WO2024032758A1 - 一种新型线缆 - Google Patents

一种新型线缆 Download PDF

Info

Publication number
WO2024032758A1
WO2024032758A1 PCT/CN2023/112495 CN2023112495W WO2024032758A1 WO 2024032758 A1 WO2024032758 A1 WO 2024032758A1 CN 2023112495 W CN2023112495 W CN 2023112495W WO 2024032758 A1 WO2024032758 A1 WO 2024032758A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
gap
channel
optical fiber
wall
Prior art date
Application number
PCT/CN2023/112495
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车科技股份有限公司 filed Critical 长春捷翼汽车科技股份有限公司
Publication of WO2024032758A1 publication Critical patent/WO2024032758A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/22Cables including at least one electrical conductor together with optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • H01B7/423Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation using a cooling fluid

Definitions

  • the present application relates to the field of cable technology, and more specifically, to a new type of cable.
  • One purpose of this application is to provide a new technical solution for a new type of cable.
  • a new type of cable including at least one conductor and a sheath layer set around the outer circumference of the conductor.
  • the conductor includes a conductor and an insulating layer set around the outer circumference of the conductor.
  • a channel is provided axially extending inside the conductor, and at least one optical fiber wire is passed through the channel.
  • a gap is provided between the inner wall of the channel and the outer wall of the optical fiber conductor, and cooling liquid is at least partially circulated in the gap.
  • the outer side of the optical fiber conductor is covered with a sheath tube, a gap is provided between the inner wall of the channel and the sheath tube, and cooling liquid flows in the gap.
  • the conductor is formed by multiple wire cores in parallel or twisted or braided.
  • a support tube is provided on the inner wall of the channel.
  • a gap is provided between the inner wall of the support tube and the outer wall of the optical fiber conductor. In the gap Circulate coolant.
  • the conductor is formed by multiple wire cores in parallel or twisted or braided.
  • a support tube is provided on the inner wall of the channel.
  • the outside of the optical fiber conductor is covered with a sheath tube.
  • the inner wall of the support tube is in contact with the sheath tube.
  • a gap is provided between the sleeves, and cooling liquid flows through the gap.
  • the cross-sectional area of the gap accounts for 2%-45% of the internal cross-sectional area of the channel.
  • cooling liquid flow direction inside at least one conductor is inconsistent with the cooling liquid flow direction inside other conductors.
  • the sum of the cross-sectional areas of the gaps accommodating the cooling liquid flowing along the first direction and the sum of the cross-sectional areas of the gaps accommodating the cooling liquid flowing along the second direction differ by no more than 8%, wherein the first The direction is opposite to the second direction.
  • the cooling rate of the cooling liquid is 0.05k/s-5k/s.
  • the flow rate of the cooling liquid is 0.5ml/s-50ml/s.
  • the sheath tube is made of flexible material.
  • the support tube is made of flexible material.
  • the cable further includes a shielding layer, the outside of the insulation layer is covered with the shielding layer, and/or the inner wall of the sheath is provided with the shielding layer; and/or the shielding layer The outer wall of the sleeve is provided with the shielding layer.
  • optical fiber wires as signal lines to prevent metal signal lines from being interfered with the signal transmission of metal signal lines by the magnetic field and electric field generated by the conductor used as a power line during the charging process of the cable.
  • the diameter of the cable can be reduced.
  • the channel can be prevented from being blocked due to bending of the conductor, which affects the flow of coolant.
  • Figure 1 is the first embodiment of the new cable of the present application, in which a conductor is provided;
  • Figure 2 is a second embodiment of the new cable of the present application, in which the new cable is not provided with a shielding layer;
  • Figure 3 is a third embodiment of the new cable of the present application, in which the new cable is provided with a shielding layer;
  • Figure 4 is an enlarged view of the structural schematic diagram after assembly of the conductor and optical fiber conductor in Figure 3;
  • Figure 5 is another structural schematic diagram of the assembly of wires and optical fiber wires
  • Figure 6 is another structural schematic diagram after the wires and optical fiber wires are assembled.
  • 6-support tube 7-shielding layer; D1-first direction; D2-second direction.
  • any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.
  • a new type of cable according to the present disclosure includes at least one conductor 2 and a sheath layer 1 set around the conductor 2.
  • the conductor 2 includes a conductor 21 and a sheath 1 set around the conductor 21.
  • the insulating layer 22 has a channel 23 extending axially inside the conductor 21, and at least one optical fiber wire 3 is passed through the channel 23.
  • the optical fiber conductor 3 is used as a signal line to prevent the metal signal line from being interfered with the signal transmission of the metal signal line by the magnetic field and electric field generated by the conductor 21 as the power line during the charging process of the cable.
  • the optical fiber conductor 3 in the channel 23 inside the conductor 21, the diameter of the cable can be reduced.
  • a gap 5 is provided between the inner wall of the channel 23 and the outer wall of the optical fiber conductor 3, and at least part of the cooling liquid flows in the gap 5. In other words, at least Coolant flows through some of the gaps 5 .
  • the conductor 21 can be cooled down and improve the temperature of the conductor 21.
  • Conductor 21 current carrying capacity by flowing the cooling liquid in the gap 5 formed between the optical fiber conductor 3 and the inner wall of the channel 23 (the gap 5 here can be set as the first gap 5), the conductor 21 can be cooled down and improve the temperature of the conductor 21.
  • Conductor 21 current carrying capacity by flowing the cooling liquid in the gap 5 formed between the optical fiber conductor 3 and the inner wall of the channel 23 (the gap 5 here can be set as the first gap 5), the conductor 21 can be cooled down and improve the temperature of the conductor 21.
  • Conductor 21 current carrying capacity by flowing the cooling liquid in the gap 5 formed between the optical fiber conductor 3 and the inner wall of the channel 23 (the gap 5 here can be set as the first gap 5).
  • the outside of the optical fiber conductor 3 is covered with a sheath tube 4.
  • a gap 5 is provided between the inner wall of the channel 23 and the sheath tube 4, and cooling liquid flows in the gap 5.
  • a sheath tube 4 is provided around the outer periphery of the optical fiber conductor 3 to protect the optical fiber conductor 3 , avoid damage to the optical fiber conductor 3 , and extend the service life of the optical fiber conductor 3 .
  • the cooling liquid flows in the gap 5 (the gap 5 here can be set as the second gap 5) between the inner wall of the channel 23 and the sheathing tube 4, which can cool down the conductor 21 and improve the current carrying capacity of the conductor 21. .
  • the combination of the conductor 2 and the optical fiber conductor 3 shown in FIG. 6 can replace the assembly of the conductor 2 and the optical fiber conductor 3 shown in FIG. 2 .
  • the combination of the conductor 2 and the optical fiber conductor 3 shown in FIG. 6 can also replace the assembly of the conductor 2 and the optical fiber conductor 3 shown in FIG. 3 .
  • the conductor 21 is formed by multiple wire cores in parallel or twisted or braided.
  • a support tube 6 is provided on the inner wall of the channel, and the inner wall of the support tube 6 is in contact with the optical fiber.
  • a gap 5 is provided between the outer walls of the wires 3, and cooling liquid flows in the gap 5.
  • the conductor 21 is made of multiple wire cores that are parallel, twisted or braided
  • the channel 23 can be prevented from blocking the flow of coolant due to bending or deformation of the conductor 21.
  • the cooling liquid circulates in the gap 5 between the support tube 6 and the optical fiber wire 3 (the gap 5 here is set as the third gap 5), taking away the heat generated during the operation of the conductor 21 as the power wire 2, The current carrying capacity of the conductor 21 as the power conductor 2 is improved.
  • Figure 5 shows a support tube provided on the inner wall of the channel in the assembly of conductor 2 and optical fiber conductor 3 shown in Figure 2; the assembly of conductor 2 and optical fiber conductor 3 in Figure 5 can replace the conductor 2 and optical fiber shown in Figure 2 The assembly of wire 3.
  • the combination of the conductor 2 and the optical fiber conductor 3 in FIG. 5 can also replace the assembly of the conductor 2 and the optical fiber conductor 3 shown in FIG. 3 .
  • the conductor 21 is formed by multiple wire cores in parallel or twisted or braided.
  • a support tube 6 is provided on the inner wall of the channel, and the optical fiber conductor 3 The outer side is covered with a sheathing tube 4.
  • a gap 5 is provided between the inner wall of the support tube 6 and the sheathing tube 4, and the cooling liquid flows in the gap 5.
  • the sheath tube 4 is provided around the outer circumference of the optical fiber conductor 3 to protect the optical fiber conductor 3, avoid damage to the optical fiber conductor 3, and extend the service life of the optical fiber conductor 3; at the same time, since the conductor 21 has multiple parallel cores, , twisted or braided.
  • the support tube 6 By arranging the support tube 6 on the inner wall of the channel 23, the channel 23 can be prevented from blocking the flow of coolant due to bending or deformation of the conductor 21.
  • the circulation in the gap 5 between the bushings 4 takes away the heat generated by the conductor 21 as the power conductor 2 during the operation, and improves the performance of the conductor 2 as the power conductor 2. 21 current carrying capacity.
  • Figure 4 is an enlarged view of the structural schematic diagram of the assembled wires and optical fiber wires in Figure 3.
  • Figure 4 shows a support tube 6 provided on the inner wall of the channel 23, and a sheathing tube 4 installed outside the optical fiber wire 3; the wire 2 shown in Figure 4 is
  • the combination of the optical fiber lead 3 can also replace the combination of the lead 2 and the optical fiber lead 3 shown in FIG. 2 .
  • the combination of the conductor 2 and the optical fiber conductor 3 shown in FIG. 2 can also replace the assembly of the conductor 2 and the optical fiber conductor 3 shown in FIG. 3 .
  • the four embodiments of the gap 5 are respectively set as the first gap 5, the second gap 5, the third gap 5 and the fourth gap 5;
  • the first gap 5 is the gap 5 between the optical fiber conductor 3 and the inner wall of the channel 23;
  • a sheathing tube 4 is provided outside the optical fiber conductor 3 in the first gap 5.
  • the gap 5 between the sheathing tube 4 and the inner wall of the channel 23 is the second gap 5.
  • a support tube 6 is provided on the inner wall of the channel 23 in the first gap 5.
  • the gap 5 between the inner wall of the tube 6 and the outer wall of the optical fiber conductor 3 is the third gap 5;
  • a sheath tube 4 is provided outside the optical fiber conductor 3 in the first gap 5, and
  • a support tube 6 is provided on the inner wall of the channel 23.
  • the support tube 6 and the sheath Between the tubes 4 is the fourth gap.
  • the cross-sectional area of the gap 5 accounts for 2%-45% of the internal cross-sectional area of the channel 23 .
  • the inventor selected multiple new cables with the same cross-sectional area, the same material, and the same length, and conducted the same current. Adjust the wire diameter of the optical fiber conductor 3 to adjust the ratio of the cross-sectional area of the gap 5 to the internal cross-sectional area of the channel 23. Use different ratios of the cross-sectional area of the gap 5 to the internal cross-sectional area of the channel 23 to circulate in this gap 5. Coolant is used to cool the cables, and the temperature rise value of each cable is read and recorded in Table 1.
  • the experimental method is to use cables whose cross-sectional area of gap 5 accounts for different percentages of the internal cross-sectional area of channel 23 in a closed environment to conduct the same current, record the temperature before power on and the temperature after power on when the temperature is stable, and make The difference is taken as an absolute value. In this embodiment, a temperature rise of less than 50K is considered a qualified value.
  • Table 1 The influence of different percentages of the cross-sectional area of gap 5 to the internal cross-sectional area of channel 23 on the temperature rise of new cables
  • the cross-sectional area of gap 5 accounts for more than 45% of the internal cross-sectional area of channel 23, the temperature rise of the new cable does not decrease significantly, and gap 5
  • the number of conductors 21 is multiple, and the cooling liquid flow direction inside at least one conductor 21 is inconsistent with the cooling liquid flow direction inside other conductors 21 .
  • the conductors 21 can be respectively set into positive wires 2, negative wires 2 and PE wires, and the optical fiber wires 3 arranged in the channels 23 of each conductor 21 serve as signal wires to facilitate new cables. Wiring when used as a charging cable.
  • the flow direction of the cooling liquid flowing in the gaps 5 inside the plurality of conductors 21 is set into two opposite directions, one of which serves as the inlet pipe of the coolant and the other direction serves as the outlet of the coolant.
  • the liquid pipe realizes the circulation of coolant inside the conductor 21, thereby taking away the heat generated by the conductor 21 as the positive conductor 2 and the negative conductor 2 during the working process, and improving the current carrying capacity of the conductor 21.
  • the charging time can be shortened.
  • the sum of the cross-sectional areas of the gaps accommodating the cooling liquid flowing along the first direction D1 and the sum of the cross-sectional areas of the gaps accommodating the cooling liquid flowing along the second direction D2 do not differ by more than 8%, where the first direction D1 is opposite to the second direction D2.
  • the first direction D1 can be set as the flow direction of the coolant in the liquid inlet pipe
  • the second direction D2 can be set as the flow direction of the coolant in the liquid outlet pipe.
  • the coolant in the pipe or outlet pipe cannot fill a certain gap 5 and cannot take away the heat generated by the conductor 21 during the charging process in time to prevent the current carrying capacity of the new cable from being reduced.
  • the second direction D2 is represented by a plus sign shape, indicating the direction of the cooling liquid flowing in the liquid outlet pipe
  • the first direction D1 is represented by a solid dot shape, indicating the direction of the cooling liquid flowing in the liquid inlet pipe.
  • Figure 3 is a schematic diagram of the structure. There is no specific limit on the size. The difference between the sum of the cross-sectional areas of the gaps corresponding to the first direction D1 and the sum of the cross-sectional areas of the gaps corresponding to the second direction D2 is no more than 8%.
  • the cooling rate of the coolant is 0.05k/s-5k/s.
  • the inventor selected multiple sets of new cables with the same material and size, conducted the same current, and the coolant passed through the liquid cooling channel at different cooling rates.
  • the cables are cooled, and the temperature rise values of each new cable are read and recorded in Table 2.
  • the experimental method is to conduct new cables with different cooling rates in a closed environment with the same current, record the temperature before power on and the temperature after power on when the temperature is stable, and take the absolute value of the difference.
  • a temperature rise of less than 50K is considered a qualified value.
  • the cooling rate when the cooling rate is less than 0.05°C/min, the temperature rise value of the new cable is unqualified. When the cooling rate is greater than or equal to 0.05°C/min, the temperature rise value of the new cable is qualified. However, the cooling When the rate is greater than 5°C/min, the temperature rise of the new cable does not drop significantly, and the greater the cooling rate, the quality requirements for the liquid cooling channel and the flow rate requirements for the coolant will further increase. At this time, the new cable The temperature rise has not changed significantly. Therefore, the inventor set the cooling rate of the coolant to 0.05k/s-5k/s.
  • the flow rate of the cooling liquid is 0.5ml/s-50ml/s.
  • the inventor selected multiple sets of new cables with the same material and size. At this time, the same current was conducted, and the coolant used different flow rates. Cool the new cables through the liquid cooling channel, and read the temperature rise value of each new cable, which is recorded in Table 3.
  • the experimental method is to flow the coolant through a new cable in the liquid cooling channel at different flow rates in a closed environment, conduct the same current, record the temperature before power on and the temperature after power on when the temperature is stable, and take the difference. Absolute value. In this embodiment, a temperature rise of less than 50K is considered a qualified value.
  • the temperature rise value of the new cable is unqualified.
  • the temperature rise value of the new cable is qualified.
  • the flow rate is greater than 50ml/s, the temperature rise of the new cable does not drop significantly, and the greater the flow rate, the higher the quality requirements for the liquid cooling channel and the circulation pump that makes the coolant flow. The quality requirements will be further improved, but at this time the temperature rise of the new cable has not changed significantly. Therefore, the inventor set the flow rate of the cooling liquid in the liquid cooling channel to 0.5ml/s-50ml/s.
  • sheath tube 4 is made of flexible material.
  • the sheath tube 4 can be a thin-walled silicone tube to protect the optical fiber conductor 3, prevent the optical fiber conductor 3 from being damaged, and extend the service life of the cable.
  • the support tube 6 is made of flexible material.
  • the support tube 6 made of flexible material can be used to facilitate the installation and bending of the new cable when the new cable is used as a charging cable.
  • the cable further includes a shielding layer 7, the insulation layer 22 is covered with the shielding layer 7 on the outside, and/or the inner wall of the sheath is provided with the shielding layer 7; and/or Or, the outer wall of the sheath is provided with a shielding layer 7 .
  • the electromagnetic generated by the cable during operation can be effectively prevented from interfering with the normal operation of other control systems.
  • the combination of the conductor 2 and the optical fiber conductor 3 shown in Figure 4, Figure 5, Figure 6 and Figure 2 can replace the assembly of the conductor 2 and the optical fiber conductor 3 in Figure 3.
  • the shielding layer in Figure 3 can also be set in the following three ways:
  • the shielding layer 7 can be configured as any of the three shielding layers shown in Figure 3;
  • the shielding layer 7 can be set to any two of the three shielding layers shown in Figure 3;
  • the shielding layer 7 is provided with three shielding layers as shown in Figure 3 .

Landscapes

  • Communication Cables (AREA)

Abstract

本申请公开了一种新型线缆,包括至少一根导线以及套设在所述导线外周的护套层,所述导线包括导体以及套设在所述导体外周的绝缘层,所述导体内部轴向延伸设置通道,所述通道中穿设至少一根光纤导线。根据本公开的一种新型线缆,通过光纤导线作为信号线使用,避免金属制的信号线,在线缆充电的过程中,作为动力线的导体产生的磁场,电场干扰信号线的信号传输。

Description

一种新型线缆
相关申请
本申请要求于2022年08月12日递交的申请号为202210969116.0的中国专利申请的优先权,并引用上述专利申请公开的内容作为本申请的一部分。
技术领域
本申请涉及线缆技术领域,更具体地,涉及一种新型线缆。
背景技术
随着新能源汽车行业的快速发展,电动汽车的续航里程不断提高,电池的容量也越来越大,需要提升充电功率实现快速充电来解决充电速度的问题。提高充电电流是实现大功率充电的常用方法,但线缆的芯线材料自有的电阻会导致线缆整体热耗增大。虽然增大线径可以减小热耗,但增大线径则会导致充电线缆尺寸和重量的提升,而且随着充电电流的进一步增大,单纯增大线缆线径已不可行。
另外,传统充电线缆采用信号线加动力线结构,其都为铜导体。在工作时,动力线大电流经过会产生磁场、电场,严重干扰信号线的信号传输。所以又会对信号线添加屏蔽结构。这样既增加了整体的线缆外径,又增加线缆成本。
因此,如何提供一种避免线缆中设置的信号线免受动力线产生干扰信号的影响,同时可以增加线缆的载流能力,成为本领域亟需解决的技术难题。
发明内容
本申请的一个目的是提供一种新型线缆的新技术方案。
根据本申请的第一方面,提供了一种新型线缆,包括至少一根导线以及套设在所述导线外周的护套层,所述导线包括导体以及套设在所述导体外周的绝缘层,所述导体内部轴向延伸设置通道,所述通道中穿设至少一根光纤导线。
可选地,所述通道内壁与所述光纤导线外壁之间设置间隙,在所述间隙中至少部分流通冷却液。
可选地,所述光纤导线外侧包覆有护套管,所述通道内壁与所述护套管之间设置间隙,在所述间隙中流通冷却液。
可选地,所述导体为多根线芯平行或绞合或编织形成,所述通道内壁上设置支撑管,所述支撑管内壁与所述光纤导线外壁之间设置间隙,在所述间隙中流通冷却液。
可选地,所述导体为多根线芯平行或绞合或编织形成,所述通道内壁上设置支撑管,所述光纤导线外侧包覆有护套管,所述支撑管内壁与所述护套管之间设置间隙,在所述间隙中流通冷却液。
可选地,所述间隙的截面积占所述通道内部截面积的2%-45%。
可选地,所述导体数量为多根,至少一根所述导体内部的所述冷却液流动方向与其他所述导体内部的所述冷却液流动方向不一致。
可选地,容纳沿第一方向流动的冷却液的间隙的截面积之和,与容纳沿第二方向流动的冷却液的间隙的截面积之和,相差不超过8%,其中所述第一方向与所述第二方向相反。
可选地,所述冷却液的冷却速率是0.05k/s-5k/s。
可选地,所述冷却液的流动速率为0.5ml/s-50ml/s。
可选地,所述护套管材质为柔性材料。
可选地,所述支撑管材质为柔性材料。
可选地,所述线缆还包括屏蔽层,所述绝缘层外侧包覆有所述屏蔽层,和/或,所述护套的内壁设置有所述屏蔽层;和/或,所述护套的外壁设置有所述屏蔽层。
根据本公开的一种新型线缆,具有如下技术效果:
1、通过光纤导线作为信号线使用,避免金属制的信号线,在线缆充电的过程中,受到作为动力线的导体产生的磁场以及电场干扰金属制信号线的信号传输。
2、通过将光纤导线设置在导体内部的通道中,可以减小线缆的线径。
3、通过在光纤导线与通道内壁之间形成的间隙中,流动冷却液,可对导体起到降温的作用,提高导体载流能力。
4、通过在光纤导线外周设置护套管,起到保护光纤导线的作用,避免光纤导线受到损伤,延长光纤导线的使用寿命。
5、通过在通道内壁设置支撑管,可以避免通道因导体折弯而堵塞,影响冷却液的流通。
6、通过设置屏蔽层,有效防止线缆在工作的过程中产生的电磁,干扰其他控制系统的正常工作。
通过以下参照附图对本申请的示例性实施例的详细描述,本申请的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本申请的实施例,并且连同其说明一起用于解释本申请的原理。
图1为本申请的新型线缆的第一实施例,其中,设置一根导线;
图2为本申请的新型线缆的第二实施例,其中,新型线缆未设置屏蔽层;
图3为本申请的新型线缆的第三实施例,其中,新型线缆设置屏蔽层;
图4为图3中导线与光纤导线组装后的结构示意图的放大图;
图5为导线与光纤导线组装后的另一结构示意图;
图6为导线与光纤导线组装后的另一结构示意图。
图中标示如下:
1-护套层;2-导线;21-导体;22-绝缘层;23-通道;3-光纤导线;4-护套管;5-间隙;
6-支撑管;7-屏蔽层;D1-第一方向;D2-第二方向。
具体实施方式
现在将参照附图来详细描述本申请的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
根据本公开的一种新型线缆,如图1至图6所示,包括至少一根导线2以及套设在导线2外周的护套层1,导线2包括导体21以及套设在导体21外周的绝缘层22,导体21内部轴向延伸设置通道23,通道23中穿设至少一根光纤导线3。
具体实施时,通过光纤导线3作为信号线使用,避免金属制的信号线,在线缆充电的过程中,受到作为动力线的导体21产生的磁场以及电场干扰金属制信号线的信号传输。如图1所示,通过将光纤导线3设置在导体21内部的通道23中,可以减小线缆的线径。
根据本公开的一种新型线缆的一实施例中,如图2所示,通道23内壁与光纤导线3外壁之间设置间隙5,在间隙5中至少部分流通冷却液,换句话说,至少部分间隙5中流通冷却液。
具体实施时,通过在光纤导线3与通道23内壁之间形成的间隙5(此处的间隙5可以设定为第一间隙5)中流通冷却液,可对导体21起到降温的作用,提高导体21载流能力。
根据本公开的一种新型线缆的一实施例中,光纤导线3外侧包覆有护套管4,通道23内壁与护套管4之间设置间隙5,在间隙5中流通冷却液。
具体实施时,如图6所示,通过在光纤导线3外周设置护套管4,起到保护光纤导线3的作用,避免光纤导线3受到损伤,延长光纤导线3的使用寿命。通道23内壁与护套管4之间设置的间隙5(此处的间隙5可以设定为第二间隙5)中流通冷却液,可对导体21起到降温的作用,提高导体21载流能力。
如图6所示的导线2与光纤导线3的组合体可以替换图2所示的导线2与光纤导线3的组合体。
如图6所示的导线2与光纤导线3的组合体也可以替换图3所示的导线2与光纤导线3的组合体。
根据本公开的一种新型线缆的一实施例中,如图5所示,导体21为多根线芯平行或绞合或编织形成,通道内壁上设置支撑管6,支撑管6内壁与光纤导线3外壁之间设置间隙5,在间隙5中流通冷却液。
具体实施时,由于导体21为多根线芯平行、绞合或编织而成,通过在通道23内壁设置支撑管6,可以避免通道23因导体21折弯或变形而堵塞冷却液的流通,通过冷却液在支撑管6与光纤导线3之间的间隙5(此处的间隙5设定为第三间隙5)内的流通,带走作为动力导线2的导体21在工作过程中产生的热量,提高作为动力导线2的导体21的载流能力。
图5为图2所示的导线2与光纤导线3的组合体中的通道内壁上设置支撑管;图5中的导线2与光纤导线3的组合体可以替换图2所示的导线2与光纤导线3的组合体。图5中的导线2与光纤导线3的组合体也可以替换图3所示的导线2与光纤导线3的组合体。
根据本公开的一种新型线缆的一实施例中,如图3和图4所示,导体21为多根线芯平行或绞合或编织形成,通道内壁上设置支撑管6,光纤导线3外侧包覆有护套管4,支撑管6内壁与护套管4之间设置间隙5,在间隙5中流通冷却液。
具体实施时,通过在光纤导线3外周设置护套管4,起到保护光纤导线3的作用,避免光纤导线3受到损伤,延长光纤导线3的使用寿命;同时由于导体21为多根线芯平行、绞合或编织而成,通过在通道23内壁设置支撑管6,可以避免通道23因导体21折弯或变形而堵塞冷却液的流通,通过冷却液在支撑管6与光纤导线3外侧的护套管4之间的间隙5(此处的间隙5设定为第四间隙5)内的流通,带走作为动力导线2的导体21在工作过程中产生的热量,提高作为动力导线2的导体21的载流能力。
图4为图3中导线与光纤导线组装后的结构示意图的放大图,图4为在通道23内壁设置支撑管6,光纤导线3外侧设置护套管4;图4中所示的导线2与光纤导线3的组合体也可以替换图2所示的导线2与光纤导线3的组合体。图2中所示的导线2与光纤导线3的组合体也可以替换图3所示的导线2与光纤导线3的组合体。
间隙5的四种实施例,分别设定为第一间隙5、第二间隙5、第三间隙5以及第四间隙5;第一间隙5为光纤导线3与通道23内壁之间的间隙5;第一间隙5中的光纤导线3外侧设置护套管4,护套管4与通道23内壁之间的间隙5为第二间隙5;第一间隙5中的通道23内壁设置支撑管6,支撑管6内壁与光纤导线3外壁之间的间隙5为第三间隙5;第一间隙5中的光纤导线3外侧设置护套管4,通道23内壁设置有支撑管6,支撑管6与护套管4之间为第四间隙。
进一步的,间隙5的截面积占通道23内部截面积的2%-45%。
发明人为了验证间隙5的截面积占通道23内部截面积的百分比对线缆温升的影响,选用多根相同截面积、相同材质、相同长度的新型线缆,并导通相同的电流,只对光纤导线3的线径做出调整,以此调整间隙5的截面积占通道23内部截面积的比值,采用不同间隙5的截面积占通道23内部截面积的比值,在此间隙5中流通冷却液,对线缆进行冷却,并读取各个线缆的温升值,记录在表1中。
实验方法是在封闭的环境中,采用间隙5的截面积占通道23内部截面积的不同百分比的线缆,导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50K为合格值。
表1:间隙5的截面积占通道23内部截面积的不同百分比对新型线缆温升的影响
从上表1中可以看出,当间隙5的截面积占通道23内部截面积的百分比小于2%时,新型线缆的温升值不合格,当间隙5的截面积占通道23内部截面积的百分比大于等于2%时,新型线缆的温升值合格,但是,间隙5的截面积占通道23内部截面积的百分比大于45%时,新型线缆的温升没有明显的下降,而且,间隙5的截面积占通道23内部截面积的百分比越大,新型线缆外径越大,或者即使新型线缆的外径不变,通道23中设置的光纤导线3的线径越细, 光纤导线3越容易损坏,所以,增大间隙5的截面积占通道23内部截面积的百分比,已失去实际意义,因此,发明人将间隙5的截面积占通道23内部截面积的2%-45%。
进一步的,导体21数量为多根,至少一根导体21内部的冷却液流动方向与其他导体21内部的冷却液流动方向不一致。
具体实施时,通过设置多根导体21,可将导体21分别设置成正极导线2、负极导线2和PE线,设置在各导体21的通道23内的光纤导线3作为信号线,方便新型线缆作为充电线使用时的布线。通过设置多根导线2,将多根导体21内部的间隙5内流通的冷却液的流动方向设置成两个相反方向,其中一个方向作为冷却液的进液管,另一方向作为冷却液的出液管,实现冷却液在导体21内部的循环,以此带走导体21作为正极导线2和负极导线2在工作过程中产生的热量,提高导体21的载流能力,在将此新型线缆作为新能源汽车的充电线使用时,能够缩短充电时间。
进一步的,容纳沿第一方向D1流动的冷却液的间隙的截面积之和,与容纳沿第二方向D2流动的冷却液的间隙的截面积之和,相差不超过8%,其中第一方向D1与第二方向D2相反。
第一方向D1可以设定为冷却液在进液管中的流动方向,第二方向D2可以设定为冷却液在出液管中的流动方向,作为进液管的间隙5的截面积总和与作为出液管的间隙5的截面积总和之间相差不超过8%,如果相差过大,进液管与出液管单位时间内流通的冷却液的流量相差过大,会出现流过进液管或出液管的冷却液不能充满某一间隙5,不能及时带走导体21在充电过程中产生的热量,防止出现降低新型线缆的载流能力的情况。
如图3所示,第二方向D2以加号形状表示,表示冷却液在出液管中流动的方向,第一方向D1以实心圆点形状表示,表示冷却液在进液管中流动的方向。图3为结构示意图,不对尺寸做具体限制,第一方向D1对应的间隙的截面积的总和,与第二方向D2对应的间隙的截面积的总和相差不超过8%即可。
进一步的,冷却液的冷却速率是0.05k/s-5k/s。
发明人为了验证冷却液的冷却速率对新型线缆温升的影响,选用材质,尺寸完全相同的多组新型线缆,导通相同的电流,冷却液以不同冷却速率通过液冷通道,对新型线缆进行冷却,并读取各个新型线缆的温升值,记录在表2中。
实验方法是在封闭的环境中,将不同冷却速率的新型线缆,导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50K为合格值。
表2:不同的冷却速率对新型线缆温升的影响
从上表2中可以看出,当冷却速率小于0.05℃/min时,新型线缆的温升值不合格,当冷却速率大于等于0.05℃/min时,新型线缆的温升值合格,但是,冷却速率大于5℃/min时,新型线缆的温升没有明显的下降,而且冷却速率越大,对液冷通道的质量要求以及冷却液的流动速率的要求都会进一步提高,而此时新型线缆的温升已无明显变化。因此,发明人将冷却液的冷却速率设定0.05k/s-5k/s。
进一步的,冷却液的流动速率为0.5ml/s-50ml/s。
发明人为了验证冷却液在液冷通道中流动速率对新型线缆温升的影响,选用材质,尺寸完全相同的多组新型线缆,此时,导通相同的电流,冷却液采用不同流动速率通过液冷通道,对新型线缆进行冷却,并读取各个新型线缆的温升值,记录在表3中。
实验方法是在封闭的环境中,将冷却液以不同流动速率流过液冷通道的新型线缆,导通相同的电流,记录通电前的温度和通电后温度稳定时的温度,并作差取绝对值。在本实施例中,温升小于50K为合格值。
表3:冷却液以不同流动速率通过液冷通道对新型线缆温升的影响
从上表3中可以看出,当液冷通道的流动速率小于0.5ml/s时,新型线缆的温升值不合格,当冷却液在液冷通道的流动速率大于等于0.5ml/s时,新型线缆的温升值合格,但是,流动速率大于50ml/s时,新型线缆的温升没有明显的下降,而且流动速率越大,对液冷通道的质量要求以及使冷却液流动的循环泵的质量的要求都会进一步提高,而此时新型线缆的温升已无明显变化。因此,发明人将冷却液在液冷通道中流动速率设定为0.5ml/s-50ml/s。
进一步的,护套管4材质为柔性材料。
具体实施时,护套管4可以采用薄壁硅胶套管,保护光纤导线3,防止光纤导线3毁坏,延长线缆的使用的使用寿命。
进一步的,支撑管6材质为柔性材料。
具体实施时,选用柔性材料制成的支撑管6,可以在新型线缆作为充电线使用的过程中,方便新型线缆的安装以及弯曲。
根据本公开的一种新型线缆的一实施例中,线缆还包括屏蔽层7,绝缘层22外侧包覆有屏蔽层7,和/或,护套的内壁设置有屏蔽层7;和/或,护套的外壁设置有屏蔽层7。
通过设置屏蔽层7,有效防止线缆在工作的过程中产生的电磁,防止干扰其他控制系统的正常工作。
如图4,图5,图6以及图2中所示的导线2与光纤导线3的组合体可以替换图3中的导线2与光纤导线3的组合体。图3中的屏蔽层也可以按照以下三种方式设置:
第一种,屏蔽层7可以设置成如图3所示的三种屏蔽层中任意一种即可;
第二种,蔽层7可以设置成如图3所示的三种屏蔽层中任意二种即可;
第三种,屏蔽层7设置成如图3所示三处屏蔽层。
虽然已经通过例子对本申请的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本申请的范围。本领域的技术人员应该理解,可在不脱离本申请的范围和精神的情况下,对以上实施例进行修改。本申请的范围由所附权利要求来限定。

Claims (13)

  1. 一种新型线缆,其特征在于,包括至少一根导线以及套设在所述导线外周的护套层,所述导线包括导体以及套设在所述导体外周的绝缘层,所述导体内部轴向延伸设置通道,所述通道中穿设至少一根光纤导线。
  2. 根据权利要求1所述的新型线缆,其特征在于,所述通道内壁与所述光纤导线外壁之间设置间隙,在所述间隙中至少部分流通冷却液。
  3. 根据权利要求1所述的新型线缆,其特征在于,所述光纤导线外侧包覆有护套管,所述通道内壁与所述护套管之间设置间隙,在所述间隙中流通冷却液。
  4. 根据权利要求1所述的新型线缆,其特征在于,所述导体为多根线芯平行或绞合或编织形成,所述通道内壁上设置支撑管,所述支撑管内壁与所述光纤导线外壁之间设置间隙,在所述间隙中流通冷却液。
  5. 根据权利要求1所述的新型线缆,其特征在于,所述导体为多根线芯平行或绞合或编织形成,所述通道内壁上设置支撑管,所述光纤导线外侧包覆有护套管,所述支撑管内壁与所述护套管之间设置间隙,在所述间隙中流通冷却液。
  6. 根据权利要求2-5任一项所述的新型线缆,其特征在于,所述间隙的截面积占所述通道内部截面积的2%-45%。
  7. 根据权利要求2-5任一项所述的新型线缆,其特征在于,所述导体数量为多根,至少一根所述导体内部的所述冷却液流动方向与其他所述导体内部的所述冷却液流动方向不一致。
  8. 根据权利要求7所述的新型线缆,其特征在于,容纳沿第一方向流动的冷却液的间隙的截面积之和,与容纳沿第二方向流动的冷却液的间隙的截面积之和,相差不超过8%,其中所述第一方向与所述第二方向相反。
  9. 根据权利要求7所述的新型线缆,其特征在于,所述冷却液的冷却速率是0.05k/s-5k/s。
  10. 根据权利要求7所述的新型线缆,其特征在于,所述冷却液的流动速率为0.5ml/s-50ml/s。
  11. 根据权利要求3或5所述的新型线缆,其特征在于,所述护套管材质为柔性材料。
  12. 根据权利要求4或5所述的新型线缆,其特征在于,所述支撑管材质为柔性材料。
  13. 根据权利要求1所述的新型线缆,其特征在于,所述线缆还包括屏蔽层,所述绝缘层外侧包覆有所述屏蔽层,和/或,所述护套的内壁设置有所述屏蔽层;和/或,所述护套的外壁设置有所述屏蔽层。
PCT/CN2023/112495 2022-08-12 2023-08-11 一种新型线缆 WO2024032758A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210969116.0A CN115440432A (zh) 2022-08-12 2022-08-12 一种新型线缆
CN202210969116.0 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032758A1 true WO2024032758A1 (zh) 2024-02-15

Family

ID=84243439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112495 WO2024032758A1 (zh) 2022-08-12 2023-08-11 一种新型线缆

Country Status (2)

Country Link
CN (1) CN115440432A (zh)
WO (1) WO2024032758A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115440432A (zh) * 2022-08-12 2022-12-06 长春捷翼汽车零部件有限公司 一种新型线缆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211156A (ja) * 1994-01-19 1995-08-11 Furukawa Electric Co Ltd:The 電気ケーブル線路
JP2006301009A (ja) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd 光ファイバケーブル
CN204463912U (zh) * 2015-01-20 2015-07-08 安徽德源电缆集团有限公司 一种新型光纤电力综合电缆
CN109346225A (zh) * 2018-09-26 2019-02-15 湖州南浔钰盛博金属材料有限公司 一种户外高强度高散热电缆
CN112635121A (zh) * 2020-12-21 2021-04-09 宝胜科技创新股份有限公司 同心式光纤复合导线电缆及其制备工艺
CN115440432A (zh) * 2022-08-12 2022-12-06 长春捷翼汽车零部件有限公司 一种新型线缆
CN218299455U (zh) * 2022-08-12 2023-01-13 长春捷翼汽车零部件有限公司 一种新型线缆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07211156A (ja) * 1994-01-19 1995-08-11 Furukawa Electric Co Ltd:The 電気ケーブル線路
JP2006301009A (ja) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd 光ファイバケーブル
CN204463912U (zh) * 2015-01-20 2015-07-08 安徽德源电缆集团有限公司 一种新型光纤电力综合电缆
CN109346225A (zh) * 2018-09-26 2019-02-15 湖州南浔钰盛博金属材料有限公司 一种户外高强度高散热电缆
CN112635121A (zh) * 2020-12-21 2021-04-09 宝胜科技创新股份有限公司 同心式光纤复合导线电缆及其制备工艺
CN115440432A (zh) * 2022-08-12 2022-12-06 长春捷翼汽车零部件有限公司 一种新型线缆
CN218299455U (zh) * 2022-08-12 2023-01-13 长春捷翼汽车零部件有限公司 一种新型线缆

Also Published As

Publication number Publication date
CN115440432A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2024032758A1 (zh) 一种新型线缆
WO2024032773A1 (zh) 一种液冷线缆
WO2024001706A1 (zh) 一种多芯扁平液冷线缆
WO2023098451A1 (zh) 液冷线缆
WO2024094081A1 (zh) 一种液冷导线以及液冷线缆
CN210805262U (zh) 一种高载流快速充电用电缆
WO2023103881A1 (zh) 电缆
CN111403102B (zh) 一种具有高散热效率的超导导体支架
CN218299455U (zh) 一种新型线缆
WO2024099343A1 (zh) 一种液冷线缆
WO2024120330A1 (zh) 一种液冷线缆
CN219349853U (zh) 一种液冷线缆
CN218333225U (zh) 一种液冷线缆
CN116705415A (zh) 基于网络通信的屏蔽电缆及该电缆的屏蔽方法
CN216487468U (zh) 一种水电气综合电缆
JP2006066135A (ja) 多心ケーブル
CN214705541U (zh) 一种充电桩用的电缆
CN211828249U (zh) 冷却电缆
CN210039695U (zh) 一种加强型屏蔽电缆
CN219891954U (zh) 一种液冷线缆
CN218826354U (zh) 一种液冷线缆
CN221040627U (zh) 一种液冷线缆
CN220604385U (zh) 一种大功率低温升液冷充电桩电缆
CN219891955U (zh) 一种液冷线缆
CN216623878U (zh) 一种复合线缆及具有该复合线缆的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851978

Country of ref document: EP

Kind code of ref document: A1