WO2024032202A1 - 一种协作传输接收点指示方法及装置 - Google Patents

一种协作传输接收点指示方法及装置 Download PDF

Info

Publication number
WO2024032202A1
WO2024032202A1 PCT/CN2023/103511 CN2023103511W WO2024032202A1 WO 2024032202 A1 WO2024032202 A1 WO 2024032202A1 CN 2023103511 W CN2023103511 W CN 2023103511W WO 2024032202 A1 WO2024032202 A1 WO 2024032202A1
Authority
WO
WIPO (PCT)
Prior art keywords
trps
information
antenna port
reference signal
cooperative
Prior art date
Application number
PCT/CN2023/103511
Other languages
English (en)
French (fr)
Inventor
张笛笛
王潇涵
李婷
金黄平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032202A1 publication Critical patent/WO2024032202A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present application relates to the field of communications, and in particular, to a method and device for indicating a cooperative transmission reception point.
  • TRP transmission and reception points
  • CJT coherent joint transmission
  • the current standard stipulates the maximum number of TRPs that use coherent joint transmission to serve terminal equipment.
  • the terminal equipment determines the TRPs that actually participate in cooperative transmission and feeds back the TRPs that participate in cooperative transmission to the network equipment.
  • the feedback overhead of this method is relatively large. How to reduce feedback overhead is a technical issue that needs to be solved.
  • the present application provides a method and device for indicating a cooperative transmission reception point, which can reduce the overhead of a terminal device feeding back a TRP participating in cooperative transmission to a network device.
  • the first aspect provides a cooperative transmission reception point indication method.
  • the method includes: the terminal device obtains first information, the terminal device determines Y cooperative TRPs based on the first information and the second information, and the terminal device sends third information to the network device.
  • the first information is used to indicate M reference signal resources or M antenna port groups.
  • One antenna port group among the M antenna port groups includes one or more antenna ports.
  • the M reference signal resources and M transmission and reception There is a one-to-one correspondence between point TRPs, M antenna port groups and M TRPs, and the M TRPs are cooperative TRPs.
  • the second information is used to indicate that the total number of TRPs supporting coordinated transmission is L, Y coordinated TRPs are included in L-M TRPs, and L-M TRPs are TRPs other than M TRPs among the L TRPs.
  • the third information is used to indicate Y reference signal resources or Y antenna port groups.
  • the Y reference signal resources are in one-to-one correspondence with the Y coordinated TRPs, and the Y antenna port groups are in one-to-one correspondence with the Y coordinated TRPs.
  • the terminal equipment obtains M reference signal resources or M TRPs corresponding to M antenna port groups and must participate in coordinated transmission.
  • the terminal equipment further selects a TRP that participates in coordinated transmission from the remaining L-M TRPs, narrowing down
  • the terminal device selects the range of TRPs that participate in cooperative transmission, so that the terminal device reports Y TRPs among the remaining L-M TRPs to participate in cooperative transmission, which can reduce the overhead of the terminal device reporting TRPs that participate in cooperative transmission, and can also reduce the processing time of the terminal device. the complexity.
  • L is an integer greater than 1
  • M is an integer greater than or equal to 1 and less than L
  • Y is an integer greater than or equal to 1 and less than L-M.
  • the terminal device determines Y cooperative TRPs based on the first information and the second information, including: the terminal device obtains the fourth information, and the terminal device determines the Y cooperative TRPs based on the first information, the second information, and the fourth information.
  • the fourth information is used to indicate that the total number of TRPs actually participating in coordinated transmission is N, Y is equal to N-M, and N is an integer greater than 1 and less than or equal to L.
  • the protocol is predefined or the network device determines that M TRPs must participate in cooperative transmission.
  • the total number of TRPs actually participating in cooperative transmission is N.
  • the terminal device determines other N-M TRPs participating in cooperative transmission.
  • N-M TRPs and M TRPs Collaborative transfers are performed simultaneously.
  • the terminal device needs to report which N-M TRPs among the remaining L-M TRPs participate in coordinated transmission, thereby reducing the overhead of the terminal device reporting TRPs participating in coordinated transmission, and also reducing the processing complexity of the terminal device.
  • the third information may include a first field, the first field is used to indicate the Y cooperative TRPs corresponding to the Y reference signal resources, or the first field is used to indicate the Y antenna port groups corresponding to Y collaborative TRPs.
  • the terminal device selects Y TRPs participating in coordinated transmission from L-M TRPs, and the terminal device reports these Y TRPs to participate in coordinated transmission, thereby reducing the overhead of the terminal device reporting TRPs participating in coordinated transmission, and also reducing the complexity of processing by the terminal device Spend.
  • the first field may include a bitmap or transmission hypothesis.
  • the first field includes a bitmap
  • the bit length of the first field may be related to the value of L-M.
  • the number of bits in the bitmap may be equal to L-M.
  • the protocol is predefined or the network device predetermines that M TRPs must participate in cooperative transmission, which narrows the range of TRPs that the terminal device can choose to participate in cooperative transmission.
  • the terminal device only needs to report which TRPs among the remaining L-M TRPs participate in cooperative transmission.
  • the terminal The device only needs L-M bits to indicate the TRPs participating in the coordinated transmission, which can reduce the overhead of the terminal device reporting the TRPs participating in the coordinated transmission and also reduce the processing complexity of the terminal device.
  • the third information may include a second field, and the second field is used to indicate M TRPs corresponding to the M reference signal resources and Y cooperative TRPs corresponding to the Y reference signal resources; or, The second field is used to indicate M TRPs corresponding to M antenna port groups and Y cooperative TRPs corresponding to Y antenna port groups.
  • the second field includes the transmission hypothesis.
  • the terminal device can inform the Network devices participate in cooperative transmission of TRPs.
  • the protocol is predefined or the network device predetermines that M TRPs must participate in cooperative transmission.
  • the terminal device reports other TRPs participating in cooperative transmission, it can select one transmission hypothesis among the transmission hypotheses determined based on the M TRPs, which reduces
  • the optional range of transmission assumptions can reduce the overhead of the terminal device reporting TRPs participating in cooperative transmission, and can also reduce the processing complexity of the terminal device.
  • the above terminal device obtaining the first information may include: the terminal device receiving the first information from the network device.
  • M TRPs must participate in cooperative transmission, which can be determined by the network device.
  • the first information may be included in radio resource control (RRC) signaling or media access control (media access control, MAC) control element (CE) signaling. , or in downlink control information (DCI).
  • RRC radio resource control
  • CE media access control
  • DCI downlink control information
  • the first information may be included in high-level signaling, and the network device may inform the terminal device through high-level signaling that M TRPs corresponding to M reference signal resources or M antenna port groups must participate in coordinated transmission.
  • the first information may be predefined by the protocol.
  • the pre-definition of the agreement may refer to the agreement, etc.
  • the third information may be included in uplink control information (UCI).
  • UCI uplink control information
  • the network device may send the third information to the terminal device through UCI, and the UCI may include the third information.
  • the second information comes from the network device or is predefined for the protocol.
  • the second information comes from the network device, and the second information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the network device can send the second information to the terminal device through RRC signaling, MAC CE signaling, or DCI.
  • the fourth information may come from the network device, or the fourth information may be determined by the terminal device, or the fourth information may be predefined by the protocol, or the fourth information may be the network device.
  • the equipment and terminal equipment are negotiated and determined.
  • the above terminal device obtains the fourth information, which may include the terminal device receiving the fourth information from the network device.
  • the fourth information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the fourth information may be included in high-layer signaling, and the network device may send the fourth information to the terminal device through high-layer signaling.
  • L is equal to 4.
  • different TRP numbers correspond to different ⁇ values, where ⁇ is the proportion of the non-zero projection coefficients selected for each layer to the maximum possible non-zero projection coefficients for each layer.
  • the corresponding coefficient ⁇ 1 is; when the number of TRPs participating in coordinated transmission is N>2, the corresponding coefficient is ⁇ 2 .
  • a method for indicating a cooperative transmission reception point includes: the network device sends first information to the terminal device, and the network device receives third information from the terminal device.
  • the first information is used to indicate M reference signal resources or M antenna port groups.
  • One antenna port group among the M antenna port groups includes one or more antenna ports.
  • the M reference signal resources and M transmission and reception There is a one-to-one correspondence between point TRPs, M antenna port groups and M TRPs, and the M TRPs are cooperative TRPs.
  • the third information is used to indicate Y reference signal resources or Y antenna port groups.
  • Y reference signal resources correspond to Y cooperative TRPs in a one-to-one correspondence.
  • Y antenna port groups correspond to Y cooperative TRPs in a one-to-one correspondence.
  • Y cooperative TRPs correspond to Y cooperative TRPs.
  • TRPs are included in L-M TRPs, where L-M TRPs are TRPs other than the M TRPs corresponding to the M reference signal resources or the M TRPs corresponding to the M antenna port groups among the L TRPs.
  • L is a TRP that supports coordinated transmission. The total number of L is an integer greater than 1, M is an integer greater than or equal to 1 and less than L, and Y is an integer greater than or equal to 1 and less than L-M.
  • Y is equal to N-M
  • N is the total number of TRPs actually participating in cooperative transmission
  • N is an integer greater than 1 and less than or equal to L.
  • the third information may include a first field, the first field is used to indicate the Y cooperative TRPs corresponding to the Y reference signal resources, or the first field is used to indicate the Y antenna port groups corresponding to Y collaborative TRPs.
  • the first field may include a bitmap or transmission hypothesis.
  • the third information includes a second field, and the second field is used to indicate M TRPs corresponding to the M reference signal resources and Y cooperative TRPs corresponding to the Y reference signal resources; or, the second field The field is used to indicate M TRPs corresponding to M antenna port groups and Y cooperative TRPs corresponding to Y antenna port groups.
  • the second field includes the transmission hypothesis.
  • the method provided in the second aspect may further include: the network device determines the first information based on the fifth information.
  • the fifth information may include one or more of the following: uplink channel information, reference signal received power, and angle delay pair information.
  • network equipment can perform channel sounding reference signal (SRS) measurements to obtain uplink channel information.
  • SRS channel sounding reference signal
  • the first information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the third information may be included in the uplink control information UCI.
  • the method provided in the second aspect may further include: the network device sends the second information to the terminal device.
  • the second information may be used to indicate that the total number of TRPs supporting coordinated transmission is L.
  • the second information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the method provided in the second aspect may further include: the network device sends fourth information to the terminal device.
  • the fourth information may be used to indicate that the total number of TRPs actually participating in coordinated transmission is N.
  • the fourth information is included in RRC signaling, MAC CE signaling, or DCI.
  • L is equal to 4.
  • different TRP numbers correspond to different ⁇ values, where ⁇ is the proportion of the non-zero projection coefficients selected for each layer to the maximum possible non-zero projection coefficients for each layer.
  • the corresponding coefficient ⁇ 1 is; when the number of TRPs participating in coordinated transmission is N>2, the corresponding coefficient is ⁇ 2 .
  • a method for indicating a cooperative transmission reception point includes: the terminal device receives sixth information from the network device, and the terminal device sends seventh information to the network device.
  • the sixth information is used to indicate R reference signal resources or R antenna port groups.
  • One of the R antenna port groups includes one or more antenna ports.
  • the R reference signal resources and R transmission and reception Point TRPs correspond one-to-one
  • R antenna port groups correspond to R TRPs one-to-one
  • R TRPs are candidate cooperative TRPs
  • R is less than L
  • L is the total number of TRPs that support coordinated transmission.
  • the seventh information is determined based on the sixth information.
  • the seventh information indicates Q reference signal resources or Q antenna port groups. Q is less than or equal to R.
  • the Q reference signal resources correspond to Q cooperative TRPs one-to-one.
  • Q The antenna port group has a one-to-one correspondence with Q cooperative TRPs, and the Q cooperative TRPs are included in R TRPs.
  • the network device predetermines that R TRPs corresponding to R reference signal resources or R antenna port groups can participate in coordinated transmission, R is less than L, and L is the total number of TRPs that support coordinated transmission.
  • the terminal device Selecting TRPs to participate in coordinated transmission from these R TRPs narrows the range of TRPs that the terminal device can select to participate in coordinated transmission.
  • the terminal device reports Q TRPs among the R TRPs corresponding to R reference signal resources or R antenna port groups at the same time. Participating in cooperative transmission can reduce the overhead of terminal devices reporting TRPs participating in cooperative transmission, and can also reduce the processing complexity of terminal devices.
  • the seventh information may include a third field.
  • the third field is used to indicate that Q cooperative TRPs corresponding to the Q reference signal resources participate in coordinated transmission, or the third field is used to indicate Q antennas.
  • Q cooperative TRPs corresponding to the port group participate in cooperative transmission.
  • the terminal device selects Q TRPs participating in cooperative transmission from R TRPs, and the terminal device reports these Q cooperative TRPs to participate in cooperative transmission, thereby reducing the overhead of the terminal device reporting TRPs participating in cooperative transmission, and also reducing the processing time of the terminal device. the complexity.
  • the third field includes a bitmap.
  • bit length of the third field may be related to the value of R.
  • the number of bits in the bitmap may be equal to R.
  • the network device predetermines that R TRPs can participate in cooperative transmission, narrowing the range of TRPs that the terminal device selects to participate in cooperative transmission.
  • the terminal device only needs to report which TRPs among the remaining R TRPs participate in cooperative transmission, and the terminal device only needs R
  • the bit indicates the TRP participating in the coordinated transmission, which can reduce the overhead of the terminal device reporting the TRP participating in the coordinated transmission, and can also reduce the processing complexity of the terminal device.
  • the third field includes transmission assumptions. In this way, the terminal device can tell the network device to participate in the cooperative transmission TRP in the form of reporting a transmission hypothesis.
  • the protocol is predefined or the network device predetermines that R TRPs must participate in cooperative transmission.
  • the terminal device reports other TRPs participating in cooperative transmission, it can select one transmission hypothesis among the transmission hypotheses determined based on the R TRPs, which reduces
  • the optional range of transmission assumptions can reduce the overhead of the terminal device reporting TRPs participating in cooperative transmission, and can also reduce the processing complexity of the terminal device.
  • the sixth information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the sixth information may be included in high-layer signaling, and the network device may inform the terminal device through high-layer signaling that R TRPs corresponding to R reference signal resources or R antenna port groups can participate in coordinated transmission.
  • the seventh information may be included in the uplink control information UCI.
  • R is an integer greater than or equal to 1.
  • L is equal to 4.
  • different TRP numbers correspond to different ⁇ values, where ⁇ is the proportion of the non-zero projection coefficients selected for each layer to the maximum possible non-zero projection coefficients for each layer.
  • the coefficient ⁇ 1 is corresponding; when the number of TRPs participating in coordinated transmission Q>2, the coefficient ⁇ 2 is corresponding.
  • the fourth aspect provides a cooperative transmission receiving point indication method.
  • the method includes: the network device sends sixth information to the terminal device, and the network device receives seventh information from the terminal device.
  • the sixth information is used to indicate R reference signal resources or R antenna port groups.
  • One of the R antenna port groups includes one or more antenna ports.
  • the R reference signal resources and R transmission and reception Point TRP corresponds one-to-one
  • R antenna port groups correspond to R TRPs one-to-one
  • R TRPs are candidate cooperative TRPs
  • R is less than L
  • L is a TRP that supports coordinated transmission total quantity.
  • the seventh information indicates Q reference signal resources or Q antenna port groups, Q is less than or equal to R, Q reference signal resources are in one-to-one correspondence with Q cooperative TRPs, and Q antenna port groups are in one-to-one correspondence with Q cooperative TRPs. , Q collaborative TRPs are included in R TRPs.
  • the seventh information may include a third field.
  • the third field is used to indicate that Q cooperative TRPs corresponding to the Q reference signal resources participate in coordinated transmission, or the third field is used to indicate Q antennas.
  • Q cooperative TRPs corresponding to the port group participate in cooperative transmission.
  • the third field includes a bitmap.
  • the third field includes transmission assumptions.
  • the method provided in the fourth aspect may further include: the network device determines the sixth information based on the fifth information.
  • the fifth information may include one or more of the following: uplink channel information, reference signal received power, and angle delay pair information.
  • the sixth information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the seventh information may be included in the uplink control information UCI.
  • R is an integer greater than or equal to 1.
  • L is equal to 4.
  • different TRP numbers correspond to different ⁇ values, where ⁇ is the proportion of the non-zero projection coefficients selected for each layer to the maximum possible non-zero projection coefficients for each layer.
  • the coefficient ⁇ 1 is corresponding; when the number of TRPs participating in coordinated transmission Q>2, the coefficient ⁇ 2 is corresponding.
  • a communication device in a fifth aspect, includes: a processing module and a sending module. Among them, the processing module is used to obtain the first information. The processing module is also configured to determine Y cooperative TRPs based on the first information and the second information. The sending module is used to send third information to the network device.
  • the first information is used to indicate M reference signal resources or M antenna port groups. One antenna port group among the M antenna port groups includes one or more antenna ports.
  • the M reference signal resources and M transmission and reception There is a one-to-one correspondence between point TRPs, M antenna port groups and M TRPs, and the M TRPs are cooperative TRPs.
  • the second information is used to indicate that the total number of TRPs that support coordinated transmission is L.
  • L-M TRPs are TRPs other than M TRPs among L TRPs.
  • L is an integer greater than 1.
  • M is an integer greater than or equal to 1 and less than L.
  • Y is an integer greater than or equal to 1 and less than L-M.
  • the third information is used to indicate Y reference signal resources or Y antenna port groups.
  • the Y reference signal resources are in one-to-one correspondence with the Y coordinated TRPs, and the Y antenna port groups are in one-to-one correspondence with the Y coordinated TRPs.
  • the processing module is also used to obtain fourth information.
  • the processing module is also configured to determine Y cooperative TRPs based on the first information, the second information and the fourth information.
  • the fourth information is used to indicate that the total number of TRPs that actually use multi-station cooperation mode to serve the terminal device is N, Y is equal to N-M, and N is an integer greater than 1 and less than or equal to L.
  • the third information may include a first field, the first field is used to indicate the Y cooperative TRPs corresponding to the Y reference signal resources, or the first field is used to indicate the Y antenna port groups corresponding to Y collaborative TRPs.
  • the first field may include a bitmap or transmission hypothesis.
  • the third information may include a second field, and the second field is used to indicate M TRPs corresponding to the M reference signal resources and Y cooperative TRPs corresponding to the Y reference signal resources; or, The second field is used to indicate M TRPs corresponding to M antenna port groups and Y cooperative TRPs corresponding to Y antenna port groups.
  • the second field includes the transmission hypothesis.
  • the communication device described in the fifth aspect may further include: a receiving module.
  • the receiving module is used to receive the first information from the network device.
  • the first information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the first information may be predefined by the protocol.
  • the third information may be included in the uplink control information UCI.
  • the second information comes from the network device or is predefined for the protocol.
  • the second information comes from the network device, and the second information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the fourth information may come from a network device, or the fourth information may be determined by the communication device, or the fourth information may be predefined by a protocol, or the fourth information may be a network device.
  • the equipment and communication devices are agreed upon.
  • the fourth information comes from the network device, and the fourth information may be included in RRC signaling, MAC CE signaling, or DCI.
  • L is equal to 4.
  • different TRP numbers correspond to different ⁇ values, where ⁇ is the maximum possible non-zero projection coefficient selected for each layer in each layer.
  • is the maximum possible non-zero projection coefficient selected for each layer in each layer.
  • the scale of non-zero projection coefficients are the maximum possible non-zero projection coefficients.
  • the corresponding coefficient ⁇ 1 is; when the number of TRPs participating in coordinated transmission is N>2, the corresponding coefficient is ⁇ 2 .
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction, the communication device described in the fifth aspect can perform the method described in the first aspect.
  • the communication device described in the fifth aspect may be a terminal device, or may be a chip (system) or other components or components that can be installed in the terminal device, which is not limited in this application.
  • a sixth aspect provides a communication device.
  • the communication device includes: a sending module and a receiving module.
  • the sending module is used to send the first information to the terminal device.
  • a receiving module configured to receive third information from the terminal device.
  • the first information is used to indicate M reference signal resources or M antenna port groups.
  • One antenna port group among the M antenna port groups includes one or more antenna ports.
  • the M reference signal resources and M transmission and reception There is a one-to-one correspondence between point TRPs, M antenna port groups and M TRPs, and the M TRPs are cooperative TRPs.
  • the third information is used to indicate Y reference signal resources or Y antenna port groups. Y reference signal resources are in one-to-one correspondence with Y cooperative TRPs.
  • Y antenna port groups are in one-to-one correspondence with Y cooperative TRPs.
  • Y cooperative TRPs are in one-to-one correspondence.
  • TRPs are included in L-M TRPs, where L-M TRPs are TRPs other than the M TRPs corresponding to the M reference signal resources or the M TRPs corresponding to the M antenna port groups among the L TRPs.
  • L is a TRP that supports coordinated transmission. The total number of L is an integer greater than 1, M is an integer greater than or equal to 1 and less than L, and Y is an integer greater than or equal to 1 and less than L-M.
  • Y is equal to N-M
  • N is the total number of TRPs actually participating in cooperative transmission
  • N is an integer greater than 1 and less than or equal to L.
  • the third information may include a first field, the first field is used to indicate the Y cooperative TRPs corresponding to the Y reference signal resources, or the first field is used to indicate the Y antenna port groups corresponding to Y collaborative TRPs.
  • the first field may include a bitmap or transmission hypothesis.
  • the third information may include a first field, the third information includes a second field, and the first field is used to indicate M TRPs corresponding to the M reference signal resources and Y reference signal resources corresponding Y cooperative TRPs; or, the second field is used to indicate M TRPs corresponding to M antenna port groups and Y cooperative TRPs corresponding to Y antenna port groups.
  • the second field includes the transmission hypothesis.
  • the communication device provided in the sixth aspect may further include: a processing module.
  • the processing module is used to determine the first information according to the fifth information.
  • the fifth information may include one or more of the following: uplink channel information, reference signal received power, and angle delay pair information.
  • the first information may be included in radio resource control RRC signaling, MAC CE signaling, or downlink control information DCI.
  • the third information may be included in the uplink control information UCI.
  • the sending module is also used to send the second information to the terminal device.
  • the second information may be used to indicate that the total number of TRPs supporting coordinated transmission is L.
  • the second information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the sending module is also used to send fourth information to the terminal device.
  • the fourth information may be used to indicate that the total number of TRPs actually participating in coordinated transmission is N.
  • the fourth information is included in RRC signaling, MAC CE signaling, or DCI.
  • L is greater than or equal to M, and Y is less than or equal to L-M.
  • N is greater than or equal to M.
  • N is less than or equal to L.
  • L is equal to 4.
  • different TRP numbers correspond to different ⁇ values, where ⁇ is the proportion of the non-zero projection coefficients selected for each layer to the maximum possible non-zero projection coefficients for each layer.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the sixth aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the sixth aspect can perform the method described in the second aspect.
  • the communication device described in the sixth aspect may be a network device, or may be a chip (system) or other components or components that can be installed on the network device, which is not limited in this application.
  • a communication device in a seventh aspect, includes: a sending module and a receiving module. Wherein, the receiving module is used to receive the sixth information from the network device. The sending module is used to send the seventh information to the network device.
  • the sixth information is used to indicate R reference signal resources or R antenna port groups.
  • One of the R antenna port groups includes one or more antenna ports.
  • the R reference signal resources and R transmission and reception Point TRPs correspond one-to-one
  • R antenna port groups correspond to R TRPs one-to-one
  • the R TRPs are candidate cooperative TRPs
  • R is less than L
  • L is the total number of TRPs that support coordinated transmission.
  • the seventh information is determined based on the sixth information.
  • the seventh information indicates Q reference signal resources or Q antenna port groups. Q is less than or equal to R.
  • the Q reference signal resources correspond to Q cooperative TRPs one-to-one.
  • Q The antenna port group has a one-to-one correspondence with Q cooperative TRPs, and the Q cooperative TRPs
  • the seventh information may include a third field.
  • the third field is used to indicate that Q cooperative TRPs corresponding to the Q reference signal resources participate in coordinated transmission, or the third field is used to indicate Q antennas.
  • Q cooperative TRPs corresponding to the port group participate in cooperative transmission.
  • the third field includes a bitmap.
  • the third field includes transmission assumptions.
  • the sixth information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the seventh information may be included in the uplink control information UCI.
  • R is an integer greater than or equal to 1.
  • L is equal to 4.
  • different TRP numbers correspond to different ⁇ values, where ⁇ is the proportion of the non-zero projection coefficients selected for each layer to the maximum possible non-zero projection coefficients for each layer.
  • the coefficient ⁇ 1 is corresponding; when the number of TRPs participating in coordinated transmission Q>2, the coefficient ⁇ 2 is corresponding.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the seventh aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the seventh aspect can perform the method described in the third aspect.
  • the communication device described in the seventh aspect may be a terminal device, or may be a chip (system) or other components or components that can be installed on the terminal device, which is not limited in this application.
  • a communication device in an eighth aspect, includes: a sending module and a receiving module. Wherein, the sending module is used to send the sixth information to the terminal device. A receiving module, configured to receive seventh information from the terminal device. The sixth information is used to indicate R reference signal resources or R antenna port groups. One of the R antenna port groups includes one or more antenna ports.
  • the R reference signal resources and R transmission and reception Point TRPs correspond one-to-one
  • R antenna port groups correspond to R TRPs one-to-one
  • the R TRPs are candidate cooperative TRPs
  • R is less than L
  • L is the total number of TRPs that support coordinated transmission.
  • the seventh information indicates Q reference signal resources or Q antenna port groups, Q is less than or equal to R, Q reference signal resources are in one-to-one correspondence with Q cooperative TRPs, and Q antenna port groups are in one-to-one correspondence with Q cooperative TRPs. , Q collaborative TRPs are included in R TRPs.
  • the seventh information may include a third field.
  • the third field is used to indicate that Q cooperative TRPs corresponding to the Q reference signal resources participate in coordinated transmission, or the third field is used to indicate Q antennas.
  • Q cooperative TRPs corresponding to the port group participate in cooperative transmission.
  • the third field includes a bitmap.
  • the third field includes transmission assumptions.
  • the communication device provided in the eighth aspect may further include: a processing module.
  • the processing module is used to determine the sixth information according to the fifth information.
  • the fifth information may include one or more of the following: uplink channel information, reference signal received power, and angle delay pair information.
  • the sixth information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the seventh information may be included in the uplink control information UCI.
  • R is an integer greater than or equal to 1.
  • L is equal to 4.
  • different TRP numbers correspond to different ⁇ values, where ⁇ is the proportion of the non-zero projection coefficients selected for each layer to the maximum possible non-zero projection coefficients for each layer.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction, the communication device described in the eighth aspect can perform the method described in the fourth aspect.
  • the communication device described in the eighth aspect may be a network device, or may be a chip (system) or other components or components that can be installed on the network device, which is not limited in this application.
  • a ninth aspect provides a communication method, which method includes: a terminal device receives configuration information from a network device, determines a non-zero projection coefficient based on the number and configuration information of TRPs actually participating in cooperative transmission, and sends the non-zero projection coefficient to the network device. .
  • the configuration information includes a correspondence between at least two coefficients ⁇ and at least two first quantities.
  • the first quantity is the number of TRPs actually participating in coordinated transmission.
  • the at least two coefficients ⁇ correspond to at least two first quantities in a one-to-one correspondence.
  • a communication method includes: a network device sending configuration information to a terminal device, and receiving a non-zero projection coefficient from the terminal device.
  • the configuration information includes a correspondence between at least two coefficients ⁇ and at least two first quantities.
  • the first quantity is the number of TRPs actually participating in coordinated transmission.
  • the at least two coefficients ⁇ correspond to at least two first quantities in a one-to-one correspondence.
  • a communication device in an eleventh aspect, includes: a sending module, a receiving module and a processing module.
  • the receiving module is used to receive configuration information from the network device.
  • the processing module is used to determine the non-zero projection coefficient according to the number and configuration information of TRPs actually participating in cooperative transmission.
  • the sending module is used by the network device to send non-zero projection coefficients.
  • the configuration information includes a correspondence between at least two coefficients ⁇ and at least two first quantities.
  • the first quantity is the number of TRPs actually participating in coordinated transmission.
  • the at least two coefficients ⁇ correspond to at least two first quantities in a one-to-one correspondence.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device described in the eleventh aspect may further include a processing module and a storage module, and the storage module stores programs or instructions.
  • the processing module executes the program or instruction
  • the communication device described in the eleventh aspect can perform the method described in the ninth aspect.
  • the communication device described in the eleventh aspect may be a terminal device, or may be a chip (system) or other components or components that can be installed on the terminal device, which is not limited in this application.
  • a communication device in a twelfth aspect, includes: a sending module and a receiving module.
  • the sending module is used to send configuration information to the terminal device.
  • the receiving module is used to receive non-zero projection coefficients from the terminal device.
  • the configuration information includes a correspondence between at least two coefficients ⁇ and at least two first quantities.
  • the first quantity is the number of TRPs actually participating in coordinated transmission.
  • the at least two coefficients ⁇ correspond to at least two first quantities in a one-to-one correspondence.
  • the receiving module and the sending module can be set up separately, or they can be integrated into one module, that is, the sending and receiving module. This application does not specifically limit the specific implementation methods of the receiving module and the sending module.
  • the communication device may further include a storage module that stores programs or instructions.
  • the processing module executes the program or instruction, the communication device described in the tenth aspect can perform the method described in the fourth aspect.
  • the communication device described in the twelfth aspect may be a network device, or may be a chip (system) or other components or components that can be installed on the network device, which is not limited in this application.
  • a communication device in a thirteenth aspect, includes a processor coupled to a memory for storing a computer program.
  • the processor is configured to execute the computer program stored in the memory, so that the method described in any one of the possible implementations of the first to fourth aspects, and the ninth to tenth aspects is executed.
  • the communication device described in the thirteenth aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit or an input/output port.
  • the transceiver may be used for the communication device to communicate with other devices.
  • the input port can be used to implement the receiving functions involved in the first to fourth aspects and the ninth to tenth aspects
  • the output port can be used to implement the first to fourth aspects and the ninth to tenth aspects. aspects involved in the sending function.
  • the communication device described in the thirteenth aspect may be a terminal device or a network device, or may be provided on a terminal device or a network device. Internal chip or chip system.
  • the technical effects of the communication device described in the thirteenth aspect can be referred to the technical effects of the method described in any one of the first to fourth aspects, and the ninth to tenth aspects, and will not be described again here. .
  • a fourteenth aspect provides a communication system.
  • the communication system includes the communication device as described in the fifth aspect, and the communication device as described in the sixth aspect.
  • the communication system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect.
  • the communication system includes the communication device described in the fifth aspect for implementing the method described in the first aspect, and the communication device described in the sixth aspect for implementing the method described in the second aspect.
  • the communication system includes the communication device described in the seventh aspect for implementing the method described in the third aspect, and the communication device described in the eighth aspect for implementing the method described in the fourth aspect.
  • a fifteenth aspect provides a chip system including a logic circuit and an input/output port.
  • the logic circuit is used to implement the processing functions involved in the first to fourth aspects, and the ninth to tenth aspects
  • the input/output port is used to implement the first to fourth aspects, and the ninth to tenth aspects.
  • the input port can be used to implement the receiving functions involved in the first to fourth aspects, and the ninth to tenth aspects
  • the output port can be used to implement the receiving functions involved in the first to fourth aspects, and the ninth to tenth aspects. Involves the sending function.
  • the chip system further includes a memory, which is used to store program instructions and data for implementing the functions involved in the first to fourth aspects, and the ninth to tenth aspects.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium stores a computer program or instructions; when the computer program or instructions are run on a computer, the first to fourth aspects and the ninth aspect are The method described in any possible implementation manner from the aspect to the tenth aspect is executed.
  • a computer program product including a computer program or instructions.
  • the computer program or instructions are run on a computer, any one of the first to fourth aspects, the ninth to tenth aspects, etc. Possible implementations of the described method are executed.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of obtaining CSI of a downlink channel provided by an embodiment of the present application
  • Figure 3 is a schematic diagram of cooperative transmission provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 5 is a schematic flowchart of a cooperative transmission reception point indication method provided by an embodiment of the present application.
  • Figure 6 is a schematic flowchart of another cooperative transmission reception point indication method provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as universal mobile telecommunications system (UMTS), wireless local area network (WLAN), wireless fidelity (wireless fidelity, Wi-Fi) ) system, wired network, vehicle to everything (V2X) communication system, device-to-device (D2D) communication system, Internet of Vehicles communication system, 4th generation (4G) mobile communication Systems, such as long term evolution (LTE) systems, worldwide interoperability for microwave access (WiMAX) communication systems, fifth generation (5th generation, 5G) mobile communication systems, such as new radio , NR) system, as well as future communication systems, such as the sixth generation (6th generation, 6G) mobile communication system.
  • UMTS universal mobile telecommunications system
  • WLAN wireless local area network
  • Wi-Fi wireless fidelity
  • V2X vehicle to everything
  • D2D device-to-device
  • Internet of Vehicles communication system Internet of Vehicles communication system
  • 4G 4th generation
  • 4G mobile communication Systems
  • FIG. 1 is a schematic architectural diagram of a communication system to which the cooperative transmission reception point indication method provided by the embodiment of the present application is applicable.
  • the communication system includes network equipment and terminal equipment.
  • the number of network devices may be one or more.
  • the above-mentioned network equipment can also be called access equipment, access network equipment or wireless access network equipment.
  • the network equipment can manage wireless resources, provide access services for terminal equipment, and complete data transfer between the terminal equipment and the core network. Forwarding, network equipment can also be understood as a base station in the network.
  • the network device in the embodiment of the present application may be any communication device with wireless transceiver function used to communicate with the terminal device.
  • the network equipment includes, but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (BSC) ), base transceiver station (BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or TRP, etc.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station home evolved NodeB, HeNB, or home Node B, HNB
  • baseband unit baseBand unit
  • BBU wireless fidelity (wireless fidelity, WIFI) system Access point
  • It can also be 5G, such as gNB in the NR system, or transmission point (TRP) or TP), one or a group (including multiple antenna panels) of antenna panels of a base station in a 5G system, or it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit ( distributed unit (DU), etc., and can also be satellites, drones, etc.
  • gNB in the NR system
  • TRP transmission point
  • TP transmission point
  • BBU baseband unit
  • DU distributed unit
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing RRC, and packet data convergence protocol (PDCP) layer functions.
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, MAC layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC MAC layer
  • PHY physical (physical, PHY) layer.
  • AAU implements some physical layer processing functions, radio frequency processing and active antenna related functions.
  • the RRC layer information is generated by the CU, and will eventually be encapsulated by the PHY layer of the DU into PHY layer information, or converted from the PHY layer information. Therefore, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU, or sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the above-mentioned terminal device is a terminal that is connected to the communication system and has a wireless transceiver function, or a chip or chip system that can be installed on the terminal.
  • the terminal equipment in this application may also be called terminal, user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless Communication equipment, user agent or user device.
  • UE user equipment
  • the terminal in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (pad), a drone, a computer with wireless transceiver functions, customer premise equipment (CPE), virtual reality (virtual reality) , VR) terminal, augmented reality (AR) terminal, Internet of Things terminal, wireless terminal in industrial control, wireless terminal in self-driving, remote medical Wireless terminals, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, Cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communications capabilities, computing devices, or Other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks or terminals in future evolution networks, etc.
  • CPE customer premise equipment
  • VR virtual reality
  • AR augmented reality
  • Internet of Things terminal wireless terminal in industrial control, wireless terminal in self-driving, remote medical Wireless terminals, wireless
  • the terminal device in this application can be an express delivery terminal in smart logistics (such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of cargo, etc.), a wireless terminal in smart agriculture (such as a device that can collect livestock related data wearable devices, etc.), wireless terminals in smart buildings (such as smart elevators, fire monitoring equipment, and smart meters, etc.), wireless terminals in smart medical care (such as wearable devices that can monitor the physiological status of people or animals) ), wireless terminals in smart transportation (such as smart buses, smart vehicles, shared bicycles, charging pile monitoring equipment, smart traffic lights, smart monitoring and smart parking equipment, etc.), wireless terminals in smart retail (such as vending machines, Self-service checkout machines, unmanned convenience stores, etc.).
  • smart logistics such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of cargo, etc.
  • a wireless terminal in smart agriculture such as a device that can collect livestock related data wearable devices, etc.
  • wireless terminals in smart buildings
  • the terminal device in this application may be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip or vehicle-mounted unit built into the vehicle as one or more components or units.
  • vehicle uses the built-in vehicle-mounted module, vehicle-mounted unit Modules, vehicle-mounted components, vehicle-mounted chips or vehicle-mounted units can implement the method provided by this application.
  • the communication system shown in Figure 1 may be applicable to the communication network currently being discussed, or may be applicable to other networks in the future, etc. This is not specifically limited in the embodiment of the present application.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding.
  • the communication system may also include other network devices, and/or other Terminal equipment is not shown in Figure 1.
  • FDD frequency division duplexing
  • CSI may include, but is not limited to, precoding matrix indicator (precoding matrix indicator, PMI), rank indicator (rank indicator, RI), channel quality indicator (channel quality indicator, CQI), CSI-reference signal, CSI-RS resource indicator (CSI-RS resource indicator, CRI) and layer indicator (layer indicator, LI), etc. It should be understood that the specific contents of the CSI listed above are only illustrative and should not constitute any limitation on this application. CSI may include one or more of the above listed items, and may also include other information used to characterize CSI in addition to the above listed items, which is not limited in this application.
  • Figure 2 is a schematic flowchart of obtaining CSI of a downlink channel provided by an embodiment of the present application.
  • the network device sends channel measurement configuration information to the terminal device.
  • the terminal device receives channel measurement configuration information from the network device.
  • the channel measurement configuration information may be used to configure parameters of downlink channel measurement.
  • the channel measurement configuration information may include CSI-RS resource identification, resource type of the reference channel, measurement cycle information, resource mapping information, and/or quasi co-location (QCL) configuration, etc.
  • the network device sends a reference signal to the terminal device. Accordingly, the terminal device receives the reference signal from the network device.
  • S203 The terminal device sends the measurement result to the network device. Accordingly, the network device receives the measurement results from the terminal device.
  • the measurement results include downlink channel information, such as CSI of the downlink channel.
  • the network device sends data to the terminal device according to the CSI of the downlink channel. Accordingly, the terminal device receives data from the network device.
  • the network device may determine the precoding information for sending data according to the CSI of the downlink channel, and thereby send the data.
  • Cooperative transmission means that multiple TRPs provide services to a terminal device at the same time.
  • the cooperative transmission method may include the CJT method and the non-coherent joint transmission (NCJT) method.
  • CJT non-coherent joint transmission
  • the CJT method multiple TRPs occupy the same time-frequency resources and use a joint coherent precoding method to provide services for a certain terminal device at the same time.
  • NCJT method multiple TRPs occupy different time-frequency resources and use non-correlated precoding methods to provide services for a certain terminal device at the same time.
  • Figure 3 is a schematic diagram of cooperative transmission provided by an embodiment of the present application.
  • TRP1 to TRP3 use the CJT method to serve UE1
  • TRP4 and TRP5 use the CJT method to serve UE3.
  • TRP1, TRP2 and TRP4 use NCJT mode to serve UE2.
  • TRP1 to TRP3 Take TRP1 to TRP3 using the CJT method to serve UE1 as an example.
  • TRP1 to TRP3 occupy the same time-frequency resources and serve UE1 at the same time.
  • TRP1 to TRP3 in the cooperation set can be equivalently regarded as a station that sends downlink signals.
  • UE1 does not distinguish which TRP the downlink signal comes from.
  • UE1 can measure the channels from UE1 to each TRP at the same time.
  • UE1 may centrally feed back the measurement results to one TRP among TRP1 to TRP3 (for example, the master station among TRP1 to TRP3).
  • the measurement results may include the downlink channel matrix or precoding used to reconstruct the downlink channel between UE1 and TRP1.
  • the TRP that receives the measurement result can send the CSI to the corresponding TRP.
  • TRP1 sends to TRP2 and TRP3 respectively the CSI used to reconstruct the downlink channel matrix or precoding matrix between UE1 and TRP2 and the CSI used to reconstruct the downlink channel matrix or precoding matrix between UE1 and TRP3, so that TRP1 to TRP3 Coherent joint transmission can be provided for UE1 according to the corresponding CSI.
  • the cooperative transmission reception point indication method provided by the embodiments of the present application can be applied to cooperative transmission scenarios.
  • the configuration methods of channel measurement resources corresponding to these L TRPs may include the following method 1, method 2, and method 3.
  • Method 1 1 reference signal resource, and the maximum number of antenna ports is 32.
  • one reference signal resource can be divided into multiple antenna port groups according to the number of antenna ports, and each antenna port group corresponds to a TRP. Wherein, one antenna port group includes at least one antenna port.
  • each TRP corresponds to 8 antenna ports.
  • the reference signal resources may include non-zero power (NZP) CSI-RS resources.
  • NZP non-zero power
  • the antenna port may also be called a reference signal port, port, or CSI-RS port, which is not limited.
  • K reference signal resources K>1
  • these K reference signals can have the same or different numbers of antenna ports.
  • Each of the K reference signal resources corresponds to a TRP, that is, the K reference signal resources correspond to K TRPs.
  • K reference signal resources K>1
  • these K reference signals can have the same number of antenna ports or different numbers of antenna ports.
  • Each of the K reference signal resources can be divided into multiple antenna port groups according to antenna ports, and each antenna port group corresponds to a TRP.
  • FIG. 4 is a schematic structural diagram of a communication device 400 that can be used to perform the cooperative transmission reception point indication method provided by the embodiment of the present application.
  • the communication device 400 may be a terminal device or a network device, or may be a chip or other component or component used in the terminal device or network device.
  • the communication device 400 may include a processor 401 .
  • the communication device 400 may also include one or more of a memory 402 and a transceiver 403.
  • the processor 401 can be coupled with one or more of the memory 402 and the transceiver 403, for example, it can be connected through a communication bus, and the processor 401 can also be used alone.
  • the processor 401 is the control center of the communication device 400, and may be a processor or a collective name for multiple processing elements.
  • the processor 401 is one or more central processing units (CPUs), may also be an application specific integrated circuit (ASIC), or may be one or more processors configured to implement the embodiments of the present application.
  • An integrated circuit such as one or more microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (field programmable gate array, FPGA).
  • the processor 401 can perform various functions of the communication device 400 by running or executing software programs stored in the memory 402 and calling data stored in the memory 402.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 4 .
  • the communication device 400 may also include multiple processors, such as the processor 401 and the processor 404 shown in FIG. 4 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor here may refer to one or more communications devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 402 may be a read-only memory (ROM) or other type of static storage communication device that can store static information and instructions, a random access memory (random access memory, RAM) or other type that can store information and instructions.
  • type of dynamic storage communication device which can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, Optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage communication devices, or can be used to carry or store desired program codes in the form of instructions or data structures and Any other media capable of being accessed by a computer, without limitation.
  • the memory 402 may be integrated with the processor 401, or may exist independently and be coupled to the processor 401 through the input/output port (not shown in FIG. 4) of the communication device 400. This is not specifically limited in the embodiment of the present application.
  • the memory 402 is used to store software programs for executing the solution of the present application, and is controlled by the processor 401 for execution.
  • the processor 401 for executing the solution of the present application, and is controlled by the processor 401 for execution.
  • Transceiver 403 used for communication with other communication devices.
  • the communication device 400 is a terminal device, and the transceiver 403 can be used to communicate with network equipment and the like.
  • the communication device 400 is a network device, and the transceiver 403 can be used to communicate with terminal equipment and the like.
  • the transceiver 403 may include a receiver and a transmitter (not shown separately in FIG. 4). Among them, the receiver is used to implement the receiving function, and the transmitter is used to implement the sending function.
  • the transceiver 403 may be integrated with the processor 401, or may exist independently and be coupled to the processor 401 through the input/output port (not shown in Figure 4) of the communication device 400. This is not specifically limited in the embodiment of the present application. .
  • the structure of the communication device 400 shown in FIG. 4 does not constitute a limitation on the communication device.
  • the actual communication device may include more or less components than shown in the figure, or some components may be combined, or Different component arrangements.
  • the current 3GPP standard stipulates the maximum number of TRPs that use coherent joint transmission to serve terminal equipment, and the terminal equipment reports the TRPs participating in cooperative transmission to the network equipment.
  • the feedback overhead of this method is relatively large.
  • the network device will reserve the maximum number of reporting resources for the terminal device. Since the number of TRPs selected by the terminal device may be less than the maximum number, the network device reserves the maximum number of reporting resources for the terminal device. resources, therefore, when the number of TRPs selected by the terminal device to participate in cooperative transmission is less than the maximum number L, there may be a waste of reserved resources.
  • Example 1 The standard stipulates that the maximum number of TRPs participating in cooperative transmission is L.
  • the terminal device can indicate the TRPs actually participating in cooperative transmission by reporting a transmission hypothesis to the network device.
  • the transmission hypothesis includes the TRP selected by the terminal device to participate in the cooperative transmission.
  • the terminal device selects a TRP that actually participates in coordinated transmission from L TRPs.
  • the terminal device selects 2 TRPs to participate in cooperative transmission.
  • Example 2 The standard stipulates that the maximum number of TRPs participating in cooperative transmission is L.
  • the network device informs the terminal device through high-level signaling that the actual number of TRPs participating in cooperative transmission is N.
  • the terminal device reports T transmission hypotheses to the network device, and T is An integer greater than 1.
  • the network device selects a transmission hypothesis from T transmission hypotheses and determines which N TRPs participate in cooperative transmission.
  • TRP0, TRP1 TRP0, TRP2
  • TRP0, TRP3 TRP1, TRP2
  • TRP1, TRP3 TRP2, TRP3
  • Example 3 The standard stipulates that the maximum number of TRPs participating in cooperative transmission is L.
  • the actual TRPs participating in cooperative transmission are selected by the terminal device, and the TRPs participating in cooperative transmission are reported to the network device in the form of a bitmap.
  • the bits of the bitmap The number of digits is L.
  • the bitmap occupies at least 4 bits, for example, the bitmap is 1100, indicating that TRP0 and TRP1 participate in coordinated transmission.
  • the cooperative transmission TRP method has a relatively large overhead.
  • the network device will reserve reporting resources for the terminal device according to the maximum number L.
  • the network device since the number of TRPs selected by the terminal device may be less than the maximum number L, and The network device reserves reporting resources for the terminal device according to the maximum number L. Therefore, when the number of TRPs selected by the terminal device to participate in cooperative transmission is less than the maximum number L, the reserved resources may be wasted.
  • the protocol is predefined or the network device predetermines that M TRPs corresponding to M reference signal resources or M antenna port groups must participate in cooperative transmission, and the terminal device further selects from the remaining L-M TRPs.
  • TRPs participating in cooperative transmission narrow the range of TRPs that the terminal equipment can choose to participate in cooperative transmission.
  • the terminal equipment reports which TRPs among the remaining L-M reference signal resources or L-M TRPs corresponding to the L-M antenna port groups participate in cooperative transmission, which can reduce
  • the terminal device reports the overhead of TRPs participating in cooperative transmission, which can also reduce the processing complexity of the terminal device.
  • the protocol is predefined or the network device predetermines R reference signal resources or R candidate TRPs corresponding to R antenna port groups, R is less than L, L is the total number of TRPs that support coordinated transmission, and the terminal
  • the device selects TRPs to participate in coordinated transmission from these R TRPs, which narrows the range of TRPs that the terminal device selects to participate in coordinated transmission.
  • the terminal device reports which TRPs among the R TRPs corresponding to R reference signal resources or R antenna port groups participate. Collaborative transmission can reduce the overhead of terminal devices reporting TRPs participating in collaborative transmission, and can also reduce the processing complexity of terminal devices.
  • the method provided by the embodiment of the present application (the method shown in Figure 5 and Figure 6 below) is not only applicable to the cooperative TRP selection scenario, the method provided by the embodiment of the present application can be applied when there is an entity (such as a terminal device) that needs to send a transmission direction.
  • Indication information another entity (such as a network device) needs to receive the transmission direction indication information and determine the communication system of the antenna's transmission direction within a certain period of time based on the transmission direction indication information.
  • the transmission direction indication information may include CSI used to reconstruct a channel matrix or precoding matrix between the terminal device and the network device.
  • the protocol predefines or the network device predetermines the M frequency domain bases selected by default.
  • the terminal device further selects Y frequency domain bases from the remaining L-M frequency domain bases, where L is the total number of frequency domain bases.
  • the terminal device reports to the network device Report the selected Y frequency domain basis. In this way, the terminal device further selects the frequency domain base among the remaining frequency domain bases, reducing the selection range of the terminal device.
  • This method can reduce the overhead reported by the terminal device and reduce the complexity of the terminal device selecting the frequency domain base. It can also Reduce the complexity of terminal device processing.
  • the cooperative transmission reception point indication method provided by the embodiment of the present application will be described in detail below with reference to Figures 5-6.
  • the methods shown in Figures 5-6 can be applied to the communication system shown in Figure 1 and the scenario shown in Figure 3, for example, can be applied to cooperative transmission scenarios, such as CJT scenarios and NCJT scenarios.
  • the network devices in Figures 5 and 6 can be any of the TRPs.
  • FIG. 5 is a schematic flowchart of a cooperative transmission reception point indication method provided by an embodiment of the present application.
  • the cooperative transmission reception point indication method includes the following steps:
  • the terminal device obtains the first information.
  • the first information is used to indicate M TRPs that must participate in coordinated transmission.
  • the first information is used to indicate M reference signal resources or M antenna port groups.
  • M is an integer greater than or equal to 1.
  • the first information may be used to indicate numbers of M reference signal resources or numbers of M antenna port groups.
  • the number corresponding to the first reference signal resource or the first antenna port group is 0, and other reference signal resources or antenna port groups are numbered in order of increasing 1.
  • the number of the reference signal resource may correspond to the identification (or index) of the reference signal resource.
  • the reference signal resource number 0 may correspond to the reference signal resource identifier x
  • the reference signal resource number 1 may correspond to the reference signal resource identifier y.
  • the number of the reference signal resource may correspond to different reference signal resources (identification or index of the reference signal resource).
  • the reference signal resource number 0 corresponds to the reference signal resource identifier x
  • the reference signal resource number 1 corresponds to the reference signal resource identifier y
  • the reference signal resource number 0 corresponds to the reference signal resource identifier y
  • the reference signal resource number 1 corresponds to the reference signal resource identifier x.
  • the number of the antenna port group may correspond to the identification (or index) of the reference signal resource.
  • the number of the antenna port group may correspond to different reference signal resources (identification or index of the reference signal resource).
  • the network device may send the corresponding relationship between the number of the reference signal resource and the identifier (or index) of the reference signal resource, or the corresponding relationship between the number of the antenna port group and the identifier (or index) of the reference signal resource, to the terminal device. For example, it may be executed before S501 mentioned above.
  • the corresponding relationship between the number of the reference signal resource and the identification (or index) of the reference signal resource may include: the corresponding relationship between the number of the L reference signal resources and the identification (or index) of the L reference signal resource.
  • the corresponding relationship may It is a one-to-one correspondence, and L is the total number of TRPs that support cooperative transmission.
  • the corresponding relationship between the numbers of the antenna port groups and the identifiers (or indexes) of the reference signal resources may include: the corresponding relationship between the numbers of the L antenna port groups and the identifiers (or indexes) of the L reference signal resources.
  • the corresponding relationship may It’s a one-to-one correspondence.
  • the network device may send the corresponding relationship between the number of the reference signal resource and the identifier (or index) of the reference signal resource, or the number of the antenna port group and the identifier (or index) of the reference signal resource, to the terminal device through high-layer signaling. corresponding relationship.
  • the corresponding relationship between the number of the reference signal resource and the identifier (or index) of the reference signal resource, or the corresponding relationship between the number of the antenna port group and the identifier (or index) of the reference signal resource can be included in the RRC signaling, MAC CE signaling. Order, or DCI.
  • one of the M antenna port groups may include one or more antenna ports.
  • M antenna port groups correspond to M TRPs one-to-one.
  • the M TRPs are cooperative TRPs, and the first information is used to indicate that the M TRPs corresponding to the M antenna port groups must participate in coordinated transmission.
  • M reference signal resources correspond to M transmission reception points TRP one-to-one.
  • the first information is used to indicate that M TRPs corresponding to M reference signal resources must participate in coordinated transmission.
  • the reference signal resources may include but are not limited to CSI-RS resources, such as NZP CSI-RS resources.
  • the contents indicated by the first information are different.
  • the first information is used to indicate M antenna port groups. If the channel measurement resource configuration mode is Mode 2, the first information is used to indicate M reference signal resources.
  • the terminal device parses the first information according to the configuration mode of the channel measurement resources. If the resource configuration mode for channel measurement is mode 1 or mode 3, and the first information indicates M antenna port groups, the first information indicates that M TRPs corresponding to the M antenna port groups must participate in coordinated transmission. If the resource configuration mode for channel measurement is mode 2, and the first information indicates M reference signal resources, the first information indicates that M TRPs corresponding to the M reference signal resources must participate in coordinated transmission.
  • the resource configuration mode for channel measurement is mode 1 or mode 3
  • reference signal resource 1 corresponds to TRP1
  • TRP1 participates in coordinated transmission.
  • the channel measurement resources may be configured in a manner predefined by the protocol or configured by the network device for the terminal device.
  • the configuration method of channel measurement resources is configured by the network device for the terminal device.
  • the method provided by the embodiment of the present application may also include: the configuration method of the network device configuring the channel measurement resources to the terminal device.
  • the terminal device receives a configuration mode of resources for channel measurement from the network device.
  • the network device may notify the terminal device of the configuration mode of channel measurement resources through high-layer signaling.
  • the configuration mode of channel measurement resources may be included in RRC signaling, MAC CE signaling, or DCI.
  • the terminal device may obtain the first information.
  • the first information may be configured by the network device for the terminal device, or preconfigured, or predefined by the protocol, or specified by the protocol.
  • the first information is configured by the network device for the terminal device.
  • the above S501 may include: S501a, the network device sends the first information to the terminal device.
  • the terminal device receives the first information from the network device.
  • the first information may be included in high-level signaling, and the network device may inform the terminal device through high-level signaling that M TRPs corresponding to M reference signal resources or M antenna port groups must participate in coordinated transmission.
  • the first information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the network device can determine that M TRPs corresponding to M reference signal resources or M antenna port groups must participate in coordinated transmission and send it to the terminal device.
  • the method provided by the embodiment of the present application may also include: S504, the network device determines the first information based on the fifth information.
  • the fifth information may include but is not limited to one or more of the following: uplink channel information, reference signal receiving power (RSRP), and angle delay pair information.
  • RSRP reference signal receiving power
  • angle delay pair information may include but is not limited to one or more of the following: uplink channel information, reference signal receiving power (RSRP), and angle delay pair information.
  • network equipment can perform channel sounding reference signal (SRS) measurements to obtain uplink channel information.
  • SRS channel sounding reference signal
  • the network device may determine the RSRP based on the power of the received reference signal.
  • the network device can obtain the angle delay pair information based on the uplink channel information.
  • the network device obtains M reference signal resources or M TRPs corresponding to M antenna port groups based on existing a priori information (for example, fifth information) and must participate in coordinated transmission.
  • the above S504 may include: the network device determines the first information based on the second information and the fifth information.
  • the second information may be used to indicate that the total number of TRPs supporting coordinated transmission is L.
  • L is greater than 1.
  • M is greater than or equal to 1 and less than L.
  • Y is greater than or equal to 1 and less than or equal to L-M.
  • N is greater than 1 and less than or equal to L.
  • the network device may select M TRPs with larger RSRPs from the L TRPs based on the RSRPs corresponding to the L TRPs. This application is not limited to this.
  • the network device may select a TRP with a higher power corresponding to the M pieces of angle delay pair information from the L TRPs based on the angle delay pair information corresponding to the L TRPs respectively.
  • This application is not limited to this.
  • the network device may select M TRPs from the L TRPs based on the information of the uplink channels corresponding to the L TRPs respectively.
  • the network device determines that M TRPs must participate in cooperative transmission based on existing a priori information, which can narrow the range of TRPs selected by the terminal device to participate in cooperative transmission, thereby reducing the overhead of the terminal device reporting TRPs participating in cooperative transmission, and also reducing the cost of the terminal device.
  • Device processing complexity
  • the above S504 may be executed before the above S501, for example, before the above S501a.
  • preconfigured or protocol predefined or protocol stipulated may refer to information being stored in terminal equipment or network equipment in advance.
  • the protocol may stipulate that the TRP corresponding to reference signal resource 0 or antenna port group 0 must participate in coordinated transmission.
  • the reference signal resource numbers or the antenna port group numbers are sorted from small to large, and the protocol can stipulate that the TRPs corresponding to the first M reference signal resources or antenna port groups must participate in coordinated transmission.
  • the protocol predefines that certain M TRPs must participate in cooperative transmission, which can narrow the range of TRPs selected by the terminal device to participate in cooperative transmission, thereby reducing the overhead of the terminal device reporting TRPs participating in cooperative transmission, and also reducing the network device sending the third TRP to the terminal device.
  • the signaling overhead of a message can also reduce the processing complexity of the terminal device.
  • M is greater than 1, which can ensure the minimum number of cooperative TRPs participating in providing services to the terminal.
  • the terminal device determines Y cooperative TRPs based on the first information and the second information.
  • the second information may be used to indicate that the total number of TRPs supporting coordinated transmission is L.
  • Y cooperative TRPs are included in L-M TRPs.
  • the L-M TRPs are TRPs other than M TRPs among the L TRPs (for example, M TRPs corresponding to M reference signal resources or M TRPs corresponding to M antenna port groups).
  • Y is less than or equal to L-M.
  • Y is an integer greater than 0 and less than or equal to L-M.
  • the Y cooperative TRPs may be TRPs with a larger sum of projection coefficient powers, or TRPs with a larger sum of projection coefficient amplitudes, or TRPs with a larger sum of projection coefficient powers selected to be reported, or selected TRPs with a larger sum of projection coefficient powers.
  • the terminal device may select a TRP with the largest sum of Y projection coefficient powers or a TRP with the largest sum of Y projection coefficient amplitudes based on the projection coefficient powers or projection coefficient amplitudes respectively corresponding to the L-M TRPs.
  • the projection coefficient is obtained by projecting the channel matrix or precoding matrix between the terminal device and the TRP on the substrate.
  • This application does not limit how the terminal device selects Y cooperative TRPs to participate in cooperative transmission among the identifiers of the remaining L-M reference signal resources or the TRPs corresponding to the antenna port groups.
  • antenna port group 0 to antenna port group 3 respectively correspond to one TRP
  • M 1
  • the first information indicates that the TRP corresponding to antenna port group 0 must participate in cooperative transmission
  • the third information indicates that the TRP corresponding to antenna port group 1 participates in coordinated transmission. .
  • the third information indicates the TRP1 and antenna port corresponding to antenna port group 1.
  • the TRP corresponding to group 2 participates in cooperative transmission.
  • the protocol is predefined or the network device determines that M TRPs must participate in cooperative transmission, which narrows the range of TRPs that the terminal device can choose to participate in cooperative transmission.
  • the terminal device only needs to report which TRPs among the remaining L-M TRPs participate in cooperative transmission, thus reducing the cost
  • the terminal device reports the overhead of TRPs participating in cooperative transmission, which can also reduce the processing complexity of the terminal device.
  • the above S502 may include: the following steps 1 to 2.
  • Step 1 The terminal device obtains fourth information.
  • Step 2 The terminal device determines Y cooperative TRPs based on the first information, second information and fourth information.
  • the fourth information may be used to indicate that the total number of TRPs actually participating in the coordinated transmission is N.
  • the fourth information may indicate that the total number of TRPs actually participating in the coordinated transmission is N.
  • Y can be equal to N-M.
  • the fourth information comes from the network device, or the fourth information is determined by the terminal device, or the fourth information is predefined by the protocol, or the fourth information is determined through negotiation between the network device and the terminal device.
  • the fourth information may be determined by the network device, the network device sends the fourth information to the terminal device, and accordingly, the terminal device receives the fourth information from the network device.
  • the fourth information may be included in high-layer signaling, and the network device may send the fourth information to the terminal device through high-layer signaling, indicating that the total number of TRPs actually participating in the coordinated transmission is N.
  • the fourth information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the network device can send the fourth information to the terminal device through RRC signaling, MAC CE signaling, or DCI.
  • N is greater than or equal to M.
  • N is less than or equal to L, where L is the total number of TRPs that support coordinated transmission.
  • N is an integer greater than or equal to M and less than or equal to L.
  • the protocol is predefined or the network device determines that M TRPs must participate in cooperative transmission.
  • the total number of TRPs actually participating in cooperative transmission is N.
  • the terminal device determines other N-M TRPs participating in cooperative transmission.
  • N-M TRPs are equal to M TRPs perform cooperative transmission at the same time.
  • the fourth information may be used to indicate that the total number of TRPs actually participating in coordinated transmission is at least N, and the third information may be used to indicate the identities of at least N-M reference signal resources or the identities of at least N-M antenna port groups.
  • the terminal device can select at least N-M TRPs among the remaining L-M reference signal resource identifiers or TRPs corresponding to the antenna port groups to participate in coordinated transmission.
  • N-M TRPs may be included in L-M TRPs.
  • the N-M TRPs may be TRPs with a larger sum of projection coefficient powers, or TRPs with a larger sum of projection coefficient amplitudes, or TRPs with a larger sum of projection coefficient powers selected to be reported, or selected needs.
  • the TRP with a larger sum of reported projection coefficient amplitudes may be TRPs with a larger sum of reported projection coefficient amplitudes.
  • the terminal device can select a TRP with the largest sum of N-M projection coefficient powers or a TRP with the largest sum of N-M projection coefficient amplitudes based on the projection coefficient powers or projection coefficient amplitudes respectively corresponding to L-M TRPs.
  • the projection coefficient is obtained by projecting the channel matrix or precoding matrix between the terminal device and the TRP on the substrate.
  • This application does not limit how the terminal device selects at least N-M TRPs to participate in coordinated transmission among the identifiers of the remaining L-M reference signal resources or the TRPs corresponding to the antenna port groups.
  • the first information indicates that the TRP corresponding to antenna port group 0 must participate in cooperative transmission, N is equal to 2, Then the terminal device can select one TRP from the TRPs corresponding to antenna port group 1, antenna port group 2 and antenna port group 3 to participate in coherent cooperative transmission.
  • the third information indicates the TRP corresponding to antenna port group 1. Participate in collaborative transmission.
  • the first information indicates that the TRP corresponding to antenna port group 0 must participate in cooperative transmission, N equals 3, Then the terminal device can select two TRPs from the TRPs corresponding to antenna port group 1, antenna port group 2 and antenna port group 3 to participate in coherent cooperative transmission.
  • the third information indicates the TRP1 corresponding to antenna port group 1 and antenna port group 2. The corresponding TRP participates in cooperative transmission.
  • the protocol is predefined or the network device determines that M TRPs must participate in cooperative transmission, which narrows the range of TRPs that the terminal device can choose to participate in cooperative transmission.
  • the terminal device only needs to report which TRPs among the remaining L-M TRPs participate in cooperative transmission, thus reducing the cost
  • the terminal device reports the overhead of TRPs participating in cooperative transmission, which can also reduce the processing complexity of the terminal device.
  • the second information may come from a network device or be predefined for a protocol.
  • the network device may send the second information to the terminal device, and accordingly, the terminal device receives the second information from the network device.
  • the second information may be included in high-layer signaling, and the network device may send the second information to the terminal device through high-layer signaling.
  • the second information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the network device can send the second information to the terminal device through RRC signaling, MAC CE signaling, or DCI.
  • S503 The terminal device sends third information to the network device.
  • the network device receives the third information from the terminal device.
  • the third information may be determined by the terminal device based on the first information and the second information.
  • the third information is used to indicate Y reference signal resources or Y antenna port groups.
  • the third information may be used to indicate the numbers of Y reference signal resources or the numbers of Y antenna port groups.
  • Y is an integer greater than 0.
  • Y reference signal resources correspond to Y cooperative TRPs one-to-one.
  • Y antenna port groups correspond to Y cooperative TRPs one-to-one.
  • Y cooperative TRPs and M cooperative TRPs participate in cooperative transmission at the same time.
  • the third information can be used to indicate that the Y cooperative TRPs corresponding to the Y antenna port groups adopt a cooperative transmission mode to simultaneously provide services to the terminal equipment, or the third information can be used to indicate the Y cooperative TRPs corresponding to the Y reference signal resources.
  • TRP uses cooperative transmission to provide services to terminal devices at the same time.
  • the protocol is predefined or the network device determines that M TRPs must participate in cooperative transmission, and the terminal device determines other Y TRPs that participate in cooperative transmission. Finally, Y cooperative TRPs and M TRPs perform cooperative transmission at the same time.
  • the third information may include the first field.
  • the first field is used to indicate Y coordinated TRPs corresponding to Y reference signal resources.
  • the first field is used to indicate Y cooperative TRPs corresponding to Y antenna port groups.
  • Y may equal N-M.
  • the first field may also indicate that the L-Y-M TRPs corresponding to the L-Y-M reference signal resources do not participate in coordinated transmission.
  • the first field may also indicate that the L-Y-M TRPs corresponding to the L-Y-M antenna port groups do not participate in coordinated transmission.
  • the first field may also indicate that the L-N TRPs corresponding to the L-N reference signal resources do not participate in coordinated transmission.
  • the first field may also indicate that the L-N TRPs corresponding to the L-N antenna port groups do not participate in coordinated transmission.
  • the first field includes a bitmap.
  • bit length of the first field may be related to the value of L-M.
  • the number of bits in the bitmap may be equal to L-M.
  • L-M bits may correspond to L-M reference signal resources one-to-one.
  • the corresponding relationship between L-M bits and L-M reference signal resources can satisfy the first rule.
  • the first rule includes: from left to right (or from right to left), the first bit among the L-M bits
  • the bits to the L-Mth bit correspond to the numbers of the reference signal resources among the L-M reference signal resources in ascending order.
  • the first bit among the L-M bits corresponds to the reference signal resource with the smallest number among the L-M reference signal resources
  • the L-M bit among the L-M bits corresponds to the reference signal resource with the largest number among the L-M reference signal resources
  • the first bit to the L-Mth bit among the L-M bits correspond to the numbers of the reference signal resources among the L-M reference signal resources in ascending order.
  • the bit length of the first field may be 3, and the first bit of the bitmap The first bit to the third bit correspond to reference signal resource 1 to reference signal resource 3 respectively. If the first information indicates reference signal resource 1, the bit length of the first field may be 3, the first bit of the bitmap may correspond to reference signal resource 0, and the second bit of the bitmap may correspond to the reference signal. Resource 2, the third bit of the bitmap can correspond to reference signal resource 3.
  • the first rule may be predefined by a protocol, or agreed between the network device and the terminal device, or the network device may notify the terminal device after determination.
  • L-M bits and L-M reference signal resource numbers in this application is not limited.
  • the first rule is just an example.
  • the corresponding relationship between L-M bits and L-M reference signal resources satisfies L-M
  • the bits can correspond to L-M reference signal resources one-to-one.
  • the value of the bit corresponding to the reference signal resource is 1, indicating that the TRP corresponding to the reference signal resource participates in coordinated transmission, and the value of the bit corresponding to the reference signal resource is 0, indicating that the TRP corresponding to the reference signal resource is not a terminal device. service, the embodiment of this application takes this as an example to illustrate.
  • the value of the bit corresponding to the reference signal resource is 0, indicating that the TRP corresponding to the reference signal resource participates in coordinated transmission, and the value of the bit corresponding to the reference signal resource is 1, indicating that the TRP corresponding to the reference signal resource is not
  • Terminal device services are not limited in the embodiments of this application.
  • the TRP corresponding to the reference signal resource does not serve the terminal equipment, which may mean that the TRP corresponding to the reference signal resource does not serve the terminal equipment or does not participate in the coordinated transmission at the time when other TRPs participate in coordinated transmission.
  • L-Y-M TRPs corresponding to L-Y-M reference signal resources do not serve the terminal equipment at the first moment, or do not serve the terminal equipment at the first moment. Not participating in collaborative transmission at all times.
  • N TRPs corresponding to N reference signal resources perform coordinated transmission at the first moment
  • L-N TRPs corresponding to L-N reference signal resources do not serve the terminal equipment at the first moment, or do not participate in the first moment Collaborative transmission.
  • the first bit to the L-Mth bit among the L-M bits correspond to the numbers of the reference signal resources among the L-M reference signal resources in ascending order.
  • reference signal resource 0 to reference signal resource 3 respectively correspond to one TRP
  • the first information indicates reference signal resource 0
  • the terminal equipment selects the TRP corresponding to reference signal resource 2 to participate in coordinated transmission
  • the first field can occupy 3 bits, and the bitmap is 010, indicating that the TRP corresponding to reference signal resource 2 participates in coordinated transmission, and the TRP corresponding to reference signal resource 1 and the TRP corresponding to reference signal resource 3 do not serve the terminal equipment, or Does not participate in collaborative transmission.
  • the first information indicates reference signal resource 1
  • the terminal equipment selects the TRP corresponding to reference signal resource 2 to participate in coordinated transmission
  • the first field can occupy 3 bits, and the bitmap is 010, indicating that the TRP corresponding to reference signal resource 2 participates in coordinated transmission, and the TRP corresponding to reference signal resource 0 and the TRP corresponding to reference signal resource 3 do not serve the terminal equipment, or Does not participate in collaborative transmission.
  • L-M bits may correspond to L-M antenna port groups one-to-one. Similar to the above, L-M bits can correspond to L-M reference signal resources one-to-one.
  • the corresponding relationship between L-M bits and L-M antenna port groups can satisfy the second rule.
  • the second rule includes: from left to right (or from right to left), the first bit among the L-M bits
  • the bits to the L-Mth bit correspond to the numbers of the antenna port groups in the L-M antenna port groups in ascending order.
  • the second rule may be predefined by a protocol, or agreed between the network device and the terminal device, or the network device may notify the terminal device after determination.
  • L-M bits and L-M antenna port group numbers in this application is not limited.
  • the second rule is just an example.
  • the corresponding relationship between L-M bits and L-M antenna port groups satisfies L-M
  • the bits can correspond to L-M antenna port groups one-to-one.
  • the value of the bit corresponding to the antenna port group is 1, indicating that the TRP corresponding to the antenna port group participates in coordinated transmission, and the value of the bit corresponding to the antenna port group is 0, indicating that the TRP corresponding to the antenna port group is not a terminal device. service, or does not participate in cooperative transmission.
  • the embodiments of this application will take this as an example to illustrate.
  • the terminal device serves or does not participate in cooperative transmission, which is not limited in the embodiments of this application.
  • the TRP corresponding to the antenna port group does not serve the terminal device, which means that when other TRPs perform cooperative transmission, the TRP corresponding to the antenna port group does not serve the terminal device, or does not participate in the cooperative transmission.
  • L-Y-M TRPs corresponding to L-Y-M antenna port groups do not serve the terminal device at the first moment, or do not serve the terminal device at the first moment. Not participating in collaborative transmission at all times.
  • N TRPs corresponding to N antenna port groups perform coordinated transmission at the first moment
  • L-N TRPs corresponding to L-N antenna port groups do not serve terminal devices at the first moment, and do not participate in cooperation at the first moment. transmission.
  • the first bit to the L-Mth bit among the L-M bits from left to right correspond to the numbers of the antenna port groups in the L-M antenna port groups in ascending order.
  • antenna port group 0 to antenna port group 3 respectively correspond to one TRP
  • the first information indicates antenna port group 0, and the terminal device selects the TRP corresponding to antenna port group 2 for cooperative transmission.
  • the first field can occupy 3 bits, and the bitmap is 010, indicating that the TRP corresponding to antenna port group 2 participates in cooperative transmission, and the TRP corresponding to antenna port group 1 and the TRP corresponding to antenna port group 3 do not serve the terminal device, or Does not participate in collaborative transmission.
  • antenna port group 0 to antenna port group 3 respectively correspond to one TRP
  • the first information indicates antenna port group 1
  • the terminal device selects the TRP corresponding to antenna port group 2 to participate in coordinated transmission
  • the first field can occupy 3 bits, and the bitmap is 010, indicating that the TRP corresponding to antenna port group 2 participates in coordinated transmission, and the TRP corresponding to antenna port group 0 and the TRP corresponding to antenna port group 3 do not serve the terminal device, or Does not participate in collaborative transmission.
  • the protocol is predefined or the network device predetermines that M TRPs must participate in cooperative transmission, which narrows the range of TRPs that the terminal device can choose to participate in cooperative transmission.
  • the terminal device only needs to report which TRPs among the remaining L-M TRPs participate in cooperative transmission.
  • the terminal The device only needs L-M bits to indicate the TRP that participates in coordinated transmission. Compared with the L bits required in Example 3 above, the overhead of the terminal device reporting the TRP that participates in coordinated transmission can be reduced, and the processing complexity of the terminal device can also be reduced.
  • the first field includes a transmission hypothesis.
  • the terminal device can tell the network device to participate in the cooperative transmission TRP in the form of reporting a transmission hypothesis.
  • the first field may be used to indicate Y coordinated TRPs corresponding to Y reference signal resources.
  • the first field may be used to indicate Y cooperative TRPs corresponding to Y antenna port groups.
  • the third information includes a second field.
  • the second field may be used to indicate M TRPs corresponding to M reference signal resources and Y TRPs corresponding to Y coordinated reference signal resources.
  • the second field may be used to indicate M TRPs corresponding to M antenna port groups and Y cooperative TRPs corresponding to Y antenna port groups.
  • Y can be equal to N-M.
  • the second field contains the transmission hypothesis.
  • antenna port group 0 to antenna port group 3 respectively correspond to a TRP
  • the first field is 00, which can indicate that the TRP corresponding to antenna port group 1 participates in coordinated transmission; the first field is 01, which can indicate that the TRP corresponding to antenna port group 2 participates in coordinated transmission; the first field is 10, which can indicate that the antenna port The TRP corresponding to group 3 participates in cooperative transmission.
  • the second field is 00, which can indicate that the TRP0 corresponding to antenna port group 0 and the TRP corresponding to antenna port group 1 perform coordinated transmission at the same time; the second field is 01, which can indicate the TRP corresponding to antenna port group 0 and antenna port group 2.
  • the corresponding TRPs perform coordinated transmission at the same time; the second field is 10, which can indicate that the TRP corresponding to antenna port group 0 and the TRP corresponding to antenna port group 3 perform coordinated transmission at the same time.
  • the terminal device selects the TRP corresponding to antenna port group 2 to participate in coordinated transmission, then the first field (or second field) is 00, and the bit length of the first field (or second field) is 2 bits.
  • the terminal device needs to use 3 bits to report to the network device.
  • the protocol is predefined or the network device predetermines that one TRP must participate in cooperative transmission.
  • the terminal The device only needs 2 bits to indicate another TRP participating in cooperative transmission. This can reduce the overhead of the terminal device reporting the TRP participating in cooperative transmission and also reduce the processing complexity of the terminal device.
  • the protocol is predefined or the network device predetermines that M TRPs must participate in cooperative transmission.
  • the terminal device reports other TRPs participating in cooperative transmission, it can select one transmission hypothesis among the transmission hypotheses determined based on the M TRPs, which reduces
  • the optional range of transmission assumptions can reduce the overhead of the terminal device reporting TRPs participating in cooperative transmission, and can also reduce the processing complexity of the terminal device.
  • the terminal device sends 2 of the 3 transmission hypotheses to the network device, and the network device selects a TRP to participate in cooperative transmission from the 2 transmission hypotheses.
  • the bit length of the first field (or second field) may be 2 bits.
  • the first field (or second field) may be 00, which may indicate transmission assumptions (antenna port group 1) and (antenna port group 2).
  • the second field is 00 to indicate the transmission assumptions (antenna port group 0, antenna port group 1) and (antenna port group 0, antenna port group 2));
  • the first field is 01 to indicate the transmission assumption (antenna port group 0, antenna port group 2) port group 1) and (antenna port group 3) (alternatively, a second field of 01 may indicate transmission assumptions (antenna port group 0, antenna port group 1) and (antenna port group 0, antenna port group 3));
  • first A field of 10 may indicate the transmission assumptions (antenna port group 2) and (antenna port group 3) (Alternatively, a second field of 10 may indicate the transmission assumptions (antenna port group 0, antenna port group 2) and (antenna port group 0 , antenna port group 3)).
  • the terminal device when 2 TRPs participate in cooperative transmission, the terminal device needs to use 4 bits to indicate 2 of the 6 transmission hypotheses.
  • the protocol is predefined or the network device It is predetermined that a TRP participating in cooperative transmission must participate in cooperative transmission.
  • the terminal device only needs to use 2 bits to indicate 2 of the 3 transmission hypotheses. This can reduce the overhead of the terminal device reporting TRPs participating in cooperative transmission, and also It can reduce the complexity of terminal device processing.
  • antenna port group 0 to antenna port group 3 respectively correspond to one TRP
  • the first information indicates antenna port group 0 and antenna port group 1
  • the terminal device can be in antenna port group 1 to antenna port group 1.
  • TRP TRP is selected from the corresponding TRPs of antenna port group 3
  • there are two transmission assumptions for example (antenna port group 2), (Antenna port group 3);
  • the first field is 0, it may indicate that the TRP corresponding to antenna port group 2 participates in coordinated transmission; if the first field is 1, it may indicate that the TRP corresponding to antenna port group 3 participates in coordinated transmission.
  • the second field is 0, which can indicate that the TRP corresponding to antenna port group 0, the TRP corresponding to antenna port group 1, and the TRP corresponding to antenna port group 2 perform coordinated transmission at the same time;
  • the second field is 1, which can indicate that the antenna port group The TRP corresponding to 0, the TRP corresponding to antenna port group 1, and the TRP corresponding to antenna port group 3 perform coordinated transmission at the same time.
  • the terminal device selects the TRP corresponding to antenna port group 2 to participate in coordinated transmission, then the first field (or second field) is 0, and the bit length of the first field (or second field) is 2 bits.
  • the terminal device needs to use 2 bits to report 3 TRPs to the network device to participate in cooperative transmission.
  • the protocol is predefined or the network device predetermines that 2 TRPs must participate in cooperative transmission.
  • the terminal The device only needs 1 bit to indicate another TRP participating in coordinated transmission. This can reduce the overhead of the terminal device reporting the TRP participating in coordinated transmission and also reduce the processing complexity of the terminal device.
  • the first field may be configured in Part 1 information of the third information.
  • the second field may be configured in the part 1 information of the third information.
  • the third information can be used by the network device to reconstruct the channel matrix and/or the precoding matrix.
  • the third information may include Part 1 information, and the Part 1 information may include the first field or the second field.
  • the third information may also include Part 2 information.
  • Part 1 information can be used to determine the number of bits required for Part 2 information.
  • the third information may be CSI.
  • Part 1 information may include RI, CQI, and the total number of non-zero projection coefficients corresponding to all layers.
  • part 2 information mainly includes PMI information, and/or LI information, etc.
  • PMI information may include but is not limited to one or more of the following: non-zero projection coefficient bitmap information, spatial domain component selection indication information, frequency domain component selection indication information, non-zero projection coefficient amplitude and phase quantization information.
  • the third information may not include the first field or the second field.
  • the terminal device may not indicate the TRPs participating in coordinated transmission, and the third information does not include the first field or the second field may implicitly indicate that N is equal to L.
  • the terminal device does not need to report which TRPs participate in cooperative transmission, which can further reduce the reporting overhead of the terminal device.
  • the third information does not include the first field or the second field.
  • the terminal device may not indicate the TRPs participating in coordinated transmission, and the third information does not include the first field (or the second field) N may be implicitly indicated to be equal to M. In this way, the terminal device does not need to report which TRPs participate in cooperative transmission, which can further reduce the reporting overhead of the terminal device.
  • the terminal device may not indicate the TRPs participating in coordinated transmission.
  • the third information may be included in the UCI.
  • the network device may send the third information to the terminal device through UCI, and the UCI may include the third information.
  • the protocol is predefined or the network device predetermines that M TRPs corresponding to M reference signal resources or M antenna port groups must participate in coordinated transmission, and the terminal device further selects to participate in cooperation from the remaining L-M TRPs.
  • the transmitted TRP narrows the range of TRPs that the terminal equipment can choose to participate in cooperative transmission.
  • the terminal equipment only needs to report which of the remaining L-M reference signal resources or L-M TRPs corresponding to the L-M antenna port groups participate in coordinated transmission, which can reduce
  • the terminal device reports the overhead of TRPs participating in cooperative transmission, which can also reduce the processing complexity of the terminal device.
  • FIG. 6 is a schematic flowchart of another cooperative transmission reception point indication method provided by an embodiment of the present application. The method shown in Figure 6 is explained by taking the protocol predefinition or the network device predetermining R candidate TRPs as an example.
  • the cooperative transmission reception point indication method includes the following steps:
  • the network device sends sixth information to the terminal device.
  • the terminal device receives the sixth information from the network device.
  • the sixth information may be used to indicate R reference signal resources or R antenna port groups.
  • R is an integer greater than or equal to 1.
  • the sixth information may be used to indicate the numbers of R reference signal resources or the numbers of R antenna port groups.
  • the number of the reference signal resource may correspond to the identification (or index) of the reference signal resource.
  • the number of the reference signal resource may correspond to the identification (or index) of the reference signal resource.
  • the number of the antenna port group may correspond to the identification (or index) of the reference signal resource.
  • the number of the antenna port group may correspond to the identification (or index) of the reference signal resource.
  • one of the R antenna port groups may include one or more antenna ports.
  • R antenna port groups correspond to R TRPs one-to-one.
  • R TRPs are candidate cooperative TRPs.
  • R is less than or equal to L
  • L is the total number of TRPs supporting coordinated transmission.
  • R is an integer greater than or equal to 1 and less than or equal to L.
  • the sixth information can be used to indicate that the R TRPs corresponding to the R antenna port groups among the L TRPs are candidate TRPs, which can narrow the selection range of TRPs selected to participate in coordinated transmission.
  • TRP the TRP corresponding to antenna port group 0
  • the TRP corresponding to antenna port group 1 and the TRP corresponding to antenna port group 2 are candidates. TRP.
  • R reference signal resources correspond to R TRPs one-to-one.
  • reference signal resource reference may be made to the corresponding explanation in S501 above, which will not be described again here.
  • the sixth information can be used to indicate that the R TRPs corresponding to the R reference signal resources among the L TRPs are candidate TRPs, which can narrow the selection range of TRPs selected to participate in coordinated transmission.
  • the sixth information may be included in high-layer signaling, and the network device may inform the terminal device through high-layer signaling that R TRPs corresponding to R reference signal resources or R antenna port groups are candidate TRPs.
  • the sixth information may be included in RRC signaling, MAC CE signaling, or DCI.
  • the method provided by the embodiments of the present application may also include: S603, the network device determines sixth information based on the fifth information.
  • the network device obtains R reference signal resources or R TRPs corresponding to R antenna port groups based on existing a priori information (such as uplink channel information) and can participate in coordinated transmission.
  • the terminal device can further obtain R TRPs from the R TRPs. Get the TRPs participating in collaborative transmission.
  • the above S603 may include: the network device determines sixth information based on the second information and the fifth information.
  • the network device may select R TRPs with larger RSRPs from the L TRPs based on the RSRPs corresponding to the L TRPs. This application is not limited to this.
  • the network device may select a TRP with a higher power corresponding to the R pieces of angle delay pair information from the L TRPs based on the angle delay pair information corresponding to the L TRPs respectively.
  • This application is not limited to this.
  • the network device may select R TRPs from the L TRPs based on the information of the uplink channels corresponding to the L TRPs respectively.
  • the network device determines that R TRPs must participate in cooperative transmission based on the existing a priori information, which can narrow the range of TRPs selected by the terminal device to participate in cooperative transmission, thereby reducing the overhead of the terminal device reporting TRPs participating in cooperative transmission, and also reducing the cost of the terminal device.
  • Device processing complexity
  • the sixth information may be predefined by the protocol.
  • the protocol can specify that the TRPs corresponding to antenna port group 0, antenna port group 1, and antenna port group 2 are candidate TRPs.
  • the protocol predefines the range of TRPs that the terminal device selects to participate in coordinated transmission, thereby reducing the overhead of the terminal device reporting the TRPs participating in coordinated transmission, and also reducing the signaling overhead of the network device sending the sixth information to the terminal device.
  • the terminal device sends seventh information to the network device.
  • the network device receives the seventh information from the terminal device.
  • the seventh information may be determined by the terminal device based on the sixth information.
  • the seventh information may indicate Q reference signal resources or Q antenna port groups.
  • the seventh information may be used to indicate the numbers of Q reference signal resources or the numbers of Q antenna port groups.
  • Q is less than or equal to R.
  • Q reference signal resources correspond to Q cooperative TRPs one-to-one.
  • Q antenna port groups correspond to Q cooperative TRPs one-to-one.
  • Q cooperative TRPs participate in cooperative transmission.
  • the seventh information may be used to instruct Q coordinated TRPs corresponding to Q antenna port groups to perform coordinated transmission at the same time, or the seventh information may be used to instruct Q coordinated TRPs corresponding to Q reference signal resources to perform coordinated transmission at the same time.
  • Q cooperative TRPs may be included in R TRPs.
  • the protocol is predefined or the network device determines that R TRPs can participate in coordinated transmission, and the terminal device can determine Q TRPs that participate in coordinated transmission from the R TRPs.
  • the sixth information indicates the day
  • the TRPs corresponding to line port group 0, antenna port group 1 and antenna port group 2 can simultaneously use cooperative transmission to serve the terminal device.
  • the terminal device can use the TRPs corresponding to antenna port group 0, antenna port group 1 and antenna port group 2.
  • Select TRPs to participate in coherent cooperative transmission Assuming that the terminal device selects the TRP corresponding to the antenna port group 1 and the antenna port group 2, the seventh information may indicate the antenna port group 1 and the antenna port group 2.
  • the protocol is predefined or the network device determines that R TRPs can participate in cooperative transmission, narrowing the range of TRPs that the terminal device selects to participate in cooperative transmission.
  • the terminal device only needs to report which TRPs among the remaining R TRPs participate in cooperative transmission, thereby reducing the cost of the terminal.
  • the device reports the overhead of TRPs participating in cooperative transmission, which can also reduce the processing complexity of the terminal device.
  • the seventh information may include a third field.
  • the third field may be used to indicate that the Q coordinated TRPs corresponding to the Q reference signal resources participate in coordinated transmission.
  • the third field is used to indicate that Q cooperative TRPs corresponding to Q antenna port groups participate in coordinated transmission.
  • the third field includes a bitmap.
  • bit length of the third field may be related to the value of R.
  • the number of bits in the bitmap may be equal to R.
  • R bits may correspond to R reference signal resources one-to-one.
  • the corresponding relationship between R bits and R reference signal resources can satisfy the third rule.
  • the third rule includes: from left to right (or from right to left), the first bit among the R bits
  • the bits to the R-th bit correspond to the reference signal resource numbers among the R reference signal resources in ascending order.
  • the third rule is similar to the first rule in S503 mentioned above. Reference can be made to the explanation of the first rule and will not be described again here.
  • reference signal resources 0 to 3 respectively correspond to one TRP.
  • the bit length of the third field may be 3, bits The first bit to the third bit of the bitmap correspond to reference signal resources 0 to reference signal resources 2 respectively.
  • the bit length of the third field may be 3, the first bit of the bitmap may correspond to reference signal resource 0, and the bitmap The 2nd bit of can correspond to reference signal resource 2, and the 3rd bit of the bitmap can correspond to reference signal resource 3.
  • bit value corresponding to the reference signal resource being 1 or 0 may refer to the corresponding explanation in S503 above, which will not be described again here.
  • the 1st bit to the Rth bit among the R bits correspond to the numbers of the reference signal resources among the R reference signal resources in ascending order.
  • the sixth information indicates reference signal resource 0 to reference signal resource 2, and the terminal equipment selects reference signal resource 0 and reference signal resource 0.
  • the third field can occupy 3 bits, and the bitmap is 110, indicating that reference signal resource 0 and the TRP corresponding to reference signal resource 1 perform coordinated transmission at the same time, and the reference signal resource 2 corresponds to The TRP corresponding to the TRP does not serve the terminal device or does not participate in cooperative transmission.
  • R bits may correspond to R antenna port groups one-to-one. Similar to the above, the R bits can correspond to the R reference signal resources one-to-one.
  • the corresponding relationship between R bits and R antenna port groups can satisfy the fourth rule.
  • the fourth rule includes: from left to right (or from right to left), the first bit among the R bits
  • the bits to the R-th bit correspond to the numbers of the antenna port groups in the R antenna port groups in ascending order.
  • the third rule is similar to the second rule in S503 mentioned above. Please refer to the explanation of the second rule and will not repeat it here.
  • bit value corresponding to the antenna port group being 1 or 0 may refer to the corresponding explanation in S503 above, which will not be described again here.
  • the first bit to the R-th bit among the R bits correspond to the numbers of the antenna port groups in the R antenna port groups in ascending order.
  • antenna port group 0 to antenna port group 3 respectively correspond to one TRP
  • the sixth information indicates antenna port group 0, antenna port group 2, and antenna port group 3
  • the terminal device selects If the TRPs corresponding to antenna port group 2 and antenna port group 3 perform coordinated transmission at the same time, the third field can occupy 3 bits, and the bitmap is 011, indicating that the TRPs corresponding to antenna port group 2 and antenna port group 3 perform coordinated transmission at the same time. And the TRP corresponding to antenna port group 0 does not serve terminal equipment or does not participate in cooperative transmission.
  • the protocol is predefined or the network device predetermines that R TRPs can participate in cooperative transmission, narrowing the range of TRPs that the terminal device selects to participate in cooperative transmission.
  • the terminal device only needs to report which TRPs among the remaining R TRPs participate in cooperative transmission.
  • the terminal device Only R bits are needed to indicate the TRP participating in coordinated transmission. Compared with L bits required in Example 3 above, the overhead of the terminal device reporting the TRP participating in coordinated transmission can be reduced, and the processing complexity of the terminal device can also be reduced.
  • the third field may include transmission assumptions.
  • the terminal device can tell the network device to participate in the cooperative transmission TRP in the form of reporting a transmission hypothesis.
  • antenna port group 0 to antenna port group 3 respectively correspond to one TRP
  • the sixth information indicates antenna port group 0, antenna port group 1, and antenna port group 2
  • the terminal device can select 2 TRPs from the TRPs corresponding to antenna port group 0 to antenna port group 2
  • there are three transmission assumptions such as (antenna port group 0, antenna port group 1), (antenna port group 0, antenna Port group 2), (antenna port group 1, line port group 2)
  • the bit length of the third field may be 2 bits.
  • the third field is 00, which can indicate that the TRPs corresponding to antenna port group 0 and antenna port group 1 perform coordinated transmission at the same time; the third field is 01, which can indicate that the TRPs corresponding to antenna port group 0 and antenna port group 2 perform coordinated transmission at the same time. Transmission; the third field is 10, which can indicate that the TRPs corresponding to antenna port group 1 and line port group 2 perform coordinated transmission at the same time.
  • the terminal device selects the TRP corresponding to antenna port group 0 and antenna port group 1 and uses the cooperative transmission mode to provide terminal device services, then the third field is 00, and the bit length of the third field is 2 bits.
  • the terminal device needs to use 3 bits to report to the network device.
  • the protocol is predefined or the network device predetermines the candidate TRPs to participate in cooperative transmission.
  • the terminal device Only 2 bits are needed to indicate two TRPs participating in cooperative transmission. This can reduce the overhead of the terminal device reporting the TRPs participating in cooperative transmission, and can also reduce the processing complexity of the terminal device.
  • the protocol is predefined or the network device predetermines that R TRPs must participate in cooperative transmission.
  • the terminal device reports other TRPs participating in cooperative transmission, it can select one transmission hypothesis among the transmission hypotheses determined based on the R TRPs, which reduces
  • the optional range of transmission assumptions can reduce the overhead of the terminal device reporting TRPs participating in cooperative transmission, and can also reduce the processing complexity of the terminal device.
  • the bit length of the third field may be 2 bits.
  • the third field may be 00, which may indicate transmission assumptions (antenna port group 0, antenna port group 1) and (antenna port group 0, antenna port group 2);
  • the third field is 01, which can indicate the transmission assumptions (antenna port group 0, antenna port group 1) and (antenna port group 0, antenna port group 3);
  • the third field is 10, which can indicate the transmission assumption (antenna port group 0, antenna port group 3).
  • the terminal device needs to use 4 bits to indicate 2 of the 6 transmission hypotheses.
  • the protocol is predefined or the network device Candidate TRPs that participate in cooperative transmission are determined in advance.
  • the terminal device only needs to use 2 bits to indicate 2 of the 3 transmission hypotheses. This can reduce the overhead of the terminal device reporting TRPs that participate in cooperative transmission, and can also reduce the processing of the terminal device. complexity.
  • the third field may be configured in Part 1 information of the third information.
  • the seventh information may include Part 1 information, and the Part 1 information may include a third field.
  • the seventh information may also include part 2 information.
  • part 1 information and part 2 information please refer to the corresponding explanation in S503 above, and will not be described again here.
  • the seventh information may not include the third field.
  • the terminal device may not indicate the TRPs participating in coordinated transmission, and the seventh information not including the third field may implicitly indicate that the candidate TRPs all participate in coordinated transmission.
  • the terminal device does not need to report which TRPs participate in cooperative transmission, which can further reduce the reporting overhead of the terminal device.
  • the seventh information may be included in the uplink control information UCI.
  • the network device may send the seventh information to the terminal device through the UCI, and the UCI may include the seventh information.
  • the protocol is predefined or the network device predetermines that R TRPs corresponding to R reference signal resources or R antenna port groups can participate in coordinated transmission, and the terminal device selects from these R TRPs to participate in coordinated transmission.
  • TRP narrows the range of TRPs that terminal equipment can choose to participate in cooperative transmission.
  • the terminal equipment only needs to report which TRPs among the R TRPs corresponding to R reference signal resources or R antenna port groups participate in coordinated transmission, which can reduce the number of terminal equipment reporting to participate in cooperation.
  • the overhead of transmitted TRP can also reduce the processing complexity of the terminal device.
  • the three-level codebook structure corresponding to R16 TypeII and R17 TypeII is
  • W 1 ⁇ N P ⁇ 2S is the spatial domain selection matrix, which means that 2S beams are selected from P spatial domain beams.
  • W 2 ⁇ C 2S ⁇ V is the combination coefficient quantized according to the quantization criterion.
  • R17 TypeII PS codebook is the port selection matrix, which means selecting K 1 ports from P ports.
  • N 3 is the number of frequency domain RB resources or the number of subbands; is the combination coefficient quantified according to the quantization criterion.
  • the terminal equipment After the terminal equipment completes the channel measurement, it needs to report the measurement information in the UCI, including the selected airspace/port (W 1 ), frequency domain vector indication (W f ), the weighting coefficient of the corresponding airspace/port and frequency domain vector, and Parameters such as the position of the weighting coefficient (W 2 ) in the codebook.
  • W 1 selected airspace/port
  • W f frequency domain vector indication
  • W f weighting coefficient of the corresponding airspace/port and frequency domain vector
  • Parameters such as the position of the weighting coefficient (W 2 ) in the codebook.
  • S is the number of spatial basis (or spatial basis vector) selected for a single polarization direction, is the number of selected frequency domain bases (or frequency domain basis vectors).
  • F represents the number of PMI subbands included in each CQI subband, and F is configured by higher layers.
  • N 3 represents the number of PMI subbands, ⁇ represents the number of corresponding ranks, ⁇ is the proportion of the non-zero projection coefficients selected by each layer to the maximum possible non-zero projection coefficients of each layer, and the maximum possible non-zero projection coefficient reported by each layer The number of coefficients is
  • the network device delivers configuration information to the terminal device, instructing the terminal device which set of parameters in the above codebook parameter list (Table 1) to use. For example, the network device uses 3 bits to indicate which set of parameters the terminal device uses. If the configuration information delivered by the network device indicates 100, it means that the corresponding number of the codebook parameters delivered is 5.
  • the terminal device determines the number of non-zero projection coefficients that need to be reported and the number of selected spatial domain bases and frequency domain bases according to the instructions of the network device, and reports the selected non-zero projection coefficients to the network device, and at the same time reports the number of non-zero projection coefficients. bitmap, and indication information of the selected spatial domain basis and indication information of the frequency domain basis.
  • the network device reconstructs the channel matrix or precoding matrix based on the non-zero projection coefficients reported by the terminal device, the bitmap of the non-zero projection coefficients, and the indication information of the spatial domain base and the indication information of the frequency domain base.
  • the codebook parameter list combination specified by the protocol is shown in Table 2.
  • represents the port selection proportion coefficient
  • K 1 is the number of selected ports
  • K 1 ⁇ P CSI-RS .
  • V is the number of selected frequency domain bases (or frequency domain basis vectors)
  • is the proportion of non-zero projection coefficients selected in each layer to the maximum possible non-zero projection coefficients in each layer, and the maximum possible number of non-zero coefficients reported in each layer The number is
  • the network device delivers configuration information to the terminal device, instructing the terminal device which set of parameters in the above codebook parameter list (Table 2) to use. For example, the network device uses 3 bits to instruct the terminal device which set of parameters to use. If the network The configuration information delivered by the device indicates 100, which means that the corresponding number of the codebook parameter delivered is 5.
  • the terminal device determines the number of non-zero projection coefficients that need to be reported, the number of selected ports and the number of frequency domain bases according to the instructions of the network device, and reports the selected non-zero projection coefficients to the network device, and at the same time reports the number of non-zero projection coefficients. Bitmap, and indication of the selected port and indication of the frequency domain basis.
  • the network device reconstructs the channel matrix or precoding matrix based on the non-zero projection coefficients reported by the terminal device, the bitmap of the non-zero projection coefficients, and the indication information of the selected port and the indication information of the frequency domain base.
  • the resources reserved by the network device are determined based on the codebook parameter combinations delivered by the network device. Therefore, it is considered that different codebook parameter combinations delivered by the network device can correspond to the reporting overhead of different collaborative TRPs.
  • ⁇ 1 represents the non-zero value selected by each layer.
  • the projection coefficient accounts for the proportion of the maximum possible non-zero projection coefficient of each layer.
  • ⁇ 2 means that the non-zero projection coefficient selected for each layer accounts for each layer. The proportion of the largest possible non-zero projection coefficient.
  • N may be equal to Y+M (the meanings indicated by Y and M may refer to the explanation in the method shown in Figure 5), N may be replaced by Y+M, or N may be replaced by Q (Q indicates The meaning of can refer to the explanation in the method shown in Figure 6).
  • can be adjusted according to the number of TRPs participating in cooperative transmission to control the overhead reported by the terminal device to ensure that the overhead reported by the terminal device is similar to the overhead reserved by the network device based on the codebook parameter combination. Or consistent, it will not exceed the reported overhead reserved by the network device, nor will it be much less than the reported overhead reserved by the network device.
  • the codebook parameter combination indicated by the network device is determined, for the cooperative transmission CJT codebook enhanced by the R16 Type II codebook, for example, the total number of air domain bases indicated by the network device is S, and the number of frequency domain bases is S. The number is V and the coefficient is ⁇ .
  • the number of frequency domain bases of each TRP is certain, the total number of airspace bases indicated by the network equipment can be allocated between different TRPs. As long as the airspace of different TRPs The sum of the base numbers does not exceed the total number of airspace bases indicated by the network device.
  • the total number of ports indicated by the network device is K 1
  • the number of frequency domain bases corresponding to each TRP is V
  • the coefficient is ⁇
  • the overhead reported by the terminal device is close to or consistent with the overhead reserved by the network device, will not exceed the reported overhead reserved by the network device, and will not be much less than the reported overhead reserved by the network device.
  • the network device sends the total number of air domain bases, the number of frequency domain bases corresponding to each TRP, and the coefficient ⁇ to the terminal device, or the network device sends the total number of ports, the number of frequency domain bases corresponding to each TRP, and the coefficient ⁇ to the terminal device.
  • the number of frequency domain bases and coefficient ⁇ may be performed before S501 above.
  • the above port may also be called a reference signal port, an antenna port, or a CSI-RS port, which is not limited in this application.
  • the cooperative transmission reception point indication method provided by the embodiment of the present application is described in detail above with reference to FIGS. 1 to 6 .
  • the communication device provided by the embodiment of the present application will be described in detail below with reference to FIG. 7 and FIG. 8 .
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device can be applied to the communication system shown in Figure 1.
  • Figure 7 only shows the main components of the communication device.
  • the communication device 700 includes: a sending module 701 and a processing module 703 , and may also include a receiving module 702 .
  • the communication device 700 shown in Figure 7 can be adapted to the system shown in Figure 1 to perform the functions of the terminal device in the method shown in Figure 5.
  • the processing module 703 is used to obtain the first information.
  • the processing module 703 is also configured to determine Y cooperative TRPs based on the first information and the second information.
  • the sending module 701 is used to send third information to the network device.
  • the first information is used to indicate M reference signal resources or M antenna port groups.
  • One antenna port group among the M antenna port groups includes one or more antenna ports.
  • the M reference signal resources and M transmission and reception Point TRPs correspond one to one
  • M antenna port groups correspond to M TRPs one-to-one
  • M TRPs are cooperative TRPs
  • M is an integer greater than or equal to 1.
  • the second information is used to indicate that the total number of TRPs that support coordinated transmission is L.
  • Y coordinated TRPs are included in LM TRPs.
  • LM TRPs are TRPs other than M TRPs among the L TRPs.
  • L is an integer greater than 1.
  • M is an integer greater than or equal to 1 and less than L
  • Y is an integer greater than or equal to 1 and less than LM.
  • the third information is used to indicate Y reference signal resources or Y antenna port groups, Y reference The signal resources are in one-to-one correspondence with Y cooperative TRPs, and the Y antenna port groups are in one-to-one correspondence with the Y cooperative TRPs shown.
  • receiving module 702 and the sending module 701 can be set up separately, or they can be integrated into one module, that is, the transceiving module (not shown in Figure 7). This application does not specifically limit the specific implementation of the receiving module 702 and the sending module 701.
  • the communication device 700 may also include a processing module 703 and a storage module (not shown in FIG. 7 ), which stores programs or instructions.
  • the processing module 703 executes the program or instruction, the communication device 700 can perform the functions of the terminal device in the method shown in FIG. 5 .
  • the communication device 700 may be a terminal device, or may be a chip (system) or other components or components that can be installed on the terminal device, which is not limited in this application.
  • the technical effects of the communication device 700 can be referred to the technical effects of the method shown in FIG. 5 , which will not be described again here.
  • FIG. 8 is a schematic structural diagram of yet another communication device provided by an embodiment of the present application.
  • the communication device can be applied to the communication system shown in Figure 1.
  • Figure 8 only shows the main components of the communication device.
  • the communication device 800 includes: a sending module 801 and a receiving module 802 , and may also include a processing module 803 .
  • the communication device 800 shown in Figure 8 can be adapted to the system shown in Figure 1 to perform the functions of the network device in the method described in Figure 5 above.
  • the sending module 801 is used to send the first information to the terminal device.
  • the receiving module 802 is used to receive third information from the terminal device.
  • the sending module is used to send the first information to the terminal device.
  • a receiving module configured to receive third information from the terminal device.
  • the first information is used to indicate M reference signal resources or M antenna port groups.
  • One antenna port group among the M antenna port groups includes one or more antenna ports.
  • the M reference signal resources and M transmission and reception Point TRPs correspond one to one
  • M antenna port groups correspond to M TRPs one-to-one
  • M TRPs are cooperative TRPs
  • M is an integer greater than or equal to 1.
  • the third information is used to indicate Y reference signal resources or Y antenna port groups.
  • Y reference signal resources are in one-to-one correspondence with Y cooperative TRPs.
  • Y antenna port groups are in one-to-one correspondence with Y cooperative TRPs.
  • Y cooperative TRPs are in one-to-one correspondence.
  • TRPs are included in L-M TRPs, where L-M TRPs are TRPs other than the M TRPs corresponding to the M reference signal resources or the M TRPs corresponding to the M antenna port groups among the L TRPs.
  • L is a TRP that supports coordinated transmission. The total quantity, L is an integer greater than 1, M is an integer greater than or equal to 1 and less than L, Y is an integer greater than or equal to 1 and less than L-M.
  • receiving module 802 and the sending module 801 can be set up separately, or they can be integrated into one module, that is, the transceiving module (not shown in Figure 8). This application does not specifically limit the specific implementation of the receiving module 802 and the sending module 801.
  • the communication device 800 may also include a processing module 803 and a storage module (not shown in FIG. 8 ), which stores programs or instructions.
  • the processing module 803 executes the program or instruction, the communication device 800 can perform the functions of the network device in the method shown in FIG. 5 .
  • the communication device 800 may be a network device, or may be a chip (system) or other component or component that can be installed on the network device, which is not limited in this application.
  • the technical effects of the communication device 800 can be referred to the technical effects of the method shown in FIG. 5 , which will not be described again here.
  • the communication device 800 shown in Figure 8 can be adapted to the system shown in Figure 1 to perform the functions of the terminal device in the method described in Figure 6.
  • the receiving module 802 is used to receive sixth information from the network device.
  • the sending module 801 is used to send the seventh information to the network device.
  • the receiving module is used to receive the sixth information from the network device.
  • the sending module is used to send the seventh information to the network device.
  • the sixth information is used to indicate R reference signal resources or R antenna port groups.
  • One of the R antenna port groups includes one or more antenna ports.
  • the R reference signal resources and R transmission and reception Point TRPs correspond one-to-one
  • R antenna port groups correspond to R TRPs one-to-one
  • R TRPs are candidate cooperative TRPs
  • R is less than L
  • L is the total number of TRPs that support coordinated transmission.
  • the seventh information is determined based on the sixth information.
  • the seventh information indicates Q reference signal resources or Q antenna port groups.
  • Q is less than or equal to R.
  • the Q reference signal resources correspond to Q cooperative TRPs one-to-one.
  • Q The antenna port group has a one-to-one correspondence with Q cooperative TRPs, and the Q cooperative TRPs are included in R TRPs.
  • receiving module 802 and the sending module 801 can be set up separately, or they can be integrated into one module, that is, the transceiving module (not shown in Figure 8). This application does not specifically limit the specific implementation of the receiving module 802 and the sending module 801.
  • the communication device 800 may also include a processing module 803 and a storage module (not shown in FIG. 8 ), which stores programs or instructions.
  • the processing module 803 executes the program or instruction, the communication device 800 can perform the functions of the terminal device in the method shown in FIG. 6 .
  • the communication device 800 may be a terminal device, or may be a chip (system) or other component that can be installed on the terminal device. or components, this application does not limit this.
  • the communication device 800 shown in Figure 8 can be adapted to the system shown in Figure 1 to perform the functions of the network device in the method described in Figure 6.
  • the sending module 801 is used to send the sixth information to the terminal device.
  • the receiving module 802 is used to receive the seventh information from the terminal device.
  • the sending module is used to send the sixth information to the terminal device.
  • a receiving module configured to receive seventh information from the terminal device.
  • the sixth information is used to indicate R reference signal resources or R antenna port groups.
  • One of the R antenna port groups includes one or more antenna ports.
  • the R reference signal resources and R transmission and reception Point TRPs correspond one-to-one
  • R antenna port groups correspond to R TRPs one-to-one
  • R TRPs are candidate cooperative TRPs
  • R is less than L
  • L is the total number of TRPs that support coordinated transmission.
  • the seventh information indicates Q reference signal resources or Q antenna port groups, Q is less than or equal to R, Q reference signal resources are in one-to-one correspondence with Q cooperative TRPs, and Q antenna port groups are in one-to-one correspondence with Q cooperative TRPs. , Q collaborative TRPs are included in R TRPs.
  • receiving module 802 and the sending module 801 can be set up separately, or they can be integrated into one module, that is, the transceiving module (not shown in Figure 8). This application does not specifically limit the specific implementation of the receiving module 802 and the sending module 801.
  • the communication device 800 may also include a processing module 803 and a storage module (not shown in FIG. 8 ), which stores programs or instructions.
  • the processing module 803 executes the program or instruction, the communication device 800 can perform the functions of the network device in the method shown in FIG. 6 .
  • the communication device 800 may be a network device, or may be a chip (system) or other component or component that can be installed on the network device, which is not limited in this application.
  • An embodiment of the present application provides a communication system.
  • the communication system includes terminal equipment and network equipment.
  • the terminal device is used to perform the actions of the terminal device in the above method embodiment, and the network device is used to perform the actions of the network device in the above method embodiment.
  • the specific execution method and process may refer to the above method embodiment, and will not be described again here.
  • Embodiments of the present application provide a chip system, which includes a logic circuit and an input/output port.
  • the logic circuit can be used to implement the processing functions involved in the methods provided by the embodiments of the present application, and the input/output ports can be used for the transceiver functions involved in the methods provided by the embodiments of the present application.
  • the input port can be used to implement the receiving function involved in the method provided by the embodiment of the present application
  • the output port can be used to implement the sending function involved in the method provided by the embodiment of the present application.
  • the chip system further includes a memory, which is used to store program instructions and data for implementing the functions involved in the methods provided by the embodiments of the present application.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer programs or instructions. When the computer program or instructions are run on a computer, the method provided by the embodiments of the present application is executed.
  • An embodiment of the present application provides a computer program product.
  • the computer program product includes: a computer program or instructions. When the computer program or instructions are run on a computer, the method provided by the embodiment of the present application is executed.
  • the processor in the embodiment of the present application can be a central processing unit (CPU).
  • the processor can also be other general-purpose processors, digital signal processors (DSP), special-purpose integrated processors, etc.
  • Circuit application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM synchronous dynamic random access memory
  • synchronous DRAM synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory access memory serial DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmit to another website, computer, server or data center through wired (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server or a data center that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “plurality” refers to two or more.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种协作传输接收点指示方法及装置,可降低终端设备向网络设备反馈参与协作传输的TRP的开销。该方法包括:终端设备获取第一信息,根据第一信息和第二信息确定Y个协作TRP,向网络设备发送第三信息。第一信息用于指示M个参考信号资源或M个天线端口组,M个参考信号资源与M个传输接收点TRP一一对应,M个天线端口组与M个TRP一一对应,M个TRP为协作TRP。第二信息用于指示支持协作传输的TRP的总数量为L,Y个协作TRP包含在L-M个TRP中,L-M个TRP为L个TRP中除M个TRP以外的TRP。第三信息用于指示Y个参考信号资源、或Y个天线端口组,Y个参考信号资源与Y个协作TRP一一对应,Y个天线端口组与所示Y个协作TRP一一对应。

Description

一种协作传输接收点指示方法及装置
本申请要求于2022年08月12日提交国家知识产权局、申请号为202210970554.9、申请名称为“一种协作传输接收点指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种协作传输接收点指示方法及装置。
背景技术
为了提高系统的吞吐性能以及多小区边缘用户体验,通常采用协作传输的方式来为位于多小区同覆盖下的终端设备服务。例如,多个传输接收点(transmission and reception point,TRP)可以采用相干联合传输(coherent joint transmission,CJT)方式为终端设备服务。目前标准规定了采用相干联合传输方式为终端设备服务的TRP的最大数量,终端设备确定实际参与协作传输的TRP,并向网络设备反馈参与协作传输的TRP。这种方式的反馈开销较大。如何能降低反馈开销,是需要解决的技术问题。
发明内容
本申请提供一种协作传输接收点指示方法及装置,可以降低终端设备向网络设备反馈参与协作传输的TRP的开销。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种协作传输接收点指示方法。该方法包括:终端设备获取第一信息,终端设备根据第一信息和第二信息确定Y个协作TRP,终端设备向网络设备发送第三信息。其中,第一信息用于指示M个参考信号资源、或M个天线端口组,M个天线端口组中的一个天线端口组包括一个或多个天线端口,M个参考信号资源与M个传输接收点TRP一一对应,M个天线端口组与M个TRP一一对应,M个TRP为协作TRP。第二信息用于指示支持协作传输的TRP的总数量为L,Y个协作TRP包含在L-M个TRP中,L-M个TRP为L个TRP中除M个TRP以外的TRP。第三信息用于指示Y个参考信号资源、或Y个天线端口组,Y个参考信号资源与Y个协作TRP一一对应,Y个天线端口组与所示Y个协作TRP一一对应。
基于第一方面提供的方法,终端设备获取M个参考信号资源或M个天线端口组对应的M个TRP一定参与协作传输,终端设备从剩余的L-M个TRP中进一步选择参与协作传输的TRP,缩小了终端设备选择参与协作传输的TRP的范围,从而终端设备上报剩下的L-M个TRP中Y个TRP参与协作传输,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
其中,L为大于1的整数,M为大于或等于1且小于L的整数,Y为大于或等于1且小于L-M的整数。
在一种可能的设计方式中,上述终端设备根据第一信息和第二信息确定Y个协作TRP,包括:终端设备获取第四信息,终端设备根据第一信息、第二信息和第四信息确定Y个协作TRP。其中,第四信息用于指示实际参与协作传输的TRP的总数量为N,Y等于N-M,N为大于1且小于或等于L的整数。
如此,协议预定义或网络设备确定M个TRP一定参与协作传输,实际参与协作传输的TRP的总数量为N,终端设备确定其他N-M个参与协作传输的TRP,最终,N-M个TRP与M个TRP同时进行协作传输。终端设备需要上报剩下的L-M个TRP中哪N-M个TRP参与协作传输,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一种可能的设计方式中,第三信息可以包括第一字段,第一字段用于指示Y个参考信号资源对应的Y个协作TRP,或者,第一字段用于指示Y个天线端口组对应的Y个协作TRP。如此,终端设备从L-M个TRP中选择Y个参与协作传输的TRP,终端设备上报这Y个TRP参与协作传输,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一种可能的设计方式中,第一字段可以包括比特位图或传输假设。
可选地,第一字段包括比特位图,第一字段的比特长度可以与L-M的取值有关,例如,比特位图的比特位数可以等于L-M。
如此,协议预定义或网络设备预先确定M个TRP一定参与协作传输,缩小了终端设备选择参与协作传输的TRP的范围,终端设备只需要上报剩下的L-M个TRP中哪些TRP参与协作传输,终端设备只需要L-M个比特指示参与协作传输的TRP,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一种可能的设计方式中,第三信息可以包括第二字段,第二字段用于指示M个参考信号资源对应的M个TRP和Y个参考信号资源对应的Y个协作TRP;或者,第二字段用于指示M个天线端口组对应的M个TRP和Y个天线端口组对应的Y个协作TRP。
在一种可能的设计方式中,第二字段包括传输假设。如此,终端设备可以通过上报传输假设的形式告诉 网络设备参与协作传输的TRP。
也就是说,协议预定义或网络设备预先确定M个TRP一定参与协作传输,终端设备在上报其他参与协作传输的TRP时,可以在根据M个TRP确定的传输假设中选择一个传输假设,降低了传输假设的可选范围,从而可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一种可能的设计方式中,上述终端设备获取第一信息,可以包括:终端设备接收来自网络设备的第一信息。M个TRP一定参与协作传输可以是网络设备确定的。
在一种可能的设计方式中,第一信息可以包含在无线资源控制(radio resource control,RRC)信令、或媒体接入控制(media access control,MAC)控制单元(control element,CE)信令、或下行控制信息(downlink control information,DCI)中。可选地,第一信息可以包含在高层信令中,网络设备可以通过高层信令告知终端设备M个参考信号资源或M个天线端口组对应的M个TRP一定参与协作传输。
在一种可能的设计方式中,第一信息可以为协议预定义的。本申请中,协议预定义可以指协议约定等。
在一种可能的设计方式中,第三信息可以包含在上行控制信息(uplink control information,UCI)中。例如,网络设备可以通过UCI向终端设备发送第三信息,UCI可以包括第三信息。
在一种可能的设计方式中,第二信息来自于网络设备、或为协议预定义的。
在一种可能的设计方式中,第二信息来自于网络设备,第二信息可以包含在RRC信令、MAC CE信令、或DCI中。如此,网络设备可以通过RRC信令、MAC CE信令、或DCI向终端设备发送第二信息。
在一种可能的设计方式中,第四信息可以来自于网络设备,或者,第四信息可以是终端设备确定的,或者,第四信息可以为协议预定义的,或者,第四信息可以是网络设备和终端设备协商确定的。
可选地,上述终端设备获取第四信息,可以包括终端设备接收来自网络设备的第四信息,第四信息可以包含在RRC信令、MAC CE信令、或DCI中。可选地,第四信息可以包含在高层信令中,网络设备可以通过高层信令向终端设备发送第四信息。
在一种可能的设计方式中,L等于4。
在一种可能的设计方式中,不同的TRP数量对应不同的β值,β是每层选择的非零投影系数占每层最大可能非零投影系数的比例。
例如,当参与协作传输的TRP个数N≤2时,对应系数β1;当参与协作传输的TRP的个数N>2时,对应系数β2
第二方面,提供一种协作传输接收点指示方法。该方法包括:网络设备向终端设备发送第一信息,网络设备接收来自终端设备的第三信息。其中,第一信息用于指示M个参考信号资源、或M个天线端口组,M个天线端口组中的一个天线端口组包括一个或多个天线端口,M个参考信号资源与M个传输接收点TRP一一对应,M个天线端口组与M个TRP一一对应,M个TRP为协作TRP。第三信息用于指示Y个参考信号资源、或Y个天线端口组,Y个参考信号资源与Y个协作TRP一一对应,Y个天线端口组与Y协作个TRP一一对应,Y个协作TRP包含在L-M个TRP中,L-M个TRP为L个TRP中除M个参考信号资源对应的M个TRP、或M个天线端口组对应的M个TRP以外的TRP,L为支持协作传输的TRP的总数量,L为大于1的整数,M为大于或等于1且小于L的整数,Y为大于或等于1且小于L-M的整数。
在一种可能的设计方式中,Y等于N-M,N为实际参与协作传输的TRP的总数量,N为大于1且小于或等于L的整数。
在一种可能的设计方式中,第三信息可以包括第一字段,第一字段用于指示Y个参考信号资源对应的Y个协作TRP,或者,第一字段用于指示Y个天线端口组对应的Y个协作TRP。
在一种可能的设计方式中,第一字段可以包括比特位图或传输假设。
在一种可能的设计方式中,第三信息包括第二字段,第二字段用于指示M个参考信号资源对应的M个TRP和Y个参考信号资源对应的Y个协作TRP;或者,第二字段用于指示M个天线端口组对应的M个TRP和Y个天线端口组对应的Y个协作TRP。
在一种可能的设计方式中,第二字段包括传输假设。
在一种可能的设计方式中,第二方面提供的方法还可以包括:网络设备根据第五信息确定第一信息。其中,第五信息可以包括如下一项或多项:上行信道的信息、参考信号接收功率和角度时延对信息。例如,网络设备可以进行信道探测参考信号(sounding reference signal,SRS)测量,获得上行信道的信息。
在一种可能的设计方式中,第一信息可以包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,第三信息可以包含在上行控制信息UCI中。
在一种可能的设计方式中,第二方面提供的方法还可以包括:网络设备向终端设备发送第二信息。其中,第二信息可用于指示支持协作传输的TRP的总数量为L。
在一种可能的设计方式中,第二信息可以包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,第二方面提供的方法还可以包括:网络设备向终端设备发送第四信息。其中,第四信息可用于指示实际参与协作传输的TRP的总数量为N。
在一种可能的设计方式中,第四信息包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,L等于4。
在一种可能的设计方式中,不同的TRP数量对应不同的β值,β是每层选择的非零投影系数占每层最大可能非零投影系数的比例。
可选地,当参与协作传输的TRP个数N≤2时,对应系数β1;当参与协作传输的TRP的个数N>2时,对应系数β2
此外,第二方面所述的方法的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第三方面,提供一种协作传输接收点指示方法。该方法包括:终端设备接收来自网络设备的第六信息,终端设备向网络设备发送第七信息。其中,第六信息用于指示R个参考信号资源、或R个天线端口组,R个天线端口组中的一个天线端口组包括一个或多个天线端口,R个参考信号资源与R个传输接收点TRP一一对应,R个天线端口组与R个TRP一一对应,R个TRP为候选协作TRP,R小于L,L为支持协作传输的TRP的总数量。第七信息是根据第六信息确定的,第七信息指示Q个参考信号资源、或Q个天线端口组,Q小于或等于R,Q个参考信号资源与Q个协作TRP一一对应,Q个天线端口组与Q个协作TRP一一对应,Q个协作TRP包含在R个TRP中。
基于第三方面提供的方法,网络设备预先确定R个参考信号资源或R个天线端口组对应的R个TRP可以参与协作传输,R小于L,L为支持协作传输的TRP的总数量,终端设备从这R个TRP中选择参与协作传输的TRP,缩小了终端设备选择参与协作传输的TRP的范围,终端设备上报R个参考信号资源或R个天线端口组对应的R个TRP中Q个TRP同时参与协作传输,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一种可能的设计方式中,第七信息可以包括第三字段,第三字段用于指示Q个参考信号资源对应的Q个协作TRP参与协作传输,或者,第三字段用于指示Q个天线端口组对应的Q个协作TRP参与协作传输。如此,终端设备从R个TRP中选择Q个参与协作传输的TRP,终端设备上报这Q个协作TRP参与协作传输,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一种可能的设计方式中,第三字段包括比特位图。
可选地,第三字段的比特长度可以与R的取值有关,例如,比特位图的比特位数可以等于R。
如此,网络设备预先确定R个TRP可以参与协作传输,缩小终端设备选择参与协作传输的TRP的范围,终端设备只需要上报剩下的R个TRP中哪些TRP参与协作传输,终端设备只需要R个比特指示参与协作传输的TRP,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一种可能的设计方式中,第三字段包括传输假设。如此,终端设备可以通过上报传输假设的形式告诉网络设备参与协作传输的TRP。
也就是说,协议预定义或网络设备预先确定R个TRP一定参与协作传输,终端设备在上报其他参与协作传输的TRP时,可以在根据R个TRP确定的传输假设中选择一个传输假设,降低了传输假设的可选范围,从而可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一种可能的设计方式中,第六信息可以包含在RRC信令、MAC CE信令、或DCI中。可选地,第六信息可以包含在高层信令中,网络设备可以通过高层信令告知终端设备R个参考信号资源或R个天线端口组对应的R个TRP可以参与协作传输。
在一种可能的设计方式中,第七信息可以包含在上行控制信息UCI中。
在一种可能的设计方式中,R为大于或等于1的整数。
在一种可能的设计方式中,L等于4。
在一种可能的设计方式中,不同的TRP数量对应不同的β值,β是每层选择的非零投影系数占每层最大可能非零投影系数的比例。
例如,当参与协作传输的TRP个数Q≤2时,对应系数β1;当参与协作传输的TRP的个数Q>2时,对应系数β2
第四方面,提供一种协作传输接收点指示方法。该方法包括:网络设备向终端设备发送第六信息,网络设备接收来自终端设备的第七信息。其中,第六信息用于指示R个参考信号资源、或R个天线端口组,R个天线端口组中的一个天线端口组包括一个或多个天线端口,R个参考信号资源与R个传输接收点TRP一一对应,R个天线端口组与R个TRP一一对应,R个TRP为候选协作TRP,R小于L,L为支持协作传输的TRP 的总数量。第七信息指示Q个参考信号资源、或Q个天线端口组,Q小于或等于R,Q个参考信号资源与Q个协作TRP一一对应,Q个天线端口组与Q个协作TRP一一对应,Q个协作TRP包含在R个TRP中。
在一种可能的设计方式中,第七信息可以包括第三字段,第三字段用于指示Q个参考信号资源对应的Q个协作TRP参与协作传输,或者,第三字段用于指示Q个天线端口组对应的Q个协作TRP参与协作传输。
在一种可能的设计方式中,第三字段包括比特位图。
在一种可能的设计方式中,第三字段包括传输假设。
在一种可能的设计方式中,第四方面提供的方法,还可以包括:网络设备根据第五信息确定第六信息。其中,第五信息可以包括如下一项或多项:上行信道的信息、参考信号接收功率和角度时延对信息。
在一种可能的设计方式中,第六信息可以包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,第七信息可以包含在上行控制信息UCI中。
在一种可能的设计方式中,R为大于或等于1的整数。
在一种可能的设计方式中,L等于4。
在一种可能的设计方式中,不同的TRP数量对应不同的β值,β是每层选择的非零投影系数占每层最大可能非零投影系数的比例。
例如,当参与协作传输的TRP个数Q≤2时,对应系数β1;当参与协作传输的TRP的个数Q>2时,对应系数β2
此外,第四方面所述的方法的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括:处理模块和发送模块。其中,处理模块,用于获取第一信息。处理模块,还用于根据第一信息和第二信息确定Y个协作TRP。发送模块,用于向网络设备发送第三信息。其中,第一信息用于指示M个参考信号资源、或M个天线端口组,M个天线端口组中的一个天线端口组包括一个或多个天线端口,M个参考信号资源与M个传输接收点TRP一一对应,M个天线端口组与M个TRP一一对应,M个TRP为协作TRP。第二信息用于指示支持协作传输的TRP的总数量为L,Y个协作TRP包含在L-M个TRP中,L-M个TRP为L个TRP中除M个TRP以外的TRP,L为大于1的整数。M为大于或等于1且小于L的整数。Y为大于或等于1且小于L-M的整数。第三信息用于指示Y个参考信号资源、或Y个天线端口组,Y个参考信号资源与Y个协作TRP一一对应,Y个天线端口组与所示Y个协作TRP一一对应。
在一种可能的设计方式中,处理模块,还用于获取第四信息。处理模块,还用于根据第一信息、第二信息和第四信息确定Y个协作TRP。其中,第四信息用于指示实际采用多站协作方式为终端设备服务的TRP的总数量为N,Y等于N-M,N大于1且小于或等于L的整数。
在一种可能的设计方式中,第三信息可以包括第一字段,第一字段用于指示Y个参考信号资源对应的Y个协作TRP,或者,第一字段用于指示Y个天线端口组对应的Y个协作TRP。
在一种可能的设计方式中,第一字段可以包括比特位图或传输假设。
在一种可能的设计方式中,第三信息可以包括第二字段,第二字段用于指示M个参考信号资源对应的M个TRP和Y个参考信号资源对应的Y个协作TRP;或者,第二字段用于指示M个天线端口组对应的M个TRP和Y个天线端口组对应的Y个协作TRP。
在一种可能的设计方式中,第二字段包括传输假设。
在一种可能的设计方式中,第五方面所述的通信装置还可以包括:接收模块。其中,接收模块,用于接收来自网络设备的第一信息。
在一种可能的设计方式中,第一信息可以包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,第一信息可以为协议预定义的。
在一种可能的设计方式中,第三信息可以包含在上行控制信息UCI中。
在一种可能的设计方式中,第二信息来自于网络设备、或为协议预定义的。
在一种可能的设计方式中,第二信息来自于网络设备,第二信息可以包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,第四信息可以来自于网络设备,或者,第四信息可以是通信装置确定的,或者,第四信息可以为协议预定义的,或者,第四信息可以是网络设备和通信装置协商确定的。
在一种可能的设计方式中,第四信息来自于网络设备,第四信息可以包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,L等于4。
在一种可能的设计方式中,不同的TRP数量对应不同的β值,β是每层选择的非零投影系数占每层最大可能 非零投影系数的比例。
例如,当参与协作传输的TRP个数N≤2时,对应系数β1;当参与协作传输的TRP的个数N>2时,对应系数β2
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第五方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第五方面所述的通信装置可以执行第一方面所述的方法。
需要说明的是,第五方面所述的通信装置可以是终端设备,也可以是可设置于终端设备中的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第五方面所述的通信装置的技术效果可以参考第一方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第六方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。其中,发送模块,用于向终端设备发送第一信息。接收模块,用于接收来自终端设备的第三信息。其中,第一信息用于指示M个参考信号资源、或M个天线端口组,M个天线端口组中的一个天线端口组包括一个或多个天线端口,M个参考信号资源与M个传输接收点TRP一一对应,M个天线端口组与M个TRP一一对应,M个TRP为协作TRP。第三信息用于指示Y个参考信号资源、或Y个天线端口组,Y个参考信号资源与Y个协作TRP一一对应,Y个天线端口组与Y个协作TRP一一对应,Y个协作TRP包含在L-M个TRP中,L-M个TRP为L个TRP中除M个参考信号资源对应的M个TRP、或M个天线端口组对应的M个TRP以外的TRP,L为支持协作传输的TRP的总数量,L为大于1的整数,M为大于或等于1且小于L的整数,Y为大于或等于1且小于L-M的整数。
在一种可能的设计方式中,Y等于N-M,N为实际参与协作传输的TRP的总数量,N为大于1且小于或等于L的整数。
在一种可能的设计方式中,第三信息可以包括第一字段,第一字段用于指示Y个参考信号资源对应的Y个协作TRP,或者,第一字段用于指示Y个天线端口组对应的Y个协作TRP。
在一种可能的设计方式中,第一字段可以包括比特位图或传输假设。
在一种可能的设计方式中,第三信息可以包括第一字段,第三信息包括第二字段,第一字段用于指示M个参考信号资源对应的M个TRP和Y个参考信号资源对应的Y个协作TRP;或者,第二字段用于指示M个天线端口组对应的M个TRP和Y个天线端口组对应的Y个协作TRP。
在一种可能的设计方式中,第二字段包括传输假设。
在一种可能的设计方式中,第六方面提供的通信装置还可以包括:处理模块。其中,处理模块,用于根据第五信息确定第一信息。其中,第五信息可以包括如下一项或多项:上行信道的信息、参考信号接收功率和角度时延对信息。
在一种可能的设计方式中,第一信息可以包含在无线资源控制RRC信令、MAC CE信令、或下行控制信息DCI中。
在一种可能的设计方式中,第三信息可以包含在上行控制信息UCI中。
在一种可能的设计方式中,发送模块,还用于向终端设备发送第二信息。其中,第二信息可用于指示支持协作传输的TRP的总数量为L。
在一种可能的设计方式中,第二信息可以包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,发送模块,还用于向终端设备发送第四信息。其中,第四信息可用于指示实际参与协作传输的TRP的总数量为N。
在一种可能的设计方式中,第四信息包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,L大于或等于M,Y小于或等于L-M。
可选地,N大于或等于M。
可选地,N小于或等于L。
在一种可能的设计方式中,L等于4。
在一种可能的设计方式中,不同的TRP数量对应不同的β值,β是每层选择的非零投影系数占每层最大可能非零投影系数的比例。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第六方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。 当处理模块执行该程序或指令时,使得第六方面所述的通信装置可以执行第二方面所述的方法。
需要说明的是,第六方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第六方面所述的通信装置的技术效果可以参考第二方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第七方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。其中,接收模块,用于接收来自网络设备的第六信息。发送模块,用于向网络设备发送第七信息。其中,第六信息用于指示R个参考信号资源、或R个天线端口组,R个天线端口组中的一个天线端口组包括一个或多个天线端口,R个参考信号资源与R个传输接收点TRP一一对应,R个天线端口组与R个TRP一一对应,R个TRP为候选协作TRP,R小于L,L为支持协作传输的TRP的总数量。第七信息是根据第六信息确定的,第七信息指示Q个参考信号资源、或Q个天线端口组,Q小于或等于R,Q个参考信号资源与Q个协作TRP一一对应,Q个天线端口组与Q个协作TRP一一对应,Q个协作TRP包含在R个TRP中。
在一种可能的设计方式中,第七信息可以包括第三字段,第三字段用于指示Q个参考信号资源对应的Q个协作TRP参与协作传输,或者,第三字段用于指示Q个天线端口组对应的Q个协作TRP参与协作传输。
在一种可能的设计方式中,第三字段包括比特位图。
在一种可能的设计方式中,第三字段包括传输假设。
在一种可能的设计方式中,第六信息可以包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,第七信息可以包含在上行控制信息UCI中。
在一种可能的设计方式中,R为大于或等于1的整数。
在一种可能的设计方式中,L等于4。
在一种可能的设计方式中,不同的TRP数量对应不同的β值,β是每层选择的非零投影系数占每层最大可能非零投影系数的比例。
例如,当参与协作传输的TRP个数Q≤2时,对应系数β1;当参与协作传输的TRP的个数Q>2时,对应系数β2
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第七方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第七方面所述的通信装置可以执行第三方面所述的方法。
需要说明的是,第七方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第七方面所述的通信装置的技术效果可以参考第三方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第八方面,提供一种通信装置。该通信装置包括:发送模块和接收模块。其中,发送模块,用于向终端设备发送第六信息。接收模块,用于接收来自终端设备的第七信息。其中,第六信息用于指示R个参考信号资源、或R个天线端口组,R个天线端口组中的一个天线端口组包括一个或多个天线端口,R个参考信号资源与R个传输接收点TRP一一对应,R个天线端口组与R个TRP一一对应,R个TRP为候选协作TRP,R小于L,L为支持协作传输的TRP的总数量。第七信息指示Q个参考信号资源、或Q个天线端口组,Q小于或等于R,Q个参考信号资源与Q个协作TRP一一对应,Q个天线端口组与Q个协作TRP一一对应,Q个协作TRP包含在R个TRP中。
在一种可能的设计方式中,第七信息可以包括第三字段,第三字段用于指示Q个参考信号资源对应的Q个协作TRP参与协作传输,或者,第三字段用于指示Q个天线端口组对应的Q个协作TRP参与协作传输。
在一种可能的设计方式中,第三字段包括比特位图。
在一种可能的设计方式中,第三字段包括传输假设。
在一种可能的设计方式中,第八方面提供的通信装置还可以包括:处理模块。其中,处理模块,用于根据第五信息确定第六信息。其中,第五信息可以包括如下一项或多项:上行信道的信息、参考信号接收功率和角度时延对信息。
在一种可能的设计方式中,第六信息可以包含在RRC信令、MAC CE信令、或DCI中。
在一种可能的设计方式中,第七信息可以包含在上行控制信息UCI中。
在一种可能的设计方式中,R为大于或等于1的整数。
在一种可能的设计方式中,L等于4。
在一种可能的设计方式中,不同的TRP数量对应不同的β值,β是每层选择的非零投影系数占每层最大可能非零投影系数的比例。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第八方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第八方面所述的通信装置可以执行第四方面所述的方法。
需要说明的是,第八方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第八方面所述的通信装置的技术效果可以参考第四方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第九方面,提供一种通信方法,该方法包括:终端设备接收来自网络设备的配置信息,根据实际参与协作传输的TRP的数量和配置信息确定非零投影系数,向网络设备发送非零投影系数。该配置信息包括至少两个系数β与至少两个第一数量的对应关系,第一数量为实际参与协作传输的TRP的数量,至少两个系数β与至少两个第一数量一一对应。
第十方面,提供一种通信方法,该方法包括:网络设备向终端设备发送配置信息,接收来自终端设备的非零投影系数。该配置信息包括至少两个系数β与至少两个第一数量的对应关系,第一数量为实际参与协作传输的TRP的数量,至少两个系数β与至少两个第一数量一一对应。
第十一方面,提供一种通信装置,该通信装置包括:发送模块、接收模块和处理模块。其中,接收模块用于接收来自网络设备的配置信息。处理模块,用于根据实际参与协作传输的TRP的数量和配置信息确定非零投影系数。发送模块,用于网络设备发送非零投影系数。该配置信息包括至少两个系数β与至少两个第一数量的对应关系,第一数量为实际参与协作传输的TRP的数量,至少两个系数β与至少两个第一数量一一对应。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第十一方面所述的通信装置还可以包括处理模块和存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第十一方面所述的通信装置可以执行第九方面所述的方法。
需要说明的是,第十一方面所述的通信装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第十一方面所述的通信装置的技术效果可以参考第九方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第十二方面,提供一种通信装置,该通信装置包括:发送模块和接收模块。发送模块,用于向终端设备发送配置信息。接收模块,用于接收来自终端设备的非零投影系数。该配置信息包括至少两个系数β与至少两个第一数量的对应关系,第一数量为实际参与协作传输的TRP的数量,至少两个系数β与至少两个第一数量一一对应。
需要说明的是,接收模块和发送模块可以分开设置,也可以集成在一个模块中,即收发模块。本申请对于接收模块和发送模块的具体实现方式,不做具体限定。
可选地,第十二方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第十方面所述的通信装置可以执行第四方面所述的方法。
需要说明的是,第十二方面所述的通信装置可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第十二方面所述的通信装置的技术效果可以参考第十方面中任一种可能的实现方式所述的方法的技术效果,此处不再赘述。
第十三方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,存储器用于存储计算机程序。
处理器用于执行存储器中存储的计算机程序,以使得如第一方面至第四方面、第九方面至第十方面中任一种可能的实现方式所述的方法被执行。
在一种可能的设计中,第十三方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或输入/输出端口。所述收发器可以用于该通信装置与其他设备通信。
需要说明的是,输入端口可用于实现第一方面至第四方面、第九方面至第十方面所涉及的接收功能,输出端口可用于实现第一方面至第四方面、第九方面至第十方面所涉及的发送功能。
在本申请中,第十三方面所述的通信装置可以为终端设备或网络设备,或者设置于终端设备或网络设备 内部的芯片或芯片系统。
此外,第十三方面所述的通信装置的技术效果可以参考第一方面至第四方面、第九方面至第十方面中任一种实现方式所述的方法的技术效果,此处不再赘述。
第十四方面,提供一种通信系统。该通信系统包括如第五方面所述的通信装置、和如第六方面所述的通信装置。或者,该通信系统包括如第七方面所述的通信装置、和如第八方面所述的通信装置。
或者,该通信系统包括如第五方面所述的用于实现如第一方面所述方法的通信装置、和第六方面所述的用于实现如第二方面所述方法的通信装置。或者,该通信系统包括如第七方面所述的用于实现如第三方面所述方法的通信装置、和第八方面所述的用于实现如第四方面所述方法的通信装置。
第十五方面,提供了一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路用于实现第一方面至第四方面、第九方面至第十方面所涉及的处理功能,输入/输出端口用于实现第一方面至第四方面、第九方面至第十方面所涉及的收发功能。具体地,输入端口可用于实现第一方面至第四方面、第九方面至第十方面所涉及的接收功能,输出端口可用于实现第一方面至第四方面、第九方面至第十方面所涉及的发送功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现第一方面至第四方面、第九方面至第十方面所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第十六方面,提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得第一方面至第四方面、第九方面至第十方面中任意一种可能的实现方式所述的方法被执行。
第十七方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得第一方面至第四方面、第九方面至第十方面中任意一种可能的实现方式所述的方法被执行。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种获取下行信道的CSI的流程示意图;
图3为本申请实施例提供的一种协作传输的示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5为本申请实施例提供的一种协作传输接收点指示方法的流程示意图;
图6为本申请实施例提供的另一种协作传输接收点指示方法的流程示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图;
图8为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如通用移动通信系统(universal mobile telecommunications system,UMTS)、无线局域网(wireless local area network,WLAN)、无线保真(wireless fidelity,Wi-Fi)系统、有线网络、车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-to-device,D2D)通信系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图1为本申请实施例提供的协作传输接收点指示方法所适用的一种通信系统的架构示意图。
如图1所示,该通信系统包括网络设备和终端设备。可选地,网络设备的数量可以为一个或多个。
其中,上述网络设备也可以称为接入设备、接入网设备或无线接入网设备,网络设备能够管理无线资源,为终端设备提供接入服务,完成数据在终端设备和核心网之间的转发,网络设备也可以理解为网络中的基站。
示例性地,本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者TRP等,还可以为5G,如NR系统中的gNB,或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或分布式单元(distributed unit,DU)等,还可以为卫星、或无人机等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现RRC,分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、MAC层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息由CU生成,最终会经过DU的PHY层封装变成PHY层信息,或者,由PHY层的信息转变而来。因而,在这种架构下,高层信令如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
其中,上述终端设备为接入通信系统,且具有无线收发功能的终端或可设置于该终端的芯片或芯片系统。本申请中的终端设备也可以称为终端、用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、无人机、带无线收发功能的电脑、客户前置设备(customer premise equipment,CPE)、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、物联网终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
又例如,本申请中的终端设备可以是智慧物流中的快递终端(例如可监控货物车辆位置的设备、可监控货物温湿度的设备等)、智慧农业中的无线终端(例如可收集禽畜的相关数据的可穿戴设备等)、智慧建筑中的无线终端(例如智慧电梯、消防监测设备、以及智能电表等)、智能医疗中的无线终端(例如可监测人或动物的生理状态的可穿戴设备)、智能交通中的无线终端(例如智能公交车、智能车辆、共享单车、充电桩监测设备、智能红绿灯、以及智能监控以及智能停车设备等)、智能零售中的无线终端(例如自动售货机、自助结账机、以及无人便利店等)。又例如,本申请中的终端设备可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的方法。
可选的,图1所示的通信系统可以适用于目前正在讨论的通信网络,也可以适用于未来的其他网络等,本申请实施例对此不做具体限定。
需要说明的是,本申请实施例提供的协作传输接收点指示方法,可以适用于图1所示的任意两个节点之间,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他 终端设备,图1中未予以画出。
为了使得本申请实施例更加清楚,以下对与本申请实施例中相关的部分内容以及概念作统一介绍。
第一,获取下行信道的信道状态信息(channel state information,CSI)的流程:
频分双工(frequency division duplexing,FDD)系统中,由于上下行信道存在较大的频点间隔,上行信道与下行信道之间不完全互易,使得在FDD系统中无法通过上行信道估计来获取完整的下行信道,需要终端设备向网络设备反馈下行信道的CSI。
例如,CSI可以包括但不限于,预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)、信道质量指示(channel quality indicator,CQI)、CSI参考信号(CSI-reference signal,CSI-RS)资源指示(CSI-RS resource indicator,CRI)以及层指示(layer indicator,LI)等。应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请构成任何限定。CSI可以包括上文所列举的一项或多项,也可以包括除上述列举之外的其他用于表征CSI的信息,本申请对此不作限定。
图2为本申请实施例提供的一种获取下行信道的CSI的流程示意图。
如图2所示,S201,网络设备向终端设备发送信道测量配置信息。相应地,终端设备接收来自网络设备的信道测量配置信息。
可选地,信道测量配置信息可用于配置下行信道测量的参数。
可选地,信道测量配置信息可以包括CSI-RS资源标识、参考信道的资源类型、测量周期信息、资源映射信息、和/或准共址(quasi co-location,QCL)配置等。
S202,网络设备向终端设备发送参考信号。相应地,终端设备接收来自网络设备的参考信号。
S203,终端设备向网络设备发送测量结果。相应地,网络设备接收来自终端设备的测量结果。
测量结果包括下行信道信息,例如下行信道的CSI。
S204,网络设备根据下行信道的CSI向终端设备发送数据。相应地,终端设备接收来自网络设备的数据。
示例性地,网络设备可以根据下行信道的CSI确定发送数据的预编码信息,从而发送数据。
第二,协作传输:
协作传输指多个TRP同时为某个终端设备提供服务。
示例性地,协作传输的方式可以包括CJT方式和非相干联合传输(non-coherent joint transmission,NCJT)方式。
示例性地,CJT方式:多个TRP占用相同的时频资源采用联合相干预编码方式同时为某个终端设备提供服务。
示例性地,NCJT方式:多个TRP占用不同的时频资源采用非相干预编码方式同时为某个终端设备提供服务。
图3为本申请实施例提供的一种协作传输的示意图。
如图3所示,TRP1至TRP3采用CJT方式为UE1服务,TRP4和TRP5采用CJT方式为UE3服务。TRP1、TRP2和TRP4采用NCJT方式为UE2服务。
以TRP1至TRP3采用CJT方式为UE1服务为例。TRP1至TRP3占用相同的时频资源同时为UE1服务,对于UE1来说,协作集中的TRP1至TRP3可以等效看作一个发送下行信号的站点,UE1不区分下行信号来自哪个TRP。UE1可以同时测量UE1到各个TRP的信道。
示例性地,UE1可以向TRP1至TRP3中的一个TRP(例如,TRP1至TRP3中的主站)集中反馈测量结果,该测量结果可以包括用于重构UE1与TRP1间的下行信道矩阵或预编码矩阵的CSI、用于重构UE1与TRP2间的下行信道矩阵或预编码矩阵的CSI、和用于重构UE1与TRP3间的下行信道矩阵或预编码矩阵的CSI。接收该测量结果的TRP可以将CSI发给对应的TRP。例如TRP1向TRP2和TRP3分别发送用于重构UE1与TRP2间的下行信道矩阵或预编码矩阵的CSI和用于重构UE1与TRP3间的下行信道矩阵或预编码矩阵的CSI,从而TRP1至TRP3可以根据对应的CSI为UE1提供相干联合传输。
本申请实施例提供的协作传输接收点指示方法,可适用于协作传输的场景中,具体实现可以参考下述方法实施例,此处不再赘述。
第三,信道测量的资源的配置方式:
示例性地,假设参与协作传输的TRP的最大数量为L,这L个TRP对应的信道测量的资源的配置方式可以包括下述方式1、方式2和方式3。
方式1,1个参考信号资源,且最大天线端口数量为32。
示例性地,1个参考信号资源可以按天线端口数分为多个天线端口组,每个天线端口组对应一个TRP。其中,一个天线端口组包括至少一个天线端口。
示例性地,假设L=4,这4个TRP采用1个参考信号资源,该参考信号资源对应32个天线端口,则平均分配的情况下,每个TRP对应8个天线端口。
可选地,参考信号资源可以包括非零功率(non-zero power,NZP)CSI-RS资源。
可选地,本申请中,天线端口也可以称为参考信号端口、端口、CSI-RS端口,对此不限定。
方式2,K个参考信号资源,K>1,这K个参考信号可具有相同或不同的天线端口数量。K个参考信号资源中每个参考信号资源对应一个TRP,即K个参考信号资源对应K个TRP。
方式3:K个参考信号资源,K>1,这K个参考信号可具有相同的天线端口数量或不同的天线端口数量。K个参考信号资源中的每个参考信号资源可以按天线端口分为多个天线端口组,每个天线端口组对应一个TRP。
图4为可用于执行本申请实施例提供的协作传输接收点指示方法的一种通信装置400的结构示意图。通信装置400可以是终端设备或网络设备,也可以是应用于终端设备或网络设备中的芯片或者其他部件或组件。
如图4所示,通信装置400可以包括处理器401。可选地,通信装置400还可以包括存储器402和收发器403中的一个或多个。其中,处理器401可以与存储器402和收发器403中的一个或多个耦合,如可以通过通信总线连接,处理器401也可以单独使用。
下面结合图4对通信装置400的各个构成部件进行具体的介绍:
处理器401是通信装置400的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器401是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器401可以通过运行或执行存储在存储器402内的软件程序,以及调用存储在存储器402内的数据,执行通信装置400的各种功能。
在具体的实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置400也可以包括多个处理器,例如图4中所示的处理器401和处理器404。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器402可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器402可以和处理器401集成在一起,也可以独立存在,并通过通信装置400的输入/输出端口(图4中未示出)与处理器401耦合,本申请实施例对此不作具体限定。
其中,所述存储器402用于存储执行本申请方案的软件程序,并由处理器401来控制执行。上述具体实现方式可以参考下述方法实施例,此处不再赘述。
收发器403,用于与其他通信装置之间的通信。例如,通信装置400为终端设备,收发器403可以用于与网络设备等通信。又例如,通信装置400为网络设备,收发器403可以用于与终端设备等通信。此外,收发器403可以包括接收器和发送器(图4中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。收发器403可以和处理器401集成在一起,也可以独立存在,并通过通信装置400的输入/输出端口(图4中未示出)与处理器401耦合,本申请实施例对此不作具体限定。
需要说明的是,图4中示出的通信装置400的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
现有相关技术中,当前3GPP标准规定了采用相干联合传输方式为终端设备服务的TRP的最大数量,终端设备向网络设备上报参与协作传输的TRP。这种方式的反馈开销较大。
另外,终端设备上报参与协作的TRP之前,网络设备会按照最大数量为终端设备预留上报资源,由于终端设备选择的TRP的数量可能小于最大数量,而网络设备按照最大数量为终端设备预留上报资源,因此,当终端设备选择的参与协作传输的TRP的数量小于最大数量L时,可能存在预留资源浪费的情况。
下面结合示例1至示例3对终端设备向网络设备上报参与协作传输的TRP的方式进行阐述。
示例1,标准规定参与协作传输的TRP的最大数量为L,终端设备可通过向网络设备上报一个传输假设(transmission hypothesis),指示实际参与协作传输的TRP。传输假设包括终端设备选择的参与协作传输的TRP。
示例性地,终端设备从L个TRP中选择实际参与协作传输的TRP。
例如,假设L=4,例如TRP0至TRP3,终端设备选择了2个TRP参与协作传输,2个TRP对应的传输假设有6种,例如(TRP0,TRP1)、(TRP0,TRP2)、(TRP0,TRP3)、(TRP1,TRP2)、(TRP1,TRP3)和(TRP2,TRP3),终端设备需要至少采用3比特上报终端设备选择的2个TRP。
示例2,标准规定参与协作传输的TRP的最大数量为L,网络设备通过高层信令告知终端设备实际参与协作传输的TRP的个数为N,终端设备向网络设备上报T个传输假设,T为大于1的整数,网络设备从T个传输假设中选择一个传输假设,确定具体哪N个TRP参与协作传输。
例如,假设L=4,例如TRP0至TRP3,N=2,2个TRP对应的传输假设有6种,例如(TRP0,TRP1)、(TRP0,TRP2)、(TRP0,TRP3)、(TRP1,TRP2)、(TRP1,TRP3)和(TRP2,TRP3),终端设备需要从6个传输假设中选择T个传输假设上报给网络设备,T可以为大于1且小于6的整数。假设T=2,从6个传输假设中选2个传输假设有15种可能,终端设备需要至少采用4比特上报终端设备选择的2个TRP。网络设备从2个传输假设中选择参与协作传输的TRP,例如网络设备选择TRP0和TRP1参与协作传输。
示例3,标准规定参与协作传输的TRP的最大数量为L,实际参与协作传输的TRP由终端设备选择,并将参与协作传输的TRP通过比特位图的形式上报给网络设备,比特位图的比特位数为L。
例如,假设L=4,例如TRP0至TRP3,终端设备选择TRP0和TRP1参与协作传输,则比特位图至少占用4比特,例如比特位图为1100,指示TRP0和TRP1参与协作传输。
现有相关技术中,协作传输的TRP的方式的开销较大。
另外,终端设备上报参与协作的TRP之前,网络设备会按照最大数量L为终端设备预留上报资源,在上述示例1和示例3中,由于终端设备选择的TRP的数量可能小于最大数量L,而网络设备按照最大数量L为终端设备预留上报资源,因此,当终端设备选择的参与协作传输的TRP的数量小于最大数量L时,可能存在预留资源浪费的情况。
下述图5所示的方法中,协议预定义或网络设备预先确定M个参考信号资源或M个天线端口组对应的M个TRP一定参与协作传输,终端设备从剩余的L-M个TRP中进一步选择参与协作传输的TRP,缩小了终端设备选择参与协作传输的TRP的范围,终端设备上报剩下的L-M个参考信号资源或L-M个天线端口组对应的L-M个TRP中哪些TRP参与协作传输,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
基于图6所示的方法,协议预定义或网络设备预先确定R个参考信号资源或R个天线端口组对应的R个候选TRP,R小于L,L为支持协作传输的TRP的总数量,终端设备从这R个TRP中选择参与协作传输的TRP,缩小了终端设备选择参与协作传输的TRP的范围,终端设备上报R个参考信号资源或R个天线端口组对应的R个TRP中哪些TRP参与协作传输,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
本申请实施例(下述图5和图6所示的方法)提供的方法不仅适用于协作TRP的选择场景,本申请实施例提供的方法可适用于存在实体(例如终端设备)需要发送传输方向指示信息,另一个实体(例如网络设备)需要接收该传输方向指示信息,并根据该传输方向指示信息确定一定时间内的天线的传输方向的通信系统。其中,传输方向指示信息可以包括用于重构终端设备与网络设备间的信道矩阵或预编码矩阵的CSI。
下述图5和图6是以选择TRP为例进行阐述的,本申请实施例提供的方法同样适用于码本空域基底、频域基底以及天线端口的选择。
以图5所示的方法用于频域基底的选择场景为例。协议预定义或网络设备预先确定默认选择的M个频域基底,终端设备从剩余的L-M个频域基底中进一步选择Y个频域基底,L为频域基底的总数量,终端设备向网络设备上报选择的Y个频域基底。如此,终端设备在剩下的频域基底中进一步选择频域基底,降低了终端设备选择的范围,这种方式可以降低终端设备上报的开销和降低终端设备选择频域基底的复杂度,还可以降低终端设备处理的复杂度。
下面将结合图5-图6对本申请实施例提供的协作传输接收点指示方法进行具体阐述。图5-图6所示的方法可适用于图1所示的通信系统和图3所示的场景中,例如可适用于协作传输的场景中,如CJT场景和NCJT场景。在用于CJT场景或NCJT场景时,图5-图6中的网络设备可以为TRP中的任一个。
其中,本申请各实施例之间涉及的动作,术语等均可以相互参考,不予限制。本申请实施例中的对象名称或参数名称等只是一个示例,具体实现中也可以采用其他的名称,不予限制。
示例性地,图5为本申请实施例提供的一种协作传输接收点指示方法的流程示意图。
如图5所示,该协作传输接收点指示方法包括如下步骤:
S501,终端设备获取第一信息。第一信息用于指示一定参与协作传输的M个TRP。
示例性地,第一信息用于指示M个参考信号资源、或M个天线端口组。
示例性地,M为大于或等于1的整数。
例如,第一信息可用于指示M个参考信号资源的编号、或M个天线端口组的编号。
例如,第1个参考信号资源或第1个天线端口组对应的编号为0,其它参考信号资源或天线端口组按依次递增1的顺序编号。
可选地,参考信号资源的编号可与参考信号资源的标识(或索引)对应。
例如,参考信号资源的编号0可对应参考信号资源的标识x,参考信号资源的编号1可对应参考信号资源的标识y。
可选地,在不同的时刻(例如不同次测量CSI),参考信号资源的编号可对应不同的参考信号资源(参考信号资源的标识或索引)。
例如,对于上一次测量CSI或上一次协作传输,参考信号资源的编号0对应参考信号资源的标识x,参考信号资源的编号1对应参考信号资源的标识y。对于本次测量CSI或本次协作传输,参考信号资源的编号0对应参考信号资源的标识y,参考信号资源的编号1对应参考信号资源的标识x。
可选地,与参考信号资源的编号与参考信号资源的标识(或索引)对应类似,天线端口组的编号可与参考信号资源的标识(或索引)对应。
可选地,在不同的时刻(例如不同次测量CSI),天线端口组的编号可对应不同的参考信号资源(参考信号资源的标识或索引)。
可选地,网络设备可以向终端设备发送参考信号资源的编号与参考信号资源的标识(或索引)的对应关系、或天线端口组的编号与参考信号资源的标识(或索引)的对应关系。例如,可在上述S501之前执行。
例如,参考信号资源的编号与参考信号资源的标识(或索引)的对应关系可以包括:L个参考信号资源的编号与L个参考信号资源的标识(或索引)的对应关系,例如对应关系可以是一一对应,L为支持协作传输的TRP的总数量。
例如,天线端口组的编号与参考信号资源的标识(或索引)的对应关系可以包括:L个天线端口组的编号与L个参考信号资源的标识(或索引)的对应关系,例如对应关系可以是一一对应。
可选地,网络设备可以通过高层信令向终端设备发送参考信号资源的编号与参考信号资源的标识(或索引)的对应关系、或天线端口组的编号与参考信号资源的标识(或索引)的对应关系。
例如,参考信号资源的编号与参考信号资源的标识(或索引)的对应关系、或天线端口组的编号与参考信号资源的标识(或索引)的对应关系可以包含在RRC信令、MAC CE信令、或DCI中。
示例性地,M个天线端口组中的一个天线端口组可以包括一个或多个天线端口。
示例性地,M个天线端口组与M个TRP一一对应。M个TRP为协作TRP,第一信息用于指示M个天线端口组对应的M个TRP一定参与协作传输。
示例性地,M个参考信号资源与M个传输接收点TRP一一对应。第一信息用于指示M个参考信号资源对应的M个TRP一定参与协作传输。
可选地,参考信号资源可以包括但不限于CSI-RS资源,例如NZP CSI-RS资源。
对于不同的信道测量的资源的配置方式,第一信息指示的内容不同。
可选地,若信道测量的资源的配置方式为方式1或方式3,则第一信息用于指示M个天线端口组。若信道测量的资源的配置方式为方式2,则第一信息用于指示M个参考信号资源。
终端设备根据信道测量的资源的配置方式解析第一信息。若信道测量的资源的配置方式为方式1或方式3,且第一信息指示M个天线端口组,则第一信息指示M个天线端口组对应的M个TRP一定参与协作传输。若信道测量的资源的配置方式为方式2,且第一信息指示M个参考信号资源,则第一信息指示M个参考信号资源对应的M个TRP一定参与协作传输。
假设信道测量的资源的配置方式为方式1或方式3,M=1,第一信息指示天线端口组0,天线端口组0对应TRP0,则TRP0参与协作传输。假设信道测量的资源的配置方式为方式2,M=1,第一信息指示参考信号资源1,参考信号资源1对应TRP1,则TRP1参与协作传输。可选地,信道测量的资源的配置方式可以是协议预定义的、或网络设备为终端设备配置的。
信道测量的资源的配置方式是网络设备为终端设备配置的,本申请实施例提供的方法,还可以包括:网络设备向终端设备配置信道测量的资源的配置方式。相应地,终端设备接收来自网络设备的信道测量的资源的配置方式。
例如,网络设备可以通过高层信令将信道测量的资源的配置方式告知终端设备,例如,信道测量的资源的配置方式可以包含在RRC信令、MAC CE信令、或DCI中。
终端设备获取第一信息的方式可以有多种,例如第一信息可以是网络设备为终端设备配置的、或预配置的或协议预定义的或协议规定的。
第一信息是网络设备为终端设备配置的,上述S501可以包括:S501a,网络设备向终端设备发送第一信息。相应地,终端设备接收来自网络设备的第一信息。
可选地,第一信息可以包含在高层信令中,网络设备可以通过高层信令告知终端设备M个参考信号资源或M个天线端口组对应的M个TRP一定参与协作传输。
例如,第一信息可以包含在RRC信令、MAC CE信令、或DCI中。
如此,M个参考信号资源或M个天线端口组对应的M个TRP一定参与协作传输可以是网络设备确定并发给终端设备的。
一些实施例中,本申请实施例提供的方法,还可以包括:S504,网络设备根据第五信息确定第一信息。
可选地,第五信息可以包括但不限于如下一项或多项:上行信道的信息、参考信号接收功率(reference signal receiving power,RSRP)、和角度时延对信息。
例如,网络设备可以进行信道探测参考信号(sounding reference signal,SRS)测量,获得上行信道的信息。
例如,网络设备可以根据接收参考信号的功率确定RSRP。
例如,网络设备可以根据上行信道的信息获得角度时延对信息。
如此,网络设备根据已有的先验信息(例如第五信息),获得M个参考信号资源或M个天线端口组对应的M个TRP一定参与协作传输。
可选地,上述S504,可以包括:网络设备根据第二信息和第五信息确定第一信息。
可选地,第二信息可用于指示支持协作传输的TRP的总数量为L。
可选地,L大于1。
可选地,M大于或等于1且小于L。
可选地,Y大于或等于1且小于或等于L-M。
可选地,N大于1且小于或等于L。
示例性地,第二信息可指示参与协作传输的TRP的最大数量,例如L=4。
例如,网络设备可以根据L个TRP分别对应的RSRP,从L个TRP中选择M个RSRP较大的TRP,本申请对此不限定。
又例如,网络设备可以根据L个TRP分别对应的角度时延对信息,从L个TRP中选择M个角度时延对信息对应的功率较大的TRP,本申请对此不限定。
又例如,网络设备可以根据L个TRP分别对应的上行信道的信息,从L个TRP中选择M个TRP。
如此,网络设备根据已有的先验信息确定M个TRP一定参与协作传输,可以缩小终端设备选择参与协作传输的TRP的范围,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
可选地,上述S504可以在上述S501之前执行,例如在上述S501a之前执行。
本申请中,预配置的或协议预定义的或协议规定的,可指将信息预先存储在终端设备或网络设备中。
示例性地,假设M=1,协议可以规定参考信号资源0、或天线端口组0对应的TRP一定参与协作传输。
示例性地,将参考信号资源的编号、或天线端口组的编号按从小至大依次排序,协议可以规定前M个参考信号资源、或天线端口组对应的TRP一定参与协作传输。
如此,协议预定义某M个TRP一定参与协作传输,可以缩小终端设备选择参与协作传输的TRP的范围,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低网络设备向终端设备发送第一信息的信令开销,还可以降低终端设备处理的复杂度。另外,M大于1,可以保证最少参与为终端提供服务的协作TRP个数。
S502,终端设备根据第一信息和第二信息确定Y个协作TRP。
可选地,第二信息可用于指示支持协作传输的TRP的总数量为L。
示例性地,Y个协作TRP包含在L-M个TRP中。
示例性地,L-M个TRP为L个TRP中除M个TRP(例如,M个参考信号资源对应的M个TRP、或M个天线端口组对应的M个TRP)以外的TRP。
可选地,Y小于或等于L-M。
例如,Y为大于0的整数且小于或等于L-M的整数。
可选地,Y个协作TRP可以是投影系数功率之和较大的TRP、或投影系数幅度之和较大的TRP、或所选需要上报的投影系数功率之和较大的TRP、或所选需要上报的投影系数幅度之和较大的TRP。
例如,终端设备可以根据L-M个TRP分别对应的投影系数功率、或投影系数幅度,选择Y个投影系数功率之和最大的TRP、或Y个投影系数幅度之和最大的TRP。投影系数是终端设备与TRP之间的信道矩阵或预编码矩阵在基底上投影获得的。
本申请不对终端设备如何在剩下的L-M个参考信号资源的标识或天线端口组对应的TRP中选择Y个协作TRP参与协作传输进行限定。
以天线端口组为例,假设L=4,天线端口组0至天线端口组3分别对应一个TRP,M=1,第一信息指示天线端口组0对应的TRP一定参与协作传输,则终端设备可以从天线端口组1、天线端口组2和天线端口组3对应的TRP中选择1(假设Y=1)个TRP参与相干协作传输,例如,第三信息指示天线端口组1对应的TRP参与协作传输。
以天线端口组为例,假设L=4,天线端口组0至天线端口组3分别对应一个TRP,M=1,第一信息指示天线端口组0对应的TRP一定参与协作传输,则终端设备可以从天线端口组1、天线端口组2和天线端口组3对应的TRP中选择2(假设Y=2)个TRP参与相干协作传输,例如,第三信息指示天线端口组1对应的TRP1和天线端口组2对应的TRP参与协作传输。
如此,协议预定义或网络设备确定M个TRP一定参与协作传输,缩小了终端设备选择参与协作传输的TRP的范围,终端设备只需要上报剩下的L-M个TRP中哪些TRP参与协作传输,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
一些实施例中,上述S502,可以包括:下述步骤一至步骤二。
步骤一,终端设备获取第四信息。步骤二,终端设备根据所述第一信息、第二信息和第四信息确定Y个协作TRP。
可选地,第四信息可用于指示实际参与协作传输的TRP的总数量为N。
例如,第四信息可指示实际参与协作传输的TRP的总数量为N。
可选地,Y可以等于N-M。
可选地,第四信息来自于网络设备,或者,第四信息是终端设备确定的,或者,第四信息为协议预定义的,或者,第四信息是网络设备和终端设备协商确定的。
示例性地,第四信息可以是网络设备确定的,网络设备向终端设备发送第四信息,相应地,终端设备接收来自网络设备的第四信息。
可选地,第四信息可以包含在高层信令中,网络设备可以通过高层信令向终端设备发送第四信息,指示实际参与协作传输的TRP的总数量为N。
例如,第四信息可以包含在RRC信令、MAC CE信令、或DCI中。如此,网络设备可以通过RRC信令、MAC CE信令、或DCI向终端设备发送第四信息。示例性地,N大于或等于M。
例如,N为大于或等于M的整数。假设M=1,N可以等于2。
可选地,N小于或等于L,L为支持协作传输的TRP的总数量。
例如,N为大于或等于M且小于或等于L的整数。
示例性地,协议预定义或网络设备确定M个TRP一定参与协作传输,实际参与协作传输的TRP的总数量为N,终端设备确定其他N-M个参与协作传输的TRP,最终,N-M个TRP与M个TRP同时进行协作传输。
或者,示例性地,第四信息可用于指示实际参与协作传输的TRP的总数量至少为N,第三信息可用于指示至少N-M个参考信号资源的标识、或至少N-M个天线端口组的标识。如此,终端设备可以在剩下的L-M个参考信号资源的标识或天线端口组对应的TRP中选择至少N-M个TRP参与协作传输。
示例性地,N-M个TRP可以包含在L-M个TRP中。
可选地,N-M个TRP可以是投影系数功率之和较大的TRP、或投影系数幅度之和较大的TRP、或所选需要上报的投影系数功率之和较大的TRP、或所选需要上报的投影系数幅度之和较大的TRP。
例如,终端设备可以根据L-M个TRP分别对应的投影系数功率、或投影系数幅度,选择N-M个投影系数功率之和最大的TRP、或N-M个投影系数幅度之和最大的TRP。投影系数是终端设备与TRP之间的信道矩阵或预编码矩阵在基底上投影获得的。
本申请不对终端设备如何在剩下的L-M个参考信号资源的标识或天线端口组对应的TRP中选择至少N-M个TRP参与协作传输进行限定。
以天线端口组为例,假设L=4,天线端口组0至天线端口组3分别对应一个TRP,M=1,第一信息指示天线端口组0对应的TRP一定参与协作传输,N等于2,则终端设备可以从天线端口组1、天线端口组2和天线端口组3对应的TRP中选择1个TRP参与相干协作传输,例如,第三信息指示天线端口组1对应的TRP 参与协作传输。
以天线端口组为例,假设L=4,天线端口组0至天线端口组3分别对应一个TRP,M=1,第一信息指示天线端口组0对应的TRP一定参与协作传输,N等于3,则终端设备可以从天线端口组1、天线端口组2和天线端口组3对应的TRP中选择2个TRP参与相干协作传输,例如,第三信息指示天线端口组1对应的TRP1和天线端口组2对应的TRP参与协作传输。
如此,协议预定义或网络设备确定M个TRP一定参与协作传输,缩小了终端设备选择参与协作传输的TRP的范围,终端设备只需要上报剩下的L-M个TRP中哪些TRP参与协作传输,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一些实施例中,第二信息可来自于网络设备、或为协议预定义的。
示例性地,网络设备可以向终端设备发送第二信息,相应地,终端设备接收来自网络设备的第二信息。
可选地,第二信息可以包含在高层信令中,网络设备可以通过高层信令向终端设备发送第二信息。
可选地,第二信息可以包含在RRC信令、MAC CE信令、或DCI中。如此,网络设备可以通过RRC信令、MAC CE信令、或DCI向终端设备发送第二信息。
S503,终端设备向网络设备发送第三信息。相应地,网络设备接收来自终端设备的第三信息。
示例性地,第三信息可以是终端设备根据第一信息和第二信息确定的。示例性地,第三信息用于指示Y个参考信号资源、或Y个天线端口组。
例如,第三信息可用于指示Y个参考信号资源的编号、或Y个天线端口组的编号。
可选地,Y为大于0的整数。
示例性地,Y个参考信号资源与Y个协作TRP一一对应。
示例性地,Y个天线端口组与Y个协作TRP一一对应。
示例性地,Y个协作TRP与M个协作TRP同时参与协作传输。
也就是说,第三信息可用于指示Y个天线端口组对应的Y个协作TRP采用协作传输方式同时为终端设备提供服务,或者,第三信息可用于指示Y个参考信号资源对应的Y个协作TRP采用协作传输方式同时为终端设备提供服务。
如此,协议预定义或网络设备确定M个TRP一定参与协作传输,终端设备确定其他Y个参与协作传输的TRP,最终,Y个协作TRP与M个TRP同时进行协作传输。
在一些实施例中,第三信息可以包括第一字段。
可选地,第一字段用于指示Y个参考信号资源对应的Y个协作TRP。
或者,可选地,第一字段用于指示Y个天线端口组对应的Y个协作TRP。
可选地,Y可等于N-M。
可选地,第一字段还可指示L-Y-M个参考信号资源对应的L-Y-M个TRP不参与协作传输。
或者,可选地,第一字段还可指示L-Y-M个天线端口组对应的L-Y-M个TRP不参与协作传输。
或者,可选地,第一字段还可指示L-N个参考信号资源对应的L-N个TRP不参与协作传输。
或者,可选地,第一字段还可指示L-N个天线端口组对应的L-N个TRP不参与协作传输。
在一些实施例中,第一字段包括比特位图。
可选地,第一字段的比特长度可以与L-M的取值有关,例如,比特位图的比特位数可以等于L-M。
例如,假设L=4,M=1,第一字段的比特长度可以为4-1=3。
一些实施例中,L-M个比特位可与L-M个参考信号资源一一对应。
可选地,L-M个比特位与L-M个参考信号资源的对应关系可满足第一规则,第一规则包括:从左至右(或者从右至左),L-M个比特位中的第1个比特位至第L-M个比特位与L-M个参考信号资源中参考信号资源的编号由小至大依次对应。
例如,L-M个比特位中第1个比特位对应L-M个参考信号资源中编号最小的参考信号资源,L-M个比特位中第L-M个比特位对应L-M个参考信号资源中编号最大的参考信号资源。
以从左至右,L-M个比特位中的第1个比特位至第L-M个比特位与L-M个参考信号资源中参考信号资源的编号由小至大依次对应为例。
假设L=4,M=1,参考信号资源0至参考信号资源3分别对应一个TRP,若第一信息指示参考信号资源0,则第一字段的比特长度可以为3,比特位图的第1个比特位至第3个比特位分别对应参考信号资源1至参考信号资源3。若第一信息指示参考信号资源1,则第一字段的比特长度可以为3,比特位图的第1个比特位可对应参考信号资源0,比特位图的第2个比特位可对应参考信号资源2,比特位图的第3个比特位可对应参考信号资源3。
可选地,第一规则可以是协议预定义的、或者网络设备与终端设备约定的、或者网络设备确定后通知终端设备。
可选地,本申请L-M个比特位与L-M个参考信号资源的编号的具体对应方式不限定,第一规则仅为一种示例,L-M个比特位与L-M个参考信号资源的对应关系满足L-M个比特位可与L-M个参考信号资源一一对应即可。
示例性地,参考信号资源对应的比特的取值为1表示该参考信号资源对应的TRP参与协作传输,参考信号资源对应的比特的取值为0表示该参考信号资源对应的TRP不为终端设备服务,本申请实施例以此为例进行阐述。
或者,示例性地,参考信号资源对应的比特的取值为0表示该参考信号资源对应的TRP参与协作传输,参考信号资源对应的比特的取值为1表示该参考信号资源对应的TRP不为终端设备服务,本申请实施例对此不进行限定。
例如,参考信号资源对应的TRP不为终端设备服务可指:在其他TRP参与协作传输的时刻,该参考信号资源对应的TRP不为终端设备服务、或不参与协作传输。
例如,假设Y+M个参考信号资源对应的Y+M个TRP在第一时刻进行协作传输,则L-Y-M个参考信号资源对应的L-Y-M个TRP在第一时刻不为终端设备服务、或在第一时刻不参与协作传输。
又例如,假设N个参考信号资源对应的N个TRP在第一时刻进行协作传输,则L-N个参考信号资源对应的L-N个TRP在第一时刻不为终端设备服务、或在第一时刻不参与协作传输。
以从左至右,L-M个比特位中的第1个比特位至第L-M个比特位与L-M个参考信号资源中参考信号资源的编号由小至大依次对应为例。
示例性地,假设L=4,M=1,参考信号资源0至参考信号资源3分别对应一个TRP,第一信息指示参考信号资源0,终端设备选择参考信号资源2对应的TRP参与协作传输,则第一字段可以占用3比特,比特位图为010,指示参考信号资源2对应的TRP参与协作传输,以及参考信号资源1对应的TRP和参考信号资源3对应的TRP不为终端设备服务、或不参与协作传输。
示例性地,假设L=4,M=1,参考信号资源0至参考信号资源3分别对应一个TRP,第一信息指示参考信号资源1,终端设备选择参考信号资源2对应的TRP参与协作传输,则第一字段可以占用3比特,比特位图为010,指示参考信号资源2对应的TRP参与协作传输,以及参考信号资源0对应的TRP和参考信号资源3对应的TRP不为终端设备服务、或不参与协作传输。
另一些实施例中,L-M个比特位可与L-M个天线端口组一一对应。与上述L-M个比特位可与L-M个参考信号资源一一对应类似。
可选地,L-M个比特位与L-M个天线端口组的对应关系可满足第二规则,第二规则包括:从左至右(或者从右至左),L-M个比特位中的第1个比特位至第L-M个比特位与L-M个天线端口组中天线端口组的编号由小至大依次对应。具体实现可参照上述第一规则,此处不再赘述。
可选地,第二规则可以是协议预定义的、或者网络设备与终端设备约定的、或者网络设备确定后通知终端设备。
可选地,本申请L-M个比特位与L-M个天线端口组的编号的具体对应方式不限定,第二规则仅为一种示例,L-M个比特位与L-M个天线端口组的对应关系满足L-M个比特位可与L-M个天线端口组一一对应即可。
示例性地,天线端口组对应的比特的取值为1表示该天线端口组对应的TRP参与协作传输,天线端口组对应的比特的取值为0表示该天线端口组对应的TRP不为终端设备服务、或不参与协作传输,本申请实施例以此为例进行阐述。
或者,示例性地,天线端口组对应的比特的取值为0表示该天线端口组对应的TRP参与协作传输,天线端口组对应的比特的取值为1表示该天线端口组对应的TRP不为终端设备服务、或不参与协作传输,本申请实施例对此不进行限定。
例如,天线端口组对应的TRP不为终端设备服务可指:在其他TRP进行协作传输的时刻,该天线端口组对应的TRP不为终端设备服务、或不参与协作传输。
例如,假设Y+M个天线端口组对应的Y+M个TRP在第一时刻进行协作传输,则L-Y-M个天线端口组对应的L-Y-M个TRP在第一时刻不为终端设备服务、或在第一时刻不参与协作传输。
又例如,假设N个天线端口组对应的N个TRP在第一时刻进行协作传输,则L-N个天线端口组对应的L-N个TRP在第一时刻不为终端设备服务、在第一时刻不参与协作传输。
以从左至右,L-M个比特位中的第1个比特位至第L-M个比特位与L-M个天线端口组中天线端口组的编号由小至大依次对应为例。
示例性地,假设L=4,M=1,天线端口组0至天线端口组3分别对应一个TRP,第一信息指示天线端口组0,终端设备选择天线端口组2对应的TRP进行协作传输,则第一字段可以占用3比特,比特位图为010,指示天线端口组2对应的TRP参与协作传输,以及天线端口组1对应的TRP和天线端口组3对应的TRP不为终端设备服务、或不参与协作传输。
示例性地,假设L=4,M=1,天线端口组0至天线端口组3分别对应一个TRP,第一信息指示天线端口组1,终端设备选择天线端口组2对应的TRP参与协作传输,则第一字段可以占用3比特,比特位图为010,指示天线端口组2对应的TRP参与协作传输,以及天线端口组0对应的TRP和天线端口组3对应的TRP不为终端设备服务、或不参与协作传输。
如此,协议预定义或网络设备预先确定M个TRP一定参与协作传输,缩小了终端设备选择参与协作传输的TRP的范围,终端设备只需要上报剩下的L-M个TRP中哪些TRP参与协作传输,终端设备只需要L-M个比特指示参与协作传输的TRP,与上述示例3中需要L个比特相比,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在另一些实施例中,第一字段包括传输假设。
如此,终端设备可以通过上报传输假设的形式告诉网络设备参与协作传输的TRP。
可选地,第一字段可用于指示Y个参考信号资源对应的Y个协作TRP。或者,可选地,第一字段可用于指示Y个天线端口组对应的Y个协作TRP。
在另一些实施例中,第三信息包括第二字段。
可选地,第二字段可用于指示M个参考信号资源对应的M个TRP和Y个协作参考信号资源对应的Y个TRP。或者,可选地,第二字段可用于指示M个天线端口组对应的M个TRP和Y个天线端口组对应的Y个协作TRP。
可选地,Y可以等于N-M。
第二字段包括传输假设。
以天线端口组为例,假设L=4,M=1,天线端口组0至天线端口组3分别对应一个TRP,第一信息指示天线端口组0,终端设备可以在天线端口组1至天线端口组3对应的TRP中选择1(以Y=1为例,或者,以N=2,Y=N-M=1)个TRP,则传输假设有3种,例如(天线端口组1),(天线端口组2),(天线端口组3)(对应第一字段);或者,包括天线端口组0的传输假设有3种,例如(天线端口组0,天线端口组1),(天线端口组0,天线端口组2),(天线端口组0,天线端口组3)(对应第二字段),则第一字段的比特长度可以为2比特。
例如,第一字段为00,可指示天线端口组1对应的TRP参与协作传输;第一字段为01,可指示天线端口组2对应的TRP参与协作传输;第一字段为10,可指示天线端口组3对应的TRP参与协作传输。
或者,第二字段为00,可指示天线端口组0对应的TRP0和天线端口组1对应的TRP同时进行协作传输;第二字段为01,可指示天线端口组0对应的TRP和天线端口组2对应的TRP同时进行协作传输;第二字段为10,可指示天线端口组0对应的TRP和天线端口组3对应的TRP同时进行协作传输。
假设终端设备选择天线端口组2对应的TRP参与协作传输,则第一字段(或第二字段)为00,第一字段(或第二字段)的比特长度为2比特。与上述示例1中,2个TRP参与协作传输需要终端设备采用3比特向网络设备上报相比,图5所示的方法中,协议预定义或网络设备预先确定1个TRP一定参与协作传输,终端设备只需要2比特指示另一个参与协作传输的TRP,如此可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
也就是说,协议预定义或网络设备预先确定M个TRP一定参与协作传输,终端设备在上报其他参与协作传输的TRP时,可以在根据M个TRP确定的传输假设中选择一个传输假设,降低了传输假设的可选范围,从而可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
或者,假设终端设备向网络设备发送这3个传输假设中的2个传输假设,由网络设备从这2个传输假设中选择参与协作传输的TRP,从3个传输假设中选2个传输假设有3种可能,第一字段(或第二字段)的比特长度可为2比特,例如,第一字段(或第二字段)为00,可指示传输假设(天线端口组1)和(天线端口组2)(或者,第二字段为00可指示传输假设(天线端口组0,天线端口组1)和(天线端口组0,天线端口组2));第一字段为01,可指示传输假设(天线端口组1)和(天线端口组3)(或者,第二字段为01可指示传输假设(天线端口组0,天线端口组1)和(天线端口组0,天线端口组3));第一字段为10,可指示传输假设(天线端口组2)和(天线端口组3)(或者,第二字段为10可指示传输假设(天线端口组0,天线端口组2)和(天线端口组0,天线端口组3))。与上述示例2中,2个TRP参与协作传输的情况下,终端设备需要采用4比特指示6个传输假设中的2个传输假设相比,图5所示的方法中,协议预定义或网络设备预先确定参与协作传输的1个TRP一定参与协作传输,终端设备只需要采用2比特便可指示3个传输假设中的2个传输假设,如此可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
示例性地,假设L=4,M=2,天线端口组0至天线端口组3分别对应一个TRP,第一信息指示天线端口组0和天线端口组1,终端设备可以在天线端口组1至天线端口组3分别对应的TRP中选择1(以Y=1为例,或者,以N=3,Y=N-M=1)个TRP,则传输假设有2种,例如(天线端口组2),(天线端口组3);或者,包括天线端口组0和天线端口组1的传输假设有2种,例如(天线端口组0,天线端口组1,天线端口组2),(天线端口组0,天线端口组1,天线端口组3), 则第一字段或第二字段的比特长度可以为1比特。
例如,第一字段为0,可指示天线端口组2对应的TRP参与协作传输;第一字段为1,可指示天线端口组3对应的TRP参与协作传输。
或者,第二字段为0,可指示天线端口组0对应的TRP、天线端口组1对应的TRP、和天线端口组2对应的TRP同时进行协作传输;第二字段为1,可指示天线端口组0对应的TRP、天线端口组1对应的TRP、和天线端口组3对应的TRP同时进行协作传输。
假设终端设备选择天线端口组2对应的TRP参与协作传输,则第一字段(或第二字段)为0,第一字段(或第二字段)的比特长度为2比特。采用上述示例1中的方法,终端设备需要采用2比特向网络设备上报3个TRP参与协作传输,图5所示的方法中,协议预定义或网络设备预先确定2个TRP一定参与协作传输,终端设备只需要1比特指示另一个参与协作传输的TRP,如此可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一些实施例中,第一字段可以被配置在第三信息的部分1(Part1)信息中。第二字段可以被配置在第三信息的部分1信息中。
可选地,第三信息可用于网络设备重构信道矩阵、和/或预编码矩阵。
示例性地,第三信息可以包括部分1信息,部分1信息可以包括第一字段或第二字段。
可选地,第三信息还可以包括部分2信息。
例如,部分1信息可用于确定部分2信息需要占用的比特数。
在一些实施例中,第三信息可以是CSI。
例如,部分1信息可以包括RI,CQI,以及所有层对应的总的非零投影系数的个数。
例如,部分2信息主要包括PMI信息、和/或LI信息等。
例如,PMI信息可以包括但不限于如下一项或多项:非零投影系数比特位图信息、空域分量选择指示信息、频域分量选择指示信息、非零投影系数幅度和相位量化信息。
在一些实施例中,若第四信息是终端设备确定的,且N等于L,则第三信息可以不包括第一字段或第二字段。
示例性地,当所有的TRP都参与协作传输的情况下,终端设备可以不指示参与协作传输的TRP,第三信息不包括第一字段或第二字段可以隐含指示N等于L。
如此,终端设备不需要上报哪些TRP参与协作传输,可以进一步降低终端设备上报开销。
在一些实施例中,若第四信息是终端设备确定的,且N等于M,则第三信息不包括第一字段或第二字段。
示例性地,当只有网络设备指定的或协议预定义的M个TRP参与协作传输的情况下,终端设备可以不指示参与协作传输的TRP,第三信息不包括第一字段(或第二字段)可以隐含指示N等于M。如此,终端设备不需要上报哪些TRP参与协作传输,可以进一步降低终端设备上报开销。
或者,可选地,当所有的TRP都不参与协作传输的情况下,终端设备可以不指示参与协作传输的TRP。
在一些实施例中,第三信息可以包含在UCI中。
例如,网络设备可以通过UCI向终端设备发送第三信息,UCI可以包括第三信息。
基于图5所示的方法,协议预定义或网络设备预先确定M个参考信号资源或M个天线端口组对应的M个TRP一定参与协作传输,终端设备从剩余的L-M个TRP中进一步选择参与协作传输的TRP,缩小了终端设备选择参与协作传输的TRP的范围,终端设备只需要上报剩下的L-M个参考信号资源或L-M个天线端口组对应的L-M个TRP中哪些TRP参与协作传输,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
示例性地,图6为本申请实施例提供的另一种协作传输接收点指示方法的流程示意图。图6所示的方法以协议预定义或网络设备预先确定R个候选的TRP为例进行阐述。
如图6所示,该协作传输接收点指示方法包括如下步骤:
S601,网络设备向终端设备发送第六信息。相应地,终端设备接收来自网络设备的第六信息。
示例性地,第六信息可用于指示R个参考信号资源、或R个天线端口组。
示例性地,R为大于或等于1的整数。
例如,第六信息可用于指示R个参考信号资源的编号、或R个天线端口组的编号。
可选地,参考信号资源的编号可与参考信号资源的标识(或索引)对应。具体可参照上述S501中对应的阐述。
可选地,与参考信号资源的编号与参考信号资源的标识(或索引)对应类似,天线端口组的编号可与参考信号资源的标识(或索引)对应。具体可参照上述S501中对应的阐述。
示例性地,R个天线端口组中的一个天线端口组可以包括一个或多个天线端口。
示例性地,R个天线端口组与R个TRP一一对应。
示例性地,R个TRP为候选协作TRP。
示例性地,R小于或等于L,L为支持协作传输的TRP的总数量。
例如,R为大于或等于1且小于或等于L的整数。
例如,L=4,R=3。
如此,第六信息可用于指示L个TRP中R个天线端口组对应的R个TRP为候选的TRP,可以缩小选择参与协作传输的TRP的选择范围。
假设R=3,第六信息指示天线端口组0、天线端口组1和天线端口组2,则天线端口组0对应的TRP、天线端口组1对应的TRP和天线端口组2对应的TRP为候选的TRP。
示例性地,R个参考信号资源与R个TRP一一对应。关于参考信号资源的具体实现方式可参照上述S501中对应的阐述,此处不再赘述。
如此,第六信息可用于指示L个TRP中R个参考信号资源对应的R个TRP为候选的TRP,可以缩小选择参与协作传输的TRP的选择范围。
可选地,第六信息可以包含在高层信令中,网络设备可以通过高层信令告知终端设备R个参考信号资源或R个天线端口组对应的R个TRP为候选的TRP。
例如,第六信息可以包含在RRC信令、MAC CE信令、或DCI中。
一些实施例中,本申请实施例提供的方法,还可以包括:S603,网络设备根据第五信息确定第六信息。
关于第五信息的具体实现方式可参照上述S504中对应的阐述,此处不再赘述。如此,网络设备根据已有的先验信息(例如上行信道的信息),获得R个参考信号资源或R个天线端口组对应的R个TRP可以参与协作传输,终端设备可以进一步从R个TRP中获取参与协作传输的TRP。
可选地,上述S603,可以包括:网络设备根据第二信息和第五信息确定第六信息。
关于第二信息的具体实现方式可参照上述S504中对应的阐述,此处不再赘述。
例如,网络设备可以根据L个TRP分别对应的RSRP,从L个TRP中选择R个RSRP较大的TRP,本申请对此不限定。
又例如,网络设备可以根据L个TRP分别对应的角度时延对信息,从L个TRP中选择R个角度时延对信息对应的功率较大的TRP,本申请对此不限定。
又例如,网络设备可以根据L个TRP分别对应的上行信道的信息,从L个TRP中选择R个TRP。
如此,网络设备根据已有的先验信息确定R个TRP一定参与协作传输,可以缩小终端设备选择参与协作传输的TRP的范围,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
一些实施例中,第六信息可以是协议预定义的。
以天线端口组为例,假设R=3,协议可以规定天线端口组0、天线端口组1和天线端口组2对应的TRP为候选的TRP。
如此,协议预定义终端设备选择参与协作传输的TRP的范围,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低网络设备向终端设备发送第六信息的信令开销。
S602,终端设备向网络设备发送第七信息。相应地,网络设备接收来自终端设备的第七信息。
示例性地,第七信息可以是终端设备根据第六信息确定的。
示例性地,第七信息可指示Q个参考信号资源、或Q个天线端口组。
例如,第七信息可用于指示Q个参考信号资源的编号、或Q个天线端口组的编号。
示例性地,Q小于或等于R。
例如,Q为小于或等于R的整数。假设R=3,Q可以等于2。
示例性地,Q个参考信号资源与Q个协作TRP一一对应。
示例性地,Q个天线端口组与Q个协作TRP一一对应。
示例性地,Q个协作TRP参与协作传输。
也就是说,第七信息可用于指示Q个天线端口组对应的Q个协作TRP同时进行协作传输,或者,第七信息可用于指示Q个参考信号资源对应的Q个协作TRP同时进行协作传输。
示例性地,Q个协作TRP可以包含在R个TRP中。
如此,协议预定义或网络设备确定R个TRP可以参与协作传输,终端设备可以从R个TRP中确定Q个参与协作传输的TRP。
以天线端口组为例,假设L=4,天线端口组0至天线端口组3分别对应一个TRP,R=3,第六信息指示天 线端口组0、天线端口组1和天线端口组2对应的TRP可以同时采用协作传输为终端设备同时服务,则终端设备可以从天线端口组0、天线端口组1和天线端口组2对应的TRP中选择参与相干协作传输的TRP。假设终端设备选择天线端口组1和天线端口组2对应的TRP,则第七信息可指示天线端口组1和天线端口组2。
如此,协议预定义或网络设备确定R个TRP可以参与协作传输,缩小终端设备选择参与协作传输的TRP的范围,终端设备只需要上报剩下的R个TRP中哪些TRP参与协作传输,从而降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一些实施例中,第七信息可以包括第三字段。
可选地,第三字段可用于指示Q个参考信号资源对应的Q个协作TRP参与协作传输。
或者,可选地,第三字段用于指示Q个天线端口组对应的Q个协作TRP参与协作传输。
在一些实施例中,第三字段包括比特位图。
可选地,第三字段的比特长度可以与R的取值有关,例如,比特位图的比特位数可以等于R。
一些实施例中,R个比特位可与R个参考信号资源一一对应。
可选地,R个比特位与R个参考信号资源的对应关系可满足第三规则,第三规则包括:从左至右(或者从右至左),R个比特位中的第1个比特位至第R个比特位与R个参考信号资源中参考信号资源的编号由小至大依次对应。第三规则与上述S503中第一规则类似,可参照第一规则的阐述,此处不再赘述。
假设L=4,R=3,参考信号资源0至参考信号资源3分别对应一个TRP,若第六信息指示参考信号资源0至参考信号资源2,则第三字段的比特长度可以为3,比特位图的第1个比特位至第3个比特位分别对应参考信号资源0至参考信号资源2。若第六信息指示参考信号资源0、参考信号资源2和参考信号资源3,则第三字段的比特长度可以为3,比特位图的第1个比特位可对应参考信号资源0,比特位图的第2个比特位可对应参考信号资源2,比特位图的第3个比特位可对应参考信号资源3。
R个比特位可与R个参考信号资源一一对应的具体实现方式,与上述S503中L-M个比特位可与L-M个参考信号资源一一对应类似,此处不再赘述。
示例性地,参考信号资源对应的比特的取值为1或0的具体释义可参照上述S503中对应的阐述,此处不再赘述。
以从左至右,R个比特位中的第1个比特位至第R个比特位与R个参考信号资源中参考信号资源的编号由小至大依次对应为例。
示例性地,假设L=4,R=3,参考信号资源0至参考信号资源3分别对应一个TRP,第六信息指示参考信号资源0至参考信号资源2,终端设备选择参考信号资源0和参考信号资源1对应的TRP同时进行协作传输,则第三字段可以占用3比特,比特位图为110,指示参考信号资源0和参考信号资源1对应的TRP同时进行协作传输,以及参考信号资源2对应的TRP对应的TRP不为终端设备服务、或不参与协作传输。
另一些实施例中,R个比特位可与R个天线端口组一一对应。与上述R个比特位可与R个参考信号资源一一对应类似。
可选地,R个比特位与R个天线端口组的对应关系可满足第四规则,第四规则包括:从左至右(或者从右至左),R个比特位中的第1个比特位至第R个比特位与R个天线端口组中天线端口组的编号由小至大依次对应。第三规则与上述S503中第二规则类似,可参照第二规则的阐述,此处不再赘述。
R个比特位可与R个天线端口组一一对应的具体实现方式,与上述S503中L-M个比特位可与L-M个天线端口组一一对应类似,此处不再赘述。
示例性地,天线端口组对应的比特的取值为1或0的具体释义可参照上述S503中对应的阐述,此处不再赘述。
以从左至右,R个比特位中的第1个比特位至第R个比特位与R个天线端口组中天线端口组的编号由小至大依次对应为例。
示例性地,假设L=4,R=3,天线端口组0至天线端口组3分别对应一个TRP,第六信息指示天线端口组0、天线端口组2、和天线端口组3,终端设备选择天线端口组2和天线端口组3对应的TRP同时进行协作传输,则第三字段可以占用3比特,比特位图为011,指示天线端口组2和天线端口组3对应的TRP同时进行协作传输,以及天线端口组0对应的TRP不为终端设备服务、或不参与协作传输。
如此,协议预定义或网络设备预先确定R个TRP可以参与协作传输,缩小终端设备选择参与协作传输的TRP的范围,终端设备只需要上报剩下的R个TRP中哪些TRP参与协作传输,终端设备只需要R个比特指示参与协作传输的TRP,与上述示例3中需要L个比特相比,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一些实施例中,第三字段可包括传输假设。
如此,终端设备可以通过上报传输假设的形式告诉网络设备参与协作传输的TRP。
以天线端口组为例,假设L=4,R=3,天线端口组0至天线端口组3分别对应一个TRP,第六信息指示天线端口组0、天线端口组1、和天线端口组2,假设终端设备可以在天线端口组0至天线端口组2对应的TRP中选择2个TRP,则传输假设有3种,例如(天线端口组0,天线端口组1),(天线端口组0,天线端口组2),(天线端口组1,线端口组2),则第三字段的比特长度可以为2比特。
例如,第三字段为00,可指示天线端口组0和天线端口组1对应的TRP同时进行协作传输;第三字段为01,可指示天线端口组0和天线端口组2对应的TRP同时进行协作传输;第三字段为10,可指示天线端口组1和线端口组2对应的TRP同时进行协作传输。
假设终端设备选择天线端口组0和天线端口组1对应的TRP同时采用协作传输方式为提供终端设备服务,则第三字段为00,第三字段的比特长度为2比特。与上述示例1中,2个TRP参与协作传输需要终端设备采用3比特向网络设备上报相比,图6所示的方法中,协议预定义或网络设备预先确定参与协作传输的候选TRP,终端设备只需要2比特便可指示参与协作传输的2个TRP,如此可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
也就是说,协议预定义或网络设备预先确定R个TRP一定参与协作传输,终端设备在上报其他参与协作传输的TRP时,可以在根据R个TRP确定的传输假设中选择一个传输假设,降低了传输假设的可选范围,从而可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
或者,假设终端设备向网络设备发送这3个传输假设中的2个传输假设,由网络设备从这2个传输假设中选择参与协作传输的TRP,从3个传输假设中选2个传输假设有3种可能,第三字段的比特长度可为2比特,例如,第三字段为00,可指示传输假设(天线端口组0,天线端口组1)和(天线端口组0,天线端口组2);第三字段为01,可指示传输假设(天线端口组0,天线端口组1)和(天线端口组0,天线端口组3);第三字段为10,可指示传输假设(天线端口组0,天线端口组2)和(天线端口组0,天线端口组3)。与上述示例2中,2个TRP参与协作传输的情况下,终端设备需要采用4比特指示6个传输假设中的2个传输假设相比,图6所示的方法中,协议预定义或网络设备预先确定参与协作传输的候选TRP,终端设备只需要采用2比特便可指示3个传输假设中的2个传输假设,如此可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
在一些实施例中,第三字段可以被配置在第三信息的部分1(Part1)信息中。
示例性地,第七信息可以包括部分1信息,部分1信息可以包括第三字段。
可选地,第七信息还可以包括部分2信息。
关于部分1信息和部分2信息的具体实现方式可参照上述S503中对应的阐述,此处不再赘述。
在一些实施例中,若Q等于R,则第七信息可以不包括第三字段。
示例性地,当候选的TRP都参与协作传输的情况下,终端设备可以不指示参与协作传输的TRP,第七信息不包括第三字段可以隐含指示候选的TRP都参与协作传输。
如此,终端设备不需要上报哪些TRP参与协作传输,可以进一步降低终端设备上报开销。
在一些实施例中,第七信息可以包含在上行控制信息UCI中。
例如,网络设备可以通过UCI向终端设备发送第七信息,UCI可以包括第七信息。
基于图6所示的方法,协议预定义或网络设备预先确定R个参考信号资源或R个天线端口组对应的R个TRP可以参与协作传输,终端设备从这R个TRP中选择参与协作传输的TRP,缩小了终端设备选择参与协作传输的TRP的范围,终端设备只需要上报R个参考信号资源或R个天线端口组对应的R个TRP中哪些TRP参与协作传输,可以降低终端设备上报参与协作传输的TRP的开销,还可以降低终端设备处理的复杂度。
为了使得本申请实施例更加清楚,以下对与本申请实施例中相关的部分内容以及概念进行介绍。
R16 TypeII和R17 TypeII对应的三级码本结构为
对于R16 TypeII码本,W1∈NP×2S为空域选择矩阵,表示从P个空域波束中选择2S个波束。是频域压缩矩阵,表示从离散傅里叶变换(discrete fourier transform,DFT)矩阵集合中选取的V列,N3为频域资源块(resource block,RB)资源数或者子带数。W2∈C2S×V为根据量化准则量化的组合系数。
对于R17 TypeII PS码本,为端口选择矩阵,表示从P个端口中选择K1个端口。是频域压缩矩阵,表示从DFT矩阵集合中选取的M列。N3为频域RB资源数或者子带数;为根据量化准则量化的组合系数。
终端设备完成信道测量后,需要在UCI中对测量信息进行上报,具体包括选择的空域/端口(W1)、频域向量指示(Wf),对应空域/端口、频域向量的加权系数以及加权系数(W2)在码本中所在的位置等参数。
对于R16 NP码本,协议规定的码本参数列表组合如表1所示。
表1
表1中,S为单个极化方向选择的空域基底(或空域基向量)的数目,为选择的频域基底(或频域基向量)的数目。F表示每个CQI子带包含的PMI子带的个数,F由高层配置。N3表示PMI子带的个数,υ表示对应列(rank)数,β是每层选择的非零投影系数占每层最大可能非零投影系数的比例,每层上报的最大可能的非零系数的个数为
在CSI测量过程中,网络设备向终端设备下发配置信息,指示终端设备使用上述码本参数列表(表1)中的哪组参数。例如,网络设备通过3bit指示终端设备使用哪组参数,如果网络设备下发的配置信息指示的是100,则说明下发的码本参数对应编号为5。终端设备根据网络设备的指示,确定需要上报的非零投影系数个数以及选择的空域基底和频域基底个数,并把选择的非零投影系数上报给网络设备,同时上报非零投影系数的位图,以及选择的空域基底的指示信息和频域基底的指示信息。网络设备根据终端设备上报的非零投影系数,非零投影系数的位图,以及空域基底的指示信息和频域基底的指示信息对信道矩阵或预编码矩阵进行重构。
对于R17PS码本,协议规定的码本参数列表组合如表2所示。
表2
表2中,α表示端口选择比例系数,K1是选择的端口数且K1=αPCSI-RS。V为选择的频域基底(或频域基向量)的数目,β是每层选择的非零投影系数占每层最大可能非零投影系数的比例,每层上报的最大可能的非零系数个数为
在CSI测量过程中,网络设备向终端设备下发配置信息,指示终端设备使用上述码本参数列表(表2)中的哪组参数,例如网络设备通过3bit指示终端设备使用哪组参数,如果网络设备下发的配置信息指示的是100,则说明下发的码本参数对应编号为5。终端设备根据网络设备的指示确定需要上报的非零投影系数个数以及选择的端口个数和频域基底个数,并把选择的非零投影系数上报给网络设备,同时上报非零投影系数的位图,以及选择的端口的指示信息和频域基底的指示信息。网络设备根据终端设备上报的非零投影系数,非零投影系数的位图,以及选择的端口的指示信息和频域基底的指示信息对信道矩阵或预编码矩阵进行重构。
下面对解决预留资源浪费的方案进行阐述。
网络设备预留的资源是根据网络设备下发的码本参数组合确定的,因此认为网络设备下发的不同的码本参数组合可以对应不同协作TRP的上报开销。
示例性地,当参与协作传输的TRP个数N≤2时,对应系数β1;当参与协作传输的TRP的个数N>2时,对应系数β2,β1表示每层选择的非零投影系数占每层最大可能非零投影系数的比例,β2表示每层选择的非零投影系数占每层 最大可能非零投影系数的比例。可选地,N可等于Y+M(Y、M指示的含义可参照图5所示的方法中的阐述),可将N替换为Y+M,或者,可将N替换为Q(Q指示的含义可参照图6所示的方法中的阐述)。
例如,以R16为例,假设为每个TRP分配的空域基底个数为S=2,为每个TRP分配的频域基底个数为V=4,参与协作传输的TRP个数N=2时,对应β1=1/2;参与协作传输的TRP个数N=4时,对应β2=1/4,则参与协作传输的TRP个数N=2时,每层最大可能非零投影系数的总数为参与协作传输的TRP个数N=4时,每层最大可能非零投影系数的总数为
如此,参与协作传输的TRP个数与β值存在对应关系,不同的参与协作传输的TRP个数可对应不同β值,例如N≤2时的β取值是N>2时的β取值的两倍,其它参量不变的情况下,可根据参与协作传输的TRP个数调节β,来控制终端设备上报的开销,保证终端设备上报的开销和网络设备根据码本参数组合预留的开销相近或吻合,不会超过网络设备预留的上报开销,也不会远小于网络设备预留的上报开销。
或者,示例性地,当网络设备指示的码本参数组合确定时,对于采用R16 TypeII码本增强的协作传输CJT码本,例如网络设备指示的总的空域基底个数为S,频域基底个数为V,系数为β,则在每个TRP的频域基底个数一定的情况下,可将网络设备指示的总的空域基底个数在不同TRP之间进行分配,只要不同TRP的空域基底数之和不超过网络设备指示的总的空域基底个数即可。
同理,对于采用R17 TypeII码本增强的协作传输CJT码本,例如网络设备指示的总的端口数为K1,每个TRP对应的频域基底个数均为V,系数为β,则在每个TRP的频域基底个数一定的情况下,可将总的端口数在不同TRP之间分配,只要不同TRP的端口数之和不超过网络设备指示的总的端口数即可。
以采用R16 TypeII码本增强的协作传输CJT码本为例。假设网络设备向终端设备指示总的空域基底个数S=10,为每个TRP分配的频域基底个数均为V=4,β=1/2,若参与协作传输的TRP的个数N=3,则可以为3个TRP中的2个TRP分别分配3个空域基底,为剩余的1个TRP分别分配4个空域基底。若参与协作传输的TRP的个数N=2,则可以为2个TRP分别分配5个空域基底。那么,参与协作传输的TRP个数N=3时,每层最大可能非零投影系数的总数为 参与协作传输的TRP个数N=2时,每层最大可能非零投影系数的总数为
如此,可以保证终端设备上报的开销和网络设备预留的开销相近或吻合,不会超过网络设备预留的上报开销,也不会远小于网络设备预留的上报开销。
可选地,网络设备向终端设备发送总的空域基底个数、每个TRP对应的频域基底个数、以及系数β,或者,网络设备向终端设备发送总的端口数、每个TRP对应的频域基底个数、以及系数β。可选地,这可在上述S501之前执行。
可选地,上述端口也可以称为参考信号端口、天线端口、CSI-RS端口,本申请对此不限定。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
以上结合图1-图6详细说明了本申请实施例提供的协作传输接收点指示方法。以下结合图7和图8详细说明本申请实施例提供的通信装置。
示例性地,图7是本申请实施例提供的另一种通信装置的结构示意图。该通信装置可适用于图1所示出的通信系统中,为了便于说明,图7仅示出了该通信装置的主要部件。如图7所示,该通信装置700包括:发送模块701和处理模块703,还可以包括接收模块702。
在一种可能的设计方案中,图7所示出的通信装置700可适用于图1所示出的系统中,执行上述图5所示的方法中终端设备的功能。
其中,处理模块703,用于获取第一信息。处理模块703,还用于根据第一信息和第二信息确定Y个协作TRP。发送模块701,用于向网络设备发送第三信息。其中,第一信息用于指示M个参考信号资源、或M个天线端口组,M个天线端口组中的一个天线端口组包括一个或多个天线端口,M个参考信号资源与M个传输接收点TRP一一对应,M个天线端口组与M个TRP一一对应,M个TRP为协作TRP,M为大于或等于1的整数。第二信息用于指示支持协作传输的TRP的总数量为L,Y个协作TRP包含在L-M个TRP中,L-M个TRP为L个TRP中除M个TRP以外的TRP,L为大于1的整数,M为大于或等于1且小于L的整数,Y为大于或等于1且小于L-M的整数。第三信息用于指示Y个参考信号资源、或Y个天线端口组,Y个参考 信号资源与Y个协作TRP一一对应,Y个天线端口组与所示Y个协作TRP一一对应。
需要说明的是,接收模块702和发送模块701可以分开设置,也可以集成在一个模块中,即收发模块(图7中未示出)。本申请对于接收模块702和发送模块701的具体实现方式,不做具体限定。
可选地,通信装置700还可以包括处理模块703和存储模块(图7中未示出),该存储模块存储有程序或指令。当处理模块703执行该程序或指令时,使得通信装置700可以执行图5所示的方法中终端设备的功能。
需要说明的是,通信装置700可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置700的技术效果可以参考图5所示的方法的技术效果,此处不再赘述。
示例性地,图8是本申请实施例提供的又一种通信装置的结构示意图。该通信装置可适用于图1所示出的通信系统中,为了便于说明,图8仅示出了该通信装置的主要部件。如图8所示,该通信装置800包括:发送模块801和接收模块802,还可以包括处理模块803。
在一种可能的设计方案中,图8所示出的通信装置800可适用于图1所示出的系统中,执行上述图5所述的方法中网络设备的功能。
其中,发送模块801,用于向终端设备发送第一信息。接收模块802,用于接收来自终端设备的第三信息。其中,发送模块,用于向终端设备发送第一信息。接收模块,用于接收来自终端设备的第三信息。其中,第一信息用于指示M个参考信号资源、或M个天线端口组,M个天线端口组中的一个天线端口组包括一个或多个天线端口,M个参考信号资源与M个传输接收点TRP一一对应,M个天线端口组与M个TRP一一对应,M个TRP为协作TRP,M为大于或等于1的整数。第三信息用于指示Y个参考信号资源、或Y个天线端口组,Y个参考信号资源与Y个协作TRP一一对应,Y个天线端口组与Y个协作TRP一一对应,Y个协作TRP包含在L-M个TRP中,L-M个TRP为L个TRP中除M个参考信号资源对应的M个TRP、或M个天线端口组对应的M个TRP以外的TRP,L为支持协作传输的TRP的总数量,L为大于1的整数,M为大于或等于1且小于L的整数,Y为大于或等于1且小于L-M的整数。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块802和发送模块801可以分开设置,也可以集成在一个模块中,即收发模块(图8中未示出)。本申请对于接收模块802和发送模块801的具体实现方式,不做具体限定。
可选地,通信装置800还可以包括处理模块803和存储模块(图8中未示出),该存储模块存储有程序或指令。当处理模块803执行该程序或指令时,使得通信装置800可以执行图5所示的方法中网络设备的功能。
需要说明的是,通信装置800可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置800的技术效果可以参考图5所示的方法的技术效果,此处不再赘述。
在一种可能的设计方案中,图8所示出的通信装置800可适用于图1所示出的系统中,执行上述图6所述的方法中终端设备的功能。
其中,接收模块802,用于接收来自网络设备的第六信息。发送模块801,用于向网络设备发送第七信息。其中,接收模块,用于接收来自网络设备的第六信息。发送模块,用于向网络设备发送第七信息。其中,第六信息用于指示R个参考信号资源、或R个天线端口组,R个天线端口组中的一个天线端口组包括一个或多个天线端口,R个参考信号资源与R个传输接收点TRP一一对应,R个天线端口组与R个TRP一一对应,R个TRP为候选协作TRP,R小于L,L为支持协作传输的TRP的总数量。第七信息是根据第六信息确定的,第七信息指示Q个参考信号资源、或Q个天线端口组,Q小于或等于R,Q个参考信号资源与Q个协作TRP一一对应,Q个天线端口组与Q个协作TRP一一对应,Q个协作TRP包含在R个TRP中。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块802和发送模块801可以分开设置,也可以集成在一个模块中,即收发模块(图8中未示出)。本申请对于接收模块802和发送模块801的具体实现方式,不做具体限定。
可选地,通信装置800还可以包括处理模块803和存储模块(图8中未示出),该存储模块存储有程序或指令。当处理模块803执行该程序或指令时,使得通信装置800可以执行图6所示的方法中终端设备的功能。
需要说明的是,通信装置800可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件 或组件,本申请对此不做限定。
此外,通信装置800的技术效果可以参考图6所示的方法的技术效果,此处不再赘述。
在一种可能的设计方案中,图8所示出的通信装置800可适用于图1所示出的系统中,执行上述图6所述的方法中网络设备的功能。
其中,发送模块801,用于向终端设备发送第六信息。接收模块802,用于接收来自终端设备的第七信息。其中,发送模块,用于向终端设备发送第六信息。接收模块,用于接收来自终端设备的第七信息。其中,第六信息用于指示R个参考信号资源、或R个天线端口组,R个天线端口组中的一个天线端口组包括一个或多个天线端口,R个参考信号资源与R个传输接收点TRP一一对应,R个天线端口组与R个TRP一一对应,R个TRP为候选协作TRP,R小于L,L为支持协作传输的TRP的总数量。第七信息指示Q个参考信号资源、或Q个天线端口组,Q小于或等于R,Q个参考信号资源与Q个协作TRP一一对应,Q个天线端口组与Q个协作TRP一一对应,Q个协作TRP包含在R个TRP中。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,接收模块802和发送模块801可以分开设置,也可以集成在一个模块中,即收发模块(图8中未示出)。本申请对于接收模块802和发送模块801的具体实现方式,不做具体限定。
可选地,通信装置800还可以包括处理模块803和存储模块(图8中未示出),该存储模块存储有程序或指令。当处理模块803执行该程序或指令时,使得通信装置800可以执行图6所示的方法中网络设备的功能。
需要说明的是,通信装置800可以是网络设备,也可以是可设置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,通信装置800的技术效果可以参考图6所示的方法的技术效果,此处不再赘述。
本申请实施例提供一种通信系统。该通信系统包括终端设备和网络设备。其中,终端设备用于执行上述方法实施例中终端设备的动作,网络设备用于执行上述方法实施例中网络设备的动作具体执行方法和过程可参照上述方法实施例,此处不再赘述。
本申请实施例提供一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路可用于实现本申请实施例提供的方法所涉及的处理功能,输入/输出端口可用于本申请实施例提供的方法所涉及的收发功能。
示例性地,输入端口可用于实现本申请实施例提供的方法所涉及的接收功能,输出端口可用于实现本申请实施例提供的方法所涉及的发送功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现本申请实施例提供的方法所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的方法被执行。
本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的方法被执行。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR  RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (48)

  1. 一种协作传输接收点指示方法,其特征在于,包括:
    终端设备获取第一信息;其中,所述第一信息用于指示M个参考信号资源、或M个天线端口组,所述M个天线端口组中的一个天线端口组包括一个或多个天线端口,所述M个参考信号资源与M个传输接收点TRP一一对应,所述M个天线端口组与所述M个TRP一一对应,所述M个TRP为协作TRP;
    所述终端设备根据所述第一信息和第二信息确定Y个协作TRP;其中,所述第二信息用于指示支持协作传输的TRP的总数量为L,所述Y个协作TRP包含在L-M个TRP中,所述L-M个TRP为所述L个TRP中除所述M个TRP以外的TRP,L为大于1的整数,M为大于或等于1且小于L的整数,Y为大于或等于1且小于L-M的整数;
    所述终端设备向网络设备发送第三信息;其中,所述第三信息用于指示Y个参考信号资源、或Y个天线端口组,所述Y个参考信号资源与所述Y个协作TRP一一对应,所述Y个天线端口组与所述Y个协作TRP一一对应。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一信息和第二信息确定Y个协作TRP,包括:
    所述终端设备获取第四信息;
    所述终端设备根据所述第一信息、所述第二信息和所述第四信息确定所述Y个协作TRP;其中,所述第四信息用于指示实际参与协作传输的TRP的总数量为N,Y等于N-M,N为大于1且小于或等于L的整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第三信息包括第一字段,所述第一字段用于指示所述Y个参考信号资源对应的所述Y个协作TRP,或者,所述第一字段用于指示所述Y个天线端口组对应的所述Y个协作TRP。
  4. 根据权利要求3所述的方法,其特征在于,所述第一字段包括比特位图或传输假设。
  5. 根据权利要求1或2所述的方法,其特征在于,所述第三信息包括第二字段,所述第二字段用于指示所述M个参考信号资源对应的所述M个TRP和所述Y个参考信号资源对应的所述Y个协作TRP;或者,所述第二字段用于指示所述M个天线端口组对应的所述M个TRP和所述Y个天线端口组对应的所述Y个协作TRP。
  6. 根据权利要求5所述的方法,其特征在于,所述第二字段包括传输假设。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述终端设备获取第一信息,包括:
    所述终端设备接收来自所述网络设备的所述第一信息;所述第一信息包含在无线资源控制RRC信令、媒体接入控制MAC控制单元CE信令、或下行控制信息DCI中。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第三信息包含在上行控制信息UCI中。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第二信息为协议预定义的。
  10. 根据权利要求2-9中任一项所述的方法,其特征在于,所述终端设备获取第四信息,包括:
    所述终端设备接收来自所述网络设备的所述第四信息;
    所述第四信息包含在RRC信令、MAC CE信令、或DCI中。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,L等于4。
  12. 一种协作传输接收点指示方法,其特征在于,包括:
    网络设备向终端设备发送第一信息;其中,所述第一信息用于指示M个参考信号资源、或M个天线端口组,所述M个天线端口组中的一个天线端口组包括一个或多个天线端口,所述M个参考信号资源与M个传输接收点TRP一一对应,所述M个天线端口组与M个TRP一一对应,所述M个TRP为协作TRP;
    所述网络设备接收来自所述终端设备的第三信息;其中,所述第三信息用于指示Y个参考信号资源、或Y个天线端口组,所述Y个参考信号资源与Y个协作TRP一一对应,所述Y个天线端口组与Y个协作TRP一一对应,所述Y个协作TRP包含在L-M个TRP中,所述L-M个TRP为所述L个TRP中除所述M个TRP以外的TRP,L为支持协作传输的TRP的总数量,L为大于1的整数,M为大于或等于1且小于L的整数,Y为大于或等于1且小于L-M的整数。
  13. 根据权利要求12所述的方法,其特征在于,Y等于N-M,N为实际参与协作传输的TRP的总数量,N为大于1且小于或等于L的整数。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第三信息包括第一字段,所述第一字段用于指示所述Y个参考信号资源对应的所述Y个协作TRP,或者,所述第一字段用于指示所述Y个天线端口组对应的所述Y个协作TRP。
  15. 根据权利要求14所述的方法,其特征在于,所述第一字段包括比特位图或传输假设。
  16. 根据权利要求12或13所述的方法,其特征在于,所述第三信息包括第二字段,所述第二字段用于指示 所述M个参考信号资源对应的所述M个TRP和所述Y个参考信号资源对应的所述Y个协作TRP;或者,所述第二字段用于指示所述M个天线端口组对应的所述M个TRP和所述Y个天线端口组对应的所述Y个协作TRP。
  17. 根据权利要求16所述的方法,其特征在于,所述第二字段包括传输假设。
  18. 根据权利要求12-17中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据第五信息确定所述第一信息;其中,所述第五信息包括如下一项或多项:上行信道的信息、参考信号接收功率和角度时延对信息。
  19. 根据权利要求12-18中任一项所述的方法,其特征在于,所述第一信息包含在无线资源控制RRC信令、媒体接入控制MAC控制单元CE信令、或下行控制信息DCI中。
  20. 根据权利要求12-19中任一项所述的方法,其特征在于,所述第三信息包含在上行控制信息UCI中。
  21. 根据权利要求12-20中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第四信息;其中,所述第四信息用于指示实际参与协作传输的TRP的总数量为N,所述第四信息包含在RRC信令、MAC CE信令、或DCI中。
  22. 根据权利要求12-21中任一项所述的方法,其特征在于,L等于4。
  23. 一种通信装置,其特征在于,所述通信装置包括处理模块和发送模块;
    其中,所述处理模块,用于获取第一信息;其中,所述第一信息用于指示M个参考信号资源、或M个天线端口组,所述M个天线端口组中的一个天线端口组包括一个或多个天线端口,所述M个参考信号资源与M个传输接收点TRP一一对应,所述M个天线端口组与所述M个TRP一一对应,所述M个TRP为协作TRP;
    所述处理模块,还用于根据所述第一信息和第二信息确定Y个协作TRP;其中,所述第二信息用于指示支持协作传输的TRP的总数量为L,所述Y个协作TRP包含在L-M个TRP中,所述L-M个TRP为所述L个TRP中除所述M个TRP以外的TRP,L为大于1的整数,M为大于或等于1且小于L的整数,Y为大于或等于1且小于L-M的整数;
    所述发送模块,用于向网络设备发送第三信息;其中,所述第三信息用于指示Y个参考信号资源、或Y个天线端口组,所述Y个参考信号资源与所述Y个协作TRP一一对应,所述Y个天线端口组与所述Y个协作TRP一一对应。
  24. 根据权利要求23所述的装置,其特征在于,
    所述处理模块,还用于获取第四信息;
    所述处理模块,还用于根据所述第一信息、所述第二信息和所述第四信息确定所述Y个协作TRP;其中,所述第四信息用于指示实际参与协作传输的TRP的总数量为N,Y等于N-M,N为大于1且小于或等于L的整数。
  25. 根据权利要求23或24所述的装置,其特征在于,所述第三信息包括第一字段,所述第一字段用于指示所述Y个参考信号资源对应的所述Y个协作TRP,或者,所述第一字段用于指示所述Y个天线端口组对应的所述Y个协作TRP。
  26. 根据权利要求25所述的装置,其特征在于,所述第一字段包括比特位图或传输假设。
  27. 根据权利要求23或24所述的装置,其特征在于,所述第三信息包括第二字段,所述第二字段用于指示所述M个参考信号资源对应的所述M个TRP和所述Y个参考信号资源对应的所述Y个协作TRP;或者,所述第二字段用于指示所述M个天线端口组对应的所述M个TRP和所述Y个天线端口组对应的所述Y个协作TRP。
  28. 根据权利要求27所述的装置,其特征在于,所述第二字段包括传输假设。
  29. 根据权利要求23-28中任一项所述的装置,其特征在于,所述的通信装置还包括:接收模块;所述接收模块,用于接收来自所述网络设备的所述第一信息;所述第一信息包含在无线资源控制RRC信令、媒体接入控制MAC控制单元CE信令、或下行控制信息DCI中。
  30. 根据权利要求23-29中任一项所述的装置,其特征在于,所述第三信息包含在上行控制信息UCI中。
  31. 根据权利要求23-30中任一项所述的装置,其特征在于,所述第二信息为协议预定义的。
  32. 根据权利要求24-31中任一项所述的装置,其特征在于,所述的通信装置还包括:接收模块;其中,所述接收模块,用于接收来自所述网络设备的所述第四信息;所述第四信息包含在RRC信令、MAC CE信令、或DCI中。
  33. 根据权利要求23-32中任一项所述的装置,其特征在于,L等于4。
  34. 一种通信装置,其特征在于,所述通信装置包括发送模块和接收模块;
    其中,所述发送模块,用于向终端设备发送第一信息;其中,所述第一信息用于指示M个参考信号资源、或M个天线端口组,所述M个天线端口组中的一个天线端口组包括一个或多个天线端口,所述M个参考信 号资源与M个传输接收点TRP一一对应,所述M个天线端口组与M个TRP一一对应,所述M个TRP为协作TRP;
    所述接收模块,用于接收来自所述终端设备的第三信息;其中,所述第三信息用于指示Y个参考信号资源、或Y个天线端口组,所述Y个参考信号资源与Y个协作TRP一一对应,所述Y个天线端口组与Y个协作TRP一一对应,所述Y个协作TRP包含在L-M个TRP中,所述L-M个TRP为所述L个TRP中除所述M个TRP以外的TRP,L为支持协作传输的TRP的总数量,L为大于1的整数,M为大于或等于1且小于L的整数,Y为大于或等于1且小于L-M的整数。
  35. 根据权利要求34所述的装置,其特征在于,Y等于N-M,N为实际参与协作传输的TRP的总数量,N为大于1且小于或等于L的整数。
  36. 根据权利要求34或35所述的装置,其特征在于,所述第三信息包括第一字段,所述第一字段用于指示所述Y个参考信号资源对应的所述Y个协作TRP,或者,所述第一字段用于指示所述Y个天线端口组对应的所述Y个协作TRP。
  37. 根据权利要求36所述的装置,其特征在于,所述第一字段包括比特位图或传输假设。
  38. 根据权利要求34或35所述的装置,其特征在于,所述第三信息包括第二字段,所述第二字段用于指示所述M个参考信号资源对应的所述M个TRP和所述Y个参考信号资源对应的所述Y个协作TRP;或者,所述第二字段用于指示所述M个天线端口组对应的所述M个TRP和所述Y个天线端口组对应的所述Y个协作TRP。
  39. 根据权利要求38所述的装置,其特征在于,所述第二字段包括传输假设。
  40. 根据权利要求34-39中任一项所述的装置,其特征在于,所述通信装置还包括:处理模块;其中,所述处理模块,用于根据第五信息确定所述第一信息;其中,所述第五信息包括如下一项或多项:上行信道的信息、参考信号接收功率和角度时延对信息。
  41. 根据权利要求34-40中任一项所述的装置,其特征在于,所述第一信息包含在无线资源控制RRC信令、媒体接入控制MAC控制单元CE信令、或下行控制信息DCI中。
  42. 根据权利要求34-41中任一项所述的装置,其特征在于,所述第三信息包含在上行控制信息UCI中。
  43. 根据权利要求34-42中任一项所述的装置,其特征在于,所述发送模块,还用于向所述终端设备发送第四信息;其中,所述第四信息用于指示实际参与协作传输的TRP的总数量为N,所述第四信息包含在RRC信令、MAC CE信令、或DCI中。
  44. 根据权利要求34-43中任一项所述的装置,其特征在于,L等于4。
  45. 一种通信装置,其特征在于,所述通信装置包括:处理器;所述处理器,用于执行如权利要求1-22中任一项所述的方法。
  46. 一种通信装置,其特征在于,所述通信装置包括:处理器和存储器,所述处理器与所述存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的所述计算机程序,以使得如权利要求1-22中任一项所述的方法被执行。
  47. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-22中任一项所述的方法被执行。
  48. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-22中任一项所述的方法被执行。
PCT/CN2023/103511 2022-08-12 2023-06-28 一种协作传输接收点指示方法及装置 WO2024032202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210970554.9A CN117676717A (zh) 2022-08-12 2022-08-12 一种协作传输接收点指示方法及装置
CN202210970554.9 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032202A1 true WO2024032202A1 (zh) 2024-02-15

Family

ID=89850638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103511 WO2024032202A1 (zh) 2022-08-12 2023-06-28 一种协作传输接收点指示方法及装置

Country Status (2)

Country Link
CN (1) CN117676717A (zh)
WO (1) WO2024032202A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595429A (zh) * 2011-01-17 2012-07-18 中兴通讯股份有限公司 上行无线协作多点传输通信网络及其传输方法
CN103001678A (zh) * 2011-09-10 2013-03-27 华为技术有限公司 多节点协作传输的方法和装置
US20160218840A1 (en) * 2013-09-26 2016-07-28 Zte Corporation Parameter Transmission Method and Device for Interference Coordination, and Interference Coordination Method and Device
WO2020143829A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 发送和接收指示的方法和装置
US20220124740A1 (en) * 2020-10-16 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for reporting channel state information for network cooperative communication
WO2022082373A1 (zh) * 2020-10-19 2022-04-28 北京小米移动软件有限公司 Pusch指示方法和装置、pusch发送方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595429A (zh) * 2011-01-17 2012-07-18 中兴通讯股份有限公司 上行无线协作多点传输通信网络及其传输方法
CN103001678A (zh) * 2011-09-10 2013-03-27 华为技术有限公司 多节点协作传输的方法和装置
US20160218840A1 (en) * 2013-09-26 2016-07-28 Zte Corporation Parameter Transmission Method and Device for Interference Coordination, and Interference Coordination Method and Device
WO2020143829A1 (zh) * 2019-01-11 2020-07-16 华为技术有限公司 发送和接收指示的方法和装置
US20220124740A1 (en) * 2020-10-16 2022-04-21 Samsung Electronics Co., Ltd. Method and apparatus for reporting channel state information for network cooperative communication
WO2022082373A1 (zh) * 2020-10-19 2022-04-28 北京小米移动软件有限公司 Pusch指示方法和装置、pusch发送方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Discussion on transition between NR network coordination schemes", 3GPP DRAFT; R1-1711638_DISCUSSION ON TRANSITION BETWEEN NR NETWORK COORDINATION SCHEMES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051300800 *

Also Published As

Publication number Publication date
CN117676717A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2022148490A1 (zh) Csi的上报方法及装置
WO2018202191A1 (zh) 一种测量上报的方法和装置
WO2020048438A1 (zh) 一种射频参数的上报方法及装置
TWI558258B (zh) 用於提高補償的選擇性信號資訊共享
WO2021129401A1 (zh) 信道探测方法及装置
WO2020199964A1 (zh) 通信方法及装置
CN109478918A (zh) 波束失败报告发送方法、接收方法、用户设备和网络设备
WO2021017893A1 (zh) 波束测量方法及装置
US20170188259A1 (en) Distributing l2 buffer status information in 5g multi-connectivity for efficient radio scheduling
WO2022199346A1 (zh) 指示方法及相关产品
WO2021081898A1 (zh) 通信方法和通信装置
WO2020062265A1 (zh) 通信方法、装置、网络设备、终端设备及系统
WO2024032202A1 (zh) 一种协作传输接收点指示方法及装置
EP4380091A1 (en) Reference signal resource determination method and apparatus
US20230162006A1 (en) Server and agent for reporting of computational results during an iterative learning process
WO2022012256A1 (zh) 通信的方法及通信装置
WO2020238682A1 (zh) 一种信道信息获取方法及装置
WO2022088003A1 (zh) 一种信息传输的方法、轻量化处理的方法以及相关通信装置
WO2023011234A1 (zh) 一种上报csi报告的方法及装置
WO2024055939A1 (zh) 一种测量资源的配置方法及装置
WO2024061125A1 (zh) 一种通信方法及装置
WO2024032241A1 (zh) 一种频域分量上报的方法及装置
WO2024041212A1 (zh) 一种通信方法和装置
US20170070321A1 (en) Wireless transmission path selection method and apparatus
WO2024027393A1 (zh) 信道状态信息反馈方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851429

Country of ref document: EP

Kind code of ref document: A1