WO2024032257A1 - 动态调整功率的方法、电池管理系统、设备、介质和车辆 - Google Patents

动态调整功率的方法、电池管理系统、设备、介质和车辆 Download PDF

Info

Publication number
WO2024032257A1
WO2024032257A1 PCT/CN2023/104958 CN2023104958W WO2024032257A1 WO 2024032257 A1 WO2024032257 A1 WO 2024032257A1 CN 2023104958 W CN2023104958 W CN 2023104958W WO 2024032257 A1 WO2024032257 A1 WO 2024032257A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
time
discharge
discharge power
maximum allowable
Prior art date
Application number
PCT/CN2023/104958
Other languages
English (en)
French (fr)
Inventor
武涛
李建杰
易行云
陈斌斌
Original Assignee
欣旺达动力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欣旺达动力科技股份有限公司 filed Critical 欣旺达动力科技股份有限公司
Publication of WO2024032257A1 publication Critical patent/WO2024032257A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the technical field of energy management, and in particular to methods for dynamically adjusting power, battery management systems, equipment, media and vehicles.
  • Lithium batteries have the characteristics of high energy density and low power density, and can well meet the load power requirements.
  • a commonly used discharge power control strategy for battery management systems is to output a relatively conservative discharge power, that is, to match long-term discharge power with a certain power limitation strategy to meet the basic power requirements of the entire vehicle.
  • this discharge power control strategy cannot meet the short-term high-power discharge requirements of the entire vehicle.
  • the vehicle's secondary acceleration requires greater power in a shorter period of time.
  • the battery management system cannot provide greater power. It will affect the acceleration performance of the entire vehicle, so the battery management needs to output larger power, that is, short-term discharge power to provide acceleration for the entire vehicle. If the output discharge power is simply adjusted to short-term discharge power, a situation such as continuous short-term high-power discharge to undervoltage will occur.
  • the main purpose of the embodiments of the present invention is to propose a method, battery management system, equipment, medium and vehicle for dynamically adjusting power.
  • the power method controls the maximum allowable output power to meet the power requirements of the vehicle under different working conditions.
  • a first aspect of the embodiment of the present invention proposes a method for dynamically adjusting power, including:
  • the power information includes: discharge power at the first time, discharge power at the second time, and maximum allowable output power;
  • the maximum allowable output power is adjusted from the first time discharge power to the second time discharge power, or the maximum allowable output power is adjusted from the second time discharge power. is the discharge power for the first time.
  • the obtaining power information includes:
  • the current working status includes: current state of charge and current working temperature;
  • the first preset time is longer than the second preset time. short time.
  • the preset time threshold includes: a first time threshold and a second time threshold
  • the discharge power integral value includes: a first discharge power integral value and a second discharge power integral value
  • the calculation preset The integrated value of discharge power within the time threshold includes:
  • the actual power within the second time threshold is summed to obtain the second integrated value of discharge power.
  • the discharge energy includes: the first time discharge energy and the second time discharge energy respectively corresponding to the first time discharge power and the second time discharge power, and the discharge is calculated according to the power information.
  • Energy including:
  • the power adjustment condition includes a first power adjustment condition, and determining whether the power adjustment condition is established based on the discharge power integral value and the discharge energy includes:
  • the first power adjustment condition is established.
  • adjusting the maximum allowed output power from the first time discharge power to the second time discharge power includes:
  • the maximum allowable output power is adjusted from the first time discharge power to the second time discharge power according to the first parameter.
  • the power adjustment condition includes a second power adjustment condition, and determining whether the power adjustment condition is established based on the discharge power integral value and the discharge energy includes:
  • the second power adjustment condition is established.
  • adjusting the maximum allowed output power from the first time discharge power to the second time discharge power includes:
  • the maximum allowable output power is adjusted from the first time discharge power to the second time discharge power according to the first parameter.
  • adjusting the maximum allowed output power from the second time discharge power to the first time discharge power includes:
  • the maximum allowable output power is increased from the second time discharge power to the first time discharge power according to the second parameter.
  • a second aspect of the present invention proposes a device for dynamically adjusting power, including:
  • a power acquisition unit configured to acquire power information, where the power information includes the discharge power at the first time, the discharge power at the second time, and the maximum allowable output power;
  • a power integral value calculation unit used to calculate the discharge power integral value within a preset time threshold
  • a discharge energy calculation unit used to calculate discharge energy according to the power information
  • a judgment unit configured to judge whether the power adjustment condition is established based on the discharge power integral value and the discharge energy
  • an adjustment unit configured to adjust the maximum allowable output power from the discharge power at the first time to the discharge power at the second time if the power adjustment condition is established, or to adjust the maximum allowable output power from the discharge power at the first time to the discharge power at the second time.
  • the discharge power at the second time is adjusted to the discharge power at the first time.
  • a third aspect of the present invention proposes a battery management system, including: a processor and a memory;
  • the memory is used to store programs
  • the processor is configured to adjust the power of the battery by executing the method for dynamically adjusting power according to any one of the first aspects according to the program.
  • a fourth aspect of the present invention proposes a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to perform the method of dynamically adjusting power according to any one of the first aspects. method.
  • a fifth aspect of the present invention proposes a vehicle, which includes:
  • the battery management system is electrically connected to the battery.
  • Embodiments of the present invention propose methods, battery management systems, equipment, media and vehicles for dynamically adjusting power.
  • the integral value of the discharge power within a preset time threshold is calculated, the discharge energy is calculated based on the power information, and the integral value of the discharge power is calculated based on the power information. and the discharge energy to determine whether it is necessary to adjust the maximum allowable output power from the discharge power at the first time to the discharge power at the second time, or to adjust the maximum allowable output power from the discharge power at the second time to the discharge power at the first time.
  • This embodiment detects the actual status of the current battery and combines the current actual power information to adjust the maximum allowable output power between short-term discharge power and long-term discharge power.
  • On the premise of protecting the battery it can meet the requirements of different working conditions of the entire vehicle. power requirements, improve driving experience, slow down battery aging, and extend vehicle service life.
  • Figure 1 is a schematic structural diagram of a battery management system provided by an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • FIG. 3 is a flow chart of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • FIG. 4 is a flow chart of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of data access of the first array of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of data access of the second array of the method for dynamically adjusting power provided by an embodiment of the present invention.
  • FIG. 7 is a flow chart of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • Figure 8 is a flow chart of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • FIG. 9 is a flow chart of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • Figure 10 is a flow chart of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • Figure 11 is a flow chart of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of power information of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • FIGS 13a-13c are schematic diagrams of principles provided by yet another embodiment of the present invention.
  • Figure 14 is a structural block diagram of a dynamic power adjustment device provided by an embodiment of the present invention.
  • SOC usage interval should comprehensively weigh various influencing factors (total energy design, battery box design, vehicle quality, cruising range, etc.). Therefore, a comprehensive and balanced selection is required to determine the best solution for SOC usage.
  • lithium batteries are increasingly used as the main energy storage device.
  • Lithium batteries have high energy density and low power density characteristics, and can well meet load power requirements.
  • their battery performance has attracted much attention.
  • hybrid vehicles are also strongly promoted, which puts forward new requirements for the power performance management of lithium batteries. High demands.
  • a commonly used discharge power control strategy for battery management systems is to output a relatively conservative discharge power, that is, to match long-term discharge power with a certain power limitation strategy to meet the basic power requirements of the entire vehicle.
  • this discharge power control strategy cannot meet the short-term high-power discharge requirements of the entire vehicle.
  • the secondary acceleration of the vehicle requires greater power in a shorter period of time.
  • the battery management system cannot provide greater power, which will It affects the acceleration performance of the entire vehicle, so the battery management needs to output larger power, that is, short-term discharge power to provide acceleration for the entire vehicle. If the output discharge power is simply adjusted to short-term discharge power, there will be continuous short-term high-power discharge to undervoltage.
  • embodiments of the present invention provide a method, battery management system, equipment, media and vehicles for dynamically adjusting power.
  • the integrated value of discharge power within a preset time threshold is calculated, and the discharge energy is calculated based on the power information.
  • the integrated value of the discharge power and the discharge energy determine whether the maximum allowable output power needs to be adjusted from the discharge power at the first time to the discharge power at the second time, or whether the maximum allowable output power needs to be adjusted from the discharge power at the second time to the discharge power at the first time.
  • This embodiment detects the actual status of the current battery and combines the current actual power information to adjust the maximum allowable output power between short-term discharge power and long-term discharge power, thereby satisfying the different working conditions of the vehicle on the premise of protecting the battery.
  • Lower power requirements improve driving experience, slow down battery aging, and extend vehicle service life. It is suitable for battery management systems of different types of new energy vehicles such as pure electric and hybrid vehicles to meet the vehicle power requirements under different working conditions.
  • Embodiments of the present invention provide methods, battery management systems, devices, media, and vehicles for dynamically adjusting power, which are specifically described through the following embodiments. First, the method for dynamically adjusting power in embodiments of the present invention is described.
  • the method for dynamically adjusting power provided by embodiments of the present invention relates to the technical field of power management, and in particular to the technical field of battery power management.
  • the method for dynamically adjusting power provided by the embodiment of the present invention can be applied in a terminal or a server, or can be software running in a terminal or a server. Among them, the terminal communicates with the server through the network.
  • the method of dynamically adjusting power can be executed by the terminal or the server, or by the terminal and the server collaboratively.
  • FIG. 1 is a schematic structural diagram of a battery management system 100 using a method of dynamically adjusting power provided by an embodiment of the present application.
  • the battery management system 100 may be installed on an electric vehicle or a hybrid vehicle.
  • the battery management system 100 may include: a processor 110 and a memory 120 .
  • the processor 110 and the memory 120 are electrically connected directly or indirectly to realize data transmission or interaction.
  • these components can be electrically connected to each other through one or more communication buses or signal lines.
  • the above method includes at least one software module that can be stored in the memory 120 or solidified in the battery management system 100 in the form of software or firmware.
  • the processor 110 is configured to execute executable modules stored in the memory 120 .
  • the processor 110 is connected to the battery or battery component. After receiving the execution instruction, the processor 110 executes the computer program of the method of dynamically adjusting power to adjust the power of the battery.
  • the processor 110 may be an integrated circuit chip with signal processing capabilities.
  • Processor 110 also It can be a general-purpose processor, for example, it can be a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a discrete gate or transistor logic device, or a discrete hardware component, which can implement or execute the implementation of this application.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • ASIC Application Specific Integrated Circuit
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the memory 120 may be, but is not limited to, random access memory (Random Access Memory, RAM), read only memory (Read Only Memory, ROM), programmable read-only memory (Programmable Read-Only Memory, PROM), erasable and removable memory. Programmable read-only memory (Erasable Programmable Read-Only Memory, EPROM), and electrically erasable programmable read-only memory (Electric Erasable Programmable Read-Only Memory, EEPROM).
  • RAM Random Access Memory
  • ROM read only memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically erasable programmable read-only memory
  • the battery management system 100 can be installed on a smart vehicle-mounted device.
  • the smart vehicle-mounted device detects the current actual status of the battery and combines the current actual power information to adjust between short-term discharge power and long-term discharge power.
  • the maximum allowable output power can meet the power requirements of the vehicle under different working conditions on the premise of protecting the battery, improve the driving experience, slow down the aging of the battery, and extend the service life of the vehicle. It is suitable for the power adjustment process of the vehicle under different working conditions.
  • the battery management system 100 can also be loaded in a server.
  • the server can be an independent server, or it can provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, and middleware. Cloud servers for basic cloud computing services such as software services, domain name services, security services, and big data and artificial intelligence platforms.
  • the server of the battery management system 100 can be installed on the server.
  • the server can interact with the vehicle management device.
  • the vehicle management device is connected to the battery.
  • corresponding software can be installed on the server.
  • the software can implement a method of dynamically adjusting power. applications, etc., but are not limited to the above forms.
  • the vehicle-mounted management device and the server can be connected through Bluetooth, USB, network or other communication connection methods, and this embodiment is not limited here.
  • FIG. 2 is only illustrative.
  • the battery management system 100 provided by the embodiment of the present application may also have fewer or more components than that shown in FIG. 2 , or have a different configuration than that shown in FIG. 2 .
  • each component shown in Figure 2 can be implemented by software, hardware, or a combination thereof.
  • Figure 2 is an optional flow chart of a method for dynamically adjusting power provided by an embodiment of the present invention.
  • the method in Figure 2 may include, but is not limited to, steps S110 to S170. It can be understood that this embodiment has The order of steps S110 to S170 in 2 is not specifically limited, and the order of steps can be adjusted or certain steps can be reduced or added according to actual needs.
  • Step S110 Obtain power information.
  • the power information includes: the first time discharge power Pwr_S1, the second time discharge power Pwr_S2 and the maximum allowed output power Pwr_BMS_Out.
  • the maximum allowable output power Pwr_BMS_Out represents the maximum allowable discharge power output in the battery management system, which is used to limit the maximum discharge power that the vehicle controller can output.
  • the embodiment of this application combines the current operating status of the vehicle and the actual power usage state, the maximum allowable output power Pwr_BMS_Out is dynamically adjusted according to the first time discharge power Pwr_S1 and the second time discharge power Pwr_S2.
  • step S110 includes but is not limited to steps S111 to step S113.
  • Step S111 obtain the current working status and cut-off voltage.
  • the cut-off voltage is the discharge cut-off voltage of the battery
  • the current working state includes: the current state of charge SOC and the current operating temperature. Since the battery power is related to the current state of charge SOC and current operating temperature, when performing subsequent power adjustment, it is necessary to obtain the current state of charge SOC and current operating temperature to improve the adjustment accuracy.
  • Step S112 Calculate the discharge power in the first time.
  • the power value required to continuously discharge to the cut-off voltage within the first preset time under the current working state is used as the first time discharge power.
  • Step S113 Calculate the discharge power during the second time.
  • the power value required to continue discharging to the cut-off voltage within the second preset time under the current working state is used as the second time discharge power, and the first preset time is shorter than the second preset time.
  • the first preset time is shorter, and the corresponding discharge power Pwr_S1 of the first time is also called short-time discharge power.
  • the second preset time is longer than the first preset time, and the corresponding discharge power Pwr_S1 of the second time is Pwr_S2 is also called long-term discharge power.
  • the value of the first-time discharge power Pwr_S1 is greater than the second-time discharge power Pwr_S2.
  • the first preset time and the second preset time are set based on actual operating conditions or prior knowledge obtained based on actual test data for different vehicle models.
  • the first preset time t1 can be 2s
  • the second preset time t2 can be 10s
  • the corresponding first time discharge power Pwr_S1 can also be expressed as Pwr_2S
  • the second preset time is longer than the first preset time.
  • the corresponding second time discharge power Pwr_S2 can also be expressed as Pwr_10S. It can be understood that this embodiment only illustrates the first preset time and the second preset time, and does not mean to limit them.
  • step S112 the power value required to continuously discharge to the cut-off voltage within the first preset time under the current working state is calculated as the first time discharge power, that is, according to the current state of charge SOC and the current working state.
  • the maximum power value used is used as the short-term first time discharge power Pwr_S1.
  • step S113 the power value required to continuously discharge to the cut-off voltage within the second preset time in the current working state is calculated as the second time discharge power, that is, according to the current state of charge SOC and the current working state.
  • the maximum power value used is used as the long-term second time discharge power Pwr_S2.
  • the corresponding relationship between the first time discharge power Pwr_S1 and the second time discharge power Pwr_S2 under different states of charge SOC and operating temperature can also be generated into a power lookup table, and the corresponding first time discharge power can be queried at any time as needed.
  • Step S120 Calculate the integrated value of the discharge power within the preset time threshold.
  • the preset time threshold includes two time threshold windows, namely: a first time threshold T1 and a second time threshold T2.
  • This embodiment calculates the integral value of the discharge power within the preset time threshold, that is, counts the integral amount of the actual discharge power within the two time threshold windows, and uses the statistically obtained integral amount as part of the basis for subsequent power adjustment.
  • the actual discharge power is the actual power during vehicle operation and is expressed as Pwr_user.
  • the total voltage is the current voltage of the battery, and the current is the current current of the battery. Since the battery has two states: charging and discharging, in this embodiment, the charging current is defined as positive and the discharging current is negative. That is, when Pwr_user>0, it means that the actual power is discharge power, and Pwr_user ⁇ 0 means that the actual power is feedback power or charging. power. In this embodiment, the power is adjusted during driving, so the calculation of the actual power is also performed in the driving mode, so the actual power Pwr_user ⁇ 0 means the feedback power.
  • the first time threshold T1 and the second time threshold T2 are determined based on actual needs or prior knowledge obtained based on actual test data for different models.
  • the first time threshold T1 can be 3 seconds
  • the second time threshold T2 can be It's 15s. It can be understood that this embodiment only illustrates the first preset time and the second preset time, and does not mean to limit them.
  • step S120 includes but is not limited to step S121 to step S124.
  • Step S121 Obtain the actual power at each time sampling point within the first time threshold.
  • Step S122 Sum the actual power within the first time threshold to obtain the first integrated value of discharge power.
  • Step S123 Obtain the actual power at each time sampling point within the second time threshold.
  • Step S124 Sum the actual power within the second time threshold to obtain the second integrated value of discharge power.
  • the number of time sampling points within the first time threshold T1 is first obtained.
  • the scheduling period refers to the period for dynamic power adjustment, which can be set according to actual conditions. For example, it can be 100ms, so when the first time threshold T1 is 3s, 1s is sampled 10 times, and the number of corresponding time sampling points is 30.
  • the actual power Pwr_user is recorded every time it is scheduled, and the actual power Pwr_user at each time sampling point within the first time threshold T1 is obtained and stored in the first array AT1.
  • the second time threshold T2 is 15 s
  • sampling is performed 10 times per s
  • the number of corresponding time sampling points is 150.
  • the actual power Pwr_user is recorded every time it is scheduled, and the actual power Pwr_user at each time sampling point within the second time threshold T2 is obtained and stored in the second array AT2.
  • the initial values of the elements in the first array AT1 and the second array AT2 are 0 by default. Since the discharge power is positive and the feedback power is negative, in this embodiment, when the actual power Pwr_user>0 indicates the discharge state, the values filled in the first array AT1 and the second array AT2 are equal to Pwr_user; when Pwr_user ⁇ 0, When indicating the feedback state, fill in the first array AT1 and the second array AT2 with the value equal to 0.
  • FIG. 5 is a schematic diagram of data access of the first array AT1 corresponding to the first time threshold T1 in the embodiment of the present application.
  • the first time threshold T1 is 3s, sampling is done once at 0.1s, and the number of corresponding time sampling points is 30. Taking 14s to 17s as an example, at 17s, the first array AT1 deletes the actual power value stored at 13.9s and writes the actual power value at 17s. The first array AT1 contains 30 actual powers Pwr_user.
  • FIG. 6 is a schematic diagram of data access of the second array AT2 corresponding to the second time threshold T2 in the embodiment of the present application.
  • the second time threshold T2 is 15s, sampling is performed once at 0.1s, and the number of corresponding time sampling points is 150. Taking 2s to 17s as an example, at 17s, the second array AT2 deletes the actual power value stored at 1.9s and writes the actual power value at 17s. The second array AT2 contains 150 actual powers Pwr_user.
  • step S122 sums the actual power Pwr_user of the first array AT1 to obtain the first integrated discharge power value Area_T1.
  • the following takes the number of time sampling points of the first time threshold T1 as 30 as an example to illustrate the calculation process, which is expressed as:
  • step S124 sums the actual power Pwr_user of the second array AT2 to obtain the second discharge power integrated value Area_T2.
  • the following takes the number of time sampling points of the second time threshold T2 as 150 as an example to illustrate the calculation process, which is expressed as:
  • the discharge energy is then calculated.
  • Step S130 Calculate discharge energy based on power information.
  • the discharge energy includes: first time discharge energy Pwr_Sht_Area corresponding to the first time discharge power Pwr_S1 and second time discharge energy Pwr_Lng_Area corresponding to the second time discharge power Pwr_S2.
  • step S130 includes but is not limited to step S131 to step S133.
  • Step S131 obtain the cut-off voltage.
  • Step S132 Calculate the first time discharge energy output corresponding to the first time when the discharge power is discharged to the cut-off voltage.
  • Step S133 Calculate the second time discharge energy output corresponding to the second time when the discharge power is discharged to the cut-off voltage.
  • the first time discharge energy Pwr_Sht_Area is the total energy released during the process of discharging to the cut-off voltage with the first time discharge power Pwr_S1.
  • the second time discharge energy Pwr_Lng_Area is the total energy released during the process of discharging to the cut-off voltage with the second time discharge power Pwr_S2.
  • Step S140 Determine whether the power adjustment condition is established based on the discharge power integral value and the discharge energy.
  • Step S150 Adjust the maximum allowable output voltage according to the power adjustment conditions.
  • the maximum allowable output power is adjusted from the discharge power at the first time to the discharge power at the second time, or the maximum allowable output power is adjusted from the discharge power at the second time to the first time. Discharge power.
  • the power adjustment condition includes: a first power adjustment condition and a second power adjustment condition. If the first power adjustment condition is established, the maximum allowable output power is adjusted from the first time discharge power to the second time discharge power. If the second power adjustment condition is established, the maximum allowable output power is adjusted from the second time discharge power to the first time discharge power.
  • step S140 when the power adjustment condition is the first power adjustment condition, referring to FIG. 8 , step S140 includes but is not limited to step S810 to step S840.
  • Step S810 Obtain the first adjustment trigger parameter and the second adjustment trigger parameter.
  • the first adjustment trigger parameter A and the second adjustment trigger parameter B are both percentages, less than 100%. They can be calibrated according to actual needs or a priori knowledge obtained from actual test data for different models, and are used to characterize whether The process of dynamic adjustment of discharge power needs to be triggered.
  • Step S820 Determine whether the first adjustment trigger condition is established.
  • whether the first adjustment trigger condition is established is determined based on the first discharge power integrated value Area_T1, the first adjustment trigger parameter A and the first time discharge energy Pwr_Sht_Area.
  • the establishment of the first adjustment trigger condition is expressed as: Area_T1>Pwr_Sht_Area*A
  • Step S830 Determine whether the second adjustment trigger condition is established.
  • whether the second adjustment trigger condition is established is determined based on the second discharge power integrated value Area_T2, the second adjustment trigger parameter B and the second time discharge energy Pwr_Lng_Area.
  • the establishment of the second adjustment trigger condition is expressed as: Area_T2>Pwr_Lng_Area*B
  • step S840 is used to determine whether the first power adjustment condition is established.
  • Step S840 If any one of the first adjustment trigger condition and the second adjustment trigger condition is established, the first power adjustment condition is established.
  • any one of the above-mentioned first adjustment triggering condition and the second adjustment triggering condition is satisfied, it means that the first power adjustment condition is established, and the discharge power is adjusted. Otherwise, statistics related to the working status will continue until the third A power adjustment condition is established.
  • the maximum allowable output power is adjusted from the first time discharge power to the second time discharge power.
  • the maximum allowable output power Pwr_BMS_Out is initially equal to the first time discharge power Pwr_S1.
  • the power adjustment stage mainly adjusts the maximum allowable output power Pwr_BMS_Out from the first time discharge power Pwr_S1 to The discharge power Pwr_S2 is discharged at the second time, that is, the maximum allowable output power Pwr_BMS_Out is reduced.
  • step S150 when the power adjustment condition is the first power adjustment condition, step S150 includes but is not limited to step S910 to step S920.
  • Step S910 obtain the first parameter.
  • Step S920 Decrease the maximum allowable output power from the discharge power at the first time to the discharge power at the second time according to the first parameter.
  • the maximum allowable output power Pwr_BMS_Out is adjusted from the discharge power Pwr_S1 at the first time to the discharge power Pwr_S2 at the second time.
  • the first parameter N1 is set according to actual needs or prior knowledge obtained from actual test data for different models. The unit of this parameter is Kw/s, and then the first parameter N1 is used. The maximum allowable output power Pwr_BMS_Out is reduced from the first time discharge power Pwr_S1 to the second time discharge power Pwr_S2.
  • the first parameter N1 in this embodiment should not be too small to prevent the entire vehicle from continuing to discharge at high power during the power adjustment stage, causing an undervoltage fault.
  • the maximum allowable output power Pwr_BMS_Out is reduced to the second time discharge power Pwr_S2.
  • Pwr_BMS_Out rises again to the first time discharge power Pwr_S1.
  • steps S160 to S170 are used to restore the maximum allowable output power Pwr_BMS_Out to ensure vehicle driving performance and driving experience.
  • the power adjustment condition is the second power adjustment condition
  • whether the second power adjustment condition is established is determined based on the discharge power integral value and the discharge energy.
  • step S140 when the power adjustment condition is the second power adjustment condition, step S140 includes but is not limited to step S1010 to step S1040.
  • Step S1010 Obtain the first recovery trigger parameter and the second recovery trigger parameter.
  • the first recovery trigger parameter Recover_A and the second recovery trigger parameter Recover_B are both percentages, less than 100%. They can be calibrated according to actual needs or prior knowledge obtained from actual test data for different models, and are used to characterize whether The process of dynamic adjustment of discharge power needs to be restored.
  • Step S1020 determine whether the first recovery trigger condition is established.
  • whether the first recovery trigger condition is established is determined based on the first discharge power integral value Area_T1, the first recovery trigger parameter Recover_A, and the first time discharge energy Pwr_Sht_Area.
  • the establishment of the first recovery trigger condition is expressed as: Area_T1 ⁇ Pwr_Sht_Area*Recover_A
  • Step S1030 determine whether the second recovery trigger condition is established.
  • whether the second recovery trigger condition is established is determined based on the second discharge power integrated value Area_T2, the second recovery trigger parameter Recover_B and the second time discharge energy Pwr_Lng_Area.
  • the establishment of the second recovery trigger condition is expressed as: Area_T2 ⁇ Pwr_Lng_Area*Recover_B
  • step S1040 is used to determine whether the second power adjustment condition is established.
  • Step S1040 If both the first recovery trigger condition and the second recovery trigger condition are established, the second power adjustment condition is established.
  • both the first recovery trigger condition and the second recovery trigger condition are satisfied, it means that the second power adjustment condition is established, and the power adjustment process is resumed. Otherwise, wait until the second power adjustment condition is established.
  • the maximum allowable output power is adjusted from the second time discharge power to the first time discharge power.
  • the maximum allowable output power Pwr_BMS_Out is equal to the second time discharge power Pwr_S2.
  • the power adjustment stage mainly changes the maximum allowable output power Pwr_BMS_Out by the second time discharge power Pwr_S2. Return to the first time discharge power Pwr_S1, that is, increase the maximum allowable output power Pwr_BMS_Out.
  • step S150 includes but is not limited to step S1110 to step S1120.
  • Step S1110 obtain the second parameter.
  • Step S1120 Increase the maximum allowable output power from the second time discharge power to the first time discharge power according to the second parameter.
  • the discharge power Pwr_S1 at the first time is greater than the discharge power Pwr_S2 at the second time
  • the maximum allowable output needs to be increased.
  • the value of power Pwr_BMS_Out therefore, set the second parameter N2 according to actual needs or prior knowledge obtained from actual test data for different models.
  • the unit of this parameter is Kw/s, and then use the second parameter N2 to set the maximum allowable output power Pwr_BMS_Out by The second time discharge power Pwr_S2 increases to the first time discharge power Pwr_S1.
  • FIG 12 is a schematic diagram of power information in an embodiment of the present application.
  • the method of dynamically adjusting power in this embodiment is to monitor the actual status of the current battery in real time, such as the remaining state of charge (SOC) of the battery and the ambient temperature of the battery.
  • SOC state of charge
  • a method is used to dynamically adjust the maximum allowable output power Pwr_BMS_Out according to the first time discharge power Pwr_S1 and the second time discharge power Pwr_S2.
  • Figure 11 illustrates the first time discharge power Pwr_S1, the second time discharge power Pwr_S2, the maximum allowable output power Pwr_BMS_Out, the actual power Pwr_user, the first time threshold T1 and the second time threshold T2.
  • the maximum allowable output power Pwr_BMS_Out represents the maximum allowable discharge power output in the battery management system. It is used to limit the maximum discharge power that the vehicle controller can output. Therefore, the actual power Pwr_user can never be higher than the maximum allowable output power Pwr_BMS_Out.
  • the following describes the changing trend of the actual power during the second acceleration of the vehicle, when the vehicle changes from a constant speed state to a low-power discharge state, and then accelerates to a high-power discharge.
  • the motor When the vehicle is discharging (such as acceleration state or constant speed state), the motor requests a discharge power A' from the battery management system.
  • the actual power Pwr_user is the discharge power A' requested by the motor and the maximum allowable output power Pwr_BMS_Out output by the battery management system.
  • Control for example, the actual power Pwr_user, that is, the final discharge power of the motor takes the minimum value of the discharge power A' requested by the motor and the maximum allowed output power Pwr_BMS_Out.
  • the maximum allowed output power Pwr_BMS_Out output by the battery management system can also be described as the maximum target discharge power that the battery can provide to the motor.
  • this embodiment triggers the first power adjustment condition to reduce the maximum allowable output power Pwr_BMS_Out output by the battery management system before the pre-undervoltage, thereby reducing the maximum allowable output power Pwr_BMS_Out.
  • the discharge power of the motor is reduced, thereby avoiding the problem of discharge undervoltage.
  • One purpose of dynamically adjusting power in this embodiment is to reduce the discharge power of the motor by reducing the maximum allowable output power Pwr_BMS_Out. This is manifested in the fact that the actual power Pwr_user rises to a certain value and then decreases after maintaining it for a period of time.
  • the second power adjustment condition is triggered to restore the maximum allowable output power Pwr_BMS_Out output by the battery management system and increase the maximum allowable output power Pwr_BMS_Out, thereby increasing the actual power Pwr_user and ensuring Vehicle driving performance and driving experience.
  • the maximum allowable output power Pwr_BMS_Out is the first time discharge power. After the short-term high power output is completed, if the first power adjustment condition is met, the maximum allowable output power Pwr_BMS_Out is Adjusting the discharge power from the first time to the second time discharge power can meet the demand for short-term high-power discharge while avoiding the problem of battery being discharged to under-voltage. If it is detected that the second power adjustment condition is met, the maximum allowable output power Pwr_BMS_Out is adjusted from the second time discharge power to the first time discharge power to meet the subsequent short-term high-power discharge requirements.
  • the maximum allowable output power is adjusted between short-term discharge power and long-term discharge power to meet the different requirements of the entire vehicle on the premise of protecting the battery. power requirements under working conditions, improve driving experience, slow down battery aging, and extend vehicle service life.
  • 13a-13c are schematic diagrams of the principles of dynamically adjusting power in an embodiment of the present application.
  • Figures 13a to 13c take the second time threshold T2 as an example.
  • the first time threshold T1 is not shown, which does not mean that the entire power adjustment process is only related to the second time threshold T2.
  • the second time threshold T2 in the figure is a sliding window.
  • the accumulated amount of actual power Pwr_user within the second time threshold T2 is the second discharge power integral value Area_T2, and according to the second discharge power integral value Area_T2 and the theoretically released
  • the relationship between the total energy and the discharge energy Pwr_Lng_Area at the second time can be obtained to determine whether the first power adjustment condition or the second power adjustment condition is established, thereby controlling the maximum allowable output power Pwr_BMS_Out output by the battery management system, and thereby achieving the purpose of controlling the actual power Pwr_user.
  • the area enclosed by the actual power Pwr_user and the time axis t in the figure can represent the second discharge power integrated value Area_T2 within the second time threshold T2.
  • the acceleration state of the entire vehicle is simulated.
  • the entire vehicle will discharge with greater power.
  • the method of dynamically adjusting the discharge power is triggered in this state.
  • Area_T2>Pwr_Lng_Area*B is detected, the first power adjustment condition is triggered, and the maximum allowed output power Pwr_BMS_Out decreases from the first time discharge power Pwr_S1 to the second time discharge power Pwr_S2 at a certain rate (for example, N1).
  • the battery management system does not allow short-term high-power discharge of the entire vehicle.
  • the power used by the vehicle to maintain this state is not very large. If the first recovery trigger condition: Area_T2 ⁇ Pwr_Lng_Area*Recover_B and the second recovery trigger condition: Area_T2 ⁇ Pwr_Lng_Area*Recover_B calculated at this time are both true, it means that the battery management system allows the entire vehicle to perform short-term high-power discharge, and the maximum allowed output is The power Pwr_BMS_Out rises from the second time discharge power Pwr_S2 to the first time discharge power Pwr_S1 at a certain rate (for example, N2). On the contrary, it means that the battery management system does not allow the vehicle to perform short-term high-power discharge, and it needs to continue to wait for the opportunity for power recovery.
  • a certain rate for example, N2
  • This embodiment mainly introduces short-term discharge power for driving needs, improves the acceleration performance of the entire vehicle, and uses a method of dynamically adjusting power to achieve dynamic adjustment of short-term discharge power and long-term discharge power to avoid the introduction of short-term discharge. power, resulting in an undervoltage condition caused by long-term high-power discharge.
  • This embodiment obtains the power information, calculates the discharge power integral value within the preset time threshold, calculates the discharge energy according to the power information, and determines whether the maximum allowable output power needs to be adjusted from the first time discharge power to Discharge power at the second time, or adjust the maximum allowable output power from the discharge power at the second time to the discharge power at the first time.
  • This embodiment detects the actual status of the current battery and combines the current actual power information to adjust the maximum allowable output power between short-term discharge power and long-term discharge power.
  • On the premise of protecting the battery it can meet the requirements of different working conditions of the entire vehicle. power requirements, improve driving experience, slow down battery aging, and extend vehicle service life.
  • An embodiment of the present invention also provides a device for dynamically adjusting power, which can implement the above method of dynamically adjusting power.
  • the device includes:
  • the power acquisition unit 1410 is used to acquire power information.
  • the power information includes the discharge power at the first time, the discharge power at the second time and the maximum allowed output power.
  • the power integral value calculation unit 1420 is used to calculate the discharge power integral value within a preset time threshold.
  • the discharge energy calculation unit 1430 is used to calculate the discharge energy according to the power information.
  • the judgment unit 1440 is used to judge whether the power adjustment condition is established based on the discharge power integral value and the discharge energy.
  • the adjustment unit 1450 is used to adjust the maximum allowable output power from the discharge power at the first time to the discharge power at the second time, or to adjust the maximum allowable output power from the discharge power at the second time to the first time if the power adjustment condition is established. Discharge power.
  • the power adjustment condition includes a first power adjustment condition and a second power adjustment condition.
  • first power adjustment condition When the adjustment conditions are established, the maximum allowable output power is adjusted from the discharge power at the first time to the discharge power at the second time.
  • second power adjustment condition When the second power adjustment condition is established, the maximum allowable output power is adjusted from the second time discharge power to the first time discharge power.
  • the specific implementation of the device for dynamically adjusting power in this embodiment is basically the same as the specific implementation of the method for dynamically adjusting power, and will not be described again here.
  • An embodiment of the present invention also provides a storage medium.
  • the storage medium is a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are used to cause the computer to perform the above-mentioned dynamic adjustment of power. method.
  • the method for dynamically adjusting power, the device for dynamically adjusting power, electronic equipment, and storage media proposed by the embodiments of the present invention obtain power information, calculate the integral value of the discharge power within a preset time threshold, calculate the discharge energy according to the power information, and calculate the discharge power according to the power information.
  • the integral value and discharge energy determine whether the maximum allowable output power needs to be adjusted from the discharge power at the first time to the discharge power at the second time, or whether the maximum allowable output power needs to be adjusted from the discharge power at the second time to the discharge power at the first time.
  • This embodiment detects the actual status of the current battery and combines the current actual power information to adjust the maximum allowable output power between short-term discharge power and long-term discharge power.
  • On the premise of protecting the battery it can meet the requirements of different working conditions of the entire vehicle. power requirements, improve driving experience, slow down battery aging, and extend vehicle service life.
  • memory can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the memory may include high-speed random access memory and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device.
  • the memory may optionally include memory located remotely from the processor, and the remote memory may be connected to the processor via a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • At least one (item) refers to one or more, and “plurality” refers to two or more.
  • “And/or” is used to describe the relationship between associated objects, indicating that there can be three relationships. For example, “A and/or B” can mean: only A exists, only B exists, and A and B exist simultaneously. , where A and B can be singular or plural. The character “/” generally indicates that the related objects are in an "or” relationship. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c” ”, where a, b, c can be single or multiple.
  • the disclosed devices and methods can be implemented through other way to achieve.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present invention can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including multiple instructions for causing an electronic device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc. that can store programs. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明实施例提供动态调整功率的方法、电池管理系统、设备、介质和车辆,涉及能源管理技术领域。动态调整功率的方法通过获取功率信息,计算预设时间阈值内放电功率积分值,根据功率信息计算放电能量,根据放电功率积分值和放电能量判断是否需要将最大允许输出功率由第一时间放电功率调整为第二时间放电功率,或者将最大允许输出功率由第二时间放电功率调整为第一时间放电功率。本实施例通过检测当前电池的实际状态,结合当前实际的功率信息,在短时放电功率与长时放电功率之间调整最大允许输出功率,在保护电池的前提下,满足整车不同工况下的功率需求,提升驾驶体验,减缓电池老化,延长车辆使用寿命。

Description

动态调整功率的方法、电池管理系统、设备、介质和车辆 技术领域
本发明涉及能源管理技术领域,尤其涉及动态调整功率的方法、电池管理系统、设备、介质和车辆。
背景技术
随着新能源车辆领域的发展,锂电池作为主要的储能装置应用越来越广泛,锂电池具有高能量密度和低功率密度的特性,能够很好的满足负载功率的需求。
相关技术中,电池管理系统比较常用的放电功率控制策略是:输出一个比较保守的放电功率,即对长时放电功率搭配一定的功率限制策略来满足整车的基本功率需求。但是这种放电功率控制策略无法满足整车短时大功率放电的使用需求,例如车辆的二次加速在较短的时间内需要使用较大功率,此时电池管理系统无法提供较大功率,则会影响整车加速性能,所以电池管理需要输出较大功率即短时放电功率提供给整车加速使用。若只是简单的将输出的放电功率调整为短时放电功率,则会有持续短时大功率放电至欠压这种状况发生。
发明内容
本发明实施例的主要目的在于提出动态调整功率的方法、电池管理系统、设备、介质和车辆,通过引入短时放电功率,结合当前电池的实际状态,以及当前实际的功率信息,并搭配动态调整功率的方法,控制最大允许输出功率,使其满足整车不同工况下的功率需求。
为实现上述目的,本发明实施例的第一方面提出了一种动态调整功率的方法,包括:
获取功率信息,所述功率信息包括:第一时间放电功率、第二时间放电功率和最大允许输出功率;
计算预设时间阈值内放电功率积分值;
根据所述功率信息计算放电能量;
根据所述放电功率积分值和所述放电能量判断功率调节条件是否成立;
若所述功率调节条件成立,则将最大允许输出功率由所述第一时间放电功率调整为所述第二时间放电功率,或,将所述最大允许输出功率由所述第二时间放电功率调整为所述第一时间放电功率。
在一些实施例,所述获取功率信息,包括:
获取当前工作状态和截止电压,所述当前工作状态包括:当前荷电状态和当前工作温度;
计算在所述当前工作状态下第一预设时间内持续放电至所述截止电压所需的功率值,作为所述第一时间放电功率;
计算在所述当前工作状态下第二预设时间内持续放电至所述截止电压所需的功率值,作为所述第二时间放电功率,所述第一预设时间比所述第二预设时间短。
在一些实施例,所述预设时间阈值包括:第一时间阈值和第二时间阈值,所述放电功率积分值包括:第一放电功率积分值和第二放电功率积分值,所述计算预设时间阈值内放电功率积分值,包括:
获取所述第一时间阈值内每一个时间采样点的实际功率;
将所述第一时间阈值内所述实际功率求和,得到所述第一放电功率积分值;
获取所述第二时间阈值内每一个时间采样点的实际功率;
将所述第二时间阈值内所述实际功率求和,得到所述第二放电功率积分值。
在一些实施例,所述放电能量包括:所述第一时间放电功率和所述第二时间放电功率分别对应的第一时间放电能量和第二时间放电能量,所述根据所述功率信息计算放电能量,包括:
获取截止电压;
计算所述第一时间放电功率放电至所述截止电压对应输出的所述第一时间放电能量;
计算所述第二时间放电功率放电至所述截止电压对应输出的所述第二时间放电能量。
在一些实施例,所述功率调节条件包括第一功率调节条件,所述根据所述放电功率积分值和所述放电能量判断功率调节条件是否成立,包括:
获取第一调整触发参数和第二调整触发参数;
根据所述第一放电功率积分值、所述第一调整触发参数和所述第一时间放电能量判断第一调整触发条件是否成立;
根据所述第二放电功率积分值、所述第二调整触发参数和所述第二时间放电能量判断第二调整触发条件是否成立;
若所述第一调整触发条件和所述第二调整触发条件中任意一项成立,则所述第一功率调节条件成立。
在一些实施例,当所述第一功率调节条件成立时,将最大允许输出功率由所述第一时间放电功率调整为所述第二时间放电功率,包括:
获取第一参数;
根据所述第一参数将所述最大允许输出功率由所述第一时间放电功率下降调整为所述第二时间放电功率。
在一些实施例,所述功率调节条件包括第二功率调节条件,所述根据所述放电功率积分值和所述放电能量判断功率调节条件是否成立,包括:
获取第一恢复触发参数和第二恢复触发参数;
根据所述第一放电功率积分值、所述第一恢复触发参数和所述第一时间放电能量判断第一恢复触发条件是否成立;
根据所述第二放电功率积分值、所述第二恢复触发参数和所述第二时间放电能量判断第二恢复触发条件是否成立;
若所述第一恢复触发条件和所述第二恢复触发条件均成立,则所述第二功率调节条件成立。
在一些实施例,当所述第一功率调节条件成立时,将最大允许输出功率由所述第一时间放电功率调整为所述第二时间放电功率,包括:
获取第一参数;
根据所述第一参数将所述最大允许输出功率由所述第一时间放电功率下降调整为所述第二时间放电功率。
在一些实施例,所述当所述第二功率调节条件成立时,将所述最大允许输出功率由所述第二时间放电功率调整为所述第一时间放电功率,包括:
获取第二参数;
根据所述第二参数将所述最大允许输出功率由所述第二时间放电功率上升调整为所述第一时间放电功率。
为实现上述目的,本发明的第二方面提出一种动态调整功率的装置,包括:
功率获取单元,用于获取功率信息,所述功率信息包括第一时间放电功率、第二时间放电功率和最大允许输出功率;
功率积分值计算单元,用于计算预设时间阈值内放电功率积分值;
放电能量计算单元,用于根据所述功率信息计算放电能量;
判断单元,用于根据所述放电功率积分值和所述放电能量判断功率调节条件是否成立;
调节单元,用于若所述功率调节条件成立,则将最大允许输出功率由所述第一时间放电功率调整为所述第二时间放电功率,或,将所述最大允许输出功率由所述第二时间放电功率调整为所述第一时间放电功率。
为实现上述目的,本发明的第三方面提出一种电池管理系统,包括:处理器以及存储器;
所述存储器用于存储程序;
所述处理器用于根据所述程序执行如第一方面任一项所述的动态调整功率的方法调整电池的功率。
为实现上述目的,本发明的第四方面提出一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行第一方面中任一项所述的动态调整功率的方法。
为实现上述目的,本发明的第五方面提出一种车辆,所述车辆包括:
电池;
如第三方面所述的电池管理系统,所述电池管理系统与所述电池电性连接。
本发明实施例提出了动态调整功率的方法、电池管理系统、设备、介质和车辆,通过获取功率信息,计算预设时间阈值内放电功率积分值,根据功率信息计算放电能量,根据放电功率积分值和放电能量判断是否需要将最大允许输出功率由第一时间放电功率调整为第二时间放电功率,或者将最大允许输出功率由第二时间放电功率调整为第一时间放电功率。本实施例通过检测当前电池的实际状态,结合当前实际的功率信息,在短时放电功率与长时放电功率之间调整最大允许输出功率,在保护电池的前提下,满足整车不同工况下的功率需求,提升驾驶体验,减缓电池老化,延长车辆使用寿命。
附图说明
图1是本发明实施例提供的电池管理系统的结构示意图。
图2是本发明一实施例提供的动态调整功率的方法的流程图。
图3是本发明一实施例提供的动态调整功率的方法的流程图。
图4是本发明一实施例提供的动态调整功率的方法的流程图。
图5是本发明一实施例提供的动态调整功率的方法的第一数组的数据存取示意图。
图6是本发明一实施例提供的动态调整功率的方法的第二数组的数据存取示意。
图7是本发明一实施例提供的动态调整功率的方法的流程图。
图8是本发明一实施例提供的动态调整功率的方法的流程图。
图9是本发明一实施例提供的动态调整功率的方法的流程图。
图10是本发明一实施例提供的动态调整功率的方法的流程图。
图11是本发明一实施例提供的动态调整功率的方法的流程图。
图12是本发明一实施例提供的动态调整功率的方法的功率信息示意图。
图13a-图13c是本发明又一实施例提供的原理示意图。
图14是本发明实施例提供的动态调整功率装置的结构框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本发明实施例的目的,不是旨在 限制本发明。
电池剩余荷电状态(state of charge,SOC):表示锂电池的充电比例,又称荷电状态或剩余电量,表示电池使用一段时间或长期搁置不用后的剩余容量和其完全充电状态的容量的比值,常用百分数表示,其取值范围为0~1,当SOC=0时表示电池放电完全,当SOC=1时表示电池完全充满。SOC使用区间的选择应该综合权衡各个影响因素(总能量的设计、电池箱体的设计、整车质量、续航里程等),因此需进行综合平衡选择,确定SOC使用的最佳方案。
随着新能源车辆领域的发展,锂电池作为主要的储能装置应用越来越广泛,锂电池具有高能量密度、低功率密度特性,能够很好满足负载功率需求。锂电池的大规模应用,其电池性能备受关注,随着动力锂电池应用场景的不断拓展,除了纯电动车辆外,混合动力车辆也被大力推崇,这就对锂电池的功率性能管理提出更高要求。
相关技术中,电池管理系统比较常用的放电功率控制策略是:输出一个比较保守的放电功率,即对长时放电功率搭配一定的功率限制策略来满足整车的基本功率需求。但是这种放电功率控制策略无法满足整车短时大功率放电的需求,例如车辆的二次加速在较短的时间内需要使用较大功率,此时电池管理系统无法提供较大功率,则会影响整车加速性能,所以电池管理需要输出较大功率即短时放电功率提供给整车加速使用。若只是简单的将输出的放电功率调整为短时放电功率,则会有持续短时大功率放电至欠压这种状况发生,所以就需要引入动态调整放电功率方法,根据整车实际使用的功率对电池管理系统输出的放电功率进行动态调整,将短时放电功率调整为长时放电功率。在保护电池的前提下,满足整车不同工况下的功率需求。
基于此,本发明实施例提供一种动态调整功率的方法、电池管理系统、设备、介质和车辆,通过获取功率信息,计算预设时间阈值内放电功率积分值,根据功率信息计算放电能量,根据放电功率积分值和放电能量判断是否需要将最大允许输出功率由第一时间放电功率调整为第二时间放电功率,或者将最大允许输出功率由第二时间放电功率调整为第一时间放电功率。
本实施例通过检测当前电池的实际状态,结合当前实际的功率信息,在短时放电功率与长时放电功率之间调整最大允许输出功率,从而在保护电池的前提下,满足整车不同工况下的功率需求,提升驾驶体验,减缓电池老化,延长车辆使用寿命。适用于纯电动、混合动力等不同类型新能源车辆的电池管理系统,满足不同工况下的整车功率需求。
本发明实施例提供动态调整功率的方法、电池管理系统、设备、介质和车辆,具体通过如下实施例进行说明,首先描述本发明实施例中的动态调整功率的方法。
本发明实施例提供的动态调整功率的方法,涉及电源管理技术领域,尤其涉及电池功率管理技术领域。本发明实施例提供的动态调整功率的方法可应用于终端中,也可应用于服务器端中,还可以是运行于终端或服务器端中的软件。其中,终端通过网络与服务器进行通信。该动态调整功率的方法可以由终端或服务器执行,或由终端和服务器协同执行。
首先,对动态调整功率的方法进行说明,请参阅图1,本申请实施例提供的一种动态调整功率方法的电池管理系统100的结构示意图。其中,电池管理系统100可以安装在电动车辆或混动车辆上。在结构上,电池管理系统100可以包括:处理器110、存储器120。
该实施例中,处理器110与存储器120直接或间接地电性连接,以实现数据的传输或交互,例如,这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。上述方法包括至少一个可以软件或固件(Firmware)的形式存储在存储器120中或固化在电池管理系统100中的软件模块。处理器110用于执行存储器120中存储的可执行模块。处理器110与电池或电池组件连接,在接收到执行指令后,执行动态调整功率的方法的计算机程序调整电池的功率。
该实施例中,处理器110可以是一种集成电路芯片,具有信号处理能力。处理器110也 可以是通用处理器,例如,可以是数字信号处理器(DigitalSignalProcessor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、分立门或晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。此外,通用处理器可以是微处理器或者任何常规处理器等。存储器120可以是,但不限于,随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦可编程序只读存储器(Erasable Programmable Read-Only Memory,EPROM),以及电可擦编程只读存储器(Electric Erasable Programmable Read-Only Memory,EEPROM)。存储器120用于存储程序,处理器110在接收到执行指令后,执行该程序。
在一实施例中,电池管理系统100可以安装在智能车载设备上,该智能车载设备通过检测当前电池的实际状态,结合当前实际的功率信息,在短时放电功率与长时放电功率之间调整最大允许输出功率,从而在保护电池的前提下,满足整车不同工况下的功率需求,提升驾驶体验,减缓电池老化,延长车辆使用寿命,适用于不同工况下的整车功率调节过程。
在一实施例中,电池管理系统100也可以装载于服务器中,服务器可以是独立的服务器,也可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、以及大数据和人工智能平台等基础云计算服务的云服务器。服务器上可以安装电池管理系统100的服务端,通过该服务端可以与车载管理设备进行交互,车载管理设备与电池连接,例如服务端上安装对应的软件,软件可以是实现动态调整功率的方法的应用等,但并不局限于以上形式。车载管理设备与服务器之间可以通过蓝牙、USB或者网络等通讯连接方式进行连接,本实施例在此不做限制。
需要说明的是,图2所示的结构仅为示意,本申请实施例提供的电池管理系统100还可以具有比图2更少或更多的组件,或是具有与图2所示不同的配置。此外,图2所示的各组件可以通过软件、硬件或其组合实现。
图2是本发明实施例提供的动态调整功率的方法的一个可选的流程图,图2中的方法可以包括但不限于包括步骤S110至步骤S170,同时可以理解的是,本实施例对图2中步骤S110至步骤S170的顺序不做具体限定,可以根据实际需求调整步骤顺序或者减少、增加某些步骤。
步骤S110:获取功率信息。
在一实施例中,功率信息包括:第一时间放电功率Pwr_S1、第二时间放电功率Pwr_S2和最大允许输出功率Pwr_BMS_Out。其中,最大允许输出功率Pwr_BMS_Out表示电池管理系统中输出的最大允许放电功率,是用来限制整车控制器所能输出的最大放电功率,本申请实施例结合当前整车的运行状况和实际功率使用状态,根据第一时间放电功率Pwr_S1与第二时间放电功率Pwr_S2对最大允许输出功率Pwr_BMS_Out进行动态调整。
在一实施例中,参照图3,步骤S110包括但不限于步骤S111至步骤S113。
步骤S111,获取当前工作状态和截止电压。
在一实施例中,截止电压即电池的放电截止电压,当前工作状态包括:当前荷电状态SOC和当前工作温度。由于电池功率与当前荷电状态SOC和当前工作温度有关系,因此在进行后续功率调节时,需要获取当前荷电状态SOC和当前工作温度,提高调节精度。
步骤S112,计算第一时间放电功率。
在一实施例中,在当前工作状态下第一预设时间内持续放电至截止电压所需的功率值,作为第一时间放电功率。
步骤S113,计算第二时间放电功率。
在一实施例中,在当前工作状态下第二预设时间内持续放电至截止电压所需的功率值,作为第二时间放电功率,第一预设时间比第二预设时间短。
在一实施例中,第一预设时间较短,对应的第一时间放电功率Pwr_S1也称为短时放电功率,第二预设时间比第一预设时间长,对应的第二时间放电功率Pwr_S2也称为长时放电功率,该实施例中,第一时间放电功率Pwr_S1的值大于第二时间放电功率Pwr_S2。
在一实施例中,根据实际运行状态或者不同车型根据实际测试数据得到的先验知识设定第一预设时间和第二预设时间。例如,第一预设时间t1可以是2s,第二预设时间t2可以是10s,即对应的第一时间放电功率Pwr_S1也可表示为Pwr_2S,第二预设时间比第一预设时间长,对应的第二时间放电功率Pwr_S2也可表示为Pwr_10S。可以理解的是,本实施例仅对第一预设时间和第二预设时间进行示意,不代表对其进行限定。
在一实施例中,步骤S112中,计算在当前工作状态下第一预设时间内持续放电至截止电压所需的功率值,作为第一时间放电功率,即根据当前荷电状态SOC和当前工作温度,将电池在恒功率状态下,持续第一预设时间(例如2S)放电至截止电压时,所使用的最大功率值作为短时的第一时间放电功率Pwr_S1。
在一实施例中,步骤S113中,计算在当前工作状态下第二预设时间内持续放电至截止电压所需的功率值,作为第二时间放电功率,即根据当前荷电状态SOC和当前工作温度,将电池在恒功率状态下,持续第二预设时间(例如10S)放电至截止电压时,所使用的最大功率值作为长时的第二时间放电功率Pwr_S2。
在一实施例中,也可以将不同荷电状态SOC和工作温度下第一时间放电功率Pwr_S1和第二时间放电功率Pwr_S2之间的对应关系生成功率查询表,随时根据需要查询对应的第一时间放电功率Pwr_S1和第二时间放电功率Pwr_S2。本申请对第一时间放电功率Pwr_S1和第二时间放电功率Pwr_S2的获取方式不做具体限定。
步骤S120:计算预设时间阈值内放电功率积分值。
在一实施例中,预设时间阈值包括两个时间阈值窗口,分别是:第一时间阈值T1和第二时间阈值T2。本实施例计算预设时间阈值内放电功率积分值即统计这两个时间阈值窗口内实际放电功率的积分量,将统计得到的积分量作为后续进行功率调整的部分依据。
在一实施例中,实际放电功率即车辆运行过程中的实际功率,表示为Pwr_user。该实施例中,实际功率Pwr_user的计算方法为:
Pwr_user=总压*电流,
其中,总压为电池的当前电压,电流为电池的当前电流。由于电池有充电和放电两种状态,本实施例中定义充电电流为正,放电电流为负,即Pwr_user>0时,表示实际功率为放电功率,Pwr_user<0,表示实际功率为回馈功率或者充电功率。本实施例中调整功率是在行车过程中,因此计算实际功率也在行车模式下执行,所以实际功率Pwr_user<0表示回馈功率。
在一实施例中,第一时间阈值T1和第二时间阈值T2根据实际需求或不同车型根据实际测试数据得到的先验知识确定,例如第一时间阈值T1可以是3s,第二时间阈值T2可以是15s。可以理解的是,本实施例仅对第一预设时间和第二预设时间进行示意,不代表对其进行限定。
参照图4,步骤S120包括但不限于步骤S121至步骤S124。
步骤S121,获取第一时间阈值内每一个时间采样点的实际功率。
步骤S122,将第一时间阈值内实际功率求和,得到第一放电功率积分值。
步骤S123,获取第二时间阈值内每一个时间采样点的实际功率。
步骤S124,将第二时间阈值内实际功率求和,得到第二放电功率积分值。
在一实施例中,首先获取第一时间阈值T1内时间采样点的数量,时间采样点的数量计算过程表示为:
时间采样点的数量=第一时间阈值窗口大小/调度周期
该实施例中,调度周期指进行功率动态调整的周期,可根据实际情况设定。例如可以是100ms,因此当第一时间阈值T1为3s时,1s采样10次,对应的时间采样点的数量为30个。
在一实施例中,每调度一次记录一次实际功率Pwr_user,获取第一时间阈值T1内每一个时间采样点的实际功率Pwr_user,存入第一数组AT1中。
对应地,在一实施例中,当第二时间阈值T2为15s时,1s采样10次,对应的时间采样点的数量为150个。
在一实施例中,每调度一次记录一次实际功率Pwr_user,获取第二时间阈值T2内每一个时间采样点的实际功率Pwr_user,存入第二数组AT2中。
在一实施例中,第一数组AT1和第二数组AT2中元素的初值默认为0。由于放电功率为正,回馈功率为负,该实施例中,当实际功率Pwr_user>0,表示放电状态时,填入第一数组AT1和第二数组AT2数组的值等于Pwr_user;当Pwr_user<0,表示回馈状态时,填入第一数组AT1和第二数组AT2数组的值等于0。
在一实施例中,参照图5,为本申请实施例中第一时间阈值T1对应的第一数组AT1的数据存取示意图。
图5中,第一时间阈值T1为3s,0.1s采样1次,对应的时间采样点的数量为30个。以14s至17s为例说明,第17s时,第一数组AT1删除第13.9s存入的实际功率值,写入第17s的实际功率值,第一数组AT1中包含30个实际功率Pwr_user。
参照图6,为本申请实施例中第二时间阈值T2对应的第二数组AT2的数据存取示意图。
图6中,第二时间阈值T2为15s,0.1s采样1次,对应的时间采样点的数量为150个。以2s至17s为例说明,第17s时,第二数组AT2删除第1.9s存入的实际功率值,写入第17s的实际功率值,第二数组AT2中包含150个实际功率Pwr_user。
在一实施例中,统计得到第一时间阈值T1对应的第一数组AT1后,步骤S122将第一数组AT1的实际功率Pwr_user求和,得到第一放电功率积分值Area_T1。下面以第一时间阈值T1的时间采样点的数量为30个为例说明其计算过程,表示为:
对应的,在一实施例中,统计得到第二时间阈值T2对应的第二数组AT2后,步骤S124将第二数组AT2的实际功率Pwr_user求和,得到第二放电功率积分值Area_T2。下面以第二时间阈值T2的时间采样点的数量为150个为例说明其计算过程,表示为:
在一实施例中,得到上述放电功率积分值后,然后计算放电能量。
步骤S130:根据功率信息计算放电能量。
在一实施例中,放电能量包括:第一时间放电功率Pwr_S1对应的第一时间放电能量Pwr_Sht_Area和第二时间放电功率Pwr_S2对应的第二时间放电能量Pwr_Lng_Area。
参照图7,步骤S130包括但不限于步骤S131至步骤S133。
步骤S131,获取截止电压。
步骤S132,计算第一时间放电功率放电至截止电压对应输出的第一时间放电能量。
步骤S133,计算第二时间放电功率放电至截止电压对应输出的第二时间放电能量。
在一实施例中,第一时间放电能量Pwr_Sht_Area为以第一时间放电功率Pwr_S1放电至截止电压的过程中放出的总能量,计算过程表示为:
Pwr_Sht_Area=Pwr_S1*t1
在一实施例中,第一预设时间t1为2s时,Pwr_Sht_Area=Pwr_S1*2。
同样地,在一实施例中,第二时间放电能量Pwr_Lng_Area为以第二时间放电功率Pwr_S2放电至截止电压的过程中放出的总能量,计算过程表示为:
Pwr_Lng_Area=Pwr_S2*t2
在一实施例中,第二预设时间t2为10s时,Pwr_Lng_Area=Pwr_S1*10。
通过上述实施例得到放电功率积分值和放电能量后,即可进入下面步骤判断是否进行功率调整。
步骤S140:根据放电功率积分值和放电能量判断功率调节条件是否成立。
步骤S150:根据功率调节条件调整最大允许输出电压。
在一实施例中,若功率调节条件成立,则将最大允许输出功率由第一时间放电功率调整为第二时间放电功率,或,将最大允许输出功率由第二时间放电功率调整为第一时间放电功率。
在一实施例中,功率调节条件包括:第一功率调节条件和第二功率调节条件。若第一功率调节条件成立,则将最大允许输出功率由第一时间放电功率调整为第二时间放电功率。若第二功率调节条件成立,将最大允许输出功率由第二时间放电功率调整为第一时间放电功率。
在一实施例中,当功率调节条件是第一功率调节条件时,参照图8,步骤S140包括但不限于步骤S810至步骤S840。
步骤S810,获取第一调整触发参数和第二调整触发参数。
在一实施例中,第一调整触发参数A和第二调整触发参数B均为百分数,小于100%,可以根据实际需求或者不同车型根据实际测试数据得到的先验知识标定,其用于表征是否需要触发放电功率动态调整的过程。
步骤S820,判断第一调整触发条件是否成立。
在一实施例中,根据第一放电功率积分值Area_T1、第一调整触发参数A和第一时间放电能量Pwr_Sht_Area判断第一调整触发条件是否成立,第一调整触发条件成立表示为:
Area_T1>Pwr_Sht_Area*A
步骤S830,判断第二调整触发条件是否成立。
在一实施例中,根据第二放电功率积分值Area_T2、第二调整触发参数B和第二时间放电能量Pwr_Lng_Area判断第二调整触发条件是否成立,第二调整触发条件成立表示为:
Area_T2>Pwr_Lng_Area*B
在一实施例中,利用步骤S840判断第一功率调节条件是否成立。
步骤S840,若第一调整触发条件和第二调整触发条件中任意一项成立,则第一功率调节条件成立。
在一实施例中,如果上述第一调整触发条件和第二调整触发条件中任意一个条件满足,则表示第一功率调节条件成立,进行放电功率调整,否则继续统计工作状态相关的信息,直到第一功率调节条件成立。
当第一功率调节条件成立时,将最大允许输出功率由第一时间放电功率调整为第二时间放电功率。
在一实施例中,刚开始最大允许输出功率Pwr_BMS_Out等于第一时间放电功率Pwr_S1,触发第一功率调节条件时,该功率调整阶段主要是将最大允许输出功率Pwr_BMS_Out由第一时间放电功率Pwr_S1调整到第二时间放电功率Pwr_S2,即降低最大允许输出功率Pwr_BMS_Out。
在一实施例中,参照图9,当功率调节条件为第一功率调节条件时,步骤S150包括但不限于步骤S910至步骤S920。
步骤S910,获取第一参数。
步骤S920,根据第一参数将最大允许输出功率由第一时间放电功率下降调整为第二时间放电功率。
在该实施例中,由于第一时间放电功率Pwr_S1大于第二时间放电功率Pwr_S2,将最大允许输出功率Pwr_BMS_Out由第一时间放电功率Pwr_S1调整到第二时间放电功率Pwr_S2 时,需要降低最大允许输出功率Pwr_BMS_Out的值,因此根据实际需求或不同车型根据实际测试数据得到的先验知识设定第一参数N1,该参数的单位时Kw/s,然后利用第一参数N1将最大允许输出功率Pwr_BMS_Out由第一时间放电功率Pwr_S1降低至第二时间放电功率Pwr_S2。
可以理解的是,该实施例中的第一参数N1不宜过小,防止在功率调整阶段整车继续以大功率放电,导致欠压故障发生。
在一实施例中,短时放电完成后,最大允许输出功率Pwr_BMS_Out被降低至第二时间放电功率Pwr_S2,为了满足下一次短时大功率放电需求(例如二次加速),需要将最大允许输出功率Pwr_BMS_Out重新升高至第一时间放电功率Pwr_S1。具体是利用下述步骤S160至步骤S170恢复最大允许输出功率Pwr_BMS_Out来保障车辆行驶性能和行驶体验。
当功率调节条件为第二功率调节条件时,根据放电功率积分值和放电能量判断第二功率调节条件是否成立。
在一实施例中,参照图10,当功率调节条件为第二功率调节条件时,步骤S140包括但不限于步骤S1010至步骤S1040。
步骤S1010,获取第一恢复触发参数和第二恢复触发参数。
在一实施例中,第一恢复触发参数Recover_A和第二恢复触发参数Recover_B均为百分数,小于100%,可以根据实际需求或者不同车型根据实际测试数据得到的先验知识标定,其用于表征是否需要恢复放电功率动态调整的过程。
步骤S1020,判断第一恢复触发条件是否成立。
在一实施例中,根据第一放电功率积分值Area_T1、第一恢复触发参数Recover_A和第一时间放电能量Pwr_Sht_Area判断第一恢复触发条件是否成立,第一恢复触发条件成立表示为:
Area_T1<Pwr_Sht_Area*Recover_A
步骤S1030,判断第二恢复触发条件是否成立。
在一实施例中,根据第二放电功率积分值Area_T2、第二恢复触发参数Recover_B和第二时间放电能量Pwr_Lng_Area判断第二恢复触发条件是否成立,第二恢复触发条件成立表示为:
Area_T2<Pwr_Lng_Area*Recover_B
在一实施例中,利用步骤S1040判断第二功率调节条件是否成立。
步骤S1040,若第一恢复触发条件和第二恢复触发条件均成立,则第二功率调节条件成立。
在一实施例中,如果上述第一恢复触发条件和第二恢复触发条件均满足,则表示第二功率调节条件成立,恢复功率调整过程,否则继续等待直到第二功率调节条件成立。
当第二功率调节条件成立时,将最大允许输出功率由第二时间放电功率调整为第一时间放电功率。
在一实施例中,功率调节后,最大允许输出功率Pwr_BMS_Out等于第二时间放电功率Pwr_S2,触发第二功率调节条件时,该功率调整阶段主要是将最大允许输出功率Pwr_BMS_Out由第二时间放电功率Pwr_S2恢复至第一时间放电功率Pwr_S1,即增加最大允许输出功率Pwr_BMS_Out。
参照图11,当功率调节条件为第二功率调节条件,步骤S150包括但不限于步骤S1110至步骤S1120。
步骤S1110,获取第二参数。
步骤S1120,根据第二参数将最大允许输出功率由第二时间放电功率上升调整为第一时间放电功率。
在该实施例中,由于第一时间放电功率Pwr_S1大于第二时间放电功率Pwr_S2,将最大允许输出功率Pwr_BMS_Out由第二时间放电功率Pwr_S2调整到第一时间放电功率Pwr_S1时,需要升高最大允许输出功率Pwr_BMS_Out的值,因此根据实际需求或不同车型根据实际测试数据得到的先验知识设定第二参数N2,该参数的单位时Kw/s,然后利用第二参数N2将最大允许输出功率Pwr_BMS_Out由第二时间放电功率Pwr_S2升高至第一时间放电功率Pwr_S1。
参照图12,为本申请实施例中功率信息示意图,该实施例的动态调整功率的方法是通过实时监测当前电池的实际状态,如电池剩余荷电状态(SOC),电池所处的环境温度,结合当前整车的运行状况和实际功率使用状态,根据第一时间放电功率Pwr_S1与第二时间放电功率Pwr_S2对最大允许输出功率Pwr_BMS_Out进行动态调整的方法。图11中示意了第一时间放电功率Pwr_S1、第二时间放电功率Pwr_S2、最大允许输出功率Pwr_BMS_Out、实际功率Pwr_user、第一时间阈值T1和第二时间阈值T2。
本实施例中,第一方面,由于第一预设时间t1小于第二预设时间t2,因此对应的第一时间放电功率Pwr_S1大于第二时间放电功率Pwr_S2。第二方面,最大允许输出功率Pwr_BMS_Out表示电池管理系统中输出的最大允许放电功率,是用来限制整车控制器所能输出的最大放电功率,因此实际功率Pwr_user始终不能高于最大允许输出功率Pwr_BMS_Out。另外,最大允许输出功率Pwr_BMS_Out的初始值为第一时间放电功率Pwr_S1。因此上述不同的功率满足以下关系:
Pwr_S1>Pwr_S2
Pwr_user<=Pwr_BMS_Out
下面结合整车二次加速的过程中,整车从匀速状态转为小功率放电状态,再加速大功率放电的过程中,描述实际功率的变化趋势。
整车在放电时(例如加速状态或匀速状态),电机向电池管理系统请求一个放电功率A’,实际功率Pwr_user是由电机请求的放电功率A’与电池管理系统输出的最大允许输出功率Pwr_BMS_Out共同控制,例如,实际功率Pwr_user,即电机最终的放电功率取电机请求的放电功率A’与最大允许输出功率Pwr_BMS_Out中的最小值。电池管理系统输出的最大允许输出功率Pwr_BMS_Out也可描述为电池可以提供给电机的最大目标放电功率。为了防止整车持续大功率放电,即实际功率Pwr_user上升到一定值后持续保持,会报欠压故障深度放电,造成影响驾驶体验,加速电池老化的问题。
为了避免大功率长时放电会导致电池放电欠压,本实施例通过触发第一功率调节条件,在预欠压之前将电池管理系统输出的最大允许输出功率Pwr_BMS_Out降下来,降低最大允许输出功率Pwr_BMS_Out,在理论上可以认为降低了电机的放电功率,从而避免放电欠压的问题。本实施例的动态调整功率的一个目的就是通过降低最大允许输出功率Pwr_BMS_Out,从而降低电机的放电功率,表现出来就是实际功率Pwr_user上升到一定值后保持一段时间后下降。
该实施例中,在整车二次加速完成后,通过触发第二功率调节条件,将电池管理系统输出的最大允许输出功率Pwr_BMS_Out恢复,提升最大允许输出功率Pwr_BMS_Out,从而增大实际功率Pwr_user,保障车辆行驶性能以及行驶体验。
在一实施例中,为了满足短时高功率输出,最大允许输出功率Pwr_BMS_Out为第一时间放电功率,在短时高功率输出完成后,如果满足第一功率调节条件,则将最大允许输出功率Pwr_BMS_Out从由第一时间放电功率调整为第二时间放电功率,在满足短时大功率放电的需求的同时,避免电池放电至欠压的问题。如果检测到满足第二功率调节条件,则将最大允许输出功率Pwr_BMS_Out从由第二时间放电功率调整为第一时间放电功率,以满足后续短时大功率放电的需求。通过检测当前电池的实际状态,结合当前实际的功率信息,在短时放电功率与长时放电功率之间调整最大允许输出功率,在保护电池的前提下,满足整车不同 工况下的功率需求,提升驾驶体验,减缓电池老化,延长车辆使用寿命。
参照图13a-图13c为本申请一实施例中动态调整功率的原理示意图。
图13a-图13c以第二时间阈值T2为例说明,未示出第一时间阈值T1,不代表整个功率调节过程仅与第二时间阈值T2有关联。图中第二时间阈值T2为滑动窗口,通过实时统计第二时间阈值T2内实际功率Pwr_user的累计量为第二放电功率积分值Area_T2,并根据第二放电功率积分值Area_T2与理论上所能放出的总能量第二时间放电能量Pwr_Lng_Area的关系,得到第一功率调节条件或第二功率调节条件是否成立,从而控制电池管理系统输出的最大允许输出功率Pwr_BMS_Out,进而达到控制实际功率Pwr_user的目的。图中实际功率Pwr_user与时间轴t围成的面积即可表示第二时间阈值T2内的第二放电功率积分值Area_T2。
参见图13a,模拟的是整车的一种匀速状态,此时整车实际功率Pwr_user相对稳定,且实际功率Pwr_user小于第二时间放电功率Pwr_S2,第二放电功率积分值Area_T2小于第二时间放电能量Pwr_Lng_Area*B,即未触发第一功率调节条件,此时,最大允许输出功率Pwr_BMS_Out等于第一时间放电功率Pwr_S1,电池管理系统允许整车进行短时大功率放电。
参见图13b,模拟的是整车的加速状态。加速状态时,整车会以较大功率进行放电。为了防止大功率长时放电会导致电池放电至欠压这一现象发生,就需要通过控制最大允许输出功率Pwr_BMS_Out来控制整车的实际功率Pwr_user。动态调整放电功率方法在此状态下触发。当检测到Area_T2>Pwr_Lng_Area*B,则触发第一功率调节条件,最大允许输出功率Pwr_BMS_Out以一定速率(例如N1)由第一时间放电功率Pwr_S1下降到第二时间放电功率Pwr_S2。现阶段电池管理系统不允许整车进行短时大功率放电。
参见图13c,当车速保持匀速时,整车维持此状态所使用的功率并不会很大。若此时统计到的第一恢复触发条件:Area_T2<Pwr_Lng_Area*Recover_B和第二恢复触发条件:Area_T2<Pwr_Lng_Area*Recover_B均成立,则表示电池管理系统允许整车进行短时大功率放电,最大允许输出功率Pwr_BMS_Out以一定速率(例如N2)由第二时间放电功率Pwr_S2回升到第一时间放电功率Pwr_S1。反之表示电池管理系统不允许整车进行短时大功率放电,需继续等待功率回升时机。
本实施例主要是为行驶需求引入短时放电功率,提升了整车的加速性能,并搭配动态调整功率的方法,实现短时放电功率与长时放电功率的动态调整,避免因引入短时放电功率,导致长时间大功率放电引起的欠压状况发生。本实施例通过获取功率信息,计算预设时间阈值内放电功率积分值,根据功率信息计算放电能量,根据放电功率积分值和放电能量判断是否需要将最大允许输出功率由第一时间放电功率调整为第二时间放电功率,或者将最大允许输出功率由第二时间放电功率调整为第一时间放电功率。本实施例通过检测当前电池的实际状态,结合当前实际的功率信息,在短时放电功率与长时放电功率之间调整最大允许输出功率,在保护电池的前提下,满足整车不同工况下的功率需求,提升驾驶体验,减缓电池老化,延长车辆使用寿命。
本发明实施例还提供一种动态调整功率的装置,可以实现上述动态调整功率的方法,参照图14,该装置包括:
功率获取单元1410,用于获取功率信息,功率信息包括第一时间放电功率、第二时间放电功率和最大允许输出功率。
功率积分值计算单元1420,用于计算预设时间阈值内放电功率积分值。
放电能量计算单元1430,用于根据功率信息计算放电能量。
判断单元1440,用于根据放电功率积分值和放电能量判断功率调节条件是否成立。
调节单元1450,用于若功率调节条件成立,则将最大允许输出功率由第一时间放电功率调整为第二时间放电功率,或,将最大允许输出功率由第二时间放电功率调整为第一时间放电功率。
在一实施例中,功率调节条件包括第一功率调节条件和第二功率调节条件,当第一功率 调节条件成立时,将最大允许输出功率由第一时间放电功率调整为第二时间放电功率。当第二功率调节条件成立时,将最大允许输出功率由所述第二时间放电功率调整为所述第一时间放电功率。
本实施例的动态调整功率的装置的具体实施方式与上述动态调整功率的方法的具体实施方式基本一致,在此不再赘述。
本发明实施例还提供了一种存储介质,该存储介质是计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令用于使计算机执行上述动态调整功率的方法。
本发明实施例提出的动态调整功率的方法、动态调整功率的装置、电子设备、存储介质,通过获取功率信息,计算预设时间阈值内放电功率积分值,根据功率信息计算放电能量,根据放电功率积分值和放电能量判断是否需要将最大允许输出功率由第一时间放电功率调整为第二时间放电功率,或者将最大允许输出功率由第二时间放电功率调整为第一时间放电功率。本实施例通过检测当前电池的实际状态,结合当前实际的功率信息,在短时放电功率与长时放电功率之间调整最大允许输出功率,在保护电池的前提下,满足整车不同工况下的功率需求,提升驾驶体验,减缓电池老化,延长车辆使用寿命。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本发明实施例描述的实施例是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域技术人员可知,随着技术的演变和新应用场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图1-14中示出的技术方案并不构成对本发明实施例的限定,可以包括比图示更多或更少的步骤,或者组合某些步骤,或者不同的步骤。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
本发明的说明书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本发明中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的 方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括多指令用以使得一台电子设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序的介质。
以上参照附图说明了本发明实施例的优选实施例,并非因此局限本发明实施例的权利范围。本领域技术人员不脱离本发明实施例的范围和实质内所作的任何修改、等同替换和改进,均应在本发明实施例的权利范围之内。

Claims (12)

  1. 一种动态调整功率的方法,其特征在于,包括:
    获取功率信息,所述功率信息包括:第一时间放电功率、第二时间放电功率和最大允许输出功率;
    计算预设时间阈值内放电功率积分值;
    根据所述功率信息计算放电能量;
    根据所述放电功率积分值和所述放电能量判断功率调节条件是否成立;
    若所述功率调节条件成立,则将最大允许输出功率由所述第一时间放电功率调整为所述第二时间放电功率,或,将所述最大允许输出功率由所述第二时间放电功率调整为所述第一时间放电功率。
  2. 根据权利要求1所述的动态调整功率的方法,其特征在于,所述获取功率信息,包括:
    获取当前工作状态和截止电压,所述当前工作状态包括:当前荷电状态和当前工作温度;
    计算在所述当前工作状态下第一预设时间内持续放电至所述截止电压所需的功率值,作为所述第一时间放电功率;
    计算在所述当前工作状态下第二预设时间内持续放电至所述截止电压所需的功率值,作为所述第二时间放电功率,所述第一预设时间比所述第二预设时间短。
  3. 根据权利要求1所述的动态调整功率的方法,其特征在于,所述预设时间阈值包括:第一时间阈值和第二时间阈值,所述放电功率积分值包括:第一放电功率积分值和第二放电功率积分值,所述计算预设时间阈值内放电功率积分值,包括:
    获取所述第一时间阈值内每一个时间采样点的实际功率;
    将所述第一时间阈值内所述实际功率求和,得到所述第一放电功率积分值;
    获取所述第二时间阈值内每一个时间采样点的实际功率;
    将所述第二时间阈值内所述实际功率求和,得到所述第二放电功率积分值。
  4. 根据权利要求3所述的动态调整功率的方法,其特征在于,所述放电能量包括:所述第一时间放电功率和所述第二时间放电功率分别对应的第一时间放电能量和第二时间放电能量,所述根据所述功率信息计算放电能量,包括:
    获取截止电压;
    计算所述第一时间放电功率放电至所述截止电压对应输出的所述第一时间放电能量;
    计算所述第二时间放电功率放电至所述截止电压对应输出的所述第二时间放电能量。
  5. 根据权利要求4所述的动态调整功率的方法,其特征在于,所述功率调节条件包括第一功率调节条件,所述根据所述放电功率积分值和所述放电能量判断功率调节条件是否成立,包括:
    获取第一调整触发参数和第二调整触发参数;
    根据所述第一放电功率积分值、所述第一调整触发参数和所述第一时间放电能量判断第一调整触发条件是否成立;
    根据所述第二放电功率积分值、所述第二调整触发参数和所述第二时间放电能量判断第二调整触发条件是否成立;
    若所述第一调整触发条件和所述第二调整触发条件中任意一项成立,则所述第一功率调节条件成立。
  6. 根据权利要求5所述的动态调整功率的方法,其特征在于,当所述第一功率调节条件成立时,将最大允许输出功率由所述第一时间放电功率调整为所述第二时间放电功率,包括:
    获取第一参数;
    根据所述第一参数将所述最大允许输出功率由所述第一时间放电功率下降调整为所述第二时间放电功率。
  7. 根据权利要求1所述的动态调整功率的方法,其特征在于,所述功率调节条件包括第二功率调节条件,所述根据所述放电功率积分值和所述放电能量判断功率调节条件是否成立,包括:
    获取第一恢复触发参数和第二恢复触发参数;
    根据所述第一放电功率积分值、所述第一恢复触发参数和所述第一时间放电能量判断第一恢复触发条件是否成立;
    根据所述第二放电功率积分值、所述第二恢复触发参数和所述第二时间放电能量判断第二恢复触发条件是否成立;
    若所述第一恢复触发条件和所述第二恢复触发条件均成立,则所述第二功率调节条件成立。
  8. 根据权利要求7所述的动态调整功率的方法,其特征在于,当所述第二功率调节条件成立时,将所述最大允许输出功率由所述第二时间放电功率调整为所述第一时间放电功率,包括:
    获取第二参数;
    根据所述第二参数将所述最大允许输出功率由所述第二时间放电功率上升调整为所述第一时间放电功率。
  9. 一种动态调整功率的装置,其特征在于,包括:
    功率获取单元,用于获取功率信息,所述功率信息包括第一时间放电功率、第二时间放电功率和最大允许输出功率;
    功率积分值计算单元,用于计算预设时间阈值内放电功率积分值;
    放电能量计算单元,用于根据所述功率信息计算放电能量;
    判断单元,用于根据所述放电功率积分值和所述放电能量判断功率调节条件是否成立;
    调节单元,用于若所述功率调节条件成立,则将最大允许输出功率由所述第一时间放电功率调整为所述第二时间放电功率,或,将所述最大允许输出功率由所述第二时间放电功率调整为所述第一时间放电功率。
  10. 一种电池管理系统,其特征在于,包括:处理器以及存储器;
    所述存储器用于存储程序;
    所述处理器用于根据所述程序执行如权利要求1至8中任一项所述的动态调整功率的方法调整电池的功率。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至8中任一项所述的动态调整功率的方法。
  12. 一种车辆,其特征在于,所述车辆包括:
    电池;
    如权利要求10所述的电池管理系统,所述电池管理系统与所述电池电性连接。
PCT/CN2023/104958 2022-08-10 2023-06-30 动态调整功率的方法、电池管理系统、设备、介质和车辆 WO2024032257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210959066.8 2022-08-10
CN202210959066.8A CN115395601A (zh) 2022-08-10 2022-08-10 动态调整功率的方法、电池管理系统、设备、介质和车辆

Publications (1)

Publication Number Publication Date
WO2024032257A1 true WO2024032257A1 (zh) 2024-02-15

Family

ID=84118517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104958 WO2024032257A1 (zh) 2022-08-10 2023-06-30 动态调整功率的方法、电池管理系统、设备、介质和车辆

Country Status (2)

Country Link
CN (1) CN115395601A (zh)
WO (1) WO2024032257A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395601A (zh) * 2022-08-10 2022-11-25 欣旺达电动汽车电池有限公司 动态调整功率的方法、电池管理系统、设备、介质和车辆
CN116885320B (zh) * 2023-09-08 2024-03-15 宁德时代新能源科技股份有限公司 电池的功率输出方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110293879A (zh) * 2019-06-06 2019-10-01 浙江飞碟汽车制造有限公司 一种电池系统sop动态调整方法
US20200185944A1 (en) * 2018-12-11 2020-06-11 Hyundai Motor Company System of controlling output of high voltage battery for eco-friendly vehicle
CN111890985A (zh) * 2020-06-30 2020-11-06 汉腾汽车有限公司 一种电动汽车电池可用功率调节方法
CN114475349A (zh) * 2020-10-23 2022-05-13 北汽福田汽车股份有限公司 电动车辆电池输出功率控制方法及系统、存储介质和车辆
CN114771344A (zh) * 2021-06-29 2022-07-22 长城汽车股份有限公司 动力电池的可用功率调节方法、装置、控制器及介质
CN115395601A (zh) * 2022-08-10 2022-11-25 欣旺达电动汽车电池有限公司 动态调整功率的方法、电池管理系统、设备、介质和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200185944A1 (en) * 2018-12-11 2020-06-11 Hyundai Motor Company System of controlling output of high voltage battery for eco-friendly vehicle
CN110293879A (zh) * 2019-06-06 2019-10-01 浙江飞碟汽车制造有限公司 一种电池系统sop动态调整方法
CN111890985A (zh) * 2020-06-30 2020-11-06 汉腾汽车有限公司 一种电动汽车电池可用功率调节方法
CN114475349A (zh) * 2020-10-23 2022-05-13 北汽福田汽车股份有限公司 电动车辆电池输出功率控制方法及系统、存储介质和车辆
CN114771344A (zh) * 2021-06-29 2022-07-22 长城汽车股份有限公司 动力电池的可用功率调节方法、装置、控制器及介质
CN115395601A (zh) * 2022-08-10 2022-11-25 欣旺达电动汽车电池有限公司 动态调整功率的方法、电池管理系统、设备、介质和车辆

Also Published As

Publication number Publication date
CN115395601A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2024032257A1 (zh) 动态调整功率的方法、电池管理系统、设备、介质和车辆
EP3641095B1 (en) Battery charging management apparatus and method
CN111293739B (zh) 一种充电方法及装置
CN110927592B (zh) 一种电池峰值功率的估计方法及装置
US20220149447A1 (en) Method for reasonably adjusting end-of-discharge voltage of lithium battery with attenuation of battery life
KR20130136800A (ko) 노화를 고려한 이차 전지의 상태 추정 방법 및 장치
JP2015501629A (ja) バッテリセルの電荷を管理するための方法及びシステム
WO2024103590A1 (zh) 电池系统的均衡方法、电子设备和存储介质
KR20200038817A (ko) Bms 간 통신 시스템 및 방법
CN110031766B (zh) 电池许用功率估算方法及模块、电池功率管理方法及系统
WO2018205425A1 (zh) 电池充电方法
CN108155692B (zh) 一种充放电管理方法及电子设备
CN110970670B (zh) 动力电池管理方法、装置及计算机可读存储介质
CN112744084B (zh) 扭矩控制方法及其装置、车辆、电子设备和存储介质
CN113884893A (zh) 一种动力电池的功率map切换方法、装置和电子设备
WO2023245574A1 (zh) 充电控制方法、充电控制装置、电子设备及存储介质
WO2023221055A1 (zh) 电池的放电方法和放电装置
WO2023245572A1 (zh) 用电装置及其电池的充电方法、装置及介质
CN114156968B (zh) 储能系统的充放电控制方法、装置、控制器和储能系统
WO2023092414A1 (zh) 动力电池充电的方法和电池管理系统
US20240092211A1 (en) Method and device for charging secondary battery, computer storage medium, and electronic equipment
CN108494027B (zh) 一种锂离子电池组主动均衡控制方法
CN114899515A (zh) 考虑电池soh衰减的自适应快充方法及系统
CN116338476A (zh) 电池去极化的标准时长确定方法、系统、装置及设备
Hurwitz Dynamically Adjusting State of Charge and Charging Method to Preserve Lithium-Ion Battery Cell Life

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851484

Country of ref document: EP

Kind code of ref document: A1