WO2024034481A1 - 立体視表示装置 - Google Patents

立体視表示装置 Download PDF

Info

Publication number
WO2024034481A1
WO2024034481A1 PCT/JP2023/028195 JP2023028195W WO2024034481A1 WO 2024034481 A1 WO2024034481 A1 WO 2024034481A1 JP 2023028195 W JP2023028195 W JP 2023028195W WO 2024034481 A1 WO2024034481 A1 WO 2024034481A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
stereoscopic display
stereoscopic
frame
viewing direction
Prior art date
Application number
PCT/JP2023/028195
Other languages
English (en)
French (fr)
Inventor
優斗 小林
紀晃 高橋
英之 市橋
孝明 鈴木
晴香 三森
貴史 野元
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2024034481A1 publication Critical patent/WO2024034481A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays

Definitions

  • the present invention relates to a stereoscopic display device.
  • a light distribution member such as a lenticular lens or a parallax barrier placed on a display device such as a liquid crystal panel imparts directionality to light rays emitted from pixels, thereby providing viewers with a stereoscopic display using parallax images.
  • a display device such as a liquid crystal panel
  • a technique has been proposed that presents a predetermined frame image that can be viewed stereoscopically at the peripheral area based on the amount of parallax (see, for example, Patent Document 1).
  • a technique has been proposed in which an object is moved according to the viewing distance from the stereoscopic display to the object (see, for example, Patent Document 2).
  • a technique has been proposed for controlling parallax information or scaling factors of a left-eye image and a right-eye image when the observation distance is outside the fusion limit (see, for example, Patent Document 3).
  • the present disclosure proposes a stereoscopic display device that solves at least part of the parallax contradiction and stereoscopic misalignment.
  • the stereoscopic display is arranged to have an offset with respect to the display surface in a viewing direction perpendicular to the display surface of the stereoscopic display, and an outer edge of the stereoscopic display when viewed from the viewing direction.
  • a stereoscopic display device comprising: a frame that is arranged to overlap at least a portion of the stereoscopic display and blocks an image of the stereoscopic display.
  • FIG. 3 is a diagram for explaining parallax contradiction and stereoscopic mismatch.
  • FIG. 3 is a diagram for explaining distortion of a stereoscopic image caused by a difference between a shooting position of a stereo camera and a viewer's viewpoint position.
  • FIG. 3 is a diagram for explaining the relationship between FOV (Field of View) and distortion of a stereoscopic image.
  • FIG. 3 is a diagram for explaining congestion adjustment contradiction.
  • FIG. 3 is a diagram for explaining the relationship between the viewing distance of a stereoscopic display and the display range of stereoscopic video that can be comfortably viewed by a viewer.
  • 1 is a diagram illustrating a configuration example of a stereoscopic display device according to an embodiment of the present disclosure.
  • FIG. 3 is a side view of the stereoscopic display device according to the same embodiment.
  • FIG. 2 is a plan view of a stereoscopic display device according to the same embodiment.
  • FIG. 3 is a side view of the stereoscopic display device according to the same embodiment.
  • FIG. 1 is a diagram for explaining parallax contradiction and stereoscopic mismatch.
  • FIG. 1 shows a case where a display object (hereinafter also referred to as a stereoscopic image) O11 is displayed so as to protrude toward the front side of the display surface of the stereoscopic display 10.
  • a display object hereinafter also referred to as a stereoscopic image
  • O11 a display object
  • the center diagram in FIG. 1 is a diagram for explaining parallax contradiction.
  • the stereoscopic image O11 appears to be in front of the display screen for the viewer, but the image frame F1 of the stereoscopic display 10 is visible behind the stereoscopic image O11, so the viewer may notice a parallax contradiction.
  • people have common sense that objects located in the back should be hidden (not visible) by objects located in the front. Therefore, originally, for the viewer, the image frame F1 located at the back is hidden by the stereoscopic image O11 located at the front and cannot be seen. Therefore, the viewer feels a parallax contradiction.
  • the diagram on the right side of FIG. 1 is a diagram for explaining steric mismatch.
  • the viewer sees the 3D image O11 in front of the display screen, but because the 3D image O11 is cut off in the middle of the body, the body is in the space where the body of the 3D image O11 should be.
  • FIG. 2 is a diagram for explaining the distortion of stereoscopic video caused by the difference between the shooting position of the stereo camera and the viewer's viewpoint position.
  • the camera only needs to be able to acquire images from a plurality of viewpoints for stereoscopic viewing, and three or more cameras may be used.
  • An example in which the camera is a stereo camera will be described below.
  • the diagram on the left side of FIG. 2 shows when a stereoscopic image is captured by a stereo camera.
  • the thin double-ended arrow shown in the left side of FIG. 2 indicates the distance (shooting distance) between the stereo camera and the subject O2 at the time of shooting. Further, the diagram on the left side of FIG. 2 shows a situation where the stereo camera is in front of the subject.
  • the center diagram and the right diagram in FIG. 2 show the viewing of the stereoscopic video photographed in the left diagram in FIG. 2.
  • the thin double-ended arrow shown in the center diagram of FIG. This indicates that the distance (hereinafter also referred to as shooting distance) is the same.
  • the center diagram in FIG. 2 shows that the viewer's viewpoint position is in front of the stereoscopic image O21. At this time, the viewer perceives the stereoscopic image O21 displayed by the stereoscopic display 10 with correct stereoscopic effect.
  • the thin double-ended arrow and thick double-ended arrow shown in the right-hand diagram of FIG. 2 indicate that the viewing distance and the photographing distance do not match. Furthermore, the diagram on the right side of FIG.
  • FIG. 2 shows how the viewer's viewpoint position is shifted from the front with respect to the stereoscopic image O21. At this time, the viewer cannot perceive the stereoscopic image O21 displayed by the stereoscopic display 10 with correct stereoscopic effect, so the stereoscopic image O21 appears distorted.
  • FIG. 3 is a diagram for explaining the relationship between FOV (Field of View) and distortion of stereoscopic images.
  • FOV Field of View
  • FIG. 3 shows that when the value of FOV is 1, the viewing distance and the shooting distance match, and the viewer can perceive a stereoscopic image showing a woman's face with correct stereoscopic effect.
  • FOV value increases, such as 10, 20, ..., 50, the viewing distance and shooting distance become smaller, making it difficult for the viewer to perceive a 3D image showing a woman's face with correct 3D effect. This shows how the three-dimensional image appears distorted.
  • FIG. 4 is a diagram for explaining congestion adjustment contradiction.
  • convergence distance and focal length will be explained.
  • the distance from the eye to the object is called the “convergence distance.”
  • the lens of the eye becomes thicker, and when a person looks at a distant object, the lens of the eye becomes thinner.
  • the lens has the function of adjusting the focus of the eye in this way, and the distance it takes to focus is called the "focal length.”
  • the diagram on the left side of FIG. 4 shows how a viewer views a two-dimensional image displayed on a display. Viewing two-dimensional images is also called natural viewing. When viewing a two-dimensional video, the convergence distance and focal length both match the distance from the viewer's viewpoint to the display.
  • the diagram on the right side of FIG. 4 shows how a viewer views a three-dimensional image (stereoscopic image) displayed on a display.
  • Viewing three-dimensional images is also called stereoscopic viewing.
  • the focus is on the surface of the display on which the video is displayed, so the focal length matches the distance from the viewer's viewpoint to the display.
  • the convergence since the convergence is adjusted to the plane on which the stereoscopic image is formed, for example, if the stereoscopic image is displayed in front of the display, the convergence distance will be shorter than the focal length. Therefore, when viewing a three-dimensional video, the convergence distance and focal length do not match. It is known that such a discrepancy between the convergence distance and the focal length when viewing a three-dimensional image may cause the viewer to feel fatigue such as eye strain or three-dimensional motion sickness.
  • FIG. 5 is a diagram for explaining the relationship between the viewing distance of a stereoscopic display and the display range of stereoscopic video that the viewer can comfortably view.
  • the diagram on the left side of FIG. 5 shows the viewing distance Z, which is the distance from the viewer's viewpoint position to the stereoscopic display, and the range D, in which a stereoscopic image projected and displayed on the near side of the stereoscopic display can be comfortably viewed.
  • This shows the relationship with a range D' in which a stereoscopic image that is displayed retracted to the back of a stereoscopic display can be comfortably viewed.
  • Range D and range D' are also referred to as comfort ranges. For example, when Z is 1 m, D is approximately 0.23 m, and D' is approximately 0.43 m.
  • the maximum protrusion distance D which will be described later, is the same as the range D in which a stereoscopic image projected and displayed on the front side of the stereoscopic display can be comfortably viewed.
  • the diagram on the right side of FIG. 5 is a diagram for explaining the relationship between vergence distance and focal distance.
  • the horizontal axis of the graph on the right side of FIG. 5 indicates vergence distance.
  • the vertical axis of the graph on the right side of FIG. 5 indicates focal distance.
  • FIG. 6 is a diagram illustrating a configuration example of a stereoscopic display device according to an embodiment of the present disclosure.
  • the stereoscopic display device 100 includes a stereoscopic display 110, a frame 120, and a protrusion 130.
  • the stereoscopic display 110 is a display device that displays stereoscopic images.
  • the stereoscopic display 110 has a display surface 100A composed of a liquid crystal panel, an OLED (Organic Light Emitting Diode) panel, or the like.
  • the stereoscopic display 110 is a so-called autostereoscopic display that allows the viewer V1 to view stereoscopically without wearing special glasses or the like.
  • the frame 120 is arranged to hide the image frame of the stereoscopic display 110.
  • the image frame of the stereoscopic display 110 may include an outer frame of the stereoscopic display 110.
  • the image frame of the stereoscopic display 110 may include a frame-shaped image displayed on the display surface 110A along the outer frame of the stereoscopic display 110.
  • the frame 120 is arranged so as to have an offset with respect to the display surface 110A of the stereoscopic display 110 in a viewing direction (hereinafter also simply referred to as "viewing direction") perpendicular to the display surface 110A.
  • the frame 120 is a stereoscopic display 110 in which the distance Fd between the display surface 110A and the frame 120 is set based on the display range of stereoscopic video that the viewer can comfortably view as described in FIG. It is placed at a position where the distance is greater than or equal to the maximum protrusion distance D.
  • the maximum pop-out distance D is a distance set as the maximum distance in the viewing direction from the display surface 110A to the stereoscopic image.
  • the frame 120 is arranged so as to overlap at least a portion of the outer edge of the stereoscopic display 110 when viewed from the viewing direction, and blocks the image of the stereoscopic display 110.
  • the frame 120 is arranged to overlap the bottom, right, and left picture frames of the stereoscopic display 110, and blocks the bottom, right, and left picture frames of the stereoscopic display 110.
  • the material of the frame 120 may be any material as long as it can play the role of hiding the image frame of the stereoscopic display 110.
  • the frame 120 may be made of a plate or rod made of metal or resin.
  • the frame 120 does not necessarily need to completely block light, but may absorb or diffuse light to such an extent that the image frame cannot be seen.
  • the frame 120 may be constructed of a semi-transparent colored material, an optical diffuser plate such as frosted glass or a lens array, or an optical diffuser bar.
  • the outer periphery may be supported by a solid material such as metal, resin, or glass.
  • frame 120 may be removable from stereoscopic display 110 when not in use.
  • the frame 120 may be supported around its periphery by fixable and removable means such as screws, magnets, or clips.
  • the protrusion 130 is arranged to physically limit the viewing distance of the viewer V1 to the optimal viewing distance.
  • the protrusion 130 is arranged to create a physical distance in the viewing direction between the display surface 110A and the viewer V1 located in the viewing direction.
  • the optimal viewing distance is the distance from the display surface 110A of the stereoscopic display 110 to the viewer's viewpoint position, and is a distance at which the viewer can comfortably view stereoscopic video.
  • the optimum viewing distance is determined by the width of the slit and the distance from the panel.
  • the protruding portion 130 is arranged so as to protrude toward the viewer in the viewing direction perpendicular to the display surface 110A of the stereoscopic display 110.
  • the protrusion 130 is a plate-shaped portion (hereinafter also referred to as a plate) that protrudes from the lower end of the frame 120 in the direction toward the viewer.
  • the protruding portion 130 is located between the display surface 110A and the viewer V1 located in the viewing direction by a distance that is the sum of the distance Fd between the display surface 110A and the frame 120 and the width Td of the plate portion. will be arranged to create physical distancing.
  • the protruding portion 130 may include leg portions that support the plate portion.
  • FIG. 7 is a side view of a stereoscopic display device according to an embodiment of the present disclosure.
  • the maximum pop-out distance D and the distance Fd from the display surface 110A to the frame 120 in the viewing direction satisfy the following formula (1).
  • the frame 120 is placed in front of the maximum protrusion distance D.
  • the frame 120 is arranged so as to overlap the lower end of the stereoscopic display 110 among the outer edges of the stereoscopic display 110 .
  • the viewing distance Z, which is the distance to the position in the viewing direction, and the distance h from the height of the lower end of the stereoscopic display 110 to the height of the viewer's viewpoint position satisfy the following formula (2). By satisfying the above formula (2), the lower end of the stereoscopic display 110 is hidden from the viewer.
  • FIG. 8 is a plan view of a stereoscopic display device according to an embodiment of the present disclosure.
  • the frame 120 is arranged so as to overlap the right end of the stereoscopic display 110 among the outer edges of the stereoscopic display 110 .
  • the viewing distance Z which is the distance in the viewing direction from the viewer's viewpoint to the viewer, and the distance w from the right end of the stereoscopic display 110 in the horizontal direction to the viewer's viewpoint in the horizontal direction are calculated using the following formula. (3) is satisfied.
  • the right end of the stereoscopic display 110 is hidden from the viewer.
  • the frame 120 is arranged so as to overlap the left end of the stereoscopic display 110 among the outer edges of the stereoscopic display 110 .
  • the viewing distance Z which is the distance in the viewing direction from the viewer's viewpoint to the viewer, the horizontal width W of the stereoscopic display 110, and the horizontal distance from the right end of the stereoscopic display 110 in the horizontal direction to the viewer's viewpoint.
  • the distance w to the position in the direction satisfies the following formula (4). By satisfying the above formula (4), the left end of the stereoscopic display 110 is hidden from the viewer.
  • the frame 120 may be arranged to overlap the upper end of the stereoscopic display 110 among the outer edges of the stereoscopic display 110.
  • the distance Fu from the height of the upper end of the stereoscopic display 110 to the height of the lower end of the frame 120, the distance Fd in the viewing direction from the display surface 110A to the frame 120, and the viewpoint of the viewer located in the viewing direction from the display surface 110A.
  • the viewing distance Z which is the distance to the position in the viewing direction, the vertical width H of the stereoscopic display 110, and the distance h from the height of the lower end of the stereoscopic display 110 to the height of the viewer's viewpoint position are as follows. satisfies formula (5). By satisfying the above formula (5), the upper end of the stereoscopic display 110 is hidden from the viewer.
  • FIG. 9 is a side view of a stereoscopic display device according to an embodiment of the present disclosure.
  • the stereoscopic display device 100 further includes a protrusion 130 .
  • the distance Dd which is the sum of the distance in the viewing direction from the display surface 110A to the protrusion 130 and the width of the protrusion 130 in the viewing direction, and the free space provided between the viewer located in the viewing direction and the protrusion 130.
  • the width Dy and the viewing distance Z which is the distance in the viewing direction from the display surface 110A to the viewpoint position of the viewer located in the viewing direction, satisfy the following formula (6).
  • the free space is a space provided between the protrusion 130 and the viewer.
  • the free space may be, for example, a space (width of about 10 to 30 cm) that a person naturally secures when sitting at a desk.
  • a space width of about 10 to 30 cm
  • the stereoscopic display device 100 according to the embodiment described above may be implemented in various different forms other than the embodiment described above. Therefore, other embodiments of the stereoscopic display device 100 will be described below. Note that the same parts as those in the embodiment are given the same reference numerals and the description thereof will be omitted.
  • the frame 120 is arranged at three locations, that is, the lower part, the left part, and the right part, where the frame 120 is likely to overlap the image frame of the stereoscopic display when a stereoscopic image is displayed in a pop-up manner.
  • the position and size of 120 may be dynamically controlled.
  • the position and size of the frame 120 may be dynamically controlled according to the viewer's viewpoint position or the display position of the stereoscopic image.
  • frame 120 may be mechanically operated.
  • the frame 120 may be mechanically operated, such as a sliding plate like an automatic door, an electric shutter, or a curtain.
  • the frame 120 may have a transmittance that is optically controlled.
  • the frame 120 may be made of a transparent liquid crystal display or a liquid crystal light control film as a material for optically controlling transmittance.
  • the stereoscopic display device 100 displays a stereoscopic image generated in advance.
  • content generation and shooting may be controlled so that the stereoscopic image is not displayed before the maximum pop-out distance D.
  • the shooting camera for example, a stereo camera
  • the pop-up depth can be seen on the shooting side so that the positional relationship between the viewer on the stereoscopic display side and the maximum pop-out distance D is the same.
  • a physical barrier (such as an object such as a desk) may also be placed.
  • the physical barrier placed on the shooting side may have a desk-like shape or a partition-like shape.
  • visualization may be performed using an optical laser or projector. It may be configured to use an invisible force such as wind or ultrasonic waves so that a tactile sensation is felt when the object exceeds the protrusion depth. Alternatively, a certain depth of the subject may be measured, and if the depth exceeds the depth, the photographer may be notified using sound or video.
  • the stereoscopic display device 100 includes the stereoscopic display 110 and the frame 120.
  • the frame 120 is arranged to have an offset with respect to the display surface 110A in a viewing direction perpendicular to the display surface 110A of the stereoscopic display 110, and overlaps at least a portion of the outer edge of the stereoscopic display 110 when viewed from the viewing direction.
  • the stereoscopic display 110 is arranged so as to block the image on the stereoscopic display 110.
  • the stereoscopic display device 100 can prevent the displayed stereoscopic image from appearing to the viewer as if it is covering the image frame of the stereoscopic display, thereby reducing parallax inconsistency and stereoscopic misalignment. You can prevent it from happening. Therefore, the stereoscopic display device 100 can resolve at least a portion of the parallax contradiction and stereoscopic misalignment. Furthermore, the stereoscopic display device 100 can enable viewers to comfortably view stereoscopic images.
  • the maximum pop-out distance D which is the distance set as the maximum distance in the viewing direction from the display surface 110A to the stereoscopic image
  • the distance Fd in the viewing direction from the display surface 110A to the frame 120 are calculated using the following formula (1). Fulfill.
  • the stereoscopic display device 100 can prevent the displayed stereoscopic image from appearing to the viewer as if it is covering the image frame of the stereoscopic display, thereby reducing parallax inconsistency and stereoscopic misalignment. You can prevent it from happening. Therefore, the stereoscopic display device 100 can resolve at least a portion of the parallax contradiction and stereoscopic misalignment.
  • the frame 120 is arranged to overlap the lower end of the stereoscopic display 110 among the outer edges of the stereoscopic display 110 .
  • the viewing distance Z, which is the distance to the position in the viewing direction, and the distance h from the height of the lower end of the stereoscopic display 110 to the height of the viewer's viewpoint position satisfy the following formula (2).
  • the stereoscopic display device 100 can prevent the stereoscopic image displayed projecting from the bottom of the stereoscopic display from appearing to the viewer as covering the bottom edge of the image frame of the stereoscopic display. , it is possible to avoid causing parallax inconsistency or stereoscopic misalignment. Therefore, the stereoscopic display device 100 can resolve at least a portion of the parallax contradiction and stereoscopic misalignment.
  • the frame 120 is arranged so as to overlap the right end of the stereoscopic display 110 among the outer edges of the stereoscopic display 110 .
  • the viewing distance Z which is the distance in the viewing direction from the viewer's viewpoint to the viewer, and the distance w from the right end of the stereoscopic display 110 in the horizontal direction to the viewer's viewpoint in the horizontal direction are calculated using the following formula. (3) is satisfied.
  • the stereoscopic display device 100 can prevent the stereoscopic image displayed jumping out to the left of the stereoscopic display from appearing to the viewer as covering the left edge of the image frame of the stereoscopic display. It is possible to prevent parallax inconsistency and stereoscopic mismatch from occurring. Therefore, the stereoscopic display device 100 can resolve at least a portion of the parallax contradiction and stereoscopic misalignment.
  • the frame 120 is arranged so as to overlap the left end of the stereoscopic display 110 among the outer edges of the stereoscopic display 110 .
  • the viewing distance Z which is the distance in the viewing direction from the viewer's viewpoint to the viewer, the horizontal width W of the stereoscopic display 110, and the horizontal distance from the right end of the stereoscopic display 110 in the horizontal direction to the viewer's viewpoint.
  • the distance w to the position in the direction satisfies the following formula (4).
  • the stereoscopic display device 100 can prevent the stereoscopic image displayed jumping out to the right side of the stereoscopic display from appearing to the viewer as covering the right edge of the image frame of the stereoscopic display. It is possible to prevent parallax inconsistency and stereoscopic mismatch from occurring. Therefore, the stereoscopic display device 100 can resolve at least a portion of the parallax contradiction and stereoscopic misalignment.
  • the frame 120 is disposed so as to overlap the upper end of the stereoscopic display 110 among the outer edges of the stereoscopic display 110 .
  • the distance Fu from the height of the upper end of the stereoscopic display 110 to the height of the lower end of the frame 120, the distance Fd in the viewing direction from the display surface 110A to the frame 120, and the viewpoint of the viewer located in the viewing direction from the display surface 110A.
  • the viewing distance Z which is the distance to the position in the viewing direction, the vertical width H of the stereoscopic display 110, and the distance h from the height of the lower end of the stereoscopic display 110 to the height of the viewer's viewpoint position are as follows. satisfies formula (5).
  • the stereoscopic display device 100 can prevent the stereoscopic image displayed above the stereoscopic display from appearing to the viewer as if it is hanging over the top edge of the image frame of the stereoscopic display. It is possible to prevent parallax inconsistency and stereoscopic mismatch from occurring. Therefore, the stereoscopic display device 100 can resolve at least a portion of the parallax contradiction and stereoscopic misalignment.
  • the stereoscopic display device 100 further includes a protrusion 130 arranged to create a physical distance in the viewing direction between the display surface 110A and the viewer located in the viewing direction.
  • the distance Dd which is the sum of the distance in the viewing direction from the display surface 110A to the protrusion 130 and the width of the protrusion 130 in the viewing direction, and the free space provided between the viewer located in the viewing direction and the protrusion 130.
  • the width Dy and the viewing distance Z which is the distance in the viewing direction from the display surface 110A to the viewpoint position of the viewer located in the viewing direction, satisfy the following formula (6).
  • the stereoscopic display device 100 allows the viewer to view a stereoscopic image while maintaining the optimal viewing distance, so that the stereoscopic image may not be displayed due to crosstalk, convergence adjustment contradiction, or distortion in the image. It is possible to suppress quality deterioration in stereoscopic images such as unnaturalness, fatigue, or three-dimensional motion sickness. Therefore, the stereoscopic display device 100 can enable the viewer to comfortably view stereoscopic images.
  • the present technology can also have the following configuration.
  • a stereoscopic display Arranged so as to have an offset from the display surface in a viewing direction perpendicular to the display surface of the stereoscopic display, and arranged so as to overlap at least a portion of an outer edge of the stereoscopic display when viewed from the viewing direction.
  • a frame that blocks an image of the stereoscopic display;
  • a stereoscopic display device comprising: (2)
  • the maximum pop-out distance D which is the distance set as the maximum distance in the viewing direction from the display surface to the stereoscopic image, and the distance Fd from the display surface to the frame in the viewing direction are calculated using the following formula (1). Fulfill, The stereoscopic display device according to (1) above.
  • the frame is arranged to overlap a lower end of the stereoscopic display among the outer edges of the stereoscopic display, A distance Fh from the height of the lower end of the stereoscopic display to the height of the upper end of the frame, a distance Fd from the display surface to the frame in the viewing direction, and a viewer located in the viewing direction from the display surface.
  • the viewing distance Z which is the distance in the viewing direction to the viewpoint position of , and the distance h from the height of the lower end of the stereoscopic display to the height of the viewer's viewpoint position satisfy the following formula (2)
  • the frame is arranged so as to overlap a right end of the stereoscopic display among the outer edges of the stereoscopic display, A distance Fr from the right end of the stereoscopic display in the horizontal direction to the left end of the frame in the horizontal direction, a distance Fd from the display surface to the frame in the viewing direction, and from the display surface to the viewing direction.
  • the viewing distance Z is the distance in the viewing direction to the viewer's viewpoint located at , and the distance w from the right end of the stereoscopic display in the horizontal direction to the viewer's viewpoint in the horizontal direction is , satisfies the following formula (3),
  • the frame is arranged so as to overlap the left end of the stereoscopic display among the outer edges of the stereoscopic display, A distance Fl from the left end of the stereoscopic display in the horizontal direction to the right end of the frame in the horizontal direction, a distance Fd from the display surface to the frame in the viewing direction, and from the display surface to the viewing direction.
  • viewing distance Z which is the distance in the viewing direction to the viewpoint position of the viewer located at The distance w to the position of the viewpoint position in the horizontal direction satisfies the following formula (4),
  • the stereoscopic display device according to any one of (2) to (4) above.
  • the frame is arranged to overlap an upper edge of the stereoscopic display among the outer edges of the stereoscopic display, a distance Fu from the height of the upper end of the stereoscopic display to the height of the lower end of the frame; a distance Fd from the display surface to the frame in the viewing direction; and a viewer located in the viewing direction from the display surface.
  • viewing distance Z which is the distance in the viewing direction to the viewpoint position of the viewer, the vertical width H of the stereoscopic display, and the distance from the height of the lower end of the stereoscopic display to the height of the viewer's viewpoint position.
  • h satisfies the following formula (5),
  • the stereoscopic display device according to any one of (2) to (5) above.
  • a protrusion arranged to create a physical distance in the viewing direction between the display surface and the viewer located in the viewing direction, A distance Dd that is a sum of the distance from the display surface to the protrusion in the viewing direction and the width of the protrusion in the viewing direction, and a distance Dd provided between the viewer located in the viewing direction and the protrusion.
  • the width Dy of the free space and the viewing distance Z which is the distance in the viewing direction from the display surface to the viewpoint position of the viewer located in the viewing direction, satisfy the following formula (6),
  • the stereoscopic display device according to any one of (1) to (6) above.
  • stereoscopic display device 110 stereoscopic display 120 frame 130 protrusion

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

立体視表示装置は、立体視ディスプレイと、立体視ディスプレイの表示面に対し垂直な視聴方向において表示面に対しオフセットを有するように配置され、視聴方向から見て立体視ディスプレイの外縁の少なくとも一部にオーバーラップするように配置され、立体視ディスプレイの画像を遮蔽するフレームと、を備える。

Description

立体視表示装置
 本発明は、立体視表示装置に関する。
 従来、液晶パネル等の表示装置上に配されるレンチキュラーレンズまたはパララックスバリアなどの配光部材によって、画素から出射する光線に指向性を付与し、視聴者に視差画像による立体視表示を提供する立体視ディスプレイが知られている。
 ところで、立体視ディスプレイの表示面の手前に飛び出して表示される立体像が立体視ディスプレイの画角にかかる場合、視差矛盾や立体的不整合が生じることが知られている。また、視差矛盾や立体的不整合が生じた場合、立体映像を視聴する視聴者は、不自然さや疲れ、3次元酔いを感じてしまい、立体映像を快適に視聴することができない場合がある。
 視差矛盾や立体的不整合の少なくとも一方の解消のため視差量に基づいて周縁部に立体視可能な所定のフレーム画像を提示する技術が提案されている(例えば特許文献1参照)。あるいは、立体ディスプレイからオブジェクトまでの視距離に応じてオブジェクトを移動させる技術が提案されている(例えば特許文献2参照)。また、観察距離が融合限界外である場合に、左目画像、右目画像の視差情報またはスケーリングファクタを制御する技術が提案されている(例えば特許文献3参照)。
特開2010-268097号公報 特開2013-178727号公報 特開2012-44308号公報
 上記の従来技術は、立体視オブジェクトの位置あるいは構図を任意に変更可能なコンテンツを対象としており、位置あるいは構図の変更が望ましくないコンテンツに好適に適用することが困難である。例えば実写による遠隔コミュニケーションのための立体視表示に関し、依然として課題が残る。
 そこで、本開示では、視差矛盾や立体的不整合の少なくとも一部を解決する立体視表示装置を提案する。
 本開示によれば、立体視ディスプレイと、前記立体視ディスプレイの表示面に対し垂直な視聴方向において前記表示面に対しオフセットを有するように配置され、前記視聴方向から見て前記立体視ディスプレイの外縁の少なくとも一部にオーバーラップするように配置され、前記立体視ディスプレイの画像を遮蔽するフレームと、を備える立体視表示装置が提供される。
視差矛盾と立体的不整合について説明するための図である。 ステレオカメラの撮影位置と視聴者の視点位置との差異によって生じる立体映像の歪みについて説明するための図である。 FОV(Field Of View)と立体映像の歪みとの関係性について説明するための図である。 輻輳調節矛盾について説明するための図である。 立体視ディスプレイの視距離と、視聴者が快適に視聴できる立体映像の表示範囲との関係性について説明するための図である。 本開示の実施形態に係る立体視表示装置の構成例を示す図である。 同実施形態に係る立体視表示装置の側面図である。 同実施形態に係る立体視表示装置の平面図である。 同実施形態に係る立体視表示装置の側面図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
(実施形態)
[1.はじめに]
 まず、図1~図5を用いて、立体視ディスプレイによって表示される立体映像の視聴時の課題について説明する。
 図1は、視差矛盾と立体的不整合について説明するための図である。図1は、立体視ディスプレイ10の表示面に対して表示物体(以下、立体像ともいう)О11が手前側に飛び出して表示される場合を示す。図1では、立体像О11が人である場合について説明する。
 図1の中央の図は、視差矛盾について説明するための図である。図1の中央の図は、視聴者にとって、立体像О11が表示面の手前に見えるが、立体視ディスプレイ10の画枠F1が立体像О11の奥に透けて見えるため、視聴者が視差矛盾を感じる場合を示す。ここで、人は、奥に位置する物体は、手前に位置する物体によって隠れるはず(見えないはず)であるという常識を持っている。そのため、本来であれば、視聴者にとって、奥に位置する画枠F1は、手前に位置する立体像О11によって隠れて見えないはずである。そのため、視聴者が視差矛盾を感じる。
 図1の右側の図は、立体的不整合について説明するための図である。図1の右側の図は、視聴者にとって、立体像О11が表示面の手前に見えるが、立体像О11が胴体の途中で切れているため、立体像О11の胴体があるはずの空間に胴体が表示されておらず、その代わりに立体視ディスプレイ10の画枠F2が見えるため、視聴者が立体的不整合を感じる場合を示す。
 図2は、ステレオカメラの撮影位置と視聴者の視点位置との差異によって生じる立体映像の歪みについて説明するための図である。カメラは立体視のための複数の視点の画像を取得できればよく、3つ以上のカメラが用いられても良い。以下、カメラがステレオカメラである例を説明する。図2の左側の図は、ステレオカメラによる立体映像の撮影時を示す。図2の左側の図に示す細い両端矢印は、撮影時のステレオカメラと被写体О2との距離(撮影距離)を示す。また、図2の左側の図は、ステレオカメラは被写体に対して正面である様子を示す。
 図2の中央の図および右側の図は、図2の左側の図で撮影された立体映像の視聴時を示す。図2の中央の図に示す細い両端矢印は、立体視ディスプレイ10によって表示された立体像О21と視聴者の視点位置との距離(以下、視聴距離ともいう)と撮影時のステレオカメラと被写体О2との距離(以下、撮影距離ともいう)が一致することを示す。また、図2の中央の図は、視聴者の視点位置が、立体像О21に対して正面である様子を示す。このとき、視聴者は、立体視ディスプレイ10によって表示された立体像О21を正しい立体感で知覚する。一方、図2の右側の図に示す細い両端矢印および太い両端矢印は、視聴距離と撮影距離が一致しないことを示す。また、図2の右側の図は、視聴者の視点位置が、立体像О21に対して正面からずれている様子を示す。このとき、視聴者にとって、立体視ディスプレイ10によって表示された立体像О21を正しい立体感で知覚することができないため、立体像О21が歪んで見える。
 図3は、FОV(Field Of View)と立体映像の歪みとの関係性について説明するための図である。図3では、立体映像の撮影時と立体映像の視聴時とで被写体のサイズ感を同等にした場合であっても、視聴距離と撮影距離が一致しない場合、視聴者にとって立体映像が歪んで見える様子を示す。図3では、FОVの値が1である場合に、視聴距離と撮影距離が一致しており、視聴者が、女性の顔を示す立体像を正しい立体感で知覚することができる様子を示す。また、FОVの値が10、20、…、50のように大きくなるにつれて、視聴距離と撮影距離が小さくなり、視聴者が、女性の顔を示す立体像を正しい立体感で知覚することができなくなり、立体像が歪んで見える様子を示す。
 図4は、輻輳調節矛盾について説明するための図である。まず、輻輳距離と焦点距離について説明する。人は、近くの物体を見る場合は「寄り目」で見て、遠くの物体を見る場合は「離れ目」で見る。この目の調節のことを「輻輳」と呼ぶ。また、目から物体までの距離を「輻輳距離」と呼ぶ。また、人は、近くの物体を見る時は目の水晶体が「分厚く」なり、遠くの物体を見る場合は目の水晶体が「薄く」なる。このように目のピントを調節する機能が水晶体にあり、ピントが合うまでの距離を「焦点距離」と呼ぶ。
 図4の左側の図は、視聴者がディスプレイによって表示された2次元の映像を視聴する様子を示す。2次元の映像を視聴することを、自然視ともいう。2次元の映像を視聴する場合、輻輳距離と焦点距離は、いずれも視聴者の視点位置からディスプレイまでの距離と一致する。
 図4の右側の図は、視聴者がディスプレイによって表示された3次元の映像(立体映像)を視聴する様子を示す。3次元の映像を視聴することを、立体視ともいう。3次元の映像を視聴する場合、焦点は、映像が表示されているディスプレイの面に合わせられるため、焦点距離は、視聴者の視点位置からディスプレイまでの距離と一致する。一方、輻輳は、立体像が形成される面に合わせられるため、例えば、立体像がディスプレイの手前に表示される場合、輻輳距離は焦点距離より短くなる。そのため、3次元の映像を視聴する場合、輻輳距離と焦点距離は、一致しない。このような、3次元の映像を視聴する際の輻輳距離と焦点距離の矛盾により、視聴者が眼精疲労などの疲れや3次元酔いを感じる可能性があることが知られている。
 図5は、立体視ディスプレイの視距離と、視聴者が快適に視聴できる立体映像の表示範囲との関係性について説明するための図である。
 図5の左側の図は、視聴者の視点位置から立体視ディスプレイまでの距離である視距離Zと、立体視ディスプレイの手前側に飛び出して表示される立体像が快適に視聴できる範囲Dと、立体視ディスプレイの奥側に引っ込んで表示される立体像が快適に視聴できる範囲D´との関係を示す。範囲Dおよび範囲D´のことを、快適範囲ともいう。例えば、Zが1mの場合、Dは0.23m、D´は0.43m程度であるとされている。後述する最大飛び出し距離Dは、立体視ディスプレイの手前側に飛び出して表示される立体像が快適に視聴できる範囲Dと同じものである。
 図5の右側の図は、輻輳距離(Vergence distance)と焦点距離(Focal distance)との関係性について説明するための図である。図5の右側のグラフの横軸は、輻輳距離(Vergence distance)を示す。また、図5の右側のグラフの縦軸は、焦点距離(Focal distance)を示す。図5の右側のグラフは、視距離Zの逆数Dに対して±0.3(1/m)が快適範囲とされていることを示す。例えば、Zが1mの場合、快適範囲は、D+0.3=1.3(1/m)、および、D-0.3=0.7(1/m)である。これを距離に直すと、Dは0.23m、D´は0.43mとなる。
[2.立体視表示装置の構成]
 次に、図6~図9を用いて、本開示の実施形態に係る立体視表示装置の構成について説明する。
 図6は、本開示の実施形態に係る立体視表示装置の構成例を示す図である。図6に示すように、立体視表示装置100は、立体視ディスプレイ110と、フレーム120と、突出部130を備える。
 立体視ディスプレイ110は、立体映像を表示する表示装置である。立体視ディスプレイ110は、液晶パネルやOLED(Organic Light Emitting Diode)パネル等で構成される表示面100Aを有する。図6では、立体視ディスプレイ110は、視聴者V1が専用メガネ等を装着せずとも立体視が可能である、いわゆる裸眼立体ディスプレイである。
 フレーム120は、立体視ディスプレイ110の画枠を隠すために配置される。ここで、立体視ディスプレイ110の画枠は、立体視ディスプレイ110の外枠を含んでよい。また、立体視ディスプレイ110の画枠は、立体視ディスプレイ110の外枠に沿って表示面110Aに表示される枠状の画像を含んでよい。
 また、フレーム120は、立体視ディスプレイ110の表示面110Aに対し垂直な視聴方向(以下、単に「視聴方向」ともいう)において表示面110Aに対しオフセットを有するように配置される。具体的には、フレーム120は、表示面110Aとフレーム120との間の距離Fdが、図5で説明した視聴者が快適に視聴できる立体映像の表示範囲に基づいて設定された立体視ディスプレイ110の最大飛び出し距離D以上となる位置に配置される。ここで、最大飛び出し距離Dは、表示面110Aから立体像までの視聴方向における最大距離として設定された距離である。
 また、フレーム120は、視聴方向から見て立体視ディスプレイ110の外縁の少なくとも一部にオーバーラップするように配置され、立体視ディスプレイ110の画像を遮蔽する。図6では、フレーム120は、立体視ディスプレイ110の下端、右端、および左端の画枠にオーバーラップするように配置され、立体視ディスプレイ110の下端、右端、および左端の画枠を遮蔽する。
 また、フレーム120の素材は、立体視ディスプレイ110の画枠を隠す役割を果たすことができる素材であれば、いかなる素材であってもよい。例えば、フレーム120は、金属または樹脂により構成される板や棒によって構成されてよい。また、フレーム120は、光を完全に遮断する必要は必ずしもなく、画枠が見えない程度に光を吸収または拡散するようなものでもよい。例えば、フレーム120は、半透明な色付き素材、摺りガラスやレンズアレイのような光学拡散板や光学拡散棒によって構成されてよい。
 また、フレーム120を立体視ディスプレイ110に固定する方法としては、金属、樹脂、または、ガラスのような固体によって外周を支持してよい。また、フレーム120は、使用しないときは立体視ディスプレイ110から取り外しできるようにしてもよい。例えば、フレーム120は、ねじ、磁石、または、クリップのような固定と取り外しが可能な手段によって外周を支持してよい。
 突出部130は、視聴者V1の視距離を最適視距離に物理的に制限するために配置される。突出部130は、表示面110Aと視聴方向に位置する視聴者V1との間に視聴方向における物理的な距離を生じさせるよう配置される。ここで、最適視距離は、立体視ディスプレイ110の表示面110Aから視聴者の視点位置までの距離であって、視聴者が立体映像を快適に視聴できる距離である。例えば、レンチキュラー方式やパララックスバリア方式の立体視ディスプレイ110では、スリットの幅とパネルとの距離によって、最適視距離が決定される。
 また、突出部130は、立体視ディスプレイ110の表示面110Aに対し垂直な視聴方向において視聴者へ向かう方向へ突出するように配置される。図6では、突出部130は、フレーム120の下端から視聴者に向かう方向へ突出する板状の部位(以下、板部ともいう)である。例えば、突出部130は、表示面110Aとフレーム120との間の距離Fdと板部の幅Tdとを合わせた距離だけ、表示面110Aと視聴方向に位置する視聴者V1との間に視聴方向における物理的な距離を生じさせるよう配置される。なお、突出部130は、板部を支える脚部を備えてもよい。
 図7は、本開示の実施形態に係る立体視表示装置の側面図である。図7~図9では、最大飛び出し距離Dと、表示面110Aからフレーム120までの視聴方向における距離Fdが、下記の数式(1)を満たす。
Figure JPOXMLDOC01-appb-M000007
 上記の数式(1)を満たすことにより、フレーム120は最大飛び出し距離Dより手前に配置される。
 また、図7では、フレーム120は、立体視ディスプレイ110の外縁のうち、立体視ディスプレイ110の下端にオーバーラップするように配置される。立体視ディスプレイ110の下端の高さからフレーム120の上端の高さまでの距離Fhと、表示面110Aからフレーム120までの視聴方向における距離Fdと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zと、立体視ディスプレイ110の下端の高さから視聴者の視点位置の高さまでの距離hが、下記の数式(2)を満たす。
Figure JPOXMLDOC01-appb-M000008
 上記の数式(2)を満たすことにより、立体視ディスプレイ110の下端が視聴者から隠れる。
 図8は、本開示の実施形態に係る立体視表示装置の平面図である。図8では、フレーム120は、立体視ディスプレイ110の外縁のうち、立体視ディスプレイ110の右端にオーバーラップするように配置される。立体視ディスプレイ110の右端の水平方向における位置からフレーム120の左端の水平方向における位置までの距離Frと、表示面110Aからフレーム120までの視聴方向における距離Fdと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zと、立体視ディスプレイ110の右端の水平方向における位置から視聴者の視点位置の水平方向における位置までの距離wが、下記の数式(3)を満たす。
Figure JPOXMLDOC01-appb-M000009
 上記の数式(3)を満たすことにより、立体視ディスプレイ110の右端が視聴者から隠れる。
 また、フレーム120は、立体視ディスプレイ110の外縁のうち、立体視ディスプレイ110の左端にオーバーラップするように配置される。立体視ディスプレイ110の左端の水平方向における位置からフレーム120の右端の水平方向における位置までの距離Flと、表示面110Aからフレーム120までの視聴方向における距離Fdと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zと、立体視ディスプレイ110の横方向の幅Wと、立体視ディスプレイ110の右端の水平方向における位置から視聴者の視点位置の水平方向における位置までの距離wが、下記の数式(4)を満たす。
Figure JPOXMLDOC01-appb-M000010
 上記の数式(4)を満たすことにより、立体視ディスプレイ110の左端が視聴者から隠れる。
 なお、図示は省略するが、フレーム120は、立体視ディスプレイ110の外縁のうち、立体視ディスプレイ110の上端にオーバーラップするように配置されてもよい。立体視ディスプレイ110の上端の高さからフレーム120の下端の高さまでの距離Fuと、表示面110Aからフレーム120までの視聴方向における距離Fdと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zと、立体視ディスプレイ110の縦方向の幅Hと、立体視ディスプレイ110の下端の高さから視聴者の視点位置の高さまでの距離hが、下記の数式(5)を満たす。
Figure JPOXMLDOC01-appb-M000011
 上記の数式(5)を満たすことにより、立体視ディスプレイ110の上端が視聴者から隠れる。
 図9は、本開示の実施形態に係る立体視表示装置の側面図である。図9では、立体視表示装置100は、突出部130をさらに備える。表示面110Aから突出部130までの視聴方向における距離および突出部130の視聴方向における幅を合わせた距離Ddと、視聴方向に位置する視聴者と突出部130との間に設けられたゆとり空間の幅Dyと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zが、下記の数式(6)を満たす。
Figure JPOXMLDOC01-appb-M000012
 ゆとり空間は、突出部130と視聴者との間に設けられた空間である。ゆとり空間は、例えばヒトが机に対するときに自然と確保する空間(10~30cm程度の幅)であってよい。上記の数式(6)を満たすことにより、突出部130とゆとり空間の和が最適視距離になることが望ましい。
[3.変形例]
 上述した実施形態に係る立体視表示装置100は、上記実施形態以外にも種々の異なる形態にて実施されてよい。そこで、以下では、立体視表示装置100の他の実施形態について説明する。なお、実施形態と同一部分には、同一符号を付して説明を省略する。
[3-1.第1の変形例]
 上述した実施形態では、立体像が飛び出して表示された場合に、立体視ディスプレイの画枠にかかりやすい下部、左部および右部の3か所にフレーム120を配置する場合について説明したが、これに限られない。例えば、表示される立体映像によっては、上部の画枠にかかることも考えられるので,その場合は上部にフレーム120を配置してもよい。また、ヒトのようなコンテンツの場合、ヒトの胴体が下に伸びている構図になりやすいため,左右は除いて下部のみにフレーム120を配置してもよい。
[3-2.第2の変形例]
 上述した実施形態では、立体像が飛び出して表示された場合に、立体視ディスプレイの画枠にかかりやすい下部、左部および右部の3か所にフレーム120を配置する場合について説明したが、フレーム120の位置および大きさを動的に制御されてもよい。例えば、フレーム120の位置および大きさは、視聴者の視点位置または立体像の表示位置に合わせて動的に制御されてもよい。例えば、フレーム120は、機械的に動作するものであってよい。例えば、フレーム120は、機械的に動作するものとしては、自動ドアのようにスライドする板、電動シャッター、または、カーテンのようなものであってよい。また、フレーム120は、光学的に透過率を制御するものであってよい。例えば、フレーム120は、光学的に透過率を制御するものとしては、透明液晶ディスプレイまたは液晶調光フィルムを素材としてよい。
[3-3.第3の変形例]
 上述した実施形態では、立体視表示装置100があらかじめ生成された立体映像を表示する場合について説明したが、最大飛び出し距離Dより手前に立体映像が表示されないようにコンテンツの生成や撮影を制御してもよい。例えば、被写体が撮影者本人である場合、立体視ディスプレイ側の視聴者と最大飛び出し距離Dの位置関係と一致するように、撮影側にも撮影用カメラ(例えば、ステレオカメラ)と飛び出し奥行がわかる物理的な障壁(例えば机の様な物)を配置してもよい。これにより、被写体である撮影者は、立体視ディスプレイ側の最大飛び出し奥行がわかるので、そこに収まる範囲で動作するように気を付けることができる。例えば、撮影側に置く物理的な障壁は,机のような形状でもよいし,パーティションのような形状でもよい。また、物理的な障壁ではなく、光学的なレーザーやプロジェクターのようなもので可視化してもよい。風や超音波のような目に見えない力を使用して、飛び出し奥行を越えたら触覚を感じるような構成であってもよい。また別の方法として、被写体のある奥行を計測し、奥行を超えた場合は音や映像を用いて撮影者に伝えてもよい。
[4.効果]
 上述のように、本開示の実施形態又は変形例に係る立体視表示装置100は、立体視ディスプレイ110とフレーム120を備える。フレーム120は、立体視ディスプレイ110の表示面110Aに対し垂直な視聴方向において表示面110Aに対しオフセットを有するように配置され、視聴方向から見て立体視ディスプレイ110の外縁の少なくとも一部にオーバーラップするように配置され、立体視ディスプレイ110の画像を遮蔽する。
 これにより、立体視表示装置100は、視聴者にとって、飛び出して表示された立体像が立体視ディスプレイの画枠にかかったように見えるのを防ぐことができるので、視差矛盾や立体的不整合を引き起こさないようにすることができる。したがって、立体視表示装置100は、視差矛盾や立体的不整合の少なくとも一部を解決することができる。また、立体視表示装置100は、視聴者が立体映像を快適に視聴することを可能とすることができる。
 また、表示面110Aから立体像までの視聴方向における最大距離として設定された距離である最大飛び出し距離Dと、表示面110Aからフレーム120までの視聴方向における距離Fdが、下記の数式(1)を満たす。
Figure JPOXMLDOC01-appb-M000013
 これにより、立体視表示装置100は、視聴者にとって、飛び出して表示された立体像が立体視ディスプレイの画枠にかかったように見えるのを防ぐことができるので、視差矛盾や立体的不整合を引き起こさないようにすることができる。したがって、立体視表示装置100は、視差矛盾や立体的不整合の少なくとも一部を解決することができる。
 また、フレーム120は、立体視ディスプレイ110の外縁のうち、立体視ディスプレイ110の下端にオーバーラップするように配置される。立体視ディスプレイ110の下端の高さからフレーム120の上端の高さまでの距離Fhと、表示面110Aからフレーム120までの視聴方向における距離Fdと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zと、立体視ディスプレイ110の下端の高さから視聴者の視点位置の高さまでの距離hが、下記の数式(2)を満たす。
Figure JPOXMLDOC01-appb-M000014
 これにより、立体視表示装置100は、視聴者にとって、立体視ディスプレイの下側に飛び出して表示された立体像が立体視ディスプレイの画枠の下端にかかったように見えるのを防ぐことができるので、視差矛盾や立体的不整合を引き起こさないようにすることができる。したがって、立体視表示装置100は、視差矛盾や立体的不整合の少なくとも一部を解決することができる。
 また、フレーム120は、立体視ディスプレイ110の外縁のうち、立体視ディスプレイ110の右端にオーバーラップするように配置される。立体視ディスプレイ110の右端の水平方向における位置からフレーム120の左端の水平方向における位置までの距離Frと、表示面110Aからフレーム120までの視聴方向における距離Fdと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zと、立体視ディスプレイ110の右端の水平方向における位置から視聴者の視点位置の水平方向における位置までの距離wが、下記の数式(3)を満たす。
Figure JPOXMLDOC01-appb-M000015
 これにより、立体視表示装置100は、視聴者にとって、立体視ディスプレイの左側に飛び出して表示された立体像が立体視ディスプレイの画枠の左端にかかったように見えるのを防ぐことができるので、視差矛盾や立体的不整合を引き起こさないようにすることができる。したがって、立体視表示装置100は、視差矛盾や立体的不整合の少なくとも一部を解決することができる。
 また、フレーム120は、立体視ディスプレイ110の外縁のうち、立体視ディスプレイ110の左端にオーバーラップするように配置される。立体視ディスプレイ110の左端の水平方向における位置からフレーム120の右端の水平方向における位置までの距離Flと、表示面110Aからフレーム120までの視聴方向における距離Fdと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zと、立体視ディスプレイ110の横方向の幅Wと、立体視ディスプレイ110の右端の水平方向における位置から視聴者の視点位置の水平方向における位置までの距離wが、下記の数式(4)を満たす。
Figure JPOXMLDOC01-appb-M000016
 これにより、立体視表示装置100は、視聴者にとって、立体視ディスプレイの右側に飛び出して表示された立体像が立体視ディスプレイの画枠の右端にかかったように見えるのを防ぐことができるので、視差矛盾や立体的不整合を引き起こさないようにすることができる。したがって、立体視表示装置100は、視差矛盾や立体的不整合の少なくとも一部を解決することができる。
 また、フレーム120は、立体視ディスプレイ110の外縁のうち、立体視ディスプレイ110の上端にオーバーラップするように配置される。立体視ディスプレイ110の上端の高さからフレーム120の下端の高さまでの距離Fuと、表示面110Aからフレーム120までの視聴方向における距離Fdと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zと、立体視ディスプレイ110の縦方向の幅Hと、立体視ディスプレイ110の下端の高さから視聴者の視点位置の高さまでの距離hが、下記の数式(5)を満たす。
Figure JPOXMLDOC01-appb-M000017
 これにより、立体視表示装置100は、視聴者にとって、立体視ディスプレイの上側に飛び出して表示された立体像が立体視ディスプレイの画枠の上端にかかったように見えるのを防ぐことができるので、視差矛盾や立体的不整合を引き起こさないようにすることができる。したがって、立体視表示装置100は、視差矛盾や立体的不整合の少なくとも一部を解決することができる。
 また、立体視表示装置100は、表示面110Aと視聴方向に位置する視聴者との間に視聴方向における物理的な距離を生じさせるよう配置された突出部130をさらに備える。表示面110Aから突出部130までの視聴方向における距離および突出部130の視聴方向における幅を合わせた距離Ddと、視聴方向に位置する視聴者と突出部130との間に設けられたゆとり空間の幅Dyと、表示面110Aから視聴方向に位置する視聴者の視点位置までの視聴方向における距離である視距離Zが、下記の数式(6)を満たす。
Figure JPOXMLDOC01-appb-M000018
 これにより、立体視表示装置100は、視聴者に対して最適視距離を保った状態で立体映像を視聴させることができるので、クロストークや輻輳調節矛盾、映像に歪が生じることによる立体映像としての不自然さ、疲れ、または3次元酔いといった立体映像における品質劣化を抑制することができる。したがって、立体視表示装置100は、視聴者が立体映像を快適に視聴することを可能とすることができる。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、本技術は以下のような構成も取ることができる。
(1)
 立体視ディスプレイと、
 前記立体視ディスプレイの表示面に対し垂直な視聴方向において前記表示面に対しオフセットを有するように配置され、前記視聴方向から見て前記立体視ディスプレイの外縁の少なくとも一部にオーバーラップするように配置され、前記立体視ディスプレイの画像を遮蔽するフレームと、
 を備える立体視表示装置。
(2)
 前記表示面から立体像までの前記視聴方向における最大距離として設定された距離である最大飛び出し距離Dと、前記表示面から前記フレームまでの前記視聴方向における距離Fdが、下記の数式(1)を満たす、
 前記(1)に記載の立体視表示装置。
Figure JPOXMLDOC01-appb-M000019
(3)
 前記フレームは、前記立体視ディスプレイの外縁のうち、前記立体視ディスプレイの下端にオーバーラップするように配置され、
 前記立体視ディスプレイの下端の高さから前記フレームの上端の高さまでの距離Fhと、前記表示面から前記フレームまでの前記視聴方向における距離Fdと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zと、前記立体視ディスプレイの下端の高さから前記視聴者の視点位置の高さまでの距離hが、下記の数式(2)を満たす、
 前記(2)に記載の立体視表示装置。
Figure JPOXMLDOC01-appb-M000020
(4)
 前記フレームは、前記立体視ディスプレイの外縁のうち、前記立体視ディスプレイの右端にオーバーラップするように配置され、
 前記立体視ディスプレイの右端の水平方向における位置から前記フレームの左端の水平方向における位置までの距離Frと、前記表示面から前記フレームまでの前記視聴方向における距離Fdと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zと、前記立体視ディスプレイの右端の水平方向における位置から前記視聴者の視点位置の水平方向における位置までの距離wが、下記の数式(3)を満たす、
 前記(2)または(3)に記載の立体視表示装置。
Figure JPOXMLDOC01-appb-M000021
(5)
 前記フレームは、前記立体視ディスプレイの外縁のうち、前記立体視ディスプレイの左端にオーバーラップするように配置され、
 前記立体視ディスプレイの左端の水平方向における位置から前記フレームの右端の水平方向における位置までの距離Flと、前記表示面から前記フレームまでの前記視聴方向における距離Fdと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zと、前記立体視ディスプレイの横方向の幅Wと、前記立体視ディスプレイの右端の水平方向における位置から前記視聴者の視点位置の水平方向における位置までの距離wが、下記の数式(4)を満たす、
 前記(2)~(4)のいずれか1つに記載の立体視表示装置。
Figure JPOXMLDOC01-appb-M000022
(6)
 前記フレームは、前記立体視ディスプレイの外縁のうち、前記立体視ディスプレイの上端にオーバーラップするように配置され、
 前記立体視ディスプレイの上端の高さから前記フレームの下端の高さまでの距離Fuと、前記表示面から前記フレームまでの前記視聴方向における距離Fdと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zと、前記立体視ディスプレイの縦方向の幅Hと、前記立体視ディスプレイの下端の高さから前記視聴者の視点位置の高さまでの距離hが、下記の数式(5)を満たす、
 前記(2)~(5)のいずれか1つに記載の立体視表示装置。
Figure JPOXMLDOC01-appb-M000023
(7)
 前記表示面と前記視聴方向に位置する視聴者との間に前記視聴方向における物理的な距離を生じさせるよう配置された突出部をさらに備え、
 前記表示面から前記突出部までの前記視聴方向における距離および前記突出部の前記視聴方向における幅を合わせた距離Ddと、前記視聴方向に位置する視聴者と前記突出部との間に設けられたゆとり空間の幅Dyと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zが、下記の数式(6)を満たす、
 前記(1)~(6)のいずれか1つに記載の立体視表示装置。
Figure JPOXMLDOC01-appb-M000024
 100 立体視表示装置
 110 立体視ディスプレイ
 120 フレーム
 130 突出部

Claims (7)

  1.  立体視ディスプレイと、
     前記立体視ディスプレイの表示面に対し垂直な視聴方向において前記表示面に対しオフセットを有するように配置され、前記視聴方向から見て前記立体視ディスプレイの外縁の少なくとも一部にオーバーラップするように配置され、前記立体視ディスプレイの画像を遮蔽するフレームと、
     を備える立体視表示装置。
  2.  前記表示面から立体像までの前記視聴方向における最大距離として設定された距離である最大飛び出し距離Dと、前記表示面から前記フレームまでの前記視聴方向における距離Fdが、下記の数式(1)を満たす、
     請求項1に記載の立体視表示装置。
    Figure JPOXMLDOC01-appb-M000001
  3.  前記フレームは、前記立体視ディスプレイの外縁のうち、前記立体視ディスプレイの下端にオーバーラップするように配置され、
     前記立体視ディスプレイの下端の高さから前記フレームの上端の高さまでの距離Fhと、前記表示面から前記フレームまでの前記視聴方向における距離Fdと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zと、前記立体視ディスプレイの下端の高さから前記視聴者の視点位置の高さまでの距離hが、下記の数式(2)を満たす、
     請求項2に記載の立体視表示装置。
    Figure JPOXMLDOC01-appb-M000002
  4.  前記フレームは、前記立体視ディスプレイの外縁のうち、前記立体視ディスプレイの右端にオーバーラップするように配置され、
     前記立体視ディスプレイの右端の水平方向における位置から前記フレームの左端の水平方向における位置までの距離Frと、前記表示面から前記フレームまでの前記視聴方向における距離Fdと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zと、前記立体視ディスプレイの右端の水平方向における位置から前記視聴者の視点位置の水平方向における位置までの距離wが、下記の数式(3)を満たす、
     請求項2に記載の立体視表示装置。
    Figure JPOXMLDOC01-appb-M000003
  5.  前記フレームは、前記立体視ディスプレイの外縁のうち、前記立体視ディスプレイの左端にオーバーラップするように配置され、
     前記立体視ディスプレイの左端の水平方向における位置から前記フレームの右端の水平方向における位置までの距離Flと、前記表示面から前記フレームまでの前記視聴方向における距離Fdと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zと、前記立体視ディスプレイの横方向の幅Wと、前記立体視ディスプレイの右端の水平方向における位置から前記視聴者の視点位置の水平方向における位置までの距離wが、下記の数式(4)を満たす、
     請求項2に記載の立体視表示装置。
    Figure JPOXMLDOC01-appb-M000004
  6.  前記フレームは、前記立体視ディスプレイの外縁のうち、前記立体視ディスプレイの上端にオーバーラップするように配置され、
     前記立体視ディスプレイの上端の高さから前記フレームの下端の高さまでの距離Fuと、前記表示面から前記フレームまでの前記視聴方向における距離Fdと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zと、前記立体視ディスプレイの縦方向の幅Hと、前記立体視ディスプレイの下端の高さから前記視聴者の視点位置の高さまでの距離hが、下記の数式(5)を満たす、
     請求項2に記載の立体視表示装置。
    Figure JPOXMLDOC01-appb-M000005
  7.  前記表示面と前記視聴方向に位置する視聴者との間に前記視聴方向における物理的な距離を生じさせるよう配置された突出部をさらに備え、
     前記表示面から前記突出部までの前記視聴方向における距離および前記突出部の前記視聴方向における幅を合わせた距離Ddと、前記視聴方向に位置する視聴者と前記突出部との間に設けられたゆとり空間の幅Dyと、前記表示面から前記視聴方向に位置する視聴者の視点位置までの前記視聴方向における距離である視距離Zが、下記の数式(6)を満たす、
     請求項1に記載の立体視表示装置。
    Figure JPOXMLDOC01-appb-M000006
PCT/JP2023/028195 2022-08-10 2023-08-01 立体視表示装置 WO2024034481A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-128111 2022-08-10
JP2022128111 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034481A1 true WO2024034481A1 (ja) 2024-02-15

Family

ID=89851565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028195 WO2024034481A1 (ja) 2022-08-10 2023-08-01 立体視表示装置

Country Status (1)

Country Link
WO (1) WO2024034481A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317057A (zh) * 2014-08-18 2015-01-28 咏巨科技有限公司 一种3d显示结构及其制作方法
JP2016053704A (ja) * 2013-11-27 2016-04-14 株式会社半導体エネルギー研究所 表示装置
WO2021131829A1 (ja) * 2019-12-27 2021-07-01 ソニーグループ株式会社 情報処理装置、情報処理システム、および部材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053704A (ja) * 2013-11-27 2016-04-14 株式会社半導体エネルギー研究所 表示装置
CN104317057A (zh) * 2014-08-18 2015-01-28 咏巨科技有限公司 一种3d显示结构及其制作方法
WO2021131829A1 (ja) * 2019-12-27 2021-07-01 ソニーグループ株式会社 情報処理装置、情報処理システム、および部材

Similar Documents

Publication Publication Date Title
US7092003B1 (en) 3-D imaging arrangements
US7086735B1 (en) Enhancement of visual perception
US7612795B2 (en) Enhancement of visual perception III
US20170242260A1 (en) Optical stereoscopic display screen for naked eye viewing
CN106842599B (zh) 一种3d视觉成像方法及实现3d视觉成像的眼镜
US7545405B2 (en) Enhancement of visual perception II
US20170171534A1 (en) Method and apparatus to display stereoscopic image in 3d display system
KR102070800B1 (ko) 입체 디스플레이 장치 및 그 디스플레이 방법
US20120188226A1 (en) Method and system for displaying stereoscopic images
KR100274625B1 (ko) 다중액정슬리트를이용한3차원입체화상생성장치
EP1836531A2 (en) Enhancement of visual perception
KR20210049594A (ko) 공간 영상 투영 장치
US8717425B2 (en) System for stereoscopically viewing motion pictures
US20140268324A1 (en) Method of displaying 3d images from 2d source images using a barrier grid
Kunita et al. Immersive autostereoscopic display for mutual telexistence: TWISTER I (Telexistence Wide-angle Immersive STEReoscope model I)
WO2024034481A1 (ja) 立体視表示装置
EP2228678A1 (en) Display device with displaced frame perception
KR101044703B1 (ko) 입체영상 디스플레이 장치
KR20090026876A (ko) 3차원 입체영상 부양 확대 장치
US20060152580A1 (en) Auto-stereoscopic volumetric imaging system and method
CN207301514U (zh) 用于获得焦距认知的显示屏及头戴显示设备
Date et al. 66.3: Invited Paper: Smooth Motion Parallax Autostereoscopic 3D Display Using Linear Blending of Viewing Zones
JPH09261691A (ja) 映像表示方式
CN108732772B (zh) 一种显示设备及其驱动方法
Dolgoff Real-depth imaging: a new 3D imaging technology with inexpensive direct-view (no glasses) video and other applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852448

Country of ref document: EP

Kind code of ref document: A1