WO2024032461A1 - 3d显示装置和3d显示驱动方法 - Google Patents

3d显示装置和3d显示驱动方法 Download PDF

Info

Publication number
WO2024032461A1
WO2024032461A1 PCT/CN2023/110974 CN2023110974W WO2024032461A1 WO 2024032461 A1 WO2024032461 A1 WO 2024032461A1 CN 2023110974 W CN2023110974 W CN 2023110974W WO 2024032461 A1 WO2024032461 A1 WO 2024032461A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
cylindrical lenses
pixels
display device
Prior art date
Application number
PCT/CN2023/110974
Other languages
English (en)
French (fr)
Inventor
孙艳六
梁蓬霞
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024032461A1 publication Critical patent/WO2024032461A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size

Definitions

  • the present disclosure relates to the technical field of display product manufacturing, and in particular, to a 3D display device and a 3D display driving method.
  • the present disclosure provides a 3D display device and a 3D display driving method to solve the problem of low 3D display resolution.
  • a 3D display device including a display panel and a microlens array located on the light exit surface of the display panel
  • the display panel includes a plurality of sub-pixels, the sub-pixels of the same color are arranged along a first direction, and the sub-pixels of different colors are arranged along a second direction perpendicular to the first direction, and the first direction is related to the viewing direction.
  • the lines connecting the person's eyes are parallel;
  • the microlens array includes a plurality of cylindrical lenses arranged along the first direction, the extending direction of the cylindrical lenses is parallel to the second direction, and in the first direction, each of the cylindrical lenses
  • the shaped lens covers M corresponding sub-pixels, and M is a natural number.
  • a plurality of the cylindrical lenses are arranged periodically, each period includes 2 or more cylindrical lenses, and multiple cylindrical lenses in the same period are The projection corresponding to the shaped lens The shadow areas cross and complement each other to form a continuous imaging surface.
  • the number of cylindrical lenses in the same period is relatively prime to the number of sub-pixels.
  • the plurality of cylindrical lenses in the same period include at least one first cylindrical lens, and the number of sub-pixels corresponding to the first cylindrical lens is the same as that of the remaining cylindrical lenses in the same period. The number of corresponding sub-pixels is different.
  • the first cylindrical lens is located on one side of the remaining cylindrical lenses in the same period.
  • one cycle includes N cylindrical lenses, each sub-pixel includes an opening area and a non-opening area, and in the first direction, the width of the opening area is the width of the sub-pixel. 1/N.
  • the number of sub-pixels in one period is m, in the first direction, the plurality of cylindrical lenses have the same width, and in the first direction, each of the cylindrical lenses has The width of the lens is m times the opening area, and m is a natural number.
  • the orthographic projections of different cylindrical lenses located in the same period on the display panel are sequentially offset by a first width, and the first width is equal to the width of the opening area. width.
  • the number of cylindrical lenses in different periods is the same.
  • the plurality of cylindrical lenses arranged periodically include at least one first period, the number of cylindrical lenses in the first period and the number of cylindrical lenses in other periods other than the first period.
  • the quantity is different.
  • the light-emitting surface of the display panel is located on the focal plane of the cylindrical lens.
  • Embodiments of the present disclosure also provide a 3D display driving method, which is implemented using the above-mentioned display device.
  • a plurality of the cylindrical lenses are periodically arranged, and multiple sub-pixels corresponding to one period form a pixel island. , including the following steps:
  • the position of the pixel island corresponding to the eyebrows is obtained, and the image information is loaded on the pixel island and the pixel islands located around the pixel island.
  • An embodiment of the present disclosure also provides a 3D display driving method, which is implemented using the above-mentioned display device and includes the following steps:
  • the position of the first sub-pixel that forms the viewpoint entering the human eye is determined based on the pupil coordinates of the human eye
  • the first sub-pixel is lit, or the first sub-pixel and a preset number of sub-pixels surrounding the first sub-pixel are lit.
  • the beneficial effects of the present disclosure are: in the present disclosure, sub-pixels of the same color are arranged along a first direction parallel to the line connecting human eyes, and sub-pixels of different colors are arranged along a second direction perpendicular to the first direction. , in the first direction, there is no need to consider the evaporation cross-color problem, so the width of the PDL (pixel definition layer) between adjacent sub-pixels of the same color can be extremely compressed, thereby increasing the pixel aperture ratio.
  • PDL pixel definition layer
  • Figure 1 shows a schematic diagram of the distribution of cylindrical lenses in the related art
  • Figure 2 shows a schematic distribution diagram of sub-pixels and cylindrical lenses in an embodiment of the present disclosure
  • Figure 3 shows a schematic diagram showing the relationship between the aperture ratio of sub-pixels and the life of the display device
  • Figure 4 shows a schematic diagram of the sub-pixel projection area
  • Figure 5 shows a schematic diagram of the projection of sub-pixels within a period
  • Figure 6 shows a schematic diagram of the translational superposition of the projection areas corresponding to two cylindrical lenses within a period
  • Figure 7 shows a schematic diagram comparing the optical path when the light-emitting surface of the display panel is located at the focal plane of the cylindrical lens and the optical path when it is located at the non-focal plane;
  • Figure 8 shows a schematic diagram of crosstalk when the light-emitting surface of the display panel is located in the non-focal plane of the cylindrical lens
  • Figure 9 shows a schematic diagram of crosstalk when the light-emitting surface of the display panel is located at the focal plane of the cylindrical lens
  • Figure 10 is a schematic diagram showing the main lobe area and side lobe area of the projection area
  • Figure 11 shows the schematic diagram 2 of the main lobe area and side lobe area of the projection area
  • Figure 12 shows a schematic comparison diagram of viewpoint index and sub-pixel index
  • Figure 13 shows a schematic diagram of the viewpoint angle spectrum distribution
  • Figure 14 shows a schematic diagram of the angular spectrum boundary of a sub-pixel
  • Figure 15 shows a schematic diagram of the angle between the eyebrows and the display panel
  • Figure 16 shows a schematic diagram of determining the position of sub-pixels based on the coordinates of the center of the eyebrow
  • Figure 17 shows a schematic diagram of multiple images corresponding to human eyes at different positions
  • Figure 18 shows a schematic diagram of the image corresponding to the human eye located at the first position
  • Figure 19 shows a schematic diagram of the image obtained by loading the corresponding image information to the corresponding sub-pixel and performing display driving
  • Figure 20 shows a schematic diagram of the coverage range of sub-pixels corresponding to the pupil of the human eye
  • FIG. 21 is a schematic diagram showing the relationship between power consumption and the number of illuminated sub-pixels.
  • viewpoints are arranged along the oblique direction (the cylindrical lenses 100 are arranged obliquely), such as viewpoint 2 and viewpoint 6 in Figure 1.
  • viewpoint 2 and viewpoint 6 are basically located on the corresponding columns.
  • the projections of the two in space are basically the same, which will inevitably increase the crosstalk between the two.
  • the boundary of the cylindrical lens 100 passes through the middle of viewpoint 2, that is, only 50% to 70% Only the luminous area of the pixel can enter its intrinsic projection area, and the remaining less than 50% crosstalks into other viewpoints, causing a certain degree of dizziness;
  • the 2D display pixel is RGB (red sub-pixel 10, green sub-pixel 20, blue sub-pixel Pixel 30) is arranged horizontally, but after adding cylindrical translucency/100, the RGB sub-pixels become vertically arranged. The impact is that the vertical resolution of the screen is reduced to 1/3 or even more, causing a resolution imbalance. , 2D/3D display mismatch.
  • this embodiment provides a 3D display device, including a display panel and a microlens array located on the light exit surface of the display panel.
  • the display panel includes multiple sub-pixels, the sub-pixels of the same color are arranged along a first direction (refer to the X direction in Figure 2), and the sub-pixels of different colors are arranged along a second direction perpendicular to the first direction (refer to the X direction in Figure 2).
  • the first direction is parallel to the line connecting the viewer's eyes;
  • the microlens array includes a plurality of cylindrical lenses 1 arranged along the first direction.
  • the extension direction of the cylindrical lenses 1 is parallel to the second direction. In the first direction, each of the cylindrical lenses 1
  • the cylindrical lens covers M corresponding sub-pixels, where M is a natural number.
  • sub-pixels of the same color are arranged along a first direction parallel to the line connecting human eyes, and sub-pixels of different colors are arranged along a second direction perpendicular to the first direction.
  • the width of the PDL (pixel definition layer) between adjacent sub-pixels of the same color can be extremely compressed, for example, it can be compressed from 20um in the related technology to 5-6um, that is, In the first direction, the width of the pixel definition layer between adjacent sub-pixels is 5-6um, thereby increasing the pixel aperture ratio.
  • FIG 3 is a schematic diagram of the corresponding relationship between the aperture ratio of the sub-pixel and the life of the display device.
  • the curve with the origin in Figure 3 represents the attenuation rate, and the rectangular bar represents LT95 (lifetime95) , that is, the time it takes for the brightness to reduce to 95% of the highest point, which represents the life span.
  • LT95 lifetime95
  • the ordinate on the left represents time, the unit is hours, the abscissa is the aperture rate, and the ordinate on the right is the maximum brightness ratio.
  • the display panel in Figure 2 includes red sub-pixels 10, green sub-pixels 20 and blue sub-pixels 30.
  • the red sub-pixels 10, green sub-pixels 20 and blue sub-pixels 30 are arranged along the first direction respectively. cloth.
  • a PDL pixel definition layer is provided between adjacent sub-pixels of the same color, the pixel definition layer is has a certain width
  • its projection in the viewing space through the cylindrical lens will inevitably have light and dark partitions (as shown in Figure 4), forming moiré patterns, which seriously affects the display effect.
  • a plurality of the cylindrical lenses 1 are periodically arranged along the first direction, and each period includes 2 or more cylindrical lenses. , the corresponding projection areas of multiple cylindrical lenses 1 in the same period are complementary to each other to form a continuous imaging surface.
  • the projection areas corresponding to multiple cylindrical lenses 1 in the same period are cross-complementary to form a continuous imaging surface, that is, the projection area corresponding to each cylindrical lens 1 includes a bright area 200 and a dark area 300, along all In the first direction, a plurality of the cylindrical lenses 1 are periodically arranged, and the projection areas formed by different cylindrical lenses 1 in the same period are translated and superimposed, then the projection areas formed by one cylindrical lens 1
  • the bright area 200 in the projection area will overlap (at least partially) with the dark area 300 in the projection area formed by another cylindrical lens 1, which will reduce the width of the dark area or even eliminate the dark area to form a continuous image.
  • Surface, Figure 6 shows the translational superposition of the projection areas corresponding to the two cylindrical lenses 1 in one cycle.
  • the bright area 200 in the projection area formed by one cylindrical lens 1 will be the same as that formed by the other cylindrical lens 1.
  • the pattern area is the bright area of the projection area corresponding to one cylindrical lens 1, and is also the dark area of the projection area corresponding to another cylindrical lens 1, thus forming a cross-complementary pattern. relationship to form a continuous imaging surface.
  • the number of cylindrical lenses 1 in the same period is relatively prime to the number of sub-pixels.
  • the remainder is b
  • b is less than N
  • add 1 to the number of sub-pixels corresponding to b cylindrical lenses 1 that is, the number of sub-pixels corresponding to b cylindrical lenses 1 is a+1 (in order to To ensure that the width of each cylindrical lens in the first direction is the same, add 1) to the number of sub-pixels corresponding to b cylindrical lenses 1.
  • the periodic arrangement rules of the cylindrical lens 1 are obtained, so that a cylindrical shape is formed in the same period.
  • the projection boundary of the first sub-pixel corresponding to lens 1 is parallel to the projection boundary of the second sub-pixel in another cylindrical lens 1, so that a superposition effect of bright areas and dark areas of the projection areas of different sub-pixels can be formed. .
  • the sub-pixels corresponding to each of the cylindrical lenses 1 are numbered along the same direction, and the number of the first sub-pixel is the same as the number of the second sub-pixel.
  • the sub-pixels corresponding to each cylindrical lens 1 are numbered from left to right, the first sub-pixel is the first sub-pixel corresponding to the corresponding cylindrical lens, and the second sub-pixel is the corresponding The first sub-pixel corresponding to the cylindrical lens.
  • the projection boundary a of the first sub-pixel 1001 and the projection boundary b of the second sub-pixel 1002 are parallel.
  • the plurality of cylindrical lenses 1 in the same period include at least one first cylindrical lens, and the number of sub-pixels corresponding to the first cylindrical lens is the same as that of the remaining cylindrical lenses in the same period.
  • the number of sub-pixels corresponding to the cylindrical lenses is different.
  • the formed projection area is the same, that is, the arrangement rules of the bright and dark areas and the corresponding positions are the same.
  • the number of sub-pixels corresponding to the first cylindrical lens is different from the number of sub-pixels corresponding to the other cylindrical lenses in the same period.
  • Figure 5 shows two cylindrical lenses arranged in a period. The number of sub-pixels corresponding to a cylindrical lens is 6. The number of sub-pixels corresponding to a cylindrical lens is 6. The number of sub-pixels is 5.
  • the first cylindrical lens in the first direction, is located on one side of the remaining cylindrical lenses 1 in the same period.
  • the sub-pixels corresponding to different cylindrical lenses 1 will move along one direction. offset, if the first cylindrical lens is located at the middle position within the same period, the corresponding The projected area compensates for overlay according to preset rules.
  • one cycle includes N cylindrical lenses 1, and each sub-pixel includes an opening area and a non-opening area.
  • the width of the opening area is: 1/N of the width of the subpixel.
  • the width of the opening area is c, and the width of the non-opening area is d.
  • the width of each of the cylindrical lenses 1 in the first direction is m times the width of the opening area, and the two cylindrical lenses 1 correspond to The position of the sub-pixel is staggered in the first direction by the width of the opening area, and at the connection of the two cylindrical lenses, the two cylindrical lenses jointly cover a complete sub-pixel;
  • the number m of sub-pixels corresponding to the cylindrical lens 1 in the same period is 11, N is 3, and the width of the opening area of each sub-pixel is 1/3 of the total width of the sub-pixel, then Among the three cylindrical lenses 1, the position of the sub-pixel corresponding to each of the cylindrical lens 1 is shifted by one of the opening areas relative to the position of the sub-pixel corresponding to the adjacent cylindrical lens 1.
  • the opening area of the sub-pixel corresponding to the edge of the cylindrical lens on the left close to the cylindrical lens on the right is covered by the cylindrical lens on the left.
  • the cylindrical lens on the left is close to the cylindrical lens on the right.
  • the non-opening area of the sub-pixel corresponding to the edge of the cylindrical lens is covered by the cylindrical lens on the right.
  • the number of sub-pixels in one period is m, in the first direction, the plurality of cylindrical lenses 1 have the same width, and in the first direction, each The width of each of the cylindrical lenses 1 is m times the opening area, and m is a natural number.
  • the orthographic projections of different cylindrical lenses located in the same period on the display panel are sequentially offset by a first width, and the first width is equal to the The width of the opening area.
  • the number of cylindrical lenses in different periods is the same, that is, all periods include
  • the number of cylindrical lenses included is the same, for example, 2 cylindrical lenses are included in each cycle.
  • the plurality of periodically arranged cylindrical lenses includes at least one first period, and the number of cylindrical lenses included in the first period is different from the number of cylindrical lenses included in other periods.
  • the plurality of cylindrical lenses arranged periodically include at least one first period and at least one second period, and the number of cylindrical lenses in the first period and the number of cylindrical lenses in the second period are The number of lenses varies.
  • the plurality of cylindrical lenses arranged periodically include at least one third period other than the first period and the second period.
  • the number of cylindrical lenses in the first period and the third period include The number of cylindrical lenses in the three periods is different, and the number of cylindrical lenses in the second period is different from the number of cylindrical lenses in the second period.
  • the light-emitting surface of the display panel is located on the focal plane of the cylindrical lens.
  • the light-emitting surface of the display panel needs to be Or the sub-pixel light-emitting surface) is placed on the focal plane of the cylindrical lens 1.
  • the light-emitting surface of the display panel is located at the focal plane C position in Figure 7, every point on the light-emitting surface of the display panel is approximately collimated after passing through the lens.
  • Light is emitted (such as the optical path shown as number 101), and when the light-emitting surface of the display panel is located in the non-focal plane D, after each point on the light-emitting surface of the display panel passes through the cylindrical lens, the light will have a certain inclination angle (reference (Optical path indicated by reference numeral 102 in Figure 7), the greater the inclination angle, the greater the crosstalk with adjacent sub-pixels (compare Figures 8 and 9), as shown in Figure 7.
  • embodiments of the present disclosure also provide a 3D display driving method, which is implemented by using the above-mentioned display device.
  • a plurality of the cylindrical lenses are periodically arranged, and a plurality of sub-pixels corresponding to one period form a A pixel island, including the following steps:
  • the position of the pixel island corresponding to the eyebrows is obtained, and the image information is loaded on the pixel island and the pixel islands located around the pixel island.
  • the projection of the cylindrical lens directly opposite the corresponding sub-pixel in space is the main lobe projection area 400, and the projection of the sub-pixel in space relative to other adjacent cylindrical lenses is a multi-level side lobe projection.
  • Area 500 through the splicing of the main lobe projection area 400 and the side lobe projection area 500, a large number of continuous 3D viewpoints are formed, but the eyes fall into different lobe areas (refer to Figure 11, the abscissa in Figure 11 is the light emission angle, the vertical axis The coordinates are relative brightness.
  • the first-level side-lobe projection area 501 and the second-level side-lobe projection area 502 are set on one side of the main lobe projection area 400.
  • a three-dimensional target Provide a three-dimensional target, and determine the actual image information obtained by viewing the three-dimensional target with human eyes at different positions (for example, if the human eye is located directly in front of the three-dimensional target, then a front view of the three-dimensional target is obtained. If the human eye is located in the three-dimensional The side view of the target object is obtained, and the side view of the three-dimensional target object is obtained);
  • the cylindrical lenses are arranged periodically, and multiple sub-pixels corresponding to one period form a pixel island.
  • Figure 12 only shows the sub-pixels of one period, which means that the pixels in a pixel island are shown.
  • the sub-pixels covered by the orthographic projection of multiple cylindrical lenses in one period on the display panel and the corresponding cylindrical The viewpoint of the main lobe projection area formed by the shaped lens and the viewpoint located in the side lobe projection area;
  • each sub-pixel corresponds to a viewpoint, and each sub-pixel corresponds to a projection area. That is, the projection area corresponding to each sub-pixel is relative to the plane where the sub-pixel is located (parallel to the light emission of the display panel. plane), this step is to obtain the angle of the projection area corresponding to each sub-pixel relative to the plane where the sub-pixel is located.
  • the abscissa in Figure 13 is the light emission angle, and the ordinate is the relative brightness;
  • the specific setting value of the preset angle can be set according to actual needs.
  • the preset angle mentioned in the above table is 0.02 degrees, which corresponds to sub-pixel data group 1: the position of -70 degrees and the position of -69.98 in the projection area correspond to For sub-pixel 3, the positions of -69.96 degrees, -69.94 degrees, -69.92 degrees, -69.90 degrees, and -69.88 degrees all correspond to sub-pixel 4.
  • the projection area corresponding to the sub-pixel will be divided into intervals with a preset angle as a step, then If the labels of the sub-pixels corresponding to an angle in the projection area corresponding to the cylindrical lenses in different periods are the same, there is only one set of data. If the number of cylindrical lenses included in each cycle is different (for example, one cycle includes 2 cylindrical lenses, and another cycle includes 3 lenses), then the projection corresponding to the sub-pixel is calculated in steps of a preset angle.
  • the above table shows two sets of data: sub-pixel data group 1 and sub-pixel data group 2.
  • sub-pixel numbers in the above table correspond to the sub-pixel numbers in Figure 12, except that there are no brackets in this table, that is, -70 degrees corresponding to sub-pixel 3 is equivalent to the sub-pixel in Figure 12 (3).
  • FIG. 17 shows different images corresponding to different positions
  • FIG. 18 shows image information corresponding to human eye positions in one embodiment.
  • the pixel corresponding to the eyebrows is obtained
  • the position of the island refer to Figure 15, which shows a schematic diagram of the angle between the coordinates of the center of the brow and the center of each pixel island on the display panel 4 in the first direction;
  • Figure 19 shows loading the image information in Figure 18 and displaying the obtained image.
  • Figure 16 shows multiple sub-pixels corresponding to the Kth pixel island (1-11 shown in the figure does not have brackets, but corresponds to the physical index of the sub-pixel in Figure 12, for example, sub-pixel 1 is equivalent to sub-pixel (1 )), a schematic diagram of loading image information.
  • a pixel island includes 11 sub-pixels, and 11 disparity images (views) are loaded to the 11 sub-pixels.
  • the human eye moves, corresponding image information is loaded to the sub-pixels corresponding to the human eye, solving the problem of viewpoint reversal when the eyes are located in different projection lobe areas, and at the same time increasing the visual space .
  • the human eye is located at different positions of the three-dimensional target, different viewing angle images will be obtained, that is, the image information obtained at the actual viewing position will be obtained.
  • the human eye is located in front of the three-dimensional target, then Obtain a front view image, and the human eye is located on the side of the three-dimensional target, and the side image of the three-dimensional target will be obtained, restoring the real world and improving the user's 3D viewing experience.
  • embodiments of the present disclosure also provide a 3D display driving method, which is implemented using the above-mentioned display device.
  • the display panel includes multiple sub-pixels, and each sub-pixel is independently driven, including the following steps:
  • the position of the first sub-pixel that forms the viewpoint entering the human eye is determined based on the pupil coordinates of the human eye
  • the first sub-pixel is lit or the first sub-pixel and a preset number of sub-pixels surrounding the first sub-pixel are lit.
  • the present disclosure is based on human eye tracking and reverse tracking to determine whether to light only the first sub-pixel that can enter the human eye, or to light the first sub-pixel and the predetermined area around the first sub-pixel. Set number of sub-pixels.
  • Figure 20 shows the pupil of the human eye S through the corresponding cylindrical lens 1 and the corresponding area on the display panel 4.
  • n 0 sin ⁇ 1 nsin ⁇ 2
  • n 0 is the refractive index of air
  • n is the refractive index of the cylindrical lens
  • ⁇ 1 is the incident angle of the human eye relative to the cylindrical lens
  • ⁇ 2 is the refraction angle traced back to the light-emitting surface of the display panel, only some sub-pixels are illuminated, thus greatly reducing
  • For the overall power consumption of the display refer to the following table, if the number of sub-pixels corresponds to the viewpoint that can enter the human eye When it is 1-2 sub-pixels, when only 1-2 sub-pixels are turned on, there may be non-uniformity when viewing at close range.
  • Figure 21 shows the corresponding relationship between power consumption and the number of lit sub-pixels, the ordinate represents power consumption, and the abscissa represents the number of subpixels that are lit). That is, when only the first sub-pixel is turned on and the uniformity is relatively poor, it may be considered to light up the first sub-pixel and a preset number of sub-pixels surrounding the first sub-pixel. The preset number may be Set according to actual needs.
  • the above table also shows that when the sub-pixel corresponding to the left eye is turned on (the sub-pixel corresponding to the right eye is turned off), the crosstalk formed on the right eye point of view will be reduced when 1-2 sub-pixels corresponding to the left eye are turned on.
  • the left eye brightness is 100%
  • the right eye brightness is 0.5% of the left eye brightness, that is, the crosstalk for the right eye viewpoint is 0.5%.
  • the left eye brightness is 100 %
  • the brightness of the right eye is 1.6% of the brightness of the left eye, that is, the crosstalk for the right eye viewpoint is 1.6%.
  • the brightness of the left eye is 100%
  • the brightness of the right eye is the brightness of the left eye. 3.4%, that is, the crosstalk for the right eye viewpoint is 3.4%.
  • the lit part corresponds to the sub-pixel of the left eye, which not only reduces power consumption, but also reduces crosstalk to the right eye's viewpoint.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种3D显示装置,包括显示面板和位于显示面板的出光面的微透镜阵列,显示面板上包括多个子像素(10;20;30),相同颜色的子像素(10;20;30)沿第一方向(X方向)排布,不同颜色的子像素(10;20;30)沿与第一方向(X方向)相垂直的第二方向(Y方向)排布,第一方向(X方向)与观看者的双眼的连线相平行;微透镜阵列包括沿第一方向(X方向)排列的多个柱形透镜(1),柱形透镜(1)的延伸方向与第二方向(Y方向)相平行,在第一方向(X方向)上,每个柱形透镜(1)覆盖M个对应的子像素(10;20;30),M为自然数。还涉及3D显示驱动方法。

Description

3D显示装置和3D显示驱动方法
相关申请的交叉引用
本申请主张在2022年8月10日在中国提交的中国专利申请号No.202210954249.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示产品制作技术领域,尤其涉及一种3D显示装置和3D显示驱动方法。
背景技术
当前的裸眼3D显示技术主要采用柱镜斜排的方式实现视点分离,势必会增加视点间的串扰。而应用于OLED的裸眼3D受限于PDL Gap尺寸,无法实现超多连续视点的大可视空间,且现有的技术,会造成3D显示分辨率降低和部分视点像素缺失,整体功耗和居高不下,严重限制了裸眼3D显示的发展。
发明内容
为了解决上述技术问题,本公开提供一种3D显示装置和3D显示驱动方法,解决3D显示分辨率低的问题。
为了达到上述目的,本公开实施例采用的技术方案是:一种3D显示装置,包括显示面板和位于显示面板的出光面的微透镜阵列,
所述显示面板上包括多个子像素,相同颜色的子像素沿第一方向排布,不同颜色的子像素沿与所述第一方向相垂直的第二方向排布,所述第一方向与观看者的双眼的连线相平行;
所述微透镜阵列包括沿所述第一方向排列的多个柱形透镜,所述柱形透镜的延伸方向与所述第二方向相平行,在所述第一方向上,每个所述柱形透镜覆盖M个对应的所述子像素,M为自然数。
可选的,沿所述第一方向,多个所述柱形透镜周期性排布,每个周期包括2个或2个以上的所述柱形透镜,同一个周期内的多个所述柱形透镜对应的投 影区域交叉互补,以形成连续的成像面。
可选的,同一周期内的所述柱形透镜的数量与所述子像素的数量互质。
可选的,同一周期内的多个所述柱形透镜中包括至少一个第一柱形透镜,所述第一柱形透镜所对应的子像素的数量与同一周期内的其余所述柱形透镜所对应的子像素的数量不同。
可选的,在所述第一方向上,所述第一柱形透镜位于同一周期内其余所述柱形透镜的一侧。
可选的,一个周期内包括N个所述柱形透镜,每个所述子像素包括开口区和非开口区,在所述第一方向上,所述开口区的宽度为该子像素的宽度的1/N。
可选的,一个周期内的所述子像素的数量为m,在所述第一方向上,多个所述柱形透镜的宽度相同,且在所述第一方向上,每个所述柱形透镜的宽度为所述开口区的m倍,m为自然数。
可选的,沿所述第一方向,位于同一周期内的不同的所述柱形透镜在所述显示面板上的正投影依次偏移第一宽度,所述第一宽度等于所述开口区的宽度。
可选的,不同周期内的柱形透镜的数量相同。
可选的,周期性排列的多个柱形透镜中至少包括至少一个第一周期,所述第一周期内的柱形透镜的数量和所述第一周期之外的其他周期内的柱形透镜的数量不同。
可选的,所述显示面板的发光面位于所述柱形透镜的焦平面上。
可选的,所述柱形透镜与显示面板之间的距离H满足以下公式:H=n*f,其中n为位于所述发光面和所述柱形透镜之间的介质的折射率,f为所述柱形透镜的焦距。
本公开实施例还提供一种3D显示驱动方法,采用上述的显示装置实现,沿所述第一方向,多个所述柱形透镜周期性排布,一个周期对应的多个子像素形成一个像素岛,包括以下步骤:
提供一立体目标物,并确定人眼位于不同位置观看该立体目标物获得的实际图像信息;
确定每个子像素的位置与视点的位置对应关系;
根据子像素对应的投影区域的角谱分布获取子像素对应的投影区域的角谱边界;
确定子像素对应的投影区域的角谱位置与子像素的对应关系;
确定观看者的眉心坐标和人眼视角,获取相应的图像信息;
根据眉心与各像素岛的夹角,获得眉心所对应的像素岛的位置,并在该像素岛以及位于该像素岛的周边的像素岛加载所述图像信息。
本公开实施例还提供一种3D显示驱动方法,采用上述的显示装置实现,包括以下步骤:
确定人眼瞳孔坐标;
根据人眼瞳孔坐标确定,形成进入人眼的视点的第一子像素的位置;
点亮所述第一子像素,或者点亮所述第一子像素以及所述第一子像素周边的预设数量的子像素。
本公开的有益效果是:本公开中相同颜色的子像素沿与人双眼连线相平行的第一方向排布,不同颜色的子像素沿与所述第一方向相垂直的第二方向排布,在所述第一方向上,无需考虑蒸镀串色问题,因此相邻的同色的子像素之间的PDL(像素定义层)的宽度可以极限压缩,从而增大像素开口率。
附图说明
图1表示相关技术中的柱形透镜分布示意图;
图2表示本公开实施例中的子像素和柱形透镜的分布示意图;
图3表示子像素的开口率与显示器件的寿命的关系示意图;
图4表示子像素投影区域示意图;
图5表示一个周期内的子像素的投影示意图;
图6表示一个周期内的两个柱形透镜对应的投影区域平移叠加的示意图;
图7表示显示面板的发光面位于柱形透镜的焦平面的光路和位于非焦平面的光路对比示意图;
图8表示显示面板的发光面位于柱形透镜的非焦平面的串扰示意图;
图9表示显示面板的发光面位于柱形透镜的焦平面的串扰示意图;
图10表示投影区的主瓣区和旁瓣区的示意图一;
图11表示投影区的主瓣区和旁瓣区的示意图二;
图12表示视点索引和子像素的索引的对照示意图;
图13表示视点角谱分布示意图;
图14表示子像素的角谱边界示意图;
图15表示眉心与显示面板的角度示意图;
图16表示根据眉心坐标确定子像素的位置的示意图;
图17表示人眼位于不同位置所对应的多副图像示意图;
图18表示人眼位于第一位置所对应的图像示意图;
图19表示对相应的子像素加载对应的图像信息,并进行显示驱动获得的图像示意图;
图20表示人眼瞳孔所对应的子像素的覆盖范围示意图;
图21表示功耗与点亮的子像素的数量的关系示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
参考图1,相关技术中,沿着倾斜方向布局视点(柱形透镜100倾斜排列),如图1中的视点2和视点6等,首先可以看到视点2和视点6基本都位于相应的柱形透镜100的边缘,两者在空间的投影基本一致,势必增大了两者间的串扰;此外,可以看到柱形透镜100的边界从视点2中间划过,即只有50%~70% 的发光区域才能进入其本征投影区域,余下的不足50%部分串扰进其他视点,导致一定程度的眩晕感;另外,2D显示像素是RGB(红色子像素10.绿色子像素20、蓝色子像素30)横向排布,但是加入柱形透/100后,RGB子像素变成了纵向排布,带来的影响就是屏幕的纵向分辨率降低为1/3,甚至更多,造成分辨率失衡,2D/3D显示不匹配。
参考图2,为了解决上述技术问题,本实施例提供一种3D显示装置,包括显示面板和位于显示面板的出光面的微透镜阵列,
所述显示面板上包括多个子像素,相同颜色的子像素沿第一方向(参考图2中的X方向)排布,不同颜色的子像素沿与所述第一方向相垂直的第二方向(参考图2中的Y方向)排布,所述第一方向与观看者的双眼的连线相平行;
所述微透镜阵列包括沿所述第一方向排列的多个柱形透镜1,所述柱形透镜1的延伸方向与所述第二方向相平行,在所述第一方向上,每个所述柱形透镜覆盖M个对应的所述子像素,M为自然数。
本实施例中,相同颜色的子像素沿与人双眼连线相平行的第一方向排布,不同颜色的子像素沿与所述第一方向相垂直的第二方向排布,在所述第一方向上,无需考虑蒸镀串色问题,因此相邻的同色的子像素之间的PDL(像素定义层)的宽度可以极限压缩,例如可以从相关技术中的20um压缩到5-6um,即在所述第一方向上,相邻的子像素之间的像素定义层的宽度为5-6um,从而增大像素开口率,像素开口率可以由15%增加至30%以上(开口率直接影响到显示器件的寿命),保证显示器件的信赖性,图3为子像素的开口率与显示器件的寿命的对应关系示意图,图3中带原点的曲线表示衰减率,矩形条表示LT95(lifetime95),即亮度降低到最高点95%所用的时间,表示的是寿命,图3中左侧纵坐标表示时间,单位是hours,横坐标是开口率,右侧纵坐标是最大亮度比例。
需要说明的是,图2中显示面板包括红色子像素10、绿色子像素20和蓝色子像素30,红色子像素10、绿色子像素20和蓝色子像素30分别沿所述第一方向排布。
由于在所述第一方向上排布的同色子像素之间仍有较小的PDL Gap(即相邻的同色子像素之间设置有PDL像素定义层,像素定义层在所述第一方向上 具有一定的宽度),则其通过柱形透镜在观看空间的投影必然会存在亮暗分区(如图4所示),形成摩尔纹,严重影响显示效果。针对这一问题,本实施例的一实施方式中,沿所述第一方向,多个所述柱形透镜1周期性排布,每个周期包括2个或2个以上的所述柱形透镜,同一个周期内的多个所述柱形透镜1对应的投影区域交叉互补,以形成连续的成像面。
同一个周期内的多个所述柱形透镜1对应的投影区域交叉互补,以形成连续的成像面,即每个柱形透镜1所对应的投影区域包括亮区200和暗区300,沿所述第一方向上,将多个所述柱形透镜1进行周期性排布,同一个周期内的不同的柱形透镜1所形成的投影区域相平移叠加,则一个柱形透镜1所形成的投影区域中的亮区200会与另一个柱形透镜1所形成的的投影区域的暗区300叠加(至少部分重叠),这样会减小暗区的宽度,甚至消除暗区,形成连续的成像面,图6为一个周期内的两个柱形透镜1所对应的投影区域平移叠加,一个柱形透镜1所形成的投影区域中的亮区200会与另一个柱形透镜1所形成的的投影区域的暗区300叠加的示意图,图案区域为一个柱形透镜1所对应的投影区域的亮区,同时也是另一个柱形透镜1所对应的投影区域的暗区,这样正好形成交叉互补的关系,形成连续的成像面。
示例性的实施方式中,同一周期内的所述柱形透镜1的数量与所述子像素的数量互质。
根据同一周期内的所有所述柱形透镜1所对应的所有的子像素的数量m,以及同一个周期内的所述柱形透镜1的数量N可以确定每个所述柱形透镜1所对应的子像素的数量,具体的,可根据以下公式获得,m/N=a…b,即m/N的商数为a,余数为b,b小于N,在每个所述柱形透镜1对应a个子像素的基础上,在b个所述柱形透镜1所对应的子像素的数量上加1,即b个所述柱形透镜1所对应的子像素的数量为a+1(为了保证每个所述柱形透镜在所述第一方向上的宽度相同,则在b个所述柱形透镜1所对应的子像素的数量上加1)。例如,m为11,N为2,11/2=5…1,即a=5,b=1,则2个所述柱形透镜1中,一个所述柱形透镜1对应的子像素的数量为5个,一个所述柱形透镜1对应的子像素的数量为6个,参考图5;例如,m为11,N为3,11/3=3…2,即a=3,b=2,则3个所述柱形透镜1中,一个所述柱形透镜1对应的子像素的数量为 3个,其余两个所述柱形透镜1对应的子像素的数量均为4个。
通过一个柱形透镜1所形成的投影区域中的暗区300的宽度和亮区200的宽度比,获得所述柱形透镜1的周期性的排布规则,使得同一个周期内中一个柱形透镜1对应的第一子像素的投影边界与另一个柱形透镜1中的第二子像素的投影边界相平行,这样就可以形成不同的子像素的投影区域的亮区和暗区的叠加效果。
需要说明的是,沿着同一方向对每个所述柱形透镜1对应的子像素进行标号,所述第一子像素的标号与所述第二子像素的标号相同。例如从左到右对每个所述柱形透镜1对应的子像素进行标号,所述第一子像素为相应的柱形透镜对应的第一个子像素,所述第二子像素为相应的柱形透镜对应的第一个子像素。参考图5,第一子像素1001的投影边界a和第二子像素1002的投影边界b相平行。
示例性的实施方式中,同一周期内的多个所述柱形透镜1中包括至少一个第一柱形透镜,所述第一柱形透镜所对应的子像素的数量与同一周期内的其余所述柱形透镜所对应的子像素的数量不同。
若同一周期内的所有所述柱形透镜1对应的子像素的数量相同,则所形成的投影区域是相同的,即亮暗区的排布规则、以及相应的位置是相同的,在将同一周期内的所有柱形透镜1对应的投影区域进行叠加时,不会出现一个柱形透镜1对应的投影区域的亮区和另一个所述柱形透镜1对应的投影区域的暗区相重叠的情况,即无法实现连续成像面,所以,本实施例中,所述第一柱形透镜所对应的子像素的数量与同一周期内的其余所述柱形透镜所对应的子像素的数量不同,以实现连续的成像面,参考图5,图5中表示出了一个周期内排布的2个柱形透镜,一个柱形透镜所对应的子像素的数量为6,一个柱形透镜所对应的子像素的数量为5。
示例性的实施方式中,在所述第一方向上,所述第一柱形透镜位于同一周期内其余所述柱形透镜1的一侧。
在进行所述柱形透镜1与相应的子像素的排布时,由于存在对应的子像素的数量不同的柱形透镜1,则不同的柱形透镜1所对应的子像素会沿着一个方向偏移,若所述第一柱形透镜位于同一周期内的中间位置,则无法保证相应的 投影区域按照预设规则补偿叠加。
示例性的实施方式中,一个周期内包括N个所述柱形透镜1,每个所述子像素包括开口区和非开口区,在所述第一方向上,所述开口区的宽度为该子像素的宽度的1/N。
参考图5,在所述第一方向上,开口区的宽度为c,非开口区的宽度为d,一个周期内具有2个柱形透镜1,c=d,即所述开口区的宽度为该子像素的宽度的1/2。
采用上述方案,可以有效的实现,同一周期内的一个所述柱形透镜1对应的投影区域中的亮区与另一个所述柱形透镜1对应的投影区域的暗区相叠加的效果,并且保证在所述第一方向上,每个所述柱形透镜1的宽度的一致。例如,同一周期内的所述柱形透镜1对应的子像素的数量m为11,N为2,每个所述子像素的开口区的宽度为该子像素的总宽度的1/2,则2个所述柱形透镜1中,每个所述柱形透镜1在所述第一方向上的宽度均为所述开口区的宽度的m倍,且2个所述柱形透镜1所对应的所述子像素的位置,在所述第一方向上错开一个开口区的宽度,在2个所述柱形透镜的连接处,2个所述柱形透镜共同对应覆盖一个完整的子像素;例如,同一周期内的所述柱形透镜1对应的子像素的数量m为11,N为3,每个所述子像素的开口区的宽度为该子像素的总宽度的1/3,则3个所述柱形透镜1中,每一个所述柱形透镜1所对应的子像素的位置相对于与其相邻的所述柱形透镜1所对应的子像素的位置错开一个所述开口区的位置,参考图5,位于左侧的柱形透镜靠近右侧的柱形透镜的边缘对应的子像素的开口区被左侧的柱形透镜覆盖,位于左侧的柱形透镜靠近右侧的柱形透镜的边缘对应的子像素的非开口区被右侧的柱形透镜覆盖。
示例性的实施方式中,一个周期内的所述子像素的数量为m,在所述第一方向上,多个所述柱形透镜1的宽度相同,且在所述第一方向上,每个所述柱形透镜1的宽度为所述开口区的m倍,m为自然数。
示例性的实施方式中,沿所述第一方向,位于同一周期内的不同的所述柱形透镜在所述显示面板上的正投影依次偏移第一宽度,所述第一宽度等于所述开口区的宽度。
示例性的实施方式中,不同周期内的柱形透镜的数量相同,即所有周期包 括的柱形透镜的数量相同,例如每个周期内包括2个柱形透镜。
示例性的实施方式中,周期性排列的多个柱形透镜中至少包括至少一个第一周期,第一周期内包括的柱形透镜的数量与其他周期内包括的柱形透镜的数量不同。
示例性的实施方式中,周期性排列的多个柱形透镜中包括至少一个第一周期和至少一个第二周期,所述第一周期内的柱形透镜的数量和第二周期内的柱形透镜的数量不同。
示例性的,周期性排列的多个柱形透镜中,包括所述第一周期和所述第二周期之外的至少一个第三周期,所述第一周期内的柱形透镜的数量和第三周期内的柱形透镜的数量不同,所述第二周期内的柱形透镜的数量和第二周期内的柱形透镜的数量不同。
示例性的实施方式中,所述显示面板的发光面位于所述柱形透镜的焦平面上。
参考图7,示例性的实施方式中,所述柱形透镜1与显示面板之间的距离H满足以下公式:H=n*f,其中n为位于所述显示面板的发光面1003和所述柱形透镜1之间的介质的折射率,f为所述柱形透镜的焦距。
为了解决相邻视点间的串扰,需将显示面板的发光面(需要说明的是,对于OLED显示器件而言,实际发光面即为EL(发光层)发光面,也可以表述为显示面板发光面或者子像素发光面)置于柱形透镜1的的焦平面上,当显示面板的发光面位于图7中焦平面C位置时,显示面板的发光面上的每一点经过透镜后都近似准直出光(如标号101所示的光路),而当显示面板的发光面位于非焦平面D时,显示面板的发光面上的每一点经过所述柱形透镜后,出光都会有一定的倾角(参考图7中标号102所示的光路),倾角越大,与相邻子像素间的串扰越大(对比图8和图9),如图7所示。为了确保显示面板的发光面在所述柱形透镜的焦平面,则所述柱形透镜1的放置高度(即所述柱形透镜与显示面板之间的距离)要满足以下关系:H=n*f,其中,H为放置高度,n为显示面板的发光面到所述柱形透镜之间介质的折射率,f为所述柱形透镜自身的焦距。
对于一个立体目标物的观看,实际观看中,人眼位置不同所获得的画面不 同,例如,位于立体目标物的正面,则获得正视图,位于立体目标物的侧面,则获得该立体目标物的侧面视图,为了更好的实现立体效果,实现超大的可视空间,还原真实世界,本公开实施例还提供一种3D显示驱动方法,采用上述的显示装置实现,,沿所述第一方向,多个所述柱形透镜周期性排布,一个周期对应的多个子像素形成一个像素岛,包括以下步骤:
提供一立体目标物,并确定人眼位于不同位置观看该立体目标物获得的实际图像信息;
确定每个子像素的位置与视点的位置对应关系;
根据子像素对应的投影区域的角谱分布获取子像素对应的投影区域的角谱边界;
确定子像素对应的投影区域的角谱位置与子像素的对应关系;
确定观看者的眉心坐标和人眼视角,获取相应的图像信息;
根据眉心与各像素岛的夹角,获得眉心所对应的像素岛的位置,并在该像素岛以及位于该像素岛的周边的像素岛加载所述图像信息。
如图10所示,与相应的子像素正对的柱形透镜在空间的投影为主瓣投影区400,而该子像素相对于相邻其他柱形透镜在空间的投影为多级旁瓣投影区500,通过主瓣投影区400与旁瓣投影区500的拼接,形成超多的连续3D视点,但是双眼落入不同的瓣区(参考图11,图11中的横坐标为出光角度,纵坐标为相对亮度,主瓣投影区400的一侧依次设置一级旁瓣投影区501和二级旁瓣投影去502),就会引入视点反转,导致实际看到的3D效果与真实世界颠倒的情况(视点反转是指本来左眼看左视图,右眼看右视图,通过大脑融合成正常的3D图像,但视点反转却导致左眼看到右视图,右眼看到左视图,大脑不能融合成正确的3D图像,而实相反或者倒置的图像。),因此,可视空间也仅限于双眼位于同一瓣区对应的区域,可视空间受限,为了解决这一问题,本实施例基于人眼追踪和光学反向追迹提供一种3D显示驱动方法,具体的包括以下步骤:
提供一立体目标物,并确定人眼位于不同位置观看该立体目标物获得的实际图像信息(例如,人眼位于立体目标物的正前方,则获得立体目标物的正视图,若人眼位于立体目标物的侧面,则获得立体目标物的侧面视图);
确定视点索引与物理索引的关系,即确定每个子像素的位置与该子像素对应形成的视点的位置对应关系。例如对一个子像素进行标号为(1),则将其对应的视点进行标号为1,并保存该对应关系,参考图12,图12表示出了一个实施方式中的子像素与对应的视点的对应索引关系(需要说明的是,子像素与对应的视点的对应索引关系并不限于图12所示)。
需要说明的是,本实施例中,柱形透镜周期性排列,一个周期对应的多个子像素形成一个像素岛,图12中仅表示出了一个周期的子像素,即表示出了一个像素岛内的子像素一个周期对应的11个子像素与相应的视点的对应索引关系,示例性的,针对一个周期内的多个柱形透镜在显示面板上的正投影所覆盖的子像素,以及相应的柱形透镜所形成的主瓣投影区的视点以及位于旁瓣投影区的视点;
实测子像素对应的投影区域的角谱分布,每个子像素对应一个视点,且每个子像素对应一个投影区域,即每个子像素对应的投影区域相对于子像素所在的平面(平行于显示面板的出光面)的角度不同,该步骤是为了获得每个子像素对应的投影区域相对于子像素所在的平面的角度,参考图13,图13中横坐标为出光角度,纵坐标为相对亮度;
提取子像素对应的投影区域的角谱边界,每个子像素对应的投影区域的相应的边界的角度获取,需要说明的是,图14中的标号6、7、8、9、10、11、1、2、3、4、5、6、7为子像素的标号,可以对应于图12中的(1)、(2),只是相对与图12没有括号,参考图14,图14中横坐标为出光角度,纵坐标为相对亮度;
将子像素对应的投影区域的角谱位置与子像素物理索引建立对应关系,具体的,以预设角度为步长将子像素对应的投影区域划分为多个角度区间,将每个角度区间与相应的子像素建立对应关系,参考以下表格;

预设角度的具体设定数值可以根据实际需要设定,上述表格中所述预设角度为0.02度,对应于子像素数据组1:投影区域中-70度的位置和-69.98的位置均对应于子像素3,而-69.96度的位置、-69.94度的位置、-69.92度的位置、-69.90度的位置、-69.88度的位置均对应于子像素4。
需要说明的是,如果在所述第一方向上,每个周期内所包括的柱形透镜的数量相同,则将以预设角度为步长将子像素对应的投影区域进行区间划分时,则不同周期内的柱形透镜对应的投影区域中的一个角度对应的子像素的标号是相同的,则只有一组数据。若每个周期内所包括的柱形透镜的数量不同(例如一个周期内包括2个柱形透镜,另一个周期内包括3个透镜),则以预设角度为步长将子像素对应的投影区域进行区间划分时,不同周期内的柱形透镜形成的投影区域上的同一角度对应的子像素的标号则不同,则会存在不同的数据组(具有相同柱形透镜数量的多个周期对应同一数据组),上述表格中表示出了子像素数据组1和子像素数据组2两组数据。
需要说明的是,上述表格中的子像素的标号与图12中的子像素的标号相对应,只是在此表格中没有标注括号,即-70度对应子像素3等同于图12中的子像素(3)。
根据眉心坐标和人眼视角确定人眼所观看到的图像信息(包括左眼图像信息和右眼图像信息);
确定观看者的眉心坐标和人眼视角,获取相应的图像信息,根据眉心坐标和人眼视角确定人眼位置对应的图像信息,例如,眉心坐标位于立体目标物的侧面,则获取相对应的侧面视图。图17表示不同位置对应的不同的图像,图18表示一实施方式中人眼位置对应的图像信息。
根据眉心与各像素岛(沿所述第一方向,多个柱形透镜周期性排列,一个周期对应的多个子像素形成一个像素岛)的夹角,以及人眼视角,获得眉心所对应的像素岛的位置;参考图15,图15表示眉心坐标与显示面板4上的各个像素岛在所述第一方向上的中心之间的角度示意图;
沿所述第一方向,在眉心对应的像素岛以及位于该像素岛的周边的像素岛 加载对应的所述图像信息,图19为加载图18中的图像信息并显示获得的图像,
图16表示在第K个像素岛所对应的多个子像素(图中显示的1-11没有括号,但是与图12中的子像素的物理索引对应,例如子像素1与等同于子像素(1))上,加载图像信息的示意图。图16中一个像素岛包括11个子像素,对该11个子像素加载11张视差图像(view)。
采用上述3D显示驱动方法,随着人眼的移动,对人眼对应的子像素加载相应的图像信息,解决双眼位于不同的投影瓣区,出现视点反转的问题,同时增大了可视空间。并且通过上述3D显示驱动方法,人眼位于立体目标物的不同的位置,则会获得不同的视角图像,即获得位于实际观看位置所获得的图像信息,例如人眼位于立体目标物的正面,则获得正面视图的图像,人眼位于立体目标物的侧面,则会获得立体目标物的侧面图像,还原真实世界,提升用户的3D观看体验。
示例性的,本公开实施例还提供一种3D显示驱动方法,采用上述的显示装置实现,所述显示面板包括多个子像素,每个子像素独立驱动,包括以下步骤:
确定人眼瞳孔坐标;
根据人眼瞳孔坐标确定,形成进入人眼的视点的第一子像素的位置;
点亮所述第一子像素或者点亮所述第一子像素以及所述第一子像素周边的预设数量的子像素。
由于全屏超高分辨率显示,全部子像素点亮的情况下,全部投影视点都打开,而人眼的瞳孔宽度只有3mm左右,势必会造成大部分视点光线不能进入人眼,从而导致功耗的浪费。为了解决这一问题,本公开基于人眼追踪,反向追迹确定只点亮可进入人眼的第一子像素,或者点亮所述第一子像素以及所述第一子像素周边的预设数量的子像素。
如图20所示,图20中表示出了人眼S的瞳孔经相应的柱形透镜1,对应的显示面板4上的区域,依据折射定律,n0sinθ1=nsinθ2,n0为空气折射率,n为柱形透镜的折射率,θ1为人眼相对于柱形透镜的入射夹角,θ2为反向追迹到显示面板的发光面的折射角,仅点亮部分子像素,从而大幅降低了显示的整体功耗,参考以下表格,若与能进入人眼的视点对应的子像素的数量 为1-2个子像素时,当只打开1~2个子像素时,近距离观看可能会有非均匀的情况,当打开3~4个子像素时,观看画面均匀性大幅提升,基本满足正常显示需求,而此时的功耗仅为子像素全部点亮的34.7%,如图21所示(图21表示功耗与点亮的子像素的数量的对应关系,纵坐标表示功耗,横坐标表示点亮的子像素的数量)。即在仅打开所述第一子像素时,均匀性比较差时,可以考虑点亮所述第一子像素以及所述第一子像素周边的预设数量的子像素,所述预设数量可以根据实际需要设定。
上述表格中还表示出了,在点亮对应于左眼的子像素(对应于右眼的子像素关闭)时,对右眼视点形成的串扰,在点亮对应于左眼的1-2个子像素时,左眼亮度100%,右眼亮度为左眼亮度的0.5%,即对于右眼视点的串扰为0.5%,在点亮对应于左眼的3-4个子像素时,左眼亮度100%,右眼亮度为左眼亮度的1.6%,即对于右眼视点的串扰为1.6%,点亮全部的对应于左眼的子像素时,左眼亮度100%,右眼亮度为左眼亮度的3.4%,即对于右眼视点的串扰为3.4%,点亮的子像素的数量越多,则画面均匀性越高,但是相对于点亮全部对应于左眼的子像素,本实施例中,点亮部分对应于左眼的子像素,不但降低了功耗,也降低了对于右眼的视点的串扰。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (14)

  1. 一种3D显示装置,包括显示面板和位于显示面板的出光面的微透镜阵列,其中,
    所述显示面板上包括多个子像素,相同颜色的子像素沿第一方向排布,不同颜色的子像素沿与所述第一方向相垂直的第二方向排布,所述第一方向与观看者的双眼的连线相平行;
    所述微透镜阵列包括沿所述第一方向排列的多个柱形透镜,所述柱形透镜的延伸方向与所述第二方向相平行,在所述第一方向上,每个所述柱形透镜覆盖M个对应的所述子像素,M为自然数。
  2. 根据权利要求1所述的3D显示装置,其中,沿所述第一方向,多个所述柱形透镜周期性排布,每个周期包括2个或2个以上的所述柱形透镜,同一个周期内的多个所述柱形透镜对应的投影区域交叉互补,以形成连续的成像面。
  3. 根据权利要求2所述的3D显示装置,其中,同一周期内的所述柱形透镜的数量与所述子像素的数量互质。
  4. 根据权利要求2所述的3D显示装置,其中,同一周期内的多个所述柱形透镜中包括至少一个第一柱形透镜,所述第一柱形透镜所对应的子像素的数量与同一周期内的其余所述柱形透镜所对应的子像素的数量不同。
  5. 根据权利要求4所述的3D显示装置,其中,在所述第一方向上,所述第一柱形透镜位于同一周期内其余所述柱形透镜的一侧。
  6. 根据权利要求2所述的3D显示装置,其中,一个周期内包括N个所述柱形透镜,每个所述子像素包括开口区和非开口区,在所述第一方向上,所述开口区的宽度为该子像素的宽度的1/N。
  7. 根据权利要求6所述的3D显示装置,其中,一个周期内的所述子像素的数量为m,在所述第一方向上,多个所述柱形透镜的宽度相同,且在所述第一方向上,每个所述柱形透镜的宽度为所述开口区的m倍,m为自然数。
  8. 根据权利要求6所述的3D显示装置,其中,沿所述第一方向,位于同一周期内的不同的所述柱形透镜在所述显示面板上的正投影依次偏移第一宽 度,所述第一宽度等于所述开口区的宽度。
  9. 根据权利要求2所述的3D显示装置,其中,不同周期内的柱形透镜的数量相同。
  10. 根据权利要求2所述的3D显示装置,其中,周期性排列的多个柱形透镜中至少包括至少一个第一周期,所述第一周期内的柱形透镜的数量和所述第一周期之外的其他周期内的柱形透镜的数量不同。
  11. 根据权利要求1所述的3D显示装置,其中,所述显示面板的发光面位于所述柱形透镜的焦平面上。
  12. 根据权利要求11所述的3D显示装置,其中,所述柱形透镜与显示面板之间的距离H满足以下公式:H=n*f,其中n为位于所述发光面和所述柱形透镜之间的介质的折射率,f为所述柱形透镜的焦距。
  13. 一种3D显示驱动方法,其中,采用权利要求1-12任一项所述的3D显示装置实现,沿所述第一方向,多个所述柱形透镜周期性排布,一个周期对应的多个子像素形成一个像素岛,所述方法包括以下步骤:
    提供一立体目标物,并确定人眼位于不同位置观看该立体目标物获得的实际图像信息;
    确定每个子像素的位置与视点的位置对应关系;
    根据子像素对应的投影区域的角谱分布获取子像素对应的投影区域的角谱边界;
    确定子像素对应的投影区域的角谱位置与子像素的对应关系;
    确定观看者的眉心坐标和人眼视角,获取相应的图像信息;
    根据眉心与各像素岛的夹角,获得眉心所对应的像素岛的位置,并在该像素岛以及位于该像素岛的周边的像素岛加载所述图像信息。
  14. 一种3D显示驱动方法,其中,采用权利要求1-12任一项所述的3D显示装置实现,所述方法包括以下步骤:
    确定人眼瞳孔坐标;
    根据人眼瞳孔坐标确定,形成进入人眼的视点的第一子像素的位置;
    点亮所述第一子像素,或者点亮所述第一子像素以及所述第一子像素周边的预设数量的子像素。
PCT/CN2023/110974 2022-08-10 2023-08-03 3d显示装置和3d显示驱动方法 WO2024032461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210954249.0 2022-08-10
CN202210954249.0A CN115220241A (zh) 2022-08-10 2022-08-10 3d显示装置和3d显示驱动方法

Publications (1)

Publication Number Publication Date
WO2024032461A1 true WO2024032461A1 (zh) 2024-02-15

Family

ID=83616101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110974 WO2024032461A1 (zh) 2022-08-10 2023-08-03 3d显示装置和3d显示驱动方法

Country Status (2)

Country Link
CN (1) CN115220241A (zh)
WO (1) WO2024032461A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024113267A1 (zh) * 2022-11-30 2024-06-06 京东方科技集团股份有限公司 显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169236A (zh) * 2011-04-15 2011-08-31 黑龙江省四维影像数码科技有限公司 基于垂直柱镜光栅的奇数视点自由立体子像素排列方法
CN102183842A (zh) * 2011-04-15 2011-09-14 黑龙江省四维影像数码科技有限公司 基于垂直柱镜光栅的自由立体显示设备子像素排列方法
US20140118226A1 (en) * 2012-10-29 2014-05-01 Corning Incorporated Autostereoscopic display device and method of displaying image
CN103957400A (zh) * 2014-05-09 2014-07-30 北京乐成光视科技发展有限公司 一种基于Unity3D游戏引擎的裸眼3D显示系统
CN113903785A (zh) * 2021-09-30 2022-01-07 京东方科技集团股份有限公司 显示面板与显示装置
CN114981711A (zh) * 2020-12-21 2022-08-30 京东方科技集团股份有限公司 显示装置及其驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169236A (zh) * 2011-04-15 2011-08-31 黑龙江省四维影像数码科技有限公司 基于垂直柱镜光栅的奇数视点自由立体子像素排列方法
CN102183842A (zh) * 2011-04-15 2011-09-14 黑龙江省四维影像数码科技有限公司 基于垂直柱镜光栅的自由立体显示设备子像素排列方法
US20140118226A1 (en) * 2012-10-29 2014-05-01 Corning Incorporated Autostereoscopic display device and method of displaying image
CN103957400A (zh) * 2014-05-09 2014-07-30 北京乐成光视科技发展有限公司 一种基于Unity3D游戏引擎的裸眼3D显示系统
CN114981711A (zh) * 2020-12-21 2022-08-30 京东方科技集团股份有限公司 显示装置及其驱动方法
CN113903785A (zh) * 2021-09-30 2022-01-07 京东方科技集团股份有限公司 显示面板与显示装置

Also Published As

Publication number Publication date
CN115220241A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
US10298916B2 (en) Autostereoscopic image output device
US10670871B2 (en) Three-dimensional display apparatus
TWI496453B (zh) A method of displaying a three - dimensional image in both directions
CN103348687B (zh) 自动立体显示装置
US8553030B2 (en) Stereo display apparatus and lens array thereof
KR101170120B1 (ko) 비안경식 3차원 디스플레이 장치
JP4400172B2 (ja) 画像表示装置、携帯端末装置、表示パネル及び画像表示方法
CN1744724B (zh) 图像显示设备和显示面板
KR100658545B1 (ko) 입체 화상 재생 장치
TWI420152B (zh) A Method of Multi - view Three - dimensional Image Display
TWI514005B (zh) 裸眼式立體影像顯示裝置
US20050280602A1 (en) Stereoscopic display method and arrangement
CN105445949B (zh) 一种三维显示装置
US8963808B2 (en) Autostereoscopic display device and method of displaying image
WO2017020473A1 (zh) 三维显示装置及其显示方法
TWI446315B (zh) 立體顯示裝置
JP2004287440A (ja) 視差バリアおよび複数表示ディスプレイ
US10542250B2 (en) Light field display apparatus
WO2024032461A1 (zh) 3d显示装置和3d显示驱动方法
CN208257981U (zh) 一种基于子像素的led裸眼3d显示装置
US10477193B2 (en) Three dimensional display device and method of driving the same
CN105892079A (zh) 一种显示装置
US20170154555A1 (en) Multi-view display device and method for driving the same
CN111638600A (zh) 一种近眼显示的方法、装置及可穿戴设备
KR20170097182A (ko) 무안경 입체영상 디스플레이 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851682

Country of ref document: EP

Kind code of ref document: A1