WO2022059669A1 - β-GA2O3-BASED SINGLE CRYSTAL FILM AND METHOD OF MANUFACTURING SAME - Google Patents

β-GA2O3-BASED SINGLE CRYSTAL FILM AND METHOD OF MANUFACTURING SAME Download PDF

Info

Publication number
WO2022059669A1
WO2022059669A1 PCT/JP2021/033709 JP2021033709W WO2022059669A1 WO 2022059669 A1 WO2022059669 A1 WO 2022059669A1 JP 2021033709 W JP2021033709 W JP 2021033709W WO 2022059669 A1 WO2022059669 A1 WO 2022059669A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal film
gas
suboxide
system single
Prior art date
Application number
PCT/JP2021/033709
Other languages
French (fr)
Japanese (ja)
Inventor
クァン トゥ ティユ
Original Assignee
株式会社ノベルクリスタルテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノベルクリスタルテクノロジー filed Critical 株式会社ノベルクリスタルテクノロジー
Publication of WO2022059669A1 publication Critical patent/WO2022059669A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a ⁇ -Ga 2 O 3 system single crystal film ( ⁇ -Ga 2 O 3 -based single crystal film) and a method for producing the same.
  • HVPE method hydride vapor phase growth method
  • TSVPE method trihalide vapor phase growth method
  • MBE method molecular beam epitaxy method
  • the Ga halide compound GaCl, GaCl 3
  • Cl derived from the raw material is used as an impurity in the ⁇ -Ga 2 O 3 system. It mixes in the single crystal film. Since Cl acts as a shallow donor in the ⁇ -Ga 2 O 3 system semiconductor, carriers are formed even when an undoped (unintentionally undoped) ⁇ -Ga 2 O 3 system single crystal film is formed. (Free electrons) will be generated.
  • the concentration of Cl mixed in the ⁇ -Ga 2 O3 system single crystal film is about 1 to 2 ⁇ 10 16 / cm 3 , and the carriers (free electrons) generated are.
  • the concentration is about the same.
  • the withstand voltage of the device is inversely proportional to the carrier concentration of the Ga 2 O 3 system single crystal film. Therefore, in order to obtain a ⁇ -Ga 2 O 3 system single crystal film capable of manufacturing a device having a higher withstand voltage, an impurity ⁇ -Ga 2 O 3 system single crystal film such as Cl, which acts as a dopant, is used. It is important to prevent unintended contamination.
  • an object of the present invention is a method for producing a ⁇ - Ga 2 O3 system single crystal film capable of suppressing unintentional mixing of impurities having a high crystal growth rate and acting as a dopant, and ⁇ produced by the method. -To provide a Ga 2 O 3 system single crystal film.
  • one aspect of the present invention is the method for producing a ⁇ - Ga 2 O3 system single crystal film according to the following [1] to [4], ⁇ -Ga 2 according to [5] and [6].
  • An O3 series single crystal film is provided.
  • ⁇ -Ga 2 O 3 single crystal which is a single crystal of ⁇ -Ga 2 O 3 , or a single crystal of ⁇ -Ga 2 O 3 in which a part of Ga is substituted with one or both of Al and In.
  • a method for producing a ⁇ -Ga 2 O 3 system single crystal film composed of crystals which does not involve the production of a substance containing an impurity that acts as a dopant in the ⁇ - Ga 2 O 3 system single crystal film.
  • 3 is Ga, Al, or In
  • a method for producing a ⁇ - Ga 2 O3 system single crystal film which comprises a step of making the single crystal film.
  • the suboxide gas of Ga 2 O 3 is produced by reacting Ga 2 O 3 with the metal Ga, and in the case of producing the suboxide gas of Al 2 O 3 , Al ⁇ -Ga according to the above [1], which is produced by reacting 2 O 3 with metal Al to generate In 2 O 3 suboxide gas by reacting In 2 O 3 with metal In.
  • a method for producing a 2O3 series single crystal film [ 3 ] The ⁇ -Ga 2 O3 system single crystal film according to the above [1] or [2], which produces the suboxide gas at an atmospheric temperature of 800 ° C.
  • the ⁇ -Ga 2 O 3 system single crystal film is epitaxially grown under an atmospheric temperature of 800 ° C. or higher.
  • ⁇ -Ga 2 O 3 single crystal which is a single crystal of ⁇ -Ga 2 O 3 , or a single crystal of ⁇ -Ga 2 O 3 in which a part of Ga is substituted with one or both of Al and In.
  • the Sn content is 1 ⁇ 10 15 / cm 3 or less
  • the Si content is 5 ⁇ 10 15 / cm 3 or less
  • the F content is 1 ⁇ 10 14 / cm 3 or less.
  • a method for producing a ⁇ - Ga 2 O3 system single crystal film capable of suppressing unintentional mixing of impurities acting as a dopant and having a high crystal growth rate, and ⁇ -Ga produced by the method can be provided.
  • FIG. 1 is a vertical sectional view of a crystal laminated structure according to an embodiment of the present invention.
  • FIG. 2 is a vertical sectional view of a vapor phase growth apparatus according to an embodiment of the present invention.
  • FIG. 3 is a graph showing the relationship between the partial pressure and the temperature of the Ga 2 O gas and the Ga O gas in the Ga 2 O 3 suboxide gas.
  • FIG. 4 is a graph showing the equilibrium constants in the formation reaction of Ga 2 O 3 by each film forming method of the method according to the embodiment of the present invention, the HVPE method, and the THVPE method.
  • FIG. 5 is a graph showing the measurement results of elemental analysis by SIMS of the crystal laminated structure according to the embodiment of the present invention.
  • FIG. 6 is an observation image of the surface morphology of a ⁇ -Ga 2 O 3 single crystal film having a thickness of 3 ⁇ m with an optical microscope.
  • FIG. 1 is a vertical cross-sectional view of the crystal laminated structure 1 according to the embodiment of the present invention.
  • the crystal laminated structure 1 is a ⁇ -Ga 2 O 3 system single crystal film formed by epitaxial crystal growth on the main surface 11 of the ⁇ -Ga 2 O 3 system substrate 10 and the ⁇ -Ga 2 O 3 system substrate 10. Has twelve.
  • the ⁇ -Ga 2 O 3 system substrate 10 is a substrate made of a ⁇ -Ga 2 O 3 system single crystal.
  • the ⁇ -Ga 2 O 3 system single crystal is a single crystal of ⁇ -Ga 2 O 3 which is Ga 2 O 3 having a ⁇ -type crystal structure, or a part of Ga is one of Al and In. It is a single crystal of ⁇ -Ga 2 O 3 substituted with or both, and (Ga x Aly In (1-xy) ) 2 O 3 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ It has an ideal composition represented by x + y ⁇ 1).
  • (Ga x Al 1-x ) 2 O 3 (0 ⁇ x ⁇ 1) in which some Ga is replaced with Al has a larger bandgap than Ga 2 O 3 , and some Ga is In.
  • the substituted (Ga x In 1-x ) 2 O 3 (0 ⁇ x ⁇ 1) has a smaller bandgap than the Ga 2 O 3 .
  • the ⁇ - Ga 2 O3 system substrate 10 may contain a dopant such as Sn or Si.
  • the plane orientation of the main surface 11 of the ⁇ - Ga 2 O3 system substrate 10 is not particularly limited, and is, for example, (001), (010), (-201), or (101).
  • the ⁇ -Ga 2 O 3 system substrate 10 is obtained by slicing a bulk crystal of a Ga 2 O 3 system single crystal grown by a melt growth method such as an FZ (Floating Zone) method or an EFG (Edge Defined Film Fed Growth) method. It is formed by polishing the surface.
  • a melt growth method such as an FZ (Floating Zone) method or an EFG (Edge Defined Film Fed Growth) method. It is formed by polishing the surface.
  • a sapphire substrate or a silicon substrate may be used instead of the ⁇ - Ga 2 O3 system substrate 10.
  • the ⁇ -Ga 2 O 3 system single crystal film 12 is made of a ⁇ -Ga 2 O 3 system single crystal, similarly to the ⁇ -Ga 2 O 3 system substrate 10.
  • the ⁇ -Ga 2 O 3 system single crystal film 12 is formed by an oxidation reaction of a suboxide of A 2 O 3 (A is Ga, Al, or In), and ⁇ -Ga 2 O is formed in the formation of the sub oxide. Since substances containing impurities such as Cl and C that act as dopants are not generated in the three -system single crystal film 12, the concentration of impurities that function as dopants is very low. Therefore, the ⁇ - Ga 2 O3 system single crystal film 12 has a very low carrier concentration and is excellent as a material for a device having a high withstand voltage.
  • the concentration of Cl in the ⁇ -Ga 2 O3 system single crystal film 12 is 5 ⁇ 10 14 / cm 3 or less
  • the content of C is 2 ⁇ 10 16 / cm 3 or less
  • the content of Sn is 1 ⁇ 10 15
  • the content of Si is 5 ⁇ 10 15 / cm 3 or less
  • the content of F is 1 ⁇ 10 14 / cm 3 or less
  • the content of H is 2 ⁇ 10 17 / cm 3 or less.
  • Cl, C, Si, F, and H are all impurities that act as donors in the ⁇ - Ga 2 O3 system single crystal film 12.
  • the HVPE method and the THVPE method use a halide compound of Ga (GaCl, GaCl 3 ) as a raw material, it is very difficult to suppress the concentration of Cl to 1 ⁇ 10 16 / cm 3 or less. Further, in the organometallic chemical vapor deposition method (MOCVD method), since an organometallic raw material (trimethylgallium (TMGa), triethylgallium (TEGa)) is used as a raw material, the concentration of C is reduced to 3 ⁇ 10 16 / cm 3 or less. It is very difficult to suppress.
  • TMGa trimethylgallium
  • TMGa triethylgallium
  • the suboxide of Ga 2 O 3 is Ga 2 O or Ga O having an oxidation number of Ga lower than that of Ga 2 O 3 .
  • the suboxide of Al 2 O 3 is Al 2 O or Al O having an oxidation number of Al lower than that of Al 2 O 3
  • the suboxide of In 2 O 3 has an oxidation number of In higher than that of In 2 O 3 . Also low In 2 O or In O.
  • a Ga 2 O 3 suboxide is used as a raw material.
  • the Ga 2 O 3 suboxide and Al 2 O 3 suboxide is used as a raw material.
  • the suboxide and In of Ga 2 O 3 2 O 3 suboxide is used as a raw material.
  • ⁇ -Ga 2 O 3 system single crystal film 12 as ⁇ - (Ga x Al y In (1-xy) ) 2 O 3 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • a Ga 2 O 3 suboxide, an Al 2 O 3 suboxide, and an In 2 O 3 suboxide are used as raw materials.
  • the ⁇ - Ga 2 O3 system single crystal film 12 may contain a dopant intentionally added such as Si and Sn.
  • a dopant intentionally added such as Si and Sn.
  • FIG. 2 is a vertical cross-sectional view of the vapor phase growth apparatus 2 according to the embodiment of the present invention.
  • the gas phase growth device 2 is installed in a reaction chamber 20 having a first gas introduction port 21, a second gas introduction port 22, a third gas introduction port 23, and an exhaust port 25, and around the reaction chamber 20.
  • a first heating means 27 and a second heating means 28 for heating a predetermined area in the reaction chamber 20 are provided.
  • a reaction vessel 26 containing a raw material for a Ga 2 O 3 suboxide gas (hereinafter referred to as Ga 2 O 3 suboxide gas) is arranged, and a Ga 2 O 3 suboxide gas is generated. It has a raw material reaction region R1 and a crystal growth region R2 in which the ⁇ -Ga 2 O 3 system substrate 10 is arranged and the ⁇ -Ga 2 O 3 system single crystal film 12 is grown.
  • the reaction chamber 20 is made of, for example, quartz glass.
  • the reaction vessel 26 is made of, for example, quartz glass, and the raw materials for the Ga 2 O 3 suboxide gas contained in the reaction vessel 26 are solid (for example, single crystal bulk or polycrystalline powder) Ga 2 O 3 and liquid. Metal Ga.
  • the solid Ga 2 O 3 and the liquid metal Ga are housed in the reaction vessel 26 in contact with each other.
  • Ga 2 O 3 may be a single mass or a powder.
  • the Ga 2 O 3 sub Gas phase growth apparatus 2 When forming a ⁇ - (Ga x Al 1-x ) 2 O 3 (0 ⁇ x ⁇ 1) single crystal film as the ⁇ -Ga 2 O 3 system single crystal film 12, the Ga 2 O 3 sub Gas phase growth apparatus 2 provided with a raw material reaction region R1 for producing an Al 2 O 3 suboxide gas (hereinafter referred to as Al 2 O 3 suboxide gas ) in addition to the raw material reaction region R1 for producing an oxide gas. Is used.
  • a reaction vessel 26 containing Al 2 O 3 which is a raw material of the Al 2 O 3 suboxide gas and the metal Al is arranged.
  • a vapor phase growth apparatus 2 provided with a raw material reaction region R1 for producing an In 2 O 3 suboxide gas (hereinafter referred to as In 2 O 3 suboxide gas ) in addition to the raw material reaction region R1 for producing an oxide gas. Is used.
  • a reaction vessel 26 containing In 2 O 3 which is a raw material of the In 2 O 3 suboxide gas and the metal In is arranged.
  • the first heating means 27 and the second heating means 28 can heat the raw material reaction region R1 and the crystal growth region R2 of the reaction chamber 20, respectively.
  • the first heating means 27 and the second heating means 28 are, for example, resistance heating type or radiant heating type heating devices.
  • the first gas introduction port 21 is a port for introducing a carrier gas for carrying the generated suboxide gas into the raw material reaction region R1 of the reaction chamber 20.
  • the second gas introduction port 22 is a port for introducing O 2 gas, which is a raw material gas for oxygen, into the crystal growth region R2 together with the carrier gas.
  • the third gas introduction port 23 is a port for introducing a carrier gas and, if necessary, a raw material gas of a dopant intentionally added such as SiC4 into the crystal growth region R2 of the reaction chamber 20.
  • the carrier gas introduced from the first gas introduction port 21, the second gas introduction port 22, and the third gas introduction port 23 is an inert gas such as N2 gas or Ar gas. If N is mixed in the ⁇ -Ga 2 O 3 system single crystal film 12, it may act as an acceptor, but by adjusting the conditions such as the partial pressure of the raw material supply and the temperature, the ⁇ -Ga 2 O 3 system single crystal film It is possible to prevent contamination with 12. On the other hand, since Ar does not act as a dopant even if it is mixed in the ⁇ - Ga 2 O3 system single crystal film 12, it is preferable to use Ar gas as a carrier gas.
  • the raw material reaction region R1 of the reaction chamber 20 is heated by using the first heating means 27, and the atmospheric temperature of the raw material reaction region R1 is kept at a predetermined temperature, for example, 800 ° C. or higher.
  • a predetermined temperature for example, 800 ° C. or higher.
  • the supply partial pressure of the Ga 2 O 3 suboxide gas can be made to be about the same as the supply partial pressure of the Ga raw material gas of the HVPE method.
  • the growth rate of the ⁇ -Ga 2 O 3 system single crystal film 12 is proportional to the supply partial pressure of this Ga 2 O 3 suboxide gas.
  • the atmospheric temperature of the raw material reaction region R1 is set lower than the softening point of the reaction chamber 20 and the reaction vessel 26 (for example, about 1200 ° C. if made of quartz glass).
  • Ga 2 O 3 in the reaction vessel 26 is reacted with the metal Ga under the above-mentioned atmospheric temperature to generate Ga 2 O 3 suboxide gas.
  • Ga 2 O gas and Ga O gas, which are Ga 2 O 3 suboxide gases, are produced by the chemical reactions represented by the following formulas 1 and 2, respectively.
  • raw materials containing elements such as Cl and C that act as dopants in the ⁇ -Ga 2 O 3 system single crystal film 12 are used to generate the Ga 2 O 3 suboxide gas. I can't. Therefore, with the generation of Ga 2 O gas, a substance containing an element acting as a dopant is not generated in the ⁇ -Ga 2 O 3 system single crystal film 12.
  • Ga 2 O 3 and metal Ga are solid and liquid, respectively, because of their low vapor pressure, but Ga 2 O and Ga O produced by these reactions have higher vapor pressure than Ga 2 O 3 and metal Ga. It becomes a gas. Due to the difference in vapor pressure from this raw material, high-purity Ga 2 O gas and Ga O gas, that is, Ga 2 O 3 suboxide gas can be obtained.
  • FIG. 3 is a graph showing the relationship between the partial pressure and temperature of Ga 2 O gas and Ga O gas in the suboxide gas generated by heating the contacted Ga 2 O 3 and the metal Ga.
  • the concentration of GaO gas in the Ga2O3 suboxide gas is negligibly low compared to the concentration of Ga2O gas. That is, the Ga 2 O 3 suboxide gas is substantially composed of Ga 2 O gas.
  • the partial pressure of Ga 2 O gas and Ga O gas is determined almost exclusively by the atmospheric temperature of the raw material reaction region R1 if the mixture (contact) of Ga 2 O 3 and the metal Ga is sufficient. Therefore, the amount of Ga 2 O 3 suboxide gas supplied to the crystal growth region R2 is determined by the atmospheric temperature of the raw material reaction region R1 and the flow rate of the carrier gas carrying the Ga 2 O 3 suboxide gas.
  • the generated Ga 2 O suboxide gas is carried to the crystal growth region R2 by a carrier gas such as Ar gas introduced from the first gas introduction port 21.
  • the generated Al 2 O suboxide gas and In 2 O suboxide gas also have a crystal growth region due to a carrier gas such as Ar gas introduced from the first gas introduction port 21. It is carried to R2.
  • the Ga 2 O suboxide gas generated in the raw material reaction region R1 is introduced from the second gas introduction port 22.
  • the O 2 gas was mixed, and the ⁇ -Ga 2 O 3 system substrate 10 was exposed to the mixed gas, and the ⁇ -Ga 2 O 3 system single crystal was placed on the main surface 11 of the ⁇ -Ga 2 O 3 system substrate 10.
  • the film 12 is epitaxially grown.
  • Ga 2 O 3 constituting the ⁇ -Ga 2 O 3 system single crystal film 12 is produced by a chemical reaction represented by the following formulas 7 and 8.
  • the growth temperature of the ⁇ - Ga 2 O3 system single crystal film 12 is preferably 800 ° C. or higher. If the temperature is lower than 800 ° C., a metastable phase of ⁇ -Ga 2 O 3 or ⁇ -Ga 2 O 3 may be generated and a single crystal may not be obtained.
  • the growth pressure of the ⁇ - Ga 2 O3 system single crystal film 12 is, for example, about 1 atm.
  • the growth temperature of the ⁇ -Ga 2 O 3 system single crystal film 12 is the melting point of Ga 2 O 3 (about 1900 ° C.) and the softening point of the reaction chamber 20 (for example, about 1200 ° C. if made of quartz glass). It is set lower than the lower one.
  • FIG. 4 is a graph showing the equilibrium constants in the formation reaction of Ga 2 O 3 by each film forming method of the method according to the embodiment of the present invention, the HVPE method, and the THVPE method.
  • the upper horizontal axis of FIG. 4 is temperature (° C.)
  • the lower horizontal axis is 1000 / T (K -1 ) (T is absolute temperature)
  • the vertical axis is logK (K is the equilibrium constant).
  • FIG. 4 shows that the method according to the embodiment of the present invention is more likely to generate Ga 2 O 3 than the HVPE method and the THVPE method.
  • the growth rate of the ⁇ - Ga 2 O3 system single crystal film 12 is about 1 to 10 ⁇ m / h depending on the growth conditions such as the growth temperature. This growth rate is higher than the growth rate of other crystal growth methods, and is significantly higher than, for example, the growth rate of about several hundred nm / h in the MBE method. Further, from the demonstration experiment, it has been confirmed that there is a sufficient possibility that the growth rate of the HVPE method (several tens of ⁇ m / h) or higher can be achieved by further adjusting the growth conditions.
  • Equation 10 shows the main chemical reactions that produce (Ga x In 1-x ) 2 O 3 .
  • a means such as polishing is used to reduce the electrical resistance of the ⁇ -Ga 2 O 3 system substrate 10 in the thickness direction.
  • the ⁇ -Ga 2 O 3 system substrate 10 may be thinned by using it. Further, the ⁇ -Ga 2 O 3 system single crystal film 12 obtained through the above steps may be separated from the ⁇ -Ga 2 O 3 system substrate 10 by means such as polishing.
  • Ga 2 O 3 suboxide gas, Al 2 O 3 suboxide gas, In 2 O 3 suboxide gas which are raw materials for the ⁇ -Ga 2 O 3 system single crystal film 12, and the like.
  • the O 2 gas and the inert gas which is a carrier gas, do not contain impurities such as Cl and C that function as dopants in the ⁇ -Ga 2 O 3 system single crystal film 12, and are the raw materials for the suboxide gas.
  • Ga 2 O 3 , Al 2 O 3 , In 2 O 3 , metal Ga, metal Al, and metal In also contain impurities such as Cl and C that function as dopants in the ⁇ -Ga 2 O 3 system single crystal film 12.
  • a substance containing an impurity that functions as a dopant is not generated in the ⁇ - Ga 2 O3 system single crystal film 12 with the generation of the suboxide gas. Therefore, the concentration of impurities that function as dopants in the ⁇ -Ga 2 O 3 system single crystal film 12 is extremely low, and ⁇ -Ga 2 O 3 system singles are used as materials for devices that require high withstand voltage, such as Schottky barrier diodes. By using the crystal film 12, a very high withstand voltage can be obtained.
  • the method for producing the ⁇ -Ga 2 O 3 system single crystal film 12 according to the embodiment of the present invention is also excellent in the growth rate of the ⁇ -Ga 2 O 3 system single crystal film 12, and therefore, the device to be applied. Even if the ⁇ -Ga 2 O 3 system single crystal film 12 is required to have a certain thickness due to its characteristics, the ⁇ -Ga 2 O 3 system single crystal film 12 is formed in a realistic time at the production site. be able to.
  • FIG. 5 is a graph showing the measurement results of elemental analysis of the crystal laminated structure 1 by the secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • a ⁇ -Ga 2 O 3 single crystal substrate was used as the ⁇ -Ga 2 O 3 system substrate 10
  • a ⁇ -Ga 2 O 3 single crystal film was used as the ⁇ -Ga 2 O 3 system single crystal film 12.
  • FIG. 5 shows the concentrations of the impurity elements Cl, Sn, and Si that act as dopants in the ⁇ - Ga 2 O3 system single crystal film 12.
  • the horizontal axis of FIG. 5 is the depth ( ⁇ m) from the surface of the ⁇ -Ga 2 O 3 single crystal film (the surface of the crystal laminated structure 1), and the vertical axis is the concentration of each element (/ cm 3 ). ..
  • the dotted line on the right side of the graph represents the background (BG) level of each element concentration.
  • the background level is the concentration of each element measured with nothing contained in the analyzer.
  • the range in the depth direction indicated by " ⁇ -Ga 2 O 3 single crystal film” and “substrate” on the upper side of the graph includes ⁇ - Ga 2 O 3 single crystal film and Sn as dopants , respectively.
  • the measurement area of the system substrate 10 is shown.
  • the rise in the concentration of each element near the surface of the ⁇ -Ga 2 O 3 single crystal film is due to the influence of the surface adsorbent, and does not indicate the concentration of each element inside.
  • the concentration of Cl in the ⁇ -Ga 2 O 3 single crystal film is consistent with the background concentration of 5 ⁇ 10 14 / cm 3 , which is below the detection limit of the SIMS apparatus, that is, 5 It can be seen that it is ⁇ 10 14 / cm 3 or less.
  • the concentration of C in the ⁇ -Ga 2 O 3 single crystal film is consistent with the background concentration of 2 ⁇ 10 16 / cm 3 , which is below the detection limit of the SIMS device, that is, 2 ⁇ 10 16 /. It can be seen that it is cm 3 or less.
  • the concentration of Sn in the ⁇ -Ga 2 O 3 single crystal film is consistent with the background concentration of 1 ⁇ 10 15 / cm 3 , which is below the detection limit of the SIMS device, that is, 1 ⁇ 10 15 /. It can be seen that it is cm 3 or less.
  • the concentration of Si in the ⁇ -Ga 2 O 3 single crystal film is consistent with the background concentration of 5 ⁇ 10 15 / cm 3 , which is below the detection limit of the SIMS device, that is, 5 ⁇ 10 15 /. It can be seen that it is cm 3 or less.
  • the concentration of F in the ⁇ -Ga 2 O 3 single crystal film is consistent with the background concentration of 1 ⁇ 10 14 / cm 3 , which is below the detection limit of the SIMS device, that is, 1 ⁇ 10 14 /. It can be seen that it is cm 3 or less.
  • These very low concentrations of Cl, C, Sn, Si, and F are Ga 2 O 3 suboxide gas and O 2 gas, Ga 2 O 3 suboxide gas, which are the raw materials for the ⁇ -Ga 2 O 3 single crystal film. This is because Ga 2 O 3 and metal Ga, which are the raw materials of the above, and the inert gas, which is the carrier gas, do not contain Cl, C, Sn, Si, and F.
  • the reaction chamber 20 and the reaction vessel 26 of the vapor phase growth apparatus 2 used for forming the ⁇ -Ga 2 O 3 single crystal film are made of quartz glass (SiO 2 ) and contain Si, but the above-mentioned ⁇ - From the concentration of Si in the Ga 2 O 3 system single crystal film 12, it is considered that Si contained in the reaction chamber 20 and the reaction vessel 26 was hardly mixed in the ⁇ -Ga 2 O 3 single crystal film.
  • the ⁇ -Ga 2 O 3 system substrate 10 which is the base for the epitaxial crystal growth of the ⁇ -Ga 2 O 3 single crystal film, contained Sn having a concentration of about 5 ⁇ 10 18 / cm 3 as a dopant. From the concentration of Sn in the ⁇ -Ga 2 O 3 single crystal film, it is considered that Sn contained in the ⁇ -Ga 2 O 3 system substrate 10 was hardly mixed in the ⁇ -Ga 2 O 3 single crystal film.
  • the concentration of H in the ⁇ -Ga 2 O 3 single crystal film is not performed because the background level of the SIMS device is as high as 2 ⁇ 10 17 / cm 3 and meaningful data cannot be obtained.
  • Ga 2 O 3 suboxide gas and O 2 gas which are the raw materials for the ⁇ -Ga 2 O 3 single crystal film
  • Ga 2 O 3 and metal Ga which are the raw materials for the Ga 2 O 3 suboxide gas
  • a carrier gas Since H is not contained in a certain inert gas, it is presumed that the concentration of H in the ⁇ -Ga 2 O 3 single crystal film is significantly lower than the background level of 2 ⁇ 10 17 / cm 3 .
  • FIG. 6 is an observation image of the surface morphology of a ⁇ -Ga 2 O 3 single crystal film having a thickness of 3 ⁇ m with an optical microscope. According to the observation image of FIG. 6, streaks peculiar to the surface of the epitaxially grown crystal can be confirmed. From this surface condition, it can be seen that a film having a quality comparable to that formed by the HVPE method is obtained.
  • the evaluation results of the ⁇ -Ga 2 O 3 single crystal film as the ⁇ -Ga 2 O 3 system single crystal film 12 are shown, but other ⁇ -Ga 2 O 3 system single crystal films are shown. Even when ⁇ - (Ga x Al 1-x ) 2 O 3 single crystal film or ⁇ - (Ga x In 1-x ) 2 O 3 single crystal film is evaluated, ⁇ -Ga 2 O 3 Similar to the single crystal film, the unintentional mixing of impurities acting as dopants is suppressed, so that the same evaluation results can be obtained.
  • a method for producing a ⁇ -Ga 2 O 3 series single crystal film that has a high crystal growth rate and can suppress unintentional mixing of impurities that act as dopants, and a ⁇ -Ga 2 O 3 series single crystal produced by that method. Provides a membrane.

Abstract

Provided is a method of manufacturing a β-Ga2O3-based single crystal film 12 that comprises β-Ga2O3-based single crystal including single crystal of β-Ga2O3 or single crystal of β-Ga2O3 wherein Ga is partially substituted by Al and/or In. This method of manufacturing the β-Ga2O3-based single crystal film 12 comprises a step for generating a suboxide gas of A2O3 (wherein A stands for Ga, Al or In) without the generation of a substance containing impurities that act as dopants in the β-Ga2O3-based single crystal film 12, and a step for reacting the suboxide gas with O2 gas and thus epitaxially growing the β-Ga2O3-based single crystal film 12 on a β-Ga2O3-based substrate 10.<sb /> <sb /> <sb /> <sb />

Description

β-Ga2O3系単結晶膜及びその製造方法β-Ga2O3 series single crystal film and its manufacturing method
 本発明は、β-Ga系単結晶膜(β-Ga-based single crystal film)及びその製造方法に関する。 The present invention relates to a β-Ga 2 O 3 system single crystal film (β-Ga 2 O 3 -based single crystal film) and a method for producing the same.
 従来、ハイドライド気相成長法(HVPE法)やトリハライド気相成長法(THVPE法)によりβ-Ga系単結晶膜を成長させる技術が知られている(例えば、特許文献1参照)。特にHVPE法は、分子線エピタキシー法(MBE法)などの他の成長方法と比較して結晶成長速度が大きく、生産現場において現実的な時間で厚い結晶膜を形成することができるという優れた特徴を有する。 Conventionally, a technique for growing a β - Ga 2 O3 system single crystal film by a hydride vapor phase growth method (HVPE method) or a trihalide vapor phase growth method (THVPE method) is known (see, for example, Patent Document 1). In particular, the HVPE method has an excellent feature that the crystal growth rate is higher than that of other growth methods such as the molecular beam epitaxy method (MBE method), and a thick crystal film can be formed in a realistic time at a production site. Has.
特許第6376600号公報Japanese Patent No. 6376600
 しかしながら、HVPE法及びTHVPE法では、Gaのハライド化合物(GaCl、GaCl)をβ-Ga系単結晶膜の原料として用いるため、原料由来のClが不純物としてβ-Ga系単結晶膜に混入してしまう。Clはβ-Ga系半導体中で浅いドナーとして働くため、たとえアンドープ(意図的なドーピングをしていない)のβ-Ga系単結晶膜を形成した場合であってもキャリア(自由電子)が発生してしまう。例えば、GaClを原料として用いた場合には、β-Ga系単結晶膜に混入するClの濃度は1~2×1016/cm程度であり、発生するキャリア(自由電子)の濃度も同程度である。 However, in the HVPE method and the THVPE method, since the Ga halide compound (GaCl, GaCl 3 ) is used as a raw material for the β-Ga 2 O 3 system single crystal film, Cl derived from the raw material is used as an impurity in the β-Ga 2 O 3 system. It mixes in the single crystal film. Since Cl acts as a shallow donor in the β-Ga 2 O 3 system semiconductor, carriers are formed even when an undoped (unintentionally undoped) β-Ga 2 O 3 system single crystal film is formed. (Free electrons) will be generated. For example, when GaCl is used as a raw material, the concentration of Cl mixed in the β-Ga 2 O3 system single crystal film is about 1 to 2 × 10 16 / cm 3 , and the carriers (free electrons) generated are. The concentration is about the same.
 例えば、β-Ga系単結晶膜をパワーデバイスに用いる場合、デバイスの耐圧はGa系単結晶膜のキャリア濃度と反比例する関係にある。このため、より高耐圧のデバイスを製造することができるβ-Ga系単結晶膜を得るためには、Clのようなドーパントとして働く不純物のβ-Ga系単結晶膜への意図しない混入を抑えることが重要である。 For example, when a β-Ga 2 O 3 system single crystal film is used as a power device, the withstand voltage of the device is inversely proportional to the carrier concentration of the Ga 2 O 3 system single crystal film. Therefore, in order to obtain a β-Ga 2 O 3 system single crystal film capable of manufacturing a device having a higher withstand voltage, an impurity β-Ga 2 O 3 system single crystal film such as Cl, which acts as a dopant, is used. It is important to prevent unintended contamination.
 したがって、本発明の目的は、結晶成長速度が大きく、かつドーパントとして働く不純物の意図しない混入を抑えることのできるβ-Ga系単結晶膜の製造方法、及びその方法により製造されたβ-Ga系単結晶膜を提供することにある。 Therefore, an object of the present invention is a method for producing a β - Ga 2 O3 system single crystal film capable of suppressing unintentional mixing of impurities having a high crystal growth rate and acting as a dopant, and β produced by the method. -To provide a Ga 2 O 3 system single crystal film.
 本発明の一態様は、上記目的を達成するために、下記[1]~[4]のβ-Ga系単結晶膜の製造方法、[5]、[6]のβ-Ga系単結晶膜を提供する。 In order to achieve the above object, one aspect of the present invention is the method for producing a β - Ga 2 O3 system single crystal film according to the following [1] to [4], β-Ga 2 according to [5] and [6]. An O3 series single crystal film is provided.
[1]β-Gaの単結晶、又は、一部のGaがAl、Inの一方又は両方で置換されたβ-Gaの単結晶であるβ-Ga系単結晶からなるβ-Ga系単結晶膜の製造方法であって、前記β-Ga系単結晶膜の中でドーパントとして働く不純物を含む物質の生成を伴わずにA(AはGa、Al、又はIn)のサブオキサイドガスを生成する工程と、前記サブオキサイドガスをOガスと反応させて、基板上に前記β-Ga系単結晶膜をエピタキシャル成長させる工程と、を含む、β-Ga系単結晶膜の製造方法。
[2]前記サブオキサイドガスを生成する工程において、GaのサブオキサイドガスをGaと金属Gaを反応させて生成し、Alのサブオキサイドガスを生成する場合はAlと金属Alを反応させて生成し、Inのサブオキサイドガスを生成する場合はInと金属Inを反応させて生成する、前記[1]に記載のβ-Ga系単結晶膜の製造方法。
[3]前記サブオキサイドガスを生成する工程において、800℃以上の雰囲気温度下で前記サブオキサイドガスを生成する、前記[1]又は[2]に記載のβ-Ga系単結晶膜の製造方法。
[4]前記β-Ga系単結晶膜をエピタキシャル成長させる工程において、800℃以上の雰囲気温度下で前記β-Ga系単結晶膜をエピタキシャル成長させる、前記[1]~[3]のいずれか1項に記載のβ-Ga系単結晶膜の製造方法。
[5]β-Gaの単結晶、又は、一部のGaがAl、Inの一方又は両方で置換されたβ-Gaの単結晶であるβ-Ga系単結晶からなり、Clの濃度が5×1014/cm以下、Cの含有量が2×1016/cm以下である、β-Ga系単結晶膜。
[6]Snの含有量が1×1015/cm以下、Siの含有量が5×1015/cm以下、Fの含有量が1×1014/cm以下である、前記[5]に記載のβ-Ga系単結晶膜。
[1] β-Ga 2 O 3 single crystal, which is a single crystal of β-Ga 2 O 3 , or a single crystal of β-Ga 2 O 3 in which a part of Ga is substituted with one or both of Al and In. A method for producing a β-Ga 2 O 3 system single crystal film composed of crystals, which does not involve the production of a substance containing an impurity that acts as a dopant in the β - Ga 2 O 3 system single crystal film. 3 (A is Ga, Al, or In) The step of generating a suboxide gas and the suboxide gas being reacted with the O 2 gas to epitaxially grow the β-Ga 2 O 3 system single crystal film on the substrate. A method for producing a β - Ga 2 O3 system single crystal film, which comprises a step of making the single crystal film.
[2] In the step of producing the suboxide gas, the suboxide gas of Ga 2 O 3 is produced by reacting Ga 2 O 3 with the metal Ga, and in the case of producing the suboxide gas of Al 2 O 3 , Al Β-Ga according to the above [1], which is produced by reacting 2 O 3 with metal Al to generate In 2 O 3 suboxide gas by reacting In 2 O 3 with metal In. A method for producing a 2O3 series single crystal film.
[ 3 ] The β-Ga 2 O3 system single crystal film according to the above [1] or [2], which produces the suboxide gas at an atmospheric temperature of 800 ° C. or higher in the step of producing the suboxide gas. Manufacturing method.
[4] In the step of epitaxially growing the β-Ga 2 O 3 system single crystal film, the β-Ga 2 O 3 system single crystal film is epitaxially grown under an atmospheric temperature of 800 ° C. or higher. ] The method for producing a β - Ga 2 O3 system single crystal film according to any one of the above items.
[5] β-Ga 2 O 3 single crystal, which is a single crystal of β-Ga 2 O 3 , or a single crystal of β-Ga 2 O 3 in which a part of Ga is substituted with one or both of Al and In. A β-Ga 2 O 3 series single crystal film composed of crystals, having a Cl concentration of 5 × 10 14 / cm 3 or less and a C content of 2 × 10 16 / cm 3 or less.
[6] The Sn content is 1 × 10 15 / cm 3 or less, the Si content is 5 × 10 15 / cm 3 or less, and the F content is 1 × 10 14 / cm 3 or less. ] The β - Ga 2 O3 system single crystal film according to.
 本発明によれば、結晶成長速度が大きく、かつドーパントとして働く不純物の意図しない混入を抑えることのできるβ-Ga系単結晶膜の製造方法、及びその方法により製造されたβ-Ga系単結晶膜を提供することができる。 According to the present invention, a method for producing a β - Ga 2 O3 system single crystal film capable of suppressing unintentional mixing of impurities acting as a dopant and having a high crystal growth rate, and β-Ga produced by the method. A 2O3 system single crystal film can be provided.
図1は、本発明の実施の形態に係る結晶積層構造体の垂直断面図である。FIG. 1 is a vertical sectional view of a crystal laminated structure according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る気相成長装置の垂直断面図である。FIG. 2 is a vertical sectional view of a vapor phase growth apparatus according to an embodiment of the present invention. 図3は、Gaサブオキサイドガス中のGaOガスとGaOガスの分圧と温度の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the partial pressure and the temperature of the Ga 2 O gas and the Ga O gas in the Ga 2 O 3 suboxide gas. 図4は、本発明の実施の形態に係る方法、HVPE法、及びTHVPE法の各成膜法によるGaの生成反応における平衡定数を示すグラフである。FIG. 4 is a graph showing the equilibrium constants in the formation reaction of Ga 2 O 3 by each film forming method of the method according to the embodiment of the present invention, the HVPE method, and the THVPE method. 図5は、本発明の実施例に係る結晶積層構造体のSIMSによる元素分析の測定結果を示すグラフである。FIG. 5 is a graph showing the measurement results of elemental analysis by SIMS of the crystal laminated structure according to the embodiment of the present invention. 図6は、厚さ3μmのβ-Ga単結晶膜の表面モフォロジーの光学顕微鏡による観察像である。FIG. 6 is an observation image of the surface morphology of a β-Ga 2 O 3 single crystal film having a thickness of 3 μm with an optical microscope.
〔実施の形態〕
(結晶積層構造体の構成)
 図1は、本発明の実施の形態に係る結晶積層構造体1の垂直断面図である。結晶積層構造体1は、β-Ga系基板10と、β-Ga系基板10の主面11上にエピタキシャル結晶成長により形成されたβ-Ga系単結晶膜12を有する。
[Embodiment]
(Structure of crystal laminated structure)
FIG. 1 is a vertical cross-sectional view of the crystal laminated structure 1 according to the embodiment of the present invention. The crystal laminated structure 1 is a β-Ga 2 O 3 system single crystal film formed by epitaxial crystal growth on the main surface 11 of the β-Ga 2 O 3 system substrate 10 and the β-Ga 2 O 3 system substrate 10. Has twelve.
 β-Ga系基板10は、β-Ga系単結晶からなる基板である。ここで、β-Ga系単結晶とは、β型の結晶構造を有するGaであるβ-Gaの単結晶、又は、一部のGaがAl、Inの一方又は両方で置換されたβ-Gaの単結晶であり、(GaAlIn(1-x-y)(0<x≦1、0≦y≦1、0<x+y≦1)で表される理想組成を有する。例えば、一部のGaがAlで置換された(GaAl1-x(0<x<1)は、Gaよりもバンドギャップが大きく、一部のGaがInで置換された(GaIn1-x(0<x<1)は、Gaよりもバンドギャップが小さい。また、β-Ga系基板10は、Sn、Siなどのドーパントを含んでもよい。 The β-Ga 2 O 3 system substrate 10 is a substrate made of a β-Ga 2 O 3 system single crystal. Here, the β-Ga 2 O 3 system single crystal is a single crystal of β-Ga 2 O 3 which is Ga 2 O 3 having a β-type crystal structure, or a part of Ga is one of Al and In. It is a single crystal of β-Ga 2 O 3 substituted with or both, and (Ga x Aly In (1-xy) ) 2 O 3 (0 <x ≦ 1, 0 ≦ y ≦ 1, 0 < It has an ideal composition represented by x + y ≦ 1). For example, (Ga x Al 1-x ) 2 O 3 (0 <x <1) in which some Ga is replaced with Al has a larger bandgap than Ga 2 O 3 , and some Ga is In. The substituted (Ga x In 1-x ) 2 O 3 (0 <x <1) has a smaller bandgap than the Ga 2 O 3 . Further, the β - Ga 2 O3 system substrate 10 may contain a dopant such as Sn or Si.
 β-Ga系基板10の主面11の面方位は特に限定されず、例えば、(001)、(010)、(-201)、又は(101)である。 The plane orientation of the main surface 11 of the β - Ga 2 O3 system substrate 10 is not particularly limited, and is, for example, (001), (010), (-201), or (101).
 β-Ga系基板10は、例えば、FZ(Floating Zone)法やEFG(Edge Defined Film Fed Growth)法等の融液成長法により育成したGa系単結晶のバルク結晶をスライスし、表面を研磨することにより形成される。 The β-Ga 2 O 3 system substrate 10 is obtained by slicing a bulk crystal of a Ga 2 O 3 system single crystal grown by a melt growth method such as an FZ (Floating Zone) method or an EFG (Edge Defined Film Fed Growth) method. It is formed by polishing the surface.
 なお、β-Ga系基板10の代わりにサファイア基板やシリコン基板を用いてもよい。 A sapphire substrate or a silicon substrate may be used instead of the β - Ga 2 O3 system substrate 10.
 β-Ga系単結晶膜12は、β-Ga系基板10と同様に、β-Ga系単結晶からなる。β-Ga系単結晶膜12は、A(AはGa、Al、又はIn)のサブオキサイドの酸化反応により形成され、また、そのサブオキサイドの生成においてβ-Ga系単結晶膜12の中でドーパントとして働くCl、Cなどの不純物を含む物質が生成されないため、ドーパントとして機能する不純物の濃度が非常に低い。このため、β-Ga系単結晶膜12はキャリア濃度が非常に低く、高耐圧のデバイスの材料として優れている。 The β-Ga 2 O 3 system single crystal film 12 is made of a β-Ga 2 O 3 system single crystal, similarly to the β-Ga 2 O 3 system substrate 10. The β-Ga 2 O 3 system single crystal film 12 is formed by an oxidation reaction of a suboxide of A 2 O 3 (A is Ga, Al, or In), and β-Ga 2 O is formed in the formation of the sub oxide. Since substances containing impurities such as Cl and C that act as dopants are not generated in the three -system single crystal film 12, the concentration of impurities that function as dopants is very low. Therefore, the β - Ga 2 O3 system single crystal film 12 has a very low carrier concentration and is excellent as a material for a device having a high withstand voltage.
 例えば、β-Ga系単結晶膜12のClの濃度は5×1014/cm以下、Cの含有量は2×1016/cm以下、Snの含有量は1×1015/cm以下、Siの含有量は5×1015/cm以下、Fの含有量は1×1014/cm以下、Hの含有量は2×1017/cm以下である。Cl、C、Si、F、Hは、いずれもβ-Ga系単結晶膜12の中でドナーとして働く不純物である。 For example, the concentration of Cl in the β-Ga 2 O3 system single crystal film 12 is 5 × 10 14 / cm 3 or less, the content of C is 2 × 10 16 / cm 3 or less, and the content of Sn is 1 × 10 15 The content of Si is 5 × 10 15 / cm 3 or less, the content of F is 1 × 10 14 / cm 3 or less, and the content of H is 2 × 10 17 / cm 3 or less. Cl, C, Si, F, and H are all impurities that act as donors in the β - Ga 2 O3 system single crystal film 12.
 なお、HVPE法及びTHVPE法では、Gaのハライド化合物(GaCl、GaCl)を原料として用いるため、Clの濃度を1×1016/cm以下に抑えることは非常に困難である。また、有機金属化学気相成長法(MOCVD法)では、有機金属原料(トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa))を原料として用いるため、Cの濃度を3×1016/cm以下に抑えることは非常に困難である。 Since the HVPE method and the THVPE method use a halide compound of Ga (GaCl, GaCl 3 ) as a raw material, it is very difficult to suppress the concentration of Cl to 1 × 10 16 / cm 3 or less. Further, in the organometallic chemical vapor deposition method (MOCVD method), since an organometallic raw material (trimethylgallium (TMGa), triethylgallium (TEGa)) is used as a raw material, the concentration of C is reduced to 3 × 10 16 / cm 3 or less. It is very difficult to suppress.
 ここで、Gaのサブオキサイドは、Gaの酸化数がGaよりも低いGaO又はGaOである。また、Alのサブオキサイドは、Alの酸化数がAlよりも低いAlO又はAlOであり、Inのサブオキサイドは、Inの酸化数がInよりも低いInO又はInOである。β-Ga系単結晶膜12としてβ-Ga単結晶膜を形成する場合は、Gaのサブオキサイドを原料に用いる。β-Ga系単結晶膜12としてβ-(GaAl1-x(0<x<1)単結晶膜を形成する場合は、GaのサブオキサイドとAlのサブオキサイドを原料に用いる。β-Ga系単結晶膜12としてβ-(GaIn1-x(0<x<1)単結晶膜を形成する場合は、GaのサブオキサイドとInのサブオキサイドを原料に用いる。β-Ga系単結晶膜12としてβ-(GaAlIn(1-x-y)(0<x≦1、0≦y≦1、0<x+y≦1)単結晶膜を形成する場合は、Gaのサブオキサイド、Alのサブオキサイド、及びInのサブオキサイドを原料に用いる。 Here, the suboxide of Ga 2 O 3 is Ga 2 O or Ga O having an oxidation number of Ga lower than that of Ga 2 O 3 . Further, the suboxide of Al 2 O 3 is Al 2 O or Al O having an oxidation number of Al lower than that of Al 2 O 3 , and the suboxide of In 2 O 3 has an oxidation number of In higher than that of In 2 O 3 . Also low In 2 O or In O. When forming a β-Ga 2 O 3 single crystal film as the β-Ga 2 O 3 system single crystal film 12, a Ga 2 O 3 suboxide is used as a raw material. When forming a β- (Ga x Al 1-x ) 2 O 3 (0 <x <1) single crystal film as the β-Ga 2 O 3 system single crystal film 12, the Ga 2 O 3 suboxide and Al 2 O 3 suboxide is used as a raw material. When forming a β- (Ga x In 1-x ) 2 O 3 (0 <x <1) single crystal film as the β-Ga 2 O 3 system single crystal film 12, the suboxide and In of Ga 2 O 3 2 O 3 suboxide is used as a raw material. β-Ga 2 O 3 system single crystal film 12 as β- (Ga x Al y In (1-xy) ) 2 O 3 (0 <x ≦ 1, 0 ≦ y ≦ 1, 0 <x + y ≦ 1) When forming a single crystal film, a Ga 2 O 3 suboxide, an Al 2 O 3 suboxide, and an In 2 O 3 suboxide are used as raw materials.
 なお、β-Ga系基板10からの不純物拡散を防ぐため、β-Ga系基板10とβ-Ga系単結晶膜12の間にバッファ層が形成されてもよい。 Even if a buffer layer is formed between the β-Ga 2 O 3 system substrate 10 and the β-Ga 2 O 3 system single crystal film 12 in order to prevent the diffusion of impurities from the β-Ga 2 O 3 system substrate 10. good.
 また、β-Ga系単結晶膜12は、Si、Snなどの意図的に添加されたドーパントを含んでもよい。この場合、上述のようにβ-Ga系単結晶膜12への意図しないドーパントの添加が抑えられるため、意図的に添加するドーパントの濃度を高い精度で制御することができる。 Further, the β - Ga 2 O3 system single crystal film 12 may contain a dopant intentionally added such as Si and Sn. In this case, since the unintended addition of the dopant to the β - Ga 2 O3 system single crystal film 12 is suppressed as described above, the concentration of the intentionally added dopant can be controlled with high accuracy.
(気相成長装置の構造)
 以下に、本実施の形態に係るβ-Ga系単結晶膜12としてのβ-Ga単結晶膜の成長に用いる気相成長装置の構造の一例について説明する。
(Structure of vapor phase growth device)
Hereinafter, an example of the structure of the vapor phase growth apparatus used for the growth of the β-Ga 2 O 3 single crystal film as the β-Ga 2 O 3 system single crystal film 12 according to the present embodiment will be described.
 図2は、本発明の実施の形態に係る気相成長装置2の垂直断面図である。気相成長装置2は、第1のガス導入ポート21、第2のガス導入ポート22、第3のガス導入ポート23、及び排気ポート25を有する反応チャンバー20と、反応チャンバー20の周囲に設置され、反応チャンバー20内の所定の領域を加熱する第1の加熱手段27及び第2の加熱手段28を備える。 FIG. 2 is a vertical cross-sectional view of the vapor phase growth apparatus 2 according to the embodiment of the present invention. The gas phase growth device 2 is installed in a reaction chamber 20 having a first gas introduction port 21, a second gas introduction port 22, a third gas introduction port 23, and an exhaust port 25, and around the reaction chamber 20. , A first heating means 27 and a second heating means 28 for heating a predetermined area in the reaction chamber 20 are provided.
 反応チャンバー20は、Gaのサブオキサイドのガス(以下、Gaサブオキサイドガスと呼ぶ)の原料が収容された反応容器26が配置され、Gaサブオキサイドガスが生成される原料反応領域R1と、β-Ga系基板10が配置され、β-Ga系単結晶膜12の成長が行われる結晶成長領域R2を有する。反応チャンバー20は、例えば、石英ガラスからなる。 In the reaction chamber 20, a reaction vessel 26 containing a raw material for a Ga 2 O 3 suboxide gas (hereinafter referred to as Ga 2 O 3 suboxide gas) is arranged, and a Ga 2 O 3 suboxide gas is generated. It has a raw material reaction region R1 and a crystal growth region R2 in which the β-Ga 2 O 3 system substrate 10 is arranged and the β-Ga 2 O 3 system single crystal film 12 is grown. The reaction chamber 20 is made of, for example, quartz glass.
 反応容器26は、例えば、石英ガラスからなり、反応容器26に収容されるGaサブオキサイドガスの原料は固体(例えば、単結晶のバルク又は多結晶の粉末)のGaと液体の金属Gaである。固体のGaと液体の金属Gaは、互いに接触した状態で反応容器26に収容される。Gaは1つの塊であっても、粉末であってもよい。 The reaction vessel 26 is made of, for example, quartz glass, and the raw materials for the Ga 2 O 3 suboxide gas contained in the reaction vessel 26 are solid (for example, single crystal bulk or polycrystalline powder) Ga 2 O 3 and liquid. Metal Ga. The solid Ga 2 O 3 and the liquid metal Ga are housed in the reaction vessel 26 in contact with each other. Ga 2 O 3 may be a single mass or a powder.
 なお、β-Ga系単結晶膜12として、β-(GaAl1-x(0<x<1)単結晶膜を成膜する場合は、Gaサブオキサイドガスを生成する原料反応領域R1の他に、Alのサブオキサイドのガス(以下、Alサブオキサイドガスと呼ぶ)を生成する原料反応領域R1を備えた気相成長装置2を用いる。Alサブオキサイドガスを生成する原料反応領域R1には、Alサブオキサイドガスの原料であるAlと金属Alが収容された反応容器26が配置される。 When forming a β- (Ga x Al 1-x ) 2 O 3 (0 <x <1) single crystal film as the β-Ga 2 O 3 system single crystal film 12, the Ga 2 O 3 sub Gas phase growth apparatus 2 provided with a raw material reaction region R1 for producing an Al 2 O 3 suboxide gas (hereinafter referred to as Al 2 O 3 suboxide gas ) in addition to the raw material reaction region R1 for producing an oxide gas. Is used. In the raw material reaction region R1 for producing the Al 2 O 3 suboxide gas, a reaction vessel 26 containing Al 2 O 3 which is a raw material of the Al 2 O 3 suboxide gas and the metal Al is arranged.
 また、β-Ga系単結晶膜12として、β-(GaIn1-x(0<x<1)単結晶膜を成膜する場合は、Gaサブオキサイドガスを生成する原料反応領域R1の他に、Inのサブオキサイドのガス(以下、Inサブオキサイドガスと呼ぶ)を生成する原料反応領域R1を備えた気相成長装置2を用いる。Inサブオキサイドガスを生成する原料反応領域R1には、Inサブオキサイドガスの原料であるInと金属Inが収容された反応容器26が配置される。 Further, when a β- (Ga x In 1-x ) 2 O 3 (0 <x <1) single crystal film is formed as the β-Ga 2 O 3 system single crystal film 12, the Ga 2 O 3 sub is formed. A vapor phase growth apparatus 2 provided with a raw material reaction region R1 for producing an In 2 O 3 suboxide gas (hereinafter referred to as In 2 O 3 suboxide gas ) in addition to the raw material reaction region R1 for producing an oxide gas. Is used. In the raw material reaction region R1 for producing the In 2 O 3 suboxide gas, a reaction vessel 26 containing In 2 O 3 which is a raw material of the In 2 O 3 suboxide gas and the metal In is arranged.
 第1の加熱手段27と第2の加熱手段28は、反応チャンバー20の原料反応領域R1と結晶成長領域R2をそれぞれ加熱することができる。第1の加熱手段27及び第2の加熱手段28は、例えば、抵抗加熱式や輻射加熱式の加熱装置である。 The first heating means 27 and the second heating means 28 can heat the raw material reaction region R1 and the crystal growth region R2 of the reaction chamber 20, respectively. The first heating means 27 and the second heating means 28 are, for example, resistance heating type or radiant heating type heating devices.
 第1のガス導入ポート21は、生成されるサブオキサイドガスを運ぶためのキャリアガスを反応チャンバー20の原料反応領域R1内に導入するためのポートである。第2のガス導入ポート22は、酸素の原料ガスであるOガスをそのキャリアガスとともに結晶成長領域R2へ導入するためのポートである。第3のガス導入ポート23は、キャリアガス、及び必要に応じてSiClなどの意図的に添加するドーパントの原料ガスを反応チャンバー20の結晶成長領域R2へ導入するためのポートである。 The first gas introduction port 21 is a port for introducing a carrier gas for carrying the generated suboxide gas into the raw material reaction region R1 of the reaction chamber 20. The second gas introduction port 22 is a port for introducing O 2 gas, which is a raw material gas for oxygen, into the crystal growth region R2 together with the carrier gas. The third gas introduction port 23 is a port for introducing a carrier gas and, if necessary, a raw material gas of a dopant intentionally added such as SiC4 into the crystal growth region R2 of the reaction chamber 20.
 第1のガス導入ポート21、第2のガス導入ポート22、及び第3のガス導入ポート23から導入されるキャリアガスは、Nガス、Arガスなどの不活性ガスである。Nがβ-Ga系単結晶膜12中に混入するとアクセプタとして働くおそれがあるが、原料供給分圧、温度などの条件を調整することにより、β-Ga系単結晶膜12への混入を防ぐことができる。一方、Arはβ-Ga系単結晶膜12中に混入してもドーパントとして働かないため、Arガスをキャリアガスとして用いることが好ましい。 The carrier gas introduced from the first gas introduction port 21, the second gas introduction port 22, and the third gas introduction port 23 is an inert gas such as N2 gas or Ar gas. If N is mixed in the β-Ga 2 O 3 system single crystal film 12, it may act as an acceptor, but by adjusting the conditions such as the partial pressure of the raw material supply and the temperature, the β-Ga 2 O 3 system single crystal film It is possible to prevent contamination with 12. On the other hand, since Ar does not act as a dopant even if it is mixed in the β - Ga 2 O3 system single crystal film 12, it is preferable to use Ar gas as a carrier gas.
(β-Ga系単結晶膜の成長)
 以下に、本実施の形態に係るβ-Ga系単結晶膜12としてのβ-Ga単結晶膜の成長工程の一例について説明する。
(Growth of β-Ga 2 O 3 series single crystal film)
Hereinafter, an example of the growth step of the β-Ga 2 O 3 single crystal film as the β-Ga 2 O 3 system single crystal film 12 according to the present embodiment will be described.
 まず、第1の加熱手段27を用いて反応チャンバー20の原料反応領域R1を加熱し、原料反応領域R1の雰囲気温度を所定の温度、例えば800℃以上、に保つ。原料反応領域R1の雰囲気温度を800℃以上にすることにより、Gaサブオキサイドガスの供給分圧をHVPE法のGa原料ガスの供給分圧と同程度にすることができる。β-Ga系単結晶膜12の成長速度は、このGaサブオキサイドガスの供給分圧に比例する。また、原料反応領域R1の雰囲気温度は、反応チャンバー20や反応容器26の軟化点(例えば、石英ガラス製であれば約1200℃)よりも低く設定される。 First, the raw material reaction region R1 of the reaction chamber 20 is heated by using the first heating means 27, and the atmospheric temperature of the raw material reaction region R1 is kept at a predetermined temperature, for example, 800 ° C. or higher. By setting the atmospheric temperature of the raw material reaction region R1 to 800 ° C. or higher, the supply partial pressure of the Ga 2 O 3 suboxide gas can be made to be about the same as the supply partial pressure of the Ga raw material gas of the HVPE method. The growth rate of the β-Ga 2 O 3 system single crystal film 12 is proportional to the supply partial pressure of this Ga 2 O 3 suboxide gas. Further, the atmospheric temperature of the raw material reaction region R1 is set lower than the softening point of the reaction chamber 20 and the reaction vessel 26 (for example, about 1200 ° C. if made of quartz glass).
 次に、原料反応領域R1において、上記の雰囲気温度下で反応容器26内のGaと金属Gaを反応させ、Gaサブオキサイドガスを生成する。GaサブオキサイドガスであるGaOガスとGaOガスは、それぞれ以下の式1、式2に示される化学反応により生成される。 Next, in the raw material reaction region R1, Ga 2 O 3 in the reaction vessel 26 is reacted with the metal Ga under the above-mentioned atmospheric temperature to generate Ga 2 O 3 suboxide gas. Ga 2 O gas and Ga O gas, which are Ga 2 O 3 suboxide gases, are produced by the chemical reactions represented by the following formulas 1 and 2, respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式1、式2に示されるように、Gaサブオキサイドガスの生成には、β-Ga系単結晶膜12中でドーパントとして働くClやCなどの元素を含む原料が用いられない。そのため、GaOガスの生成に伴って、β-Ga系単結晶膜12中でドーパントとして働く元素を含む物質が生じることがない。 As shown in Formulas 1 and 2, raw materials containing elements such as Cl and C that act as dopants in the β-Ga 2 O 3 system single crystal film 12 are used to generate the Ga 2 O 3 suboxide gas. I can't. Therefore, with the generation of Ga 2 O gas, a substance containing an element acting as a dopant is not generated in the β-Ga 2 O 3 system single crystal film 12.
 Gaと金属Gaは蒸気圧が低いため、それぞれ固体と液体であるが、これらの反応により生成されるGaOとGaOは、Gaと金属Gaよりも蒸気圧が高く、気体となる。この原料との蒸気圧の差により、高純度のGaOガスとGaOガス、すなわちGaサブオキサイドガスが得られる。 Ga 2 O 3 and metal Ga are solid and liquid, respectively, because of their low vapor pressure, but Ga 2 O and Ga O produced by these reactions have higher vapor pressure than Ga 2 O 3 and metal Ga. It becomes a gas. Due to the difference in vapor pressure from this raw material, high-purity Ga 2 O gas and Ga O gas, that is, Ga 2 O 3 suboxide gas can be obtained.
 図3は、接触したGaと金属Gaを熱することで生成されるサブオキサイドガス中のGaOガスとGaOガスの分圧と温度の関係を示すグラフである。図3に示されるように、Gaサブオキサイドガス中のGaOガスの濃度はGaOガスの濃度に比較して無視できるくらい低い。すなわち、Gaサブオキサイドガスは、ほぼGaOガスによって構成される。 FIG. 3 is a graph showing the relationship between the partial pressure and temperature of Ga 2 O gas and Ga O gas in the suboxide gas generated by heating the contacted Ga 2 O 3 and the metal Ga. As shown in FIG. 3 , the concentration of GaO gas in the Ga2O3 suboxide gas is negligibly low compared to the concentration of Ga2O gas. That is, the Ga 2 O 3 suboxide gas is substantially composed of Ga 2 O gas.
 GaOガスとGaOガスの分圧は、Gaと金属Gaの混合(接触)が十分であれば、ほぼ原料反応領域R1の雰囲気温度のみで決定される。このため、結晶成長領域R2へのGaサブオキサイドガスの供給量は、原料反応領域R1の雰囲気温度とGaサブオキサイドガスを運ぶキャリアガスの流量によって決まる。 The partial pressure of Ga 2 O gas and Ga O gas is determined almost exclusively by the atmospheric temperature of the raw material reaction region R1 if the mixture (contact) of Ga 2 O 3 and the metal Ga is sufficient. Therefore, the amount of Ga 2 O 3 suboxide gas supplied to the crystal growth region R2 is determined by the atmospheric temperature of the raw material reaction region R1 and the flow rate of the carrier gas carrying the Ga 2 O 3 suboxide gas.
 生成されたGaOサブオキサイドガスは、第1のガス導入ポート21から導入されたArガスなどのキャリアガスによって、結晶成長領域R2へ運ばれる。 The generated Ga 2 O suboxide gas is carried to the crystal growth region R2 by a carrier gas such as Ar gas introduced from the first gas introduction port 21.
 なお、β-Ga系単結晶膜12として、β-(GaAl1-x(0<x<1)単結晶膜を成膜する場合は、他の原料反応領域R1において、例えば800℃以上、反応チャンバー20や反応容器26の軟化点未満の雰囲気温度下で反応容器26内のAlと金属Alを反応させ、Alサブオキサイドガスを生成する。AlサブオキサイドガスであるAlOガスとAlOガスは、それぞれ以下の式3、式4に示される化学反応により生成される。 When a β- (Ga x Al 1-x ) 2 O 3 (0 <x <1) single crystal film is formed as the β-Ga 2 O 3 system single crystal film 12, another raw material reaction region is formed. In R1, for example, Al 2 O 3 in the reaction vessel 26 and the metallic Al are reacted with each other at an atmospheric temperature of 800 ° C. or higher and below the softening point of the reaction chamber 20 or the reaction vessel 26 to generate an Al 2 O 3 suboxide gas. .. Al 2 O gas and Al O gas, which are Al 2 O 3 suboxide gases, are produced by the chemical reactions represented by the following formulas 3 and 4, respectively.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、β-Ga系単結晶膜12として、β-(GaIn1-x(0<x<1)単結晶膜を成膜する場合は、他の原料反応領域R1において、例えば800℃以上、反応チャンバー20や反応容器26の軟化点未満の雰囲気温度下で反応容器26内のInと金属Inを反応させ、Inサブオキサイドガスを生成する。InサブオキサイドガスであるInOガスとInOガスは、それぞれ以下の式5、式6に示される化学反応により生成される。 Further, when a β- (Ga x In 1-x ) 2 O 3 (0 <x <1) single crystal film is formed as the β-Ga 2 O 3 system single crystal film 12, another raw material reaction region is formed. In R1, for example, In 2 O 3 in the reaction vessel 26 and the metal In are reacted with each other at an atmospheric temperature of 800 ° C. or higher and below the softening point of the reaction chamber 20 or the reaction vessel 26 to generate an In 2 O 3 suboxide gas. .. In 2 O gas and In O gas, which are In 2 O 3 suboxide gases, are produced by the chemical reactions represented by the following formulas 5 and 6, respectively.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 生成されたAlOサブオキサイドガスやInOサブオキサイドガスも、GaOサブオキサイドガスと同様に、第1のガス導入ポート21から導入されたArガスなどのキャリアガスによって、結晶成長領域R2へ運ばれる。 Like the Ga 2 O suboxide gas, the generated Al 2 O suboxide gas and In 2 O suboxide gas also have a crystal growth region due to a carrier gas such as Ar gas introduced from the first gas introduction port 21. It is carried to R2.
 次に、第2の加熱手段28を用いて加熱された反応チャンバー20の結晶成長領域R2において、原料反応領域R1で生成されたGaOサブオキサイドガスと、第2のガス導入ポート22から導入されたOガスとを混合させ、その混合ガスにβ-Ga系基板10を曝し、β-Ga系基板10の主面11上にβ-Ga系単結晶膜12をエピタキシャル成長させる。β-Ga系単結晶膜12を構成するGaは、以下の式7、式8に示される化学反応により生成される。 Next, in the crystal growth region R2 of the reaction chamber 20 heated by the second heating means 28, the Ga 2 O suboxide gas generated in the raw material reaction region R1 is introduced from the second gas introduction port 22. The O 2 gas was mixed, and the β-Ga 2 O 3 system substrate 10 was exposed to the mixed gas, and the β-Ga 2 O 3 system single crystal was placed on the main surface 11 of the β-Ga 2 O 3 system substrate 10. The film 12 is epitaxially grown. Ga 2 O 3 constituting the β-Ga 2 O 3 system single crystal film 12 is produced by a chemical reaction represented by the following formulas 7 and 8.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 β-Ga系単結晶膜12の成長温度(結晶成長領域R2の雰囲気温度)は、800℃以上であることが好ましい。800℃よりも低い場合は、準安定相であるα-Gaやε-Gaが発生し単結晶が得られないおそれがある。また、β-Ga系単結晶膜12の成長圧力(結晶成長領域R2の雰囲気圧力)は、例えば、およそ1atmである。また、β-Ga系単結晶膜12の成長温度は、Gaの融点(約1900℃)と反応チャンバー20の軟化点(例えば、石英ガラス製であれば約1200℃)の低い方よりも低く設定される。 The growth temperature of the β - Ga 2 O3 system single crystal film 12 (atmospheric temperature of the crystal growth region R2) is preferably 800 ° C. or higher. If the temperature is lower than 800 ° C., a metastable phase of α-Ga 2 O 3 or ε-Ga 2 O 3 may be generated and a single crystal may not be obtained. The growth pressure of the β - Ga 2 O3 system single crystal film 12 (atmospheric pressure of the crystal growth region R2) is, for example, about 1 atm. The growth temperature of the β-Ga 2 O 3 system single crystal film 12 is the melting point of Ga 2 O 3 (about 1900 ° C.) and the softening point of the reaction chamber 20 (for example, about 1200 ° C. if made of quartz glass). It is set lower than the lower one.
 図4は、本発明の実施の形態に係る方法、HVPE法、及びTHVPE法の各成膜法によるGaの生成反応における平衡定数を示すグラフである。図4の上側の横軸は温度(℃)、下側の横軸は1000/T(K-1)(Tは絶対温度)、縦軸はlogK(Kは平衡定数)である。図4は、本発明の実施の形態に係る方法は、HVPE法及びTHVPE法よりもGaが生成されやすいことを示している。 FIG. 4 is a graph showing the equilibrium constants in the formation reaction of Ga 2 O 3 by each film forming method of the method according to the embodiment of the present invention, the HVPE method, and the THVPE method. The upper horizontal axis of FIG. 4 is temperature (° C.), the lower horizontal axis is 1000 / T (K -1 ) (T is absolute temperature), and the vertical axis is logK (K is the equilibrium constant). FIG. 4 shows that the method according to the embodiment of the present invention is more likely to generate Ga 2 O 3 than the HVPE method and the THVPE method.
 β-Ga系単結晶膜12の成長速度は、成長温度などの成長条件によっておよそ1~10μm/hとなることが実証実験により確認されている。この成長速度は、他の結晶成長方法の成長速度と比較して高く、例えば、MBE法の数百nm/h程度の成長速度と比較すると格段に高い。また、実証実験より、さらに成長条件を調整すれば、HVPE法の成長速度(数十μm/h)以上になる可能性が十分にあることが確認されている。 It has been confirmed by a demonstration experiment that the growth rate of the β - Ga 2 O3 system single crystal film 12 is about 1 to 10 μm / h depending on the growth conditions such as the growth temperature. This growth rate is higher than the growth rate of other crystal growth methods, and is significantly higher than, for example, the growth rate of about several hundred nm / h in the MBE method. Further, from the demonstration experiment, it has been confirmed that there is a sufficient possibility that the growth rate of the HVPE method (several tens of μm / h) or higher can be achieved by further adjusting the growth conditions.
 β-Ga系単結晶膜12として、β-(GaAl1-x(0<x<1)単結晶膜を成膜する場合は、GaOサブオキサイドガスとOガスに加えてAlOサブオキサイドガスも結晶成長領域R2に導入する。以下の式9に、(GaAl1-xが生成される主な化学反応を示す。 When forming a β- (Ga x Al 1-x ) 2 O 3 (0 <x <1) single crystal film as the β-Ga 2 O 3 system single crystal film 12, use Ga 2 O suboxide gas. In addition to the O 2 gas, an Al 2 O suboxide gas is also introduced into the crystal growth region R2. The following formula 9 shows the main chemical reactions in which (Ga x Al 1-x ) 2 O 3 is produced.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 β-Ga系単結晶膜12として、β-(GaIn1-x(0<x<1)単結晶膜を成膜する場合は、GaOサブオキサイドガスとOガスに加えてInOサブオキサイドガスも結晶成長領域R2に導入する。以下の式10に、(GaIn1-xが生成される主な化学反応を示す。 When forming a β- (Ga x In 1-x ) 2 O 3 (0 <x <1) single crystal film as the β-Ga 2 O 3 system single crystal film 12, use Ga 2 O suboxide gas. In addition to the O 2 gas, an In 2 O suboxide gas is also introduced into the crystal growth region R2. Equation 10 below shows the main chemical reactions that produce (Ga x In 1-x ) 2 O 3 .
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 なお、上記の工程を経てβ-Ga系単結晶膜12を得た後、β-Ga系基板10の厚さ方向の電気抵抗を低下させるために、研磨などの手段を用いてβ-Ga系基板10を薄くしてもよい。また、上記の工程を経て得られたβ-Ga系単結晶膜12を、研磨などの手段を用いてβ-Ga系基板10から切り離してもよい。 After obtaining the β-Ga 2 O 3 system single crystal film 12 through the above steps, a means such as polishing is used to reduce the electrical resistance of the β-Ga 2 O 3 system substrate 10 in the thickness direction. The β-Ga 2 O 3 system substrate 10 may be thinned by using it. Further, the β-Ga 2 O 3 system single crystal film 12 obtained through the above steps may be separated from the β-Ga 2 O 3 system substrate 10 by means such as polishing.
(実施の形態の効果)
 上記本発明の実施の形態によれば、β-Ga系単結晶膜12の原料であるGaサブオキサイドガス、Alサブオキサイドガス、InサブオキサイドガスやOガス、キャリアガスである不活性ガスに、β-Ga系単結晶膜12中でドーパントとして機能するCl、Cなどの不純物が含まれず、また、上記サブオキサイドガスの原料であるGa、Al、In、金属Ga、金属Al、金属Inにもβ-Ga系単結晶膜12中でドーパントとして機能するCl、Cなどの不純物が含まれないため、サブオキサイドガスの生成に伴ってβ-Ga系単結晶膜12中でドーパントとして機能する不純物を含む物質が生成されることがない。このため、β-Ga系単結晶膜12中のドーパントとして機能する不純物の濃度が非常に低く、ショットキーバリアダイオードなどの高耐圧を要するデバイスの材料にβ-Ga系単結晶膜12を用いることにより、非常に高い耐圧を得ることができる。
(Effect of embodiment)
According to the above-described embodiment of the present invention, Ga 2 O 3 suboxide gas, Al 2 O 3 suboxide gas, In 2 O 3 suboxide gas, which are raw materials for the β-Ga 2 O 3 system single crystal film 12, and the like. The O 2 gas and the inert gas, which is a carrier gas, do not contain impurities such as Cl and C that function as dopants in the β-Ga 2 O 3 system single crystal film 12, and are the raw materials for the suboxide gas. Ga 2 O 3 , Al 2 O 3 , In 2 O 3 , metal Ga, metal Al, and metal In also contain impurities such as Cl and C that function as dopants in the β-Ga 2 O 3 system single crystal film 12. Therefore, a substance containing an impurity that functions as a dopant is not generated in the β - Ga 2 O3 system single crystal film 12 with the generation of the suboxide gas. Therefore, the concentration of impurities that function as dopants in the β-Ga 2 O 3 system single crystal film 12 is extremely low, and β-Ga 2 O 3 system singles are used as materials for devices that require high withstand voltage, such as Schottky barrier diodes. By using the crystal film 12, a very high withstand voltage can be obtained.
 また、上記本発明の実施の形態に係るβ-Ga系単結晶膜12の製造方法は、β-Ga系単結晶膜12の成長速度にも優れるため、適用するデバイスの特性上、β-Ga系単結晶膜12にある程度の厚さが求められる場合であっても、生産現場において現実的な時間でβ-Ga系単結晶膜12を形成することができる。 Further, the method for producing the β-Ga 2 O 3 system single crystal film 12 according to the embodiment of the present invention is also excellent in the growth rate of the β-Ga 2 O 3 system single crystal film 12, and therefore, the device to be applied. Even if the β-Ga 2 O 3 system single crystal film 12 is required to have a certain thickness due to its characteristics, the β-Ga 2 O 3 system single crystal film 12 is formed in a realistic time at the production site. be able to.
 図5は、結晶積層構造体1の二次イオン質量分析法(SIMS)による元素分析の測定結果を示すグラフである。本実施例では、β-Ga系基板10としてβ-Ga単結晶基板を、β-Ga系単結晶膜12としてβ-Ga単結晶膜を用いた。図5には、β-Ga系単結晶膜12中でドーパントとして働く不純物元素Cl、Sn、Siの濃度が示されている。 FIG. 5 is a graph showing the measurement results of elemental analysis of the crystal laminated structure 1 by the secondary ion mass spectrometry (SIMS). In this embodiment, a β-Ga 2 O 3 single crystal substrate was used as the β-Ga 2 O 3 system substrate 10, and a β-Ga 2 O 3 single crystal film was used as the β-Ga 2 O 3 system single crystal film 12. .. FIG. 5 shows the concentrations of the impurity elements Cl, Sn, and Si that act as dopants in the β - Ga 2 O3 system single crystal film 12.
 図5の横軸はβ-Ga単結晶膜の表面(結晶積層構造体1の表面)からの深さ(μm)であり、縦軸は各元素の濃度(/cm)である。また、グラフ右側の点線は、各元素濃度のバックグラウンド(BG)レベルを表す。バックグラウンドレベルは、分析装置内に何も収容しない状態で測定した各元素の濃度である。 The horizontal axis of FIG. 5 is the depth (μm) from the surface of the β-Ga 2 O 3 single crystal film (the surface of the crystal laminated structure 1), and the vertical axis is the concentration of each element (/ cm 3 ). .. The dotted line on the right side of the graph represents the background (BG) level of each element concentration. The background level is the concentration of each element measured with nothing contained in the analyzer.
 グラフ上側に“β-Ga単結晶膜”、“基板”で示される深さ方向の範囲は、それぞれβ-Ga単結晶膜、Snをドーパントとして含むβ-Ga系基板10の測定領域を示す。なお、β-Ga単結晶膜の表面近傍の各元素の濃度の立ち上がりは、表面吸着物の影響によるものであり、内部の各元素の濃度を示すものではない。 The range in the depth direction indicated by "β-Ga 2 O 3 single crystal film" and "substrate" on the upper side of the graph includes β - Ga 2 O 3 single crystal film and Sn as dopants , respectively. The measurement area of the system substrate 10 is shown. The rise in the concentration of each element near the surface of the β-Ga 2 O 3 single crystal film is due to the influence of the surface adsorbent, and does not indicate the concentration of each element inside.
 図5によれば、β-Ga単結晶膜中のClの濃度は、バックグラウンドの濃度である5×1014/cmと一致しており、SIMS装置の検出限界以下、すなわち5×1014/cm以下であることがわかる。 According to FIG. 5, the concentration of Cl in the β-Ga 2 O 3 single crystal film is consistent with the background concentration of 5 × 10 14 / cm 3 , which is below the detection limit of the SIMS apparatus, that is, 5 It can be seen that it is × 10 14 / cm 3 or less.
 また、β-Ga単結晶膜中のCの濃度は、バックグラウンドの濃度である2×1016/cmと一致しており、SIMS装置の検出限界以下、すなわち2×1016/cm以下であることがわかる。 In addition, the concentration of C in the β-Ga 2 O 3 single crystal film is consistent with the background concentration of 2 × 10 16 / cm 3 , which is below the detection limit of the SIMS device, that is, 2 × 10 16 /. It can be seen that it is cm 3 or less.
 また、β-Ga単結晶膜中のSnの濃度は、バックグラウンドの濃度である1×1015/cmと一致しており、SIMS装置の検出限界以下、すなわち1×1015/cm以下であることがわかる。 Further, the concentration of Sn in the β-Ga 2 O 3 single crystal film is consistent with the background concentration of 1 × 10 15 / cm 3 , which is below the detection limit of the SIMS device, that is, 1 × 10 15 /. It can be seen that it is cm 3 or less.
 また、β-Ga単結晶膜中のSiの濃度は、バックグラウンドの濃度である5×1015/cmと一致しており、SIMS装置の検出限界以下、すなわち5×1015/cm以下であることがわかる。 In addition, the concentration of Si in the β-Ga 2 O 3 single crystal film is consistent with the background concentration of 5 × 10 15 / cm 3 , which is below the detection limit of the SIMS device, that is, 5 × 10 15 /. It can be seen that it is cm 3 or less.
 また、β-Ga単結晶膜中のFの濃度は、バックグラウンドの濃度である1×1014/cmと一致しており、SIMS装置の検出限界以下、すなわち1×1014/cm以下であることがわかる。 In addition, the concentration of F in the β-Ga 2 O 3 single crystal film is consistent with the background concentration of 1 × 10 14 / cm 3 , which is below the detection limit of the SIMS device, that is, 1 × 10 14 /. It can be seen that it is cm 3 or less.
 これらの非常に低いCl、C、Sn、Si、Fの濃度は、β-Ga単結晶膜の原料であるGaサブオキサイドガスとOガス、Gaサブオキサイドガスの原料であるGaと金属Ga、及びキャリアガスである不活性ガスにCl、C、Sn、Si、Fが含まれないことによる。 These very low concentrations of Cl, C, Sn, Si, and F are Ga 2 O 3 suboxide gas and O 2 gas, Ga 2 O 3 suboxide gas, which are the raw materials for the β-Ga 2 O 3 single crystal film. This is because Ga 2 O 3 and metal Ga, which are the raw materials of the above, and the inert gas, which is the carrier gas, do not contain Cl, C, Sn, Si, and F.
 なお、β-Ga単結晶膜の成膜に用いた気相成長装置2の反応チャンバー20と反応容器26は石英ガラス(SiO)製であり、Siを含むが、上述のβ-Ga系単結晶膜12中のSiの濃度から、反応チャンバー20と反応容器26に含まれるSiのβ-Ga単結晶膜への混入はほとんどなかったと考えられる。 The reaction chamber 20 and the reaction vessel 26 of the vapor phase growth apparatus 2 used for forming the β-Ga 2 O 3 single crystal film are made of quartz glass (SiO 2 ) and contain Si, but the above-mentioned β- From the concentration of Si in the Ga 2 O 3 system single crystal film 12, it is considered that Si contained in the reaction chamber 20 and the reaction vessel 26 was hardly mixed in the β-Ga 2 O 3 single crystal film.
 また、β-Ga単結晶膜のエピタキシャル結晶成長の下地であるβ-Ga系基板10がドーパントとして濃度が約5×1018/cmのSnを含んでいたが、上述のβ-Ga単結晶膜中のSnの濃度から、β-Ga系基板10に含まれるSnのβ-Ga単結晶膜への混入はほとんどなかったと考えられる。 Further, the β-Ga 2 O 3 system substrate 10, which is the base for the epitaxial crystal growth of the β-Ga 2 O 3 single crystal film, contained Sn having a concentration of about 5 × 10 18 / cm 3 as a dopant. From the concentration of Sn in the β-Ga 2 O 3 single crystal film, it is considered that Sn contained in the β-Ga 2 O 3 system substrate 10 was hardly mixed in the β-Ga 2 O 3 single crystal film.
 また、β-Ga単結晶膜のHの濃度については、SIMS装置のバックグラウンドレベルが2×1017/cm程度と高く、有意義なデータが取得できないため行っていない。しかしながら、β-Ga単結晶膜の原料であるGaサブオキサイドガスとOガス、Gaサブオキサイドガスの原料であるGaと金属Ga、及びキャリアガスである不活性ガスにはHが含まれないため、β-Ga単結晶膜のHの濃度はバックグラウンドレベルである2×1017/cmよりも大幅に低いことが推測される。 The concentration of H in the β-Ga 2 O 3 single crystal film is not performed because the background level of the SIMS device is as high as 2 × 10 17 / cm 3 and meaningful data cannot be obtained. However, with Ga 2 O 3 suboxide gas and O 2 gas, which are the raw materials for the β-Ga 2 O 3 single crystal film, Ga 2 O 3 and metal Ga, which are the raw materials for the Ga 2 O 3 suboxide gas, and a carrier gas. Since H is not contained in a certain inert gas, it is presumed that the concentration of H in the β-Ga 2 O 3 single crystal film is significantly lower than the background level of 2 × 10 17 / cm 3 .
 図6は、厚さ3μmのβ-Ga単結晶膜の表面モフォロジーの光学顕微鏡による観察像である。図6の観察像によれば、エピタキシャル成長結晶の表面に特有の筋が確認できる。この表面の状態から、HVPE法で成膜したものと遜色ない品質の膜が得られていることがわかる。 FIG. 6 is an observation image of the surface morphology of a β-Ga 2 O 3 single crystal film having a thickness of 3 μm with an optical microscope. According to the observation image of FIG. 6, streaks peculiar to the surface of the epitaxially grown crystal can be confirmed. From this surface condition, it can be seen that a film having a quality comparable to that formed by the HVPE method is obtained.
 なお、本実施例においては、β-Ga系単結晶膜12としてβ-Ga単結晶膜についての評価結果を示したが、他のβ-Ga系単結晶膜であるβ-(GaAl1-x単結晶膜やβ-(GaIn1-x単結晶膜を評価した場合であっても、β-Ga単結晶膜と同様にドーパントとして働く不純物の意図しない混入が抑えられているため、同様の評価結果が得られる。 In this example, the evaluation results of the β-Ga 2 O 3 single crystal film as the β-Ga 2 O 3 system single crystal film 12 are shown, but other β-Ga 2 O 3 system single crystal films are shown. Even when β- (Ga x Al 1-x ) 2 O 3 single crystal film or β- (Ga x In 1-x ) 2 O 3 single crystal film is evaluated, β-Ga 2 O 3 Similar to the single crystal film, the unintentional mixing of impurities acting as dopants is suppressed, so that the same evaluation results can be obtained.
 以上、本発明の実施の形態及び実施例を説明したが、本発明は、上記実施の形態及び実施例に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。 Although the embodiments and examples of the present invention have been described above, the present invention is not limited to the above embodiments and examples, and various modifications can be carried out within a range that does not deviate from the gist of the invention.
 また、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Further, the embodiments and examples described above do not limit the invention according to the claims. It should also be noted that not all combinations of features described in embodiments and examples are essential to the means for solving the problems of the invention.
 結晶成長速度が大きく、かつドーパントとして働く不純物の意図しない混入を抑えることのできるβ-Ga系単結晶膜の製造方法、及びその方法により製造されたβ-Ga系単結晶膜を提供する。 A method for producing a β-Ga 2 O 3 series single crystal film that has a high crystal growth rate and can suppress unintentional mixing of impurities that act as dopants, and a β-Ga 2 O 3 series single crystal produced by that method. Provides a membrane.
1…結晶積層構造体、10…β-Ga系基板、11…主面、12…β-Ga系単結晶膜、2…気相成長装置 1 ... Crystal laminated structure, 10 ... β-Ga 2 O 3 system substrate, 11 ... Main surface, 12 ... β-Ga 2 O 3 system single crystal film, 2 ... Vapor phase growth apparatus

Claims (6)

  1.  β-Gaの単結晶、又は、一部のGaがAl、Inの一方又は両方で置換されたβ-Gaの単結晶であるβ-Ga系単結晶からなるβ-Ga系単結晶膜の製造方法であって、
     前記β-Ga系単結晶膜の中でドーパントとして働く不純物を含む物質の生成を伴わずにA(AはGa、Al、又はIn)のサブオキサイドガスを生成する工程と、
     前記サブオキサイドガスをOガスと反応させて、基板上に前記β-Ga系単結晶膜をエピタキシャル成長させる工程と、
     を含む、β-Ga系単結晶膜の製造方法。
    It consists of a single crystal of β -Ga 2 O 3 or a single crystal of β-Ga 2 O 3 system in which a part of Ga is substituted with one or both of Al and In. A method for producing a β - Ga 2 O3 system single crystal film.
    A step of producing a suboxide gas of A 2 O 3 (A is Ga, Al, or In) without producing a substance containing an impurity that acts as a dopant in the β-Ga 2 O 3 system single crystal film. ,
    A step of reacting the suboxide gas with the O 2 gas to epitaxially grow the β-Ga 2 O 3 system single crystal film on the substrate.
    A method for producing a β - Ga 2 O3 system single crystal film, which comprises.
  2.  前記サブオキサイドガスを生成する工程において、GaのサブオキサイドガスをGaと金属Gaを反応させて生成し、Alのサブオキサイドガスを生成する場合はAlと金属Alを反応させて生成し、Inのサブオキサイドガスを生成する場合はInと金属Inを反応させて生成する、
     請求項1に記載のβ-Ga系単結晶膜の製造方法。
    In the step of producing the suboxide gas, the suboxide gas of Ga 2 O 3 is produced by reacting Ga 2 O 3 with the metal Ga, and when the suboxide gas of Al 2 O 3 is produced, Al 2 O 3 is produced. And metal Al are reacted to generate In 2 O 3 suboxide gas, and In 2 O 3 is reacted with metal In to generate.
    The method for producing a β - Ga 2 O3 system single crystal film according to claim 1.
  3.  前記サブオキサイドガスを生成する工程において、800℃以上の雰囲気温度下で前記サブオキサイドガスを生成する、
     請求項1又は2に記載のβ-Ga系単結晶膜の製造方法。
    In the step of producing the suboxide gas, the suboxide gas is generated under an atmospheric temperature of 800 ° C. or higher.
    The method for producing a β - Ga 2 O3 system single crystal film according to claim 1 or 2.
  4.  前記β-Ga系単結晶膜をエピタキシャル成長させる工程において、800℃以上の雰囲気温度下で前記β-Ga系単結晶膜をエピタキシャル成長させる、
     請求項1~3のいずれか1項に記載のβ-Ga系単結晶膜の製造方法。
    In the step of epitaxially growing the β-Ga 2 O 3 system single crystal film, the β-Ga 2 O 3 system single crystal film is epitaxially grown under an atmospheric temperature of 800 ° C. or higher.
    The method for producing a β-Ga 2 O3 system single crystal film according to any one of claims 1 to 3 .
  5.  β-Gaの単結晶、又は、一部のGaがAl、Inの一方又は両方で置換されたβ-Gaの単結晶であるβ-Ga系単結晶からなり、
     Clの濃度が5×1014/cm以下、Cの含有量が2×1016/cm以下である、
     β-Ga系単結晶膜。
    It consists of a single crystal of β - Ga 2 O 3 or a single crystal of β - Ga 2 O 3 in which a part of Ga is substituted with one or both of Al and In. ,
    The concentration of Cl is 5 × 10 14 / cm 3 or less, and the content of C is 2 × 10 16 / cm 3 or less.
    β-Ga 2 O 3 series single crystal film.
  6.  Snの含有量が1×1015/cm以下、Siの含有量が5×1015/cm以下、Fの含有量が1×1014/cm以下である、
     請求項5に記載のβ-Ga系単結晶膜。
    The Sn content is 1 × 10 15 / cm 3 or less, the Si content is 5 × 10 15 / cm 3 or less, and the F content is 1 × 10 14 / cm 3 or less.
    The β - Ga 2 O3 system single crystal film according to claim 5.
PCT/JP2021/033709 2020-09-15 2021-09-14 β-GA2O3-BASED SINGLE CRYSTAL FILM AND METHOD OF MANUFACTURING SAME WO2022059669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-154786 2020-09-15
JP2020154786A JP2022048776A (en) 2020-09-15 2020-09-15 β-Ga2O3-BASED SINGLE CRYSTAL FILM AND PRODUCTION METHOD THEREOF

Publications (1)

Publication Number Publication Date
WO2022059669A1 true WO2022059669A1 (en) 2022-03-24

Family

ID=80776109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033709 WO2022059669A1 (en) 2020-09-15 2021-09-14 β-GA2O3-BASED SINGLE CRYSTAL FILM AND METHOD OF MANUFACTURING SAME

Country Status (2)

Country Link
JP (1) JP2022048776A (en)
WO (1) WO2022059669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024010637A1 (en) * 2022-07-06 2024-01-11 Ohio State Innovation Foundation Compositions comprising gallium oxide doped with carbon, and methods of making and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904553A (en) * 1997-08-25 1999-05-18 Motorola, Inc. Fabrication method for a gate quality oxide-compound semiconductor structure
JP2004182546A (en) * 2002-12-04 2004-07-02 National Institute For Materials Science beta-Ga2O3 NANO WHISKER AND ITS MANUFACTURING METHOD
JP2006089811A (en) * 2004-09-24 2006-04-06 Hokkaido Univ Vapor phase crystal creation apparatus
WO2016031522A1 (en) * 2014-08-29 2016-03-03 株式会社タムラ製作所 Semiconductor element and production method for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904553A (en) * 1997-08-25 1999-05-18 Motorola, Inc. Fabrication method for a gate quality oxide-compound semiconductor structure
JP2004182546A (en) * 2002-12-04 2004-07-02 National Institute For Materials Science beta-Ga2O3 NANO WHISKER AND ITS MANUFACTURING METHOD
JP2006089811A (en) * 2004-09-24 2006-04-06 Hokkaido Univ Vapor phase crystal creation apparatus
WO2016031522A1 (en) * 2014-08-29 2016-03-03 株式会社タムラ製作所 Semiconductor element and production method for same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO Y. H., BANDO Y., SATO T., ZHANG Y. F., GAO X. Q.: "Synthesis, Raman scattering and defects of β-Ga2O3 nanorods", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 81, no. 12, 16 September 2002 (2002-09-16), 2 Huntington Quadrangle, Melville, NY 11747, pages 2267 - 2269, XP012031974, ISSN: 0003-6951, DOI: 10.1063/1.1507835 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024010637A1 (en) * 2022-07-06 2024-01-11 Ohio State Innovation Foundation Compositions comprising gallium oxide doped with carbon, and methods of making and use thereof

Also Published As

Publication number Publication date
JP2022048776A (en) 2022-03-28

Similar Documents

Publication Publication Date Title
US20210404086A1 (en) Method for growing beta-ga2o3-based single crystal film, and crystalline layered structure
US11047067B2 (en) Crystal laminate structure
KR100693078B1 (en) VAPOR PHASE GROWTH METHOD FOR Al-CONTAINING ?-V GROUP COMPOUND SEMICONDUCTOR, AND METHOD AND DEVICE FOR PRODUCING Al-CONTAINING ?-V GROUP COMPOUND SEMICONDUCTOR
Tietjen et al. The preparation and properties of vapor‐deposited epitaxial GaAs1− x P x using arsine and phosphine
US7279040B1 (en) Method and apparatus for zinc oxide single crystal boule growth
US4404265A (en) Epitaxial composite and method of making
EP0238830A1 (en) Epitaxial growth method and apparatus therefor
US3933538A (en) Method and apparatus for production of liquid phase epitaxial layers of semiconductors
US20070196942A1 (en) Method for producing group III nitride crystal, group III nitride crystal obtained by such method, and group III nitride substrate using the same
US10358742B2 (en) Ga2O3-based crystal film, and crystal multilayer structure
JP6875708B2 (en) Crystallized structure and method for manufacturing it
WO2022059669A1 (en) β-GA2O3-BASED SINGLE CRYSTAL FILM AND METHOD OF MANUFACTURING SAME
EP3141635B1 (en) Semiconductor substrate, epitaxial wafer, and method for manufacturing epitaxial wafer
CN117795654A (en) Semiconductor substrate, semiconductor wafer, and method for manufacturing semiconductor wafer
US20120104557A1 (en) Method for manufacturing a group III nitride crystal, method for manufacturing a group III nitride template, group III nitride crystal and group III nitride template
Siche et al. Growth of bulk gan from gas phase
Ema et al. Homo-and hetero-epitaxial growth of β-gallium oxide via GaCl3-O2-N2 system
US5725659A (en) Solid phase epitaxy reactor, the most cost effective GaAs epitaxial growth technology
Koukitu et al. Hydride vapor phase epitaxy of GaN
WO2024034512A1 (en) METHOD FOR GROWING β-GA2O3-BASED SINGLE CRYSTAL FILM
GB2078695A (en) Cadmium Mercury Telluride Deposition
Takenaka et al. Double-layer epitaxial growth of Si and B13P2 on Si substrates and some electrical properties of Si layers
JP2024053416A (en) Epitaxial wafer and manufacturing method thereof
Yao et al. Metal Organic Chemical Vapor Deposition 2: Heteroepitaxial MOCVD Growth of-,-, and-Ga O Thin Films on Sapphire Substrates
Barry Vapour phase growth of semiconducting layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869355

Country of ref document: EP

Kind code of ref document: A1