WO2011135744A1 - Gan substrate and light-emitting device - Google Patents
Gan substrate and light-emitting device Download PDFInfo
- Publication number
- WO2011135744A1 WO2011135744A1 PCT/JP2010/069910 JP2010069910W WO2011135744A1 WO 2011135744 A1 WO2011135744 A1 WO 2011135744A1 JP 2010069910 W JP2010069910 W JP 2010069910W WO 2011135744 A1 WO2011135744 A1 WO 2011135744A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- less
- gan
- gas
- wavelength
- Prior art date
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 238000010521 absorption reaction Methods 0.000 claims abstract description 44
- 239000013078 crystal Substances 0.000 description 120
- 239000007789 gas Substances 0.000 description 116
- 239000000758 substrate Substances 0.000 description 70
- 238000000034 method Methods 0.000 description 47
- 239000002585 base Substances 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 28
- 239000012535 impurity Substances 0.000 description 22
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 239000004065 semiconductor Substances 0.000 description 17
- 230000031700 light absorption Effects 0.000 description 10
- 230000000149 penetrating effect Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 7
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 6
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- H01L33/0075—
Definitions
- the present invention relates to a GaN substrate having a high light transmittance in a red light region or a visible light region from blue to red and high conductivity, and a light emitting device including the GaN substrate.
- Patent Document 1 discloses a GaN substrate having an absorption coefficient of 7 cm ⁇ 1 -68 nm ⁇ 1 for light having a wavelength of 375 nm to 500 nm.
- Patent Document 2 forms a TiN thin film having a large number of fine holes on a substrate and grows a GaN crystal on the TiN thin film while suppressing the introduction of impurities other than Si.
- a GaN substrate having an absorption coefficient of less than 7 cm ⁇ 1 for light having a wavelength of 380 nm or more is disclosed by a method (this method is called a VAS (Void-Assisted Separation) method).
- JP 2005-213075 (Patent Document 1), for maintaining a predetermined conductivity, not only can reduce the absorption coefficient of light of wavelength 375 nm-500 nm to up to about 7 cm -1 It was.
- Patent Document 2 discloses a GaN substrate that maintains predetermined conductivity and has an absorption coefficient of less than 7 cm ⁇ 1 for light with a wavelength of 380 nm or more. Since it is fabricated using a special method called the VAS method, the cost is very high.
- the substrate for the light emitting device only needs to have a low absorption coefficient with respect to light having a wavelength within the light emission wavelength region, and needs to have a low absorption coefficient even with respect to light with a wavelength outside the light emission wavelength region. There is no.
- the present invention has a low absorption coefficient with respect to light having a wavelength within the emission wavelength region of the light emitting device, and has a specific resistance equal to or lower than a predetermined value, and is suitable for the light emitting device. It is another object of the present invention to provide a light emitting device including the GaN substrate.
- an absorption coefficient for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 cm ⁇ 1 or more, and at least an absorption coefficient for light having a wavelength of 500 nm to 780 nm is less than 7 cm ⁇ 1 .
- It is a GaN substrate having a specific resistance of 0.02 ⁇ cm or less.
- the absorption coefficient relating to light having a wavelength of 440 nm or more and 780 nm or less can be less than 7 cm ⁇ 1 .
- the absorption coefficient for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 cm ⁇ 1 or more
- the absorption coefficient for light having a wavelength of 500 nm to 780 nm is 7 cm ⁇ less than 1
- the peak wavelength of the emission is a light emitting device is 500nm or more 780nm or less.
- the absorption coefficient for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 cm ⁇ 1 or more
- the absorption coefficient for light having a wavelength of 440 nm to 780 nm is 7 cm ⁇ .
- the light emitting device includes the GaN substrate having a specific resistance of less than 1 and a specific resistance of 0.02 ⁇ cm or less, and a peak wavelength of light emission of 440 nm to 780 nm.
- a GaN substrate having a low absorption coefficient with respect to light having a wavelength within the emission wavelength region of the light-emitting device and having a specific resistance equal to or lower than a predetermined value, and the GaN substrate suitable for the light-emitting device Can be provided.
- FIG. 1 It is a schematic sectional drawing which shows an example of the method of manufacturing the GaN substrate concerning this invention.
- (A) shows a step of preparing a base substrate and a step of growing a GaN crystal doped with impurities on the base substrate, and (B) shows a step of processing the GaN crystal to form a GaN substrate.
- It is the schematic which shows an example of the HVPE apparatus used for the growth of a GaN crystal.
- FIG. 1 It is a schematic sectional drawing which shows an example of the light-emitting device concerning this invention.
- the GaN substrate according to the present invention has an absorption coefficient of 7 cm ⁇ 1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, and an absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less is less than 7 cm ⁇ 1 .
- the specific resistance is 0.02 ⁇ cm or less.
- the light absorption coefficient is calculated by measuring the transmittance and reflectance of light of a target wavelength using a spectrophotometer. The specific resistance is measured by a four-probe method using a specific resistance meter.
- Such a GaN substrate is suitably used as a GaN substrate of a light emitting device having a peak emission wavelength of at least 500 nm to 780 nm.
- a peak emission wavelength of at least 500 nm to 780 nm.
- the GaN substrate of the present embodiment has an absorption coefficient of 7 cm ⁇ 1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less, and less than 7 cm ⁇ 1.
- the resistance is 0.02 ⁇ cm or less.
- the GaN substrate of the present embodiment is suitably used as a substrate of a light emitting device that has a red light region having a light emission peak wavelength of 500 nm to 780 nm. From this viewpoint, it is preferable that the absorption coefficient regarding light having a wavelength of 500 nm or more and 780 nm or less is 5 cm ⁇ 1 or less.
- the specific resistance is preferably 0.015 ⁇ cm or less.
- the GaN substrate of the present embodiment has an absorption coefficient of 7 cm ⁇ 1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient for light having a wavelength of 440 nm or more and 780 nm or less, and less than 7 cm ⁇ 1.
- the resistance is 0.02 ⁇ cm or less.
- the GaN substrate of this embodiment is suitably used as a substrate for a light emitting device having a light emission peak wavelength in a visible light region from a blue light region to a red light region of 440 nm to 780 nm. From this viewpoint, it is preferable that the absorption coefficient regarding light having a wavelength of 440 nm or more and 780 nm or less is 5 cm ⁇ 1 or less.
- the specific resistance is preferably 0.015 ⁇ cm or less.
- the GaN substrate of any of the above embodiments preferably has a carrier concentration of 5 ⁇ 10 17 cm ⁇ 3 or more and 2 ⁇ 10 18 cm ⁇ 3 or less. If the carrier concentration is too low, the specific resistance becomes too high, and if the carrier concentration is too high, the light absorption coefficient becomes too high. From this viewpoint, the carrier concentration is more preferably 7 ⁇ 10 17 cm ⁇ 3 or more and 1.1 ⁇ 10 18 cm ⁇ 3 or less. Here, the carrier concentration is measured using a CV characteristic measurement method.
- the GaN substrate of any of the above embodiments preferably has an average density of dislocations penetrating through its main surface (hereinafter referred to as the average dislocation density) of 3 ⁇ 10 6 cm ⁇ 2 or less.
- the average density of dislocations penetrating the main surface is more preferably 1 ⁇ 10 6 cm ⁇ 2 or less.
- the average density of dislocations penetrating the main surface is currently difficult to be smaller than 10 cm ⁇ 2 , and is therefore about 10 cm ⁇ 2. That's it.
- the average density of dislocations penetrating the main surface of the GaN substrate is calculated from the measurement of dark spot density by CL (cathode luminescence).
- the GaN substrate of any of the above embodiments has a flat main surface and a radius of curvature of a crystal plane closest to the main surface is 10 m or more.
- a radius of curvature of the crystal plane increases, a light emitting device having a uniform emission wavelength within the substrate plane can be obtained.
- the radius of curvature of the crystal plane closest to the main surface is more preferably 20 m or more.
- the radius of curvature of the crystal plane closest to the main surface is currently difficult to be larger than 100 m, and is therefore about 100 m or less.
- the radius of curvature of the crystal plane closest to the main surface of the GaN substrate is measured by X-ray diffraction with respect to the target crystal plane.
- the crystal plane closest to the main surface of the GaN substrate is not particularly limited, but from the viewpoint of epitaxially growing a highly crystalline semiconductor layer on the main surface, the ⁇ 0001 ⁇ plane, ⁇ 10-10 ⁇ plane, ⁇ 11- The 20 ⁇ plane, ⁇ 10-11 ⁇ plane, ⁇ 11-22 ⁇ plane, ⁇ 20-21 ⁇ plane, ⁇ 22-44 ⁇ plane and the like are preferable.
- the main surface of the GaN substrate preferably has an absolute value of an off angle of 5 ° or less with respect to the crystal plane.
- the plane orientation of the crystal plane closest to the GaN substrate and the off-angle between the main surface and the crystal plane are measured by X-ray diffraction.
- FIG. 1 is a schematic sectional view showing an example of a method for manufacturing a GaN substrate according to the present invention.
- the method for manufacturing the GaN substrate according to the present invention is not particularly limited, but referring to FIG. 1, the step of preparing the base substrate 11 and the growth of the GaN crystal 12 doped with impurities on the base substrate 11 are performed.
- the GaN substrate 10 of the present embodiment can be obtained at low cost by adjusting the concentration of impurities (referred to as dopant hereinafter) added to the GaN crystal 12.
- the base substrate 11 prepared in the step of preparing the base substrate 11 is not particularly limited as long as it is a substrate on which the GaN crystal 12 can be epitaxially grown.
- a silicon (Si) base substrate, a sapphire (Al 2 O 3 ) base substrate, a GaAs base substrate, and a group III nitride base substrate such as a GaN base substrate and an AlN base substrate are preferably used.
- a GaN base substrate is particularly preferably used.
- the use of a GaN base substrate is preferable because it can suppress contamination of impurities from the base substrate.
- the cleanliness of the surface of the base substrate is important.
- the back surface of the base substrate (the surface of the base substrate in contact with the inner wall of the growth furnace; the same applies hereinafter) cannot be etched in the growth furnace before crystal growth. It is necessary to raise. Therefore, it is preferable to etch the back surface of the substrate and put it into the growth furnace.
- the etching method include wet etching using an alkali solvent, dry etching using a halogen-based gas, and the like.
- the method for growing the GaN crystal 12 doped with impurities on the base substrate 11 is not particularly limited as long as it is a method capable of epitaxial growth, but GaN having high crystallinity.
- vapor phase methods such as HVPE (hydride vapor phase epitaxy) method, MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam growth) method are preferable, and the crystal growth rate is particularly high.
- HVPE hydrogen vapor phase epitaxy
- MOCVD metal organic chemical vapor deposition
- MBE molecular beam growth
- the growth is usually performed in the quartz reaction tube, so that the crystal in the quartz reaction tube is heated, so that the quartz reaction tube is also heated together with the crystal. Therefore, the decomposition gas from the quartz reaction tube heated to a high temperature is taken into the crystal as an impurity. Therefore, it is preferable to cover the inside of the quartz reaction tube with a liner tube formed of a material stable at the growth temperature (for example, pBN (pyrolytic boron nitride)). Further, it is preferable to flow a purge gas (for example, H 2 , N 2 , and / or Ar) for purging the gap between the quartz reaction tube and the liner tube so that impurities do not stay.
- a purge gas for example, H 2 , N 2 , and / or Ar
- the susceptor on which the base substrate is placed becomes high temperature
- such a susceptor is formed of pBN, or the surface of the susceptor is coated with a high-purity and stable material such as pBN, AlN, Al 2 O 3 , or SiC. It is preferable to keep it.
- the impurity (dopant) added to the GaN crystal 12 is not particularly limited, but Si is preferable from the viewpoint of reducing the light absorption coefficient and reducing the specific resistance.
- the method for adding Si to the GaN crystal 12 is not particularly limited, but a gas containing Si as a doping gas, for example, SiF 4 (silicon tetrafluoride) gas, SiH 4 (silane) gas, Si 2 H 6 (disilane) gas, SiH 3 Cl (silane monochloride) gas, SiH 2 Cl 2 (silane dichloride) gas, SiHCl 3 (silane trichloride) gas, SiCl 4 (silicon tetrachloride) gas, etc.
- SiF 4 gas is particularly preferably used. SiF 4 gas is less likely to be decomposed even at a high temperature of 900 ° C. or higher and 1300 ° C. or lower as compared with other Si-containing gases, and therefore can be efficiently added to the GaN crystal 12.
- FIG. 2 is a schematic view showing an example of an HVPE apparatus used for growing the GaN crystal 12.
- the HVPE apparatus 100 includes a first source gas cylinder 101, a doping gas cylinder 102, a second source gas cylinder 103, a first gas introduction pipe 104, a doping gas introduction pipe 105, and a second gas introduction.
- a pipe 106, a source boat 107, a susceptor 108, a heater 109, a reaction pipe 110, an exhaust pipe 111, and an exhaust gas treatment device are provided.
- the HVPE apparatus 100 is, for example, a horizontal reaction tube.
- the HVPE apparatus 100 may be a vertical reaction tube.
- the reaction tube 110 is a container for holding the base substrate 11 inside and growing the GaN crystal 12 on the base substrate 11.
- a quartz reaction tube can be used as the reaction tube 110.
- a liner tube 120 made of pBN is disposed inside the reaction tube 110.
- the first source gas cylinder 101, the second source gas cylinder 103, and the source boat 107 are each supplied with a source containing an element constituting a GaN crystal to be grown.
- the doping gas cylinder 102 is filled with, for example, SiF 4 gas as a gas containing Si as a dopant.
- the first gas introduction pipe 104, the doping gas introduction pipe 105, and the second gas introduction pipe 106 are used to introduce each of the first source gas G1, the doping gas G2, and the second source gas G3 from the outside to the inside of the reaction tube 110.
- the source boat 107 accommodates and holds, for example, metal Ga as a metal raw material of the GaN crystal, and is disposed in the second gas introduction pipe 106.
- the surface of the susceptor 108 is coated with a film made of pBN, and holds the base substrate 11.
- the susceptor 108 is arranged so that the surface of the reaction tube 110 on which the base substrate 11 is held by the susceptor 108 is positioned below the first gas introduction tube 104, the doping gas introduction tube 105, and the second gas introduction tube 106. ing.
- the susceptor 108 is disposed horizontally in the reaction tube 110.
- the susceptor 108 is configured such that the main surface of the base substrate 11 is horizontally arranged, but the base substrate may be configured so that the main surface thereof is vertically disposed.
- the HVPE apparatus 100 may further include a local heating mechanism for heating such as a resistance heater of the base substrate 11.
- the heater 109 is disposed outside the reaction tube 110 and has the ability to heat the inside of the reaction tube 110 to, for example, 700 ° C. or more and 1500 ° C. or less.
- the exhaust pipe 111 is provided in the reaction tube 110 in order to discharge the reacted gas to the outside of the reaction tube 110.
- the exhaust gas treatment device is configured to remove the gas after reaction discharged from the exhaust pipe 111 so as to reduce the load on the environment.
- the prepared base substrate 11 is held on the susceptor 108.
- a plurality of base substrates 11 may be held by the susceptor 108.
- a first source gas cylinder 101 and a second source gas cylinder 103 filled with NH 3 (ammonia) gas as the first source gas and HCl (hydrogen chloride) gas as the second source gas are prepared. Further, metal Ga is supplied to the source boat 107. Further, a doping gas cylinder 102 filled with SiF 4 gas as a doping gas is prepared.
- the source boat 107 is heated. Then, the HCl gas (second source gas G3) supplied from the second gas introduction pipe 106 and the metal Ga of the source boat 107 are reacted to generate GaCl (gallium chloride) gas (reaction gas G7).
- NH 3 gas (first source gas G 1), SiF 4 gas (doping gas G 2), and GaCl gas (reactive gas G 7) supplied from the first gas introduction pipe 104 come into contact with the main surface of the base substrate 11. Flow (feed) to react.
- a carrier gas for transporting these gases to the base substrate 11 may be used.
- an inert gas such as N 2 (nitrogen) gas, H 2 (hydrogen) gas, and Ar (argon) gas can be used.
- the heater 109 is used to heat the inside of the reaction tube 110 to a temperature at which the GaN crystal 12 grows at an appropriate rate.
- the temperature at which the GaN crystal 12 is grown is preferably 900 ° C. or higher and 1300 ° C. or lower, and more preferably 1050 ° C. or higher and 1200 ° C. or lower.
- the GaN crystal 12 is grown at 900 ° C.
- the GaN crystal 12 having good crystallinity can be stably grown with respect to the plane orientation in which the crystal growth surface is grown.
- the GaN crystal 12 is grown at 1050 ° C. or higher, the crystallinity can be improved.
- the GaN crystal 12 is grown at 1300 ° C.
- the GaN crystal 12 is grown at 1200 ° C. or lower, so that deterioration of the crystallinity can be suppressed.
- the GaN crystal 12 is grown at 1200 ° C. or lower, the crystallinity deterioration can be further suppressed.
- the crystal growth surface of the GaN crystal to be grown preferably has an inclination angle from the (0001) plane of less than 1 °.
- the crystal growth temperature is preferably set to 1100 ° C. or higher.
- the tilt angle from the (0001) plane is set to 1 over almost the entire crystal growth surface (from 80% to 100%). It can be less than °.
- the partial pressure of the gas containing Si (SiF 4 gas) during the growth of the GaN crystal 12 is preferably 2.0 ⁇ 10 ⁇ 7 atm or more and 1.0 ⁇ 10 ⁇ 5 atm or less.
- the partial pressure of the gas containing Si (SiF 4 gas) is 2.0 ⁇ 10 ⁇ 7 atm or more, Si as an n-type dopant is sufficiently taken into the GaN crystal 12.
- the partial pressure of the gas containing Si (SiF 4 gas) is 1.0 ⁇ 10 ⁇ 5 atm or less, the production of Si x N y (silicon nitride) compound can be further suppressed, The control of doping conditions when doping Si can be made better.
- the partial pressure of the gas (SiF 4 gas) containing Si is 1.0 ⁇ 10 -5 atm or less.
- the total (total) partial pressure of each of the gases contained in the reaction tube 110 such as the source gas, the carrier gas, and the doping gas is 1 atm.
- the concentration of the gas containing Si (SiF 4 gas) is proportional to the partial pressure.
- the carrier concentration in the GaN crystal 12 is preferably 5 ⁇ 10 17 cm ⁇ 3 or more and 1.5 ⁇ 10 18 cm ⁇ 3 or less (the corresponding Si concentration is 5 ⁇ 10 17 cm -3 or more 1.6 ⁇ 10 18 cm -3 or less), more preferably 6.6 ⁇ 10 17 cm -3 or more 1.1 ⁇ 10 18 cm -3 or less (corresponding Si concentration 6.9
- the doping gas is supplied to the base substrate 11 so as to be in the range of ⁇ 10 17 cm ⁇ 3 to 1.1 ⁇ 10 18 cm ⁇ 3 .
- the carrier concentration is 5 ⁇ 10 17 cm ⁇ 3 or more, the specific resistance of the GaN crystal 12 can be reduced to ensure sufficient conductivity.
- the carrier concentration is 6.6 ⁇ 10 17 cm ⁇ 3 or more
- the specific resistance of the GaN crystal 12 can be further reduced to ensure sufficient conductivity.
- the carrier concentration is 1.5 ⁇ 10 18 cm ⁇ 3 or less
- the light absorption coefficient of the GaN crystal can be reduced to ensure sufficient light transmission.
- the carrier concentration is 1.1 ⁇ 10 18 cm ⁇ 3 or less
- the light absorption coefficient of the GaN crystal can be made smaller, and the light transmission can be sufficiently secured.
- the doping amount of impurities other than Si (oxygen, carbon, etc.) is preferably 1/5 or less, more preferably 1/10 or less, and even more preferably 1/20 or less of the Si doping amount.
- the GaN crystal 12 is grown so that the specific resistance of the GaN crystal 12 is 0.02 ⁇ cm or less, preferably 0.015 ⁇ cm or less.
- the specific resistance is 0.02 ⁇ cm or less, it is possible to grow the GaN crystal 12 having conductivity that is suitably used for the substrate of the light emitting device.
- the specific resistance of the GaN crystal is 0.015 ⁇ cm or less, it is preferably used for the substrate of the light emitting device.
- the GaN crystal 12 is grown so that the absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less is less than 7 cm ⁇ 1 , preferably 5 cm ⁇ 1 or less.
- the GaN crystal 12 is a substrate of a light emitting device having a light emission peak wavelength of 500 nm or more and 780 nm or less when the light absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less is less than 7 cm ⁇ 1 , preferably 5 cm ⁇ 1 or less. Is preferably used.
- the GaN crystal 12 is grown so that the absorption coefficient for light having a wavelength of 440 nm or more and 780 nm or less is less than 7 cm ⁇ 1 , preferably 5 cm ⁇ 1 or less.
- the GaN crystal 12 is a substrate of a light emitting device having a light emission peak wavelength of 440 nm or more and 780 nm or less when the light absorption coefficient relating to light having a wavelength of 440 nm or more and 780 nm or less is less than 7 cm ⁇ 1 , preferably 5 cm ⁇ 1 or less. Is preferably used.
- the average density of dislocations in the GaN crystal 12 is preferably 3 ⁇ 10 6 cm ⁇ 2 or less, more preferably 1 ⁇ 10 6 cm ⁇ 2 or less.
- the GaN crystal 12 is grown so that By processing such a GaN crystal, a GaN substrate having an average density of dislocations penetrating the main surface 12m is preferably 3 ⁇ 10 6 cm ⁇ 2 or less, more preferably 1 ⁇ 10 6 cm ⁇ 2 or less. Easy to get.
- the average density of dislocations in the GaN crystal 12 and the average density of dislocations penetrating the main surface 12m of the GaN substrate are calculated from the measurement of dark spot density by CL (cathode luminescence).
- main surface 11m is ⁇ 0001 ⁇ plane, ⁇ 10-10 ⁇ plane, ⁇ 11-20 ⁇ plane, ⁇ 10-20 Group III nitride substrate (underlying substrate) having an absolute value of an off angle of 5 ° or less from any of the ⁇ 11 ⁇ , ⁇ 11-22 ⁇ , ⁇ 20-21 ⁇ , and ⁇ 22-44 ⁇ planes 11), the main surface 12m of crystal growth is ⁇ 0001 ⁇ plane, ⁇ 10-10 ⁇ plane, ⁇ 11-20 ⁇ plane, ⁇ 10-11 ⁇ plane, ⁇ 11-22 ⁇ plane, ⁇ 20-21 ⁇ ⁇ It is preferable to grow the GaN crystal 12 having an absolute value of an off angle of 5 ° or less from any one of the ⁇ plane and the ⁇ 22-44 ⁇ plane.
- the main surface 10m is ⁇ 0001 ⁇ plane, ⁇ 10-10 ⁇ plane, ⁇ 11-20 ⁇ plane, ⁇ 10-11 ⁇ plane, ⁇ 11-22 ⁇ plane, ⁇ 20-21 ⁇ plane and ⁇ 20-21 ⁇ plane.
- the GaN substrate 10 having an absolute off angle from any of the 22-44 ⁇ planes of 5 ° or less can be easily obtained.
- the process of forming the GaN substrate 10 by processing the obtained GaN crystal 12 doped with impurities is not particularly limited, and includes a sub-process of removing the base substrate 11. Can do.
- the method for removing the base substrate 11 is not particularly limited, and there are a method of cutting with an outer peripheral blade, an inner peripheral blade, a wire saw, a laser, or the like, and a method of grinding with a diamond grindstone.
- the GaN crystal 12 having the main surfaces 12m and 12n is obtained.
- the step of forming the GaN substrate 10 by processing the GaN crystal 12 can also include a sub-step of slicing the GaN crystal 12.
- the method for slicing the GaN crystal 12 is not particularly limited, and includes a method of cutting with an outer peripheral blade, an inner peripheral blade, a wire saw, a laser, or the like. Further, a sub-process of polishing and / or surface-treating the main surface of the sliced GaN crystal 12 can be included. Examples of a method for polishing the main surface of the GaN crystal 12 include mechanical polishing and chemical mechanical polishing. Examples of the method for treating the main surface of the GaN crystal 12 include dry etching and wet etching.
- the step of forming the GaN substrate 10 by processing the GaN crystal 12 can also include a sub-step of removing the outer edge region of the GaN crystal 12.
- the method for removing the outer edge region of the GaN crystal 12 is not particularly limited, and there is a method of grinding with a diamond grindstone or the like.
- the GaN substrate 10 is obtained from the GaN crystal 12 by one or more of the sub-processes described above.
- the average density of dislocations penetrating the main surface (average dislocation density) is preferably 3 ⁇ 10 6 cm ⁇ 2 or less, and 1 ⁇ 10 6 cm ⁇ 2 or less is more preferable.
- the lower the average density of such dislocations the higher the reliability of the light emitting device.
- the average density of dislocations penetrating the main surface is currently difficult to be smaller than 1 ⁇ 10 4 cm ⁇ 2 , and therefore, 1 ⁇ 10 4 cm. -2 or more.
- the GaN substrate of the present embodiment obtained by the above-described method for manufacturing a GaN substrate is preferably such that the main surface is flat and the radius of curvature of the crystal plane closest to the main surface is 10 m or more, More preferably, it is 20 m or more.
- the radius of curvature of the crystal plane is larger, a light emitting device having higher in-plane uniformity of emission wavelength can be obtained.
- the radius of curvature of the crystal plane closest to the main surface is currently difficult to be larger than 100 m, and is therefore about 100 m or less.
- FIG. 3 is a schematic cross-sectional view showing an example of a light emitting device according to the present invention.
- the light emitting device according to the present invention includes the GaN substrate 10 of the first embodiment or the second embodiment, and the peak wavelength of light emission is 500 nm or more and 780 nm or less or 440 nm or more and 780 nm or less.
- the light-emitting device according to the present invention has a low light absorption coefficient and high light emission efficiency for light in a wavelength region of 500 nm to 780 nm or less or 440 nm to 780 nm.
- the light emitting device is more specifically formed on the GaN substrate 10 of the first embodiment or the second embodiment and one main surface 10 m of the GaN substrate 10. It includes at least one semiconductor layer 20, a first electrode 30 formed on the outermost layer of the semiconductor layer 20, and a second electrode 40 formed on the other main surface 10n of the GaN substrate 10.
- Such a light-emitting device includes a light-emitting layer in the semiconductor layer 20 and emits light from the GaN substrate 10 side.
- the light emitting device of the present embodiment has an absorption coefficient of 7 cm ⁇ 1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, and an absorption coefficient of 7 cm ⁇ 1 for light having a wavelength of 500 nm or more and 780 nm or less.
- -1 and a specific resistance of 0.02 ⁇ cm or less at least one semiconductor layer 20 formed on one main surface 10m of the GaN substrate 10, and an outermost layer of the semiconductor layer 20
- the second electrode 40 formed on the other main surface 10n of the GaN substrate 10, and the peak wavelength of light emission is 500 nm or more and 780 nm or less.
- the wavelength is at an absorption coefficient relates to light 1500nm is 380nm light and the wavelength is 7 cm -1 or more, wavelength absorption coefficient for 780nm light below or 440 nm 7 cm -1 and a specific resistance of 0.02 ⁇ cm or less, at least one semiconductor layer 20 formed on one main surface 10m of the GaN substrate 10, and an outermost layer of the semiconductor layer 20 And the second electrode 40 formed on the other main surface 10n of the GaN substrate 10, and the peak wavelength of light emission is not less than 440 nm and not more than 780 nm.
- the wavelength region and peak wavelength of the light emission can be changed by changing the chemical composition and / or configuration of the semiconductor layer 20.
- the method for manufacturing the light emitting device according to the present invention is not particularly limited.
- the step of preparing the GaN substrate 10 of Embodiment 1 or 2 and one of the GaN substrates 10 are prepared.
- Forming two electrodes 40 is formed.
- the order of the step of forming the first electrode 30 and the step of forming the second electrode 40 may be reversed. Thereby, the light emitting device of Embodiment 3 or Embodiment 4 is obtained.
- the method for forming at least one semiconductor layer 20 on one main surface 10m of the GaN substrate 10 is not particularly limited, but from the viewpoint of epitaxially growing the semiconductor layer 20 having good crystallinity on the GaN substrate, MOCVD, MBE
- the gas phase method such as the HVPE method is preferable. Further, by changing the chemical composition and / or configuration of the semiconductor layer 20, the wavelength region and peak wavelength of light emission can be changed.
- a method for forming the first electrode and the second electrode is not particularly limited, but from the viewpoint of increasing productivity and reducing production cost, a sputtering method, a vapor deposition method, or the like is preferable.
- Example 1 a plurality of GaN substrates having different carrier concentrations, specific resistances, and light absorption coefficients were obtained by changing the partial pressure of the doping gas containing Si in the HVPE method by the following method.
- a GaN base substrate 11 having a diameter of 60 mm and a thickness of 400 ⁇ m was prepared with reference to FIG.
- the main surface 11m of the base substrate 11 was flat, and the crystal plane closest to the main surface 11m was the (0001) plane.
- the radius of curvature of the (0001) plane was 20 m as measured by X-ray diffraction.
- the average density of dislocations penetrating the main surface 11m of the base substrate 11 (hereinafter referred to as the average dislocation density) is calculated from the measurement of dark spot density by CL (cathode luminescence), and is 5 ⁇ 10 5 cm ⁇ 3 . there were.
- the HVPE apparatus shown in FIG. 2 was used for the growth of these GaN crystals.
- NH 3 gas was prepared as the first source gas G1
- HCl gas was used as the second source gas G3
- SiF 4 gas was used as the doping gas G2
- H 2 gas having a purity of 99.999% or more was prepared as the carrier gas.
- a carrier gas was introduced into the reaction tube 110 from each of the first gas introduction tube 104, the second gas introduction tube 106, and the doping gas introduction tube 105, and the temperature of the heater 109 was raised to 1100 ° C. Thereafter, metal Ga was supplied to the source boat 107 to heat the source boat 107.
- GaCl gas was generated as the reaction gas G7.
- the NH 3 gas as the first source gas G1 supplied from first gas introduction pipe 104, a main surface of growing and GaCl gas is a reaction gas-gas G7 obtained by the above reaction, the GaN crystal substrate 11
- the main gas was allowed to react with GaCl + NH 3 ⁇ GaN + HCl + H 2 on the main surface.
- the supply partial pressure of the doping gas was adjusted to the values shown in Table 1.
- seven GaN crystals having a diameter of 60 mm and a thickness of 5 mm with different Si concentrations were grown at a crystal growth temperature of 1100 ° C. and a crystal growth time of 16.67 hours.
- the growth rate of these GaN crystals was 300 ⁇ m / hr.
- each GaN crystal 12 obtained was sliced in the thickness direction using a slicer. Next, the outer edge region of the sliced GaN crystal 12 was removed. Next, CMP (chemical mechanical polishing) was performed on the GaN crystal that had been sliced and the outer edge region was removed, and the work-affected layer was removed. Thus, five GaN substrates 10 having a diameter of 2 inches (50.8 mm) and a thickness of 400 ⁇ m were obtained from each GaN crystal.
- the Si concentration, the carrier concentration, Specific resistances and absorption coefficients for light having wavelengths of 380 nm, 500 nm-780 nm, 440 nm-780 nm and 1500 nm were measured, and their minimum and maximum values were calculated.
- the five measurement points are the center point on the main surface, the point 2 cm away from the center point in the [11-20] direction, the point 2 cm away from the center point, and the point 10 [10] from the center point.
- the carrier concentration variation in the main surface of the GaN substrate was within ⁇ 5% from the average value, and the carrier concentration variation in the thickness direction was also within ⁇ 5% from the average value.
- the average density of dislocations (average dislocation density) penetrating the main surface at the above five measurement points of the third GaN substrate 10c of each GaN crystal 12 is 5 ⁇ 10 5 cm ⁇ 2.
- the density was as low as that of the substrate 11.
- the radius of curvature of the (0001) plane at the above five measurement points of the third GaN substrate 10c of each GaN crystal 12 was 20 m as measured by X-ray diffraction, and was as large as the underlying substrate. .
- no crack was generated in any of the obtained GaN substrates.
- the crystal growth temperature is 1000 ° C. or more and 1200 ° C. or less
- the partial pressure of the doping gas containing Si is 0.6 ⁇ 10 ⁇ 6 atm or more and 1.0 ⁇ 10 ⁇ 6 atm or less.
- the specific resistance is 0.02 ⁇ cm or less and the absorption coefficient for light having a wavelength of 380 nm is 7 cm. -1
- wavelength absorption coefficient for light in the 500 nm-780 nm absorption coefficient for light is 7 cm -1 and less than the wavelength 1500nm is GaN substrate was obtained at 7 cm -1 or more.
- the crystal growth temperature is adjusted to 1000 ° C. or more and 1200 ° C. or less
- the partial pressure of the doping gas containing Si is adjusted to 0.6 ⁇ 10 ⁇ 6 atm or more and 0.8 ⁇ 10 ⁇ 6 atm or less
- the carrier concentration is set to 0.
- the specific resistance is 0.02 ⁇ cm or less
- the absorption coefficient for light having a wavelength of 380 nm is 7 cm ⁇ 1 or more
- the wavelength is 440 nm to 780 nm.
- a GaN substrate having an absorption coefficient for light of less than 7 cm ⁇ 1, a wavelength of 1500 nm and an absorption coefficient for light of 7 cm ⁇ 1 or more was obtained.
- the impurity concentration of elements other than Si in all the grown crystals was measured by SIMS.
- O (oxygen) was 5 ⁇ 10 16 cm ⁇ 3 or less and C (carbon) was 5 ⁇ 10 16. cm -3 or less, it was also more than 1 ⁇ 10 16 cm -3 other elements.
- the above example is a case where a GaN substrate having a (0001) plane closest to the main surface is produced.
- the crystal plane closest to the main surface is the (10-10) plane and the (11-20) plane. Similar results were obtained when a GaN substrate having a (10-11), (11-22), (20-21), or (22-44) plane was fabricated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Abstract
Disclosed is a GaN substrate in which the absorption coefficient for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 cm-1 or greater, in which the absorption coefficient for light having a wavelength of at least 500 nm to 780 nm is less than 7 cm-1, and in which specific resistance is less than 0.02 Ωcm. The absorption coefficient for light having a wavelength of 500 nm to 780 nm can be made to be less than 7 cm-1. The GaN substrate is therefore provided having a low absorption coefficient with respect to light having a wavelength that is within the wavelength region of light emitted by a light-emitting device, which has specific resistance of a prescribed value or less, and which is ideal for the light-emitting device.
Description
本発明は、赤色光領域または青色から赤色までの可視光領域の光の透過率が高く、導電性が高いGaN基板およびかかるGaN基板を含む発光デバイスに関する。
The present invention relates to a GaN substrate having a high light transmittance in a red light region or a visible light region from blue to red and high conductivity, and a light emitting device including the GaN substrate.
発光デバイスに用いられる基板としては、光の透過率が高く、導電性が高い基板が求められている。たとえば、特開2005-213075号公報(特許文献1)は、波長が375nm-500nmの光の吸収係数が7cm-1-68nm-1であるGaN基板を開示する。また、特開2007-126320号公報(特許文献2)は、基板上に多数の微細孔を有するTiN薄膜を形成しそのTiN薄膜上にSi以外の不純物の混入を抑制してGaN結晶を成長させる方法(この方法は、VAS(Void-Assisted Separation)法と呼ばれる)により、波長380nm以上の光に対する吸収係数が7cm-1未満であるGaN基板を得ることを開示する。
As a substrate used for a light emitting device, a substrate having high light transmittance and high conductivity is required. For example, Japanese Patent Laying-Open No. 2005-213075 (Patent Document 1) discloses a GaN substrate having an absorption coefficient of 7 cm −1 -68 nm −1 for light having a wavelength of 375 nm to 500 nm. Japanese Patent Application Laid-Open No. 2007-126320 (Patent Document 2) forms a TiN thin film having a large number of fine holes on a substrate and grows a GaN crystal on the TiN thin film while suppressing the introduction of impurities other than Si. It is disclosed that a GaN substrate having an absorption coefficient of less than 7 cm −1 for light having a wavelength of 380 nm or more is disclosed by a method (this method is called a VAS (Void-Assisted Separation) method).
しかし、光の透過率と導電性とは、二律背反の関係にあり、光の透過率を高めるために基板中の不純物を低減すると導電性が低くなり、導電性を高めるために基板中の不純物を増大させると光の透過率が低くなる。
However, there is a trade-off between light transmittance and conductivity. If the impurities in the substrate are reduced in order to increase the light transmittance, the conductivity decreases, and the impurities in the substrate are increased in order to increase the conductivity. Increasing the light decreases the light transmittance.
たとえば、特開2005-213075号公報(特許文献1)は、所定の導電性を維持するために、波長が375nm-500nmの光の吸収係数を7cm-1程度までにしか低減することができなかった。
For example, JP 2005-213075 (Patent Document 1), for maintaining a predetermined conductivity, not only can reduce the absorption coefficient of light of wavelength 375 nm-500 nm to up to about 7 cm -1 It was.
一方、特開2007-126320号公報(特許文献2)は、所定の導電性を維持するとともに、波長380nm以上の光に対する吸収係数が7cm-1未満であるGaN基板を開示するが、かかる基板は、上記のVAS法と呼ばれる特殊な方法を用いて作製されるため、非常にコストが高い。
On the other hand, Japanese Unexamined Patent Application Publication No. 2007-126320 (Patent Document 2) discloses a GaN substrate that maintains predetermined conductivity and has an absorption coefficient of less than 7 cm −1 for light with a wavelength of 380 nm or more. Since it is fabricated using a special method called the VAS method, the cost is very high.
また、発光デバイス用の基板は、発光の波長領域内における波長の光に関して低い吸収係数を有していれば足り、発光の波長領域外の波長の光に関してまで低い吸収係数を有している必要はない。
In addition, the substrate for the light emitting device only needs to have a low absorption coefficient with respect to light having a wavelength within the light emission wavelength region, and needs to have a low absorption coefficient even with respect to light with a wavelength outside the light emission wavelength region. There is no.
したがって、上記観点から、本発明は、発光デバイスの発光の波長領域内における波長の光に関して低い吸収係数を有し、かつ、所定値以下の比抵抗を有し、その発光デバイスに好適なGaN基板およびかかるGaN基板を含む発光デバイスを提供することを目的とする。
Therefore, from the above viewpoint, the present invention has a low absorption coefficient with respect to light having a wavelength within the emission wavelength region of the light emitting device, and has a specific resistance equal to or lower than a predetermined value, and is suitable for the light emitting device. It is another object of the present invention to provide a light emitting device including the GaN substrate.
本発明は、ある局面に従えば、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、少なくとも波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下であるGaN基板である。
According to an aspect of the present invention, an absorption coefficient for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 cm −1 or more, and at least an absorption coefficient for light having a wavelength of 500 nm to 780 nm is less than 7 cm −1 . It is a GaN substrate having a specific resistance of 0.02 Ωcm or less.
本発明にかかるGaN基板において、波長が440nm以上780nm以下の光に関する吸収係数を7cm-1未満とすることができる。
In the GaN substrate according to the present invention, the absorption coefficient relating to light having a wavelength of 440 nm or more and 780 nm or less can be less than 7 cm −1 .
また、本発明は、別の局面に従えば、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、少なくとも波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下である上記のGaN基板を含み、発光のピーク波長が500nm以上780nm以下である発光デバイスである。
According to another aspect of the present invention, the absorption coefficient for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 cm −1 or more, and the absorption coefficient for light having a wavelength of 500 nm to 780 nm is 7 cm − less than 1, comprising the above-described GaN substrate is specific resistance 0.02Ωcm less, the peak wavelength of the emission is a light emitting device is 500nm or more 780nm or less.
また、本発明は、さらに別の局面に従えば、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、波長が440nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下である上記のGaN基板を含み、発光のピーク波長を440nm以上780nm以下である発光デバイスである。
According to still another aspect of the present invention, the absorption coefficient for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 cm −1 or more, and the absorption coefficient for light having a wavelength of 440 nm to 780 nm is 7 cm −. The light emitting device includes the GaN substrate having a specific resistance of less than 1 and a specific resistance of 0.02 Ωcm or less, and a peak wavelength of light emission of 440 nm to 780 nm.
本発明によれば、発光デバイスの発光の波長領域内における波長の光に関して低い吸収係数を有し、かつ、所定値以下の比抵抗を有し、その発光デバイスに好適なGaN基板およびかかるGaN基板を含む発光デバイスを提供することができる。
According to the present invention, a GaN substrate having a low absorption coefficient with respect to light having a wavelength within the emission wavelength region of the light-emitting device and having a specific resistance equal to or lower than a predetermined value, and the GaN substrate suitable for the light-emitting device Can be provided.
[GaN基板]
本発明にかかるGaN基板は、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、少なくとも波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下である。ここで、光の吸収係数は、分光光度計を用いて対象とする波長の光の透過率および反射率を測定することにより、算出される。また、比抵抗は、比抵抗計を用いて四探針法により測定される。 [GaN substrate]
The GaN substrate according to the present invention has an absorption coefficient of 7 cm −1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, and an absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less is less than 7 cm −1 . The specific resistance is 0.02 Ωcm or less. Here, the light absorption coefficient is calculated by measuring the transmittance and reflectance of light of a target wavelength using a spectrophotometer. The specific resistance is measured by a four-probe method using a specific resistance meter.
本発明にかかるGaN基板は、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、少なくとも波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下である。ここで、光の吸収係数は、分光光度計を用いて対象とする波長の光の透過率および反射率を測定することにより、算出される。また、比抵抗は、比抵抗計を用いて四探針法により測定される。 [GaN substrate]
The GaN substrate according to the present invention has an absorption coefficient of 7 cm −1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, and an absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less is less than 7 cm −1 . The specific resistance is 0.02 Ωcm or less. Here, the light absorption coefficient is calculated by measuring the transmittance and reflectance of light of a target wavelength using a spectrophotometer. The specific resistance is measured by a four-probe method using a specific resistance meter.
かかるGaN基板は、発光のピーク波長が少なくとも500nm以上780nm以下の発光デバイスのGaN基板として好適に用いられる。以下に、より具体的な実施形態を説明する。
Such a GaN substrate is suitably used as a GaN substrate of a light emitting device having a peak emission wavelength of at least 500 nm to 780 nm. Hereinafter, more specific embodiments will be described.
(実施形態1)
本実施形態のGaN基板は、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下である。本実施形態のGaN基板は、発光のピーク波長が500nm以上780nm以下の赤色光領域である発光デバイスの基板として好適に用いられる。かかる観点から、波長が500nm以上780nm以下の光に関する吸収係数は5cm-1以下であることが好ましい。また、比抵抗は0.015Ωcm以下が好ましい。 (Embodiment 1)
The GaN substrate of the present embodiment has an absorption coefficient of 7 cm −1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less, and less than 7 cm −1. The resistance is 0.02 Ωcm or less. The GaN substrate of the present embodiment is suitably used as a substrate of a light emitting device that has a red light region having a light emission peak wavelength of 500 nm to 780 nm. From this viewpoint, it is preferable that the absorption coefficient regarding light having a wavelength of 500 nm or more and 780 nm or less is 5 cm −1 or less. The specific resistance is preferably 0.015 Ωcm or less.
本実施形態のGaN基板は、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下である。本実施形態のGaN基板は、発光のピーク波長が500nm以上780nm以下の赤色光領域である発光デバイスの基板として好適に用いられる。かかる観点から、波長が500nm以上780nm以下の光に関する吸収係数は5cm-1以下であることが好ましい。また、比抵抗は0.015Ωcm以下が好ましい。 (Embodiment 1)
The GaN substrate of the present embodiment has an absorption coefficient of 7 cm −1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less, and less than 7 cm −1. The resistance is 0.02 Ωcm or less. The GaN substrate of the present embodiment is suitably used as a substrate of a light emitting device that has a red light region having a light emission peak wavelength of 500 nm to 780 nm. From this viewpoint, it is preferable that the absorption coefficient regarding light having a wavelength of 500 nm or more and 780 nm or less is 5 cm −1 or less. The specific resistance is preferably 0.015 Ωcm or less.
(実施形態2)
本実施形態のGaN基板は、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、波長が440nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下である。本実施形態のGaN基板は、発光のピーク波長が440nm以上780nm以下の青色光領域から赤色光領域までの可視光領域である発光デバイスの基板として好適に用いられる。かかる観点から、波長が440nm以上780nm以下の光に関する吸収係数は5cm-1以下であることが好ましい。また、比抵抗は0.015Ωcm以下が好ましい。 (Embodiment 2)
The GaN substrate of the present embodiment has an absorption coefficient of 7 cm −1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient for light having a wavelength of 440 nm or more and 780 nm or less, and less than 7 cm −1. The resistance is 0.02 Ωcm or less. The GaN substrate of this embodiment is suitably used as a substrate for a light emitting device having a light emission peak wavelength in a visible light region from a blue light region to a red light region of 440 nm to 780 nm. From this viewpoint, it is preferable that the absorption coefficient regarding light having a wavelength of 440 nm or more and 780 nm or less is 5 cm −1 or less. The specific resistance is preferably 0.015 Ωcm or less.
本実施形態のGaN基板は、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、波長が440nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下である。本実施形態のGaN基板は、発光のピーク波長が440nm以上780nm以下の青色光領域から赤色光領域までの可視光領域である発光デバイスの基板として好適に用いられる。かかる観点から、波長が440nm以上780nm以下の光に関する吸収係数は5cm-1以下であることが好ましい。また、比抵抗は0.015Ωcm以下が好ましい。 (Embodiment 2)
The GaN substrate of the present embodiment has an absorption coefficient of 7 cm −1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient for light having a wavelength of 440 nm or more and 780 nm or less, and less than 7 cm −1. The resistance is 0.02 Ωcm or less. The GaN substrate of this embodiment is suitably used as a substrate for a light emitting device having a light emission peak wavelength in a visible light region from a blue light region to a red light region of 440 nm to 780 nm. From this viewpoint, it is preferable that the absorption coefficient regarding light having a wavelength of 440 nm or more and 780 nm or less is 5 cm −1 or less. The specific resistance is preferably 0.015 Ωcm or less.
上記のいずれの実施形態のGaN基板は、キャリア濃度が5×1017cm-3以上2×1018cm-3以下であることが好ましい。キャリア濃度が低すぎると比抵抗が大きくなり過ぎ、キャリア濃度が高すぎると光の吸収係数が大きくなり過ぎる。かかる観点から、キャリア濃度が7×1017cm-3以上1.1×1018cm-3以下であることがより好ましい。ここで、キャリア濃度は、CV特性測定法を用いて測定される。
The GaN substrate of any of the above embodiments preferably has a carrier concentration of 5 × 10 17 cm −3 or more and 2 × 10 18 cm −3 or less. If the carrier concentration is too low, the specific resistance becomes too high, and if the carrier concentration is too high, the light absorption coefficient becomes too high. From this viewpoint, the carrier concentration is more preferably 7 × 10 17 cm −3 or more and 1.1 × 10 18 cm −3 or less. Here, the carrier concentration is measured using a CV characteristic measurement method.
上記のいずれの実施形態のGaN基板は、その主表面を貫通する転位の平均密度(平均転位密度という、以下同じ。)が3×106cm-2以下であることが好ましい。かかる転位の平均密度が低いほど信頼性の高い発光デバイスが得られる。かかる観点から、主表面を貫通する転位の平均密度(平均転位密度)は1×106cm-2以下であることがより好ましい。また、現在の基板の製造技術の観点から、主表面を貫通する転位の平均密度(平均転位密度)は、現在のところ、10cm-2より小さくとすることは困難であり、したがって10cm-2程度以上である。GaN基板の主表面を貫通する転位の平均密度は、CL(カソードルミネッサンス)による暗点密度の測定から算出される。
The GaN substrate of any of the above embodiments preferably has an average density of dislocations penetrating through its main surface (hereinafter referred to as the average dislocation density) of 3 × 10 6 cm −2 or less. The lower the average density of such dislocations, the higher the reliability of the light emitting device. From this viewpoint, the average density of dislocations penetrating the main surface (average dislocation density) is more preferably 1 × 10 6 cm −2 or less. Also, from the viewpoint of current substrate manufacturing technology, the average density of dislocations penetrating the main surface (average dislocation density) is currently difficult to be smaller than 10 cm −2 , and is therefore about 10 cm −2. That's it. The average density of dislocations penetrating the main surface of the GaN substrate is calculated from the measurement of dark spot density by CL (cathode luminescence).
上記のいずれの実施形態のGaN基板は、その主表面が平坦であって、その主表面に最も近い結晶面の曲率半径が10m以上であることが好ましい。かかる結晶面の曲率半径が大きいほど基板面内で発光波長が均一な発光デバイスが得られる。かかる観点から、主表面に最も近い結晶面の曲率半径は20m以上であることがより好ましい。また、現在の基板の製造技術の観点から、主表面に最も近い結晶面の曲率半径は、現在のところ、100mより大きくすることは困難であり、したがって100m程度以下である。GaN基板の主表面に最も近い結晶面の曲率半径は、その対象とされる結晶面に関するX線回折により測定される。
It is preferable that the GaN substrate of any of the above embodiments has a flat main surface and a radius of curvature of a crystal plane closest to the main surface is 10 m or more. As the radius of curvature of the crystal plane increases, a light emitting device having a uniform emission wavelength within the substrate plane can be obtained. From this point of view, the radius of curvature of the crystal plane closest to the main surface is more preferably 20 m or more. Further, from the viewpoint of current substrate manufacturing technology, the radius of curvature of the crystal plane closest to the main surface is currently difficult to be larger than 100 m, and is therefore about 100 m or less. The radius of curvature of the crystal plane closest to the main surface of the GaN substrate is measured by X-ray diffraction with respect to the target crystal plane.
GaN基板の主表面に最も近い結晶面は、特に制限はないが、その主表面上に結晶性の高い半導体層をエピタキシャル成長させる観点から、{0001}面、{10-10}面、{11-20}面、{10-11}面、{11-22}面、{20-21}面、{22-44}面などが好ましい。また、GaN基板の主表面上に結晶性の高い半導体層をエピタキシャル成長させる観点から、GaN基板の主表面は、上記結晶面に対するオフ角の絶対値が5°以下であることが好ましい。ここで、GaN基板に最も近い結晶面の面方位およびその主表面とその結晶面とのオフ角は、X線回折により測定される。
The crystal plane closest to the main surface of the GaN substrate is not particularly limited, but from the viewpoint of epitaxially growing a highly crystalline semiconductor layer on the main surface, the {0001} plane, {10-10} plane, {11- The 20} plane, {10-11} plane, {11-22} plane, {20-21} plane, {22-44} plane and the like are preferable. From the viewpoint of epitaxially growing a highly crystalline semiconductor layer on the main surface of the GaN substrate, the main surface of the GaN substrate preferably has an absolute value of an off angle of 5 ° or less with respect to the crystal plane. Here, the plane orientation of the crystal plane closest to the GaN substrate and the off-angle between the main surface and the crystal plane are measured by X-ray diffraction.
[GaN基板の製造方法]
図1は、本発明にかかるGaN基板を製造する方法の一例を示す概略断面図である。本発明にかかるGaN基板を製造する方法には、特に制限はないが、図1を参照して、下地基板11を準備する工程、下地基板11上に不純物が添加されたGaN結晶12を成長させる工程、GaN結晶12を加工してGaN基板10を形成する工程を備える。かかる製造方法において、GaN結晶12に添加される不純物(ドーパントという、以下同じ)の濃度を調製することにより、低コストで本実施形態のGaN基板10が得られる。 [Method of manufacturing GaN substrate]
FIG. 1 is a schematic sectional view showing an example of a method for manufacturing a GaN substrate according to the present invention. The method for manufacturing the GaN substrate according to the present invention is not particularly limited, but referring to FIG. 1, the step of preparing thebase substrate 11 and the growth of the GaN crystal 12 doped with impurities on the base substrate 11 are performed. A step of processing the GaN crystal 12 to form the GaN substrate 10. In this manufacturing method, the GaN substrate 10 of the present embodiment can be obtained at low cost by adjusting the concentration of impurities (referred to as dopant hereinafter) added to the GaN crystal 12.
図1は、本発明にかかるGaN基板を製造する方法の一例を示す概略断面図である。本発明にかかるGaN基板を製造する方法には、特に制限はないが、図1を参照して、下地基板11を準備する工程、下地基板11上に不純物が添加されたGaN結晶12を成長させる工程、GaN結晶12を加工してGaN基板10を形成する工程を備える。かかる製造方法において、GaN結晶12に添加される不純物(ドーパントという、以下同じ)の濃度を調製することにより、低コストで本実施形態のGaN基板10が得られる。 [Method of manufacturing GaN substrate]
FIG. 1 is a schematic sectional view showing an example of a method for manufacturing a GaN substrate according to the present invention. The method for manufacturing the GaN substrate according to the present invention is not particularly limited, but referring to FIG. 1, the step of preparing the
(下地基板を準備する工程)
図1(A)を参照して、下地基板11を準備する工程において準備される下地基板11は、GaN結晶12をエピタキシャル成長させることができる基板であれば特に制限はないが、GaN結晶との格子整合性が高い観点から、シリコン(Si)下地基板、サファイア(Al2O3)下地基板、GaAs下地基板、ならびにGaN下地基板およびAlN下地基板などのIII族窒化物下地基板などが好ましく用いられ、中でもGaN下地基板が特に好ましく用いられる。GaN下地基板を使用することによって、下地基板からの不純物の混入を抑制することができるので好ましい。この観点からは下地基板の表面の清浄度が重要である。特に下地基板の裏面(成長炉の内壁に接する下地基板の面をいう。以下同じ。)は結晶成長前に成長炉内でエッチングすることができないので、成長炉内に投入する前に清浄度を上げる必要がある。そのため基板裏面をエッチングしてから成長炉内に投入することが好ましい。エッチング方法としてはアルカリ溶剤によるウエットエッチングや、ハロゲン系ガスによるドライエッチングなどが挙げられる。 (Process for preparing the base substrate)
Referring to FIG. 1A, thebase substrate 11 prepared in the step of preparing the base substrate 11 is not particularly limited as long as it is a substrate on which the GaN crystal 12 can be epitaxially grown. From the viewpoint of high consistency, a silicon (Si) base substrate, a sapphire (Al 2 O 3 ) base substrate, a GaAs base substrate, and a group III nitride base substrate such as a GaN base substrate and an AlN base substrate are preferably used. Among these, a GaN base substrate is particularly preferably used. The use of a GaN base substrate is preferable because it can suppress contamination of impurities from the base substrate. From this point of view, the cleanliness of the surface of the base substrate is important. In particular, the back surface of the base substrate (the surface of the base substrate in contact with the inner wall of the growth furnace; the same applies hereinafter) cannot be etched in the growth furnace before crystal growth. It is necessary to raise. Therefore, it is preferable to etch the back surface of the substrate and put it into the growth furnace. Examples of the etching method include wet etching using an alkali solvent, dry etching using a halogen-based gas, and the like.
図1(A)を参照して、下地基板11を準備する工程において準備される下地基板11は、GaN結晶12をエピタキシャル成長させることができる基板であれば特に制限はないが、GaN結晶との格子整合性が高い観点から、シリコン(Si)下地基板、サファイア(Al2O3)下地基板、GaAs下地基板、ならびにGaN下地基板およびAlN下地基板などのIII族窒化物下地基板などが好ましく用いられ、中でもGaN下地基板が特に好ましく用いられる。GaN下地基板を使用することによって、下地基板からの不純物の混入を抑制することができるので好ましい。この観点からは下地基板の表面の清浄度が重要である。特に下地基板の裏面(成長炉の内壁に接する下地基板の面をいう。以下同じ。)は結晶成長前に成長炉内でエッチングすることができないので、成長炉内に投入する前に清浄度を上げる必要がある。そのため基板裏面をエッチングしてから成長炉内に投入することが好ましい。エッチング方法としてはアルカリ溶剤によるウエットエッチングや、ハロゲン系ガスによるドライエッチングなどが挙げられる。 (Process for preparing the base substrate)
Referring to FIG. 1A, the
(不純物が添加されたGaN結晶を成長させる工程)
図1(A)を参照して、上記の下地基板11上に不純物が添加されたGaN結晶12を成長させる方法には、エピタキシャル成長ができる方法であれば特に制限はないが、結晶性の高いGaN結晶12を成長させる観点から、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法、MBE(分子線成長)法などの気相法が好ましく、中でも結晶成長速度が高い観点からHVPE法が特に好ましい。 (Step of growing GaN crystal with added impurities)
Referring to FIG. 1A, the method for growing theGaN crystal 12 doped with impurities on the base substrate 11 is not particularly limited as long as it is a method capable of epitaxial growth, but GaN having high crystallinity. From the viewpoint of growing the crystal 12, vapor phase methods such as HVPE (hydride vapor phase epitaxy) method, MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam growth) method are preferable, and the crystal growth rate is particularly high. To HVPE is particularly preferred.
図1(A)を参照して、上記の下地基板11上に不純物が添加されたGaN結晶12を成長させる方法には、エピタキシャル成長ができる方法であれば特に制限はないが、結晶性の高いGaN結晶12を成長させる観点から、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法、MBE(分子線成長)法などの気相法が好ましく、中でも結晶成長速度が高い観点からHVPE法が特に好ましい。 (Step of growing GaN crystal with added impurities)
Referring to FIG. 1A, the method for growing the
ここで、HVPE法では通常、石英反応管内で成長が行われるので、石英反応管内の結晶を加熱するため、結晶と共に石英反応管も加熱される。そのため高温に加熱された石英反応管からの分解ガスが不純物として結晶に取り込まれてしまう。そこで石英反応管の内部を成長温度下で安定な材質(たとえば、pBN(熱分解窒化ホウ素))で形成されたライナー管でカバーすることが好ましい。さらに、石英反応管とライナー管の隙間をパージするパージガス(たとえば、H2、N2、および/またはAr)を流し、不純物が滞留しないようにすることが好ましい。また下地基板を配置するサセプタも高温になるので、かかるサセプタをpBNで形成するか、pBN、AlN、Al2O3、SiCなどの高純度で安定な材質を用いてサセプタの表面をコーティングしておくことが好ましい。
Here, in the HVPE method, the growth is usually performed in the quartz reaction tube, so that the crystal in the quartz reaction tube is heated, so that the quartz reaction tube is also heated together with the crystal. Therefore, the decomposition gas from the quartz reaction tube heated to a high temperature is taken into the crystal as an impurity. Therefore, it is preferable to cover the inside of the quartz reaction tube with a liner tube formed of a material stable at the growth temperature (for example, pBN (pyrolytic boron nitride)). Further, it is preferable to flow a purge gas (for example, H 2 , N 2 , and / or Ar) for purging the gap between the quartz reaction tube and the liner tube so that impurities do not stay. Also, since the susceptor on which the base substrate is placed becomes high temperature, such a susceptor is formed of pBN, or the surface of the susceptor is coated with a high-purity and stable material such as pBN, AlN, Al 2 O 3 , or SiC. It is preferable to keep it.
GaN結晶12に添加される不純物(ドーパント)は、特に制限はないが、光の吸収係数の低減が少なく比抵抗が低い観点から、Siが好ましい。また、GaN結晶12にSiを添加する方法には、特に制限はないが、ドーピングガスとして、Siを含有するガス、たとえば、SiF4(四フッ化珪素)ガス、SiH4(シラン)ガス、Si2H6(ジシラン)ガス、SiH3Cl(一塩化シラン)ガス、SiH2Cl2(二塩化シラン)ガス、SiHCl3(三塩化シラン)ガス、SiCl4(四塩化珪素)ガスなどが好ましく用いられ、この中でもSiF4ガスが特に好ましく用いられる。SiF4ガスは、他のSiを含有するガスに比べて、900℃以上1300℃以下の高温においても分解されにくいため、GaN結晶12に効率よく添加することができる。
The impurity (dopant) added to the GaN crystal 12 is not particularly limited, but Si is preferable from the viewpoint of reducing the light absorption coefficient and reducing the specific resistance. The method for adding Si to the GaN crystal 12 is not particularly limited, but a gas containing Si as a doping gas, for example, SiF 4 (silicon tetrafluoride) gas, SiH 4 (silane) gas, Si 2 H 6 (disilane) gas, SiH 3 Cl (silane monochloride) gas, SiH 2 Cl 2 (silane dichloride) gas, SiHCl 3 (silane trichloride) gas, SiCl 4 (silicon tetrachloride) gas, etc. are preferably used Among these, SiF 4 gas is particularly preferably used. SiF 4 gas is less likely to be decomposed even at a high temperature of 900 ° C. or higher and 1300 ° C. or lower as compared with other Si-containing gases, and therefore can be efficiently added to the GaN crystal 12.
たとえば、ドーパントとしてSiが添加されたGaN結晶12をHVPE法により成長させる方法を、以下に説明する。図2は、GaN結晶12の成長に用いられるHVPE装置の一例を示す概略図である。図2を参照して、HVPE装置100は、第1原料ガスボンベ101と、ドーピングガスボンベ102と、第2原料ガスボンベ103と、第1ガス導入管104と、ドーピングガス導入管105と、第2ガス導入管106と、ソースボート107と、サセプタ108と、ヒータ109と、反応管110と、排気管111と、排ガス処置装置とを備えている。HVPE装置100は、たとえば横型反応管としている。なお、HVPE装置100は、縦型反応管であってもよい。
For example, a method of growing the GaN crystal 12 doped with Si as a dopant by the HVPE method will be described below. FIG. 2 is a schematic view showing an example of an HVPE apparatus used for growing the GaN crystal 12. Referring to FIG. 2, the HVPE apparatus 100 includes a first source gas cylinder 101, a doping gas cylinder 102, a second source gas cylinder 103, a first gas introduction pipe 104, a doping gas introduction pipe 105, and a second gas introduction. A pipe 106, a source boat 107, a susceptor 108, a heater 109, a reaction pipe 110, an exhaust pipe 111, and an exhaust gas treatment device are provided. The HVPE apparatus 100 is, for example, a horizontal reaction tube. The HVPE apparatus 100 may be a vertical reaction tube.
反応管110は、内部に下地基板11を保持して、その下地基板11上にGaN結晶12を成長させるための容器である。反応管110は、たとえば石英反応管などを用いることができる。また、反応管110の内部には、pBN製のライナー管120が配置されている。第1原料ガスボンベ101、第2原料ガスボンベ103およびソースボート107には、成長させるGaN結晶を構成する元素を含む原料がそれぞれ供給される。ドーピングガスボンベ102には、ドーパントであるSiを含むガスとしてたとえばSiF4ガスが充填されている。第1ガス導入管104、ドーピングガス導入管105および第2ガス導入管106は、第1原料ガスG1、ドーピングガスG2および第2原料ガスG3の各々を反応管110の外部から内部へ導入するために反応管110に設けられている。ソースボート107は、GaN結晶の金属原料としてたとえば金属Gaを収容保持し、第2ガス導入管106内に配置されている。
The reaction tube 110 is a container for holding the base substrate 11 inside and growing the GaN crystal 12 on the base substrate 11. As the reaction tube 110, for example, a quartz reaction tube can be used. In addition, a liner tube 120 made of pBN is disposed inside the reaction tube 110. The first source gas cylinder 101, the second source gas cylinder 103, and the source boat 107 are each supplied with a source containing an element constituting a GaN crystal to be grown. The doping gas cylinder 102 is filled with, for example, SiF 4 gas as a gas containing Si as a dopant. The first gas introduction pipe 104, the doping gas introduction pipe 105, and the second gas introduction pipe 106 are used to introduce each of the first source gas G1, the doping gas G2, and the second source gas G3 from the outside to the inside of the reaction tube 110. Are provided in the reaction tube 110. The source boat 107 accommodates and holds, for example, metal Ga as a metal raw material of the GaN crystal, and is disposed in the second gas introduction pipe 106.
サセプタ108は、その表面がpBN製の膜でコーティングされており、下地基板11を保持している。反応管110内においてサセプタ108により下地基板11が保持されている面が第1ガス導入管104、ドーピングガス導入管105および第2ガス導入管106の下方に位置するように、サセプタ108は配置されている。サセプタ108は、反応管110の内部で横置きに配置されている。なお、サセプタ108は、図2においては下地基板11をその主表面が水平に配置するように構成されているが、下地基板をその主表面が垂直に配置するように構成されていてもよい。また、HVPE装置100は、下地基板11の抵抗加熱ヒータなど加熱用の局所加熱機構をさらに備えていてもよい。
The surface of the susceptor 108 is coated with a film made of pBN, and holds the base substrate 11. The susceptor 108 is arranged so that the surface of the reaction tube 110 on which the base substrate 11 is held by the susceptor 108 is positioned below the first gas introduction tube 104, the doping gas introduction tube 105, and the second gas introduction tube 106. ing. The susceptor 108 is disposed horizontally in the reaction tube 110. In FIG. 2, the susceptor 108 is configured such that the main surface of the base substrate 11 is horizontally arranged, but the base substrate may be configured so that the main surface thereof is vertically disposed. The HVPE apparatus 100 may further include a local heating mechanism for heating such as a resistance heater of the base substrate 11.
ヒータ109は、反応管110の外部に配置され、反応管110の内部を全体的にたとえば700℃以上1500℃以下に加熱する能力を有している。排気管111は、反応後のガスを反応管110の外部に排出するために、反応管110に設けられている。排ガス処置装置は、排気管111から排出される反応後のガスを環境への負荷を減らすように除害するように構成されている。
The heater 109 is disposed outside the reaction tube 110 and has the ability to heat the inside of the reaction tube 110 to, for example, 700 ° C. or more and 1500 ° C. or less. The exhaust pipe 111 is provided in the reaction tube 110 in order to discharge the reacted gas to the outside of the reaction tube 110. The exhaust gas treatment device is configured to remove the gas after reaction discharged from the exhaust pipe 111 so as to reduce the load on the environment.
図2に示すように、まず、準備した下地基板11をサセプタ108に保持させる。このとき複数枚の下地基板11をサセプタ108に保持させてもよい。
As shown in FIG. 2, first, the prepared base substrate 11 is held on the susceptor 108. At this time, a plurality of base substrates 11 may be held by the susceptor 108.
次に、第1原料ガスとしてのNH3(アンモニア)ガスおよび第2原料ガスとしてのHCl(塩化水素)ガスをそれぞれ充填した第1原料ガスボンベ101および第2原料ガスボンベ103を準備する。また、ソースボート107に金属Gaを供給する。また、ドーピングガスとしてのSiF4ガスを内部に充填したドーピングガスボンベ102を準備する。
Next, a first source gas cylinder 101 and a second source gas cylinder 103 filled with NH 3 (ammonia) gas as the first source gas and HCl (hydrogen chloride) gas as the second source gas are prepared. Further, metal Ga is supplied to the source boat 107. Further, a doping gas cylinder 102 filled with SiF 4 gas as a doping gas is prepared.
その後、ソースボート107を加熱する。そして、第2ガス導入管106から供給されるHClガス(第2原料ガスG3)と、ソースボート107の金属Gaとを反応させてGaCl(塩化ガリウム)ガス(反応ガスG7)を生成する。第1ガス導入管104から供給されるNH3ガス(第1原料ガスG1)と、SiF4ガス(ドーピングガスG2)と、GaClガス(反応ガスG7)とを下地基板11の主表面に当たるように流して(供給して)反応させる。このとき、これらのガスを下地基板11に運搬するためのキャリアガスを用いてもよい。キャリアガスは、たとえばN2(窒素)ガス、H2(水素)ガスおよびAr(アルゴン)ガスなどの不活性ガスを用いることができる。
Thereafter, the source boat 107 is heated. Then, the HCl gas (second source gas G3) supplied from the second gas introduction pipe 106 and the metal Ga of the source boat 107 are reacted to generate GaCl (gallium chloride) gas (reaction gas G7). NH 3 gas (first source gas G 1), SiF 4 gas (doping gas G 2), and GaCl gas (reactive gas G 7) supplied from the first gas introduction pipe 104 come into contact with the main surface of the base substrate 11. Flow (feed) to react. At this time, a carrier gas for transporting these gases to the base substrate 11 may be used. As the carrier gas, for example, an inert gas such as N 2 (nitrogen) gas, H 2 (hydrogen) gas, and Ar (argon) gas can be used.
HVPE法では、ヒータ109を用いて、反応管110の内部をGaN結晶12が適切な速度で成長する温度に加熱する。GaN結晶12を成長させる温度は、好ましくは900℃以上1300℃以下であり、より好ましくは1050℃以上1200℃以下である。900℃以上でGaN結晶12を成長させる場合、GaN結晶12の欠陥の発生を防止でき、かつ結晶成長面に成長させる面方位と異なる面方位の面(たとえば成長させる面方位が(0001)(c面)の場合には(0001)と異なる面方位を有するファセットおよびかかるファセットにより形成されるピットなど)が発生することを抑制できる。すなわち、結晶成長面の成長させる面方位に対して、安定して良好な結晶性を有するGaN結晶12を成長させることができる。1050℃以上でGaN結晶12を成長させる場合、結晶性をより良好にできる。一方、1300℃以下でGaN結晶12を成長させる場合、成長させるGaN結晶12が分解することを抑制できるので、その結晶性の劣化を抑制できる。1200℃以下でGaN結晶12を成長させる場合には、結晶性の劣化をより抑制できる。
In the HVPE method, the heater 109 is used to heat the inside of the reaction tube 110 to a temperature at which the GaN crystal 12 grows at an appropriate rate. The temperature at which the GaN crystal 12 is grown is preferably 900 ° C. or higher and 1300 ° C. or lower, and more preferably 1050 ° C. or higher and 1200 ° C. or lower. When the GaN crystal 12 is grown at 900 ° C. or higher, generation of defects in the GaN crystal 12 can be prevented, and a plane having a plane orientation different from the plane orientation grown on the crystal growth plane (for example, the plane orientation to be grown is (0001) (c In the case of (surface), it is possible to suppress the occurrence of facets having a surface orientation different from (0001) and pits formed by such facets. That is, the GaN crystal 12 having good crystallinity can be stably grown with respect to the plane orientation in which the crystal growth surface is grown. When the GaN crystal 12 is grown at 1050 ° C. or higher, the crystallinity can be improved. On the other hand, when the GaN crystal 12 is grown at 1300 ° C. or lower, it is possible to suppress decomposition of the GaN crystal 12 to be grown, so that deterioration of the crystallinity can be suppressed. When the GaN crystal 12 is grown at 1200 ° C. or lower, the crystallinity deterioration can be further suppressed.
ここで、成長させるGaN結晶の結晶成長表面は、(0001)面からの傾斜角が1°未満であることが好ましい。GaN結晶において、(0001)面からの結晶成長面の傾斜角を1°未満とすることにより、結晶成長表面におけるドーピングガス以外の不純物の取り込みを抑制することができる。GaN結晶の結晶成長表面の(0001)面からの傾斜角を1°未満とするためには、結晶成長温度を1100℃以上にすることが好ましい。また、上記の原料ガス、キャリアガスおよびドーピングガスの流し方および流量を最適化することによって、結晶成長表面のほぼ全域(80%以上から100%)において、(0001)面からの傾斜角を1°未満とすることができる。
Here, the crystal growth surface of the GaN crystal to be grown preferably has an inclination angle from the (0001) plane of less than 1 °. In a GaN crystal, by making the inclination angle of the crystal growth surface from the (0001) plane less than 1 °, the incorporation of impurities other than the doping gas on the crystal growth surface can be suppressed. In order to set the inclination angle of the crystal growth surface of the GaN crystal from the (0001) plane to less than 1 °, the crystal growth temperature is preferably set to 1100 ° C. or higher. In addition, by optimizing the flow and flow rate of the source gas, carrier gas, and doping gas, the tilt angle from the (0001) plane is set to 1 over almost the entire crystal growth surface (from 80% to 100%). It can be less than °.
GaN結晶12の成長時におけるSiを含むガス(SiF4ガス)の分圧は、2.0×10-7atm以上1.0×10-5atm以下であることが好ましい。Siを含むガス(SiF4ガス)の分圧が2.0×10-7atm以上の場合、n型ドーパントとしてのSiが十分にGaN結晶12に取り込まれる。一方、Siを含むガス(SiF4ガス)の分圧が1.0×10-5atm以下である場合、SixNy(窒化シリコン)系化合物の生成をより抑制できるため、GaN結晶12にSiをドーピングする際のドーピング条件の制御をより良好にできる。また、GaN結晶12にドーピングされるSiの濃度を考慮すると、Siを含むガス(SiF4ガス)の分圧は1.0×10-5atm以下である。なお、原料ガス、キャリアガスおよびドーピングガスなどの反応管110内に含まれるガスのそれぞれの分圧の合計(全体)が1atmである。Siを含むガス(SiF4ガス)の濃度は、分圧に比例する。
The partial pressure of the gas containing Si (SiF 4 gas) during the growth of the GaN crystal 12 is preferably 2.0 × 10 −7 atm or more and 1.0 × 10 −5 atm or less. When the partial pressure of the gas containing Si (SiF 4 gas) is 2.0 × 10 −7 atm or more, Si as an n-type dopant is sufficiently taken into the GaN crystal 12. On the other hand, when the partial pressure of the gas containing Si (SiF 4 gas) is 1.0 × 10 −5 atm or less, the production of Si x N y (silicon nitride) compound can be further suppressed, The control of doping conditions when doping Si can be made better. In consideration of the concentration of Si is doped into the GaN crystal 12, the partial pressure of the gas (SiF 4 gas) containing Si is 1.0 × 10 -5 atm or less. The total (total) partial pressure of each of the gases contained in the reaction tube 110 such as the source gas, the carrier gas, and the doping gas is 1 atm. The concentration of the gas containing Si (SiF 4 gas) is proportional to the partial pressure.
不純物が添加されたGaN結晶を成長させる工程においては、GaN結晶12中のキャリア濃度が好ましくは5×1017cm-3以上1.5×1018cm-3以下(対応するSi濃度が5×1017cm-3以上1.6×1018cm-3以下)、より好ましくは6.6×1017cm-3以上1.1×1018cm-3以下(対応するSi濃度が6.9×1017cm-3以上1.1×1018cm-3以下)になるようにドーピングガスを下地基板11に供給する。キャリア濃度が5×1017cm-3以上の場合、GaN結晶12の比抵抗を小さくして導電性を十分に確保できる。キャリア濃度が6.6×1017cm-3以上の場合、GaN結晶12の比抵抗をより小さくして導電性をより十分に確保できる。一方、キャリア濃度が1.5×1018cm-3以下の場合、GaN結晶の光の吸収係数を小さくして光の透過性を十分に確保できる。キャリア濃度が1.1×1018cm-3以下の場合、GaN結晶の光の吸収係数をより小さくして光の透過性をより十分に確保できる。さらに、Si以外の不純物(酸素、炭素など)のドーピング量は、Siドーピング量の1/5以下が好ましく、1/10以下がより好ましく、1/20以下がさらに好ましい。
In the step of growing the GaN crystal to which the impurity is added, the carrier concentration in the GaN crystal 12 is preferably 5 × 10 17 cm −3 or more and 1.5 × 10 18 cm −3 or less (the corresponding Si concentration is 5 × 10 17 cm -3 or more 1.6 × 10 18 cm -3 or less), more preferably 6.6 × 10 17 cm -3 or more 1.1 × 10 18 cm -3 or less (corresponding Si concentration 6.9 The doping gas is supplied to the base substrate 11 so as to be in the range of × 10 17 cm −3 to 1.1 × 10 18 cm −3 . When the carrier concentration is 5 × 10 17 cm −3 or more, the specific resistance of the GaN crystal 12 can be reduced to ensure sufficient conductivity. In the case where the carrier concentration is 6.6 × 10 17 cm −3 or more, the specific resistance of the GaN crystal 12 can be further reduced to ensure sufficient conductivity. On the other hand, when the carrier concentration is 1.5 × 10 18 cm −3 or less, the light absorption coefficient of the GaN crystal can be reduced to ensure sufficient light transmission. When the carrier concentration is 1.1 × 10 18 cm −3 or less, the light absorption coefficient of the GaN crystal can be made smaller, and the light transmission can be sufficiently secured. Further, the doping amount of impurities other than Si (oxygen, carbon, etc.) is preferably 1/5 or less, more preferably 1/10 or less, and even more preferably 1/20 or less of the Si doping amount.
不純物が添加されたGaN結晶12を成長させる工程においては、GaN結晶12の比抵抗が0.02Ωcm以下、好ましくは0.015Ωcm以下となるようにGaN結晶12を成長させる。比抵抗が0.02Ωcm以下の場合、発光デバイスの基板に好適に用いられる導電性を有するGaN結晶12を成長させることができる。GaN結晶の比抵抗が0.015Ωcm以下の場合、発光デバイスの基板により好適に用いられる。
In the step of growing the GaN crystal 12 to which impurities are added, the GaN crystal 12 is grown so that the specific resistance of the GaN crystal 12 is 0.02 Ωcm or less, preferably 0.015 Ωcm or less. When the specific resistance is 0.02 Ωcm or less, it is possible to grow the GaN crystal 12 having conductivity that is suitably used for the substrate of the light emitting device. When the specific resistance of the GaN crystal is 0.015 Ωcm or less, it is preferably used for the substrate of the light emitting device.
不純物が添加されたGaN結晶12を成長させる工程においては、GaN結晶12について、波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満、好ましくは5cm-1以下となるようにGaN結晶を成長させる。GaN結晶12は、波長が500nm以上780nm以下の光に関する光の吸収係数が、7cm-1未満の場合、好ましくは5cm-1以下の場合、発光のピーク波長が500nm以上780nm以下の発光デバイスの基板に好適に用いられる。
In the step of growing the GaN crystal 12 to which the impurity is added, the GaN crystal is grown so that the absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less is less than 7 cm −1 , preferably 5 cm −1 or less. Grow. The GaN crystal 12 is a substrate of a light emitting device having a light emission peak wavelength of 500 nm or more and 780 nm or less when the light absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less is less than 7 cm −1 , preferably 5 cm −1 or less. Is preferably used.
不純物が添加されたGaN結晶12を成長させる工程においては、GaN結晶12について、波長が440nm以上780nm以下の光に関する吸収係数が7cm-1未満、好ましくは5cm-1以下となるようにGaN結晶を成長させる。GaN結晶12は、波長が440nm以上780nm以下の光に関する光の吸収係数が、7cm-1未満の場合、好ましくは5cm-1以下の場合、発光のピーク波長が440nm以上780nm以下の発光デバイスの基板に好適に用いられる。
In the step of growing the GaN crystal 12 to which the impurity is added, the GaN crystal is grown so that the absorption coefficient for light having a wavelength of 440 nm or more and 780 nm or less is less than 7 cm −1 , preferably 5 cm −1 or less. Grow. The GaN crystal 12 is a substrate of a light emitting device having a light emission peak wavelength of 440 nm or more and 780 nm or less when the light absorption coefficient relating to light having a wavelength of 440 nm or more and 780 nm or less is less than 7 cm −1 , preferably 5 cm −1 or less. Is preferably used.
不純物が添加されたGaN結晶を成長させる工程においては、GaN結晶12中の転位の平均密度が、好ましくは3×106cm-2以下であり、より好ましくは1×106cm-2以下になるようにGaN結晶12を成長させる。かかるGaN結晶を加工することにより、主表面12mを貫通する転位の平均密度が、好ましくは3×106cm-2以下であり、より好ましくは1×106cm-2以下であるGaN基板が容易に得られる。ここで、GaN結晶12中の転位の平均密度およびGaN基板の主表面12mを貫通する転位の平均密度(平均転位密度)は、CL(カソードルミネッサンス)による暗点密度の測定から算出される。
In the step of growing the GaN crystal to which the impurity is added, the average density of dislocations in the GaN crystal 12 is preferably 3 × 10 6 cm −2 or less, more preferably 1 × 10 6 cm −2 or less. The GaN crystal 12 is grown so that By processing such a GaN crystal, a GaN substrate having an average density of dislocations penetrating the main surface 12m is preferably 3 × 10 6 cm −2 or less, more preferably 1 × 10 6 cm −2 or less. Easy to get. Here, the average density of dislocations in the GaN crystal 12 and the average density of dislocations penetrating the main surface 12m of the GaN substrate (average dislocation density) are calculated from the measurement of dark spot density by CL (cathode luminescence).
図1(A)を参照して、不純物が添加されたGaN結晶12を成長させる工程においては、主表面11mが{0001}面、{10-10}面、{11-20}面、{10-11}面、{11-22}面、{20-21}面および{22-44}面のいずれかの面からのオフ角の絶対値が5°以下のIII族窒化物基板(下地基板11)を用いて、結晶成長の主表面12mが{0001}面、{10-10}面、{11-20}面、{10-11}面、{11-22}面、{20-21}面および{22-44}面のいずれかの面からのオフ角の絶対値が5°以下のGaN結晶12を成長させることが好ましい。かかるGaN結晶から、主表面10mが{0001}面、{10-10}面、{11-20}面、{10-11}面、{11-22}面、{20-21}面および{22-44}面のいずれかの面からのオフ角の絶対値が5°以下のGaN基板10が容易に得られる。
Referring to FIG. 1A, in the step of growing GaN crystal 12 to which impurities are added, main surface 11m is {0001} plane, {10-10} plane, {11-20} plane, {10-20 Group III nitride substrate (underlying substrate) having an absolute value of an off angle of 5 ° or less from any of the −11}, {11-22}, {20-21}, and {22-44} planes 11), the main surface 12m of crystal growth is {0001} plane, {10-10} plane, {11-20} plane, {10-11} plane, {11-22} plane, {20-21} } It is preferable to grow the GaN crystal 12 having an absolute value of an off angle of 5 ° or less from any one of the {} plane and the {22-44} plane. From such a GaN crystal, the main surface 10m is {0001} plane, {10-10} plane, {11-20} plane, {10-11} plane, {11-22} plane, {20-21} plane and {20-21} plane. The GaN substrate 10 having an absolute off angle from any of the 22-44} planes of 5 ° or less can be easily obtained.
(GaN結晶を加工してGaN基板を形成する工程)
図1(B)を参照して、得られた不純物が添加されたGaN結晶12を加工してGaN基板10を形成する工程は、特に制限はなく、下地基板11を除去するサブ工程を含むことができる。下地基板11を除去する方法は、特に制限はなく、外周刃、内周刃、ワイヤーソー、レーザなどで切断する方法、ダイヤモンド砥石などで研削する方法などがある。このようにして主表面12m,12nを有するGaN結晶12が得られる。 (Process of forming GaN substrate by processing GaN crystal)
Referring to FIG. 1B, the process of forming the GaN substrate 10 by processing the obtainedGaN crystal 12 doped with impurities is not particularly limited, and includes a sub-process of removing the base substrate 11. Can do. The method for removing the base substrate 11 is not particularly limited, and there are a method of cutting with an outer peripheral blade, an inner peripheral blade, a wire saw, a laser, or the like, and a method of grinding with a diamond grindstone. Thus, the GaN crystal 12 having the main surfaces 12m and 12n is obtained.
図1(B)を参照して、得られた不純物が添加されたGaN結晶12を加工してGaN基板10を形成する工程は、特に制限はなく、下地基板11を除去するサブ工程を含むことができる。下地基板11を除去する方法は、特に制限はなく、外周刃、内周刃、ワイヤーソー、レーザなどで切断する方法、ダイヤモンド砥石などで研削する方法などがある。このようにして主表面12m,12nを有するGaN結晶12が得られる。 (Process of forming GaN substrate by processing GaN crystal)
Referring to FIG. 1B, the process of forming the GaN substrate 10 by processing the obtained
GaN結晶12を加工してGaN基板10を形成する工程は、また、GaN結晶12をスライスするサブ工程を含むことができる。GaN結晶12をスライスする方法は、特に制限はなく、外周刃、内周刃、ワイヤーソー、レーザなどで切断する方法などがある。また、スライスされたGaN結晶12の主表面を研磨および/または表面処理するサブ工程を含むことができる。GaN結晶12の主表面を研磨する方法は、たとえば、機械的研磨、化学機械的研磨などの方法がある。GaN結晶12の主表面を処理する方法は、たとえば、ドライエッチング、ウエットエッチングなどの方法がある。
The step of forming the GaN substrate 10 by processing the GaN crystal 12 can also include a sub-step of slicing the GaN crystal 12. The method for slicing the GaN crystal 12 is not particularly limited, and includes a method of cutting with an outer peripheral blade, an inner peripheral blade, a wire saw, a laser, or the like. Further, a sub-process of polishing and / or surface-treating the main surface of the sliced GaN crystal 12 can be included. Examples of a method for polishing the main surface of the GaN crystal 12 include mechanical polishing and chemical mechanical polishing. Examples of the method for treating the main surface of the GaN crystal 12 include dry etching and wet etching.
GaN結晶12を加工してGaN基板10を形成する工程は、また、GaN結晶12の外縁領域を除去するサブ工程を含むことができる。GaN結晶12の外縁領域を除去する方法は、特に制限はなく、ダイヤモンド砥石などで研削する方法などがある。
The step of forming the GaN substrate 10 by processing the GaN crystal 12 can also include a sub-step of removing the outer edge region of the GaN crystal 12. The method for removing the outer edge region of the GaN crystal 12 is not particularly limited, and there is a method of grinding with a diamond grindstone or the like.
上記の1つ以上のサブ工程により、GaN結晶12からGaN基板10が得られる。上記のGaN基板の製造方法により得られた本実施形態のGaN基板10は、その主表面を貫通する転位の平均密度(平均転位密度)が、3×106cm-2以下が好ましく、1×106cm-2以下がより好ましい。かかる転位の平均密度が低いほど信頼性の高い発光デバイスが得られる。また、現在の基板の製造技術の観点から、主表面を貫通する転位の平均密度は、現在のところ、1×104cm-2より小さくとすることは困難であり、したがって1×104cm-2程度以上である。
The GaN substrate 10 is obtained from the GaN crystal 12 by one or more of the sub-processes described above. In the GaN substrate 10 of the present embodiment obtained by the above GaN substrate manufacturing method, the average density of dislocations penetrating the main surface (average dislocation density) is preferably 3 × 10 6 cm −2 or less, and 1 × 10 6 cm −2 or less is more preferable. The lower the average density of such dislocations, the higher the reliability of the light emitting device. Also, from the viewpoint of the current substrate manufacturing technology, the average density of dislocations penetrating the main surface is currently difficult to be smaller than 1 × 10 4 cm −2 , and therefore, 1 × 10 4 cm. -2 or more.
また、上記のGaN基板の製造方法により得られた本実施形態のGaN基板は、その主表面が平坦であって、その主表面に最も近い結晶面の曲率半径が10m以上であることが好ましく、20m以上であることがより好ましい。かかる結晶面の曲率半径が大きいほど発光波長の面内均一性の高い発光デバイスが得られる。また、現在の基板の製造技術の観点から、主表面に最も近い結晶面の曲率半径は、現在のところ、100mより大きくすることは困難であり、したがって100m程度以下である。
In addition, the GaN substrate of the present embodiment obtained by the above-described method for manufacturing a GaN substrate is preferably such that the main surface is flat and the radius of curvature of the crystal plane closest to the main surface is 10 m or more, More preferably, it is 20 m or more. As the radius of curvature of the crystal plane is larger, a light emitting device having higher in-plane uniformity of emission wavelength can be obtained. Further, from the viewpoint of current substrate manufacturing technology, the radius of curvature of the crystal plane closest to the main surface is currently difficult to be larger than 100 m, and is therefore about 100 m or less.
[発光デバイス]
図3は、本発明にかかる発光デバイスの一例を示す概略断面図である。図3を、参照して、本発明にかかる発光デバイスは、上記の実施形態1または実施形態2のGaN基板10を含み、発光のピーク波長が500nm以上780nm以下または440nm以上780nm以下である。本発明にかかる発光デバイスは、500nm以上780nm以下または440nm以上780nm以下の波長領域の光について、基板における光の吸収係数が低く、発光効率が高い。 [Light emitting device]
FIG. 3 is a schematic cross-sectional view showing an example of a light emitting device according to the present invention. With reference to FIG. 3, the light emitting device according to the present invention includes the GaN substrate 10 of the first embodiment or the second embodiment, and the peak wavelength of light emission is 500 nm or more and 780 nm or less or 440 nm or more and 780 nm or less. The light-emitting device according to the present invention has a low light absorption coefficient and high light emission efficiency for light in a wavelength region of 500 nm to 780 nm or less or 440 nm to 780 nm.
図3は、本発明にかかる発光デバイスの一例を示す概略断面図である。図3を、参照して、本発明にかかる発光デバイスは、上記の実施形態1または実施形態2のGaN基板10を含み、発光のピーク波長が500nm以上780nm以下または440nm以上780nm以下である。本発明にかかる発光デバイスは、500nm以上780nm以下または440nm以上780nm以下の波長領域の光について、基板における光の吸収係数が低く、発光効率が高い。 [Light emitting device]
FIG. 3 is a schematic cross-sectional view showing an example of a light emitting device according to the present invention. With reference to FIG. 3, the light emitting device according to the present invention includes the GaN substrate 10 of the first embodiment or the second embodiment, and the peak wavelength of light emission is 500 nm or more and 780 nm or less or 440 nm or more and 780 nm or less. The light-emitting device according to the present invention has a low light absorption coefficient and high light emission efficiency for light in a wavelength region of 500 nm to 780 nm or less or 440 nm to 780 nm.
図3を参照して、本発明にかかる発光デバイスは、より具体的には、上記の実施形態1または実施形態2のGaN基板10と、GaN基板10の一方の主表面10m上に形成された少なくとも1層の半導体層20と、半導体層20の最外層上に形成された第1電極30と、GaN基板10の他方の主表面10n上に形成された第2電極40と、を含む。かかる発光デバイスは、半導体層20中に発光層が含まれており、GaN基板10側から発光する。以下に、より具体的な実施形態を説明する。
Referring to FIG. 3, the light emitting device according to the present invention is more specifically formed on the GaN substrate 10 of the first embodiment or the second embodiment and one main surface 10 m of the GaN substrate 10. It includes at least one semiconductor layer 20, a first electrode 30 formed on the outermost layer of the semiconductor layer 20, and a second electrode 40 formed on the other main surface 10n of the GaN substrate 10. Such a light-emitting device includes a light-emitting layer in the semiconductor layer 20 and emits light from the GaN substrate 10 side. Hereinafter, more specific embodiments will be described.
(実施形態3)
図3を参照して、本実施形態の発光デバイスは、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下であるGaN基板10と、GaN基板10の一方の主表面10m上に形成された少なくとも1層の半導体層20と、半導体層20の最外層上に形成された第1電極30と、GaN基板10の他方の主表面10n上に形成された第2電極40と、を含み、発光のピーク波長が500nm以上780nm以下である。 (Embodiment 3)
Referring to FIG. 3, the light emitting device of the present embodiment has an absorption coefficient of 7 cm −1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, and an absorption coefficient of 7 cm −1 for light having a wavelength of 500 nm or more and 780 nm or less. -1 and a specific resistance of 0.02 Ωcm or less, at least onesemiconductor layer 20 formed on one main surface 10m of the GaN substrate 10, and an outermost layer of the semiconductor layer 20 And the second electrode 40 formed on the other main surface 10n of the GaN substrate 10, and the peak wavelength of light emission is 500 nm or more and 780 nm or less.
図3を参照して、本実施形態の発光デバイスは、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下であるGaN基板10と、GaN基板10の一方の主表面10m上に形成された少なくとも1層の半導体層20と、半導体層20の最外層上に形成された第1電極30と、GaN基板10の他方の主表面10n上に形成された第2電極40と、を含み、発光のピーク波長が500nm以上780nm以下である。 (Embodiment 3)
Referring to FIG. 3, the light emitting device of the present embodiment has an absorption coefficient of 7 cm −1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, and an absorption coefficient of 7 cm −1 for light having a wavelength of 500 nm or more and 780 nm or less. -1 and a specific resistance of 0.02 Ωcm or less, at least one
(実施形態4)
図3を参照して、本実施形態の発光デバイスは、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、波長が440nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下であるGaN基板10と、GaN基板10の一方の主表面10m上に形成された少なくとも1層の半導体層20と、半導体層20の最外層上に形成された第1電極30と、GaN基板10の他方の主表面10n上に形成された第2電極40と、を含み、発光のピーク波長が440nm以上780nm以下である。 (Embodiment 4)
Referring to FIG. 3, the light emitting device of the present embodiment, the wavelength is at an absorption coefficient relates to light 1500nm is 380nm light and the wavelength is 7 cm -1 or more, wavelength absorption coefficient for 780nm light below or 440 nm 7 cm -1 and a specific resistance of 0.02 Ωcm or less, at least onesemiconductor layer 20 formed on one main surface 10m of the GaN substrate 10, and an outermost layer of the semiconductor layer 20 And the second electrode 40 formed on the other main surface 10n of the GaN substrate 10, and the peak wavelength of light emission is not less than 440 nm and not more than 780 nm.
図3を参照して、本実施形態の発光デバイスは、波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、波長が440nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下であるGaN基板10と、GaN基板10の一方の主表面10m上に形成された少なくとも1層の半導体層20と、半導体層20の最外層上に形成された第1電極30と、GaN基板10の他方の主表面10n上に形成された第2電極40と、を含み、発光のピーク波長が440nm以上780nm以下である。 (Embodiment 4)
Referring to FIG. 3, the light emitting device of the present embodiment, the wavelength is at an absorption coefficient relates to light 1500nm is 380nm light and the wavelength is 7 cm -1 or more, wavelength absorption coefficient for 780nm light below or 440 nm 7 cm -1 and a specific resistance of 0.02 Ωcm or less, at least one
上記の実施形態3および実施形態4の発光デバイスにおいて、半導体層20の化学組成および/または構成を変えることにより、その発光の波長領域およびピーク波長を変えることができる。
In the light-emitting devices of Embodiments 3 and 4 described above, the wavelength region and peak wavelength of the light emission can be changed by changing the chemical composition and / or configuration of the semiconductor layer 20.
[発光デバイスの製造方法]
本発明にかかる発光デバイスを製造する方法は、特に制限はないが、たとえば、図3を参照して、実施形態1または実施形態2のGaN基板10を準備する工程と、GaN基板10の一方の主表面上に少なくとも1層の半導体層20を形成する工程と、半導体層20の最外層上に形成された第1電極30を形成する工程と、GaN基板10の他方の主表面10n上に第2電極40を形成する工程と、を含む。ここで、第1電極30を形成する工程と第2電極40を形成する工程とは、順序が逆になってもよい。これにより、実施形態3または実施形態4の発光デバイスが得られる。 [Method for manufacturing light-emitting device]
The method for manufacturing the light emitting device according to the present invention is not particularly limited. For example, referring to FIG. 3, the step of preparing the GaN substrate 10 of Embodiment 1 or 2 and one of the GaN substrates 10 are prepared. A step of forming at least onesemiconductor layer 20 on the main surface, a step of forming a first electrode 30 formed on the outermost layer of the semiconductor layer 20, and a second step on the other main surface 10 n of the GaN substrate 10. Forming two electrodes 40. Here, the order of the step of forming the first electrode 30 and the step of forming the second electrode 40 may be reversed. Thereby, the light emitting device of Embodiment 3 or Embodiment 4 is obtained.
本発明にかかる発光デバイスを製造する方法は、特に制限はないが、たとえば、図3を参照して、実施形態1または実施形態2のGaN基板10を準備する工程と、GaN基板10の一方の主表面上に少なくとも1層の半導体層20を形成する工程と、半導体層20の最外層上に形成された第1電極30を形成する工程と、GaN基板10の他方の主表面10n上に第2電極40を形成する工程と、を含む。ここで、第1電極30を形成する工程と第2電極40を形成する工程とは、順序が逆になってもよい。これにより、実施形態3または実施形態4の発光デバイスが得られる。 [Method for manufacturing light-emitting device]
The method for manufacturing the light emitting device according to the present invention is not particularly limited. For example, referring to FIG. 3, the step of preparing the GaN substrate 10 of Embodiment 1 or 2 and one of the GaN substrates 10 are prepared. A step of forming at least one
(GaN基板を準備する工程)
実施形態1または実施形態2のGaN基板を準備する方法は、上記のGaN基板の製造方法で説明したとおりである。 (Process for preparing GaN substrate)
The method of preparing the GaN substrate of Embodiment 1 or Embodiment 2 is as described in the above GaN substrate manufacturing method.
実施形態1または実施形態2のGaN基板を準備する方法は、上記のGaN基板の製造方法で説明したとおりである。 (Process for preparing GaN substrate)
The method of preparing the GaN substrate of Embodiment 1 or Embodiment 2 is as described in the above GaN substrate manufacturing method.
(GaN基板上に少なくとも1層の半導体層を形成する工程)
GaN基板10の一方の主表面10m上に少なくとも1層の半導体層20を形成する方法は、特に制限ないが、GaN基板上に結晶性のよい半導体層20をエピタキシャル成長させる観点から、MOCVD法、MBE法、HVPE法などの気相法が好ましい。また、半導体層20の化学組成および/または構成を変えることにより、発光の波長領域およびピーク波長を変えることができる。 (Step of forming at least one semiconductor layer on the GaN substrate)
The method for forming at least onesemiconductor layer 20 on one main surface 10m of the GaN substrate 10 is not particularly limited, but from the viewpoint of epitaxially growing the semiconductor layer 20 having good crystallinity on the GaN substrate, MOCVD, MBE The gas phase method such as the HVPE method is preferable. Further, by changing the chemical composition and / or configuration of the semiconductor layer 20, the wavelength region and peak wavelength of light emission can be changed.
GaN基板10の一方の主表面10m上に少なくとも1層の半導体層20を形成する方法は、特に制限ないが、GaN基板上に結晶性のよい半導体層20をエピタキシャル成長させる観点から、MOCVD法、MBE法、HVPE法などの気相法が好ましい。また、半導体層20の化学組成および/または構成を変えることにより、発光の波長領域およびピーク波長を変えることができる。 (Step of forming at least one semiconductor layer on the GaN substrate)
The method for forming at least one
(第1電極および第2電極を形成する工程)
第1電極および第2電極を形成する方法は、特に制限はないが、生産性を高め生産コストを低減する観点から、スパッタ法、蒸着法などが好ましい。 (Step of forming the first electrode and the second electrode)
A method for forming the first electrode and the second electrode is not particularly limited, but from the viewpoint of increasing productivity and reducing production cost, a sputtering method, a vapor deposition method, or the like is preferable.
第1電極および第2電極を形成する方法は、特に制限はないが、生産性を高め生産コストを低減する観点から、スパッタ法、蒸着法などが好ましい。 (Step of forming the first electrode and the second electrode)
A method for forming the first electrode and the second electrode is not particularly limited, but from the viewpoint of increasing productivity and reducing production cost, a sputtering method, a vapor deposition method, or the like is preferable.
[実施例1]
本実施例においては、以下の方法により、HVPE法においてSiを含むドーピングガスの分圧を変えることにより、キャリア濃度、比抵抗および光の吸収係数が互いに異なる複数のGaN基板が得られた。 [Example 1]
In this example, a plurality of GaN substrates having different carrier concentrations, specific resistances, and light absorption coefficients were obtained by changing the partial pressure of the doping gas containing Si in the HVPE method by the following method.
本実施例においては、以下の方法により、HVPE法においてSiを含むドーピングガスの分圧を変えることにより、キャリア濃度、比抵抗および光の吸収係数が互いに異なる複数のGaN基板が得られた。 [Example 1]
In this example, a plurality of GaN substrates having different carrier concentrations, specific resistances, and light absorption coefficients were obtained by changing the partial pressure of the doping gas containing Si in the HVPE method by the following method.
1.下地基板の準備
図1(A)を参照して、まず、直径60mmで厚さ400μmのGaN下地基板11を準備した。下地基板11の主表面11mは平坦であり、主表面11mに最も近い結晶面が(0001)面であった。(0001)面の曲率半径は、X線回折により測定したところ、20mであった。下地基板11の主表面11mを貫通する転位の平均密度(平均転位密度という、以下同じ)は、CL(カソードルミネッサンス)による暗点密度の測定から算出したところ、5×105cm-3であった。 1. First, aGaN base substrate 11 having a diameter of 60 mm and a thickness of 400 μm was prepared with reference to FIG. The main surface 11m of the base substrate 11 was flat, and the crystal plane closest to the main surface 11m was the (0001) plane. The radius of curvature of the (0001) plane was 20 m as measured by X-ray diffraction. The average density of dislocations penetrating the main surface 11m of the base substrate 11 (hereinafter referred to as the average dislocation density) is calculated from the measurement of dark spot density by CL (cathode luminescence), and is 5 × 10 5 cm −3 . there were.
図1(A)を参照して、まず、直径60mmで厚さ400μmのGaN下地基板11を準備した。下地基板11の主表面11mは平坦であり、主表面11mに最も近い結晶面が(0001)面であった。(0001)面の曲率半径は、X線回折により測定したところ、20mであった。下地基板11の主表面11mを貫通する転位の平均密度(平均転位密度という、以下同じ)は、CL(カソードルミネッサンス)による暗点密度の測定から算出したところ、5×105cm-3であった。 1. First, a
2.GaN結晶の成長
次に、図1(A)を参照して、HVPE法により、下地基板11上に、SiF4ガスをドーピングガスとして用いることによりSi濃度が異なる7つのGaN結晶12を成長させた(実験No.1-7)。 2. Growth of GaN crystal Next, referring to FIG. 1 (A), the by HVPE, on underlyingsubstrate 11, the Si concentration by using SiF 4 gas as the doping gas is grown seven different GaN crystal 12 (Experiment No. 1-7).
次に、図1(A)を参照して、HVPE法により、下地基板11上に、SiF4ガスをドーピングガスとして用いることによりSi濃度が異なる7つのGaN結晶12を成長させた(実験No.1-7)。 2. Growth of GaN crystal Next, referring to FIG. 1 (A), the by HVPE, on underlying
これらのGaN結晶の成長には、図2に示すHVPE装置を用いた。第1原料ガスG1としてNH3ガスを、第2原料ガスG3としてHClガスを、ドーピングガスG2としてSiF4ガスを、キャリアガスとして純度が99.999%以上のH2ガスを準備した。第1ガス導入管104、第2ガス導入管106およびドーピングガス導入管105のそれぞれから、キャリアガスを反応管110の内部に導入し、ヒータ109の温度を1100℃に上昇させた。その後、ソースボート107に金属Gaを供給して、ソースボート107を加熱した。
The HVPE apparatus shown in FIG. 2 was used for the growth of these GaN crystals. NH 3 gas was prepared as the first source gas G1, HCl gas was used as the second source gas G3, SiF 4 gas was used as the doping gas G2, and H 2 gas having a purity of 99.999% or more was prepared as the carrier gas. A carrier gas was introduced into the reaction tube 110 from each of the first gas introduction tube 104, the second gas introduction tube 106, and the doping gas introduction tube 105, and the temperature of the heater 109 was raised to 1100 ° C. Thereafter, metal Ga was supplied to the source boat 107 to heat the source boat 107.
第2ガス導入管106から供給されるHClガスとソースボート107のGaとを、Ga+HCl→GaCl+1/2H2のように反応させることにより、反応ガスG7としてGaClガスを生成した。
By reacting HCl gas supplied from the second gas introduction pipe 106 and Ga in the source boat 107 as Ga + HCl → GaCl + 1 / 2H 2 , GaCl gas was generated as the reaction gas G7.
次いで、第1ガス導入管104から供給される第1原料ガスG1としてNH3ガスと、上記反応により得られた反応ガスガスG7であるGaClガスと、を下地基板11のGaN結晶を成長させる主表面に当たるようにキャリアガスとともに流して、その主表面上で、GaCl+NH3→GaN+HCl+H2のように反応させた。
Then, the NH 3 gas as the first source gas G1 supplied from first gas introduction pipe 104, a main surface of growing and GaCl gas is a reaction gas-gas G7 obtained by the above reaction, the GaN crystal substrate 11 The main gas was allowed to react with GaCl + NH 3 → GaN + HCl + H 2 on the main surface.
Si濃度の異なる7つのGaN結晶12(実験No.1-7)を成長させる条件として、ドーピングガスの供給分圧を表1に示す値に調整した。これにより、結晶成長温度1100℃、結晶成長時間16.67時間で、直径60mmで厚さ5mmのSi濃度の異なる7つのGaN結晶を成長させた。これらのGaN結晶の成長速度は300μm/hrであった。
As a condition for growing seven GaN crystals 12 (Experiment No. 1-7) having different Si concentrations, the supply partial pressure of the doping gas was adjusted to the values shown in Table 1. As a result, seven GaN crystals having a diameter of 60 mm and a thickness of 5 mm with different Si concentrations were grown at a crystal growth temperature of 1100 ° C. and a crystal growth time of 16.67 hours. The growth rate of these GaN crystals was 300 μm / hr.
3.GaN基板の形成
次に、図1(B)を参照して、それぞれ得られたGaN結晶12を、スライサーを用いて厚さ方向にスライス加工した。次いで、スライスしたGaN結晶12の外縁領域を除去した。次いでスライスしてさらに外縁領域を除去したGaN結晶にCMP(化学機械的研磨)を行い、その加工変質層を除去した。こうして、それぞれのGaN結晶から、直径2インチ(50.8mm)で厚さ400μmのGaN基板10が5枚得られた。 3. Formation of GaN Substrate Next, referring to FIG. 1 (B), eachGaN crystal 12 obtained was sliced in the thickness direction using a slicer. Next, the outer edge region of the sliced GaN crystal 12 was removed. Next, CMP (chemical mechanical polishing) was performed on the GaN crystal that had been sliced and the outer edge region was removed, and the work-affected layer was removed. Thus, five GaN substrates 10 having a diameter of 2 inches (50.8 mm) and a thickness of 400 μm were obtained from each GaN crystal.
次に、図1(B)を参照して、それぞれ得られたGaN結晶12を、スライサーを用いて厚さ方向にスライス加工した。次いで、スライスしたGaN結晶12の外縁領域を除去した。次いでスライスしてさらに外縁領域を除去したGaN結晶にCMP(化学機械的研磨)を行い、その加工変質層を除去した。こうして、それぞれのGaN結晶から、直径2インチ(50.8mm)で厚さ400μmのGaN基板10が5枚得られた。 3. Formation of GaN Substrate Next, referring to FIG. 1 (B), each
4.GaN基板の物性測定
得られた5枚のGaN基板10a,10b,10c,10d,10eのうち、下地基板11側から3枚目のGaN基板10cの5つの測定点において、Si濃度、キャリア濃度、比抵抗、ならびに波長が380nm、500nm-780nm、440nm-780nmおよび1500nmの光に関する吸収係数測定して、それらの最小値と最大値とを算出した。ここで、5つの測定点は、1枚のGaN基板について、主表面上の中央点、中央点から[11-20]方向に-2cm離れた点および+2cm離れた点、ならびに中央点から[10-10]方向に-2cm離れた点および+2cm離れた点の合計5つの点とした。ここで、Si濃度は、SIMS(2次イオン質量分析)により測定した。キャリア濃度は、CV特性測定法により測定した。比抵抗は、比抵抗計を用いて四探針法により測定した。光の吸収係数は、分光光度計を用いて透過率および反射率を測定して算出した。ここで、GaN基板内の吸収係数は深さによらず一定と仮定して、多重反射も考慮した。結果を表1にまとめた。 4). Measurement of physical properties of GaN substrate Of the obtained five GaN substrates 10a, 10b, 10c, 10d, and 10e, at five measurement points on the third GaN substrate 10c from the base substrate 11 side, the Si concentration, the carrier concentration, Specific resistances and absorption coefficients for light having wavelengths of 380 nm, 500 nm-780 nm, 440 nm-780 nm and 1500 nm were measured, and their minimum and maximum values were calculated. Here, the five measurement points are the center point on the main surface, the point 2 cm away from the center point in the [11-20] direction, the point 2 cm away from the center point, and the point 10 [10] from the center point. In the −10] direction, a total of five points including a point separated by −2 cm and a point separated by +2 cm were used. Here, the Si concentration was measured by SIMS (secondary ion mass spectrometry). The carrier concentration was measured by a CV characteristic measurement method. The specific resistance was measured by a four-probe method using a specific resistance meter. The light absorption coefficient was calculated by measuring transmittance and reflectance using a spectrophotometer. Here, assuming that the absorption coefficient in the GaN substrate is constant regardless of the depth, multiple reflection was also considered. The results are summarized in Table 1.
得られた5枚のGaN基板10a,10b,10c,10d,10eのうち、下地基板11側から3枚目のGaN基板10cの5つの測定点において、Si濃度、キャリア濃度、比抵抗、ならびに波長が380nm、500nm-780nm、440nm-780nmおよび1500nmの光に関する吸収係数測定して、それらの最小値と最大値とを算出した。ここで、5つの測定点は、1枚のGaN基板について、主表面上の中央点、中央点から[11-20]方向に-2cm離れた点および+2cm離れた点、ならびに中央点から[10-10]方向に-2cm離れた点および+2cm離れた点の合計5つの点とした。ここで、Si濃度は、SIMS(2次イオン質量分析)により測定した。キャリア濃度は、CV特性測定法により測定した。比抵抗は、比抵抗計を用いて四探針法により測定した。光の吸収係数は、分光光度計を用いて透過率および反射率を測定して算出した。ここで、GaN基板内の吸収係数は深さによらず一定と仮定して、多重反射も考慮した。結果を表1にまとめた。 4). Measurement of physical properties of GaN substrate Of the obtained five
ここで、GaN基板の主表面内におけるキャリア濃度の変動は平均値から±5%以内であり、厚み方向におけるキャリア濃度の変動も平均値から±5%以内であった。
Here, the carrier concentration variation in the main surface of the GaN substrate was within ± 5% from the average value, and the carrier concentration variation in the thickness direction was also within ± 5% from the average value.
また、それぞれのGaN結晶12の3枚目のGaN基板10cの上記5つの測定点における主表面を貫通する転位の平均密度(平均転位密度)は、すべて5×105cm-2であり、下地基板11と同等に低密度であった。また、それぞれのGaN結晶12の3枚目のGaN基板10cの上記5つの測定点における(0001)面の曲率半径は、X線回折により測定したところ、20mであり、下地基板と同等に大きかった。また、得られたGaN基板は、いずれもクラックの発生はなかった。
Further, the average density of dislocations (average dislocation density) penetrating the main surface at the above five measurement points of the third GaN substrate 10c of each GaN crystal 12 is 5 × 10 5 cm −2. The density was as low as that of the substrate 11. In addition, the radius of curvature of the (0001) plane at the above five measurement points of the third GaN substrate 10c of each GaN crystal 12 was 20 m as measured by X-ray diffraction, and was as large as the underlying substrate. . Moreover, no crack was generated in any of the obtained GaN substrates.
表1を参照して、HVPE法において、結晶成長温度を1000℃以上1200℃以下、Siを含むドーピングガスの分圧を0.6×10-6atm以上1.0×10-6atm以下に調整して、キャリア濃度を0.66×1018cm-3以上1.1×1018cm-3以下とすることにより、比抵抗が0.02Ωcm以下、波長が380nmの光に関する吸収係数が7cm-1以上、波長が500nm-780nmの光に関する吸収係数が7cm-1未満および波長が1500nmに光に関する吸収係数が7cm-1以上であるGaN基板が得られた。また、結晶成長温度を1000℃以上1200℃以下、Siを含むドーピングガスの分圧を0.6×10-6atm以上0.8×10-6atm以下に調整して、キャリア濃度を0.66×1018cm-3以上0.82×1018cm-3以下とすることにより、比抵抗が0.02Ωcm以下、波長が380nmの光に関する吸収係数が7cm-1以上、波長が440nm-780nmの光に関する吸収係数が7cm-1未満および波長が1500nmに光に関する吸収係数が7cm-1以上であるGaN基板が得られた。なお、成長させたすべての結晶中のSi以外の元素の不純物濃度は、SIMSで測定したところ、O(酸素)が5×1016cm-3以下であり、C(炭素)が5×1016cm-3以下であり、その他の元素も1×1016cm-3以下であった。
Referring to Table 1, in the HVPE method, the crystal growth temperature is 1000 ° C. or more and 1200 ° C. or less, and the partial pressure of the doping gas containing Si is 0.6 × 10 −6 atm or more and 1.0 × 10 −6 atm or less. By adjusting the carrier concentration to 0.66 × 10 18 cm −3 or more and 1.1 × 10 18 cm −3 or less, the specific resistance is 0.02 Ωcm or less and the absorption coefficient for light having a wavelength of 380 nm is 7 cm. -1, wavelength absorption coefficient for light in the 500 nm-780 nm absorption coefficient for light is 7 cm -1 and less than the wavelength 1500nm is GaN substrate was obtained at 7 cm -1 or more. In addition, the crystal growth temperature is adjusted to 1000 ° C. or more and 1200 ° C. or less, the partial pressure of the doping gas containing Si is adjusted to 0.6 × 10 −6 atm or more and 0.8 × 10 −6 atm or less, and the carrier concentration is set to 0. By setting it to 66 × 10 18 cm −3 or more and 0.82 × 10 18 cm −3 or less, the specific resistance is 0.02 Ωcm or less, the absorption coefficient for light having a wavelength of 380 nm is 7 cm −1 or more, and the wavelength is 440 nm to 780 nm. A GaN substrate having an absorption coefficient for light of less than 7 cm −1, a wavelength of 1500 nm and an absorption coefficient for light of 7 cm −1 or more was obtained. The impurity concentration of elements other than Si in all the grown crystals was measured by SIMS. O (oxygen) was 5 × 10 16 cm −3 or less and C (carbon) was 5 × 10 16. cm -3 or less, it was also more than 1 × 10 16 cm -3 other elements.
上記実施例は、主表面に最も近い結晶面が(0001)面であるGaN基板を作製した場合であるが、主表面に最も近い結晶面が(10-10)面、(11-20)面、(10-11)面、(11-22)面、(20-21)面、または(22-44)面であるGaN基板を作製した場合でも同様の結果が得られた。
The above example is a case where a GaN substrate having a (0001) plane closest to the main surface is produced. The crystal plane closest to the main surface is the (10-10) plane and the (11-20) plane. Similar results were obtained when a GaN substrate having a (10-11), (11-22), (20-21), or (22-44) plane was fabricated.
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
10,10a,10b,10c,10d,10e GaN基板、10m,10n,11m,12m,12n 主表面、11 下地基板、12 GaN結晶、20 半導体層、30 第1電極、40 第2電極、100 HVPE装置、101 第1原料ガスボンベ、102 ドーピングガスボンベ、103 第2原料ガスボンベ、104 第1ガス導入管、105 ドーピングガス導入管、106 第2ガス導入管、107 ソースボート、108 サセプタ、109 ヒータ、110 反応管、111 排気管、120 ライナー管、G1 第1原料ガス、G2 ドーピングガス、G3 第2原料ガス、G7 反応ガス。
10, 10a, 10b, 10c, 10d, 10e GaN substrate, 10m, 10n, 11m, 12m, 12n main surface, 11 base substrate, 12 GaN crystal, 20 semiconductor layer, 30 first electrode, 40 second electrode, 100 HVPE Equipment: 101 First source gas cylinder, 102 Doping gas cylinder, 103 Second source gas cylinder, 104 First gas introduction pipe, 105 Doping gas introduction pipe, 106 Second gas introduction pipe, 107 Source boat, 108 Susceptor, 109 Heater, 110 Reaction Pipe, 111 exhaust pipe, 120 liner pipe, G1 first source gas, G2 doping gas, G3 second source gas, G7 reaction gas.
Claims (4)
- 波長が380nmの光および波長が1500nmの光に関する吸収係数が7cm-1以上であり、少なくとも波長が500nm以上780nm以下の光に関する吸収係数が7cm-1未満であり、比抵抗が0.02Ωcm以下であるGaN基板。 The absorption coefficient for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 cm −1 or more, the absorption coefficient for light having a wavelength of 500 nm to 780 nm is less than 7 cm −1 , and the specific resistance is 0.02 Ωcm or less. A GaN substrate.
- 波長が440nm以上780nm以下の光に関する吸収係数が7cm-1未満である請求の範囲第1項に記載のGaN基板。 The GaN substrate according to claim 1, wherein an absorption coefficient for light having a wavelength of 440 nm or more and 780 nm or less is less than 7 cm -1 .
- 請求の範囲第2項に記載のGaN基板を含み、発光のピーク波長が440nm以上780nm以下である発光デバイス。 A light-emitting device comprising the GaN substrate according to claim 2 and having a peak emission wavelength of 440 nm to 780 nm.
- 請求の範囲第1項に記載のGaN基板を含み、発光のピーク波長が500nm以上780nm以下である発光デバイス。 A light emitting device comprising the GaN substrate according to claim 1 and having a peak wavelength of light emission of 500 nm or more and 780 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/981,939 US8253162B2 (en) | 2010-04-27 | 2010-12-30 | GaN substrate and light-emitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010102320A JP5821164B2 (en) | 2010-04-27 | 2010-04-27 | GaN substrate and light emitting device |
JP2010-102320 | 2010-04-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/981,939 Continuation US8253162B2 (en) | 2010-04-27 | 2010-12-30 | GaN substrate and light-emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011135744A1 true WO2011135744A1 (en) | 2011-11-03 |
Family
ID=44861077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/069910 WO2011135744A1 (en) | 2010-04-27 | 2010-11-09 | Gan substrate and light-emitting device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5821164B2 (en) |
TW (1) | TWI520377B (en) |
WO (1) | WO2011135744A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3929336A4 (en) * | 2019-02-22 | 2022-09-14 | Mitsubishi Chemical Corporation | Gan crystal and substrate |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101976229B1 (en) | 2011-10-21 | 2019-05-07 | 미쯔비시 케미컬 주식회사 | Method for producing nitride semiconductor crystal of group 13 metal of periodic table, and nitride semiconductor crystal of group 13 metal of periodic table produced by said production method |
JP2014116331A (en) * | 2011-11-30 | 2014-06-26 | Dowa Electronics Materials Co Ltd | Crystal growth device, crystal growth method and susceptor |
JP6064695B2 (en) * | 2012-03-22 | 2017-01-25 | 三菱化学株式会社 | Gallium nitride crystal and method for producing gallium nitride crystal |
JP5937408B2 (en) * | 2012-04-09 | 2016-06-22 | 古河機械金属株式会社 | Group III nitride semiconductor substrate, group III nitride semiconductor substrate manufacturing method, and semiconductor device manufacturing method |
WO2014129544A1 (en) * | 2013-02-22 | 2014-08-28 | 三菱化学株式会社 | Crystal of nitride of group-13 metal on periodic table, and method for producing same |
JP2015013791A (en) * | 2013-06-06 | 2015-01-22 | 三菱化学株式会社 | Production method of nitride semiconductor crystal of group 13 metal in periodic table, and nitride semiconductor crystal of group 13 metal in periodic table |
JP5950070B1 (en) | 2014-12-16 | 2016-07-13 | 三菱化学株式会社 | GaN substrate |
JP6432004B2 (en) * | 2016-08-31 | 2018-11-28 | 国立研究開発法人科学技術振興機構 | Nitride semiconductor and manufacturing method thereof |
JP2018041878A (en) * | 2016-09-08 | 2018-03-15 | 富士電機株式会社 | Method of manufacturing semiconductor device and semiconductor device |
JP6356315B1 (en) * | 2017-05-29 | 2018-07-11 | 株式会社サイオクス | Nitride crystal substrate, semiconductor laminate, semiconductor laminate manufacturing method, and semiconductor device manufacturing method |
JP7084573B2 (en) * | 2017-05-29 | 2022-06-15 | 住友化学株式会社 | Crystal laminates, semiconductor devices and methods for manufacturing semiconductor devices |
TWI732122B (en) | 2017-06-01 | 2021-07-01 | 國立硏究開發法人科學技術振興機構 | Compound semiconductor and its manufacturing method |
JP6783269B2 (en) * | 2018-06-08 | 2020-11-11 | 株式会社サイオクス | Nitride crystal substrate, semiconductor laminate, nitride crystal substrate manufacturing method, semiconductor laminate manufacturing method and semiconductor device manufacturing method |
JP2020038955A (en) * | 2018-09-04 | 2020-03-12 | 株式会社トクヤマ | Method for cutting group III nitride single crystal |
JP7101736B2 (en) * | 2020-10-21 | 2022-07-15 | 株式会社サイオクス | GaN single crystal substrate and semiconductor laminate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006513122A (en) * | 2002-12-27 | 2006-04-20 | ゼネラル・エレクトリック・カンパニイ | Gallium nitride crystal, device based on homoepitaxial gallium nitride, and manufacturing method thereof |
JP2007070154A (en) * | 2005-09-06 | 2007-03-22 | Hitachi Cable Ltd | Group iii-v nitride-based semiconductor substrate and its manufacturing method |
WO2007083768A1 (en) * | 2006-01-20 | 2007-07-26 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light emitting element, group iii nitride semiconductor substrate and method for manufacturing such group iii nitride semiconductor substrate |
-
2010
- 2010-04-27 JP JP2010102320A patent/JP5821164B2/en not_active Expired - Fee Related
- 2010-11-09 WO PCT/JP2010/069910 patent/WO2011135744A1/en active Application Filing
-
2011
- 2011-04-15 TW TW100113287A patent/TWI520377B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006513122A (en) * | 2002-12-27 | 2006-04-20 | ゼネラル・エレクトリック・カンパニイ | Gallium nitride crystal, device based on homoepitaxial gallium nitride, and manufacturing method thereof |
JP2007070154A (en) * | 2005-09-06 | 2007-03-22 | Hitachi Cable Ltd | Group iii-v nitride-based semiconductor substrate and its manufacturing method |
WO2007083768A1 (en) * | 2006-01-20 | 2007-07-26 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light emitting element, group iii nitride semiconductor substrate and method for manufacturing such group iii nitride semiconductor substrate |
Non-Patent Citations (1)
Title |
---|
Y. OSHIMA ET AL.: "Thermal and optical properties of bulk GaN crystals fabricated through hydride vapor phase epitaxy with void- assisted separation", JOURNAL OF APPLIED PHYSICS, vol. 98, 2005, pages 103509-1 - 103509-4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3929336A4 (en) * | 2019-02-22 | 2022-09-14 | Mitsubishi Chemical Corporation | Gan crystal and substrate |
Also Published As
Publication number | Publication date |
---|---|
JP2011230955A (en) | 2011-11-17 |
TWI520377B (en) | 2016-02-01 |
JP5821164B2 (en) | 2015-11-24 |
TW201203606A (en) | 2012-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5821164B2 (en) | GaN substrate and light emitting device | |
US8574364B2 (en) | GaN-crystal free-standing substrate and method for producing the same | |
JP6031733B2 (en) | GaN crystal manufacturing method | |
US20110175200A1 (en) | Manufacturing method of conductive group iii nitride crystal, manufacturing method of conductive group iii nitride substrate and conductive group iii nitride substrate | |
JP2009126723A (en) | Growing method of group iii nitride semiconductor crystal, fabrication method of group iii nitride semiconductor crystal substrate, and group iii nitride semiconductor crystal substrate | |
US20170200789A1 (en) | Gallium nitride substrate and manufacturing method of nitride semiconductor crystal | |
JP5045388B2 (en) | Group III nitride semiconductor crystal growth method and group III nitride semiconductor crystal substrate manufacturing method | |
JP4714192B2 (en) | Gallium nitride crystal growth method, gallium nitride crystal substrate, epi-wafer manufacturing method, and epi-wafer | |
JP2009126722A (en) | Group iii nitride semiconductor crystal substrate and semiconductor device | |
US8253162B2 (en) | GaN substrate and light-emitting device | |
TWI849096B (en) | GaN substrate wafer and method for manufacturing GaN substrate wafer | |
WO2024135744A1 (en) | GaN SUBSTRATE | |
WO2023127455A1 (en) | Aluminum nitride single crystal and method for producing group iii nitride single crystal | |
JP5110117B2 (en) | Gallium nitride crystal growth method, gallium nitride crystal substrate, epi-wafer manufacturing method, and epi-wafer | |
WO2020241760A1 (en) | Gan substrate wafer and method for manufacturing same | |
WO2020241761A1 (en) | Gan substrate wafer and production method for same | |
JP6457442B2 (en) | GaN crystal substrate | |
TW202434766A (en) | Gallium Nitride (GaN) Substrate | |
JP2012012292A (en) | Manufacturing method for group iii nitride crystal, and group iii nitride crystal and group iii nitride crystal substrate obtained by the same | |
JP2012180231A (en) | Nitride semiconductor single crystal | |
JP2012180232A (en) | Method for producing nitride semiconductor single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10850759 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10850759 Country of ref document: EP Kind code of ref document: A1 |