable to use a Cl 2 gas containing no hydrogen as the Cl-containing gas because the amount is lowered.

図4は、熱平衡計算により得られた、GaとClの反応から得られるGaClガス、GaClガス、GaClガス、及び(GaClガスの平衡分圧と反応時の雰囲気温度との関係を表すグラフである。その他の計算条件は、キャリアガスとして例えばN等の不活性ガスを用い、炉内圧力を1atm、Clガスの供給分圧を3×10−3atmとした。 Figure 4 was obtained by heat balance calculation, GaCl gas obtained from the reaction of Ga and Cl 2, GaCl 2 gas, GaCl 3 gas, and (GaCl 3) 2 gas equilibrium partial pressure and reaction time of the ambient temperature of the It is a graph showing a relationship. Other calculation conditions, using an inert gas, e.g. N 2 or the like as a carrier gas, and the reactor pressure 1 atm, the supply partial pressure of Cl 2 gas and 3 × 10 -3 atm.

図4の横軸は雰囲気温度(℃)を示し、縦軸は平衡分圧(atm)を表す。平衡分圧が高いほど、ガスが多く生成されていることを示す。 The horizontal axis of FIG. 4 represents the atmospheric temperature (° C.), and the vertical axis represents the equilibrium partial pressure (atm). The higher the equilibrium partial pressure, the more gas is produced.

図4は、およそ300℃以上の雰囲気温度下で金属ガリウムとCl含有ガスを反応させることにより、Ga結晶の成長駆動力を特に高めることのできるGaClガスの平衡分圧が高くなること、すなわち塩化ガリウム系ガスのうちのGaClガスの分圧比が高くなることを示している。このことから、第1の加熱手段26により原料反応領域R1の雰囲気温度を300℃以上に保持した状態で反応容器25内の金属ガリウムとCl含有ガスを反応させることが好ましいといえる。 FIG. 4 shows that the equilibrium partial pressure of GaCl gas, which can particularly enhance the growth driving force of Ga 2 O 3 crystals, is increased by reacting metallic gallium with Cl-containing gas at an atmospheric temperature of about 300 ° C. or higher. That is, it shows that the partial pressure ratio of GaCl gas among gallium chloride-based gases is high. From this, it can be said that it is preferable to react the metallic gallium in the reaction vessel 25 with the Cl-containing gas in a state where the atmospheric temperature of the raw material reaction region R1 is maintained at 300 ° C. or higher by the first heating means 26.

また、例えば、850℃の雰囲気温度下では、GaClガスの分圧比が圧倒的に高くなる(GaClガスの平衡分圧がGaClガスより4桁大きく、GaClガスより8桁大きい)ため、GaClガス以外のガスはGa結晶の成長にほとんど寄与しない。 Further, for example, under an atmospheric temperature of 850 ° C., the partial pressure ratio of GaCl gas is overwhelmingly high (the equilibrium partial pressure of GaCl gas is 4 orders of magnitude larger than that of GaCl 2 gas and 8 orders of magnitude larger than that of GaCl 3 gas). Gases other than gas contribute little to the growth of Ga 2 O 3 crystals.

なお、第1の加熱手段26の寿命や、石英ガラス等からなる反応チャンバー20の耐熱性を考慮して、原料反応領域R1の雰囲気温度を1000℃以下に保持した状態で反応容器25内の金属ガリウムとCl含有ガスを反応させることが好ましい。 In consideration of the life of the first heating means 26 and the heat resistance of the reaction chamber 20 made of quartz glass or the like, the metal in the reaction vessel 25 is kept at an atmospheric temperature of the raw material reaction region R1 of 1000 ° C. or lower. It is preferable to react gallium with a Cl-containing gas.

次に、結晶成長領域R2において、原料反応領域R1で生成された塩化ガリウム系ガスと、第2のガス導入ポート22から導入された酸素含有ガスとを混合させ、その混合ガスにGa系基板10を曝し、Ga系基板10上にβ−Ga系単結晶膜12をエピタキシャル成長させる。このとき、反応チャンバー20を収容する炉内の結晶成長領域R2における圧力を、例えば、1atmに保つ。 Next, in the crystal growth region R2, the gallium chloride-based gas generated in the raw material reaction region R1 and the oxygen-containing gas introduced from the second gas introduction port 22 are mixed, and the mixed gas is Ga 2 O 3 The system substrate 10 is exposed, and the β-Ga 2 O 3 system single crystal film 12 is epitaxially grown on the Ga 2 O 3 system substrate 10. At this time, the pressure in the crystal growth region R2 in the furnace accommodating the reaction chamber 20 is maintained at, for example, 1 atm.

ここで、Si、Al等の添加元素を含むβ−Ga系単結晶膜12を形成する場合には、ガス導入ポート22より、添加元素の原料ガス(例えば、四塩化ケイ素(SiCl)等の塩化物系ガス)も塩化ガリウム系ガス及び酸素含有ガスに併せて結晶成長領域R2に導入する。 Here, Si, in the case of forming a β-Ga 2 O 3 single crystal film 12 containing an additive element such as Al is the gas inlet port 22, a raw material gas of the additive element (e.g., silicon tetrachloride (SiCl 4 ) Etc.) are also introduced into the crystal growth region R2 together with the gallium chloride gas and the oxygen-containing gas.

なお、β−Ga系単結晶膜12を成長させる際の雰囲気に水素が含まれていると、β−Ga系単結晶膜12の表面の平坦性及び結晶成長駆動力が低下するため、酸素含有ガスとして水素を含まないOガスを用いることが好ましい。 If hydrogen is contained in the atmosphere when the β-Ga 2 O 3 system single crystal film 12 is grown, the surface flatness and crystal growth driving force of the β-Ga 2 O 3 system single crystal film 12 will increase. Therefore, it is preferable to use an O 2 gas containing no hydrogen as the oxygen-containing gas.

図5は、熱平衡計算により得られた、Ga結晶成長の雰囲気温度が1000℃であるときの、GaClの平衡分圧とO/GaCl供給分圧比との関係を示すグラフである。ここで、Oガスの供給分圧のGaClガスの供給分圧に対する比をO/GaCl供給分圧比と呼ぶ。本計算においては、GaClガスの供給分圧の値を1×10−3atmに固定し、キャリアガスとして例えばN等の不活性ガスを用いて炉内圧力を1atmとし、Oガスの供給分圧の値を変化させた。 FIG. 5 is a graph showing the relationship between the equilibrium partial pressure of GaCl and the O 2 / GaCl supply partial pressure ratio when the atmospheric temperature of Ga 2 O 3 crystal growth is 1000 ° C., which is obtained by the thermal equilibrium calculation. Here, the ratio of the supply partial pressure of the O 2 gas to the supply partial pressure of the GaCl gas is referred to as the O 2 / GaCl supply partial pressure ratio. In this calculation, the value of the supply partial pressure of GaCl gas is fixed at 1 × 10 -3 atm, an inert gas such as N 2 is used as the carrier gas, the pressure inside the furnace is set to 1 atm, and the O 2 gas is supplied. The value of the partial pressure was changed.

図5の横軸はO/GaCl供給分圧比を示し、縦軸はGaClガスの平衡分圧(atm)を表す。GaClガスの供給分圧が小さいほど、Ga結晶の成長にGaClガスが消費されていること、すなわち、効率的にGa結晶が成長していることを示す。 The horizontal axis of FIG. 5 represents the O 2 / GaCl supply partial pressure ratio, and the vertical axis represents the equilibrium partial pressure (atm) of the GaCl gas. The smaller the supply partial pressure of GaCl gas, the more GaCl gas is consumed for the growth of Ga 2 O 3 crystals, that is, the more efficiently the Ga 2 O 3 crystals are growing.

図5は、O/GaCl供給分圧比が0.5以上になるとGaClガスの平衡分圧が急激に低下することを示している。 FIG. 5 shows that the equilibrium partial pressure of the GaCl gas drops sharply when the O 2 / GaCl supply partial pressure ratio becomes 0.5 or more.

このため、β−Ga系単結晶膜12を効率的に成長させるためには、結晶成長領域R2におけるOガスの供給分圧のGaClガスの供給分圧に対する比が0.5以上である状態でβ−Ga系単結晶膜12を成長させることが好ましい。 Therefore, in order to efficiently grow the β-Ga 2 O 3 system single crystal film 12, the ratio of the O 2 gas supply partial pressure in the crystal growth region R2 to the GaCl gas supply partial pressure is 0.5 or more. It is preferable to grow the β-Ga 2 O 3 system single crystal film 12 in this state.

図6は、主面の面方位が(010)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とした。 FIG. 6 is obtained by a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate having a plane orientation of (010). It is a graph which shows the X-ray diffraction spectrum. Growth conditions were the furnace pressure 1 atm, the carrier gas N 2 gas, GaCl supply partial pressure 5 × 10 -4 atm, and O 2 / GaCl supply partial pressure ratio 5.

図6の横軸はX線の入射方位と反射方位のなす角2θ(degree)を表し、縦軸はX線の回折強度(任意単位)を表す。 The horizontal axis of FIG. 6 represents the angle 2θ (degree) formed by the incident direction and the reflected direction of X-rays, and the vertical axis represents the diffraction intensity (arbitrary unit) of X-rays.

図6は、β−Ga基板(β−Ga結晶膜なし)のスペクトル、及び800℃、850℃、900℃、950℃、1000℃、及び1050℃でそれぞれβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。これらの結晶積層構造体のβ−Ga結晶膜の厚さは、およそ300〜1000nmである。 6, β-Ga 2 O 3 spectrum of the substrate (β-Ga 2 O 3 No crystal film), and 800 ℃, 850 ℃, 900 ℃ , 950 ℃, 1000 ℃, and respectively at 1050 ℃ β-Ga 2 O 3 shows the spectrum of a crystal film was epitaxially grown crystal multilayer structure. The thickness of the β-Ga 2 O 3 crystal film of these crystal laminated structures is about 300 to 1000 nm.

図6によれば、800、850℃の成長温度でβ−Ga結晶膜を成長させた結晶積層構造体のスペクトルにおいて見られる、非配向グレインの存在に起因する(−313)面、(−204)面、及び(−712)面又は(512)面の回折ピークが、900℃以上の成長温度でβ−Ga結晶膜を成長させた結晶積層構造体のスペクトルにおいて消滅する。このことは、900℃以上の成長温度でGa単結晶膜を成長させることにより、β−Ga単結晶膜が得られることを示している。 According to FIG. 6, the (-313) plane, which is seen in the spectrum of the crystal laminated structure in which the β-Ga 2 O 3 crystal film is grown at a growth temperature of 800, 850 ° C., is due to the presence of unoriented grains. The diffraction peaks of the (-204) plane and the (-712) plane or the (512) plane disappear in the spectrum of the crystal laminated structure in which the β-Ga 2 O 3 crystal film is grown at a growth temperature of 900 ° C. or higher. .. This indicates that a β-Ga 2 O 3 single crystal film can be obtained by growing the Ga 2 O 3 single crystal film at a growth temperature of 900 ° C. or higher.

なお、β−Ga基板の主面の面方位が(−201)、(001)、又は(101)である場合にも、900℃以上の成長温度でβ−Ga結晶膜を成長させることにより、β−Ga単結晶膜が得られる。また、Ga基板の代わりに他のGa系基板を用いた場合であっても、Ga結晶膜の代わりに他のGa系結晶膜を形成した場合であっても、上記の評価結果と同様の評価結果が得られる。すなわち、Ga系基板10の主面の面方位が(010)、(−201)、(001)、又は(101)である場合、900℃以上の成長温度でβ−Ga系単結晶膜12を成長させることにより、β−Ga系単結晶膜12が得られる。 Even when the plane orientation of the main surface of the β-Ga 2 O 3 substrate is (-201), (001), or (101), the β-Ga 2 O 3 crystal film is formed at a growth temperature of 900 ° C. or higher. By growing β-Ga 2 O 3 , a β-Ga 2 O 3 single crystal film is obtained. Further, even in the case of using the other Ga 2 O 3 system board in place of Ga 2 O 3 substrate, in the case of forming the other Ga 2 O 3 based crystal film in place of Ga 2 O 3 crystal film Even if there is, the same evaluation result as the above evaluation result can be obtained. That is, when the plane orientation of the main surface of the Ga 2 O 3 system substrate 10 is (010), (-201), (001), or (101), β-Ga 2 O 3 is formed at a growth temperature of 900 ° C. or higher. By growing the system single crystal film 12, the β-Ga 2 O 3 system single crystal film 12 can be obtained.

図7は、主面の面方位が(−201)であるβ−Ga基板の主面上にβ−Ga単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。このβ−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 FIG. 7 shows 2θ-ω of a crystal laminated structure in which a β-Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate having a plane orientation of (-201). It is a graph which shows the X-ray diffraction spectrum obtained by scanning. The growth conditions of this β-Ga 2 O 3 single crystal film are as follows: the pressure in the furnace is 1 atm, the carrier gas is N 2 gas, the partial pressure of GaCl supply is 5 × 10 -4 atm, and the ratio of partial pressure of O 2 / GaCl supply is 5. , The growth temperature was 1000 ° C.

図7は、主面の面方位が(−201)であるβ−Ga基板(β−Ga結晶膜なし)のスペクトル、及びそのβ−Ga基板上に1000℃でβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。この結晶積層構造体のβ−Ga結晶膜の厚さは、およそ300nmである。 FIG. 7 shows the spectrum of a β-Ga 2 O 3 substrate (without β-Ga 2 O 3 crystal film) in which the plane orientation of the main surface is (-201), and 1000 ° C. on the β-Ga 2 O 3 substrate. The spectrum of the crystal laminated structure obtained by epitaxially growing the β-Ga 2 O 3 crystal film is shown in. The thickness of the β-Ga 2 O 3 crystal film of this crystal laminated structure is about 300 nm.

図8は、主面の面方位が(001)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。このβ−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 FIG. 8 is obtained by a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate having a plane orientation of (001). It is a graph which shows the X-ray diffraction spectrum. The growth conditions of this β-Ga 2 O 3 single crystal film are as follows: the pressure in the furnace is 1 atm, the carrier gas is N 2 gas, the partial pressure of GaCl supply is 5 × 10 -4 atm, and the ratio of partial pressure of O 2 / GaCl supply is 5. , The growth temperature was 1000 ° C.

図8は、主面の面方位が(001)であるβ−Ga基板(β−Ga結晶膜なし)のスペクトル、及びそのβ−Ga基板上に1000℃でβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。この結晶積層構造体のβ−Ga結晶膜の厚さは、およそ6μmである。 FIG. 8 shows the spectrum of a β-Ga 2 O 3 substrate (without β-Ga 2 O 3 crystal film) in which the plane orientation of the main surface is (001), and on the β-Ga 2 O 3 substrate at 1000 ° C. The spectrum of the crystal laminated structure obtained by epitaxially growing the β-Ga 2 O 3 crystal film is shown. The thickness of the β-Ga 2 O 3 crystal film of this crystal laminated structure is about 6 μm.

図9は、主面の面方位が(101)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。このβ−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 FIG. 9 is obtained by a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate having a plane orientation of (101). It is a graph which shows the X-ray diffraction spectrum. The growth conditions of this β-Ga 2 O 3 single crystal film are as follows: the pressure in the furnace is 1 atm, the carrier gas is N 2 gas, the partial pressure of GaCl supply is 5 × 10 -4 atm, and the ratio of partial pressure of O 2 / GaCl supply is 5. , The growth temperature was 1000 ° C.

図9は、主面の面方位が(101)であるβ−Ga基板(β−Ga結晶膜なし)のスペクトル、及びそのβ−Ga基板上に1000℃でβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。この結晶積層構造体のβ−Ga結晶膜の厚さは、およそ4μmである。 FIG. 9 shows the spectrum of a β-Ga 2 O 3 substrate (without β-Ga 2 O 3 crystal film) in which the plane orientation of the main surface is (101), and on the β-Ga 2 O 3 substrate at 1000 ° C. The spectrum of the crystal laminated structure obtained by epitaxially growing the β-Ga 2 O 3 crystal film is shown. The thickness of the β-Ga 2 O 3 crystal film of this crystal laminated structure is about 4 μm.

図7、8、9の横軸はX線の入射方位と反射方位のなす角2θ(degree)を表し、縦軸はX線の回折強度(任意単位)を表す。 The horizontal axes of FIGS. 7, 8 and 9 represent the angle 2θ (degree) formed by the incident direction and the reflected direction of the X-ray, and the vertical axis represents the diffraction intensity (arbitrary unit) of the X-ray.

図7、8、9によれば、1000℃の成長温度でβ−Ga結晶膜を成長させた結晶積層構造体のスペクトルの回折ピークが、β−Ga基板のスペクトルの回折ピークと一致している。この結果は、主面の面方位が(−201)、(001)、又は(101)であるβ−Ga基板の主面上に1000℃の成長温度でβ−Ga結晶膜を成長させることにより、β−Ga単結晶膜が得られることを示している。 According to FIGS. 7, 8 and 9, the diffraction peak of the spectrum of the crystal laminated structure in which the β-Ga 2 O 3 crystal film is grown at the growth temperature of 1000 ° C. is the diffraction of the spectrum of the β-Ga 2 O 3 substrate. Consistent with the peak. The result is that β-Ga 2 O 3 crystals on the main surface of the β-Ga 2 O 3 substrate whose main surface orientation is (-201), (001), or (101) at a growth temperature of 1000 ° C. It is shown that a β-Ga 2 O 3 single crystal film can be obtained by growing the film.

図10(a)、(b)は、二次イオン質量分析法(SIMS)により測定した、結晶積層構造体中の不純物濃度を表すグラフである。 10 (a) and 10 (b) are graphs showing the concentration of impurities in the crystal laminated structure measured by secondary ion mass spectrometry (SIMS).

図10(a)、(b)の横軸は結晶積層構造体のβ−Ga単結晶膜の主面13からの深さ(μm)を表し、縦軸は各不純物の濃度(atoms/cm)を表す。ここで、結晶積層構造体のβ−Ga基板とβ−Ga単結晶膜の界面の深さは、およそ0.3μmである。また、図10(a)、(b)の右側の水平な矢印は、各不純物元素の濃度の測定可能な下限値を表す。 The horizontal axis of FIGS. 10A and 10B represents the depth (μm) of the β-Ga 2 O 3 single crystal film of the crystal laminated structure from the main surface 13, and the vertical axis represents the concentration of each impurity (atoms). / Cm 3 ) is represented. Here, the depth of the interface between the β-Ga 2 O 3 substrate and the β-Ga 2 O 3 single crystal film of the crystal laminated structure is about 0.3 μm. The horizontal arrows on the right side of FIGS. 10 (a) and 10 (b) represent the measurable lower limit of the concentration of each impurity element.

本測定に用いた結晶積層構造体のβ−Ga単結晶膜は、主面の面方位が(010)であるβ−Ga基板の主面上に1000℃の成長温度で成長させた膜である。 The β-Ga 2 O 3 single crystal film of the crystal laminated structure used in this measurement has a main surface orientation of (010) on the main surface of the β-Ga 2 O 3 substrate at a growth temperature of 1000 ° C. It is a grown film.

図10(a)は、C、Sn、Siの結晶積層構造体中の濃度を表し、図10(b)は、H、Clの結晶積層構造体中の濃度を表す。図10(a)、(b)によれば、いずれの不純物元素も、β−Ga単結晶膜中の濃度が測定可能な下限値に近く、Ga基板中の濃度とほぼ変わらない。このことは、β−Ga単結晶膜が純度の高い膜であることを示している。 FIG. 10A shows the concentration of C, Sn, and Si in the crystal laminated structure, and FIG. 10B shows the concentration of H and Cl in the crystal laminated structure. According to FIGS. 10A and 10B, the concentration of each impurity element in the β-Ga 2 O 3 single crystal film is close to the measurable lower limit value, which is almost the same as the concentration in the Ga 2 O 3 substrate. does not change. This indicates that the β-Ga 2 O 3 single crystal film is a highly pure film.

なお、β−Ga基板の主面の面方位が(−201)、(101)、又は(001)である場合にも同様の評価結果が得られる。また、β−Ga基板の代わりに他のGa系基板を用いた場合であっても、β−Ga単結晶膜の代わりに他のGa系単結晶膜を形成した場合であっても、上記の評価結果と同様の評価結果が得られる。 The same evaluation result can be obtained when the plane orientation of the main surface of the β-Ga 2 O 3 substrate is (-201), (101), or (001). Further, even when another Ga 2 O 3 system substrate is used instead of the β-Ga 2 O 3 system substrate, another Ga 2 O 3 system single crystal is used instead of the β-Ga 2 O 3 system single crystal film. Even when a film is formed, an evaluation result similar to the above evaluation result can be obtained.

図10(b)によれば、β−Ga単結晶膜中におよそ5×1016(atoms/cm)以下のClが含まれている。これは、Ga単結晶膜がCl含有ガスを用いるHVPE法により形成されることに起因する。通常、HVPE法以外の方法によりGa単結晶膜を形成する場合には、Cl含有ガスを用いないため、Ga単結晶膜中にClが含まれることはなく、少なくとも、1×1016(atoms/cm)以上のClが含まれることはない。 According to FIG. 10 (b), the β-Ga 2 O 3 single crystal film contains Cl of about 5 × 10 16 (atoms / cm 3 ) or less. This is because the Ga 2 O 3 single crystal film is formed by the HVPE method using a Cl-containing gas. Normally, when a Ga 2 O 3 single crystal film is formed by a method other than the HVPE method, Cl is not contained in the Ga 2 O 3 single crystal film because Cl-containing gas is not used, and at least 1 It does not contain Cl of × 10 16 (atoms / cm 3) or more.

図11(a)は、主面の面方位が(001)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。 FIG. 11A shows carriers in the depth direction in a crystal laminated structure in which a β-Ga 2 O 3 crystal film is epitaxially grown on a β-Ga 2 O 3 substrate whose main surface orientation is (001). It is a graph which shows the profile of density.

図11(a)の横軸はβ−Ga結晶膜の表面からの深さ(μm)を表し、縦軸はキャリア濃度、すなわち正味のドナー濃度であるドナー濃度Nとアクセプタ濃度Nの差(cm−3)を表す。また、図中の点で描かれた曲線は、β−Gaの比誘電率を10、β−GaへPtを接触させたときのビルトインポテンシャルを1.5Vとしたときのドナー濃度と空乏層厚との関係を表す理論曲線である。 The horizontal axis of FIG. 11A represents the depth (μm) from the surface of the β-Ga 2 O 3 crystal film, and the vertical axis represents the carrier concentration, that is, the donor concentration N d and the acceptor concentration N, which are the net donor concentrations. represents the difference a (cm -3). Also, drawn curve in terms of in the figure, when the built-in potential when the relative dielectric constant of the β-Ga 2 O 3 10, contacting the Pt to β-Ga 2 O 3 and 1.5V It is a theoretical curve showing the relationship between the donor concentration and the depletion layer thickness.

図11(a)に示されるデータを測定するために用いた手順を以下に示す。まず、主面の面方位が(001)であり、Snをドープしたn型のβ−Ga基板上に、HVPE法により、アンドープのβ−Ga結晶膜をおよそ15μmの厚さにエピタキシャル成長させた。ここで、アンドープとは、意図したドーピングが行われていないことを意味し、意図しない不純物の混入を否定するものではない。 The procedure used to measure the data shown in FIG. 11 (a) is shown below. First, the plane orientation of the main surface is (001), and an undoped β-Ga 2 O 3 crystal film having a thickness of about 15 μm is formed on an n-type β-Ga 2 O 3 substrate doped with Sn by the HVPE method. It was epitaxially grown. Here, undoping means that the intended doping has not been performed, and does not deny the inclusion of unintended impurities.

β−Ga基板は、厚さが600μmの、10mmの正方形の基板であり、キャリア濃度はおよそ6×1018cm−3であった。β−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 The β-Ga 2 O 3 substrate was a 10 mm square substrate with a thickness of 600 μm, and the carrier concentration was approximately 6 × 10 18 cm -3 . The growth conditions of the β-Ga 2 O 3 single crystal film are as follows: the pressure in the furnace is 1 atm, the carrier gas is N 2 gas, the partial pressure of GaCl supply is 5 × 10 -4 atm, and the ratio of partial pressure of O 2 / GaCl supply is 5. The growth temperature was 1000 ° C.

次に、表面平坦化のため、アンドープのβ−Ga結晶膜の表面をCMPによって3μm研磨した。 Next, for surface flattening, the surface of the undoped β-Ga 2 O 3 crystal film was polished by CMP for 3 μm.

次に、β−Ga結晶膜上にショットキー電極、β−Ga基板上にオーミック電極を形成し、バイアス電圧を+0〜−10Vの範囲で変化させてC−V測定を行った。そして、C−V測定の結果から深さ方向のキャリア濃度のプロファイルを算出した。 Next, a Schottky electrode is formed on the β-Ga 2 O 3 crystal film, and an ohmic electrode is formed on the β-Ga 2 O 3 substrate, and the bias voltage is changed in the range of + 0 to -10 V to perform CV measurement. went. Then, the profile of the carrier concentration in the depth direction was calculated from the result of the CV measurement.

ここで、ショットキー電極は、厚さ15nmのPt膜、厚さ5nmのTi膜、厚さ250nmのAu膜がこの順序で積層された積層構造を有する、直径800μmの円形の電極である。また、オーミック電極は、厚さ50nmのTi膜、厚さ300nmのAu膜がこの順序で積層された積層構造を有する、一辺が10mmの正方形の電極である。 Here, the Schottky electrode is a circular electrode having a diameter of 800 μm, which has a laminated structure in which a Pt film having a thickness of 15 nm, a Ti film having a thickness of 5 nm, and an Au film having a thickness of 250 nm are laminated in this order. The ohmic electrode is a square electrode having a side of 10 mm and having a laminated structure in which a Ti film having a thickness of 50 nm and an Au film having a thickness of 300 nm are laminated in this order.

図11(a)においては、β−Ga結晶膜の厚さに等しい12μmよりも浅い深さの領域には測定点が存在せず、すべての測定点の横軸座標が12μmとなっている。これは、バイアス電圧が+0〜−10Vの範囲でβ−Ga結晶膜の全領域が空乏化していることを示している。 In FIG. 11A, there are no measurement points in a region shallower than 12 μm, which is equal to the thickness of the β-Ga 2 O 3 crystal film, and the horizontal axis coordinates of all the measurement points are 12 μm. ing. This indicates that the entire region of the β-Ga 2 O 3 crystal film is depleted in the range of the bias voltage of + 0 to -10 V.

このため、当然ながら、バイアス電圧が0のときにも、β−Ga結晶膜の全領域が空乏化している。理論曲線によると、空乏層厚が12μmであるときのドナー濃度がおよそ1×1013cm−3であることから、β−Ga結晶膜の残留キャリア濃度が1×1013cm−3以下と、非常に低い値であることが推定される。 Therefore, as a matter of course, even when the bias voltage is 0, the entire region of the β-Ga 2 O 3 crystal film is depleted. According to the theoretical curve, the donor concentration when the depletion layer thickness is 12 μm is about 1 × 10 13 cm -3 , so that the residual carrier concentration of the β-Ga 2 O 3 crystal film is 1 × 10 13 cm -3. The following is estimated to be a very low value.

β−Ga結晶膜の残留キャリア濃度が1×1013cm−3以下であるため、例えば、IV族元素をドーピングすることにより、β−Ga結晶膜のキャリア濃度を1×1013〜1×1020cm−3の範囲で制御することができる。 Since the residual carrier concentration of the β-Ga 2 O 3 crystal film is 1 × 10 13 cm -3 or less, for example, by doping with a Group IV element, the carrier concentration of the β-Ga 2 O 3 crystal film can be reduced to 1 ×. It can be controlled in the range of 10 13 to 1 × 10 20 cm -3.

図11(b)は、上記の結晶積層構造体の耐電圧特性を表すグラフである。 FIG. 11B is a graph showing the withstand voltage characteristics of the crystal laminated structure.

図11(b)の横軸は印加電圧(V)を表し、縦軸は電流密度(A/cm)を表す。
また、図中の点で描かれた直線は、測定下限値を表す。
The horizontal axis of FIG. 11B represents the applied voltage (V), and the vertical axis represents the current density (A / cm 2 ).
The straight line drawn by the points in the figure represents the lower limit of measurement.

図11(b)に示されるデータを測定するために用いた手順を以下に示す。まず、上記のβ−Ga基板とβ−Ga結晶膜からなる結晶積層構造体を用意した。 The procedure used to measure the data shown in FIG. 11B is shown below. First, a crystal laminated structure composed of the above-mentioned β-Ga 2 O 3 substrate and β-Ga 2 O 3 crystal film was prepared.

次に、β−Ga結晶膜上にショットキー電極、β−Ga基板上にオーミック電極を形成し、1000Vの電圧を印加して電流密度を測定した。 Next, a Schottky electrode was formed on the β-Ga 2 O 3 crystal film, and an ohmic electrode was formed on the β-Ga 2 O 3 substrate, and a voltage of 1000 V was applied to measure the current density.

ここで、ショットキー電極は、厚さ15nmのPt膜、厚さ5nmのTi膜、厚さ250nmのAu膜がこの順序で積層された積層構造を有する、直径200μmの円形の電極である。また、オーミック電極は、厚さ50nmのTi膜、厚さ300nmのAu膜がこの順序で積層された積層構造を有する、一辺が10mmの正方形の電極である。 Here, the Schottky electrode is a circular electrode having a diameter of 200 μm, which has a laminated structure in which a Pt film having a thickness of 15 nm, a Ti film having a thickness of 5 nm, and an Au film having a thickness of 250 nm are laminated in this order. The ohmic electrode is a square electrode having a side of 10 mm and having a laminated structure in which a Ti film having a thickness of 50 nm and an Au film having a thickness of 300 nm are laminated in this order.

図11(b)は、1000Vの電圧が印加されても、結晶積層構造体におけるリーク電流が1×10−5A/cm程度と非常に小さく、また、絶縁破壊が生じないことを示している。この結果は、β−Ga結晶膜が結晶欠陥の少ない高品質な結晶膜であり、また、ドナー濃度が低いことによるものと考えられる。 FIG. 11B shows that even when a voltage of 1000 V is applied, the leakage current in the crystal laminated structure is very small, about 1 × 10-5 A / cm 2 , and dielectric breakdown does not occur. There is. This result is considered to be due to the fact that the β-Ga 2 O 3 crystal film is a high-quality crystal film with few crystal defects and the donor concentration is low.

図12は、主面の面方位が(010)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。 FIG. 12 shows a profile of carrier concentration in the depth direction in a crystal laminated structure in which a β-Ga 2 O 3 crystal film is epitaxially grown on a β-Ga 2 O 3 substrate whose main surface orientation is (010). It is a graph showing.

図12の横軸はβ−Ga結晶膜の表面からの深さ(μm)を表し、縦軸はキャリア濃度、すなわち正味のドナー濃度であるドナー濃度Nとアクセプタ濃度Nの差(cm−3)を表す。また、図中の点で描かれた曲線は、β−Gaの比誘電率を10、β−GaへPtを接触させたときのビルトインポテンシャルを1.5Vとしたときのドナー濃度と空乏層厚との関係を表す理論曲線である。 The horizontal axis of FIG. 12 represents the depth (μm) from the surface of the β-Ga 2 O 3 crystal film, and the vertical axis represents the carrier concentration, that is, the difference between the donor concentration N d and the acceptor concentration N a, which is the net donor concentration. Represents (cm -3 ). Also, drawn curve in terms of in the figure, when the built-in potential when the relative dielectric constant of the β-Ga 2 O 3 10, contacting the Pt to β-Ga 2 O 3 and 1.5V It is a theoretical curve showing the relationship between the donor concentration and the depletion layer thickness.

図12に示されるデータを測定するために用いた手順を以下に示す。まず、主面の面方位が(010)であり、Snをドープしたn型のβ−Ga基板上に、HVPE法により、アンドープのβ−Ga結晶膜をおよそ0.9μmの厚さにエピタキシャル成長させた。 The procedure used to measure the data shown in FIG. 12 is shown below. First, the plane orientation of the main surface is (010), and an undoped β-Ga 2 O 3 crystal film is formed on an n-type β-Ga 2 O 3 substrate doped with Sn by the HVPE method in an amount of about 0.9 μm. It was epitaxially grown to the thickness of.

β−Ga基板は、厚さが600μmの、一辺が10mmの正方形の基板であり、キャリア濃度はおよそ6×1018cm−3であった。β−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 The β-Ga 2 O 3 substrate was a square substrate having a thickness of 600 μm and a side of 10 mm, and the carrier concentration was about 6 × 10 18 cm -3 . The growth conditions of the β-Ga 2 O 3 single crystal film are as follows: the pressure in the furnace is 1 atm, the carrier gas is N 2 gas, the partial pressure of GaCl supply is 5 × 10 -4 atm, and the ratio of partial pressure of O 2 / GaCl supply is 5. The growth temperature was 1000 ° C.

次に、アンドープのβ−Ga結晶膜上にショットキー電極、β−Ga基板上にオーミック電極を形成し、バイアス電圧を+0〜−10Vの範囲で変化させてC−V測定を行った。そして、C−V測定の結果から深さ方向のキャリア濃度のプロファイルを算出した。 Next, a Schottky electrode is formed on the undoped β-Ga 2 O 3 crystal film, and an ohmic electrode is formed on the β-Ga 2 O 3 substrate, and the bias voltage is changed in the range of + 0 to -10 V to CV. Measurements were made. Then, the profile of the carrier concentration in the depth direction was calculated from the result of the CV measurement.

ここで、ショットキー電極は、厚さ15nmのPt膜、厚さ5nmのTi膜、厚さ250nmのAu膜がこの順序で積層された積層構造を有する、直径400μmの円形の電極である。また、オーミック電極は、厚さ50nmのTi膜、厚さ300nmのAu膜がこの順序で積層された積層構造を有する、一辺が10mmの正方形の電極である。 Here, the Schottky electrode is a circular electrode having a diameter of 400 μm, which has a laminated structure in which a Pt film having a thickness of 15 nm, a Ti film having a thickness of 5 nm, and an Au film having a thickness of 250 nm are laminated in this order. The ohmic electrode is a square electrode having a side of 10 mm and having a laminated structure in which a Ti film having a thickness of 50 nm and an Au film having a thickness of 300 nm are laminated in this order.

図12においては、バイアス電圧が0のときの測定点の横軸座標が0.85μmである(0.85μmよりも深い領域の測定点は、バイアス電圧が−10Vに近いときの測定点)。理論曲線によると、空乏層厚が0.85μmであるときのドナー濃度がおよそ2.3×1015cm−3であることから、β−Ga結晶膜の残留キャリア濃度が3×1015cm−3以下と、非常に低い値であることが推定される。 In FIG. 12, the horizontal axis coordinates of the measurement points when the bias voltage is 0 are 0.85 μm (the measurement points in the region deeper than 0.85 μm are the measurement points when the bias voltage is close to −10 V). According to the theoretical curve, the donor concentration when the depletion layer thickness is 0.85 μm is about 2.3 × 10 15 cm -3 , so that the residual carrier concentration of the β-Ga 2 O 3 crystal film is 3 × 10 It is estimated to be a very low value of 15 cm -3 or less.

(実施の形態の効果)
上記実施の形態によれば、HVPE法を用いて、ガリウムの原料ガスの生成条件や、β−Ga系単結晶膜の成長条件を制御することにより、高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることができる。また、β−Ga系単結晶膜が結晶品質に優れるため、β−Ga系単結晶膜上に品質のよい結晶膜を成長させることができる。このため、本実施の形態に係るβ−Ga系単結晶膜を含む結晶積層構造体を高品質な半導体装置の製造に用いることができる。
(Effect of embodiment)
According to the above embodiment, by using the HVPE method, and generation condition of a gallium raw material gas, by controlling the growth conditions of the β-Ga 2 O 3 single crystal film, high-quality, large diameter β- The Ga 2 O 3 system single crystal film can be efficiently grown. Further, since the β-Ga 2 O 3 system single crystal film is excellent in crystal quality, a high quality crystal film can be grown on the β-Ga 2 O 3 system single crystal film. Therefore, it is possible to use a crystalline layered structure comprising a β-Ga 2 O 3 single crystal film according to the present embodiment for the production of high-quality semiconductor device.

以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be carried out within a range that does not deviate from the gist of the invention.

また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Moreover, the embodiment described above does not limit the invention according to the claims. It should also be noted that not all combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

1…結晶積層構造体、10…Ga系基板、11…主面、12…β−Ga系単結晶膜 1 ... Crystal laminated structure, 10 ... Ga 2 O 3 system substrate, 11 ... Main surface, 12 ... β-Ga 2 O 3 system single crystal film

Claims (1)

Ga系基板と、
前記Ga系基板の主面上に設けられたβ−Ga系単結晶膜と、
を含み、
前記β−Ga系単結晶膜は、残留キャリア濃度が1×1013/cm以下である結晶積層構造体。
Ga 2 O 3 system board and
A β-Ga 2 O 3 system single crystal film provided on the main surface of the Ga 2 O 3 system substrate and
Including
The β-Ga 2 O 3 system single crystal film is a crystal laminated structure having a residual carrier concentration of 1 × 10 13 / cm 3 or less.
JP2019175654A 2013-09-30 2019-09-26 Crystallized structure and method for manufacturing it Active JP6875708B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013203198 2013-09-30
JP2013203198 2013-09-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016143092A Division JP6601738B2 (en) 2013-09-30 2016-07-21 Crystal laminated structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020073425A JP2020073425A (en) 2020-05-14
JP6875708B2 true JP6875708B2 (en) 2021-05-26

Family

ID=57242483

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016143092A Active JP6601738B2 (en) 2013-09-30 2016-07-21 Crystal laminated structure and manufacturing method thereof
JP2019175654A Active JP6875708B2 (en) 2013-09-30 2019-09-26 Crystallized structure and method for manufacturing it

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016143092A Active JP6601738B2 (en) 2013-09-30 2016-07-21 Crystal laminated structure and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP6601738B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194763A1 (en) * 2019-03-28 2020-10-01 日本碍子株式会社 Semiconductor film
CN114908418A (en) * 2022-04-29 2022-08-16 杭州富加镓业科技有限公司 Method for preparing homoepitaxial gallium oxide film on conductive gallium oxide substrate and HVPE equipment
JP2024025233A (en) * 2022-08-10 2024-02-26 株式会社ノベルクリスタルテクノロジー Growth method of β-Ga2O3 single crystal film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235961A (en) * 2004-02-18 2005-09-02 Univ Waseda Method for controlling conductivity of gallium oxide series monocrystal
EP2754738B1 (en) * 2011-09-08 2021-07-07 Tamura Corporation Schottky-barrier diode
EP3151285B1 (en) * 2011-09-08 2023-11-22 Tamura Corporation Ga2o3-based semiconductor element
US9461124B2 (en) * 2011-09-08 2016-10-04 Tamura Corporation Ga2O3 semiconductor element

Also Published As

Publication number Publication date
JP2020073425A (en) 2020-05-14
JP2016183107A (en) 2016-10-20
JP6601738B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
US20210404086A1 (en) Method for growing beta-ga2o3-based single crystal film, and crystalline layered structure
Gogova et al. Homo-and heteroepitaxial growth of Sn-doped β-Ga 2 O 3 layers by MOVPE
US11047067B2 (en) Crystal laminate structure
TWI520377B (en) Gan substrate and light-emitting device
JP6875708B2 (en) Crystallized structure and method for manufacturing it
JP6758569B2 (en) High withstand voltage Schottky barrier diode
CN106471163B (en) Semiconductor substrate, epitaxial wafer and manufacturing method thereof
Murakami et al. Tri-halide vapor phase epitaxy of thick GaN using gaseous GaCl3 precursor
US8253162B2 (en) GaN substrate and light-emitting device
WO2022059669A1 (en) β-GA2O3-BASED SINGLE CRYSTAL FILM AND METHOD OF MANUFACTURING SAME

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6875708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150