WO2024034418A1 - マイクロレンズアレイの成形型の切削加工方法 - Google Patents

マイクロレンズアレイの成形型の切削加工方法 Download PDF

Info

Publication number
WO2024034418A1
WO2024034418A1 PCT/JP2023/027546 JP2023027546W WO2024034418A1 WO 2024034418 A1 WO2024034418 A1 WO 2024034418A1 JP 2023027546 W JP2023027546 W JP 2023027546W WO 2024034418 A1 WO2024034418 A1 WO 2024034418A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
angle
axis
cutting
value
Prior art date
Application number
PCT/JP2023/027546
Other languages
English (en)
French (fr)
Inventor
俊希 濱谷
幸暢 西尾
智仁 桑垣内
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Publication of WO2024034418A1 publication Critical patent/WO2024034418A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to a method for cutting a mold for a microlens array.
  • An object of the present invention is to provide a method for cutting a mold for a microlens array with a large area and high optical performance, including a large number of microlenses.
  • the cutting method for a mold for a microlens array according to the first aspect of the present invention includes rotating a mold for a microlens array having a plurality of microlenses each having an optical axis in the same direction and having substantially the same shape.
  • This is a cutting method in which cutting is performed using a tool equipped with a blade that rotates around an axis.
  • the x-axis and y-axis are orthogonal to each other, with the direction of the central axis of the surface corresponding to the optical axis of the microlens being the z-axis.
  • the angle between the rotation axis of the tool and a straight line in the direction of the z-axis passing through a point on the rotation axis of the tool is ⁇
  • the tool The (x, y, z) coordinates of the machining point are determined by changing the value of the angle ⁇ , with the angle around the straight line of the plane containing the rotation axis of and the straight line being ⁇ , and the value of the angle ⁇ being a constant value.
  • the value of the angle ⁇ is set to the same value on the plurality of surfaces of the mold. Due to the shape error caused by the blade of the tool at approximately the same position in the plurality of surfaces of the mold, the surface irradiated using the microlens array formed by the mold has a difference in the shape of the plurality of surfaces of the mold.
  • the value of the angle ⁇ is set so that the dispersion of the value of the angle ⁇ is equal to or greater than a predetermined value for multiple surfaces of the mold so that changes in illuminance that occur at positions corresponding to approximately the same position within the mold are sufficiently small. distribute.
  • the cutting method of a mold for a microlens array by distributing the value of the angle ⁇ such that the dispersion of the value of the angle ⁇ is equal to or greater than a predetermined value over a plurality of surfaces of the mold.
  • a predetermined value e.g., a predetermined value of a surface irradiated using a microlens array
  • changes in illuminance due to shape errors caused by tools of a plurality of microlenses can be reduced. Therefore, according to this aspect, it is possible to process a mold for a large-area microlens array having high optical performance and including a large number of fine microlenses.
  • interference between the tool and the surface can be prevented by setting the angle ⁇ to a small value at the periphery of one surface of the mold.
  • the maximum value of the angle ⁇ when cutting one surface of the mold is determined for each surface.
  • the maximum value of the angle ⁇ when cutting one surface of the mold is The angle is 3 degrees or more on 50% or more of the total number of surfaces of the mold corresponding to the surface.
  • the maximum value of the angle ⁇ should be 3 degrees or more on the surfaces that are 50% or more of the total number of surfaces of the mold that correspond to the surface of the microlens. It is preferable to change the position where the error occurs.
  • the machining point is In areas where the distance is greater than a predetermined value, cutting is performed while changing the value of the angle ⁇ , and in areas where the distance is less than the predetermined value, cutting is performed with the value of the angle ⁇ fixed.
  • the angle ⁇ is set to a small value at the periphery of one surface of the mold to prevent interference between the tool and the surface, and the central axis of the surface is In a region close to , cutting can be performed with the value of the angle ⁇ fixed.
  • the predetermined value of the distance of the processing point from the central axis is, for example, 30 percent of the distance from the central axis to the periphery of the surface.
  • the value of the angle ⁇ is increased.
  • the rate of change is determined so that the positioning accuracy of the tool in all moving directions is equal to or less than a predetermined value.
  • cutting can be performed with high precision while increasing the value of the angle ⁇ .
  • the locus of the machining point is aligned with the central axis. It is a spiral around.
  • the plurality of surfaces are divided into one or more groups, and the values of the angles ⁇ of the individual surfaces are determined to be distributed uniformly or at equal intervals for each group.
  • the cutting method of the microlens array mold of this embodiment it is possible to easily increase the dispersion of the values of the angles ⁇ of the plurality of surfaces, and therefore the shape error caused by the tooling of the plurality of microlenses It is possible to reduce changes in illuminance caused by
  • a five-axis processing machine is used, and the x-axis, the y-axis, and the z-axis are Processing is performed by making the angle ⁇ and the angle ⁇ correspond to the angles around the two rotational axes of the multi-axis processing machine, corresponding to the three linear axes of the processing machine.
  • a mold for a microlens array can be easily processed using a 5-axis processing machine.
  • the distance of the processing point from the central axis is Cutting is performed while changing the value of the angle ⁇ such that the value of the angle ⁇ becomes larger as the angle ⁇ becomes smaller.
  • the value of the angle ⁇ is set to a small value at the peripheral edge of the surface to prevent interference between the side surface of the tool and the surface, and the value of the angle ⁇ is set to a large value near the central axis of the surface.
  • the cutting tool when cutting one surface of the mold, the cutting tool is adjusted according to the shape of the surface. Cutting is performed while changing the value of the angle ⁇ so that the side surface and the surface do not interfere. According to this embodiment, even when the shape of the cross section including the central axis of the surface is complex, the side surface of the tool and the surface It is possible to prevent interference with
  • the method for manufacturing a microlens array according to the second aspect of the present invention uses a mold processed by any of the above microlens array mold cutting methods.
  • a large-area microlens array containing a large number of microlenses and having high optical performance can be obtained.
  • FIG. 1 is a diagram showing a 5-axis processing machine as an example of a processing device used in the cutting method of the present invention. It is a figure showing a tool.
  • FIG. 6 is a diagram showing an example of a machining path S of a tool when machining a surface of a mold corresponding to a lens surface using a 5-axis machining machine.
  • FIG. 3 is a diagram showing a cross section including the rotation axis of the tool.
  • FIG. 3 is a diagram showing a cross section including the rotation axis of the tool. It is a figure which shows the cross section containing the rotation axis of a tool, and the central axis of a surface.
  • FIG. 7 is a diagram showing a cross section of the tool including the center axis AX' and the rotation axis AX in a case where the center axis AX' of the tool shape and the rotation axis AX do not match due to manufacturing errors of the tool.
  • FIG. 7 is a diagram showing a cross section of the tool including the center axis AX' and the rotation axis AX in a case where the center axis AX' of the tool shape and the rotation axis AX do not match due to an installation error.
  • FIG. 2 is a conceptual diagram showing a shape error of a surface of a mold corresponding to a lens surface to be processed. It is a figure for explaining the inclination of a tool.
  • FIG. 3 is a diagram for explaining how to determine the maximum value of the angle (acute angle) ⁇ between the z-axis of the tool and the rotation axis of the tool.
  • FIG. 3 is a diagram for explaining the angle (acute angle) ⁇ between the y-axis and a plane including the rotation axis of the tool and a straight line in the z-axis direction passing through the rotation axis of the tool. It is a figure for explaining the cutting method of this invention.
  • FIG. 7 is a conceptual diagram showing a shape error of a surface 210 due to a conventional cutting method in which the angle ⁇ is constant and the angle ⁇ is 0.
  • FIG. 3 is a conceptual diagram illustrating a surface shape error caused by the cutting method of the present invention in which the angle ⁇ is constant and the angle ⁇ is increased as the distance from the center axis of the surface of the machining point decreases.
  • 16 is a diagram showing an actual shape error of a surface cut by the cutting method explained in FIG. 15.
  • FIG. 17 is a diagram showing an actual shape error of a surface cut by the cutting method explained in FIG. 16.
  • FIG. 20A is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 20A.
  • FIG. 20 is a diagram showing illuminance on a surface when there is a shape error shown in FIG. 19;
  • FIG. 21A is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 21A.
  • FIG. 3 is a diagram showing an illuminance distribution obtained and averaged by simulation.
  • 22A is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 22A.
  • FIG. 3 The illuminance distribution on the surface by the microlens of the mold cut by setting the angle ⁇ to 360/61, 360x2/61, 360x3/61,...,360 degrees and changing the angle ⁇ from 0 to 15 degrees in each case.
  • FIG. 3 is a diagram showing illuminance obtained and averaged through simulation.
  • FIG. 23A is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 23A.
  • FIG. The illuminance distribution on the surface by the microlens of the mold was cut by setting the angle ⁇ to 360/127, 360x2/127, 360x3/127,...,360 degrees and changing the angle ⁇ from 0 to 15 degrees in each case.
  • FIG. 3 is a diagram showing an illuminance distribution obtained and averaged by simulation.
  • 24B is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 24A.
  • FIG. FIG. 16 is a diagram showing an actual shape error of a mold surface corresponding to one microlens surface cut by the conventional cutting method explained in FIG. 15; FIG.
  • FIG. 16 is a diagram showing an actual shape error of a mold surface corresponding to another microlens surface cut by the conventional cutting method explained in FIG. 15;
  • FIG. 17 is a diagram showing an actual shape error of a mold surface corresponding to one microlens surface, which is cut by the cutting method of the present invention explained in FIG. 16.
  • FIG. 17 is a diagram showing an actual shape error of a mold surface corresponding to another microlens surface, which is cut by the cutting method of the present invention explained in FIG. 16.
  • FIG. 29A is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 29A.
  • FIG. 17 is a diagram showing the illuminance on a surface of a microlens array manufactured using a mold cut by the cutting method described in FIG. 16.
  • 30A is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 30A.
  • FIG. 1 is a diagram showing a five-axis processing machine 100 as an example of a processing device used in the cutting method of the present invention.
  • the 5-axis processing machine 100 includes three linear axes (X, Y, Z) and two rotary axes (B, C).
  • the workpiece 200 is machined by the tool 110.
  • the tool 110 is, for example, a ball end mill.
  • FIG. 2 is a diagram showing the tool 110.
  • the tool 110 includes a cutting edge 115 and cuts the workpiece 200 by rotating around a rotation axis.
  • the outline of the cutting edge 115 in a cross section including the rotation axis of the tool 110 is arcuate.
  • FIG. 3 is a diagram illustrating an example of a machining path S indicating the position of the machining point of the tool 110 when the 5-axis machining machine 100 processes the surface 210 of the mold corresponding to the lens surface.
  • the lens surface and the surface 210 are spherical surfaces, aspheric surfaces, free-form surfaces, etc.
  • the machining path is spiral around the central axis of the surface 210 of the mold, as shown in FIG. 3 as an example, and the machining point approaches the central axis from the periphery of the surface 210 along the machining path.
  • it is preferable that the machining is performed so that the machining points of the tool are located on continuous lines that do not intersect on the surface 210 of the mold.
  • the position of the machining point of the tool 110 is controlled by the linear axes (X, Y, Z) of the 5-axis processing machine 100.
  • FIG. 4 is a diagram showing a cross section of the tool 110 including the rotation axis.
  • FIG. 5 is an enlarged view of the part surrounded by the dotted line in FIG. 4.
  • a designed circular arc of the outline of the cutting edge 115 is indicated by C, and the center of the circular arc C is indicated by O.
  • the center O is located on the rotation axis.
  • the position of point P on the cutting edge 115 is indicated by the angle (acute angle) ⁇ between the rotation axis and a straight line connecting points O and P.
  • FIG. 6 is a diagram showing a cross section including the rotation axis of the tool 110 and the central axis of the surface 210.
  • FIG. 6 when cutting is performed in a state where the rotational axis of the tool 110 and the center axis of the surface 210 are parallel to each other, a point P' on the surface 210 that is cut by a point P on the blade of the tool 110
  • the angle between the straight line representing the tangent surface of the surface 210 and the central axis of the surface 210 is (90- ⁇ ) degrees. In this way, the position on the surface 210 cut by the point on the blade of the tool 110 is determined by the angle ⁇ .
  • FIG. 7 is a diagram showing a cross section of the tool including the center axis AX' and the rotation axis AX when the center axis AX' of the tool shape and the rotation axis AX do not match due to tool manufacturing errors.
  • the arc representing the ideal tool blade is represented by C'.
  • the central axis of the ideal tool shape coincides with the rotation axis AX.
  • C represents the arc of the actual tool blade when the center axis AX' of the tool shape and the rotation axis AX do not match due to manufacturing errors.
  • the shape of the periphery of the rotation axis of the tool becomes approximately flat.
  • FIG. 8 is a diagram showing a cross section of the tool including the center axis AX' and the rotation axis AX when the center axis AX' of the tool shape and the rotation axis AX do not match due to installation error.
  • FIG. 9 is a conceptual diagram showing the shape error of the mold surface 210 corresponding to the lens surface of the processing object 200.
  • the horizontal axis in FIG. 9 indicates coordinates in the direction of a straight line perpendicular to the central axis of the surface 210, and the vertical axis in FIG. 9 indicates the shape error.
  • FIG. 10 is a diagram for explaining the inclination of the tool 110.
  • a point on the rotation axis of the tool 110 is the origin, and a straight line passing through the origin and parallel to the central axis of the surface 210 corresponding to the optical axis of the surface of the microlens is defined as the z-axis of the tool.
  • An x-axis and a y-axis of the tool that are orthogonal to each other are defined in a plane that is orthogonal to the z-axis of the tool. How to determine the x-axis and y-axis of the tool will be explained later.
  • be the angle (acute angle) between the z-axis of the tool and the rotation axis of the tool.
  • be the angle (acute angle) formed by the y-axis of the tool, the plane containing the z-axis of the tool, and the axis of rotation of the tool.
  • FIG. 11 is a diagram showing the positional relationship between the tool and the machining path of the tool when the angle (acute angle) between the z-axis of the tool and the rotational axis of the tool is ⁇ .
  • the angle (acute angle) between the z-axis and the rotation axis of the tool 110 is zero.
  • FIG. 12 is a diagram for explaining how to determine the maximum value of the angle (acute angle) ⁇ formed by the z-axis of the tool and the rotation axis of the tool.
  • FIG. 12 shows a cross section including the central axis of the tool 110 and the central axis of the surface 210.
  • the maximum value of the angle ⁇ is determined so that the side surface of the tool and the surface 210 do not interfere with each other.
  • FIG. 13 is a diagram for explaining the angle (acute angle) ⁇ formed by the y-axis of the tool, the rotational axis of the tool, and a plane including a straight line in the z-axis direction passing through the rotational axis of the tool.
  • the z-axis of the surface coincides with the central axis of the surface 210 of the mold corresponding to the surface of the microlens.
  • An x-axis of the surface and a y-axis of the surface that are perpendicular to each other are defined in a plane perpendicular to the z-axis of the surface.
  • the surfaces of the plurality of molds corresponding to the surfaces of the plurality of microlenses are respectively set to be parallel to each other.
  • the x-axis and y-axis of the tool are set to be parallel to the x-axis and y-axis of the surface, respectively.
  • Angle ⁇ corresponds to an angle about the central axis of surface 210. In FIG. 13, the angle ⁇ is an angle measured counterclockwise with the y-axis as a reference.
  • PL denotes a surface that includes the z-axis of the surface and forms an angle ⁇ with a surface that includes the y-axis and z-axis of the surface.
  • the angle ⁇ of the tool is constant while machining the surface 210 corresponding to one lens surface.
  • the angle ⁇ corresponds to the angle indicated by C
  • the angle ⁇ corresponds to the angle indicated by B.
  • the angles indicated by B and C are constant values during machining, and the angle indicated by C is determined so that the axis of rotation of the tool 110 is in the vertical direction. In this case, the angle ⁇ is 0.
  • FIG. 14A is a diagram for explaining a cutting method according to an embodiment of the present invention.
  • the angle ⁇ is kept constant while processing the surface 210 of the mold corresponding to one lens surface, and the angle ⁇ is changed as the distance from the center axis of the surface 210 of the processing point decreases. Therefore increase.
  • the surfaces shown in (1), (2), and (3) in FIG. 14A correspond to the surface PL explained in FIG. 13.
  • the angle ⁇ is 0 when cutting the peripheral edge of the surface 210 shown in (1).
  • the angle ⁇ increases and reaches a maximum at the position of the central axis of the surface 210 shown in (3).
  • the maximum value of the angle ⁇ is 3 degrees or more.
  • the angle indicated by B is kept at a constant value during processing.
  • the angle indicated by C is changed such that the angle ⁇ increases as the distance from the central axis of the surface 210 of the processing point decreases.
  • the angle ⁇ increases continuously and monotonically as the distance from the central axis of the surface 210 decreases. Further, the rate of change when changing the value of the angle ⁇ is determined so that the positioning accuracy on all operating axes of the processing machine is equal to or less than a predetermined value.
  • the above predetermined value is, for example, 10 nanometers.
  • FIG. 14B is a diagram for explaining a cutting method according to another embodiment of the present invention.
  • FIG. 14B shows a cross section including the central axis of surface 210.
  • the angle ⁇ is kept constant, and the angle ⁇ is changed according to the shape of the surface 210.
  • the angle ⁇ is 0, and the side surface of the tool 110 and the surface 210 do not interfere.
  • the angle ⁇ is determined so that the side surface of the tool 110 and the surface 210 do not interfere with each other.
  • the maximum value of the angle ⁇ is 3 degrees or more.
  • FIG. 15 is a conceptual diagram showing the shape error of the surface 210 due to the conventional cutting method in which the angle ⁇ is constant and the angle ⁇ is 0.
  • the diagram on the left side of FIG. 15 shows the shape error of the surface 210 in the cross section of the surface PL explained in FIG. 13.
  • the horizontal axis of the left diagram indicates coordinates in the direction of a straight line perpendicular to the central axis of the surface 210, and the vertical axis of the left diagram indicates the shape error.
  • the figure on the right is a plan view of surface 210.
  • the position of a point on the tool blade is expressed as an angle (acute angle) between the rotation axis and a straight line connecting points O and P, and if there are shape errors of the tool at angles ⁇ 0, ⁇ 1, ⁇ 2, and ⁇ 3, then Shape errors occur at positions E0, E1, E2, and E3 of the surface 210 that is cut at the positions of the blade angles ⁇ 0, ⁇ 1, ⁇ 2, and ⁇ 3. ⁇ 0 is 0.
  • the position E0 where the maximum shape error occurs is near the central axis of the surface 210. Note that the shape shown in FIG. 15 is axially symmetrical with respect to the z-axis of the surface.
  • FIG. 16 is a conceptual diagram showing the shape error of the surface 210 due to the cutting method of the present invention in which the angle ⁇ is constant and the angle ⁇ is increased as the distance from the central axis of the surface 210 of the processing point decreases.
  • the diagram on the left side of FIG. 16 shows the shape error of the surface 210 in the cross section of the surface PL explained in FIG. 14A.
  • the horizontal axis of the left diagram indicates coordinates in the direction of a straight line perpendicular to the central axis of the surface 210, and the vertical axis of the left diagram indicates the shape error.
  • the figure on the right is a plan view of surface 210.
  • the position of a point on the tool blade is expressed as an angle (acute angle) between the rotation axis and a straight line connecting points O and P, and if there are shape errors of the tool at angles ⁇ 0, ⁇ 1, ⁇ 2, and ⁇ 3, then Shape errors occur at positions E0', E1', E2', and E3' of the surface 210 that is cut at the positions of the blade angles ⁇ 0, ⁇ 1, ⁇ 2, and ⁇ 3. ⁇ 0 is 0.
  • the position E0' where the maximum shape error occurs is to the left of the central axis of the surface 210.
  • FIG. 17 is a diagram showing the actual shape error of the surface 210 cut by the cutting method explained in FIG. 15.
  • the central axis of the surface 210 is taken as the z-axis, and the x-axis and y-axis that are perpendicular to each other are defined with the intersection of the surface 210 and the central axis as the origin.
  • the spacing between the x-axis and y-axis graduations is 200 micrometers, and the spacing between the z-axis graduations is 0.5 micrometers.
  • the plane shown in the left diagram of FIG. 15 corresponds to the xz plane of FIG. 17. In FIG. 17, the position where the maximum shape error occurs is near the origin.
  • FIG. 18 is a diagram showing the actual shape error of the surface cut by the cutting method explained in FIG. 16.
  • the plane shown in the left diagram of FIG. 16 corresponds to the xz plane of FIG. 18, that is, the plane PL explained in FIG. 13.
  • the position where the maximum shape error occurs is a position where the x coordinate is negative on the x axis.
  • the plane PL is a plane including the z-axis of the plane and the x-axis of the plane.
  • the position where the shape error occurs can be moved within the plane PL.
  • the interference between the tool and the surface of the mold described using FIG. 12 occurs at the periphery of the surface 210 of the mold, that is, in a region having a large distance from the central axis of the surface 210 of the mold. Therefore, when cutting the peripheral edge of the surface 210 of the mold, the above interference can be avoided by setting the angle ⁇ to 0, for example, and increasing the value of the angle ⁇ as the distance from the center axis of the processing point becomes smaller. can.
  • cutting is performed while increasing the value of the angle ⁇ as the distance from the center axis decreases, and when the distance from the center axis is less than the above predetermined value.
  • cutting may be performed with the value of the angle ⁇ fixed regardless of the distance from the central axis.
  • the value of the angle ⁇ when processing the surfaces of the mold that correspond to the surfaces of all microlenses.
  • the value of the angle ⁇ may be fixed when processing one or more mold surfaces.
  • the maximum value when changing the value of the angle ⁇ may be changed for each surface. Considering all the surfaces of the mold that correspond to the surface of the microlens, the maximum value of the angle ⁇ should be 3 degrees or more on the surfaces that are 50% or more of the total number of surfaces of the mold that correspond to the surface of the microlens. It is preferable to change the position where the error occurs.
  • FIG. 19 is a diagram showing shape errors in the xz cross section of the surface 210 of the mold.
  • the horizontal axis in FIG. 19 indicates the position in the x-axis direction.
  • the unit of length is millimeters.
  • the vertical axis in FIG. 19 indicates the shape error.
  • the unit of length is micrometer.
  • FIG. 19 shows the shape error when cutting by the cutting method explained in FIG. 15, and for simplicity, it is assumed that the shape error occurs only near the central axis of the surface 210.
  • the position where the shape error occurs can be moved on the plane PL.
  • the angle ⁇ is changed from 0 degrees to 15 degrees depending on the distance from the center axis as the machining point approaches the central axis from the periphery of the surface 210, the surface 210 is cut at the position of the blade angle ⁇ 0.
  • the angle ⁇ is 11 degrees, which is the position of -0.06 mm on the horizontal axis in FIG. Therefore, a simulation was performed on the assumption that a shape error similar to the shape error shown in FIG. 19 would occur at a position of -0.06 mm when cutting using the cutting method described in FIG. 16.
  • the position where a shape error occurs is determined in the direction of the surface PL corresponding to the angle ⁇ . can be moved to
  • FIG. 20A is a diagram showing the illuminance distribution on the surface when there is no shape error.
  • the horizontal axis in FIG. 20A indicates the angle between the z-axis and a straight line obtained by projecting the light rays that reach the irradiation surface from the microlens array onto the xz plane
  • the vertical axis in FIG. 20A indicates the angle that the rays that reach the irradiation surface from the microlens array make. It shows the angle that a straight line projected onto the yz plane makes with the z-axis.
  • the z-axis is defined as a straight line passing through the center of the microlens array and parallel to the central axis of each microlens
  • the x-axis and y-axis are defined as mutually orthogonal straight lines in a plane perpendicular to the z-axis. do.
  • the horizontal and vertical axes of FIGS. 21A, 22A, 23A, 24A, 29A, and 30A also indicate the above angles.
  • FIG. 20B is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 20A.
  • the horizontal axis in FIG. 20B indicates the angle that a straight line obtained by projecting the light beam reaching the irradiation surface from the microlens array onto the xz plane makes with the z-axis
  • the vertical axis in FIG. 20B indicates the relative value of illuminance.
  • the horizontal axes of FIGS. 21B, 22B, 23B, 24B, 29B and 30B also indicate the above angle
  • the vertical axes of FIGS. 21B, 22B, 23B, 24B, 29B and 30B also indicate the illuminance Indicates relative value.
  • FIG. 21A is a diagram showing the illuminance distribution on the surface when there is a shape error shown in FIG. 19.
  • FIG. 3 is a diagram showing an illuminance distribution obtained by calculating and averaging the illuminance distribution of .
  • FIG. 22B is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 22A.
  • the illuminance change near x is 0 is smaller than the illuminance change shown in FIGS. 20A and 20B. ing.
  • Figure 23A shows a surface cut by a microlens using a mold that was cut by setting the angle ⁇ to 360/61, 360x2/61, 360x3/61,...,360 degrees and changing the angle ⁇ from 0 to 15 degrees in each case.
  • FIG. 3 is a diagram showing the averaged illuminance obtained by simulation of the illuminance distribution of .
  • FIG. 23B is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 23A.
  • FIG. 3 is a diagram showing an illuminance distribution obtained by calculating and averaging the illuminance distribution of .
  • FIG. 24B is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 24A.
  • the dispersion of angle ⁇ will be explained.
  • the number of microlenses is assumed to be 6.
  • the dispersion of the angle ⁇ is 0.
  • the microlenses are divided into three groups of two, and the angle ⁇ of the surface 210 corresponding to the two microlenses in each group is 0 and 180 degrees, the dispersion is 9720. In this case, there are three surfaces on which the same value of angle ⁇ is used. If the microlenses are divided into two groups of three, and the angles ⁇ of the surface 210 corresponding to the three microlenses in each group are 0, 120 degrees and 240 degrees, the dispersion is 11520.
  • the dispersion is 12,600.
  • the angles ⁇ used for all surfaces in this case are different. In each group, the angles ⁇ are set at equal intervals. The smaller the number of surfaces on which the same value of angle ⁇ is used, the greater the dispersion.
  • the values of the angles ⁇ of multiple surfaces may be distributed uniformly or at equal intervals.
  • the value of the angle ⁇ of the multiple surfaces may be determined using pseudo-random numbers or the like.
  • an appropriate distribution of angle ⁇ can be determined by determining the illuminance distribution on the surface while changing the value of angle ⁇ of the surface of multiple molds so as to increase the variance of angle ⁇ , and comparing the illuminance distribution. .
  • the results of actually processing a microlens array are shown below.
  • the microlens array consists of 421 spherical microlenses with a radius of 0.1 mm.
  • FIG. 25 is a diagram showing the actual shape error of the mold surface corresponding to one microlens surface cut by the conventional cutting method explained in FIG. 15.
  • the central axis of the surface 210 is taken as the z-axis, and the x-axis and y-axis that are orthogonal to each other are defined with the intersection of the surface 210 and the central axis as the origin.
  • FIG. 26 is a diagram showing the actual shape error of the mold surface corresponding to another microlens surface cut by the conventional cutting method explained in FIG. 15.
  • the maximum shape error occurs near the central axis.
  • FIG. 27 is a diagram showing the actual shape error of the mold surface corresponding to one microlens surface, which was cut by the cutting method of the present invention explained in FIG. 16.
  • FIG. 28 is a diagram showing the actual shape error of the mold surface corresponding to another microlens surface, which was cut by the cutting method of the present invention explained in FIG. 16.
  • the maximum shape errors occur at different positions. Specifically, in the case of FIG. 27, the maximum shape error occurs in the positive quadrant of the x and y coordinates, and in the case of FIG. 28, the maximum shape error occurs in the negative quadrant of the x and y coordinates.
  • the position where the maximum shape error occurs is determined by the value of the angle ⁇ .
  • angles ⁇ of the surfaces of 421 molds corresponding to 421 microlenses were determined using pseudo-random numbers.
  • FIG. 29A is a diagram showing the illuminance distribution on a surface of a microlens array manufactured using a mold cut by the cutting method described in FIG. 15.
  • FIG. 29B is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 29A.
  • FIG. 30A is a diagram showing the illuminance distribution on a surface of a microlens array manufactured using a mold cut by the cutting method described in FIG. 16.
  • FIG. 30B is a diagram showing an xz cross section of the illuminance distribution shown in FIG. 30A.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

それぞれが同一方向の光軸を備え、ほぼ同一形状の複数のマイクロレンズを備えたマイクロレンズアレイの成形型の切削加工方法を提供する。一つのマイクロレンズの面に対応する該成形型の一つの面を加工する際に、該一つの面のマイクロレンズの光軸に対応する中心軸の方向をz軸として、互いに直交するx軸、y軸及びz軸を備えた座標系において、該工具の回転軸と該工具の回転軸上の点を通る該z軸の方向の直線とのなす角度をθ、該工具の回転軸と該直線とを含む平面の該直線の周りの角度をΦとして、角度Φの値を一定値として、角度θの値を変化させながら切削加工し、該複数のマイクロレンズの面に対応する該成形型の複数の面を切削加工する際に、該成形型の複数の面に対して角度Φの値の分散が所定値以上となるように分布させる。

Description

マイクロレンズアレイの成形型の切削加工方法
 本発明は、マイクロレンズアレイの成形型の切削加工方法に関する。
 マイクロレンズアレイの成形型を多軸加工機などの加工機によって加工する場合に、マイクロレンズアレイの複数のマイクロレンズの面に対応する成形型の複数の面を順次加工する(たとえば、特許文献1)。ボールエンドミルなど中心軸の周りに回転する工具によって成形型の面を切削加工する場合に、工具の製造誤差及び工具の取り付け誤差による工具の形状の中心軸の位置と回転軸の位置と不一致などにより特に工具の中心軸付近で加工される箇所に大きな形状誤差が生じる傾向がある。このため、通常の切削加工方法では、複数のマイクロレンズの面に対応する成形型の複数の面の同じ個所に大きな形状誤差が生じる傾向がある。したがって、成形型を使用して製造したマイクロレンズアレイの複数のマイクロレンズの面においても特定の位置の形状誤差が大きくなる。この結果、一例としてマイクロレンズアレイを、光束の発散角を屈折によって増加させる光学素子として使用した場合に、マイクロレンズアレイを使用して照射した面の照度において、複数のマイクロレンズの面の特定の位置の形状誤差に起因する照度変化が加算されて照射面において特定の位置の照度変化が大きくなる傾向がある。
 このため、従来のマイクロレンズアレイの成形型の切削加工方法によって、マイクロレンズの微細化及びマイクロレンズアレイの大型化の影響に十分に対応することはできなかった。換言すれば、多数の微細なマイクロレンズを含む大面積の光学性能の高いマイクロレンズアレイの成形型の切削加工方法は開発されていない。したがって、多数のマイクロレンズを含む大面積の光学性能の高いマイクロレンズアレイの成形型の切削加工方法に対するニーズがある。
特開2018-43444号公報
 本発明の課題は、多数のマイクロレンズを含む大面積の光学性能の高いマイクロレンズアレイの成形型の切削加工方法を提供することである。
 本発明の第1の態様のマイクロレンズアレイの成形型の切削加工方法は、それぞれが同一方向の光軸を備え、ほぼ同一形状の複数のマイクロレンズを備えたマイクロレンズアレイの成形型を、回転軸の周りに回転する刃を備えた工具によって切削する切削加工方法である。それぞれのマイクロレンズの面に対応する該成形型の一つの面を切削加工する際に、マイクロレンズの光軸に対応する該面の中心軸の方向をz軸として、互いに直交するx軸、y軸及びz軸を備えた(x、y、z)座標系において、該工具の回転軸と該工具の回転軸上の点を通る該z軸の方向の直線とのなす角度をθ、該工具の回転軸と該直線とを含む平面の該直線の周りの角度をΦとして、角度Φの値を一定値として、角度θの値を変化させながら該加工点の(x、y、z)座標を変化させて切削加工し、該複数のマイクロレンズの面に対応する該成形型の複数の面を切削加工する際に、該成形型の複数の面において角度Φの値を同じ値とした場合に該工具の刃により該成形型の複数の面内のほぼ同じ位置に生じる形状誤差によって、該成形型によって成形されたマイクロレンズアレイを使用して照射した面において、該成形型の複数の面内のほぼ同じ位置に対応する位置に生じる照度変化が十分に小さくなるように、該成形型の複数の面に対して角度Φの値の分散が所定値以上となるように角度Φの値を分布させる。
 本態様のマイクロレンズアレイの成形型の切削加工方法によれば、該成形型の複数の面に対して角度Φの値の分散が所定値以上となるように角度Φの値を分布させることによって、マイクロレンズアレイを使用して照射した面の照度分布において複数のマイクロレンズの工具に起因する形状誤差よる照度変化を小さくすることができる。したがって、本態様によれば、多数の微細なマイクロレンズを含む大面積の光学性能の高いマイクロレンズアレイの成形型を加工することができる。
 また、該成形型の一つの面の周縁において角度θを小さな値として工具と該面との干渉を防止することができる。
 本発明の第1の態様の第1の実施形態のマイクロレンズアレイの成形型の切削加工方法においては、該成形型の一つの面を切削加工する際の角度θの最大値は面ごとに定める。
 本発明の第1の態様の第2の実施形態のマイクロレンズアレイの成形型の切削加工方法においては、該成形型の一つの面を切削加工する際の角度θの最大値は、マイクロレンズの面に対応する該成形型の面の全数の50%以上の数の面で3度以上である。
 マイクロレンズの面に対応する成形型の全ての面を考慮すると、マイクロレンズの面に対応する成形型の面の全数の50パーセント以上の数の面で角度θの最大値を3度以上として形状誤差の生じる位置を変化させるのが好ましい。
 本発明の第1の態様の第3の実施形態のマイクロレンズアレイの成形型の切削加工方法においては、該成形型の一つの面を切削加工する際に、該加工点の該中心軸からの距離が所定の値より大きな領域においては角度θの値を変化させながら切削し、該距離が該所定の値以下の領域においては角度θの値を固定して切削加工する。
 本実施形態のマイクロレンズアレイの成形型の切削加工方法によれば、該成形型の一つの面の周縁において角度θを小さな値として工具と該面との干渉を防止し、該面の中心軸に近い領域では角度θの値を固定して切削加工することができる。該加工点の該中心軸からの距離の所定の値とは、たとえば、該中心軸から該面の周縁までの距離の30パーセントの距離である。
 本発明の第1の態様の第4の実施形態のマイクロレンズアレイの成形型の切削加工方法においては、該成形型の一つの面を切削加工する際に、角度θの値を増加させる際の変化速度は、工具の全ての移動方向の位置決め精度が所定値以下となるように定める。
 本実施形態のマイクロレンズアレイの成形型の切削加工方法によれば、角度θの値を増加させながら高い精度で切削加工することができる。
 本発明の第1の態様の第5の実施形態のマイクロレンズアレイの成形型の切削加工方法においては、該成形型の一つの面を切削加工する際に、該加工点の軌跡が該中心軸の周りの渦巻状である。
 本発明の第1の態様の第6の実施形態のマイクロレンズアレイの成形型の切削加工方法においては、該複数のマイクロレンズの面に対応する該成形型の複数の面を切削加工する際に、該複数の面を1または複数のグループに分割し、グループごとに個々の面の角度Φの値が一様または等間隔に分布するように定める。
 本実施形態のマイクロレンズアレイの成形型の切削加工方法によれば、該複数の面の角度Φの値の分散を簡単に大きくすることができ、したがって複数のマイクロレンズの工具に起因する形状誤差よる照度変化を小さくすることができる。
 本発明の第1の態様の第7の実施形態のマイクロレンズアレイの成形型の切削加工方法においては、5軸加工機を使用し、該x軸、該y軸及び該z軸を該5軸加工機の三つの直線軸に対応させ、角度θ及び角度Φを該多軸加工機の二つの回転軸の周りの角度に対応させ加工を実施する。
 本実施形態によれば、5軸加工機を使用して容易にマイクロレンズアレイの成形型を加工することができる。
 本発明の第1の態様の第8の実施形態のマイクロレンズアレイの成形型の切削加工方法においては、該成形型の一つの面を切削加工する際に、加工点の該中心軸からの距離が小さくなるほど角度θの値が大きくなるように角度θの値を変化させながら切削加工する。
 本実施形態によれば、該面の周縁部において角度θの値を小さな値として工具の側面と該面との干渉を防止し、該面の中心軸の近くで角度θの値を大きな値として、該成形型の複数の面に対して角度Φの値の分散が所定値以上となるように角度Φの値を分布させることによって、マイクロレンズアレイを使用して照射した面の照度分布において複数のマイクロレンズの工具に起因する形状誤差よる照度変化を小さくすることを可能にする。
 本発明の第1の態様の第9の実施形態のマイクロレンズアレイの成形型の切削加工方法においては、該成形型の一つの面を切削加工する際に、該面の形状にしたがって切削工具の側面と該面とが干渉しないように角度θの値を変化させながら切削加工する
 本実施形態によれば、該面の中心軸を含む断面の形状が複雑な場合にも工具の側面と該面との干渉を防止することができる。
 本発明の第2の態様のマイクロレンズアレイの製造方法は、上記のいずれかのマイクロレンズアレイの成形型の切削加工方法によって加工した成形型を使用する。
 本態様のマイクロレンズアレイの製造方法によれば、多数のマイクロレンズを含む大面積の光学性能の高いマイクロレンズアレイが得られる。
本発明の切削加工方法に使用する加工装置の一例としての5軸加工機を示す図である。 工具を示す図である。 5軸加工機によってレンズ面に対応する成形型の面を加工する場合の工具の加工経路Sの一例を示す図である。 工具の回転軸を含む断面を示す図である。 工具の回転軸を含む断面を示す図である。 工具の回転軸及び面の中心軸を含む断面を示す図である。 工具の製造誤差により工具の形状の中心軸AX’と回転軸AXとが一致しない場合の中心軸AX’及び回転軸AXを含む工具の断面を示す図である。 取り付け誤差により工具の形状の中心軸AX’と回転軸AXとが一致しない場合の中心軸AX’及び回転軸AXを含む工具の断面を示す図である。 加工対象のレンズ面に対応する成形型の面の形状誤差を示す概念図である。 工具の傾きを説明するための図である。 工具のz軸と工具の回転軸とがなす角度(鋭角)がθの場合において工具と工具の加工経路との位置関係を示す図である。 工具のz軸と工具の回転軸とがなす角度(鋭角)θの最大値の定め方を説明するための図である。 y軸と工具の回転軸及び工具の回転軸を通るz軸方向の直線を含む面とがなす角度(鋭角)Φを説明するための図である。 本発明の切削方法を説明するための図である。 本発明の他の実施形態の切削方法を説明するための図である。 角度Φを一定とし角度θを0とする従来の切削方法による面210の形状誤差を示す概念図である。 角度Φを一定とし角度θを加工点の面の中心軸からの距離が減少するにしたがって増加させる本発明の切削方法による面の形状誤差を示す概念図である。 図15で説明した切削方法によって切削した面の実際の形状誤差を示す図である。 図16で説明した切削方法によって切削した面の実際の形状誤差を示す図である。 成形型の面のxz断面の形状誤差を示す図である。 形状誤差がない場合の面上の照度を示す図である。 図20Aに示す照度分布のxz断面を示す図である。 図19に示す形状誤差がある場合の面上の照度を示す図である。 図21Aに示す照度分布のxz断面を示す図である。 角度Φを360/7, 360x2/7, 360x3/7,…,360度として、それぞれの場合に角度θを0から15度まで変化させて切削した成形型によるマイクロレンズによる面上の照度分布をシミュレーションによって求め平均化した照度分布を示す図である。 図22Aに示す照度分布のxz断面を示す図である。 角度Φを360/61, 360x2/61, 360x3/61,…,360度として、それぞれの場合に角度θを0から15度まで変化させて切削した成形型によるマイクロレンズによる面上の照度分布をシミュレーションによって求め平均化した照度を示す図である。 図23Aに示す照度分布のxz断面を示す図である。 角度Φを360/127, 360x2/127, 360x3/127,…,360度として、それぞれの場合に角度θを0から15度まで変化させて切削した成形型によるマイクロレンズによる面上の照度分布をシミュレーションによって求め平均化した照度分布を示す図である。 図24Aに示す照度分布のxz断面を示す図である。 図15で説明した従来の切削方法によって切削した、一つのマイクロレンズ面に対応する成形型の面の実際の形状誤差を示す図である。 図15で説明した従来の切削方法によって切削した、他の一つのマイクロレンズ面に対応する成形型の面の実際の形状誤差を示す図である。 図16で説明した本発明の切削方法によって切削した、一つのマイクロレンズ面に対応する成形型の面の実際の形状誤差を示す図である。 図16で説明した本発明の切削方法によって切削した、他の一つのマイクロレンズ面に対応する成形型の面の実際の形状誤差を示す図である。 図15で説明した切削方法によって切削した成形型を使用して製造したマイクロレンズアレイによる面上の照度を示す図である。 図29Aに示す照度分布のxz断面を示す図である。 図16で説明した切削方法によって切削した成形型を使用して製造したマイクロレンズアレイによる面上の照度を示す図である。 図30Aに示す照度分布のxz断面を示す図である。
 図1は、本発明の切削加工方法に使用する加工装置の一例としての5軸加工機100を示す図である。5軸加工機100は三つの直線軸(X,Y,Z)及び二つの回転軸(B,C)を備える。加工対象200は工具110によって加工される。工具110は、一例としてボールエンドミルである。
 図2は、工具110を示す図である。工具110は切れ刃115を備え、回転軸の周りに回転することによって加工対象200を切削する。工具110の回転軸を含む断面の切れ刃115の輪郭は円弧状である。
 図3は、5軸加工機100によってレンズ面に対応する成形型の面210を加工する場合の工具110の加工点の位置を示す加工経路Sの一例を示す図である。レンズ面及び面210は、球面、非球面、自由曲面などである。加工経路は、一例として図3に示すように成形型の面210の中心軸の周りの渦巻状であり、加工点は加工経路に沿って面210の周縁から中心軸に近づく。一般的に、工具の加工点は成形型の面210上の、交わることのない連続した線上に位置するように加工が実施されるのが好ましい。工具110の加工点の位置は5軸加工機100の直線軸(X,Y,Z)によって制御される。
 図4は、工具110の回転軸を含む断面を示す図である。
 図5は、図4の点線で囲んだ部分の拡大図である。図5の断面において、切れ刃115の輪郭の設計上の円弧をCで示し、円弧Cの中心をOで示す。中心Oは回転軸上に位置する。図5において切れ刃115の刃上の点Pの位置を回転軸と点O及び点Pを結ぶ直線とのなす角度(鋭角)αで示す。
 図6は、工具110の回転軸及び面210の中心軸を含む断面を示す図である。図6に示すように工具110の回転軸及び面210の中心軸が互いに平行となるような状態で切削を実施すると、工具110の刃上の点Pによって切削される面210上の点P’における面210の接面を示す直線が面210の中心軸となす角度は(90-α)度である。このように工具110の刃上の点よって切削される面210上の位置は、角度αによって定まる。
 図7は、工具の製造誤差により工具の形状の中心軸AX’と回転軸AXとが一致しない場合の中心軸AX’及び回転軸AXを含む工具の断面を示す図である。図7において、理想の工具の刃を示す円弧をC’で表す。理想の工具の形状の中心軸は回転軸AXと一致する。他方、製造誤差により工具の形状の中心軸AX’と回転軸AXとが一致しない場合の実際の工具の刃の円弧をCで表す。この場合に工具の回転軸の周辺の形状はほぼ平面になる。
 図8は、取り付け誤差により工具の形状の中心軸AX’と回転軸AXとが一致しない場合の中心軸AX’及び回転軸AXを含む工具の断面を示す図である。
 図9は、加工対象200のレンズ面に対応する成形型の面210の形状誤差を示す概念図である。図9の横軸は面210の中心軸と直交する直線の方向の座標を示し、図9の縦軸は形状誤差を示す。図6に示す状態で切削を実施すると、図7で説明した製造誤差及び図8で説明した取り付け誤差によって、工具の刃のα=0の位置によって切削される面210の中心軸付近に生じる形状誤差が最大となる傾向がある。
 図10は、工具110の傾きを説明するための図である。工具110の回転軸上の一点を原点として原点を通り、マイクロレンズの面の光軸に対応する面210の中心軸に平行な直線を工具のz軸とする。工具のz軸に直交する平面内に互いに直交する工具のx軸及びy軸を定める。工具のx軸及びy軸の定め方は後で説明する。工具のz軸と工具の回転軸とがなす角度(鋭角)をθとする。工具のy軸と工具のz軸及び工具の回転軸を含む面とがなす角度(鋭角)をΦとする。
 図11は、工具のz軸と工具の回転軸とがなす角度(鋭角)がθの場合において工具と工具の加工経路との位置関係を示す図である。図6を使用して説明した従来の切削加工方法の場合にはz軸と工具110の回転軸とがなす角度(鋭角)は0である。
 図12は、工具のz軸と工具の回転軸とがなす角度(鋭角)θの最大値の定め方を説明するための図である。図12は、工具110の中心軸及び面210の中心軸を含む断面を示す。角度θの最大値は、工具の側面と面210とが干渉しないように定める。
 図13は、工具のy軸と工具の回転軸及び工具の回転軸を通るz軸方向の直線を含む面とがなす角度(鋭角)Φを説明するための図である。図13において面のz軸はマイクロレンズの面に対応する成形型の面210の中心軸と一致する。面のz軸に直交する平面内に互いに直交する面のx軸及び面のy軸を定める。なお、複数のマイクロレンズの面に対応する複数の成形型の面に関し、面のx軸、面のy軸及び面のz軸はそれぞれ互いに平行であるように定める。工具のx軸及びy軸は面のx軸及びy軸とそれぞれ平行となるように定める。角度Φは、面210の中心軸の周りの角度に対応する。図13において角度Φはy軸を基準として反時計回りに測定した角度である。面のz軸を含み、面のy軸及びz軸を含む面と角度Φをなす面をPLで示す。図6を使用して説明した従来の切削加工方法の場合に、一つのレンズ面に対応する面210を加工する間に工具の角度Φは一定である。
 図1に示した加工装置が加工に使用される場合に、角度θはCで示される角度に対応し、角度ΦはBで示される角度に対応する。従来の切削方法の場合に、加工中にB及びCで示される角度は一定値とされ、Cで示される角度は工具110の回転軸が鉛直方向となるように定められる。この場合に角度θは0である。
 図14Aは、本発明の一実施形態の切削方法を説明するための図である。本実施形態の切削方法によれば一つのレンズ面に対応する成形型の面210を加工する間に角度Φは一定とし、角度θは加工点の面210の中心軸からの距離が減少するにしたがって増加させる。図14Aの(1)、(2)及び(3)に示す面は、図13で説明した面PLに対応する。図14Aにおいて、(1)で示す面210の周縁を切削する際に角度θは0である。切削位置の面210の中心軸からの減少するにしたがって角度θを増加させ(3)で示す面210の中心軸の位置で最大とする。角度θの最大値は3度以上である。
 本実施形態の切削方法の場合に、Bで示される角度は加工中に一定値とされる。他方、Cで示される角度は、角度θが加工点の面210の中心軸からの距離が減少するにしたがって増加するように変更される。
 角度θは面210の中心軸からの距離が減少するにしたがって連続かつ単調に増加させるのが好ましい。また、角度θの値を変化させる際の変化速度は、加工機のすべての稼動軸での位置決め精度が所定値以下となるように定める。上記の所定値は、一例として10ナノメータである。
 図14Bは、本発明の他の実施形態の切削方法を説明するための図である。図14Bは、面210の中心軸を含む断面を示す。本実施形態の切削方法によれば、一つのレンズ面に対応する成形型の面210を加工する間に角度Φは一定とし、角度θは面210の形状にしたがって変更される。図14Bの(1)において角度θは0であり、工具110の側面と面210とは干渉しない。図14Bの(2)、(3)及び(4)において、角度θは工具110の側面と面210とが干渉しないように定められる。角度θの最大値は3度以上である。
 図15は、角度Φを一定とし角度θを0とする従来の切削方法による面210の形状誤差を示す概念図である。図15の左側の図は、図13で説明した面PLの断面の面210の形状誤差を示す。左側の図の横軸は面210の中心軸と直交する直線の方向の座標を示し、左側の図の縦軸は形状誤差を示す。右側の図は面210の平面図である。工具の刃上の点の位置を回転軸と点O及び点Pを結ぶ直線とのなす角度(鋭角)で表し、角度α0、α1、α2及びα3の位置に工具の形状誤差が存在すると、それぞれ刃の角度α0、α1、α2及びα3の位置で切削される面210の位置E0、E1、E2及びE3に形状誤差が生じる。α0は0である。図15において、最大形状誤差の生じる位置E0は面210の中心軸付近である。なお、図15に示す形状は、面のz軸に関し軸対称である。
 図16は、角度Φを一定とし角度θを加工点の面210の中心軸からの距離が減少するにしたがって増加させる本発明の切削方法による面210の形状誤差を示す概念図である。図16の左側の図は、図14Aで説明した面PLの断面の面210の形状誤差を示す。左側の図の横軸は面210の中心軸と直交する直線の方向の座標を示し、左側の図の縦軸は形状誤差を示す。右側の図は面210の平面図である。工具の刃上の点の位置を回転軸と点O及び点Pを結ぶ直線とのなす角度(鋭角)で表し、角度α0、α1、α2及びα3の位置に工具の形状誤差が存在すると、それぞれ刃の角度α0、α1、α2及びα3の位置で切削される面210の位置E0’、E1’、E2’及びE3’に形状誤差が生じる。α0は0である。図16において、最大形状誤差の生じる位置E0’は面210の中心軸より左側である。
 図17は、図15で説明した切削方法によって切削した面210の実際の形状誤差を示す図である。図17及び図18において、面210の中心軸をz軸とし、面210と中心軸との交点を原点として互いに直交するx軸及びy軸を定める。x軸及びy軸の目盛の間隔は200マイクロメータ、z軸の目盛の間隔は0.5マイクロメータである。図15の左側の図の示す面は図17のxz面に対応する。図17において、最大形状誤差の生じる位置は原点付近である。
 図18は、図16で説明した切削方法によって切削した面の実際の形状誤差を示す図である。図16の左側の図の示す面は図18のxz面すなわち、図13で説明した面PLに対応する。図18において、最大形状誤差の生じる位置は、x軸上でxの座標が負の位置である。図18の場合に、面PLは面のz軸及び面のx軸を含む面である。
 このように図16で説明した切削方法によって切削することによって形状誤差の生じる位置を面PL内で移動させることができる。
 また、図12を使用して説明した工具と成形型の面との干渉は、成形型の面210の周縁、すなわち、成形型の面210の中心軸からの距離の大きな領域で生じる。したがって、成形型の面210の周縁を切削する際には角度θをたとえば0とし、加工点の中心軸からの距離が小さくなるほど角度θの値を大きくすることによって上記の干渉を回避することができる。
 さらに、中心軸からの距離が所定の値より大きな領域においては中心軸からの距離が減少するにしたがって角度θの値を増加させながら切削し、中心軸からの距離が上記の所定の値以下の領域においては中心軸からの距離にかかわらず角度θの値を固定して切削してもよい。
 一般的に、全てのマイクロレンズの面に対応する成形型の面を加工する際に角度θの値を変化させる必要はない。一つまたは複数の成形型の面を加工する際に角度θの値は固定してもよい。また、角度θの値を変化させる際の最大値は面ごとに変化させてもよい。マイクロレンズの面に対応する成形型の全ての面を考慮すると、マイクロレンズの面に対応する成形型の面の全数の50パーセント以上の数の面で角度θの最大値を3度以上として形状誤差の生じる位置を変化させるのが好ましい。
 つぎに、成形型の面の形状誤差が、その成形型によって製造されたマイクロレンズアレイの性能に与える影響を説明する。半径が0.3ミリメータの球面のマイクロレンズからなるマイクロレンズアレイによって平行光束をその進行方向に垂直な平面上に照射するシミュレーションを実施した。
 図19は、成形型の面210のxz断面の形状誤差を示す図である。図19の横軸はx軸方向の位置を示す。長さの単位はミリメータである。図19の縦軸は形状誤差を示す。長さの単位はマイクロメータである。図19は、図15で説明した切削方法によって切削した場合の形状誤差であり、簡単のために面210の中心軸付近にのみ形状誤差が生じるものとした。
 上述のように、図16で説明した切削方法によって切削することによって形状誤差の生じる位置を面PLで移動させることができる。加工点が面210の周縁から中心軸に近づくにしたがって中心軸からの距離により角度θを0度から15度まで変化させた場合に、面210が刃の角度α0の位置で切削されるのは角度θが11度のときであり、図19の横軸の-0.06ミリメータの位置である。そこで、図16で説明した切削方法によって切削した場合に、-0.06ミリメータの位置に図19に示す形状誤差と同様の形状誤差が生じるとしてシミュレーションを実施した。
 複数のマイクロレンズに対応する複数の成形型の面について、面PLの角度Φを変えて図16で説明した切削方法によって切削することによって形状誤差の生じる位置を角度Φに対応する面PLの方向に移動させることができる。
 図20Aは、形状誤差がない場合の面上の照度分布を示す図である。図20Aの横軸は、マイクロレンズアレイから照射面に到達する光線をxz平面に投影した直線がz軸となす角度を示し、図20Aの縦軸は、マイクロレンズアレイから照射面に到達する光線をyz平面に投影した直線がz軸となす角度を示す。ここで、z軸は、マイクロレンズアレイの中心を通りそれぞれのマイクロレンズの中心軸に平行な直線と規定し、x軸及びy軸は、z軸に垂直な平面内の互いに直交する直線として規定する。図21A、図22A、図23A、図24A、図29A及び図30Aの横軸及び縦軸も上記の角度を示す。
 図20Bは、図20Aに示す照度分布のxz断面を示す図である。図20Bの横軸は、マイクロレンズアレイから照射面に到達する光線をxz平面に投影した直線がz軸となす角度を示し、図20Bの縦軸は、照度の相対値を示す。図21B、図22B、図23B、図24B、図29B及び図30Bの横軸も上記の角度を示し、図21B、図22B、図23B、図24B、図29B及び図30Bの縦軸も照度の相対値を示す。
 図21Aは、図19に示す形状誤差がある場合の面上の照度分布を示す図である。
 図21Bは、図21Aに示す照度分布のxz断面を示す図である。図21Bに示すように、xが0の付近で大きな照度の変化が存在する。
 図22Aは、角度Φを360/7, 360x2/7, 360x3/7,…,360度として、それぞれの場合に角度θを0から15度まで変化させて切削した成形型によるマイクロレンズによる面上の照度分布をシミュレーションによって求め平均化した照度分布を示す図である。
 図22Bは、図22Aに示す照度分布のxz断面を示す図である。
 複数の値の角度Φで切削した複数の成形型によって製造したマイクロレンズによる照度を平均化することによってxが0の付近の照度変化は図20A及び図20Bに示す照度変化と比較して小さくなっている。
 図23Aは、角度Φを360/61, 360x2/61, 360x3/61,…,360度として、それぞれの場合に角度θを0から15度まで変化させて切削した成形型によるマイクロレンズによる面上の照度分布をシミュレーションによって求め平均化した照度を示す図である。
 図23Bは、図23Aに示す照度分布のxz断面を示す図である。
 図24Aは、角度Φを360/127, 360x2/127, 360x3/127,…,360度として、それぞれの場合に角度θを0から15度まで変化させて切削した成形型によるマイクロレンズによる面上の照度分布をシミュレーションによって求め平均化した照度分布を示す図である。
 図24Bは、図24Aに示す照度分布のxz断面を示す図である。
 図21B-図24Bを比較すると、角度Φの値の数が多くなるほどxが0の付近での照度の変化は小さくなる。
 角度Φの分散について説明する。簡単化のためマイクロレンズの数は6とする。全てのマイクロレンズに対応する面210の角度Φが0のときに角度Φの分散は0である。マイクロレンズを2個ずつの3個のグループに分け、それぞれのグループの2個のマイクロレンズに対応する面210の角度Φを0及び180度とすると、分散は9720である。この場合に同じ値の角度Φが使用される面は3個である。マイクロレンズを3個ずつの2個のグループに分け、それぞれのグループの3個のマイクロレンズに対応する面210の角度Φを0,120度及び240度とすると、分散は11520である。この場合に同じ値の角度Φが使用される面は2個である。マイクロレンズを6個ずつの1グループとして、6個のマイクロレンズに対応する面210の角度Φを0,60度、120度、180度、240度及び300度とすると、分散は12600である。この場合に全ての面に使用される角度Φは異なる。それぞれのグループにおいて角度Φは等間隔に定められる。同じ値の角度Φが使用される面の数が少ないほど分散は大きくなる。
 一般的に、マイクロレンズの数が一定のマイクロレンズアレイにおいて、それぞれのマイクロレンズに対応する面210の角度Φの値の分散が大きくなるほどxが0の付近での照度の変化は小さくなる。
 分散を大きくするように複数の面の角度Φの値を決めるには、上述のように個々の面の角度Φの値が一様または等間隔に分布するように定めるか、複数の面を複数のグループに分割し、グループごとに個々の面の角度Φの値が一様または等間隔に分布するように定めてもよい。複数の面の数が多い場合には、疑似乱数などを使用して複数の面の角度Φの値を定めてもよい。
 そこで、角度Φの分散を増加させるように複数の成形型の面の角度Φの値を変えながら面上の照度分布を求め照度分布を比較することによって角度Φの適切な分布を定めることができる。
 実際にマイクロレンズアレイを加工した結果を以下に示す。マイクロレンズアレイは半径が0.1ミリメータの球面の421個のマイクロレンズからなる。
 図25は、図15で説明した従来の切削方法によって切削した、一つのマイクロレンズ面に対応する成形型の面の実際の形状誤差を示す図である。図25-図28において、面210の中心軸をz軸とし、面210と中心軸との交点を原点として互いに直交するx軸及びy軸を定める。
 図26は、図15で説明した従来の切削方法によって切削した、他の一つのマイクロレンズ面に対応する成形型の面の実際の形状誤差を示す図である。
 図25及び図26によれば、最大形状誤差はともに中心軸付近に生じる。
 図27は、図16で説明した本発明の切削方法によって切削した、一つのマイクロレンズ面に対応する成形型の面の実際の形状誤差を示す図である。
 図28は、図16で説明した本発明の切削方法によって切削した、他の一つのマイクロレンズ面に対応する成形型の面の実際の形状誤差を示す図である。
 図27及び図28図によれば、最大形状誤差は異なる位置に生じる。具体的に最大形状誤差は、図27の場合にはx座標及びy座標が正の象限に生じ、図28の場合にはx座標及びy座標が負の象限に生じる。最大形状誤差の生じる位置は、角度Φの値によって定める。
 本発明による本例においては、421個のマイクロレンズに対応する421個の成形型の面の角度Φを疑似乱数によって定めた。
 図29Aは、図15で説明した切削方法によって切削した成形型を使用して製造したマイクロレンズアレイによる面上の照度分布を示す図である。
 図29Bは、図29Aに示す照度分布のxz断面を示す図である。
 図15で説明した切削方法によって切削した場合には、図25及び図26に示すように複数の成形型の面の最大形状誤差が生じる位置は中心軸付近である。したがって、図29A及び図29Bにおいては中心付近に照度の差に起因する環状の模様がみられる。
 図30Aは、図16で説明した切削方法によって切削した成形型を使用して製造したマイクロレンズアレイによる面上の照度分布を示す図である。
 図30Bは、図30Aに示す照度分布のxz断面を示す図である。
 図16で説明した切削方法によって切削した場合には、図27及び図28に示すように複数の成形型の面の最大形状誤差が生じる位置をばらつかせることができる。したがって、図30A及び図30Bにおいては中心付近に照度の差に起因する環状の模様はみられない。

Claims (11)

  1.  それぞれが同一方向の光軸を備え、ほぼ同一形状の複数のマイクロレンズを備えたマイクロレンズアレイの成形型を、回転軸の周りに回転する刃を備えた工具によって切削する切削加工方法であって、それぞれのマイクロレンズの面に対応する該成形型の一つの面を切削加工する際に、マイクロレンズの光軸に対応する該面の中心軸の方向をz軸として、互いに直交するx軸、y軸及びz軸を備えた(x、y、z)座標系において、該工具の回転軸と該工具の回転軸上の点を通る該z軸の方向の直線とのなす角度をθ、該工具の回転軸と該直線とを含む平面の該直線の周りの角度をΦとして、角度Φの値を一定値として、角度θの値を変化させながら該加工点の(x、y、z)座標を変化させて切削加工し、該複数のマイクロレンズの面に対応する該成形型の複数の面を切削加工する際に、該成形型の複数の面において角度Φの値を同じ値とした場合に該工具の刃により該成形型の複数の面内のほぼ同じ位置に生じる形状誤差によって、該成形型によって成形されたマイクロレンズアレイを使用して照射した面において、該成形型の複数の面内のほぼ同じ位置に対応する位置に生じる照度変化が十分に小さくなるように、該成形型の複数の面に対して角度Φの値の分散が所定値以上となるように角度Φの値を分布させるマイクロレンズアレイの成形型の切削加工方法。
  2.  該成形型の一つの面を切削加工する際の角度θの最大値は面ごとに定める請求項1に記載のマイクロレンズアレイの成形型の切削加工方法。
  3.  該成形型の一つの面を切削加工する際の角度θの最大値は、マイクロレンズの面に対応する該成形型の面の全数の50%以上の数の面で3度以上である請求項1に記載のマイクロレンズアレイの成形型の切削加工方法。
  4.  該成形型の一つの面を切削加工する際に、該加工点の該中心軸からの距離が所定の値より大きな領域においては角度θの値を変化させながら切削し、該距離が該所定の値以下の領域においては角度θの値を固定して切削加工する請求項1に記載のマイクロレンズアレイの成形型の切削加工方法。
  5.  該成形型の一つの面を切削加工する際に、角度θの値を変化させる際の変化速度は、工具の全ての移動方向の位置決め精度が所定値以下となるように定める請求項1に記載のマイクロレンズアレイの成形型の切削加工方法。
  6.  該成形型の一つの面を切削加工する際に、該加工点の軌跡が該中心軸の周りの渦巻状である請求項1に記載のマイクロレンズアレイの成形型の切削加工方法。
  7.  該複数のマイクロレンズの面に対応する該成形型の複数の面を切削加工する際に、該複数の面を1または複数のグループに分割し、グループごとに個々の面の角度Φの値が一様または等間隔に分布するように定める請求項1に記載のマイクロレンズアレイの成形型の切削加工方法。
  8.  5軸加工機を使用し、該x軸、該y軸及び該z軸を該5軸加工機の三つの直線軸に対応させ、角度θ及び角度Φを該多軸加工機の二つの回転軸の周りの角度に対応させ加工を実施する請求項1に記載のマイクロレンズアレイの成形型の切削加工方法。
  9.  該成形型の一つの面を切削加工する際に、加工点の該中心軸からの距離が小さくなるほど角度θの値が大きくなるように角度θの値を変化させながら切削加工する請求項1に記載のマイクロレンズアレイの成形型の切削加工方法。
  10.  該成形型の一つの面を切削加工する際に、該面の形状にしたがって切削工具の側面と該面とが干渉しないように角度θの値を変化させながら切削加工する請求項1に記載のマイクロレンズアレイの成形型の切削加工方法。
  11.  請求項1に記載の切削加工方法によって切削加工した成形型を使用するマイクロレンズアレイの製造方法。
PCT/JP2023/027546 2022-08-10 2023-07-27 マイクロレンズアレイの成形型の切削加工方法 WO2024034418A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263396757P 2022-08-10 2022-08-10
US63/396,757 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034418A1 true WO2024034418A1 (ja) 2024-02-15

Family

ID=89851568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027546 WO2024034418A1 (ja) 2022-08-10 2023-07-27 マイクロレンズアレイの成形型の切削加工方法

Country Status (1)

Country Link
WO (1) WO2024034418A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230974A (ja) * 2004-02-19 2005-09-02 Okamoto Machine Tool Works Ltd 円筒状ワ−クの回転中心位置座標の算出方法
JP2008254156A (ja) * 2007-04-09 2008-10-23 Kojima Engineering:Kk レンズ加工装置のレンズ保持機構
JP2018043444A (ja) * 2016-09-15 2018-03-22 アルプス電気株式会社 金型の製造方法およびマイクロレンズアレイの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005230974A (ja) * 2004-02-19 2005-09-02 Okamoto Machine Tool Works Ltd 円筒状ワ−クの回転中心位置座標の算出方法
JP2008254156A (ja) * 2007-04-09 2008-10-23 Kojima Engineering:Kk レンズ加工装置のレンズ保持機構
JP2018043444A (ja) * 2016-09-15 2018-03-22 アルプス電気株式会社 金型の製造方法およびマイクロレンズアレイの製造方法

Similar Documents

Publication Publication Date Title
CN108747609B (zh) 一种非球面阵列结构的精密磨削加工方法
CN112417537B (zh) 一种基于车削加工将几何误差可视化的表面形貌仿真方法
CN111975021A (zh) 一种超精密车削刀具中心与b轴回转中心对正方法
US7052386B2 (en) Curved surface cutting processing method
KR20100119494A (ko) 가공 장치 및 가공 방법
JP7202049B1 (ja) マイクロレンズアレイの成形型の加工方法
WO2024034418A1 (ja) マイクロレンズアレイの成形型の切削加工方法
Xing et al. Study of the tool path generation method for an ultra-precision spherical complex surface based on a five-axis machine tool
CN108873805A (zh) 一种慢刀伺服车削加工微透镜阵列刀具路径优化方法
CN110340737B (zh) 基于多轴联动的大离轴量非球面磨削刀具路径规划方法
WO2013076809A1 (ja) 金型加工方法、金型及び光学素子
JP2004042188A (ja) 金型の加工方法
JP3796207B2 (ja) 三次元レーザ加工機による加工方法並びに三次元レーザ加工用のncプログラムの作成方法
JP6920758B2 (ja) エンドミルによる金型の加工方法
CN112935849B (zh) 一种微透镜阵列两轴联动加工方法
JPWO2022181674A5 (ja)
JP2005212030A (ja) 輪帯光学素子用金型の製造方法
JP2015231661A (ja) 非円形孔の加工方法、非円形孔の加工装置およびレンズ
JP2008221747A (ja) 回折光学素子成形金型の加工法
CN114126791B (zh) 航空部件的改进去毛刺方法
WO2006132126A1 (ja) 光学素子の製造方法および光学素子
Liao et al. Modeling of curved diamond wheel errors for improvement of freeform grinding accuracy
JP3662087B2 (ja) 曲面切削加工方法
Hamatani et al. Advanced illumination quality improvement of micro lens array diffuser by randomizing shape error
JPH10166202A (ja) フレネルレンズ成形用金型の加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852392

Country of ref document: EP

Kind code of ref document: A1