WO2024032791A1 - 一种薄膜、一种数字微流控芯片基底及其制备方法 - Google Patents

一种薄膜、一种数字微流控芯片基底及其制备方法 Download PDF

Info

Publication number
WO2024032791A1
WO2024032791A1 PCT/CN2023/112714 CN2023112714W WO2024032791A1 WO 2024032791 A1 WO2024032791 A1 WO 2024032791A1 CN 2023112714 W CN2023112714 W CN 2023112714W WO 2024032791 A1 WO2024032791 A1 WO 2024032791A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
present application
digital microfluidic
hydrophobic
hydrophilic surface
Prior art date
Application number
PCT/CN2023/112714
Other languages
English (en)
French (fr)
Inventor
苏阳
Original Assignee
江苏液滴逻辑生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏液滴逻辑生物技术有限公司 filed Critical 江苏液滴逻辑生物技术有限公司
Publication of WO2024032791A1 publication Critical patent/WO2024032791A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers

Definitions

  • This application belongs to the technical field of digital microfluidic chips, and specifically relates to a film, a digital microfluidic chip substrate and a preparation method thereof.
  • the digital microfluidic chip is based on electrowetting technology. It regulates the surface energy of solid and liquid through electric potential, and uses the asymmetry of the contact angle of the droplet to generate tangential thrust, causing asymmetric deformation at both ends of the droplet and promoting pressure inside the droplet. technology to achieve precise control of micro-liquids.
  • the basic structure of a digital microfluidic chip includes a circuit substrate. A dielectric layer and a hydrophobic layer are placed above the circuit substrate, which together form the chip base. The dielectric layer and hydrophobic layer above the circuit substrate are the most critical structures of digital microfluidic chips, and their dielectric and hydrophobic properties are crucial to liquid manipulation.
  • the most important technical means for preparing digital microfluidic chip substrates is to first form a layer of dielectric layer material on the circuit substrate based on printed electronics (PCB) through a coating process, and then spin coating or spin coating on the dielectric layer. Processes such as spraying form a hydrophobic layer.
  • the traditional preparation process is complex.
  • the thickness of the dielectric film material suitable for the coating process is relatively thick, making it difficult to provide sufficient driving force for the liquid.
  • the preparation of the hydrophobic layer requires high equipment and environmental cleanliness, and the economic cost is high. At the same time, The hydrophobic layer easily falls off from the dielectric layer, which can cause irreversible damage to the digital microfluidic chip.
  • the inventor has provided a thin film, a digital microfluidic chip substrate and a preparation method thereof after long-term exploration and continuous attempts.
  • the film of the present application realizes the dual functions of a dielectric layer and a hydrophobic layer, and fundamentally solves the problem of the hydrophobic layer easily falling off from the dielectric layer.
  • the dielectric hydrophobic film of the present application has a hydrophilic surface, which is conducive to combining with adhesives, can be firmly attached to the upper surface of the circuit substrate, has the effect of withstanding high temperatures and not easily falling off from the circuit substrate, greatly broadening the It improves the usage environment of the chip and extends the service life of the chip.
  • the present application provides a film, wherein the film is a dielectric hydrophobic film, and one side of the dielectric hydrophobic film is a hydrophilic surface and the other side is a hydrophobic surface.
  • the present application provides a digital microfluidic chip substrate, wherein the chip substrate includes a circuit substrate, an adhesive, and a film as described in the present application.
  • the present application provides a method for preparing a film as described in the present application, wherein the method includes subjecting the film to surface modification treatment.
  • this application provides a method for preparing a digital microfluidic chip substrate as described in this application, wherein the method includes:
  • the present application provides the use of the film as described in the present application to replace the dielectric layer and the hydrophobic layer in the preparation of digital microfluidic chips.
  • the present application provides a digital microfluidic chip, which includes a film as described in the present application or a digital microfluidic chip substrate as described in the present application.
  • the present application provides a digital microfluidic system, which includes a film as described in this application or a digital microfluidic chip substrate as described in this application or a digital microfluidic system as described in this application. of digital microfluidic chips.
  • the film described in this application has the dual functions of the dielectric layer and the hydrophobic layer in the traditional process, and fundamentally solves the problem of the easy removal of the hydrophobic layer while greatly simplifying the preparation process, reducing the production cost, and improving the production efficiency.
  • the dielectric layer peels off, causing irreversible damage to the digital microfluidic chip.
  • the film of the present application has a thinner thickness, which provides greater driving force without causing the problem of being easily broken down by high voltage due to the thin thickness.
  • the film described in this application also has a hydrophilic surface. After the hydrophilic surface is combined with the adhesive, it can be firmly attached to the upper surface of the circuit substrate. It has the effect of withstanding high temperatures up to 100°C and not easily falling off from the circuit substrate. It greatly broadens the use environment of the chip and extends the service life of the chip.
  • Figure 1 is a schematic diagram of the preparation of the digital microfluidic chip substrate described in this application.
  • the expression "contact angle” refers to the angle from the solid-liquid interface through the interior of the liquid to the gas-liquid interface at the junction of solid, liquid, and gas phases.
  • the contact angle is a characterization of the surface wetting properties of the material. important parameters. When the contact angle is equal to 0, it means complete wetting; when the contact angle is less than 90°, it means partial wetting; when the contact angle is equal to 90°, it is the dividing line between wetting or not; when the contact angle is greater than 90°, it means no wetting; The contact angle is equal to 180°, indicating complete non-wetting.
  • a contact angle measuring instrument is used to measure the contact angle of the film of the present application using an image analysis method.
  • rolling angle refers to the critical angle formed by the inclined surface and the horizontal plane when the droplet just rolls on the inclined surface.
  • the rolling angle is an important parameter characterizing the surface wetting properties of materials.
  • the rolling angle of the film of the present application is measured using an image analysis method using a rolling angle measuring instrument.
  • a first aspect of the present application provides a film, wherein the film is a dielectric hydrophobic film, and one side of the dielectric hydrophobic film is a hydrophilic surface and the other side is a hydrophobic surface.
  • the film is a single layer film.
  • the film provided by this application realizes the dual functions of the dielectric layer and the hydrophobic layer in the traditional process, and fundamentally solves the problem of the hydrophobic layer easily falling off from the dielectric layer and causing irreversible damage to the digital microfluidic chip. Moreover, the film provided by this application has stable performance, good chemical and biological compatibility, and has good application prospects in the field of biochemistry. At the same time, the film provided by this application has a hydrophilic surface. After the hydrophilic surface is combined with the adhesive, it can be firmly attached to the upper surface of the circuit substrate and is not easy to fall off from the circuit substrate, which greatly extends the service life of the chip.
  • the contact angle of the hydrophilic surface of the film is ⁇ 90°.
  • the contact angle of the hydrophilic surface of the film is ⁇ 80°. In some embodiments of the present application, the contact angle of the hydrophilic surface of the film is ⁇ 70°. In some embodiments of the present application, the contact angle of the hydrophilic surface of the film is ⁇ 60°. In some embodiments of the present application, the contact angle of the hydrophilic surface of the film is ⁇ 50°. In some embodiments of the present application, the contact angle of the hydrophilic surface of the film is ⁇ 40°. In some embodiments of the present application, the contact angle of the hydrophilic surface of the film is ⁇ 30°. In some embodiments of the present application, the contact angle of the hydrophilic surface of the film is ⁇ 20°.
  • the contact angle of the hydrophilic surface of the film is ⁇ 10°. In some embodiments of the present application, the contact angle of the hydrophilic surface of the film is 70°, 71°, 72°, 73°, 74° or 75°.
  • the rolling angle of the hydrophilic surface of the film is ⁇ 30°.
  • the rolling angle of the hydrophilic surface of the film is 30°, 31°, 32°, 34° or 35°.
  • the rolling angle of the hydrophilic surface of the film is ⁇ 40°. In some embodiments of the present application, the rolling angle of the hydrophilic surface of the film is ⁇ 50°. In some embodiments of the present application, the rolling angle of the hydrophilic surface of the film is ⁇ 55°. In some embodiments of the present application, the rolling angle of the hydrophilic surface of the film is ⁇ 60°. In some embodiments of the present application, the rolling angle of the hydrophilic surface of the film is ⁇ 65°. In some embodiments of the present application, the rolling angle of the hydrophilic surface of the film is ⁇ 70°.
  • the dielectric hydrophobic film is a Teflon film.
  • the film is an amorphous fluoropolymer film (AF), a fluorinated ethylene propylene resin film (FEP), a fluoropolymer foam resin film (FFR), a fluoropolymer resin film (NXT ) or perfluoroalkoxy resin film (PFA).
  • AF amorphous fluoropolymer film
  • FEP fluorinated ethylene propylene resin film
  • FFR fluoropolymer foam resin film
  • NXT fluoropolymer resin film
  • PFA perfluoroalkoxy resin film
  • the film is a fluorinated ethylene propylene resin film (FEP) or a perfluoroalkoxy resin film (PFA).
  • FEP fluorinated ethylene propylene resin film
  • PFA perfluoroalkoxy resin film
  • the film is a fluorinated ethylene propylene resin film (FEP). In some embodiments of the present application, the film is a perfluoroalkoxy resin film (PFA).
  • FEP fluorinated ethylene propylene resin film
  • PFA perfluoroalkoxy resin film
  • the thickness of the film is 5-200 ⁇ m.
  • the thickness of the film is 5-150 ⁇ m.
  • the thickness of the film is 10-100 ⁇ m. In some embodiments of the present application, the thickness of the film is 10-90 ⁇ m. In some embodiments of the present application, the thickness of the film is 10-80 ⁇ m. In some embodiments of the present application, the thickness of the film is 10-70 ⁇ m. In some embodiments of the present application, the thickness of the film is 10-60 ⁇ m. In some embodiments of the present application, the thickness of the film is 10-50 ⁇ m. In some embodiments of the present application, the thickness of the film is 10-40 ⁇ m. In some embodiments of the present application, the thickness of the film is 10-30 ⁇ m.
  • the thickness of the film is 10 ⁇ m, 12 ⁇ m, 12.5 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m or 30 ⁇ m. In some embodiments of the present application, the thickness of the film is 10-20 ⁇ m. In some embodiments of the present application, the thickness of the film is 12-18 ⁇ m. In some embodiments of the present application, the thickness of the film is 12-16 ⁇ m. In some embodiments of the present application, the thickness of the film is 12-14 ⁇ m. In some embodiments of the present application, the thickness of the film is 12 ⁇ m, 12.5 ⁇ m, 13 ⁇ m, 13.5 ⁇ m or 14 ⁇ m.
  • the thickness of the film is 12.5-25 ⁇ m.
  • the thickness of the film is 12.5 ⁇ m or 25 ⁇ m.
  • the thickness of the dielectric and hydrophobic layers needs to be reduced.
  • the thickness of the dielectric material cannot be too low.
  • the thickness of the dielectric layer is too low, it will easily be broken down by high voltage, causing damage to the chip.
  • the thin film described in this application has a film thickness that is much lower than that of the dielectric layer prepared by traditional processes, and can provide sufficient driving force for the liquid.
  • the thin film described in this application has a high breakdown voltage and is not easily broken down. .
  • a second aspect of the present application provides a digital microfluidic chip substrate, wherein the chip substrate includes a circuit substrate, an adhesive, and a film as described in the present application.
  • the chip substrate includes the circuit substrate 1 , the adhesive 2 and the film 3 .
  • the circuit substrate is a copper-clad laminate, a ceramic substrate or an aluminum substrate.
  • the circuit substrate and the film are bonded through the adhesive, and the adhesive is combined with the hydrophilic surface of the film.
  • the upper surface of the circuit substrate is covered with the adhesive, and the other side of the adhesive is bonded to the hydrophilic surface of the film.
  • the adhesive includes one or more of polyacrylic acid, polyurethane, epoxy resin, polyimide, polystyrene, polyacrylate or ethylene-vinyl acetate copolymer. . In some embodiments of the present application, the adhesive is one or more of polyacrylic acid, polyurethane or epoxy resin.
  • the adhesive has a thickness of 1-50 ⁇ m. In some embodiments of the present application, the adhesive has a thickness of 5-40 ⁇ m. In some embodiments of the present application, the adhesive has a thickness of 5-30 ⁇ m. In some embodiments of the present application, the adhesive has a thickness of 5-25 ⁇ m. In some embodiments of the present application, the adhesive has a thickness of 5-20 ⁇ m. In some embodiments of the present application, the adhesive has a thickness of 5-15 ⁇ m. In some embodiments of the present application, the adhesive has a thickness of 5-10 ⁇ m.
  • a third aspect of the present application provides a method for preparing a film as described in the present application, which method includes subjecting the film to surface modification treatment.
  • the film is surface modified to obtain the hydrophilic surface, and the contact angle of the hydrophilic surface is ⁇ 90°.
  • the contact angle of the hydrophilic surface is ⁇ 80°. In some embodiments of the present application, the contact angle of the hydrophilic surface is ⁇ 70°. In some embodiments of the present application, the contact angle of the hydrophilic surface is ⁇ 60°. In some embodiments of the present application, the contact angle of the hydrophilic surface is ⁇ 50°. In some embodiments of the present application, the contact angle of the hydrophilic surface is ⁇ 40°. In some embodiments of the present application, the contact angle of the hydrophilic surface is ⁇ 30°. In some embodiments of the present application, the contact angle of the hydrophilic surface is ⁇ 20°. In some embodiments of the present application, the contact angle of the hydrophilic surface is ⁇ 10°. In some embodiments of the present application, the contact angle of the hydrophilic surface is 70°, 71°, 72°, 73°, 74° or 75°.
  • the film is surface modified to obtain the hydrophilic surface, and the rolling angle of the hydrophilic surface is ⁇ 30°.
  • the rolling angle of the hydrophilic surface of the film is 30°, 31°, 32°, 34° or 35°.
  • the rolling angle of the hydrophilic surface is ⁇ 40°, and in some embodiments of the present application, the rolling angle of the hydrophilic surface is ⁇ 50°. In some embodiments of the present application, the rolling angle of the hydrophilic surface is ⁇ 55°. In some embodiments of the present application, the rolling angle of the hydrophilic surface is ⁇ 60°. In some embodiments of the present application, the rolling angle of the hydrophilic surface is ⁇ 65°. In some embodiments of the present application, the rolling angle of the hydrophilic surface is ⁇ 70°.
  • the surface modification treatment is corona treatment, plasma treatment, chemical treatment, surface grafting treatment or photochemical modification treatment.
  • the surface modification treatment is corona treatment, plasma treatment or chemical treatment.
  • the surface modification treatment is corona treatment.
  • the corona treatment described in this application is a kind of electric shock treatment.
  • a corona treatment machine is used to conduct corona discharge on the surface of the film using high frequency and high voltage to generate low-temperature plasma and enhance the adhesion of the film surface.
  • the plasma treatment is low-temperature plasma treatment, specifically applying sufficient energy to the gas to ionize the gas into a plasma state, and then treating the film surface by low-temperature plasma.
  • the chemical treatment may be a chemical oxidation treatment, specifically, the film is treated with an oxidizing agent before use.
  • the surface grafting treatment may be to form hydrophilic groups on the surface of the film. In some embodiments of the present application, the surface grafting treatment may be to graft hydrophilic molecules on the surface of the film.
  • the fourth aspect of this application provides a method for preparing a digital microfluidic chip substrate as described in this application, the method comprising:
  • the method further includes, in step (2), covering the hydrophobic surface of the film with a protective film.
  • the method further includes:
  • step (3) Process the film on the surface of the circuit substrate described in step (2) to obtain the required shape
  • step (1) also includes cleaning the surface of the circuit substrate first, and then applying the adhesive on the surface of the circuit substrate.
  • the cleaning solvent includes one or more of isopropyl alcohol, ethanol, dimethylformamide, methylpyrrolidone or dipropylene glycol dimethyl ether.
  • the coating process is a screen printing process.
  • the coating process may also include dot-coating the adhesive on the surface of the circuit substrate, and then using a roller pressing method to evenly coat the adhesive on the surface of the circuit substrate. The surface of the circuit substrate.
  • step (2) the hydrophobic surface of the film is first covered with a protective film, and then the hydrophilic surface of the film is covered on the surface of the adhesive. In some embodiments of the present application, in step (2), the hydrophilic surface of the film is first covered on the surface of the adhesive, and then the hydrophobic surface of the film is covered with a protective film.
  • the protective film includes one or more of polyethylene terephthalate film (PET film) or polyvinyl chloride film (PVC film). In some embodiments of the present application, the protective film is a PET film.
  • step (2) and step (3) can be interchanged.
  • the hydrophobic surface of the film can be covered with a protective film, and then the film covered with the protective film can be processed to obtain a film with a target shape, and finally the film with the target shape can be The hydrophilic surface coats the adhesive surface.
  • the processing method is a method commonly used in the art to process the film to obtain the target shape.
  • the processing method is laser engraving, punching or die-cutting.
  • the protective film is removed after the adhesive is cured.
  • the curing time of the adhesive is 5-60 seconds. In some embodiments of the present application, the curing time of the adhesive is 10s-50s. In some embodiments of the present application, the curing time of the adhesive is 10-40 seconds. In some embodiments of the present application, the curing time of the adhesive is 10-30 seconds. In some embodiments of the present application, the curing time of the adhesive is 10-20 seconds. In some embodiments of the present application, the adhesive is cured for 15 seconds.
  • the fifth aspect of the present application provides the use of the film as described in the present application to replace the dielectric layer and the hydrophobic layer in the preparation of digital microfluidic chips.
  • a sixth aspect of the present application provides a digital microfluidic chip, which includes a film as described in the present application or a digital microfluidic chip substrate as described in the present application.
  • the digital microfluidic chip has a three-layer structure, specifically an upper plate, a lower plate and a cavity between the upper and lower plates for the movement of the test liquid.
  • the lower plate contains a circuit.
  • the filling material between the substrate, the microelectrode array and the film described in this application can be air or silicone oil between the upper and lower electrode plates.
  • the digital microfluidic chip adopts a coplanar electrode design without an upper plate structure.
  • the positive and negative electrodes are both arranged on the lower plate.
  • the lower plate includes a circuit substrate, a microelectrode array and the application's the film.
  • the present application provides a digital microfluidic system, which includes a film as described in this application or a digital microfluidic chip substrate as described in this application or a digital microfluidic system as described in this application.
  • the digital microfluidic chip described in the application is not limited to a digital microfluidic system, which includes a film as described in this application or a digital microfluidic chip substrate as described in this application or a digital microfluidic system as described in this application.
  • the digital microfluidic system may include a sample injection system, a nucleic acid extraction system, a detection system, a reaction system, etc., but is not limited thereto.
  • the raw materials and instruments used in the examples are conventional raw materials and instruments that are commercially available.
  • the raw materials are fed through the vacuum pipeline into the hopper of the film blowing equipment (Wide Hall, VAREX II).
  • the temperature is 260°C
  • the speed is 100r/min
  • the air ring current is 4A
  • the cooling water temperature is Film blowing was performed at 5°C to obtain a FEP film with a thickness of 12.5 ⁇ m;
  • the FEP film 1 is rolled up by a winding machine for later use.
  • the raw materials are fed through the vacuum pipeline into the hopper of the film blowing equipment (Wide Hall, VAREX II).
  • the temperature is 250°C
  • the speed is 100r/min
  • the air ring current is 4A
  • the cooling water temperature is Film blowing was performed at 5°C to obtain a PFA film with a thickness of 12.5 ⁇ m;
  • the PFA film 2 is rolled up by a winding machine for later use.
  • the FEP film 3 is rolled up by a winding machine for later use.
  • step (2) The surface of the circuit substrate in step (2) is evenly coated with a layer of adhesive through a screen printing process.
  • the adhesive is polyacrylic acid, and the printing thickness is 5-10 ⁇ m;
  • step (3) Through a rolling process, the hydrophilic surface of the film in step (3) is evenly laminated on the circuit substrate printed with the adhesive in step (2);
  • step (4) Place the product of step (4) under a UV light source for 15 seconds to solidify the adhesive;
  • the preparation method of the chip substrate 2 is the same as that of Example 4, except that the FEP film 1 in step (3) is replaced by the PFA film 2.
  • the preparation method of the chip substrate 3 is the same as that of Example 4, except that the FEP film 1 in step (3) is replaced with the FEP film 3.
  • step (4) After the chip substrate in step (4) was made into a chip, a pure water continuous movement test was conducted. 10 pieces were tested. After continuous movement of pure water for 30 minutes, 3 pieces had the phenomenon that the hydrophobic layer of the chip base fell off from the dielectric layer.
  • the chip made of the FEP film chip substrate 1 with one hydrophilic side in Example 4 was used to conduct a pure water continuous movement test. 10 chips were tested. After 30 minutes of continuous movement of pure water, none of the 10 chips were partially detached.
  • the specific operation of the pure water continuous movement test is: fill the chip cavity with silicone oil and then inject a 10 ⁇ L pure water droplet. The control electrodes are turned on in sequence to make the droplets circulate and reciprocate in the chip cavity for 30 minutes.
  • the preparation method of the chip substrate of Comparative Example 2 is the same as that of Example 4, except that the FEP film 1 in step (3) is replaced with a 12.5 ⁇ m FEP film without hydrophilic treatment.
  • the preparation method of the chip substrate of Comparative Example 3 is the same as that of Example 4, except that the FEP film 1 in step (3) is replaced with a 12.5 ⁇ m PFA film without hydrophilic treatment.
  • the instrument software program outputs the voltage curve and breakdown voltage value.
  • the test instrument outputs the shrinkage rate of the film in an environment of 100°C. If it is less than 0.8%, it is qualified.
  • the peak output tensile force is the chip substrate adhesion force.
  • the films of Examples 1-3 have a good dielectric constant and the hydrophobic surface has a large contact angle, realizing the dual functions of the dielectric layer and the hydrophobic layer in the traditional process.
  • the films of Examples 1-3 have higher membrane breakdown voltage, better membrane gas permeability, and better temperature stability. They do not wrinkle even under high temperature conditions of 100°C, and are suitable for a wide range of environments.
  • Comparative Example 1 it can be seen from Comparative Example 1 that in a traditional chip with a dielectric layer and a hydrophobic layer, the hydrophobic layer is easy to fall off from the dielectric layer, but the chip prepared using the film of the present application has no partial peeling off. Therefore, the film of the present application fundamentally solves the problem of the hydrophobic layer easily falling off from the dielectric layer and causing irreversible damage to the digital microfluidic chip. At the same time, compared with traditional complex preparation processes, the chip substrate preparation method of the present application is simple.
  • the rolling angle of the corona-treated side of the film is 30°-35°, the contact angle is 70°-75°, and it is hydrophilic.
  • Example 4-6 and Comparative Example 2-3 that after hydrophilic treatment, the film of Example 4-6 has higher adhesion with the circuit substrate, can be firmly attached to the upper surface of the circuit substrate, and is not easy to be removed from the circuit substrate. Even if the circuit substrate falls off or is soaked in solvent during use of the digital microfluidic chip, it is not easy to fall off from the circuit substrate, which can extend the service life of the chip.

Abstract

一种薄膜、一种数字微流控芯片基底及其制备方法。所述薄膜(3)为介电疏水薄膜,所述介电疏水薄膜的一面为亲水面,另一面为疏水面。薄膜(3)兼具介电和疏水的双重功能,从根本上克服了传统数字微流控芯片的疏水层从介电层脱落给芯片带来的难以逆转的损伤,且极大的简化了介电疏水层的制备流程。同时,所述的介电疏水薄膜具有亲水面,亲水面与粘合剂(2)结合后可以牢固的贴合于电路基板(1)上表面,耐受高温且不易从电路基板(1)脱落,拓宽了芯片的使用环境以及延长了芯片的使用寿命。

Description

一种薄膜、一种数字微流控芯片基底及其制备方法
本申请要求2022年8月12日递交的中国专利申请CN202210969277.X的优先权,该份申请的内容视为本申请的一部分,并作为其整体并入本申请。
技术领域
本申请属于数字微流控芯片技术领域,具体涉及一种薄膜、一种数字微流控芯片基底及其制备方法。
背景技术
数字微流控芯片是基于电润湿技术,通过电势调控固、液表面能,并利用液滴接触角的不对称产生切向推力,造成液滴两端不对称形变,促使液滴内部产生压强差,从而达到对微液体精确操控的技术。数字微流控芯片的基本构成包括电路基板,电路基板上方设置介电层和疏水层,共同构成芯片基底。电路基板上方的介电层和疏水层是数字微流控芯片最为关键的结构,其介电性能和疏水性能对液体操控至关重要。
目前,制备数字微流控芯片基底最主要的技术手段为,先在基于打印电子(PCB)的电路基板上方通过涂布工艺形成一层介电层材料,再在介电层上方通过旋涂或喷涂等工艺形成一层疏水层。传统的制备工艺流程复杂,适合涂布工艺的介电膜材料的厚度较厚,难以为液体提供足够的驱动力,且疏水层的制备对设备和环境洁净度要求高,经济成本较大,同时疏水层易从介电层脱落,会给数字微流控芯片带来难以逆转的损伤。
发明内容
为了解决现有技术的不足,本发明人经过长期探索和不断的尝试,提供了一种薄膜、一种数字微流控芯片基底及其制备方法。本申请的薄膜实现了介电层和疏水层的双重功能,从根本上解决了疏水层易从介电层脱落的难题。同时,本申请的介电疏水薄膜具有亲水面,有利于与粘合剂结合,可以牢固的贴合于电路基板上表面,具有耐受高温且不易从电路基板脱落的效果,极大的拓宽了芯片的使用环境及延长了芯片的使用寿命。
第一方面,本申请提供了一种薄膜,其中,所述薄膜为介电疏水薄膜,所述介电疏水薄膜的一面为亲水面,另一面为疏水面。
第二方面,本申请提供了一种数字微流控芯片基底,其中,所述芯片基底包括电路基板、粘合剂和如本申请所述的薄膜。
第三方面,本申请提供了一种制备如本申请所述薄膜的方法,其中,所述方法包括将所述薄膜进行表面改性处理。
第四方面,本申请提供了一种制备如本申请所述数字微流控芯片基底的方法,其中,所述方法包括:
(1)将所述粘合剂涂布在所述电路基板表面;
(2)将所述薄膜的亲水面覆合在粘合剂表面。
第五方面,本申请提供了如本申请所述薄膜在制备数字微流控芯片中代替介电层和疏水层的用途。
第六方面,本申请提供了一种数字微流控芯片,所述数字微流控芯片包含如本申请所述的薄膜或如本申请所述的数字微流控芯片基底。
第七方面,本申请提供了一种数字微流控系统,所述数字微流控系统包含如本申请所述的薄膜或如本申请所述的数字微流控芯片基底或如本申请所述的数字微流控芯片。
与现有技术相比,本申请的有益效果为:
本申请所述的薄膜兼具传统工艺中介电层和疏水层的双重功能,在极大的简化了制备工艺,降低了生产成本,提高了生产效率的情况下从根本上解决了疏水层易从介电层上脱落从而给数字微流控芯片带来难以逆转的损伤的问题。同时,较传统介电层的膜厚度,本申请的薄膜具有更薄的厚度,在提供更大驱动力的同时又不会由于厚度薄而造成易被高电压击穿的问题。且本申请所述的薄膜还具有亲水面,亲水面与粘合剂结合后可以牢固的贴合于电路基板上表面,具有耐受高达100℃的高温且不易从电路基板脱落的效果,极大的拓宽了芯片的使用环境及延长了芯片的使用寿命。
附图说明
图1为本申请所述的数字微流控芯片基底的制备示意图。
其中,1-电路基板;2-粘合剂;3-薄膜。
具体实施方式
除非另有说明,否则在本说明书和权利要求书中使用的表示含量、浓度、比例、质量、百分比、技术效果等的所有数字在任何情况下均应理解为由术语“约”或“大致”修饰。因此,除非有相反的指示,否则以下说明书和所附权利要求书中列出的数字参数是近似值。除非另有说明,此处使用的术语对所属技术领域的技术人员具有通常的理解含义。对于本领域技术人员来说,其可以根据通过本申请寻求得到的期望性质和效果而变化,应根据有效数字位数和常规舍入方法或者本领域技术人员理解的方式来解释每个数值参数。
尽管阐述了本申请的广泛范围的数值范围和参数是近似值,但是尽可能精确地提供了在具体实施例中阐述的数值。然而,任何数值都会固有地包含某些误差,这些误差由于在其相应的测试测量中发现的标准偏差而必然地导致的。本说明书给出的每个数值范围将包括落入该较宽数值范围内的每个较窄数值范围,就如同这些较窄数值范围均在本文中明确写出一样。
除非另有说明,否则在本说明书和权利要求书中使用的“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请中,表述“接触角”是指在固、液、气三相交界处,自固-液界面经过液体内部到气液界面之间的夹角,接触角是表征材料表面润湿性能的重要参数。当接触角等于0,表示完全润湿;当接触角小于90°,表示部分润湿;接触角等于90°是润湿与否的分界线;当接触角大于90°,表示不润湿;当接触角等于180°,表示完全不润湿,利用接触角测量仪器使用影像分析法测量本申请的薄膜的接触角。
在本申请中,表述“滚动角”是指液滴在倾斜表面刚好发生滚动时,倾斜表面与水平面所形成的临界角度。滚动角是表征材料表面湿润性能的重要参数。利用滚动角测量仪器使用影像分析法测量本申请的薄膜的滚动角。
本申请的第一方面,提供了一种薄膜,其中,所述薄膜为介电疏水薄膜,所述介电疏水薄膜的一面为亲水面,另一面为疏水面。
在本申请的一些实施方式中,所述薄膜为单层膜。
本申请提供的薄膜实现了传统工艺中介电层和疏水层的双重功能,从根本上解决了疏水层易从介电层上脱落给数字微流控芯片带来的难以逆转的损伤的问题。且本申请提供的薄膜性能稳定,具有良好的化学、生物兼容性,在生化领域具有良好的应用前景。同时,本申请提供的薄膜具有亲水面,亲水面与粘合剂结合后可以牢固的贴合于电路基板上表面,不易从电路基板脱落,极大的延长了芯片的使用寿命。
在本申请的一些实施方式中,所述薄膜的亲水面的接触角<90°。
在本申请的一些实施方式中,所述薄膜的亲水面的接触角≤80°。在本申请的一些实施方式中,所述薄膜的亲水面的接触角≤70°。在本申请的一些实施方式中,所述薄膜的亲水面的接触角≤60°。在本申请的一些实施方式中,所述薄膜的亲水面的接触角≤50°。在本申请的一些实施方式中,所述薄膜的亲水面的接触角≤40°。在本申请的一些实施方式中,所述薄膜的亲水面的接触角≤30°。在本申请的一些实施方式中,所述薄膜的亲水面的接触角≤20°。在本申请的一些实施方式中,所述薄膜的亲水面的接触角≤10°。在本申请的一些实施方式中,所述薄膜的亲水面的接触角为70°,71°,72°,73°,74°或75°。
在本申请的一些实施方式中,所述薄膜的亲水面的滚动角≥30°。
在本申请的一些实施方式中,所述薄膜的亲水面的滚动角为30°,31°,32°,34°或35°。
在本申请的一些实施方式中,所述薄膜的亲水面的滚动角≥40°。在本申请的一些实施方式中,所述薄膜的亲水面的滚动角≥50°。在本申请的一些实施方式中,所述薄膜的亲水面的滚动角≥55°。在本申请的一些实施方式中,所述薄膜的亲水面的滚动角≥60°。在本申请的一些实施方式中,所述薄膜的亲水面的滚动角≥65°。在本申请的一些实施方式中,所述薄膜的亲水面的滚动角≥70°。
在本申请的一些实施方式中,所述介电疏水薄膜为特氟龙薄膜。
在本申请的一些实施方式中,所述薄膜为无定形氟聚物薄膜(AF)、氟化乙烯丙烯树脂薄膜(FEP)、氟聚物泡沫树脂薄膜(FFR)、氟聚物树脂薄膜(NXT)或全氟烷氧基树脂薄膜(PFA)。
在本申请的一些实施方式中,所述薄膜为氟化乙烯丙烯树脂薄膜(FEP)或全氟烷氧基树脂薄膜(PFA)。
在本申请的一些实施方式中,所述薄膜为氟化乙烯丙烯树脂薄膜(FEP)。在本申请的一些实施方式中,所述薄膜为全氟烷氧基树脂薄膜(PFA)。
在本申请的一些实施方式中,所述薄膜的厚度为5-200μm。
在本申请的一些实施方式中,所述薄膜的厚度为5-150μm。
在本申请的一些实施方式中,所述薄膜的厚度为10-100μm。在本申请的一些实施方式中,所述薄膜的厚度为10-90μm。在本申请的一些实施方式中,所述薄膜的厚度为10-80μm。在本申请的一些实施方式中,所述薄膜的厚度为10-70μm。在本申请的一些实施方式中,所述薄膜的厚度为10-60μm。在本申请的一些实施方式中,所述薄膜的厚度为10-50μm。在本申请的一些实施方式中,所述薄膜的厚度为10-40μm。在本申请的一些实施方式中,所述薄膜的厚度为10-30μm。在本申请的一些实施方式中,所述薄膜的厚度为10μm、12μm、12.5μm、15μm、20μm、25μm或30μm。在本申请的一些实施方式中,所述薄膜的厚度为10-20μm。在本申请的一些实施方式中,所述薄膜的厚度为12-18μm。在本申请的一些实施方式中,所述薄膜的厚度为12-16μm。在本申请的一些实施方式中,所述薄膜的厚度为12-14μm。在本申请的一些实施方式中,所述薄膜的厚度为12μm、12.5μm、13μm、13.5μm或14μm。
在本申请的一些实施方式中,所述薄膜的厚度为12.5-25μm。
在本申请的一些实施方式中,所述薄膜的厚度为12.5μm或25μm。
为了给液体提供足够的驱动力,需要降低介电层和疏水层的厚度。但在介电层传统的制备工艺中,为了适用涂布工艺,介电材料的厚度不能过低,同时,介电层厚度过低易被高电压击穿,导致芯片的损坏。本申请所述的薄膜具有远低于传统工艺制备的介电层的膜厚度,可以为液体提供足够的驱动力,同时,本申请所述的薄膜具有较高的击穿电压,不易被击穿。
本申请的第二方面,提供了一种数字微流控芯片基底,其中,所述芯片基底包括电路基板、粘合剂和如本申请所述的薄膜。
在本申请的一些实施方式中,参照图1,所述芯片基底包括所述电路基板1、所述粘合剂2和所述薄膜3。
在本申请的一些实施方式中,对所述电路基板的材料没有特殊的限制,采用本领域的常用电路基板即可。在本申请的一些实施方式中,所述电路基板为覆铜板、陶瓷基板或铝基板。
在本申请的一些实施方式中,所述电路基板与所述薄膜通过所述粘合剂进行粘结,所述粘合剂与所述薄膜的亲水面结合。
在本申请的一些实施方式中,所述电路基板的上表面覆合所述粘合剂,所述粘合剂的另一面与所述薄膜的亲水面结合。
在本申请的一些实施方式中,所述粘合剂包括聚丙烯酸、聚氨酯、环氧树脂、聚酰亚胺、聚苯乙烯、聚丙烯酸酯或乙烯-醋酸乙烯共聚物中的一种或几种。在本申请的一些实施方式中,所述粘合剂为聚丙烯酸、聚氨酯或环氧树脂中的一种或几种。
在本申请的一些实施方式中,所述粘合剂的厚度为1-50μm。在本申请的一些实施方式中,所述粘合剂的厚度为5-40μm。在本申请的一些实施方式中,所述粘合剂的厚度为5-30μm。在本申请的一些实施方式中,所述粘合剂的厚度为5-25μm。在本申请的一些实施方式中,所述粘合剂的厚度为5-20μm。在本申请的一些实施方式中,所述粘合剂的厚度为5-15μm。在本申请的一些实施方式中,所述粘合剂的厚度为5-10μm。
本申请的第三方面,提供了一种制备如本申请所述薄膜的方法,所述方法包括将所述薄膜进行表面改性处理。
在本申请的一些实施方式中,所述薄膜经表面改性处理后得到所述亲水面,所述亲水面的接触角<90°。
在本申请的一些实施方式中,所述亲水面的接触角≤80°。在本申请的一些实施方式中,所述亲水面的接触角≤70°。在本申请的一些实施方式中,所述亲水面的接触角≤60°。在本申请的一些实施方式中,所述亲水面的接触角≤50°。在本申请的一些实施方式中,所述亲水面的接触角≤40°。在本申请的一些实施方式中,所述亲水面的接触角≤30°。在本申请的一些实施方式中,所述亲水面的接触角≤20°。在本申请的一些实施方式中,所述亲水面的接触角≤10°。在本申请的一些实施方式中,所述亲水面的接触角为70°,71°,72°,73°,74°或75°。
在本申请的一些实施方式中,所述薄膜经表面改性处理后得到所述亲水面,所述亲水面的的滚动角≥30°
在本申请的一些实施方式中,所述薄膜的亲水面的滚动角为30°,31°,32°,34°或35°。
在本申请的一些实施方式中,所述亲水面的滚动角≥40°,在本申请的一些实施方式中,所述亲水面的滚动角≥50°。在本申请的一些实施方式中,所述亲水面的滚动角≥55°。在本申请的一些实施方式中,所述亲水面的滚动角≥60°。在本申请的一些实施方式中,所述亲水面的滚动角≥65°。在本申请的一些实施方式中,所述亲水面的滚动角≥70°。
在本申请的一些实施方式中,所述表面改性处理为电晕处理、等离子处理、化学处理、表面接枝处理或光化学改性处理。
在本申请的一些实施方式中,所述表面改性处理为电晕处理、等离子处理或化学处理。
在本申请的一些实施方式中,所述表面改性处理为电晕处理。本申请所述的电晕处理是一种电击处理,具体为通过电晕处理机对薄膜表面利用高频率高电压进行电晕放电,产生低温等离子体,增强薄膜表面附着力。
在本申请的一些实施方式中,所述等离子处理为低温等离子处理,具体为利用对气体施加足够的能量使气体离化成等离子状态,再通过低温等离子体处理薄膜表面。
在本申请的一些实施方式中,所述化学处理可以为化学氧化处理,具体为在薄膜使用前用氧化剂进行处理。
在本申请的一些实施方式中,所述表面接枝处理可以为在薄膜表面形成亲水基团。在本申请的一些实施方式中,所述表面接枝处理可以为在薄膜表面接支亲水性分子。
本申请的第四方面,提供了一种制备如本申请所述数字微流控芯片基底的方法,所述方法包括:
(1)将所述粘合剂涂布在所述电路基板表面;
(2)将所述薄膜的亲水面覆合在粘合剂表面。
在本申请的一些实施方式中,所述方法还包括在步骤(2)中,将所述薄膜的疏水面覆合一层保护膜。
在本申请的一些实施方式中,所述方法还包括:
(3)对步骤(2)中所述电路基板表面的薄膜进行加工,得到所需要的形状;
(4)除去保护膜,得到所述数字微流控芯片基底。
在本申请的一些实施方式中,在步骤(1)中,还包括先清洗电路基板表面,然后再将所述粘合剂涂布在所述电路基板表面。
在本申请的一些实施方式中,对电路基板表面的清洗溶剂没有特殊限制,只要清洗后在电路基板表面无残留即可。在本申请的一些实施方式中,清洗溶剂包括异丙醇、乙醇、二甲基甲酰胺、甲基吡咯烷酮或二丙二醇二甲醚中的一种或几种。
在本申请的一些实施方式中,在步骤(1)中,涂布工艺为丝网印刷工艺。在本申请的一些实施方式中,在步骤(1)中,涂布工艺还可以是先在电路基板表面点涂粘合剂,再使用锟压的方法,将所述粘合剂均匀覆合在所述电路基板表面。
在本申请的一些实施方式中,在步骤(2)中,先将所述薄膜的疏水面覆合一层保护膜,再将所述薄膜的亲水面覆合在粘合剂表面。在本申请的一些实施方式中,在步骤(2)中,先将所述薄膜的亲水面覆合在粘合剂表面,再将所述薄膜的疏水面覆合一层保护膜。
在本申请的一些实施方式中,对所述保护膜没有特殊的限制,只要可以给与所述薄膜足够的支撑,方便后续对薄膜进行操作即可。在本申请的一些实施方式中,所述保护膜包括聚对苯二甲酸乙二醇酯膜(PET膜)或聚氯乙烯膜(PVC膜)中的一种或几种。在本申请的一些实施方式中,所述保护膜为PET膜。
在本申请的一些实施方式中,步骤(2)和步骤(3)的顺序可以进行互换。在本申请的一些实施方式中,可以将所述薄膜的疏水面覆合一层保护膜,再对覆合保护膜的薄膜进行加工,得到具有目标形状的薄膜,最后将具有目标形状的薄膜的亲水面覆合在粘合剂表面。
在本申请的一些实施方式中,在步骤(3)中,加工方法为本领域常用的对薄膜进行处理从而得到目标形状的方法。在本申请的一些实施方式中,在步骤(3)中,加工方法为激光雕刻法、冲裁法或模切法。
在本申请的一些实施方式中,在步骤(4)中,等粘合剂固化后再除去保护膜。在本申请的一些实施方式中,粘合剂固化的时间为5-60s。在本申请的一些实施方式中,粘合剂固化的时间为10s-50s。在本申请的一些实施方式中,粘合剂固化的时间为10-40s。在本申请的一些实施方式中,粘合剂固化的时间为10-30s。在本申请的一些实施方式中,粘合剂固化的时间为10-20s。在本申请的一些实施方式中,粘合剂固化的时间为15s。
本申请的第五方面,提供了如本申请所述的薄膜在制备数字微流控芯片中代替介电层和疏水层的用途。
本申请的第六方面,提供了一种数字微流控芯片,所述数字微流控芯片包含如本申请所述的薄膜或如本申请所述的数字微流控芯片基底。
在本申请的一些实施方式中,所述数字微流控芯片具有三层结构,具体为上极板、下极板和上下极板中间可供受试液体移动的空腔,下极板包含电路基板、微电极阵列和本申请所述的薄膜,上下极板之间的填充物质可以是空气或者是硅油。
在本申请的一些实施方式中,所述数字微流控芯片采用共面电极设计,没有上极板结构,正负电极均设置在下极板,下极板包含电路基板、微电极阵列和本申请所述的薄膜。
本申请的第七方面,本申请提供了一种数字微流控系统,所述数字微流控系统包含如本申请所述的薄膜或如本申请所述的数字微流控芯片基底或如本申请所述的数字微流控芯片。
在本申请的一些实施方式中,所述数字微流控系统可以包括注样系统、核酸提取系统、检测系统、反应系统等,但不限于此。
上文针对本申请的薄膜、数字微流控芯片基底及其制备方法的各种实施方式和优选项可以相互组合(只要它们彼此之间不是内在矛盾的),由此组合而形成的各种实施方式都视为本申请公开的一部分。
下面将结合实施例以例证的方式更清楚、明确地阐述本申请的技术方案。应该理解的是,这些实施例仅用于例证的目的,绝不旨在限制本申请的保护范围。本申请的保护范围仅通过权利要求来限定。
实施例
除非另有说明,否则实施例中所采用的原料以及仪器均为可通过市购获得的常规原料和仪器。
实施例1:FEP薄膜1的制备
(1)将FEP原料颗粒投入烘料设备(STOLZ,CLK100),设置烘料温度为60℃,循环烘料时间为4h;
(2)烘料结束后的原料通过真空管线上料至吹膜设备(威德霍尔,VAREXⅡ)料斗内,在温度为260℃,速度为100r/min,风环电流为4A,冷却水温为5℃的条件下进行吹膜,得到厚度为12.5μm的FEP薄膜;
(3)用电晕设备(AcXys Technologies,ULD 500)在15000V,25Khz,电极间隙1mm的条件下对12.5μm的FEP薄膜的一面进行电晕处理,得到具有一面亲水面的FEP薄膜1;
(4)所述FEP薄膜1由收卷机收卷备用。
实施例2:PFA薄膜2的制备
(1)将PFA原料颗粒投入烘料设备(STOLZ,CLK100),设置烘料温度为60℃,循环烘料时间为4h;
(2)烘料结束后的原料通过真空管线上料至吹膜设备(威德霍尔,VAREXⅡ)料斗内,在温度为250℃,速度为100r/min,风环电流为4A,冷却水温为5℃的条件下进行吹膜,得到厚度为12.5μm的PFA薄膜;
(3)在吹膜结束后,用电晕设备(AcXys Technologies,ULD 500)在15000V,25Khz,电极间隙1mm的条件下对12.5μm的PFA薄膜的一面进行电晕处理,得到具有一面亲水面的PFA薄膜2;
(4)所述PFA薄膜2由收卷机收卷备用。
实施例3:FEP薄膜3的制备
(1)将FEP原料颗粒投入烘料设备(STOLZ,CLK100),设置烘料温度为60℃,循环烘料时间为4h;
(2)烘料结束后的原料通过真空管线上料至吹膜设备(威德霍尔,VAREXⅡ)料斗内,在温度为260℃,速度为50r/min,风环电流为4A,冷却水温为5℃的条件下进行吹膜,得到厚度为25μm的FEP薄膜;
(3)用电晕设备(AcXys Technologies,ULD 500)在15000V,25Khz,电极间隙1mm的条件下对25μm的FEP薄膜的一面进行电晕处理,得到具有一面亲水面的FEP薄膜3;
(4)所述FEP薄膜3由收卷机收卷备用。
实施例4:芯片基底1的制备
(1)使用异丙醇清洗电路基板表面;
(2)步骤(2)的电路基板表面通过丝网印刷工艺均匀地涂上一层粘合剂,所述粘合剂为聚丙烯酸,印刷厚度为5-10μm;
(3)将FEP薄膜1的疏水面覆合一层PET保护膜;
(4)通过辊压工艺,将步骤(3)薄膜的亲水面平整的覆合在步骤(2)的印刷了粘合剂的电路基板上;
(5)将步骤(4)的产物在UV光源下放置15s,使得粘合剂固化;
(6)将电路基板表面的FEP薄膜1通过激光雕刻出目标形状;
(7)去除FEP薄膜1疏水面的PET保护膜,得到芯片基底1。
实施例5:芯片基底2的制备
芯片基底2的制备方法与实施例4的制备方法相同,区别仅在于将步骤(3)的FEP薄膜1替换为PFA薄膜2。
实施例6:芯片基底3的制备
芯片基底3的制备方法与实施例4的制备方法相同,区别仅在于将步骤(3)的FEP薄膜1替换为FEP薄膜3。
对比例1
(1)将25μm的KAPTON胶带贴合于芯片基底表面作为介电层;
(2)将CYTOP均匀喷涂于KAPTON胶带上表面;
(3)将芯片基底置于加热台上,温度设置90摄氏度对CYTOP进行玻璃化;
(4)将芯片基底冷却使CYTOP固化作为疏水层,得到传统的具有一层介电层和一层疏水层的芯片基底;
(5)将步骤(4)的芯片基底制成芯片后进行纯水连续移动测试,测试10片,纯水连续移动30分钟后有3片发生芯片基底疏水层部分从介电层脱落的现象,使用实施例4的具有一面亲水的FEP薄膜芯片基底1制成的芯片进行纯水连续移动测试,测试10片,在纯水连续移动30分钟后,10片芯片均无部分脱落现象。纯水连续移动测试的具体操作为:将芯片空腔注满硅油后注入1滴10μL纯水液滴,控制电极依次开启使液滴在芯片空腔内循环往复运动30分钟。
对比例2
对比例2的芯片基底的制备方法与实施例4的制备方法相同,区别仅在于将步骤(3)的FEP薄膜1替换为未经亲水处理的12.5μm的FEP薄膜。
对比例3
对比例3的芯片基底的制备方法与实施例4的制备方法相同,区别仅在于将步骤(3)的FEP薄膜1替换为未经亲水处理的12.5μm的PFA薄膜。
性能测试
1、薄膜接触角参数测量
使用接触角测量仪(晟鼎,SDC-350)测量薄膜的接触角,表征薄膜亲水面的亲水
性能以及疏水面的疏水性能,测量60片,以下为测试过程:
(1)将薄膜放置在测试平台上;
(2)启动测量仪器,滴10μm纯化水在测量位置,开始测试;
(3)测量软件自动运行,输出接触角数值。
2、薄膜介电常数测量
采用三端子法,使用阻抗测量仪(稳科,WK6500B)测试薄膜介电常数,以下为测量过程:
(1)将薄膜样片夹持在测量仪中用于夹持介电材料的测试夹具上;
(2)将测量仪两个电极配备在测试夹具上,开始测量;
(3)阻抗测量仪软件程序计算出薄膜的介电常数。
3、薄膜击穿电压测量
使用电压击穿测试仪(艾诺,AN96)测量薄膜击穿电压,以下为测试过程:
(1)打开电压击穿测试仪预热15分钟;
(2)打开设备仓门,将薄膜样品放置在两个电极中间,关闭设备仓门;
(3)在测试仪软件中设置参数,开始测试;
(4)仪器软件程序输出电压曲线和击穿电压值。
4、薄膜气体透过率测量
使用压差法气体渗透仪(兰光,VAC-V2)测量薄膜气体透过率:
(1)剪裁薄膜样片,测量厚度;
(2)在试验台上涂一层真空油脂,若油脂涂在空穴中的圆盘上,应仔细擦净;若滤纸边缘有油脂时,应更换滤纸(化学分析用滤纸,厚度0.2~0.3mm);
(3)关闭透气室各针阀,开启真空泵;
(4)在试验台中的圆盘上放置滤纸后,放上经状态调节的试样。试样应保持平整,不得有皱褶。轻轻按压使试样与试验台上的真空油脂良好接触。开启低压室针阀,试样在真空下应紧密贴合在滤纸上。在上盖的凹槽内放置O形圈,盖好上盖并紧固;
(5)打开高压室针阀及隔断阀,开始抽真空直至27Pa以下,并继续脱气3h以上,以排除试样所吸附的气体和水蒸气;
(6)关闭隔断阀,打开试验气瓶和气源开关向高压室充试验气体,高压室的气体压力应在(1.0~1.1)x105Pa范围内。压力过高时,应开启隔断阀排出;
(7)打开主机电源开关及计算机电源开关,通过键盘分别输入各试验台样品的名称、厚度、低压室体积参数和试验气体名称,准备试验;
(8)关闭高、低压室排气针阀,开始透气试验;
(9)为剔除开始试验时的非线性阶段,应进行10min的预透气试验。随后开始正式透气试验,记录低压室的压力变化值ΔP和试验时间t;
(10)继续试验直到在相同的时间间隔内压差的变化保持恒定,达到稳定透过。至少取3个连续时间间隔的压差值,求其算术平均值,以此计算该试样的气体透过量及气体透过率。
5、薄膜的温度稳定性测量
使用薄膜热收缩测试仪(赛成,RSY-01)测试薄膜温度稳定性:
(1)裁取15mm*130mm的薄膜试样,试样两端打孔,孔间距为100mm,孔径为5mm;
(2)将试样夹持到测试仪两端夹具,确保试样平整;
(3)开启仪器,设置温度100℃,开始加热;
(4)测试仪器输出薄膜在100℃环境中的收缩率,小于0.8%为合格。
6、芯片基底粘结力测试
使用艾德堡万能拉压力测试仪测量芯片基底粘接力:
(1)将覆膜后的芯片基底的薄膜短边揭开,垂直于芯片基底,将薄膜装夹在测试仪夹具中,拧紧螺丝固定好薄膜;
(2)将测试仪下降,直至芯片基底与测试平台接触;
(3)将芯片基底使用夹具固定在测试平台上;
(4)启动测试仪器,输出拉力峰值即为芯片基底粘接力。
7、薄膜滚动角参数测量
使用滚动角测量仪(晟鼎,SDC-350)测量薄膜的滚动角,表征薄膜亲水面的亲水性能和薄膜疏水面的疏水性能,测量60片,以下为测试过程:
(1)将覆膜后的芯片基底放置在测试平台上;
(2)启动测量仪器,滴10μm纯化水在测量位置,开始测试;
(3)测量软件自动运行,输出滚动角数值。
实验结果与讨论
表1实施例1-实施例3薄膜的亲疏水性能数据统计表
表2实施例4-6、对比例2-3的性能测试参数表

由表1和表2可以看出,实施例1-3的薄膜具有较好的介电常数以及疏水面具有较大的接触角,实现了传统工艺中介电层和疏水层的双重功能。同时,实施例1-3的薄膜具有较高的膜击穿电压,较好的膜气体透过率,以及较好的温度稳定性,在100℃高温条件下也不发生褶皱,适用环境广。
由对比例1可知,传统的具有一层介电层和一层疏水层的芯片,疏水层易从介电层脱落,而利用本申请的薄膜制备得到的芯片,无部分脱落的现象。因此,本申请的薄膜从根本上解决了疏水层易从介电层上脱落给数字微流控芯片带来的难以逆转的损伤的问题。同时,相较于传统的复杂制备工艺,本申请的芯片基底制备方法简便。
由表1可以看出,薄膜经过电晕处理的一面的滚动角为30°-35°,接触角为70°-75°,具有亲水性。由实施例4-6和对比例2-3可知,经过亲水处理,实施例4-6的薄膜与电路基板具有更高的粘结力,可以牢固的贴合于电路基板上表面,不易从电路基板脱落以及在数字微流控芯片使用过程中被溶剂浸泡后也不易从电路基板脱落,可以延长芯片的使用寿命。

Claims (24)

  1. 一种薄膜,其中,所述薄膜为介电疏水薄膜,所述介电疏水薄膜的一面为亲水面,另一面为疏水面。
  2. 如权利要求1所述的薄膜,其中,所述薄膜的亲水面的接触角<90°。
  3. 如权利1或2所述的薄膜,其中,所述薄膜的亲水面的滚动角≥30°。
  4. 如权利要求1-3中任一项所述的薄膜,其中,所述介电疏水薄膜为特氟龙薄膜。
  5. 如权利要求4所述的薄膜,其中,所述薄膜为无定形氟聚物薄膜、氟化乙烯丙烯树脂薄膜、氟聚物泡沫树脂薄膜、氟聚物树脂薄膜或全氟烷氧基树脂薄膜。
  6. 如权利要求4或5所述的薄膜,其中,所述薄膜为氟化乙烯丙烯树脂薄膜或全氟烷氧基树脂薄膜。
  7. 如权利要求1-6中任一项所述的薄膜,其中,所述薄膜的厚度为5-200μm。
  8. 如权利要求7所述的薄膜,其中,所述薄膜的厚度为10-100μm。
  9. 如权利要求8所述的薄膜,其中,所述薄膜的厚度为12.5-25μm。
  10. 如权利要求9所述的薄膜,其中,所述薄膜的厚度为12.5μm或25μm。
  11. 一种数字微流控芯片基底,其中,所述芯片基底包括电路基板、粘合剂和如权利要求1-10中任一项所述的薄膜。
  12. 如权利要求11所述的数字微流控芯片基底,其中,所述电路基板与所述薄膜通过所述粘合剂进行粘结,所述粘合剂与所述薄膜的亲水面结合。
  13. 如权利要求11或12所述的数字微流控芯片基底,其中,所述粘合剂为聚丙烯酸、聚氨酯、环氧树脂、聚酰亚胺、聚苯乙烯、聚丙烯酸酯或乙烯-醋酸乙烯共聚物中的一种或几种。
  14. 一种制备权利要求1-10中任一项所述薄膜的方法,其中,所述方法包括将所述薄膜进行表面改性处理。
  15. 如权利要求14所述的方法,其中,所述薄膜经表面改性处理后得到所述亲水面,所述亲水面的接触角<90°。
  16. 如权要求14或15所述的方法,其中,所述薄膜经表面改性处理后得到所述亲水面,所述亲水面的接触角≥30°。
  17. 如权利要求14-16中任一项所述的方法,其中,所述表面改性处理为电晕处理、等离子处理、化学处理、表面接枝处理或光化学改性处理。
  18. 如权利要求14-17中任一项所述的方法,其中,所述表面改性处理为电晕处理。
  19. 一种制备权利要求11-13中任一项所述数字微流控芯片基底的方法,其中,所述方法包括:
    (1)将所述粘合剂涂布在所述电路基板表面;
    (2)将所述薄膜的亲水面覆合在粘合剂表面。
  20. 如权利要求19所述的方法,其中,所述方法还包括在步骤(2)中,将所述薄膜的疏水面覆合一层保护膜。
  21. 如权利要求19或20所述的方法,其中,所述方法还包括:
    (3)对步骤(2)中所述电路基板表面的薄膜进行加工,得到所需要的形状;
    (4)除去保护膜,得到所述数字微流控芯片基底。
  22. 如权利要求1-10中任一项所述的薄膜在制备数字微流控芯片中代替介电层和疏水层的用途。
  23. 一种数字微流控芯片,所述数字微流控芯片包含如权利要求1-10中任一项所述的薄膜或如权利要求11-13中任一项所述的数字微流控芯片基底。
  24. 一种数字微流控系统,所述数字微流控系统包含如权利要求1-10中任一项所述的薄膜或如权利要求11-13中任一项所述的数字微流控芯片基底或如权利要求23所述的数字微流控芯片。
PCT/CN2023/112714 2022-08-12 2023-08-11 一种薄膜、一种数字微流控芯片基底及其制备方法 WO2024032791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210969277.X 2022-08-12
CN202210969277.XA CN117619462A (zh) 2022-08-12 2022-08-12 一种薄膜、一种数字微流控芯片基底及其制备方法

Publications (1)

Publication Number Publication Date
WO2024032791A1 true WO2024032791A1 (zh) 2024-02-15

Family

ID=89851038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112714 WO2024032791A1 (zh) 2022-08-12 2023-08-11 一种薄膜、一种数字微流控芯片基底及其制备方法

Country Status (2)

Country Link
CN (1) CN117619462A (zh)
WO (1) WO2024032791A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104438021A (zh) * 2014-12-25 2015-03-25 华南师范大学 一种在疏水表面制备亲水涂膜的方法
CN104907238A (zh) * 2015-05-05 2015-09-16 华南师范大学 一种在疏水绝缘层表面制备涂膜的方法
CN108465493A (zh) * 2018-05-04 2018-08-31 上海仁敬生物科技有限公司 微流控芯片的制造方法
CN109647549A (zh) * 2018-12-17 2019-04-19 南方科技大学 一种易替换的疏水介电薄膜和一种微流控芯片
US20200070171A1 (en) * 2018-08-28 2020-03-05 Beijing Boe Optoelectronics Technology Co., Ltd. Microfluidic particle and manufacturing method thereof, microfluidic system, manufacturing method and control method thereof
US20210237081A1 (en) * 2018-04-25 2021-08-05 Nanyang Technological University Magnetic digital microfluidic apparatus and method of magnetic digital microfluidic manipulation
CN215140009U (zh) * 2021-02-08 2021-12-14 柴东平 一种低成本式数字微流控系统
CN114308152A (zh) * 2021-12-13 2022-04-12 中国科学院上海微系统与信息技术研究所 一种数字微流控芯片及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104438021A (zh) * 2014-12-25 2015-03-25 华南师范大学 一种在疏水表面制备亲水涂膜的方法
CN104907238A (zh) * 2015-05-05 2015-09-16 华南师范大学 一种在疏水绝缘层表面制备涂膜的方法
US20210237081A1 (en) * 2018-04-25 2021-08-05 Nanyang Technological University Magnetic digital microfluidic apparatus and method of magnetic digital microfluidic manipulation
CN108465493A (zh) * 2018-05-04 2018-08-31 上海仁敬生物科技有限公司 微流控芯片的制造方法
US20200070171A1 (en) * 2018-08-28 2020-03-05 Beijing Boe Optoelectronics Technology Co., Ltd. Microfluidic particle and manufacturing method thereof, microfluidic system, manufacturing method and control method thereof
CN109647549A (zh) * 2018-12-17 2019-04-19 南方科技大学 一种易替换的疏水介电薄膜和一种微流控芯片
CN215140009U (zh) * 2021-02-08 2021-12-14 柴东平 一种低成本式数字微流控系统
CN114308152A (zh) * 2021-12-13 2022-04-12 中国科学院上海微系统与信息技术研究所 一种数字微流控芯片及其制备方法与应用

Also Published As

Publication number Publication date
CN117619462A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN108305972A (zh) 一种陶瓷涂层隔膜及制备方法和应用
CN102165535A (zh) 透明导电性膜及触摸面板
CN108239489B (zh) Pet排气胶膜的制造方法和pet排气胶膜
JP2016531358A (ja) フレキシブルタッチスクリーンパネルの製造方法
WO2024032791A1 (zh) 一种薄膜、一种数字微流控芯片基底及其制备方法
CN108289345A (zh) 石墨烯电热膜的制备方法、石墨烯电热膜、电热器件和应用
CN109179396A (zh) 石墨烯薄膜直接转移装置及方法
CN113969115A (zh) 一种快速流平超薄网格胶带及其制备方法
US20220000407A1 (en) Dry electrodes
CN108493001A (zh) 一种简单制备石墨高柔性电极及柔性超级电容器的方法
TW202105418A (zh) 透明導電性膜片
CN111892881A (zh) 一种耐高温的高持粘性覆盖膜或保护胶带的制备方法
JP6726504B2 (ja) 熱拡散シート
KR100360161B1 (ko) 액정셀의 제조방법
CN108627529B (zh) 一种用于评测陶瓷涂覆隔膜中基膜受不同温度影响的方法
CN104890312B (zh) 一种保护基底上石墨烯层的方法和石墨烯复合材料
CN110350107B (zh) 一种可转移柔性电极及其制备方法和应用
CN114930148A (zh) 透明导电性膜
CN113816361B (zh) 一种降低石墨烯方块电阻的方法
CN110576628A (zh) 一种非硅哑光双面离型膜及制备工艺
CN112918034B (zh) 透明导电性膜
CN218025915U (zh) 一种柔性网格硅胶保护膜
JP2955454B2 (ja) 樹脂膜の焼成方法および焼成装置
CN218025916U (zh) 一种柔性耐高温四抗硅胶保护膜
CN210639339U (zh) 一种用于显微放大检测的玻片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852011

Country of ref document: EP

Kind code of ref document: A1