TW201203606A - GaN substrate and light-emitting device - Google Patents

GaN substrate and light-emitting device Download PDF

Info

Publication number
TW201203606A
TW201203606A TW100113287A TW100113287A TW201203606A TW 201203606 A TW201203606 A TW 201203606A TW 100113287 A TW100113287 A TW 100113287A TW 100113287 A TW100113287 A TW 100113287A TW 201203606 A TW201203606 A TW 201203606A
Authority
TW
Taiwan
Prior art keywords
light
gan
less
gas
substrate
Prior art date
Application number
TW100113287A
Other languages
Chinese (zh)
Other versions
TWI520377B (en
Inventor
Shinsuke Fujiwara
Toshihiro Kotani
Fumitake Nakanishi
Seiji Nakahata
Koji Uematsu
Original Assignee
Sumitomo Electric Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries filed Critical Sumitomo Electric Industries
Publication of TW201203606A publication Critical patent/TW201203606A/en
Application granted granted Critical
Publication of TWI520377B publication Critical patent/TWI520377B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

The present GaN substrate can have an absorption coefficient not lower than 7 cm-1 for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, an absorption coefficient lower than 7 cm-1 for at least light having a wavelength not shorter than 500 nm and not longer than 780 nm, and specific resistance not higher than 0.02 Ω cm. Here, the absorption coefficient for light having a wavelength not shorter than 500 nm and not longer than 780 nm can be lower than 7 cm-1. Thus, a GaN substrate having a low absorption coefficient for light having a wavelength within a light emission wavelength region of a light-emitting device and specific resistance not higher than a prescribed value and being suitable for the light-emitting device is provided.

Description

201203606 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種於紅色光區域或藍色至紅色之可見光 區域之光的穿透率較高、且導電性較高之GaN基板及包括 該G aN基板之發光裝置。 【先前技術】 作為發光裝置中所使用之基板,正尋求一種光之穿透率 較尚、且導電性較高之基板。例如曰本專利特開2〇〇5· 213075號公報(專利文獻1)中揭示有一種對波長375 nm_5〇〇 nm之光之吸收係數為7 cm-L68 111^的(}31^基板。又,曰本 專利特開2007-i26320號公報(專利文獻2)中揭示有如下内 谷.藉由於基板上形成具有多個微細孔之TiN薄膜且於該 TiN薄膜上抑制Si以外之雜質之混入而成長㈣結晶的方 法(該方法稱為VAS(Void-Assisted Separation,間隙形成剝 離法),獲得對波長380 nm以上之光之吸收係數未達7 cm-1 之GaN基板》 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2005-213075號公報 [專利文獻2]日本專利特開2007-126320號公報 【發明内容】 [發明所欲解決之問題] 然而,光之穿透率與導電性為自相矛盾之關係,若為了 提高光之穿透率而減少基板中之雜質則導電性降低,若為 155086.doc 201203606 了提高導電性而增加基板中之雜質則光之穿透率降低β 例如曰本專利特開2005-213075號公報(專利文獻1)中, 為了維持特定之導電性,只能將對波長375 nm-500 nm之 光之吸收係數減少至7 cm·1左右。 另一方面,曰本專利特開2007-126320號公報(專利文獻 2)中揭示有一種維持特定之導電性、同時對波長38〇 nm以 上之光之吸收係數未達7 cm·1之GaN基板,但該基板係使 用上述被稱為VAS法之特殊方法製作,故成本非常高。 又’發光裝置用之基板只要針對發光之波長區域内之波 長之光具有較低吸收係數便可,無須對發光之波長區域外 之波長的光亦具有較低吸收係數。 因此,就上述觀點而言,本發明之目的在於提供一種針 對發光裝置之發光之波長區域内之波長之光具有較低之吸 收係數’且具有特定值以下之比電阻,適於該發光裝置之 GaN基板及包括該GaN基板之發光裝置。 [解決問題之技術手段] 根據某態樣,本發明係一種GaN基板,其針對波長380 nm之光及波長1500 nm之光之吸收係數為7 cm-〗以上,至 少對波長500 nm以上、780 nm以下之光之吸收係數未達7 cm·1 ’且比電阻為〇.〇2 Qcm以下。 於本發明之GaN基板中,可將針對波長44〇 nm以上、 780 nm以下之光之吸收係數設定為未達7 cm-i。 又,根據其他態樣,本發明係一種發光裝置,其包括上 述GaN基板,且發光之峰值波長為5〇〇 nm以上、78〇 nma 155086.doc 201203606 下’上述GaN基板針對波長380 nm之光及波長1500 nm之 光之吸收係數為7 cm·1以上,至少對波長500 nm以上、780 nm以下之光之吸收係數未達7 cm·1,且比電阻為〇.02 Qcm 以下。 又’根據又一態樣,本發明係一種發光裝置,其包括上 述GaN基板,且發光之峰值波長為440 nm以上、780 nm以 下’上述GaN基板針對波長38〇 nm之光及波長1500 nm之 光之吸收係數為7 cm·〗以上,針對波長440 nm以上、780 nm以下之光之吸收係數未達7 cm·1,且比電阻為〇.〇2 Qcm 以下。 [發明之效果] 根據本發明,可提供一種針對發光裝置之發光之波長區 域内之波長的光具有較低之吸收係數,且具有特定值以下 之比電阻’適於該發光裝置之GaN基板及包括該GaN基板 之發光裝置。 【實施方式】 [GaN基板] 本發明之GaN基板針對波長380 nm之光及波長1500 nm 之光之吸收係數為7 cnf1以上,至少對波長5〇〇 nm以上、 780 nm以下之光之吸收係數未達7 cm」,且比電阻為〇.〇2 Qcrn以下。於此’光之吸收係數係藉由使用分光光度計測 定對象波長之光的穿透率及反射率而算出。又,比電阻係 使用比電阻計以四探針法測定。 nm以 該GaN基板較佳用作發光之峰值波長至少為5〇〇 155086.doc 201203606 上、780 nm以下之發光裝置之GaN基板。以下,對更為具 體之實施形態加以說明。 (實施形態1) 本實施形態之GaN基板針對波長380 nm之光及波長1500 nm之光之吸收係數為7 cm'1以上,針對波長500 nm以上、 780 nm以下之光之吸收係數未達7 cm」,且比電阻為0.02 Qcm以下。本實施形態之GaN基板較佳用作發光之峰值波 長為500 nm以上、780 nm以下之紅色光區域之發光裝置的 基板。就該觀點而言’針對波長500 nm以上、780 nm以下 之光之吸收係數較佳為5 cm·1以下。又,比電阻較佳為 0.015 Hem以下。 (實施形態2) 本貫施形態之GaN基板針對波長380 nm之光及波長1500 nm之光之吸收係數為7 cm·1以上,針對波長440 nm以上、 780 nm以下之光之吸收係數未達7 cm•丨,且比電阻為〇 〇2 Hem以下。本實施形態之GaN基板較佳作為發光之峰值波 長為440 nm以上、780 nm以下之藍色光區域至紅色光區域 之可見光區域的發光裝置之基板。就該觀點而言,針對波 長440 nm以上、780 nm以下之光之吸收係數較佳為5 cm-i 以下。又,比電阻較佳為0.015 fiem以下。 cm 上述任一實施形態之GaN基板之載體濃度較佳為5χ1〇π cm·3以上、2χ1〇ΐ8 cm·3以下。若載體濃度過低則比電阻變 得過大’若載體濃度過高則光之吸收係數變得過大。就談 觀點而言,載體濃度更佳為7xl〇" cm_3以上、llxl〇u 155086.doc 201203606 以下。於此,載體濃度係使用cv特性(Current v〇hag< eharacteristic,伏安特性)測定法而測定。 上述任一實施形態之GaN基板之貫通其主表面之錯位之 平均密度(稱為平均錯位密度,以τ相同)較佳為3xi〇6cm』 以下。該錯位之平均密度越低則越能獲得可靠性較高之發 光裝置。就該觀點而言,貫通主表面之錯位之平均密度 (平均錯位密度)更佳為lxl〇6cm-2以下。又,就當前基板之 製造技術之觀點而言,貫通主表面之錯位之平均密度(平 均錯位密度)於現階段難以小於10 cm·2,故為1〇 cm_2左右 以上。貫⑨GaN基板之主纟面之錯位之平均密度係根據 CL(Cathode luminescence ’陰極發光)之盲點密度之測定而 算出。 上述任一實施形態之GaN基板較佳為其主表面平坦,且 與其主表面最接近之結晶面之曲率半徑為1〇 m以上。該結 晶面之曲率半徑越大則越可獲得基板面内發光波長均勻之 發光裝置。就該觀點而言,與主表面最接近之結晶面之曲 率半徑更佳為20 m以上。又,就當前基板之製造技術之觀 點而5,與主表面最接近之結晶面之曲率半徑於現階段難 以大於100 m ,故為100 „!左右以下。與GaN基板之主表面 最接近之結晶面之曲率半徑係藉由作為上述對象之結晶面 之X射線繞射而測定。 與GaN基板之主表面最接近之結晶面並無特別限制,但 就於其主表面上兹晶成長結晶性較高之半導體層之觀點而 δ ,較佳為{0001}面、{10-10}面、面、 1550秘.doc 201203606201203606 VI. Description of the Invention: [Technical Field] The present invention relates to a GaN substrate having high transmittance of light in a red light region or a blue to red visible light region and having high conductivity, and includes the same A light-emitting device of a G aN substrate. [Prior Art] As a substrate used in a light-emitting device, a substrate having a high light transmittance and high conductivity is being sought. For example, Japanese Patent Laid-Open Publication No. Hei. No. 2,213,075 (Patent Document 1) discloses a substrate having an absorption coefficient of 7 cm-L68 111^ for light having a wavelength of 375 nm to 5 〇〇 nm. Japanese Patent Publication No. 2007-i26320 (Patent Document 2) discloses an inner valley in which a TiN thin film having a plurality of fine pores is formed on a substrate, and impurities other than Si are prevented from being mixed on the TiN thin film. Method for growing (4) crystallization (this method is called VAS (Void-Assisted Separation)), and a GaN substrate having an absorption coefficient of less than 7 cm-1 for light having a wavelength of 380 nm or more is obtained [Prior Art Document] [ [Patent Document 1] Japanese Patent Laid-Open Publication No. 2005-213075 [Patent Document 2] Japanese Patent Laid-Open No. 2007-126320 (Summary of the Invention) [Problems to be Solved by the Invention] However, the transmittance of light The conductivity is self-contradictory. If the impurity in the substrate is reduced in order to increase the transmittance of light, the conductivity is lowered. If the conductivity is increased and the impurity in the substrate is increased, the penetration of light is increased. Rate reduction β In JP-A-2005-213075 (Patent Document 1), in order to maintain specific conductivity, the absorption coefficient of light having a wavelength of 375 nm to 500 nm can be reduced to about 7 cm·1. JP-A-2007-126320 (Patent Document 2) discloses a GaN substrate which maintains specific conductivity and has an absorption coefficient of less than 7 cm·1 for light having a wavelength of 38 〇 nm or more, but the substrate is used. The above-mentioned special method called VAS method is very expensive, and the substrate for the light-emitting device has a lower absorption coefficient for the light of the wavelength in the wavelength region of the light emission, and does not need to be outside the wavelength region of the light-emitting region. The light of the wavelength also has a lower absorption coefficient. Therefore, in view of the above, an object of the present invention is to provide a light absorption coefficient of a wavelength in a wavelength region of a light-emitting device that has a lower absorption coefficient and has a specific value or less. a specific resistance, a GaN substrate suitable for the light-emitting device, and a light-emitting device including the GaN substrate. [Technical means for solving the problem] According to a certain aspect, the present invention is a GaN substrate, the needle thereof The absorption coefficient of light with a wavelength of 380 nm and light of a wavelength of 1500 nm is 7 cm-〗 or more, and the absorption coefficient of light having a wavelength of more than 500 nm and below 780 nm is less than 7 cm·1 ' and the specific resistance is 〇. 〇2 Qcm or less. In the GaN substrate of the present invention, the absorption coefficient for light having a wavelength of 44 〇 nm or more and 780 nm or less can be set to less than 7 cm-i. Further, according to other aspects, the present invention is a A light-emitting device comprising the above GaN substrate, and having a peak wavelength of 5 〇〇 nm or more and 78 〇 nma 155086.doc 201203606. The absorption coefficient of the GaN substrate for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 For cm·1 or more, the absorption coefficient of light having a wavelength of 500 nm or more and 780 nm or less is less than 7 cm·1, and the specific resistance is 〇.02 Qcm or less. According to another aspect, the present invention is a light-emitting device comprising the above GaN substrate, and the peak wavelength of the light emission is 440 nm or more and 780 nm or less. The GaN substrate has a wavelength of 38 nm and a wavelength of 1500 nm. The absorption coefficient of light is 7 cm· or more, and the absorption coefficient of light having a wavelength of 440 nm or more and 780 nm or less is less than 7 cm·1, and the specific resistance is 〇.〇2 Qcm or less. [Effects of the Invention] According to the present invention, it is possible to provide a GaN substrate having a lower absorption coefficient for light having a wavelength in a wavelength region of light emission of a light-emitting device and having a specific resistance or less, and a GaN substrate suitable for the light-emitting device and A light emitting device including the GaN substrate. [Embodiment] [GaN substrate] The absorption coefficient of the GaN substrate of the present invention for light having a wavelength of 380 nm and light having a wavelength of 1500 nm is 7 cnf1 or more, and at least for light having a wavelength of 5 〇〇 nm or more and 780 nm or less. Less than 7 cm", and the specific resistance is 〇.〇2 Qcrn or less. Here, the absorption coefficient of light is calculated by measuring the transmittance and reflectance of light of a target wavelength using a spectrophotometer. Further, the specific resistance was measured by a four-probe method using a specific resistance meter. The GaN substrate is preferably used as a GaN substrate of a light-emitting device having a peak wavelength of at least 5 〇〇 155086.doc 201203606 and 780 nm or less. Hereinafter, a more specific embodiment will be described. (Embodiment 1) The GaN substrate of the present embodiment has an absorption coefficient of 7 cm'1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, and an absorption coefficient of light having a wavelength of 500 nm or more and 780 nm or less is less than 7 Cm", and the specific resistance is 0.02 Qcm or less. The GaN substrate of the present embodiment is preferably used as a substrate of a light-emitting device having a red light region having a peak wavelength of 500 nm or more and 780 nm or less. From this point of view, the absorption coefficient for light having a wavelength of 500 nm or more and 780 nm or less is preferably 5 cm·1 or less. Further, the specific resistance is preferably 0.015 Hem or less. (Embodiment 2) The absorption coefficient of the GaN substrate of the present embodiment is 7 cm·1 or more for light having a wavelength of 380 nm and light having a wavelength of 1500 nm, and the absorption coefficient of light having a wavelength of 440 nm or more and 780 nm or less is not reached. 7 cm•丨, and the specific resistance is 〇〇2 Hem or less. The GaN substrate of the present embodiment is preferably used as a substrate of a light-emitting device having a peak wavelength of 440 nm or more and a wavelength of 780 nm or less to a visible light region of a red light region. From this point of view, the absorption coefficient for light having a wavelength of 440 nm or more and 780 nm or less is preferably 5 cm-i or less. Further, the specific resistance is preferably 0.015 fiem or less. The carrier concentration of the GaN substrate according to any of the above embodiments is preferably 5 χ 1 〇 π cm · 3 or more and 2 χ 1 〇ΐ 8 cm · 3 or less. If the carrier concentration is too low, the specific resistance becomes too large. If the carrier concentration is too high, the absorption coefficient of light becomes too large. In terms of opinion, the carrier concentration is preferably 7xl 〇" cm_3 or more, llxl〇u 155086.doc 201203606 or less. Here, the carrier concentration was measured using a Cv characteristic (Current v〇hag < eharacteristic) measurement method. The average density (referred to as the average dislocation density, which is the same as τ) of the GaN substrate of any of the above embodiments which is displaced from the main surface is preferably 3 xi 〇 6 cm Å or less. The lower the average density of the misalignment, the more reliable the illuminating device can be obtained. From this point of view, the average density (average misalignment density) of the misalignment passing through the main surface is more preferably lxl 〇 6 cm -2 or less. Further, from the viewpoint of the manufacturing technique of the current substrate, the average density (average misalignment density) of the misalignment passing through the main surface is hardly less than 10 cm·2 at the present stage, so it is about 1 〇 cm 2 or more. The average density of the misalignment of the principal plane of the 9 GaN substrate was calculated from the measurement of the blind spot density of CL (Cathode luminescence 'cathode luminescence). The GaN substrate according to any of the above embodiments preferably has a flat main surface, and a crystal face having a crystal surface closest to the main surface has a radius of curvature of 1 〇 m or more. The larger the radius of curvature of the crystal plane, the more the light-emitting device having a uniform wavelength of light in the plane of the substrate can be obtained. From this point of view, the radius of curvature of the crystal face closest to the main surface is more preferably 20 m or more. Moreover, from the viewpoint of the current manufacturing technique of the substrate 5, the radius of curvature of the crystal face closest to the main surface is hardly larger than 100 m at this stage, so it is about 100 Å! or so. The crystal which is closest to the main surface of the GaN substrate. The radius of curvature of the surface is measured by X-ray diffraction which is the crystal plane of the object. The crystal surface closest to the main surface of the GaN substrate is not particularly limited, but the crystal growth of the main surface is higher. From the viewpoint of high semiconductor layer, δ is preferably {0001} plane, {10-10} plane, surface, 1550 secret.doc 201203606

面、{11-22}面、{20-21}面、{22-44}面等。又,就於 GaN 基板之主表面上蟲晶成長結晶性較高之半導體層之觀點而 言’ GaN基板之主表面之與上述結晶面相對之偏離角之絕 對值較佳為5。以下。於此’與GaN基板最接近之結晶面之 面方位及上述主表面與上述結晶面之偏離角係藉由X射線 繞射而測定。 [GaN基板之製造方法] 圖1係表示製造本發明之GaN基板之方法之一例的概略 剖面圖。製造本發明之GaN基板之方法並無特別限制,參 照圖1 ’其包括準備基底基板丨丨之步驟、於基底基板丨i上 成長添加有雜質之GaN結晶12之步驟、及對GaN結晶12進 行加工而形成GaN基板1 〇之步驟。於該製造方法中,藉由 調整GaN結晶12中添加之雜質(稱為摻雜劑,以下相同)之 濃度’而以低成本獲得本實施形態之GaN基板1 〇。 (準備基底基板之步驟) 參照圖1 (A),於準備基底基板11之步驟中所準備之基底 基板11只要為能夠蟲晶成長GaN結晶12之基板則並無特別 限制’但就與GaN結晶之晶格對準性較高之觀點而言,較 佳使用碎(Si)基底基板、藍寶石(A1203)基底基板、GaAs基 底基板、以及GaN基底基板及A1N基底基板等πΐ族氮化物 基底基板等’其中特佳使用GaN基底基板。藉由使用GaN 基底基板,可抑制來自基底基板之雜質混入,故而較佳。 就該觀點而言,基底基板之表面之潔淨度較為重要。尤其 是基底基板之背面(指與成長爐之内壁接觸之基底基板之 155086.doc 201203606 面,以下相同)無法於結晶成長前在成長爐内蝕刻,故於 投入成長爐内之前必須提高其潔淨度。因此較佳為對基板 背面加以蝕刻之後再投入成長爐内。作為蝕刻方法可列舉 驗性溶劑之濕式蝕刻、或鹵系氣體之乾式蝕刻等。 (成長添加有雜質之GaN結晶之步驟) 參照圖1 (A),於上述基底基板丨丨上成長添加有雜質之 GaN結晶12之方法只要為能夠磊晶成長者則並無特別限 制,但就成長結晶性較高之GaN結晶12之觀點而言,較佳 為 HVPE(Hydride Vapor Phase Epitaxy,氫化物氣相成長) 法、MOCVD(Metal Organic Chemical Vapor Deposition, 有機金屬化學氣相沈積)法、MBE(分子束磊晶,M〇lecuUr Beam Epitaxy)法等氣相法,其中就結晶成長速度較高之觀 點而言,特佳為HVPE法。 於此’ HVPE法中通常係於石英反應管内進行成長,故 為加熱石英反應管内之結晶,而使得石英反應管亦與結晶 一併被加熱。因此,來自加熱為高溫之石英反應管之分解 氣體作為雜質被結晶吸收。因此,較佳為利用由成長溫度 下穩疋之材質(例如pBN(熱分解氮化棚))形成之襯管覆蓋 石英反應管之内部。進而,較佳為流入對石英反應管與襯 管之間隙進行沖洗之沖洗用氣(例如H2、N2、及/或Ar),以 便使雜質不滯留。又,由於配置基底基板之晶座亦變成高 溫’故較佳為以pBN形成該晶座,或者使用PBN、A1N、Face, {11-22} face, {20-21} face, {22-44} face, etc. Further, from the viewpoint of the semiconductor layer having a high growth crystallinity on the main surface of the GaN substrate, the absolute value of the off angle of the main surface of the GaN substrate with respect to the crystal face is preferably 5. the following. Here, the plane orientation of the crystal plane closest to the GaN substrate and the deviation angle between the main surface and the crystal plane are measured by X-ray diffraction. [Manufacturing Method of GaN Substrate] Fig. 1 is a schematic cross-sectional view showing an example of a method of producing a GaN substrate of the present invention. The method for producing the GaN substrate of the present invention is not particularly limited, and the step of preparing the base substrate 丨丨, the step of growing the GaN crystal 12 to which the impurity is added on the base substrate 丨i, and the GaN crystal 12 are performed with reference to FIG. 1 ' The step of forming the GaN substrate 1 by processing. In this manufacturing method, the GaN substrate 1 of the present embodiment is obtained at a low cost by adjusting the concentration of impurities (referred to as dopants, hereinafter the same) added to the GaN crystal 12. (Step of Preparing the Base Substrate) Referring to FIG. 1(A), the base substrate 11 prepared in the step of preparing the base substrate 11 is not particularly limited as long as it is a substrate capable of growing the GaN crystal 12 by the insect crystal, but is crystallized with GaN. From the viewpoint of high lattice alignment, a (Si) base substrate, a sapphire (A1203) base substrate, a GaAs base substrate, and a π-based nitride base substrate such as a GaN base substrate and an A1N base substrate are preferably used. 'The GaN base substrate is particularly well used. It is preferable to use a GaN base substrate to suppress the incorporation of impurities from the base substrate. From this point of view, the cleanliness of the surface of the base substrate is important. In particular, the back surface of the base substrate (the 155086.doc 201203606 surface of the base substrate that is in contact with the inner wall of the growth furnace, the same applies hereinafter) cannot be etched in the growth furnace before the crystal growth, so the cleanliness must be improved before being put into the growth furnace. . Therefore, it is preferable to etch the back surface of the substrate and then put it into the growth furnace. Examples of the etching method include wet etching of an indicating solvent, dry etching of a halogen-based gas, and the like. (Step of growing GaN crystals with impurities added) Referring to FIG. 1(A), the method of growing the GaN crystal 12 to which impurities are added to the base substrate yoke is not particularly limited as long as it can be epitaxially grown, but From the viewpoint of growing GaN crystal 12 having high crystallinity, HVPE (Hydride Vapor Phase Epitaxy) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, MBE is preferable. A gas phase method such as a molecular beam epitaxy (M〇lecuUr Beam Epitaxy) method, and a HVPE method is particularly preferable from the viewpoint of a high crystal growth rate. In the HVPE method, it is usually grown in a quartz reaction tube, so that the crystal in the quartz reaction tube is heated, so that the quartz reaction tube is also heated together with the crystal. Therefore, the decomposition gas from the quartz reaction tube heated to a high temperature is crystal-absorbed as an impurity. Therefore, it is preferable to cover the inside of the quartz reaction tube with a liner formed of a material which is stable at a growth temperature (e.g., pBN (thermal decomposition nitride shed)). Further, it is preferred to flow a flushing gas (e.g., H2, N2, and/or Ar) which flushes the gap between the quartz reaction tube and the liner so that impurities do not remain. Further, since the crystal holder on which the base substrate is placed also becomes high temperature, it is preferable to form the crystal holder with pBN, or use PBN, A1N,

Al2〇3、SiC等高純度且穩定之材質對晶座之表面進行塗 佈。 155086.doc 201203606A highly pure and stable material such as Al2〇3 or SiC is applied to the surface of the crystal holder. 155086.doc 201203606

GaN結晶12中添加之雜質(摻雜劑)並無特別限制,但就 光之吸收係數之減少較少且比電阻較低之觀點而言,較佳 為Si。又,於GaN結晶12中添加以之方法並無特別限制, 但作為摻雜氣體,較佳使用含有8丨之氣體,例如siF〆四氟 化矽)氣體、S1H4(矽烷)氣體、以汨〆二矽烷)氣體、si^ci (氣石夕烧)氣體、Sil^Cl2(二氣夕院)氣體、SiHCi3(三氣石夕 烷)氣體、sicu(四氣化矽)氣體等,其中特佳使用SiF4氣 體。與其他含有Si之氣體相比,SiF4氣體即便於9〇〇<t以 上以下之尚溫中亦難以分解,故可效率良好地添 加於GaN結晶12中。 例如,以下對藉由HVPE法成長添加Si作為摻雜劑之GaN 結晶12之方法進行說明。圖2係表示GaN結晶12之成長中 所使用之HVPE裝置之一例的概略圖。參照圖2,HvpE裝 置具備第1原料氣體儲罐、摻雜氣體儲罐丨〇2、第2 原料氣體儲罐103、第1氣體導入管1〇4、摻雜氣體導入管 105、第2氣體導入管丨〇6、船型碟1〇7、晶座1〇8、加熱器 109、反應管11〇、排氣管m、及排氣處理裝置。hvpe裝 置100設為例如橫置式反應管。再者,HVPE裝置1 〇〇亦可 為直立式反應管。 反應管110係用以於内部保持基底基板U,並於上述基 底基板11上成長GaN結晶12之容器。反應管no可使用例 如石英反應管等。又,於反應管11〇之内部,配置有pBN 製之襯管120。於第1原料氣體儲罐1〇ι、第2原料氣體儲罐 103及船型碟1〇7中,分別供給有含有構成所成長之GaN結 155086.doc 10 201203606 晶之元素的原料。掺雜氣體儲罐102中填充有例如“匕氣 體作為摻雜劑即含有Si之氣體。第1氣體導入管〗〇4、摻雜 氣體導入管105及第2氣體導入管1〇6設置於反應管11〇中, 用以將第1原料氣體G1、摻雜氣體G2及第2原料氣體G3之 各個由反應管110之外部導入内部。船型碟1〇7中收容且保 持例如金屬Ga作為GaN結晶之金屬原料,且配置於第2氣 體導入管106内。 晶座108之表面藉由pBN製之膜而塗佈,且保持有基底 基板11»於反應管110内,以由晶座1〇8保持基底基板丨丨之 面位於第1氣體導入管104、摻雜氣體導入管1〇5及第2氣體 導入管106之下方的方式,配置晶座1〇8。晶座1〇8係橫置 地配置於反應管110之内部。再者,晶座1〇8於圖2中構成 為將基底基板11之主表面水平配置,但亦可將基底基板之 主表面垂直配置。又,HVPE裝置1〇〇亦可進而具備基底基 板Π之電阻加熱器等加熱用之局部加熱機構。 加熱器109配置於反應管ho之外部,具有將反應管丨⑺ 之内部整體加熱至例如700。(:以上、i50(rc以下之能力。 排氣管111設置於反應管110上,用以將反應後之氣體排出 至反應管110外部。排氣處理裝置構成為對排氣管1U排出 之反應後氣體進行除害,以減輕其對環境之負荷。 如圖2所示,首先,將所準備之基底基板丨丨保持於晶座 108上。此時亦可將複數片之基底基板u保持於晶座1〇8 上。 其次,準備分別填充有作為第丨原料氣體之NH3(氨)氣體 155086.doc •11- 201203606 及作為第2原料氣體之HC1(氣化氫)氣體的第i原料氣體儲 罐101及第2原料氟體儲罐1〇3。又,對船型碟供給金屬The impurity (dopant) to be added to the GaN crystal 12 is not particularly limited, but is preferably Si from the viewpoint that the decrease in the absorption coefficient of light is small and the specific resistance is low. Further, the method of adding the GaN crystal 12 is not particularly limited. However, as the doping gas, it is preferable to use a gas containing 8 Å, for example, a gas of SiF yttrium tetrafluoride, a gas of S1H4 (decane), or a gas. Dioxane gas, si^ci gas, Sil^Cl2 gas, SiHCi3 gas, sicu gas, etc. Use SiF4 gas. The SiF4 gas is more difficult to decompose than the other gases containing Si, even if it is at a temperature below 9 Torr, and can be efficiently added to the GaN crystal 12. For example, a method of growing GaN crystal 12 in which Si is added as a dopant by the HVPE method will be described below. Fig. 2 is a schematic view showing an example of an HVPE device used for the growth of the GaN crystal 12. Referring to Fig. 2, the HvpE apparatus includes a first material gas storage tank, a doping gas storage tank 2, a second material gas storage tank 103, a first gas introduction pipe 1〇4, a doping gas introduction pipe 105, and a second gas. The introduction tube 6, the ship type disk 1〇7, the crystal holder 1〇8, the heater 109, the reaction tube 11〇, the exhaust pipe m, and the exhaust gas treatment device. The hvpe device 100 is set, for example, to a horizontally placed reaction tube. Further, the HVPE device 1 can also be an upright reaction tube. The reaction tube 110 is for holding the base substrate U therein and growing a container of the GaN crystal 12 on the base substrate 11. For the reaction tube no, for example, a quartz reaction tube or the like can be used. Further, a liner 120 made of pBN was placed inside the reaction tube 11A. Raw materials containing elements constituting the grown GaN junction 155086.doc 10 201203606 are supplied to the first material gas storage tank 1〇1, the second material gas storage tank 103, and the ship type disk 1〇7, respectively. The doping gas storage tank 102 is filled with, for example, a gas containing Si, which is a dopant gas. The first gas introduction pipe 〇4, the doping gas introduction pipe 105, and the second gas introduction pipe 1〇6 are disposed in the reaction. Each of the first material gas G1, the dopant gas G2, and the second material gas G3 is introduced into the inside of the reaction tube 110. The ship type disk 1〇7 accommodates and holds, for example, metal Ga as GaN crystal. The metal material is disposed in the second gas introduction tube 106. The surface of the crystal holder 108 is coated by a film made of pBN, and the base substrate 11» is held in the reaction tube 110 to be used by the crystal holder 1〇8. The crystal holder 1〇8 is disposed so that the surface of the base substrate 丨丨 is positioned below the first gas introduction tube 104, the doping gas introduction tube 1〇5, and the second gas introduction tube 106. The crystal holder 1〇8 is placed horizontally The pedestal 1 〇 8 is configured to horizontally arrange the main surface of the base substrate 11 in FIG. 2, but the main surface of the base substrate may be vertically disposed. Further, the HVPE device 1 〇 The crucible may further include a partial heating for the heating of the base substrate The heater 109 is disposed outside the reaction tube ho and has the entire inside of the reaction tube (7) heated to, for example, 700. (: above, i50 (capacity of rc or less. The exhaust pipe 111 is provided on the reaction tube 110, The gas after the reaction is discharged to the outside of the reaction tube 110. The exhaust gas treatment device is configured to detoxify the reaction gas discharged from the exhaust pipe 1U to reduce the load on the environment. As shown in Fig. 2, first, The prepared base substrate 丨丨 is held on the crystal holder 108. At this time, the plurality of base substrates u can be held on the crystal holders 1 to 8. Next, NH3 (ammonia) as a second raw material gas is prepared to be filled. Gas 155086.doc •11-201203606 and the i-th material gas storage tank 101 and the second raw material fluorine storage tank 1〇3 as the HC1 (gasification hydrogen) gas of the second material gas. Further, the metal is supplied to the ship type dish.

Ga。又,準備内部填充有作為摻雜氣體之SiF>4氣體的摻雜 氣體儲罐102。 其後,對船型碟107進行加熱。接著,使自第2氣體導入 管106供給之HC1氣體(第2原料氣體G3)、與船型碟107之金 屬Ga發生反應,從而生成GaC1(氣化鎵)氣體(反應氣體 G7)。將自第1氣體導入管1〇4供給之NH3氣體(第1原料氣體 Gl)、S1F4氣體(摻雜氣體(}2)、及GaCl氣體(反應氣體G7)以 與基底基板11之主表面相接觸之方式流入(供給)並使其等 發生反應。此時,亦可使用用以將該等氣體輸送至基底基 板11之載氣。載氣可使用例如N2(氮)氣體、h2(氫)氣體及 Ar(氬)氣體等惰性氣體。 HVPE法中,使用加熱器1〇9,將反應管11〇之内部加熱 至GaN結晶12以適當速度成長之溫度。使GaN結晶12成長 之溫度較佳為900。(:以上、13〇〇。(:以下,更佳為1〇5〇〇c以 上、1200°C以下。於90〇t:以上使GaN結晶12成長之情形 時,可防止GaN結晶12產生缺陷,且可抑制於結晶成長面 上產生與使之成長之面方位不同之面方位的面(例如於成 長之面方位為之情形時,具有與(〇〇〇1)不同之 面方位之刻面及由該刻面所形成之凹坑等)。即,對於結 晶成長面之所成長之面方位,可穩定地成長具有良好結晶 性之GaN結晶12。於l〇5〇°c以上使GaN結晶12成長之情形 時,可使結晶性更為良好。另一方面,於13〇〇。匸以下使 155086.doc •12· 201203606Ga. Further, a doped gas storage tank 102 in which a SiF > 4 gas as a doping gas is filled is prepared. Thereafter, the ship type dish 107 is heated. Then, the HC1 gas (the second material gas G3) supplied from the second gas introduction pipe 106 and the metal Ga of the ship type disk 107 are reacted to generate GaC1 (gallium gas) gas (reaction gas G7). The NH 3 gas (first material gas G1), the S1F4 gas (doping gas (}2), and the GaCl gas (reaction gas G7) supplied from the first gas introduction pipe 1〇4 are formed on the main surface of the base substrate 11. The contact flows into (supply) and causes the reaction to occur, etc. At this time, a carrier gas for transporting the gases to the base substrate 11 may be used. For example, N2 (nitrogen) gas, h2 (hydrogen) may be used as the carrier gas. An inert gas such as a gas or an Ar (argon) gas. In the HVPE method, the heater 1〇9 is used to heat the inside of the reaction tube 11 to a temperature at which the GaN crystal 12 is grown at an appropriate rate. It is 900. (: Above, 13 〇〇. (: The following is more preferably 1 〇 5 〇〇 c or more and 1200 ° C or less. When GaN crystal 12 is grown at 90 〇 t: or more, GaN crystal can be prevented from crystallizing (12) A defect is generated, and a surface having a plane orientation different from a surface orientation in which the growth is made on the crystal growth surface can be suppressed (for example, when the surface orientation of the growth surface is the same, the surface orientation different from (〇〇〇1) is obtained. a facet and a pit formed by the facet, etc.), that is, for crystal growth The GaN crystal 12 having good crystallinity can be stably grown in the surface orientation of the growth. When the GaN crystal 12 is grown at a temperature of 10 Å or more, the crystallinity can be further improved. 13〇〇.匸The following makes 155086.doc •12· 201203606

GaN結晶12成長之情形時’可抑制所成長之㈣結晶叫 生分解,故可抑制其結晶性之劣化。M12〇(rc以下使GaN 結晶12成長之情形時,可進一步抑制結晶性之劣化。 於此,所成長之GaN結晶之結晶成長表面較佳為自 (0001)面之傾斜角未達丄。。於GaN結晶中,藉由使自(〇〇〇1) 面之結晶成長面之傾斜角未達i。,可抑制結晶成長表面中 之掺雜氣體以外之雜質的吸收。為使GaN結晶之結晶成長 表面之自(0 0 01)面之傾斜角未達i。,較佳為將结晶成長溫 度設為llGGt:以上。又’藉由使上述原料氣體、載氣及推 雜氣體之流入方式及流量最佳化,可於結晶成長表面之大 致整個區域(80%以上至1〇0%),使自(〇〇〇1)面之傾斜角未 達1。。When the GaN crystal 12 is grown, it is possible to suppress the growth of the (four) crystal by decomposition, so that deterioration of crystallinity can be suppressed. In the case where the GaN crystal 12 is grown in the range of rc or less, deterioration of crystallinity can be further suppressed. Here, the crystal growth surface of the grown GaN crystal preferably has a tilt angle from the (0001) plane. In the GaN crystal, the tilt angle of the crystal growth surface from the (〇〇〇1) plane is less than i, and the absorption of impurities other than the dopant gas in the crystal growth surface can be suppressed. The inclination angle of the surface of the growth surface from the (0 0 01) plane is less than i. Preferably, the crystal growth temperature is set to llGGt: or more, and the inflow mode of the raw material gas, the carrier gas, and the dopant gas is The flow rate is optimized to be approximately the entire area of the crystal growth surface (80% or more to 1% 0%), so that the inclination angle from the (〇〇〇1) surface is less than 1.

GaN結晶12成長時之含有Si之氣體(SiF4氣體)之分壓較佳 為2.0><10-73加以上、1.0><10-53恤以下。於含有81之氣體 (Sih氣體)之分壓為2·〇χ1〇-7 atm以上之情形時,作為n型 摻雜劑之Si被GaN結晶12充分吸收。另一方面,於含有以 之氣體(SiF4氣體)之分壓為h〇xi〇·5 atni以下之情形時,可 進一步抑制SixNy(氮化矽)系化合物之生成,故可進而良好 地控制於GaN結晶12中摻雜Si時之摻雜條件。又,若考慮The partial pressure of the gas containing Si (SiF4 gas) when the GaN crystal 12 grows is preferably 2.0 <10-73, and 1.0><10-53 or less. When the partial pressure of the gas containing 81 (Sih gas) is 2·〇χ1〇-7 atm or more, Si which is an n-type dopant is sufficiently absorbed by the GaN crystal 12. On the other hand, when the partial pressure of the gas (SiF4 gas) is h〇xi〇·5 atni or less, the generation of the SixNy (nitridium nitride)-based compound can be further suppressed, so that it can be further favorably controlled. Doping conditions when Si is doped in GaN crystal 12. Also, if you consider

GaN結晶12中所摻雜之Si之濃度,則含有“之氣體(811?4氣 體)之分壓為l.OxlO·5 atm下。再者,原料氣體、載氣及摻 雜氣體等之反應管110内所含之氣體的各自之分壓之合計 (全體)為1 atm。含有Si之氣體(SiF4氣體)之濃度與分壓成 正比。 155086.doc •13· 201203606 於成長添加有雜質之GaN結晶之步驟中,以GaN結晶12 中之載體濃度較佳為5xl017 cm·3以上、1.5 xlO18 cm·3以下 (對應之Si濃度為5x1ο17 cm·3以上、1.6xlO18 cm·3以下)、更 佳為6·6χ10η cnT3以上、l.lxlO18 Cm·3以下(對應之Si濃度 為6.9xl017 cm·3以上、l.lxl〇u cm·3以下)之方式將摻雜氣 體供給至基底基板11。於載體濃度為5xl017 cnT3以上之情 形時,可減小GaN結晶12之比電阻而充分確保導電性。於 載體濃度為6.6x1017 cm·3以上之情形時,可進而減小GaN 結晶12之比電阻而更充分地確保導電性。另一方面,於載 體濃度為1_5xlO18 cm·3以下之情形時,可減小GaN結晶之 光之吸收係數而充分地確保光之穿透性。於載體濃度為 1.1 X 1018 cm-3以下之情形時,可進而減小GaN結晶之光之 吸收係數而更充分地確保光之穿透性。進而,Si以外之雜 質(氧、碳等)之摻雜量較佳為Si摻雜量之1/5以下,更佳為 1/10以下,進而較佳為1/2〇以下。 於成長添加有雜質之GaN結晶12之步驟中,以GaN結晶 12之比電阻為〇.〇2 Qcm以下,較佳為0.015 Qcm以下之方 式成長GaN結晶12。於比電阻為〇.〇2 Qcm以下之情形時, 可成長具有較佳用於發光裝置之基板之導電性之GaN結晶 12。於GaN結晶之比電阻為〇.〇丨5 Qcm以下之情形時,可 更佳用於發光裝置之基板。 於成長添加有雜質之GaN結晶12之步驟中,就GaN結晶 12而言’以針對波長5〇〇 nm以上、78〇 nnl以下之光之吸收 係數未達7 cm.1 ’較佳為5 cm·丨以下之方式成長GaN結晶。 155086.doc .14- 201203606The concentration of Si doped in the GaN crystal 12 contains a partial pressure of "gas? (??? gas) of 1.00 x 5 · 5 atm. Further, the reaction of the material gas, the carrier gas, the doping gas, and the like The total partial pressure of the gas contained in the tube 110 (total) is 1 atm. The concentration of the gas containing Si (SiF4 gas) is proportional to the partial pressure. 155086.doc •13· 201203606 Adding impurities to the growth In the step of crystallizing GaN, the carrier concentration in the GaN crystal 12 is preferably 5×10 17 cm·3 or more and 1.5×10 18 cm·3 or less (corresponding to a Si concentration of 5×1ο17 cm·3 or more and 1.6×10 18 cm·3 or less). The doping gas is supplied to the base substrate 11 in such a manner that it is preferably 6·6χ10η cnT3 or more and l.lxlO18 Cm·3 or less (corresponding to a Si concentration of 6.9×10 17 cm·3 or more and l.lxl〇u cm·3 or less). When the carrier concentration is 5×10 17 cnT3 or more, the specific resistance of the GaN crystal 12 can be reduced to sufficiently ensure conductivity. When the carrier concentration is 6.6×10 17 cm·3 or more, the specific resistance of the GaN crystal 12 can be further reduced. The conductivity is more fully ensured. On the other hand, the carrier concentration is 1_5xlO18 cm·3. In the following cases, the absorption coefficient of light of GaN crystal can be reduced to sufficiently ensure the transmittance of light. When the carrier concentration is 1.1 X 1018 cm-3 or less, the absorption of light of GaN crystal can be further reduced. Further, the light transmittance is more sufficiently ensured. Further, the doping amount of impurities (oxygen, carbon, etc.) other than Si is preferably 1/5 or less, more preferably 1/10 or less, more preferably 1/10 or less. In the step of growing the GaN crystal 12 having impurities, the GaN crystal 12 is grown so that the specific resistance of the GaN crystal 12 is 〇.〇2 Qcm or less, preferably 0.015 Qcm or less. When the specific resistance is 〇.〇2 Qcm or less, the GaN crystal 12 having conductivity which is preferably used for the substrate of the light-emitting device can be grown. When the specific resistance of the GaN crystal is 〇.〇丨5 Qcm or less In the step of growing the GaN crystal 12 having impurities, in the step of growing the GaN crystal 12, the absorption coefficient of light having a wavelength of 5 〇〇 nm or more and 78 〇 nn or less is not GaN crystals are grown in a manner up to 7 cm.1 '5 cm·丨. 155086.doc . 14- 201203606

GaN結晶12於針對波長500 nm以上、780 nm以下之光之光 的吸收係數未達7 cm-1之情形時,較佳為5 cm·1以下之情形 時’較佳用於發光之峰值波長為500 nrn以上、780 nm以下 之發光裝置之基板。 於成長添加有雜質之GaN結晶12之步驟中,就GaN結晶 12而言,以針對波長440 nm以上、78〇 nm&下之光之吸收 係數未達7 cm·1 ’較佳為5 cm-i以下之方式成長GaN結晶。 GaN結晶12於針對波長440 nm以上、780 nm以下之光之光 的吸收係數未達7 cnT1之情形時,較佳為5 cm-i以下之情形 時,適於用於發光之峰值波長為44〇 nm以上、78〇 nm以下 之發光裝置之基板。 於成長添加有雜質之GaN結晶之步驟中,以GaN結晶ΐ2 中之錯位之平均密度較佳為3X106 cm-2以下,更佳為lxl〇6 cm·2以下之方式成長GaN結晶丨2。藉由對該GaN結晶進行 加工,容易地獲得貫通主表面12m之錯位之平均密度較佳 為3X10 Crn以下,更佳為lxio6 cm-2以下之GaN基板。於 此GaN結晶12中之錯位之平均密度及貫通GaN基板之主 表面12m之錯位之平均密度(平均錯位密度)係根據cl(陰極 發光)之盲點密度之測定而算出。 參d圖1(A) ’於成長添加有雜質之GaN結晶12之步驟 中車乂佳為使用主表面Ilm自{0001}面、{10-10}面、{11- 2〇)面㈣-⑴面、⑴·22)面、{20-21}面及{22-44}面中 任面之偏離角之絕對值為5〇以下的爪族氮化物基板(基 底基板U)成長結晶成長之主表面12m自{0001}面、{10- 155086.doc -15- 201203606 10}面、{11^20}面、{10-11}面、{11-22}面、{20-21}面及 {22-44}面中任一面之偏離角之絕對值為5。以下的GaN結晶 12。利用該GaN結晶而容易地獲得主表面10m自{0001} 面、{10-10}面 ' {11-20}面、{10-11}面、{11-22}面、ΡΟΗ } 面及 {2244} 面中任一面之偏離 角之絕 對值為 5。 以下的 GaN基板1 0。 (對GaN結晶進行加工而形成GaN基板之.步驟) 參照圖1 (B) ’對所得之添加有雜質之GaN結晶i 2進行加 工而形成GaN基板10之步驟並無特別限制,可包括去除基 底基板11之子步驟。去除基底基板Π之方法並無特別限 制,存在利用外周刀、内周刀、線鋸、雷射等進行切斷之 方法,利用金剛石磨輪等進行研磨之方法等。以此方式獲 得具有主表面12m、12η之GaN結晶12。 對GaN結晶12進行加工而形成GaN基板1〇之步驟,還 包括對GaN結晶12進行切片之子步驟。對㈣結晶㈣ 切片之方法並無特別限制,存在利用外周刀、内周刀、 鋸、雷射等進行切斷之方法等。又,可包括對切片之G£ 結晶12之主表面進行研磨及/或進行表面處理之子 對GaN結晶12之主矣而、扭>打办 進订研磨之方法例如存在機When the absorption coefficient of light of light having a wavelength of 500 nm or more and 780 nm or less is less than 7 cm-1, the GaN crystal 12 is preferably used for a peak wavelength of light emission when it is preferably 5 cm·1 or less. It is a substrate of a light-emitting device of 500 nrn or more and 780 nm or less. In the step of growing the GaN crystal 12 with impurities added, in the case of the GaN crystal 12, the absorption coefficient of light for a wavelength of 440 nm or more and 78 Å nm is less than 7 cm·1 ', preferably 5 cm - i grow GaN crystals in the following manner. When the absorption coefficient of light of light having a wavelength of 440 nm or more and 780 nm or less is less than 7 cnT1, the GaN crystal 12 is preferably used for luminescence with a peak wavelength of 44 when it is preferably 5 cm-i or less. A substrate of a light-emitting device of 〇 nm or more and 78 〇 nm or less. In the step of growing the GaN crystal to which the impurity is added, the GaN crystal 丨2 is grown so that the average density of the misalignment in the GaN crystal ruthenium 2 is preferably 3×10 6 cm −2 or less, more preferably 1×10 〇 6 cm·2 or less. By processing the GaN crystal, it is easy to obtain a GaN substrate having an average density of 3X10 Crn or less, more preferably 1×10 6 cm-2 or less, which is displaced from the main surface 12m. The average density of the dislocations in the GaN crystal 12 and the average density (average dislocation density) of the misalignment of the main surface 12m penetrating the GaN substrate are calculated based on the measurement of the blind spot density of cl (cathode luminescence). Fig. 1(A) 'In the step of growing the GaN crystal 12 with impurities added, the ruth is preferably the main surface Ilm from the {0001} plane, the {10-10} plane, and the {11-2 〇 plane (4)- (1) The surface of the (1)·22) surface, the {20-21} plane, and the {22-44} plane have an absolute value of the off-angle of 5 〇 or less of the claw-type nitride substrate (base substrate U). The main surface 12m is from {0001} face, {10-155086.doc -15- 201203606 10} face, {11^20} face, {10-11} face, {11-22} face, {20-21} face And the absolute value of the off angle of any of the {22-44} faces is 5. The following GaN crystals 12 . The main surface 10m is easily obtained from the {0001} plane, the {10-10} plane '{11-20} plane, the {10-11} plane, the {11-22} plane, the ΡΟΗ } plane, and the { 2244} The absolute value of the off angle on either side of the face is 5. The following GaN substrate 10 is used. (Step of Forming GaN Substrate by Processing GaN Crystal) The step of forming the GaN substrate 10 by processing the obtained GaN crystal i 2 to which impurities are added is not particularly limited, and may include removing the substrate. Sub-steps of the substrate 11. The method of removing the base substrate Π is not particularly limited, and there is a method of cutting by a peripheral blade, an inner peripheral blade, a wire saw, a laser or the like, and a method of polishing by a diamond grinding wheel or the like. In this way, a GaN crystal 12 having main surfaces 12m, 12n is obtained. The step of processing the GaN crystal 12 to form a GaN substrate 1 ) further includes a sub-step of slicing the GaN crystal 12 . The method of (4) crystallization (4) dicing is not particularly limited, and there is a method of cutting by a peripheral knife, an inner peripheral blade, a saw, a laser or the like. Further, it may include a method of grinding and/or surface-treating the main surface of the sliced G £ crystal 12 to the main surface of the GaN crystal 12, and twisting the method of ordering, for example, a machine.

磨、化學機械研磨箄方 4tl ^ XT A L Q 5徵寻方法。對GaN結晶12之主表面進 理之方法例如存在乾am#料方法。 對GaN結晶12進行加工從而形成g 可包括去除GaN社㈣之步驟。 …日日12之外緣區域之子步 晶12之外緣區域之 去除〇_ 方法並無制㈣,存在#彳 155086.doc -16- 201203606 輪等進行研磨之方法等。 由GaN結晶12而獲得 藉由上述之一個以上之子步驟Grinding, chemical mechanical grinding, square 4tl ^ XT A L Q 5 search method. For the method of treating the main surface of the GaN crystal 12, for example, there is a dry am# method. Processing the GaN crystal 12 to form g may include the step of removing GaN (4). ...the sub-step of the outer edge of the day 12 is removed from the outer edge of the crystal 12 _ method is not made (four), there is #彳 155086.doc -16- 201203606 The method of grinding, etc. Obtaining one or more substeps by one or more of the above GaN crystals 12

GaN基板10。由上述之GaN基板之製造方法所獲得之本實 施形態的GaN基板10中,貫通其主表面之錯位之平均密度 (平均錯位密度)較佳為3xl〇6 cm·2以下,更佳為^丨〇6 cm-2 以下。該錯位之平均密度越低則越能獲得可靠性較高之發 光裝置。又,就當前基板之製造技術之觀點而言,貫通主 表面之錯位之平均密度於現階段難以小於1χ1〇4 cm·2,故 為1 X 104 cm-2左右以上。 又,由上述之GaN基板之製造方法所得之本實施形態之 GaN基板中,較佳為其主表面係平坦,且與其主表面最接 近之結晶面的曲率半徑為10 m以上,更佳為2〇 m以上。該 結晶面之曲率半徑越大則越能獲得發光波長之面内均勻性 較兩之發光裝置《又,就當前基板之製造技術之觀點而 言’與主表面最接近之結晶面之曲率半徑於現階段難以大 於100 m,故為1〇〇 m左右以下。 [發光裝置] 圖3係表示本發明之發光裝置之一例之概略剖面圖。參 照圖3 ’本發明之發光裝置包括上述實施形態1或實施形態 2之GaN基板10 ’且其發光之峰值波長為500 nm以上、780 nm以下或440 nm以上、780 nm以下。本發明之發光裝置 針對500 nm以上、780 nm以下或440 nm以上、780 nm以下 之波長區域之光,基板中之光之吸收係數較低,發光效率 較高。 155086.doc -17- 201203606 參照圖3,更具體而言,本發明之發光裝置包括上述實 施形態1或實施形態2之GaN基板10、形成於GaN基板1〇之 一主表面10m上之至少1層的半導體層20、形成於半導體層 20之最外層上之第1電極30、以及形成於GaN基板10之另 一主表面10η上之第2電極40。該發光裝置於半導體層2〇中 包含發光層,自GaN基板10側發光。以下,對更為具體之 實施形態加以說明。 (實施形態3) 參照圖3 ’本實施形態之發光裝置包括:針對波長38〇 nm之光及波長1500 nm之光之吸收係數為7 cm」以上,針 對波長500 nm以上、780 nm以下之光之吸收係數未達7 cnT1,且比電阻為〇.〇2 Qcm以下之GaN基板1〇 ;形成於 GaN基板10之一主表面l〇m上之至少1層的半導體層2〇;形 成於半導體層20之最外層上之第1電極30 ;以及形成於 GaN基板10之另一主表面l〇n上之第2電極40;且其發光之 峰值波長為500 nm以上、780 nm以下。 (實施形態4) 參照圖3,本實施形態之發光裝置包括:針對波長3 8 〇 nm之光及波長1500 nm之光之吸收係數為7 cm」以上,針 對波長440 nm以上、780 nm以下之光之吸收係數未達7 cm-1 ’且比電阻為0.02 Ωοιη以下之GaN基板1〇 ;形成於 GaN基板10之一主表面10m上之至少1層的半導體層2〇;形 成於半導體層20之最外層上之第1電極30;以及形成於 GaN基板10之另一主表面10η上之第2電極40;且其發光之 155086.doc • 18· 201203606 峰值波長為440 nm以上、780 nm以下。 於上述實施形態3及實施形態4之發光裝置中,藉由對半 導體層20之化學組成及/或構成加以改變,可改變其發光 之波長區域及峰值波長。 [發光裝置之製造方法] 製造本發明之發光裝置之方法並無特別限制,例如參照 圖3’包括準備實施形態1或實施形態2之GaN基板1〇之步 驟、於GaN基板10之一主表面上形成至少1層之半導體層 20之步驟、.形成於半導體層20之最外層所形成之第i電極 30之步驟、及於GaN基板10之另一主表面1〇n上形成第2電 極40之步驟。於此,形成第!電極3〇之步驟與形成第2電極 40之步驟之順序可以顛倒。藉此,獲得實施形態3或實施 形態4之發光裝置。 (準備GaN基板之步驟) 準備實施形態1或實施形態2之GaN基板之方法係如上述 GaN基板之製造方法之說明所示。 (於GaN基板上形成至少1層之半導體層之步驟) 於GaN基板1〇之一主表面1〇m上形成至少丨層之半導體層 20之方法並無特別制限,但就於GaN基板上磊晶成長結晶 性良好之半導體層2〇之觀點而言,較佳為M〇c ν〇法、 MBE法、HVPE法等氣相法。又,藉由對半導體層2〇之化 學組成及/或構成加以改變,可改變發光之波長區域及峰 值波長。 (形成第1電極及第2電極之步驟) ]55086.doc 201203606 形成第1電極及第2電極之方法並無特別限制,但就提高 生產性並降低生產成本之觀點而言,較佳為濺鍍法、蒸鍍 法等。 [實施例] [實施例1] 於本實施例中,藉由以下之方法,於HVPE法中改變含 有Si之摻雜氣體之分壓,藉此獲得載體濃度、比電阻及光 之吸收係數互不相同之複數之GaN基板。 1·基底基板之準備 參照圖1(A),首先,準備直徑60 mm、厚度400 μιη之GaN substrate 10. In the GaN substrate 10 of the present embodiment obtained by the above-described method for producing a GaN substrate, the average density (average displacement density) of the displacement across the main surface is preferably 3 x 16 cm 2 or less, more preferably 〇6 cm-2 or less. The lower the average density of the misalignment, the more reliable the illuminating device can be obtained. Further, from the viewpoint of the manufacturing technique of the current substrate, the average density of the misalignment passing through the main surface is hardly less than 1χ1〇4 cm·2 at the present stage, so it is about 1×104 cm-2 or more. Further, in the GaN substrate of the present embodiment obtained by the above-described method for producing a GaN substrate, the main surface is preferably flat, and the crystal face having the closest surface to the main surface has a radius of curvature of 10 m or more, more preferably 2 〇m or more. The larger the radius of curvature of the crystal face, the more the in-plane uniformity of the emission wavelength can be obtained. In addition, from the viewpoint of the manufacturing technology of the current substrate, the radius of curvature of the crystal face closest to the main surface is At this stage, it is difficult to be larger than 100 m, so it is about 1 〇〇 m or less. [Light-emitting device] Fig. 3 is a schematic cross-sectional view showing an example of a light-emitting device of the present invention. Referring to Fig. 3, the light-emitting device of the present invention includes the GaN substrate 10' of the first embodiment or the second embodiment, and has a peak wavelength of light emission of 500 nm or more, 780 nm or less, 440 nm or more, and 780 nm or less. The light-emitting device of the present invention is directed to light having a wavelength region of 500 nm or more, 780 nm or less, or 440 nm or more and 780 nm or less, and the light absorption coefficient in the substrate is low, and the luminous efficiency is high. 155086.doc -17-201203606 Referring to Fig. 3, more specifically, the light-emitting device of the present invention includes the GaN substrate 10 of the first embodiment or the second embodiment, and at least 1 formed on one main surface 10m of the GaN substrate 1 The semiconductor layer 20 of the layer, the first electrode 30 formed on the outermost layer of the semiconductor layer 20, and the second electrode 40 formed on the other main surface 10n of the GaN substrate 10. This light-emitting device includes a light-emitting layer in the semiconductor layer 2, and emits light from the side of the GaN substrate 10. Hereinafter, a more specific embodiment will be described. (Embodiment 3) Referring to Fig. 3, the light-emitting device of the present embodiment includes light having an absorption coefficient of light having a wavelength of 38 〇 nm and light having a wavelength of 1500 nm of 7 cm or more, and light having a wavelength of 500 nm or more and 780 nm or less. a GaN substrate having an absorption coefficient of less than 7 cnT1 and a specific resistance of 〇.〇2 Qcm or less; at least one semiconductor layer 2 formed on one main surface 10m of the GaN substrate 10; formed in the semiconductor The first electrode 30 on the outermost layer of the layer 20; and the second electrode 40 formed on the other main surface 10n of the GaN substrate 10; and the peak wavelength of the light emission is 500 nm or more and 780 nm or less. (Embodiment 4) Referring to Fig. 3, the light-emitting device of the present embodiment includes an absorption coefficient of 7 cm or more for light having a wavelength of 3 8 〇 nm and light having a wavelength of 1500 nm, and a wavelength of 440 nm or more and 780 nm or less. a GaN substrate having a light absorption coefficient of less than 7 cm -1 ' and a specific resistance of 0.02 Ω οηη or less; at least one semiconductor layer 2 形成 formed on one main surface 10 m of the GaN substrate 10; formed on the semiconductor layer 20 The first electrode 30 on the outermost layer; and the second electrode 40 formed on the other main surface 10n of the GaN substrate 10; and the light-emitting 155086.doc • 18· 201203606 peak wavelength is 440 nm or more and 780 nm or less . In the light-emitting devices of the third embodiment and the fourth embodiment, the wavelength region and the peak wavelength of the light emission can be changed by changing the chemical composition and/or configuration of the semiconductor layer 20. [Manufacturing Method of Light-Emitting Device] The method for producing the light-emitting device of the present invention is not particularly limited. For example, referring to FIG. 3', the step of preparing the GaN substrate 1 of the first embodiment or the second embodiment is performed on one main surface of the GaN substrate 10. a step of forming at least one semiconductor layer 20 thereon, a step of forming the ith electrode 30 formed on the outermost layer of the semiconductor layer 20, and forming a second electrode 40 on the other main surface 1 〇n of the GaN substrate 10. The steps. Here, form the first! The order of the steps of the electrode 3 and the step of forming the second electrode 40 may be reversed. Thereby, the light-emitting device of the third embodiment or the fourth embodiment is obtained. (Step of Preparing GaN Substrate) The method of preparing the GaN substrate of Embodiment 1 or Embodiment 2 is as described above for the method of manufacturing the GaN substrate. (Step of Forming At least One Layer of Semiconductor Layer on GaN Substrate) The method of forming at least the germanium layer on at least one main surface 1 〇m of the GaN substrate 1 is not particularly limited, but is performed on a GaN substrate. From the viewpoint of the semiconductor layer 2 having good crystal growth and crystallinity, a gas phase method such as M〇c ν〇 method, MBE method, or HVPE method is preferable. Further, by changing the chemical composition and/or configuration of the semiconductor layer 2, the wavelength region of the light emission and the peak wavelength can be changed. (Step of forming the first electrode and the second electrode)] 55086.doc 201203606 The method of forming the first electrode and the second electrode is not particularly limited, but from the viewpoint of improving productivity and reducing production cost, it is preferably splashed. Plating, vapor deposition, etc. [Examples] [Example 1] In the present embodiment, the partial pressure of the doping gas containing Si was changed in the HVPE method by the following method, whereby the carrier concentration, the specific resistance, and the absorption coefficient of light were obtained. A plurality of GaN substrates that are different. 1. Preparation of base substrate Referring to Fig. 1(A), first, a diameter of 60 mm and a thickness of 400 μm are prepared.

GaN基底基板11。基底基板η之主表面llm平坦,與主表 面1 lm最接近之結晶面為(oooi)面。(〇〇〇1)面之曲率半徑係 利用X射線繞射加以測定,為2〇 m。貫通基底基板11之主 表面11 m之錯位之平均密度(稱為平均錯位密度,以下相 同)係根據CL(陰極發光)之盲點密度之測定而算出,為 5 X 105 cm'3 ° 2. GaN結晶之成長 其次,參照圖1 (A),藉由HVPE法,於基底基板11上, 藉由使用S1F4氣體作為摻雜氣體而成長&濃度不同之7個 GaN結晶 12(實驗No. 1-7)。 該等GaN結晶之成長中,係使用圖2所示之HvpE裝置。 準備ΝΑ氣體作為第丨原料氣體⑴、Hci氣體作為第2原料 氣體G3、SiF4氣體作為摻雜氣體G2、純度為99.999%以上 之112氣體作為載氣^分別自第i氣體導人管1()4、第2氣體 I55086.doc -20· 201203606 導入管106及摻雜氣體導入管ι〇5將載氣導入反應管11〇之 内部’並使加熱器1〇9之溫度上升至11〇(rc。其後,向船 型碟107供給金屬Ga,並對船型碟1 〇7進行加熱。 使自苐2氣體導入管所供給之HC1氣體與船型碟1〇7之 Ga以Ga+HCl—GaCl+l/2H2之方式發生反應,藉此,生成 GaCl氣體作為反應氣體G7。 其次’將作為自第1氣體導入管1 〇4所供給之第1原料氣 體G1之ΝΑ氣體、與作為由上述反應所得之反應氣體G7之 GaCl氣體以與基底基板η之成長GaN結晶之主表面相接觸 之方式與載氣一併流入,並使該等於該主表面上以 GaCl+NH3 —GaN+HCl+I^之方式發生反應。 作為使Si濃度不同之7個GaN結晶ι2(實驗N〇 K7)成長之 條件’將摻雜氣體之供給分壓調整為表1中所示之值。藉 此,以結晶成長溫度為1 loot、結晶成長時間16 67小時 之條件,成長直徑60 mm、厚度5 mm之Si濃度不同的7個 GaN結晶。該專GaN結晶之成長速度為3〇〇 gm/hr。 3. GaN基板之形成 其次,參照圖1(B),將分別獲得之GaN結晶12使用切片 機於厚度方向上進行切片加工。接著,去除經切片之GaN 結晶12之外緣區域。繼而對經切片並進而去除外緣區域之 GaN結晶進行CMP(化學機械研磨),從而去除其加工變質 層。以此方式,利用各個GaN結晶而獲得5片直徑為2英吋 (50.8 mm)厚度為 400 μηι之 GaN基板 1〇。 4. GaN基板之物性測定 155086.doc -21- 201203606 所得之5片GaN基板10a、l〇b、10c、l〇d、l〇e之中,於 自基底基板11一側起第三片GaN基板l〇c之5個測定點上, 測定Si濃度、載體濃度、比電阻、及針對波長38〇 nm、 5 00 nm-780 nm、440 nm-780 nm及 1500 nm之光之吸收係 數’並县出該等之最小值與最大值。於此,針對1片GaN 基板’ 5個測定點係設定為主表面上之中心點、自中心點 向{11-20}方向偏離-2 cm之點及偏離+2 cm之點、及自中心 點向{10-10}方向偏離-2 cm之點及偏離+2 cm之點,合計5 個點。於此’ Si濃度係藉由SIMS(次級離子質譜分析, Secondary Ion Mass Spectroscopy)加以測定。載體濃度係 藉由CV特性測定法加以測定。比電阻係使用比電阻計藉 由四探針法加以測定。光之吸收係數係使用分光光度計測 定穿透率及反射率而算出。於此,假設GaN基板内之吸收 係數無關於深度而固定’且亦考慮多路徑反射。將結果匯 總於表1中。 於此,GaN基板之主表面内之載體濃度的變動為自平均 值±5%以内’厚度方向上之載體濃度的變動亦為自平均值 ± 5 %以内。 又’貫通位於各個GaN結晶12之第3片GaN基板l〇c之上 述5個測定點上之主表面的錯位之平均密度(平均錯位密度) 均為5xl〇5 cm·2,與基底基板丨丨為同樣之低密度。又,位 於各個G aN結晶12之第3片G aN基板10 c之上述5個測定點上 之(0001)面的曲率半徑係藉由X射線繞射加以測定,為2〇 m’與基底基板同樣大。又’所得之GaN基板均未產生裂 155086.doc •22· 201203606 紋。 [表1] 實驗No. 1 2 3 4 5 6 7 摻雜氣體之分壓(xl(T6 atm) 2.0 1.5 1.0 0.8 0.6 04 03 Si 濃度(xlO18 cm·3) 2.2 1.6 1.1 0.85 0.69 0 45 0 36 載體濃度(xlO18 cm·3) 2.1 1.5 1.1 0.82 0.66 0 42 0 35 比電阻( Qcm) 0.095 0.011 0.014 1 0.017 0.02 0 031 0 035 380 nm 48 33 24 19 15 11 9 光之吸收係數 500-780 nm 11-15 7-10 5-7 4-5 4-5 4 3 (cm·1) 440-780 nm 11-22 7-15 5-10 4-6 4-5 4 3-4 1500 nm 29 20 16 12 10 8 6 參照表1,於HVPE法中,將結晶成長溫度調整為丨〇〇〇。匸 以上、1200 C以下,且將含有Si之摻雜氣體之分壓調整為 0.6ΧΗΓ6 atm以上、l.Oxlo·6 atm以下,並使載體濃度為 0.66X1018 cm_3以上、11><1〇丨8 cm-3以下,藉此,獲得比電 阻為0.02 Dcm以下、針對波長380 nm之光之吸收係數為7 cm以上、針對波長500 nm-780 nm之光之吸收係數未達7 cm·1及針對波長15〇〇 nm之光之吸收係數為7 cm·1以上之 GaN基板。又’將結晶成長溫度調整為1〇〇〇〇c以上、 1200°C以下,將含有si之摻雜氣體之分壓調整為〇6χ10_6 atm以上、0·8χ10-6 atm以下,並使載體濃度為〇 66χΐ〇18 cm·3以上、〇.82xi〇u em-3以下,藉此,獲得比電阻為〇 〇2 ncm以下、針對波長380 nm之光之吸收係數為7 cm·丨以 上、針對波長440 nm-780 nm之光之吸收係數未達7 cm·丨及 關於波長妒1500 nm之光之吸收係數為7 cm·1以上之GaN基 板°再者’所成長之所有結晶中之Si以外之元素的雜質濃 度係利用SIMS加以測定,〇(氧)為5x10丨6 cm·3以下,c(碳) 155086.doc •23· 201203606 為 5xl〇16 以 卜’其他元素亦為lxl〇i6 crn·3以下。 V 例仏製作與主表面最接近之結晶面為(0001)面 土板之If形,但製作與主表面最接近之結晶面為 (10-10)面、 )面、(10-11)面、(11_22)面、(20_21) 或(22 44)面之GaN基板之情形亦獲得相同之結果。 應該認為,此次所揭示之實施形態及實施例之所有内容 均為例不’而非限制者。本發明之範圍並非由上述說明表 示而疋由申凊專利範圍表示,且意圖包括與申請專利範 圍均等之含義及範圍内之所有變更。 【圖式簡單說明】 圖1係表示製造本發明之G a N基板之方法之一例的概略 剖面圖。於此’(A)表示準備基底基板之步驟及於基底 基板上成長添加有雜質之GaN結晶之步驟,(B)表示對GaN 結晶進行加工而形成GaN基板之步驟。 圖2係表示GaN結晶之成長中所使用之HVPE裝置之一例 的概略圖。 圖3係表示本發明之發光裝置之一例的概略剖面圖。 【主要元件符號說明】 10、10a、10b、10c、 GaN基板 10d 、 l〇e 10m、1 〇n、11 m、 主表面 12m ' 12n 11 基底基板 12 GaN結晶 155086.doc -24- 201203606 20 半導體層 30 第1電極 40 第2電極 100 HVPE裝置 101 第1原料氣體儲罐 102 摻雜氣體儲罐 103 第2原料氣體儲罐 104 第1氣體導入管 105 摻雜氣體導入管 106 第2氣體導入管 107 船型碟 108 晶座 109 加熱器 110 反應管 111 排氣管 120 襯管 G1 第1原料氣體 G2 摻雜氣體 G3 第2原料氣體 G7 反應氣體 155086.doc -25-GaN base substrate 11. The main surface llm of the base substrate η is flat, and the crystal face closest to the main surface 1 lm is an (oooi) plane. (〇〇〇1) The radius of curvature of the surface is measured by X-ray diffraction and is 2 〇 m. The average density of the misalignment of the main surface 11 m penetrating through the base substrate 11 (referred to as the average dislocation density, the same applies hereinafter) is calculated based on the measurement of the blind spot density of CL (cathode luminescence), which is 5 X 105 cm '3 ° 2. GaN Growth of crystals Next, referring to FIG. 1(A), seven GaN crystals 12 having different concentrations of growth and concentration were grown on the base substrate 11 by using the S1F4 gas as a doping gas by the HVPE method (Experiment No. 1- 7). In the growth of these GaN crystals, the HvpE device shown in Fig. 2 was used. The helium gas is prepared as the second raw material gas (1), the Hci gas is used as the second raw material gas G3, the SiF4 gas is used as the doping gas G2, and the 112 gas having a purity of 99.999% or more is used as the carrier gas, respectively, from the i-th gas guiding tube 1 () 4. The second gas I55086.doc -20· 201203606 The introduction pipe 106 and the doping gas introduction pipe ι〇5 introduce the carrier gas into the inside of the reaction tube 11〇 and raise the temperature of the heater 1〇9 to 11〇(rc Thereafter, the metal Ga is supplied to the ship type disc 107, and the ship type disc 1 〇7 is heated. The HC1 gas supplied from the 苐2 gas introduction pipe and the Ga of the ship type dish 1〇7 are Ga+HCl-GaCl+l In the case of the reaction of /2H2, GaCl gas is generated as the reaction gas G7. Next, the ruthenium gas as the first source gas G1 supplied from the first gas introduction pipe 1 〇4 is obtained as the reaction. The GaCl gas of the reaction gas G7 flows in contact with the carrier gas in contact with the main surface of the grown GaN crystal of the base substrate η, and is equal to the manner of GaCl+NH3-GaN+HCl+I^ on the main surface. Reaction occurred. As seven GaN crystals ι2 with different Si concentrations (Experiment N〇K7) The long condition 'the partial pressure of the doping gas is adjusted to the value shown in Table 1. Thus, the growth temperature is 60 mm and the thickness is 5 mm with a crystal growth temperature of 1 loot and a crystal growth time of 16 67 hours. Seven GaN crystals having different Si concentrations. The growth rate of the GaN crystal is 3 〇〇gm/hr. 3. Formation of GaN substrate Next, referring to FIG. 1(B), the GaN crystal 12 obtained separately is used with a microtome. The chipping process is performed in the thickness direction. Then, the outer edge region of the sliced GaN crystal 12 is removed. Then, the GaN crystal which is sliced and further removed from the outer edge region is subjected to CMP (Chemical Mechanical Polishing) to remove the processed metamorphic layer. In this way, five GaN substrates having a diameter of 2 inches (50.8 mm) and a thickness of 400 μm were obtained by crystallization of each GaN. 4. Physical property measurement of GaN substrate 155086.doc -21- 201203606 5 pieces of GaN obtained Among the substrates 10a, 10b, 10c, 10d, and 10e, the Si concentration, the carrier concentration, and the ratio were measured at five measurement points of the third GaN substrate 10c from the base substrate 11 side. Resistance, and for wavelengths 38〇nm, 500 nm-780 nm, 440 nm - The absorption coefficient of light at -780 nm and 1500 nm 'and the minimum and maximum values of the light. Here, the five measurement points of one GaN substrate are set as the center point and the self-center point on the main surface. A point deviating from -2 cm in the {11-20} direction and a point deviating from +2 cm, and a point deviating from -2 cm from the center point to the {10-10} direction and a point deviating from +2 cm, totaling 5 points . The 'Si concentration is determined by SIMS (Secondary Ion Mass Spectroscopy). The carrier concentration was determined by CV characterization. The specific resistance was measured by a four-probe method using a specific resistance meter. The absorption coefficient of light was calculated by measuring the transmittance and reflectance using a spectrophotometer. Here, it is assumed that the absorption coefficient in the GaN substrate is not fixed with respect to depth' and multipath reflection is also considered. The results are summarized in Table 1. Here, the fluctuation of the carrier concentration in the main surface of the GaN substrate is within ±5% of the average value. The fluctuation of the carrier concentration in the thickness direction is also within ±5 % of the average value. Further, the average density (average misalignment density) of the misalignment of the main surfaces of the three measurement points of the third GaN substrate 10c located in each of the GaN crystals 12 is 5×10 〇5 cm·2, and the base substrate 丨The same low density. Further, the radius of curvature of the (0001) plane on the five measurement points of the third G aN substrate 10 c of each of the GaN crystals 12 is measured by X-ray diffraction, and is 2 μm' and the base substrate. Equally big. Moreover, none of the obtained GaN substrates were cracked 155086.doc •22· 201203606. [Table 1] Experiment No. 1 2 3 4 5 6 7 Partial pressure of doping gas (xl(T6 atm) 2.0 1.5 1.0 0.8 0.6 04 03 Si concentration (xlO18 cm·3) 2.2 1.6 1.1 0.85 0.69 0 45 0 36 Carrier concentration (xlO18 cm·3) 2.1 1.5 1.1 0.82 0.66 0 42 0 35 Specific resistance (Qcm) 0.095 0.011 0.014 1 0.017 0.02 0 031 0 035 380 nm 48 33 24 19 15 11 9 Absorption coefficient of light 500-780 nm 11 -15 7-10 5-7 4-5 4-5 4 3 (cm·1) 440-780 nm 11-22 7-15 5-10 4-6 4-5 4 3-4 1500 nm 29 20 16 12 10 8 6 Referring to Table 1, in the HVPE method, the crystal growth temperature is adjusted to 丨〇〇〇. 匸 or more, 1200 C or less, and the partial pressure of the doping gas containing Si is adjusted to 0.6 ΧΗΓ 6 atm or more, l. Oxlo·6 atm or less and a carrier concentration of 0.66×10 18 cm −3 or more and 11°·1·8 cm −3 or less, thereby obtaining an absorption coefficient of light having a specific resistance of 0.02 Dcm or less and a wavelength of 380 nm. A GaN substrate having an absorption coefficient of 7 cm·1 or more for light having a wavelength of 500 nm to 780 nm and a absorption coefficient of 7 cm·1 or more for light having a wavelength of 15 〇〇 nm, and a crystal growth temperature of 7 cm or more Adjusted to 1〇〇〇〇c or more Below 1200 °C, the partial pressure of the doping gas containing si is adjusted to be 〇6χ10_6 atm or more, 0·8χ10-6 atm or less, and the carrier concentration is 〇66χΐ〇18 cm·3 or more, 〇.82xi〇u em -3 or less, thereby obtaining a specific resistance of 〇〇2 ncm or less, an absorption coefficient of light of 7 cm·丨 or more for light having a wavelength of 380 nm, and an absorption coefficient of light of not more than 7 cm for light having a wavelength of 440 nm to 780 nm. GaN GaN substrate with an absorption coefficient of light having a wavelength of 妒1500 nm of 7 cm·1 or more. The impurity concentration of elements other than Si in all crystals grown by 'the growth' is measured by SIMS, and 〇 (oxygen) is 5x10丨6 cm·3 or less, c(carbon) 155086.doc •23· 201203606 is 5xl〇16, and the other elements are also lxl〇i6 crn·3 or less. V Example: Making the crystal surface closest to the main surface It is the If shape of the (0001) surface plate, but the crystal face closest to the main surface is (10-10) face, face face, (10-11) face, (11_22) face, (20_21) or (22). 44) The same results were obtained for the case of the GaN substrate. It is to be understood that the scope of the embodiments and examples disclosed herein are not intended to be limiting. The scope of the present invention is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing an example of a method of producing a G a N substrate of the present invention. Here, (A) shows a step of preparing a base substrate and a step of growing a GaN crystal having impurities added to the base substrate, and (B) shows a step of forming a GaN substrate by processing the GaN crystal. Fig. 2 is a schematic view showing an example of an HVPE device used for growing GaN crystals. Fig. 3 is a schematic cross-sectional view showing an example of a light-emitting device of the present invention. [Description of main component symbols] 10, 10a, 10b, 10c, GaN substrate 10d, l〇e 10m, 1 〇n, 11 m, main surface 12m ' 12n 11 Base substrate 12 GaN crystal 155086.doc -24- 201203606 20 Semiconductor Layer 30 First electrode 40 Second electrode 100 HVPE device 101 First material gas storage tank 102 Doped gas storage tank 103 Second material gas storage tank 104 First gas introduction pipe 105 Doping gas introduction pipe 106 Second gas introduction pipe 107 Ship type disc 108 Crystal holder 109 Heater 110 Reaction tube 111 Exhaust pipe 120 Liner G1 First material gas G2 Doping gas G3 Second material gas G7 Reaction gas 155086.doc -25-

Claims (1)

201203606 七、申請專利範圍: 1 · 一種GaN基板,其針對波長380 nm之光及波長1 500 nm之 光之吸收係數為7 cm·1以上,至少對波長500 nm以上、 780 nm以下之光之吸收係數未達7 cnT1,且比電阻為0.02 Ωοιη以下。 • 2.如請求項1之GaN基板,其針對波長440 nm以上780 nm以 下之光之吸收係數未達7 cnT1。 3. 一種發光裝置,其包括請求項2之GaN基板,且其發光之 峰值波長為440 nm以上、780 nm以下。 4. 一種發光裝置,其包括請求項1之GaN基板,且其發光之 峰值波長為500 nm以上、780 nm以下。 155086.doc201203606 VII. Patent application scope: 1 · A GaN substrate with an absorption coefficient of 7 cm·1 or more for light with a wavelength of 380 nm and light with a wavelength of 1 500 nm, at least for light with a wavelength of 500 nm or more and 780 nm or less The absorption coefficient is less than 7 cnT1, and the specific resistance is 0.02 Ωοιη or less. • 2. The GaN substrate of claim 1 which has an absorption coefficient of less than 7 cnT1 for light having a wavelength of 440 nm or more and 780 nm or less. A light-emitting device comprising the GaN substrate of claim 2, wherein the peak wavelength of the light emission is 440 nm or more and 780 nm or less. A light-emitting device comprising the GaN substrate of claim 1, wherein the peak wavelength of the light emission is 500 nm or more and 780 nm or less. 155086.doc
TW100113287A 2010-04-27 2011-04-15 Gan substrate and light-emitting device TWI520377B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102320A JP5821164B2 (en) 2010-04-27 2010-04-27 GaN substrate and light emitting device

Publications (2)

Publication Number Publication Date
TW201203606A true TW201203606A (en) 2012-01-16
TWI520377B TWI520377B (en) 2016-02-01

Family

ID=44861077

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100113287A TWI520377B (en) 2010-04-27 2011-04-15 Gan substrate and light-emitting device

Country Status (3)

Country Link
JP (1) JP5821164B2 (en)
TW (1) TWI520377B (en)
WO (1) WO2011135744A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976229B1 (en) * 2011-10-21 2019-05-07 미쯔비시 케미컬 주식회사 Method for producing nitride semiconductor crystal of group 13 metal of periodic table, and nitride semiconductor crystal of group 13 metal of periodic table produced by said production method
JP2014116331A (en) * 2011-11-30 2014-06-26 Dowa Electronics Materials Co Ltd Crystal growth device, crystal growth method and susceptor
JP6064695B2 (en) * 2012-03-22 2017-01-25 三菱化学株式会社 Gallium nitride crystal and method for producing gallium nitride crystal
JP5937408B2 (en) * 2012-04-09 2016-06-22 古河機械金属株式会社 Group III nitride semiconductor substrate, group III nitride semiconductor substrate manufacturing method, and semiconductor device manufacturing method
WO2014129544A1 (en) * 2013-02-22 2014-08-28 三菱化学株式会社 Crystal of nitride of group-13 metal on periodic table, and method for producing same
JP6187083B2 (en) * 2013-06-06 2017-08-30 三菱ケミカル株式会社 Group 13 metal nitride crystals
JP5950070B1 (en) 2014-12-16 2016-07-13 三菱化学株式会社 GaN substrate
US10865469B2 (en) 2016-08-31 2020-12-15 Japan Science And Technology Policy Compound semiconductor, method for manufacturing same, and nitride semiconductor
JP2018041878A (en) * 2016-09-08 2018-03-15 富士電機株式会社 Method of manufacturing semiconductor device and semiconductor device
JP6356315B1 (en) * 2017-05-29 2018-07-11 株式会社サイオクス Nitride crystal substrate, semiconductor laminate, semiconductor laminate manufacturing method, and semiconductor device manufacturing method
JP7084573B2 (en) * 2017-05-29 2022-06-15 住友化学株式会社 Crystal laminates, semiconductor devices and methods for manufacturing semiconductor devices
WO2018221711A1 (en) 2017-06-01 2018-12-06 国立研究開発法人科学技術振興機構 Compound semiconductor and method for producing same
JP6783269B2 (en) * 2018-06-08 2020-11-11 株式会社サイオクス Nitride crystal substrate, semiconductor laminate, nitride crystal substrate manufacturing method, semiconductor laminate manufacturing method and semiconductor device manufacturing method
JP2020038955A (en) * 2018-09-04 2020-03-12 株式会社トクヤマ Method for cutting group III nitride single crystal
JPWO2020171147A1 (en) * 2019-02-22 2021-12-16 三菱ケミカル株式会社 GaN crystal and substrate
JP7101736B2 (en) * 2020-10-21 2022-07-15 株式会社サイオクス GaN single crystal substrate and semiconductor laminate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1579486B1 (en) * 2002-12-27 2017-04-12 Soraa Inc. Gallium nitride crystal, homoepitaxial gallium-nitride-based devices and method for producing same
JP4529846B2 (en) * 2005-09-06 2010-08-25 日立電線株式会社 III-V nitride semiconductor substrate and method for manufacturing the same
KR20080086905A (en) * 2006-01-20 2008-09-26 마쯔시다덴기산교 가부시키가이샤 Semiconductor light emitting element, group iii nitride semiconductor substrate and method for manufacturing such group iii nitride semiconductor substrate

Also Published As

Publication number Publication date
JP2011230955A (en) 2011-11-17
TWI520377B (en) 2016-02-01
WO2011135744A1 (en) 2011-11-03
JP5821164B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
TW201203606A (en) GaN substrate and light-emitting device
TWI429797B (en) Group iii nitride semiconductor crystal substrate and semiconductor device
CN1148810C (en) Gallium nitride monocrystal substrate and its manufacturing method
CA2678488C (en) Method of producing a group iii nitride crystal
JP6031733B2 (en) GaN crystal manufacturing method
US20160265137A1 (en) METHOD FOR GROWING BETA-Ga2O3-BASED SINGLE CRYSTAL FILM, AND CRYSTALLINE LAYERED STRUCTURE
US8574364B2 (en) GaN-crystal free-standing substrate and method for producing the same
JP2009126723A (en) Growing method of group iii nitride semiconductor crystal, fabrication method of group iii nitride semiconductor crystal substrate, and group iii nitride semiconductor crystal substrate
TW201108411A (en) Growth of planar, non-polar a-plane gallium nitride by hydride vapor phase epitaxy
EP2924150B1 (en) ß-GA2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP2008133151A (en) Method of growing crystal, crystal substrate, and semiconductor device
JP5045388B2 (en) Group III nitride semiconductor crystal growth method and group III nitride semiconductor crystal substrate manufacturing method
TW200908098A (en) Gallium nitride crystal growth method, gallium nitride crystal substrate, epi-wafer manufacturing method, and epi-wafer
US8253162B2 (en) GaN substrate and light-emitting device
JP6875708B2 (en) Crystallized structure and method for manufacturing it
JP2014047097A (en) Manufacturing method for nitride semiconductor crystal
JPWO2007023722A1 (en) GaxIn1-xN (0 ≦ x ≦ 1) crystal manufacturing method, GaxIn1-xN (0 ≦ x ≦ 1) crystal substrate, GaN crystal manufacturing method, GaN crystal substrate and product
JP2005343704A (en) METHOD FOR PRODUCING AlxGayIn1-x-yN CRYSTAL
JP5440546B2 (en) Crystal growth method
WO2024135744A1 (en) GaN SUBSTRATE
JP2016199468A (en) GaN crystal substrate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees