JP2016183107A - Crystal laminate structure, and production method thereof - Google Patents

Crystal laminate structure, and production method thereof Download PDF

Info

Publication number
JP2016183107A
JP2016183107A JP2016143092A JP2016143092A JP2016183107A JP 2016183107 A JP2016183107 A JP 2016183107A JP 2016143092 A JP2016143092 A JP 2016143092A JP 2016143092 A JP2016143092 A JP 2016143092A JP 2016183107 A JP2016183107 A JP 2016183107A
Authority
JP
Japan
Prior art keywords
gas
crystal
crystal film
film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016143092A
Other languages
Japanese (ja)
Other versions
JP6601738B2 (en
Inventor
後藤 健
Takeshi Goto
健 後藤
公平 佐々木
Kohei Sasaki
公平 佐々木
纐纈 明伯
Akinori Koketsu
明伯 纐纈
熊谷 義直
Yoshinao Kumagai
義直 熊谷
尚 村上
Takashi Murakami
尚 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tamura Corp
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp, Tokyo University of Agriculture and Technology NUC filed Critical Tamura Corp
Publication of JP2016183107A publication Critical patent/JP2016183107A/en
Application granted granted Critical
Publication of JP6601738B2 publication Critical patent/JP6601738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a crystal laminate structure having a β-GaOsingle crystal film grown by a growth method of β-GaOand capable of growing a β- GaOsingle crystal film with a high quality and a large diameter efficiently, and a production method therefor.SOLUTION: According to one embodiment, provided are a crystal laminate structure manufactured by a growing method of a β-GaOsingle crystal film by the HVPE method comprising the step of exposing a GaOsubstrate 10 to a gallium chloride gas and an oxygen containing gas to grow a β-GaOsingle crystal film 12 on the principal face 11 of the β-GaOsingle crystal film at a growing temperature of 900°C or higher on the GaOsubstrate 10, and a manufacturing method therefor.SELECTED DRAWING: Figure 2

Description

本発明は、結晶積層構造体、及びその製造方法に関する。   The present invention relates to a crystal multilayer structure and a method for manufacturing the same.

従来、β−Ga単結晶膜の成長方法として、MBE(Molecular Beam Epitaxy)法やPLD(Pulsed Laser Deposition)法が知られている(例えば、特許文献1、2参照)。また、ゾル−ゲル法、MOCVD(Metal Organic Chemical Vapor Deposition)法、ミストCVD法による成長方法も知られている。 Conventionally, MBE (Molecular Beam Epitaxy) method and PLD (Pulsed Laser Deposition) method are known as methods for growing a β-Ga 2 O 3 single crystal film (see, for example, Patent Documents 1 and 2). In addition, a growth method by a sol-gel method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, or a mist CVD method is also known.

特開2013―56803号公報JP 2013-56803 A 特許第4565062号公報Japanese Patent No. 4565062

しかしながら、MBE法では高真空チャンバー内で結晶成長を行うため、β−Ga単結晶膜の大口径化が困難である。また、一般的に成長温度を上げると高品質な膜が得られるが、原料ガスの再蒸発が増加するため十分な成膜速度が得られず、大量生産には向かない。 However, since the MBE method performs crystal growth in a high vacuum chamber, it is difficult to increase the diameter of the β-Ga 2 O 3 single crystal film. In general, when the growth temperature is raised, a high-quality film can be obtained. However, since the re-evaporation of the source gas increases, a sufficient film formation rate cannot be obtained, which is not suitable for mass production.

また、PLD法に関しては、ソース(基板への原料供給源)が点源であり、ソース直上とそれ以外の場所で成長レートが異なるために、膜厚の面内分布が不均一になりやすく、面積の大きい膜の成長に向かない。また、成膜レートが低く、厚膜の成長には長い時間を要するため、大量生産には向かない。   In addition, regarding the PLD method, the source (raw material supply source to the substrate) is a point source, and the growth rate is different between the source and other locations, so the in-plane distribution of film thickness tends to be non-uniform, Not suitable for growth of large area films. In addition, since the film formation rate is low and it takes a long time to grow a thick film, it is not suitable for mass production.

ゾル−ゲル法、MOCVD法、ミストCVD法に関しては、大口径化は比較的容易だが、使用原料に含まれている不純物がエピタキシャル成長中にβ−Ga単結晶膜に取り込まれてしまうため、高純度な単結晶膜を得ることが困難である。 As for the sol-gel method, MOCVD method, and mist CVD method, it is relatively easy to increase the diameter, but impurities contained in the used raw material are taken into the β-Ga 2 O 3 single crystal film during the epitaxial growth. It is difficult to obtain a high-purity single crystal film.

そのため、本発明の目的の1つは、高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることのできるβ−Ga系単結晶膜の成長方法により成長したβ−Ga系単結晶膜を有する結晶積層構造体、及びその製造方法を提供することにある。 Therefore, one of the objects of the present invention is to provide a β-Ga 2 O 3 single crystal film growth method capable of efficiently growing a high-quality and large-diameter β-Ga 2 O 3 single crystal film. An object of the present invention is to provide a crystal laminated structure having a grown β-Ga 2 O 3 -based single crystal film and a method for producing the same.

本発明の一態様は、上記目的を達成するために、下記[1]及び[2]の結晶積層構造体を提供する。   In order to achieve the above object, one embodiment of the present invention provides a crystal multilayer structure according to [1] and [2] below.

[1]Ga系基板と、前記Ga系基板の主面上に設けられたClを含むβ−Ga系単結晶膜とを含み、前記β−Ga系単結晶膜は、その厚さ方向に1×1016〜5×1016(atoms/cm)の前記Clを含む部分を有する結晶積層構造体。 [1] A Ga 2 O 3 based substrate and a β-Ga 2 O 3 based single crystal film containing Cl provided on the main surface of the Ga 2 O 3 based substrate, and the β-Ga 2 O 3 The system single crystal film is a crystal multilayer structure having a portion containing the Cl in the thickness direction of 1 × 10 16 to 5 × 10 16 (atoms / cm 3 ).

[2]前記β−Ga系単結晶膜は、1×1013〜1×1020/cmの範囲でIV族元素によるキャリア濃度が制御可能である前記[1]に記載の結晶積層構造体。 [2] The crystal according to [1], wherein the β-Ga 2 O 3 single crystal film is capable of controlling a carrier concentration by a group IV element in a range of 1 × 10 13 to 1 × 10 20 / cm 3. Laminated structure.

また、本発明の他の態様は、上記目的を達成するために、下記[3]及び[4]の結晶積層構造体の製造方法を提供する。   In order to achieve the above object, another aspect of the present invention provides a method for producing a crystal laminated structure according to the following [3] and [4].

[3]前記[1]に記載の結晶積層構造体をHVPE法によって製造する製造方法であって、前記Ga系基板を反応チャンバー内の結晶成長領域に配置する工程と、塩化ガリウム系ガス及び酸素含有ガスを前記反応チャンバー内の結晶成長領域へ供給して前記β−Ga系単結晶膜を900℃以上で前記Ga系基板上に成長させる工程と、を含む結晶積層構造体の製造方法。 [3] A manufacturing method for manufacturing the crystal multilayer structure according to [1] by an HVPE method, the step of disposing the Ga 2 O 3 based substrate in a crystal growth region in a reaction chamber; Supplying a gas and an oxygen-containing gas to a crystal growth region in the reaction chamber to grow the β-Ga 2 O 3 single crystal film on the Ga 2 O 3 substrate at 900 ° C. or higher. Manufacturing method of crystal laminated structure.

[4]前記塩化ガリウム系ガス及び酸素含有ガスに加えてIV族元素のドーパントを添加するための塩化物系ガスを前記反応チャンバー内の結晶成長領域へ供給して、前記β−Ga系単結晶膜のキャリア濃度を1×1013〜1×1020/cmの範囲にする工程と、を更に含む前記[3]に記載の結晶積層構造体の製造方法。 [4] A chloride-based gas for adding a dopant of a group IV element in addition to the gallium chloride-based gas and the oxygen-containing gas is supplied to the crystal growth region in the reaction chamber, and the β-Ga 2 O 3 The method for producing a crystal multilayer structure according to [3], further including a step of setting the carrier concentration of the system single crystal film to a range of 1 × 10 13 to 1 × 10 20 / cm 3 .

本発明によれば、高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることのできるβ−Ga系単結晶膜の成長方法、及びその成長方法により成長した結晶積層構造体、及びその製造方法を提供することができる。 According to the present invention, a β-Ga 2 O 3 single crystal film growth method capable of efficiently growing a high-quality and large-diameter β-Ga 2 O 3 single crystal film, and a growth method thereof A grown crystal multilayer structure and a method for manufacturing the same can be provided.

図1は、実施の形態に係る結晶積層構造体の垂直断面図である。FIG. 1 is a vertical sectional view of a crystal multilayer structure according to an embodiment. 図2は、実施の形態に係る気相成長装置の垂直断面図である。FIG. 2 is a vertical sectional view of the vapor phase growth apparatus according to the embodiment. 図3は、熱平衡計算により得られた、塩化ガリウム系ガスがGaClガスのみからなる場合と、GaClガスのみからなる場合のそれぞれの場合におけるGa結晶の成長駆動力と成長温度との関係を表すグラフである。FIG. 3 shows the relationship between the growth driving force and the growth temperature of the Ga 2 O 3 crystal in each of the cases where the gallium chloride-based gas is composed only of GaCl gas and the case where it is composed only of GaCl 3 gas. It is a graph showing a relationship. 図4は、熱平衡計算により得られた、GaとClの反応から得られるGaClガス、GaClガス、GaClガス、及び(GaClガスの平衡分圧と雰囲気温度との関係を表すグラフである。FIG. 4 shows the relationship between the equilibrium partial pressure of GaCl gas, GaCl 2 gas, GaCl 3 gas, and (GaCl 3 ) 2 gas obtained from the reaction of Ga and Cl 2 and the ambient temperature obtained by thermal equilibrium calculation. It is a graph. 図5は、熱平衡計算により得られた、Ga結晶成長の雰囲気温度が1000℃であるときの、GaClの平衡分圧とO/GaCl供給分圧比との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the equilibrium partial pressure of GaCl and the O 2 / GaCl supply partial pressure ratio when the ambient temperature of Ga 2 O 3 crystal growth is 1000 ° C., obtained by thermal equilibrium calculation. 図6は、主面の面方位が(010)であるGa基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。FIG. 6 was obtained by a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film was epitaxially grown on the main surface of a Ga 2 O 3 substrate having a (010) plane orientation of the main surface. It is a graph showing an X-ray diffraction spectrum. 図7は、主面の面方位が(−201)であるGa基板の主面上にGa単結晶膜を1000℃でエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。FIG. 7 shows a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film is epitaxially grown at 1000 ° C. on a main surface of a Ga 2 O 3 substrate having a main surface orientation of (−201). It is a graph showing the X-ray-diffraction spectrum obtained by this. 図8は、主面の面方位が(001)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。FIG. 8 is obtained by 2θ-ω scanning of a crystal stacked structure in which a Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate having a (001) main surface orientation. It is a graph showing the acquired X-ray-diffraction spectrum. 図9は、主面の面方位が(101)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。FIG. 9 is obtained by a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate whose main surface has a plane orientation of (101). It is a graph showing the acquired X-ray-diffraction spectrum. 図10(a)、(b)は、二次イオン質量分析法(SIMS)により測定した、結晶積層構造体中の不純物濃度を表すグラフである。FIGS. 10A and 10B are graphs showing the impurity concentration in the crystal multilayer structure measured by secondary ion mass spectrometry (SIMS). 図11(a)は、主面の面方位が(001)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。図11(b)は、上記の積層構造体の耐電圧特性を表すグラフである。FIG. 11A shows a carrier in the depth direction in a crystal stacked structure in which a β-Ga 2 O 3 crystal film is epitaxially grown on a β-Ga 2 O 3 substrate whose main surface has a plane orientation of (001). It is a graph showing the profile of a density | concentration. FIG. 11B is a graph showing the withstand voltage characteristics of the laminated structure. 図12は、主面の面方位が(010)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。FIG. 12 shows a profile of carrier concentration in the depth direction in a crystal stacked structure in which a β-Ga 2 O 3 crystal film is epitaxially grown on a β-Ga 2 O 3 substrate having a (010) principal plane orientation. It is a graph showing.

〔実施の形態〕
(結晶積層構造体の構成)
図1は、実施の形態に係る結晶積層構造体1の垂直断面図である。結晶積層構造体1は、Ga系基板10と、Ga系基板10の主面11上にエピタキシャル結晶成長により形成されたβ−Ga系単結晶膜12を有する。
Embodiment
(Configuration of crystal laminated structure)
FIG. 1 is a vertical sectional view of a crystal multilayer structure 1 according to an embodiment. The crystal laminated structure 1 has a Ga 2 O 3 -based substrate 10 and a β-Ga 2 O 3 -based single crystal film 12 formed by epitaxial crystal growth on the main surface 11 of the Ga 2 O 3 -based substrate 10.

Ga系基板10は、β型の結晶構造を有するGa系単結晶からなる基板である。ここで、Ga系単結晶とは、Ga単結晶、又は、Al、In等の元素が添加されたGa単結晶をいう。例えば、Al及びInが添加されたGa単結晶である(GaAlIn(1−x−y)(0<x≦1、0≦y≦1、0<x+y≦1)単結晶であってもよい。Alを添加した場合にはバンドギャップが広がり、Inを添加した場合にはバンドギャップが狭くなる。また、Ga系基板10は、Si等の導電型不純物を含んでもよい。 The Ga 2 O 3 based substrate 10 is a substrate made of a Ga 2 O 3 based single crystal having a β-type crystal structure. Here, the Ga 2 O 3 single crystal refers to a Ga 2 O 3 single crystal or a Ga 2 O 3 single crystal to which an element such as Al or In is added. For example, a Ga 2 O 3 single crystal to which Al and In are added (Ga x Al y In (1-xy) ) 2 O 3 (0 <x ≦ 1, 0 ≦ y ≦ 1, 0 <x + y ≦ 1) A single crystal may be used. When Al is added, the band gap is widened, and when In is added, the band gap is narrowed. Further, the Ga 2 O 3 based substrate 10 may contain a conductive impurity such as Si.

Ga系基板10の主面11の面方位は、例えば、(010)、(−201)、(001)、又は(101)である。 The plane orientation of the main surface 11 of the Ga 2 O 3 based substrate 10 is, for example, (010), (−201), (001), or (101).

Ga系基板10は、例えば、FZ(Floating Zone)法やEFG(Edge Defined Film Fed Growth)法等の融液成長法により育成したGa系単結晶のバルク結晶を
スライスし、表面を研磨することにより形成される。
The Ga 2 O 3 based substrate 10 is obtained by slicing a bulk crystal of a Ga 2 O 3 based single crystal grown by a melt growth method such as an FZ (Floating Zone) method or an EFG (Edge Defined Film Fed Growth) method. It is formed by polishing the surface.

β−Ga系単結晶膜12は、Ga系基板10と同様に、β型の結晶構造を有するGa系単結晶からなる。また、β−Ga系単結晶膜12は、Si等の導電型不純物を含んでもよい。 The β-Ga 2 O 3 single crystal film 12 is made of a Ga 2 O 3 single crystal having a β-type crystal structure, like the Ga 2 O 3 base substrate 10. Further, the β-Ga 2 O 3 based single crystal film 12 may contain a conductivity type impurity such as Si.

(気相成長装置の構造)
以下に、本実施の形態に係るβ−Ga系単結晶膜12の成長に用いる気相成長装置の構造の一例について説明する。
(Structure of vapor phase growth equipment)
Below, an example of the structure of the vapor phase growth apparatus used for the growth of the β-Ga 2 O 3 based single crystal film 12 according to the present embodiment will be described.

図2は、実施の形態に係る気相成長装置2の垂直断面図である。気相成長装置2は、HVPE(Halide Vapor Phase Epitaxy)法用の気相成長装置であり、第1のガス導入ポート21、第2のガス導入ポート22、第3のガス導入ポート23、及び排気ポート24を有する反応チャンバー20と、反応チャンバー20の周囲に設置され、反応チャンバー20内の所定の領域を加熱する第1の加熱手段26及び第2の加熱手段27を有する。   FIG. 2 is a vertical sectional view of the vapor phase growth apparatus 2 according to the embodiment. The vapor phase growth apparatus 2 is a vapor phase growth apparatus for HVPE (Halide Vapor Phase Epitaxy) method, and includes a first gas introduction port 21, a second gas introduction port 22, a third gas introduction port 23, and an exhaust gas. A reaction chamber 20 having a port 24, and a first heating unit 26 and a second heating unit 27 which are installed around the reaction chamber 20 and heat a predetermined region in the reaction chamber 20.

HVPE法は、PLD法等と比較して、成膜レートが高い。また、膜厚の面内分布の均一性が高く、大口径の膜を成長させることができる。このため、結晶の大量生産に適している。   The HVPE method has a higher film formation rate than the PLD method or the like. In addition, the uniformity of the in-plane distribution of film thickness is high, and a large-diameter film can be grown. For this reason, it is suitable for mass production of crystals.

反応チャンバー20は、Ga原料が収容された反応容器25が配置され、ガリウムの原料ガスが生成される原料反応領域R1と、Ga系基板10が配置され、β−Ga系単結晶膜12の成長が行われる結晶成長領域R2を有する。反応チャンバー20は、例えば、石英ガラスからなる。 The reaction chamber 20 is provided with a reaction vessel 25 containing Ga raw material, a raw material reaction region R1 in which a gallium raw material gas is generated, a Ga 2 O 3 based substrate 10 and a β-Ga 2 O 3 based. A crystal growth region R2 in which the single crystal film 12 is grown is provided. The reaction chamber 20 is made of, for example, quartz glass.

ここで、反応容器25は、例えば、石英ガラスであり、反応容器25に収容されるGa原料は金属ガリウムである。   Here, the reaction vessel 25 is, for example, quartz glass, and the Ga raw material accommodated in the reaction vessel 25 is metallic gallium.

第1の加熱手段26と第2の加熱手段27は、反応チャンバー20の原料反応領域R1と結晶成長領域R2をそれぞれ加熱することができる。第1の加熱手段26及び第2の加熱手段27は、例えば、抵抗加熱式や輻射加熱式の加熱装置である。   The first heating unit 26 and the second heating unit 27 can heat the raw material reaction region R1 and the crystal growth region R2 of the reaction chamber 20, respectively. The first heating unit 26 and the second heating unit 27 are, for example, resistance heating type or radiation heating type heating devices.

第1のガス導入ポート21は、Clガス又はHClガスであるCl含有ガスを不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応チャンバー20の原料反応領域R1内に導入するためのポートである。第2のガス導入ポート22は、酸素の原料ガスであるOガスやHOガス等の酸素含有ガス及びβ−Ga系単結晶膜12にSi等のドーパントを添加するための塩化物系ガス(例えば、四塩化ケイ素等)を不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応チャンバー20の結晶成長領域R2へ導入するためのポートである。第3のガス導入ポート23は、不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を反応チャ
ンバー20の結晶成長領域R2へ導入するためのポートである。
The first gas introduction port 21 uses a carrier gas (N 2 gas, Ar gas, or He gas), which is an inert gas, as a Cl-containing gas, which is Cl 2 gas or HCl gas, as a raw material reaction region R 1 of the reaction chamber 20. It is a port to introduce in. The second gas introduction port 22 is used to add a dopant such as Si to the oxygen-containing gas such as O 2 gas or H 2 O gas which is an oxygen source gas and the β-Ga 2 O 3 single crystal film 12. This is a port for introducing a chloride-based gas (for example, silicon tetrachloride) into the crystal growth region R2 of the reaction chamber 20 using a carrier gas (N 2 gas, Ar gas, or He gas) that is an inert gas. . The third gas introduction port 23 is a port for introducing a carrier gas (N 2 gas, Ar gas, or He gas) that is an inert gas into the crystal growth region R 2 of the reaction chamber 20.

(β−Ga系単結晶膜の成長)
以下に、本実施の形態に係るβ−Ga系単結晶膜12の成長工程の一例について説明する。
(Growth of β-Ga 2 O 3 single crystal film)
Hereinafter, an example of the growth process of the β-Ga 2 O 3 single crystal film 12 according to the present embodiment will be described.

まず、第1の加熱手段26を用いて反応チャンバー20の原料反応領域R1を加熱し、原料反応領域R1の雰囲気温度を所定の温度に保つ。   First, the raw material reaction region R1 of the reaction chamber 20 is heated using the first heating means 26, and the atmospheric temperature of the raw material reaction region R1 is maintained at a predetermined temperature.

次に、第1のガス導入ポート21からCl含有ガスをキャリアガスを用いて導入し、原料反応領域R1において、上記の雰囲気温度下で反応容器25内の金属ガリウムとCl含有ガスを反応させ、塩化ガリウム系ガスを生成する。   Next, a Cl-containing gas is introduced from the first gas introduction port 21 using a carrier gas, and in the raw material reaction region R1, the metal gallium in the reaction vessel 25 and the Cl-containing gas are reacted at the above atmospheric temperature, Generates gallium chloride gas.

このとき、上記の原料反応領域R1内の雰囲気温度は、反応容器25内の金属ガリウムとCl含有ガスの反応により生成される塩化ガリウム系ガスのうち、GaClガスの分圧が最も高くなるような温度であることが好ましい。ここで、塩化ガリウム系ガスには、GaClガス、GaClガス、GaClガス、(GaClガス等が含まれる。 At this time, the atmospheric temperature in the raw material reaction region R1 is such that the partial pressure of the GaCl gas is the highest among the gallium chloride-based gases generated by the reaction between the metal gallium in the reaction vessel 25 and the Cl-containing gas. Temperature is preferred. Here, the gallium chloride-based gas includes GaCl gas, GaCl 2 gas, GaCl 3 gas, (GaCl 3 ) 2 gas, and the like.

GaClガスは、塩化ガリウム系ガスに含まれるガスのうち、Ga結晶の成長駆動力を最も高い温度まで保つことのできるガスである。高純度、高品質のGa結晶を得るためには、高い成長温度での成長が有効であるため、高温において成長駆動力の高いGaClガスの分圧が高い塩化ガリウム系ガスを生成することが、β−Ga系単結晶膜12の成長のために好ましい。 GaCl gas is a gas that can maintain the growth driving force of Ga 2 O 3 crystals up to the highest temperature among the gases contained in the gallium chloride-based gas. In order to obtain a high-purity and high-quality Ga 2 O 3 crystal, growth at a high growth temperature is effective. Therefore, a gallium chloride-based gas having a high partial pressure of GaCl gas having a high growth driving force is generated at a high temperature. Is preferable for the growth of the β-Ga 2 O 3 -based single crystal film 12.

図3は、熱平衡計算により得られた、塩化ガリウム系ガスがGaClガスのみからなる場合と、GaClガスのみからなる場合のそれぞれの場合におけるGa結晶の成長駆動力と成長温度との関係を表すグラフである。計算条件は、キャリアガスとして例えばN等の不活性ガスを用い、炉内圧力を1atm、GaClガス及びGaClガスの供給分圧を1×10−3atm、O/GaCl分圧比を10とした。 FIG. 3 shows the relationship between the growth driving force and the growth temperature of the Ga 2 O 3 crystal in each of the cases where the gallium chloride-based gas is composed only of GaCl gas and the case where it is composed only of GaCl 3 gas. It is a graph showing a relationship. As calculation conditions, for example, an inert gas such as N 2 is used as a carrier gas, the furnace pressure is 1 atm, the supply partial pressure of GaCl gas and GaCl 3 gas is 1 × 10 −3 atm, and the O 2 / GaCl partial pressure ratio is 10 It was.

図3の横軸はGa結晶の成長温度(℃)を示し、縦軸は結晶成長駆動力(atm)を表す。結晶成長駆動力の値が大きいほど、効率的にGa結晶が成長する。 The horizontal axis in FIG. 3 represents the growth temperature (° C.) of the Ga 2 O 3 crystal, and the vertical axis represents the crystal growth driving force (atm). The larger the value of the crystal growth driving force, the more efficiently the Ga 2 O 3 crystal grows.

図3は、Gaの原料ガスとしてGaClガスを用いる場合の方が、GaClガスを用いる場合よりも、成長駆動力が保たれる温度の上限が高いことを示している。 FIG. 3 shows that the upper limit of the temperature at which the growth driving force can be maintained is higher when GaCl gas is used as the Ga source gas than when GaCl 3 gas is used.

なお、β−Ga系単結晶膜12を成長させる際の雰囲気に水素が含まれていると、β−Ga系単結晶膜12の表面の平坦性及び結晶成長駆動力が低下するため、水素を含まないClガスをCl含有ガスとして用いることが好ましい。 Incidentally, β-Ga 2 when O 3 system contains a hydrogen atmosphere for growing the single crystal film 12, β-Ga 2 O 3 system flatness and crystal growth driving force of the surface of the single crystal film 12 In order to decrease, it is preferable to use a Cl 2 gas containing no hydrogen as the Cl-containing gas.

図4は、熱平衡計算により得られた、GaとClの反応から得られるGaClガス、GaClガス、GaClガス、及び(GaClガスの平衡分圧と反応時の雰囲
気温度との関係を表すグラフである。その他の計算条件は、キャリアガスとして例えばN等の不活性ガスを用い、炉内圧力を1atm、Clガスの供給分圧を3×10−3atmとした。
FIG. 4 shows the equilibrium partial pressure of GaCl gas, GaCl 2 gas, GaCl 3 gas, and (GaCl 3 ) 2 gas obtained from the reaction of Ga and Cl 2 and the ambient temperature at the time of reaction obtained by thermal equilibrium calculation. It is a graph showing a relationship. Other calculation conditions were such that an inert gas such as N 2 was used as the carrier gas, the furnace pressure was 1 atm, and the supply partial pressure of Cl 2 gas was 3 × 10 −3 atm.

図4の横軸は雰囲気温度(℃)を示し、縦軸は平衡分圧(atm)を表す。平衡分圧が高いほど、ガスが多く生成されていることを示す。   The horizontal axis in FIG. 4 represents the ambient temperature (° C.), and the vertical axis represents the equilibrium partial pressure (atm). The higher the equilibrium partial pressure, the more gas is generated.

図4は、およそ300℃以上の雰囲気温度下で金属ガリウムとCl含有ガスを反応させることにより、Ga結晶の成長駆動力を特に高めることのできるGaClガスの平衡分圧が高くなること、すなわち塩化ガリウム系ガスのうちのGaClガスの分圧比が高くなることを示している。このことから、第1の加熱手段26により原料反応領域R1の雰囲気温度を300℃以上に保持した状態で反応容器25内の金属ガリウムとCl含有ガスを反応させることが好ましいといえる。 FIG. 4 shows that the reaction partial pressure of GaCl gas, which can particularly enhance the growth driving force of Ga 2 O 3 crystal, is increased by reacting metal gallium with a Cl-containing gas at an atmospheric temperature of about 300 ° C. or higher. That is, the partial pressure ratio of GaCl gas in the gallium chloride-based gas is increased. From this, it can be said that it is preferable to react the metal gallium in the reaction vessel 25 and the Cl-containing gas in a state where the atmosphere temperature of the raw material reaction region R1 is maintained at 300 ° C. or higher by the first heating means 26.

また、例えば、850℃の雰囲気温度下では、GaClガスの分圧比が圧倒的に高くなる(GaClガスの平衡分圧がGaClガスより4桁大きく、GaClガスより8桁大きい)ため、GaClガス以外のガスはGa結晶の成長にほとんど寄与しない。 Further, for example, under an atmospheric temperature of 850 ° C., the GaCl gas partial pressure ratio is overwhelmingly high (the equilibrium partial pressure of GaCl gas is 4 orders of magnitude higher than GaCl 2 gas and 8 orders of magnitude higher than GaCl 3 gas). A gas other than the gas hardly contributes to the growth of the Ga 2 O 3 crystal.

なお、第1の加熱手段26の寿命や、石英ガラス等からなる反応チャンバー20の耐熱性を考慮して、原料反応領域R1の雰囲気温度を1000℃以下に保持した状態で反応容器25内の金属ガリウムとCl含有ガスを反応させることが好ましい。   In consideration of the lifetime of the first heating means 26 and the heat resistance of the reaction chamber 20 made of quartz glass or the like, the metal in the reaction vessel 25 is maintained in a state where the atmosphere temperature of the raw material reaction region R1 is kept at 1000 ° C. or lower. It is preferable to react gallium with a Cl-containing gas.

次に、結晶成長領域R2において、原料反応領域R1で生成された塩化ガリウム系ガスと、第2のガス導入ポート22から導入された酸素含有ガスとを混合させ、その混合ガスにGa系基板10を曝し、Ga系基板10上にβ−Ga系単結晶膜12をエピタキシャル成長させる。このとき、反応チャンバー20を収容する炉内の結晶成長領域R2における圧力を、例えば、1atmに保つ。 Next, in the crystal growth region R2, the gallium chloride-based gas generated in the raw material reaction region R1 and the oxygen-containing gas introduced from the second gas introduction port 22 are mixed, and Ga 2 O 3 is added to the mixed gas. The system substrate 10 is exposed, and the β-Ga 2 O 3 system single crystal film 12 is epitaxially grown on the Ga 2 O 3 system substrate 10. At this time, the pressure in the crystal growth region R2 in the furnace containing the reaction chamber 20 is maintained at, for example, 1 atm.

ここで、Si、Al等の添加元素を含むβ−Ga系単結晶膜12を形成する場合には、ガス導入ポート22より、添加元素の原料ガス(例えば、四塩化ケイ素(SiCl)等の塩化物系ガス)も塩化ガリウム系ガス及び酸素含有ガスに併せて結晶成長領域R2に導入する。 Here, when the β-Ga 2 O 3 single crystal film 12 containing an additive element such as Si or Al is formed, a source gas of the additive element (for example, silicon tetrachloride (SiCl 4 ) is supplied from the gas introduction port 22. ) And the like are also introduced into the crystal growth region R2 together with the gallium chloride gas and the oxygen-containing gas.

なお、β−Ga系単結晶膜12を成長させる際の雰囲気に水素が含まれていると、β−Ga系単結晶膜12の表面の平坦性及び結晶成長駆動力が低下するため、酸素含有ガスとして水素を含まないOガスを用いることが好ましい。 Incidentally, β-Ga 2 when O 3 system contains a hydrogen atmosphere for growing the single crystal film 12, β-Ga 2 O 3 system flatness and crystal growth driving force of the surface of the single crystal film 12 to lower, it is preferable to use O 2 gas not containing hydrogen as the oxygen-containing gas.

図5は、熱平衡計算により得られた、Ga結晶成長の雰囲気温度が1000℃であるときの、GaClの平衡分圧とO/GaCl供給分圧比との関係を示すグラフである。ここで、Oガスの供給分圧のGaClガスの供給分圧に対する比をO/GaCl供給分圧比と呼ぶ。本計算においては、GaClガスの供給分圧の値を1×10−3atmに固定し、キャリアガスとして例えばN等の不活性ガスを用いて炉内圧力を1atmとし、Oガスの供給分圧の値を変化させた。 FIG. 5 is a graph showing the relationship between the equilibrium partial pressure of GaCl and the O 2 / GaCl supply partial pressure ratio when the ambient temperature of Ga 2 O 3 crystal growth is 1000 ° C., obtained by thermal equilibrium calculation. Here, the ratio of the O 2 gas supply partial pressure to the GaCl gas supply partial pressure is referred to as an O 2 / GaCl supply partial pressure ratio. In this calculation, the supply partial pressure value of the GaCl gas is fixed to 1 × 10 −3 atm, the in-furnace pressure is set to 1 atm using an inert gas such as N 2 as the carrier gas, and the O 2 gas is supplied. The value of partial pressure was changed.

図5の横軸はO/GaCl供給分圧比を示し、縦軸はGaClガスの平衡分圧(atm)を表す。GaClガスの供給分圧が小さいほど、Ga結晶の成長にGaClガスが消費されていること、すなわち、効率的にGa結晶が成長していることを示す。 The horizontal axis in FIG. 5 represents the O 2 / GaCl supply partial pressure ratio, and the vertical axis represents the equilibrium partial pressure (atm) of GaCl gas. The smaller the supply partial pressure of GaCl gas, the more GaCl gas is consumed for the growth of Ga 2 O 3 crystal, that is, the Ga 2 O 3 crystal is efficiently grown.

図5は、O/GaCl供給分圧比が0.5以上になるとGaClガスの平衡分圧が急激に低下することを示している。 FIG. 5 shows that the equilibrium partial pressure of GaCl gas rapidly decreases when the O 2 / GaCl supply partial pressure ratio is 0.5 or more.

このため、β−Ga系単結晶膜12を効率的に成長させるためには、結晶成長領域R2におけるOガスの供給分圧のGaClガスの供給分圧に対する比が0.5以上である状態でβ−Ga系単結晶膜12を成長させることが好ましい。 For this reason, in order to efficiently grow the β-Ga 2 O 3 -based single crystal film 12, the ratio of the O 2 gas supply partial pressure to the GaCl gas supply partial pressure in the crystal growth region R2 is 0.5 or more. In this state, it is preferable to grow the β-Ga 2 O 3 -based single crystal film 12.

図6は、主面の面方位が(010)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とした。 FIG. 6 is obtained by a 2θ-ω scan of a crystal stacked structure in which a Ga 2 O 3 single crystal film is epitaxially grown on a main surface of a β-Ga 2 O 3 substrate having a (010) plane orientation of the main surface. It is a graph showing the acquired X-ray-diffraction spectrum. The growth conditions were such that the furnace pressure was 1 atm, the carrier gas was N 2 gas, the GaCl supply partial pressure was 5 × 10 −4 atm, and the O 2 / GaCl supply partial pressure ratio was 5.

図6の横軸はX線の入射方位と反射方位のなす角2θ(degree)を表し、縦軸はX線の回折強度(任意単位)を表す。   The horizontal axis of FIG. 6 represents the angle 2θ (degree) formed by the X-ray incident azimuth and reflection azimuth, and the vertical axis represents the X-ray diffraction intensity (arbitrary unit).

図6は、β−Ga基板(β−Ga結晶膜なし)のスペクトル、及び800℃、850℃、900℃、950℃、1000℃、及び1050℃でそれぞれβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。これらの結晶積層構造体のβ−Ga結晶膜の厚さは、およそ300〜1000nmである。 6, β-Ga 2 O 3 spectrum of the substrate (β-Ga 2 O 3 No crystal film), and 800 ℃, 850 ℃, 900 ℃ , 950 ℃, 1000 ℃, and respectively at 1050 ℃ β-Ga 2 2 shows a spectrum of a crystal laminated structure obtained by epitaxially growing an O 3 crystal film. The thickness of the β-Ga 2 O 3 crystal film of these crystal stacked structures is approximately 300 to 1000 nm.

図6によれば、800、850℃の成長温度でβ−Ga結晶膜を成長させた結晶積層構造体のスペクトルにおいて見られる、非配向グレインの存在に起因する(−313)面、(−204)面、及び(−712)面又は(512)面の回折ピークが、900℃以上の成長温度でβ−Ga結晶膜を成長させた結晶積層構造体のスペクトルにおいて消滅する。このことは、900℃以上の成長温度でGa単結晶膜を成長させることにより、β−Ga単結晶膜が得られることを示している。 According to FIG. 6, the (−313) plane due to the presence of non-oriented grains, as seen in the spectrum of the crystal stack structure in which the β-Ga 2 O 3 crystal film is grown at growth temperatures of 800 and 850 ° C. The (−204) plane and the (−712) plane or (512) plane diffraction peaks disappear in the spectrum of the crystal stack structure in which the β-Ga 2 O 3 crystal film is grown at a growth temperature of 900 ° C. or higher. . This indicates that a β-Ga 2 O 3 single crystal film can be obtained by growing a Ga 2 O 3 single crystal film at a growth temperature of 900 ° C. or higher.

なお、β−Ga基板の主面の面方位が(−201)、(001)、又は(101)である場合にも、900℃以上の成長温度でβ−Ga結晶膜を成長させることにより、β−Ga単結晶膜が得られる。また、Ga基板の代わりに他のGa系基板を用いた場合であっても、Ga結晶膜の代わりに他のGa系結晶膜を形成した場合であっても、上記の評価結果と同様の評価結果が得られる。すなわち、Ga系基板10の主面の面方位が(010)、(−201)、(001)、又は(101)である場合、900℃以上の成長温度でβ−Ga系単結晶膜12を成長させることにより、β−Ga系単結晶膜12が得られる。 Even when the plane orientation of the main surface of the β-Ga 2 O 3 substrate is (−201), (001), or (101), the β-Ga 2 O 3 crystal film is grown at a growth temperature of 900 ° C. or higher. Is grown, a β-Ga 2 O 3 single crystal film is obtained. Further, even in the case of using the other Ga 2 O 3 system board in place of Ga 2 O 3 substrate, in the case of forming the other Ga 2 O 3 based crystal film in place of Ga 2 O 3 crystal film Even if it exists, the evaluation result similar to said evaluation result is obtained. That is, when the plane orientation of the main surface of the Ga 2 O 3 based substrate 10 is (010), (−201), (001), or (101), β-Ga 2 O 3 at a growth temperature of 900 ° C. or higher. The β-Ga 2 O 3 single crystal film 12 is obtained by growing the single crystal film 12.

図7は、主面の面方位が(−201)であるβ−Ga基板の主面上にβ−Ga単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。このβ−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 FIG. 7 shows a 2θ-ω of a crystal stacked structure in which a β-Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate having a main surface orientation of (−201). It is a graph showing the X-ray-diffraction spectrum obtained by the scan. The growth conditions of this β-Ga 2 O 3 single crystal film are as follows: the furnace pressure is 1 atm, the carrier gas is N 2 gas, the GaCl supply partial pressure is 5 × 10 −4 atm, and the O 2 / GaCl supply partial pressure ratio is 5. The growth temperature was 1000 ° C.

図7は、主面の面方位が(−201)であるβ−Ga基板(β−Ga結晶膜なし)のスペクトル、及びそのβ−Ga基板上に1000℃でβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。この結晶積層構造体のβ−Ga結晶膜の厚さは、およそ300nmである。 FIG. 7 shows a spectrum of a β-Ga 2 O 3 substrate (without a β-Ga 2 O 3 crystal film) whose plane orientation of the main surface is (−201), and 1000 ° C. on the β-Ga 2 O 3 substrate. 2 shows a spectrum of a crystal stacked structure obtained by epitaxially growing a β-Ga 2 O 3 crystal film. The thickness of the β-Ga 2 O 3 crystal film of this crystal laminated structure is approximately 300 nm.

図8は、主面の面方位が(001)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。このβ−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 FIG. 8 is obtained by 2θ-ω scanning of a crystal stacked structure in which a Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate having a (001) main surface orientation. It is a graph showing the acquired X-ray-diffraction spectrum. The growth conditions of this β-Ga 2 O 3 single crystal film are as follows: the furnace pressure is 1 atm, the carrier gas is N 2 gas, the GaCl supply partial pressure is 5 × 10 −4 atm, and the O 2 / GaCl supply partial pressure ratio is 5. The growth temperature was 1000 ° C.

図8は、主面の面方位が(001)であるβ−Ga基板(β−Ga結晶膜なし)のスペクトル、及びそのβ−Ga基板上に1000℃でβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。この結晶積層構造体のβ−Ga結晶膜の厚さは、およそ6μmである。 FIG. 8 shows a spectrum of a β-Ga 2 O 3 substrate (no β-Ga 2 O 3 crystal film) whose surface orientation is (001) and 1000 ° C. on the β-Ga 2 O 3 substrate. 2 shows a spectrum of a crystal stacked structure obtained by epitaxially growing a β-Ga 2 O 3 crystal film. The thickness of the β-Ga 2 O 3 crystal film of this crystal laminated structure is approximately 6 μm.

図9は、主面の面方位が(101)であるβ−Ga基板の主面上にGa単結晶膜をエピタキシャル成長させた結晶積層構造体の、2θ−ωスキャンにより得られたX線回折スペクトルを表すグラフである。このβ−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 FIG. 9 is obtained by a 2θ-ω scan of a crystal laminated structure in which a Ga 2 O 3 single crystal film is epitaxially grown on the main surface of a β-Ga 2 O 3 substrate whose main surface has a plane orientation of (101). It is a graph showing the acquired X-ray-diffraction spectrum. The growth conditions of this β-Ga 2 O 3 single crystal film are as follows: the furnace pressure is 1 atm, the carrier gas is N 2 gas, the GaCl supply partial pressure is 5 × 10 −4 atm, and the O 2 / GaCl supply partial pressure ratio is 5. The growth temperature was 1000 ° C.

図9は、主面の面方位が(101)であるβ−Ga基板(β−Ga結晶膜なし)のスペクトル、及びそのβ−Ga基板上に1000℃でβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体のスペクトルを示す。この結晶積層構造体のβ−Ga結晶膜の厚さは、およそ4μmである。 FIG. 9 shows a spectrum of a β-Ga 2 O 3 substrate (without a β-Ga 2 O 3 crystal film) whose plane orientation is (101), and 1000 ° C. on the β-Ga 2 O 3 substrate. 2 shows a spectrum of a crystal stacked structure obtained by epitaxially growing a β-Ga 2 O 3 crystal film. The thickness of the β-Ga 2 O 3 crystal film of this crystal laminated structure is approximately 4 μm.

図7、8、9の横軸はX線の入射方位と反射方位のなす角2θ(degree)を表し、縦軸はX線の回折強度(任意単位)を表す。   7, 8, and 9, the horizontal axis represents the angle 2θ (degree) formed by the X-ray incident azimuth and the reflection azimuth, and the vertical axis represents the X-ray diffraction intensity (arbitrary unit).

図7、8、9によれば、1000℃の成長温度でβ−Ga結晶膜を成長させた結晶積層構造体のスペクトルの回折ピークが、β−Ga基板のスペクトルの回折ピークと一致している。この結果は、主面の面方位が(−201)、(001)、又は(101)であるβ−Ga基板の主面上に1000℃の成長温度でβ−Ga結晶膜を成長させることにより、β−Ga単結晶膜が得られることを示している。 According to FIGS. 7, 8, and 9, the diffraction peak of the spectrum of the crystal stacked structure obtained by growing the β-Ga 2 O 3 crystal film at the growth temperature of 1000 ° C. is the diffraction of the spectrum of the β-Ga 2 O 3 substrate. It is consistent with the peak. This result shows that a β-Ga 2 O 3 crystal is grown at a growth temperature of 1000 ° C. on the main surface of a β-Ga 2 O 3 substrate having a plane orientation of (−201), (001), or (101). It shows that a β-Ga 2 O 3 single crystal film can be obtained by growing the film.

図10(a)、(b)は、二次イオン質量分析法(SIMS)により測定した、結晶積層構造体中の不純物濃度を表すグラフである。   FIGS. 10A and 10B are graphs showing the impurity concentration in the crystal multilayer structure measured by secondary ion mass spectrometry (SIMS).

図10(a)、(b)の横軸は結晶積層構造体のβ−Ga単結晶膜の主面13からの深さ(μm)を表し、縦軸は各不純物の濃度(atoms/cm)を表す。ここで、結晶積層構造体のβ−Ga基板とβ−Ga単結晶膜の界面の深さは、およそ0.3μmである。また、図10(a)、(b)の右側の水平な矢印は、各不純物元素の濃度の測定可能な下限値を表す。 10A and 10B, the horizontal axis represents the depth (μm) from the main surface 13 of the β-Ga 2 O 3 single crystal film of the crystal laminated structure, and the vertical axis represents the concentration of each impurity (atoms). / Cm 3 ). Here, the depth of the interface between the β-Ga 2 O 3 substrate and the β-Ga 2 O 3 single crystal film of the crystal laminated structure is about 0.3 μm. In addition, the horizontal arrows on the right side of FIGS. 10A and 10B represent the lower limit of measurable concentration of each impurity element.

本測定に用いた結晶積層構造体のβ−Ga単結晶膜は、主面の面方位が(010)であるβ−Ga基板の主面上に1000℃の成長温度で成長させた膜である。 The β-Ga 2 O 3 single crystal film of the crystal laminated structure used in this measurement has a growth temperature of 1000 ° C. on the main surface of the β-Ga 2 O 3 substrate whose main surface has a (010) plane orientation. It is a grown film.

図10(a)は、C、Sn、Siの結晶積層構造体中の濃度を表し、図10(b)は、H、Clの結晶積層構造体中の濃度を表す。図10(a)、(b)によれば、いずれの不純物元素も、β−Ga単結晶膜中の濃度が測定可能な下限値に近く、Ga基板中の濃度とほぼ変わらない。このことは、β−Ga単結晶膜が純度の高い膜であることを示している。 FIG. 10A shows the concentration of C, Sn, and Si in the crystal stacked structure, and FIG. 10B shows the concentration of H and Cl in the crystal stacked structure. According to FIGS. 10A and 10B, both impurity elements are close to the measurable lower limit of the concentration in the β-Ga 2 O 3 single crystal film, and almost the same as the concentration in the Ga 2 O 3 substrate. does not change. This indicates that the β-Ga 2 O 3 single crystal film is a highly pure film.

なお、β−Ga基板の主面の面方位が(−201)、(101)、又は(001)である場合にも同様の評価結果が得られる。また、β−Ga基板の代わりに他のGa系基板を用いた場合であっても、β−Ga単結晶膜の代わりに他のGa系単結晶膜を形成した場合であっても、上記の評価結果と同様の評価結果が得られる。 Similar evaluation results are obtained when the plane orientation of the main surface of the β-Ga 2 O 3 substrate is (−201), (101), or (001). Further, even in the case of using the other Ga 2 O 3 system board in place of the β-Ga 2 O 3 substrate, β-Ga 2 O 3 other Ga 2 O 3 system single crystal in place of the single crystal film Even when a film is formed, an evaluation result similar to the above evaluation result is obtained.

図10(b)によれば、β−Ga単結晶膜中におよそ5×1016(atoms/cm)以下のClが含まれている。これは、Ga単結晶膜がCl含有ガスを用いるHVPE法により形成されることに起因する。通常、HVPE法以外の方法によりGa単結晶膜を形成する場合には、Cl含有ガスを用いないため、Ga単結晶膜中にClが含まれることはなく、少なくとも、1×1016(atoms/cm)以上のClが含まれることはない。 According to FIG. 10B, the β-Ga 2 O 3 single crystal film contains approximately 5 × 10 16 (atoms / cm 3 ) or less of Cl. This is because the Ga 2 O 3 single crystal film is formed by the HVPE method using a Cl-containing gas. Normally, when a Ga 2 O 3 single crystal film is formed by a method other than the HVPE method, since a Cl-containing gas is not used, Cl is not contained in the Ga 2 O 3 single crystal film. × 10 16 (atoms / cm 3 ) does not contain more Cl.

図11(a)は、主面の面方位が(001)であるβ−Ga基板上にβ−Ga結晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。 FIG. 11A shows a carrier in the depth direction in a crystal stacked structure in which a β-Ga 2 O 3 crystal film is epitaxially grown on a β-Ga 2 O 3 substrate whose main surface has a plane orientation of (001). It is a graph showing the profile of a density | concentration.

図11(a)の横軸はβ−Ga結晶膜の表面からの深さ(μm)を表し、縦軸はキャリア濃度、すなわち正味のドナー濃度であるドナー濃度Nとアクセプタ濃度Nの差(cm−3)を表す。また、図中の点で描かれた曲線は、β−Gaの比誘電率を10、β−GaへPtを接触させたときのビルトインポテンシャルを1.5Vとしたときのドナー濃度と空乏層厚との関係を表す理論曲線である。 In FIG. 11A, the horizontal axis represents the depth (μm) from the surface of the β-Ga 2 O 3 crystal film, and the vertical axis represents the carrier concentration, that is, the donor concentration N d and the acceptor concentration N which are net donor concentrations. It represents the difference a (cm -3). Also, drawn curve in terms of in the figure, when the built-in potential when the relative dielectric constant of the β-Ga 2 O 3 10, contacting the Pt to β-Ga 2 O 3 and 1.5V It is a theoretical curve showing the relationship between donor concentration and depletion layer thickness.

図11(a)に示されるデータを測定するために用いた手順を以下に示す。まず、主面の面方位が(001)であり、Snをドープしたn型のβ−Ga基板上に、HVPE法により、アンドープのβ−Ga結晶膜をおよそ15μmの厚さにエピタキシャル成長させた。ここで、アンドープとは、意図したドーピングが行われていないことを意味し、意図しない不純物の混入を否定するものではない。 The procedure used to measure the data shown in FIG. 11 (a) is shown below. First, an undoped β-Ga 2 O 3 crystal film having a thickness of about 15 μm is formed on an n-type β-Ga 2 O 3 substrate doped with Sn and having a plane orientation of (001) by HVPE. Then, it was epitaxially grown. Here, undoped means that the intended doping is not performed, and does not deny the entry of unintended impurities.

β−Ga基板は、厚さが600μmの、10mmの正方形の基板であり、キャリア濃度はおよそ6×1018cm−3であった。β−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 The β-Ga 2 O 3 substrate was a 10 mm square substrate having a thickness of 600 μm, and the carrier concentration was approximately 6 × 10 18 cm −3 . The growth conditions of the β-Ga 2 O 3 single crystal film are as follows: furnace pressure is 1 atm, carrier gas is N 2 gas, GaCl supply partial pressure is 5 × 10 −4 atm, O 2 / GaCl supply partial pressure ratio is 5, The growth temperature was 1000 ° C.

次に、表面平坦化のため、アンドープのβ−Ga結晶膜の表面をCMPによって3μm研磨した。 Next, the surface of the undoped β-Ga 2 O 3 crystal film was polished by 3 μm by CMP for planarizing the surface.

次に、β−Ga結晶膜上にショットキー電極、β−Ga基板上にオーミック電極を形成し、バイアス電圧を+0〜−10Vの範囲で変化させてC−V測定を行った。そして、C−V測定の結果から深さ方向のキャリア濃度のプロファイルを算出した。 Next, a Schottky electrode is formed on the β-Ga 2 O 3 crystal film and an ohmic electrode is formed on the β-Ga 2 O 3 substrate, and the CV measurement is performed by changing the bias voltage in the range of +0 to −10V. went. And the profile of the carrier concentration of the depth direction was computed from the result of CV measurement.

ここで、ショットキー電極は、厚さ15nmのPt膜、厚さ5nmのTi膜、厚さ250nmのAu膜がこの順序で積層された積層構造を有する、直径800μmの円形の電極である。また、オーミック電極は、厚さ50nmのTi膜、厚さ300nmのAu膜がこの順序で積層された積層構造を有する、一辺が10mmの正方形の電極である。   Here, the Schottky electrode is a circular electrode having a diameter of 800 μm and having a laminated structure in which a Pt film having a thickness of 15 nm, a Ti film having a thickness of 5 nm, and an Au film having a thickness of 250 nm are laminated in this order. The ohmic electrode is a square electrode with a side of 10 mm having a laminated structure in which a Ti film having a thickness of 50 nm and an Au film having a thickness of 300 nm are laminated in this order.

図11(a)においては、β−Ga結晶膜の厚さに等しい12μmよりも浅い深さの領域には測定点が存在せず、すべての測定点の横軸座標が12μmとなっている。これは、バイアス電圧が+0〜−10Vの範囲でβ−Ga結晶膜の全領域が空乏化していることを示している。 In FIG. 11A, no measurement point exists in a region having a depth shallower than 12 μm, which is equal to the thickness of the β-Ga 2 O 3 crystal film, and the horizontal coordinate of all measurement points is 12 μm. ing. This indicates that the entire region of the β-Ga 2 O 3 crystal film is depleted when the bias voltage is in the range of +0 to −10V.

このため、当然ながら、バイアス電圧が0のときにも、β−Ga結晶膜の全領域が空乏化している。理論曲線によると、空乏層厚が12μmであるときのドナー濃度がおよそ1×1013cm−3であることから、β−Ga結晶膜の残留キャリア濃度が1×1013cm−3以下と、非常に低い値であることが推定される。 For this reason, of course, even when the bias voltage is 0, the entire region of the β-Ga 2 O 3 crystal film is depleted. According to the theoretical curve, since the donor concentration when the depletion layer thickness is 12 μm is approximately 1 × 10 13 cm −3 , the residual carrier concentration of the β-Ga 2 O 3 crystal film is 1 × 10 13 cm −3. It is estimated that this is a very low value as follows.

β−Ga結晶膜の残留キャリア濃度が1×1013cm−3以下であるため、例えば、IV族元素をドーピングすることにより、β−Ga結晶膜のキャリア濃度を1×1013〜1×1020cm−3の範囲で制御することができる。 Since the residual carrier concentration of the β-Ga 2 O 3 crystal film is 1 × 10 13 cm −3 or less, for example, by doping a group IV element, the carrier concentration of the β-Ga 2 O 3 crystal film is 1 × It can control in the range of 10 < 13 > -1 * 10 < 20 > cm < -3 >.

図11(b)は、上記の結晶積層構造体の耐電圧特性を表すグラフである。   FIG. 11B is a graph showing the withstand voltage characteristics of the crystal multilayer structure.

図11(b)の横軸は印加電圧(V)を表し、縦軸は電流密度(A/cm)を表す。
また、図中の点で描かれた直線は、測定下限値を表す。
In FIG. 11B, the horizontal axis represents applied voltage (V), and the vertical axis represents current density (A / cm 2 ).
Moreover, the straight line drawn by the point in a figure represents a measurement lower limit.

図11(b)に示されるデータを測定するために用いた手順を以下に示す。まず、上記のβ−Ga基板とβ−Ga結晶膜からなる結晶積層構造体を用意した。 The procedure used to measure the data shown in FIG. 11 (b) is shown below. First, a crystal laminated structure composed of the β-Ga 2 O 3 substrate and a β-Ga 2 O 3 crystal film was prepared.

次に、β−Ga結晶膜上にショットキー電極、β−Ga基板上にオーミック電極を形成し、1000Vの電圧を印加して電流密度を測定した。 Next, a Schottky electrode was formed on the β-Ga 2 O 3 crystal film and an ohmic electrode was formed on the β-Ga 2 O 3 substrate, and a voltage of 1000 V was applied to measure the current density.

ここで、ショットキー電極は、厚さ15nmのPt膜、厚さ5nmのTi膜、厚さ250nmのAu膜がこの順序で積層された積層構造を有する、直径200μmの円形の電極である。また、オーミック電極は、厚さ50nmのTi膜、厚さ300nmのAu膜がこの順序で積層された積層構造を有する、一辺が10mmの正方形の電極である。   Here, the Schottky electrode is a circular electrode having a diameter of 200 μm having a laminated structure in which a Pt film having a thickness of 15 nm, a Ti film having a thickness of 5 nm, and an Au film having a thickness of 250 nm are laminated in this order. The ohmic electrode is a square electrode with a side of 10 mm having a laminated structure in which a Ti film having a thickness of 50 nm and an Au film having a thickness of 300 nm are laminated in this order.

図11(b)は、1000Vの電圧が印加されても、結晶積層構造体におけるリーク電流が1×10−5A/cm程度と非常に小さく、また、絶縁破壊が生じないことを示している。この結果は、β−Ga結晶膜が結晶欠陥の少ない高品質な結晶膜であり、また、ドナー濃度が低いことによるものと考えられる。 FIG. 11B shows that even when a voltage of 1000 V is applied, the leakage current in the crystal laminated structure is as small as about 1 × 10 −5 A / cm 2 and no dielectric breakdown occurs. Yes. This result is considered to be because the β-Ga 2 O 3 crystal film is a high-quality crystal film with few crystal defects and the donor concentration is low.

図12は、主面の面方位が(010)であるβ−Ga基板上にβ−Ga
晶膜をエピタキシャル成長させた結晶積層構造体における、深さ方向のキャリア濃度のプロファイルを表すグラフである。
FIG. 12 shows a profile of carrier concentration in the depth direction in a crystal stacked structure in which a β-Ga 2 O 3 crystal film is epitaxially grown on a β-Ga 2 O 3 substrate having a (010) principal plane orientation. It is a graph showing.

図12の横軸はβ−Ga結晶膜の表面からの深さ(μm)を表し、縦軸はキャリア濃度、すなわち正味のドナー濃度であるドナー濃度Nとアクセプタ濃度Nの差(cm−3)を表す。また、図中の点で描かれた曲線は、β−Gaの比誘電率を10、β−GaへPtを接触させたときのビルトインポテンシャルを1.5Vとしたときのドナー濃度と空乏層厚との関係を表す理論曲線である。 The horizontal axis of FIG. 12 represents the depth ([mu] m) from the surface of the β-Ga 2 O 3 crystal film, and the vertical axis the carrier concentration, i.e., the difference between the donor concentration N d and the acceptor concentration N a is the donor concentration of the net (Cm <-3> ) is represented. Also, drawn curve in terms of in the figure, when the built-in potential when the relative dielectric constant of the β-Ga 2 O 3 10, contacting the Pt to β-Ga 2 O 3 and 1.5V It is a theoretical curve showing the relationship between donor concentration and depletion layer thickness.

図12に示されるデータを測定するために用いた手順を以下に示す。まず、主面の面方位が(010)であり、Snをドープしたn型のβ−Ga基板上に、HVPE法により、アンドープのβ−Ga結晶膜をおよそ0.9μmの厚さにエピタキシャル成長させた。 The procedure used to measure the data shown in FIG. 12 is shown below. First, the surface orientation of the main surface is (010), and an undoped β-Ga 2 O 3 crystal film is formed on the Sn-doped n-type β-Ga 2 O 3 substrate by an HVPE method to approximately 0.9 μm. Epitaxially grown to a thickness of.

β−Ga基板は、厚さが600μmの、一辺が10mmの正方形の基板であり、キャリア濃度はおよそ6×1018cm−3であった。β−Ga単結晶膜の成長条件は、炉内圧力を1atm、キャリアガスをNガス、GaCl供給分圧を5×10−4atm、O/GaCl供給分圧比を5とし、成長温度を1000℃とした。 The β-Ga 2 O 3 substrate was a square substrate having a thickness of 600 μm and a side of 10 mm, and the carrier concentration was approximately 6 × 10 18 cm −3 . The growth conditions of the β-Ga 2 O 3 single crystal film are as follows: furnace pressure is 1 atm, carrier gas is N 2 gas, GaCl supply partial pressure is 5 × 10 −4 atm, O 2 / GaCl supply partial pressure ratio is 5, The growth temperature was 1000 ° C.

次に、アンドープのβ−Ga結晶膜上にショットキー電極、β−Ga基板上にオーミック電極を形成し、バイアス電圧を+0〜−10Vの範囲で変化させてC−V測定を行った。そして、C−V測定の結果から深さ方向のキャリア濃度のプロファイルを算出した。 Next, a Schottky electrode is formed on the undoped β-Ga 2 O 3 crystal film, an ohmic electrode is formed on the β-Ga 2 O 3 substrate, and the bias voltage is changed in the range of +0 to −10 V to obtain CV Measurements were made. And the profile of the carrier concentration of the depth direction was computed from the result of CV measurement.

ここで、ショットキー電極は、厚さ15nmのPt膜、厚さ5nmのTi膜、厚さ250nmのAu膜がこの順序で積層された積層構造を有する、直径400μmの円形の電極である。また、オーミック電極は、厚さ50nmのTi膜、厚さ300nmのAu膜がこの順序で積層された積層構造を有する、一辺が10mmの正方形の電極である。   Here, the Schottky electrode is a circular electrode having a diameter of 400 μm having a stacked structure in which a Pt film having a thickness of 15 nm, a Ti film having a thickness of 5 nm, and an Au film having a thickness of 250 nm are stacked in this order. The ohmic electrode is a square electrode with a side of 10 mm having a laminated structure in which a Ti film having a thickness of 50 nm and an Au film having a thickness of 300 nm are laminated in this order.

図12においては、バイアス電圧が0のときの測定点の横軸座標が0.85μmである(0.85μmよりも深い領域の測定点は、バイアス電圧が−10Vに近いときの測定点)。理論曲線によると、空乏層厚が0.85μmであるときのドナー濃度がおよそ2.3×1015cm−3であることから、β−Ga結晶膜の残留キャリア濃度が3×1015cm−3以下と、非常に低い値であることが推定される。 In FIG. 12, the horizontal coordinate of the measurement point when the bias voltage is 0 is 0.85 μm (the measurement point in the region deeper than 0.85 μm is the measurement point when the bias voltage is close to −10 V). According to the theoretical curve, since the donor concentration when the depletion layer thickness is 0.85 μm is approximately 2.3 × 10 15 cm −3 , the residual carrier concentration of the β-Ga 2 O 3 crystal film is 3 × 10 6. It is estimated that it is a very low value of 15 cm −3 or less.

(実施の形態の効果)
上記実施の形態によれば、HVPE法を用いて、ガリウムの原料ガスの生成条件や、β−Ga系単結晶膜の成長条件を制御することにより、高品質かつ大口径のβ−Ga系単結晶膜を効率的に成長させることができる。また、β−Ga系単結晶膜が結晶品質に優れるため、β−Ga系単結晶膜上に品質のよい結晶膜を成長させることができる。このため、本実施の形態に係るβ−Ga系単結晶膜を含む結晶積層構造体を高品質な半導体装置の製造に用いることができる。
(Effect of embodiment)
According to the embodiment, by using the HVPE method, the production condition of the gallium source gas and the growth condition of the β-Ga 2 O 3 based single crystal film are controlled, so that a high-quality and large-diameter β- A Ga 2 O 3 based single crystal film can be efficiently grown. In addition, since the β-Ga 2 O 3 single crystal film is excellent in crystal quality, a high-quality crystal film can be grown on the β-Ga 2 O 3 single crystal film. For this reason, the crystal laminated structure including the β-Ga 2 O 3 -based single crystal film according to this embodiment can be used for manufacturing a high-quality semiconductor device.

以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   The embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

1…結晶積層構造体、10…Ga系基板、11…主面、12…β−Ga系単結晶膜 1 ... crystal laminated structure, 10 ... Ga 2 O 3 based substrate, 11 ... main surface, 12 ... β-Ga 2 O 3 single crystal film

Claims (4)

Ga系基板と、
前記Ga系基板の主面上に設けられたClを含むβ−Ga系単結晶膜と、
を含み、
前記β−Ga系単結晶膜は、その厚さ方向に1×1016〜5×1016(atoms/cm)の前記Clを含む部分を有する結晶積層構造体。
A Ga 2 O 3 based substrate;
A β-Ga 2 O 3 based single crystal film containing Cl provided on the main surface of the Ga 2 O 3 based substrate;
Including
The β-Ga 2 O 3 based single crystal film is a crystal laminated structure having a portion containing 1 × 10 16 to 5 × 10 16 (atoms / cm 3 ) of Cl in the thickness direction.
前記β−Ga系単結晶膜は、1×1013〜1×1020/cmの範囲でIV族元素によるキャリア濃度が制御可能である請求項1に記載の結晶積層構造体。 2. The crystal multilayer structure according to claim 1, wherein the β-Ga 2 O 3 single crystal film is capable of controlling a carrier concentration of a group IV element in a range of 1 × 10 13 to 1 × 10 20 / cm 3 . 請求項1に記載の結晶積層構造体をHVPE法によって製造する製造方法であって、
前記Ga系基板を反応チャンバー内の結晶成長領域に配置する工程と、
塩化ガリウム系ガス及び酸素含有ガスを前記反応チャンバー内の結晶成長領域へ供給して前記β−Ga系単結晶膜を900℃以上で前記Ga系基板上に成長させる工程と、
を含む結晶積層構造体の製造方法。
A manufacturing method for manufacturing the crystal multilayer structure according to claim 1 by an HVPE method,
Disposing the Ga 2 O 3 based substrate in a crystal growth region in a reaction chamber;
Supplying a gallium chloride-based gas and an oxygen-containing gas to a crystal growth region in the reaction chamber to grow the β-Ga 2 O 3 -based single crystal film on the Ga 2 O 3 -based substrate at 900 ° C. or higher; ,
The manufacturing method of the crystal laminated structure containing this.
前記塩化ガリウム系ガス及び酸素含有ガスに加えてIV族元素のドーパントを添加するための塩化物系ガスを前記反応チャンバー内の結晶成長領域へ供給して、前記β−Ga系単結晶膜のキャリア濃度を1×1013〜1×1020/cmの範囲にする工程と、
を更に含む請求項3に記載の結晶積層構造体の製造方法。
Supplying a chloride gas for adding a dopant of a group IV element in addition to the gallium chloride gas and oxygen-containing gas to a crystal growth region in the reaction chamber, the β-Ga 2 O 3 single crystal The step of bringing the carrier concentration of the film into the range of 1 × 10 13 to 1 × 10 20 / cm 3 ;
The manufacturing method of the crystal laminated structure of Claim 3 which further contains these.
JP2016143092A 2013-09-30 2016-07-21 Crystal laminated structure and manufacturing method thereof Active JP6601738B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013203198 2013-09-30
JP2013203198 2013-09-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014088589A Division JP5984069B2 (en) 2013-09-30 2014-04-22 Method for growing β-Ga2O3 single crystal film and crystal laminated structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019175654A Division JP6875708B2 (en) 2013-09-30 2019-09-26 Crystallized structure and method for manufacturing it

Publications (2)

Publication Number Publication Date
JP2016183107A true JP2016183107A (en) 2016-10-20
JP6601738B2 JP6601738B2 (en) 2019-11-06

Family

ID=57242483

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016143092A Active JP6601738B2 (en) 2013-09-30 2016-07-21 Crystal laminated structure and manufacturing method thereof
JP2019175654A Active JP6875708B2 (en) 2013-09-30 2019-09-26 Crystallized structure and method for manufacturing it

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019175654A Active JP6875708B2 (en) 2013-09-30 2019-09-26 Crystallized structure and method for manufacturing it

Country Status (1)

Country Link
JP (2) JP6601738B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614292A (en) * 2019-03-28 2021-11-05 日本碍子株式会社 Semiconductor film
CN114908418A (en) * 2022-04-29 2022-08-16 杭州富加镓业科技有限公司 Method for preparing homoepitaxial gallium oxide film on conductive gallium oxide substrate and HVPE equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024025233A (en) * 2022-08-10 2024-02-26 株式会社ノベルクリスタルテクノロジー Growth method of β-Ga2O3 single crystal film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035845A1 (en) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2o3 semiconductor element
WO2013035842A1 (en) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3 SEMICONDUCTOR ELEMENT

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235961A (en) * 2004-02-18 2005-09-02 Univ Waseda Method for controlling conductivity of gallium oxide series monocrystal
EP2754738B1 (en) * 2011-09-08 2021-07-07 Tamura Corporation Schottky-barrier diode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035845A1 (en) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2o3 semiconductor element
WO2013035842A1 (en) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3 SEMICONDUCTOR ELEMENT

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKAYOSHI OSHIMA: "Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy", THIN SOLID FILMS, vol. 516, JPN6018024536, 2008, pages 5768 - 5771, XP022688390, ISSN: 0003826755, DOI: 10.1016/j.tsf.2007.10.045 *
森悦雄: "Ga2O3の気相エピタキシャル成長", 東京大学工学部総合試験所年報, vol. 第35巻, JPN7015002172, 1976, JP, pages 155 - 161, ISSN: 0003826754 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614292A (en) * 2019-03-28 2021-11-05 日本碍子株式会社 Semiconductor film
CN114908418A (en) * 2022-04-29 2022-08-16 杭州富加镓业科技有限公司 Method for preparing homoepitaxial gallium oxide film on conductive gallium oxide substrate and HVPE equipment

Also Published As

Publication number Publication date
JP2020073425A (en) 2020-05-14
JP6601738B2 (en) 2019-11-06
JP6875708B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
US20210404086A1 (en) Method for growing beta-ga2o3-based single crystal film, and crystalline layered structure
US11047067B2 (en) Crystal laminate structure
Gogova et al. Homo-and heteroepitaxial growth of Sn-doped β-Ga 2 O 3 layers by MOVPE
US10199512B2 (en) High voltage withstand Ga2O3-based single crystal schottky barrier diode
JP6875708B2 (en) Crystallized structure and method for manufacturing it
WO2011135744A1 (en) Gan substrate and light-emitting device
EP3396030A1 (en) Semiconductor substrate, and epitaxial wafer and method for producing same
CN106471163B (en) Semiconductor substrate, epitaxial wafer and manufacturing method thereof
KR20210125551A (en) GaN crystals and substrates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170413

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6601738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250