WO2024055939A1 - 一种测量资源的配置方法及装置 - Google Patents

一种测量资源的配置方法及装置 Download PDF

Info

Publication number
WO2024055939A1
WO2024055939A1 PCT/CN2023/118102 CN2023118102W WO2024055939A1 WO 2024055939 A1 WO2024055939 A1 WO 2024055939A1 CN 2023118102 W CN2023118102 W CN 2023118102W WO 2024055939 A1 WO2024055939 A1 WO 2024055939A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel measurement
resources
csi
group
channel
Prior art date
Application number
PCT/CN2023/118102
Other languages
English (en)
French (fr)
Inventor
杨培
李铁
余政
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024055939A1 publication Critical patent/WO2024055939A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • Embodiments of the present application relate to the field of communications, and in particular, to a method and device for configuring measurement resources.
  • Coherent joint transmission is one of the multi-transmission reception point (TRP) transmission technologies. Based on CJT technology, the increase in the number of antennas can bring beamforming gain, the increase in the number of TRPs can bring power gain, and the interference control is more flexible, which can significantly improve the average communication performance of the cell and the communication performance at the edge of the cell.
  • one TRP among multiple TRPs can send a downlink control information (DCI) to the terminal device, and the DCI schedules a physical downlink shared channel (PDSCH).
  • DCI downlink control information
  • PDSCH physical downlink shared channel
  • the multiple TRPs all send data of each layer of the PDSCH to the terminal equipment. That is, in CJT transmission, multiple TRPs can send the same data to the terminal device at the same time.
  • the measurement of channel and interference is particularly important in CJT transmission.
  • the industry currently has no relevant design for the configuration of measurement resources in CJT transmission.
  • This application provides a measurement resource configuration method and device, which can reasonably configure measurement resources and improve the accuracy of channel state information CSI.
  • a method for configuring measurement resources is provided.
  • the method can be executed by a terminal device, or by a component of the terminal device, such as a processor, a chip, or a chip system of the terminal device. It can also be executed by a device that can implement Logic module or software implementation of all or part of the terminal equipment functions.
  • the method includes:
  • the first configuration information is used to configure a channel measurement resource set.
  • the channel measurement resource set includes M channel measurement resources, where M is a positive integer.
  • the CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources in the channel measurement resource set.
  • the first group of channel measurement resources is used for channel measurement, and the second group of channel measurement resources is used for interference measurement.
  • the first group of channel measurement resources and the second group of channel measurement resources are different.
  • the terminal device can use the first set of channel measurement resources to perform channel measurement, use the second set of channel measurement resources to perform interference measurement, and report the interference to the network device.
  • CSI related to channel measurements and interference measurements That is, the terminal device considers interference within the same resource set when determining CSI, thereby improving the accuracy of CSI. This enables the network equipment to perform reasonable scheduling based on the CSI in the future, reducing the impact of the TRP associated with the second group of channel measurement resources in the resource set on subsequent transmissions.
  • the network device since the interference measurement in the TRP cooperating set corresponding to the resource set can be performed through the second group of channel measurement resources, the network device does not need to configure additional resources for interference measurement in the coordinating set, which can reduce resource overhead.
  • the method further includes: receiving first indication information from the network device.
  • the first indication information indicates that the set of channel measurement resources can be used for interference measurement; or the first indication information indicates that the second set of channel measurement resources can be used for interference measurement.
  • the network device indicates to the terminal device that the channel measurement resource set or the second group of channel measurement resources can be used for interference measurement, so that the terminal device can perform interference measurement on the second group of channel measurement resources according to the instructions of the network device, Thereby improving the accuracy of CSI.
  • the method further includes: sending second indication information to the network device.
  • the second indication information indicates that the set of channel measurement resources is used for channel measurement and interference measurement; or the second indication information indicates that the second set of channel measurement resources is used for interference measurement.
  • the network device can learn that the second group of channel measurement resources are used for interference measurement, thereby learning that the CSI reported by the terminal device takes into account the interference in the cooperative set, and can then perform reasonable operations based on the CSI. Scheduling.
  • the CSI includes the first CSI and difference information.
  • the first CSI is associated with a first group of channel measurement resources
  • the difference information indicates a difference between the first CSI and the second CSI
  • the second CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources.
  • the first CSI is associated with a first set of channel measurement resources and a second set of channel measurement resources
  • the difference information indicates a difference between the first CSI and the second CSI
  • the second CSI is associated with the first set of channel measurement resources.
  • the network device can learn the CSI when the interference measurement within the cooperation set is not performed, and the CSI when the interference measurement within the cooperation set is performed, so that the network device can learn more information, so that the network device can be based on the terminal Equipment reporting is more reasonable Ground scheduling.
  • the method further includes: receiving second configuration information from the network device.
  • the second configuration information is used to configure an interference measurement resource associated with the channel measurement resource set.
  • the second configuration information is used to configure an interference measurement resource set associated with the channel measurement resource set.
  • the network device configures an associated interference resource for the channel measurement resource set.
  • the interference resources can be used to perform interference measurements on cells outside the coordination set, which can greatly save the cost of interference resources.
  • the interference measurement resource set consists of one interference measurement resource.
  • the interference measurement resources are channel state information-interference measurement CSI-IM resources.
  • the CSI is also associated with an interference measurement resource or a set of interference measurement resources. Based on this possible design, the terminal device further considers interference outside the cooperative set when determining CSI, thereby further improving the accuracy of CSI.
  • a method for configuring measurement resources is provided.
  • This method can be executed by a network device, or by a component of the network device, such as a processor, chip, or chip system of the network device. It can also be executed by a device that can implement Logic modules or software implementations of all or part of network device functions.
  • the method includes:
  • the first configuration information is used to configure a channel measurement resource set.
  • the channel measurement resource set includes M channel measurement resources, where M is a positive integer.
  • the CSI is associated with a first group of channel measurement resources and a second group of channel measurement resources in the channel measurement resource set.
  • the first group of channel measurement resources is used for channel measurement
  • the second group of channel measurement resources is used for interference measurement.
  • the first group of channel measurement resources and the second group of channel measurement resources are different.
  • the network device configures M channel measurement resources to the terminal device, the first group of channel measurement resources is used for channel measurement, and the second group of channel measurement resources is used for interference measurement, that is, the terminal device determines CSI takes into account the interference within the same resource set, thereby improving the accuracy of CSI.
  • This enables the network equipment to perform reasonable scheduling based on the CSI in the future, reducing the impact of the TRP associated with the second group of channel measurement resources in the resource set on subsequent transmissions.
  • the network device since the interference measurement in the TRP cooperating set corresponding to the resource set can be performed through the second group of channel measurement resources, the network device does not need to configure additional resources for interference measurement in the coordinating set, which can reduce resource overhead.
  • the method further includes: sending first indication information to the terminal device, wherein the first indication information indicates that a set of channel measurement resources can be used for interference measurement; or the first indication information indicates that a second set of channel measurement resources can be used for interference measurement.
  • the method further includes: receiving second indication information from the terminal device.
  • the second indication information indicates that the set of channel measurement resources is used for channel measurement and interference measurement; or the second indication information indicates that the second set of channel measurement resources is used for interference measurement.
  • the CSI includes the first CSI and difference information.
  • the first CSI is associated with a first group of channel measurement resources
  • the difference information indicates a difference between the first CSI and the second CSI
  • the second CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources.
  • the first CSI is associated with a first set of channel measurement resources and a second set of channel measurement resources
  • the difference information indicates a difference between the first CSI and the second CSI
  • the second CSI is associated with the first set of channel measurement resources.
  • the method further includes: sending second configuration information to the terminal device.
  • the second configuration information is used to configure an interference measurement resource associated with the channel measurement resource set.
  • the second configuration information is used to configure an interference measurement resource set associated with the channel measurement resource set.
  • the interference measurement resource set consists of one interference measurement resource.
  • the interference measurement resources are channel state information-interference measurement CSI-IM resources.
  • the CSI is also associated with an interference measurement resource or a set of interference measurement resources.
  • a communication device for implementing various methods.
  • the communication device may be the terminal device in the first aspect, or a device included in the terminal device, such as a chip or a chip system; or the communication device may be a network device in the second aspect, or a device included in the network device, Such as chips or systems on a chip.
  • the communication device includes modules, units, or means (means) corresponding to the implementation method.
  • the modules, units, or means can be implemented by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to functions.
  • the communication device may include a processing module and a transceiver module.
  • This processing module can be used to implement the processing functions in any of the above aspects and any possible implementation manner thereof.
  • the transceiver module may include a receiving module and a sending module, respectively used to implement the receiving function and the sending function in any of the above aspects and any possible implementation manner thereof.
  • the transceiver module can be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the communication device is the terminal equipment in the first aspect, or a device included in the terminal equipment:
  • the transceiver module is used to receive first configuration information from the network device.
  • the first configuration information is used to configure a channel measurement resource set.
  • the channel measurement resource set includes M channel measurement resources, where M is a positive integer;
  • a processing module configured to determine channel state information CSI, which is associated with the first group of channel measurement resources and the second group of channel measurement resources in the channel measurement resource set; the first group of channel measurement resources are used for channel measurement, and the second group of channel measurement resources are used for channel measurement.
  • the measurement resources are used for interference measurement, and the first group of channel measurement resources are different from the second group of channel measurement resources; the transceiver module is also used to send CSI to the network device.
  • the transceiver module is also used to receive the first indication information from the network device.
  • the first indication information indicates that the set of channel measurement resources can be used for interference measurement; or the first indication information indicates that the second set of channel measurement resources can be used for interference measurement.
  • the transceiver module is also used to send second indication information to the network device.
  • the second indication information indicates that the set of channel measurement resources is used for channel measurement and interference measurement; or the second indication information indicates that the second set of channel measurement resources is used for interference measurement.
  • the transceiver module is also used to receive second configuration information from the network device.
  • the second configuration information is used to configure an interference measurement resource associated with the channel measurement resource set; or the second configuration information is used to configure an interference measurement resource set associated with the channel measurement resource set.
  • the communication device is the network equipment in the second aspect, or a device included in the network equipment:
  • the processing module is used to determine the first configuration information; the transceiver module is used to send the first configuration information to the terminal device.
  • the first configuration information is used to configure a channel measurement resource set.
  • the channel measurement resource set includes M channel measurement resources, where M is Positive integer; the transceiver module is also used to receive channel state information CSI from the terminal device, and the CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources in the channel measurement resource set; the first group of channel measurement resources are used For channel measurement, the second group of channel measurement resources is used for interference measurement, and the first group of channel measurement resources and the second group of channel measurement resources are different.
  • the transceiver module is also used to send the first indication information to the terminal device.
  • the first indication information indicates that the set of channel measurement resources can be used for interference measurement; or the first indication information indicates that the second set of channel measurement resources can be used for interference measurement.
  • the transceiver module is also used to receive second indication information from the terminal device.
  • the second indication information indicates that the set of channel measurement resources is used for channel measurement and interference measurement; or the second indication information indicates that the second set of channel measurement resources is used for interference measurement.
  • the transceiver module is also used to send second configuration information to the terminal device.
  • the second configuration information is used to configure an interference measurement resource associated with the channel measurement resource set; or the second configuration information is used to configure an interference measurement resource set associated with the channel measurement resource set.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device performs the method described in any aspect.
  • the communication device may be the terminal device in the first aspect, or a device included in the terminal device, such as a chip or a chip system; or the communication device may be a network device in the second aspect, or a device included in the network device, Such as chips or systems on a chip.
  • a communication device including: a processor and a communication interface; the communication interface is used to communicate with modules external to the communication device; the processor is used to execute computer programs or instructions to enable the communication device Perform the methods described in either aspect.
  • the communication device may be the terminal device in the first aspect, or a device included in the terminal device, such as a chip or a chip system; or the communication device may be a network device in the second aspect, or a device included in the network device, Such as chips or systems on a chip.
  • a communication device including: at least one processor; the processor is configured to execute a computer program or instructions stored in a memory, so that the communication device executes the method described in any aspect.
  • the memory may be coupled to the processor, or may be independent of the processor.
  • the communication device may be the terminal device in the first aspect, or a device included in the terminal device, such as a chip or a chip system; or the communication device may be a network device in the second aspect, or a device included in the network device, Such as chips or systems on a chip.
  • a computer-readable storage medium stores computer programs or instructions, which when run on a communication device, enable the communication device to perform the method described in any aspect.
  • An eighth aspect provides a computer program product containing instructions that, when run on a communication device, enable the communication device to perform the method described in any aspect.
  • a ninth aspect provides a communication device (for example, the communication device may be a chip or a chip system).
  • the communication device includes a processor for implementing the functions involved in any aspect.
  • the communication device includes a memory for storing necessary program instructions and data.
  • the device when it is a system-on-a-chip, it may be composed of a chip or may include chips and other discrete components.
  • the communication device provided in any one of the third to ninth aspects is a chip
  • the sending action/function of the communication device can be understood as output information
  • the receiving action/function of the communication device can be understood as input information
  • Figure 1 is a schematic diagram of a scenario for coherent joint transmission of CJT provided by this application.
  • Figure 2 is a schematic diagram of a scenario for non-coherent joint transmission of NCJT provided by this application;
  • Figure 3 is a schematic diagram of the configuration of measurement resources in an NCJT scenario provided by this application.
  • Figure 4 is a schematic structural diagram of a communication system provided by this application.
  • Figure 5 is a schematic flow chart of a measurement resource configuration method provided by this application.
  • Figure 6 is a schematic diagram of a method of using channel measurement resources in a CJT scenario provided by this application.
  • Figure 7 is a schematic flow chart of another measurement resource configuration method provided by this application.
  • Figure 8 is a schematic structural diagram of a communication device provided by this application.
  • Figure 9 is a schematic structural diagram of another communication device provided by the present application.
  • Figure 10 is a schematic structural diagram of yet another communication device provided by this application.
  • A/B can mean A or B; "and/or” in this application only means It is an association relationship that describes associated objects. It means that there can be three relationships.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Among them, A and B Can be singular or plural.
  • plural means two or more than two.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner that is easier to understand.
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It can be understood that in the various embodiments of the present application, the size of the sequence numbers of each process does not mean the order of execution. The execution order of each process should be determined by its functions and internal logic, and should not be determined by the execution order of the embodiments of the present application. The implementation process constitutes no limitation.
  • CJT Coherent joint transmission
  • CJT is one of the multi-transmission reception point (TRP) transmission technologies and is suitable for densely deployed cellular networks with large business volumes.
  • TRP multi-transmission reception point
  • multiple TRPs can send the same data to the end device at the same time.
  • TRP 0 and TRP 1 each layer of data in the PDSCH is sent by TRP 0 and TRP 1.
  • DCI downlink control information
  • PDSCH Physical downlink shared channel
  • the signal sent by TRP 0 can Expressed as:
  • N is the number of antennas.
  • the signal sent by TRP 1 can be expressed as:
  • the signal received by the receiving end can be expressed as:
  • H 0 is the channel matrix between TRP 0 and the terminal equipment
  • H 1 is the channel matrix between TRP 1 and the terminal equipment
  • N 0 is noise
  • NJT Non-coherent joint transmission
  • NCJT is also one of the multi-TRP transmission technologies. Introduced in version 16 (Release-16) of new radio (NR). NCJT can be divided into multi-DCI-based NCJT and single-DCI-based NCJT.
  • TRP 0 and TRP 1 can send DCI 0 and DCI 1 to the terminal device respectively, and schedule PDSCH 0 and PDSCH 1 respectively, that is, TRP 0 can send DCI 0 and DCI 1 to the terminal device respectively.
  • the device sends PDSCH 0, and TRP 1 can send PDSCH 1 to the terminal device.
  • one TRP in TRP 0 and TRP 1 sends DCI to the terminal device, and the DCI schedules a PDSCH.
  • Partial layer data of the PDSCH is sent by one of the two TRPs, and data of the other partial layer is sent by the other of the two TRPs.
  • CSI measurements were performed based on the single TRP CSI measurement assumption. That is, when the terminal device performs CSI measurement, it is assumed that subsequent data comes from one TRP.
  • the network device Before measurement, the network device can configure resources for channel measurement (called channel measurement resources) and CSI interference measurement resources (that is, CSI-IM resources) to the terminal device.
  • channel measurement resources resources for channel measurement
  • CSI-IM resources resources for CSI interference measurement resources
  • Each channel measurement resource can be associated with a CSI-IM resource.
  • the CSI-IM resource may be a zero power (ZP) CSI-RS resource.
  • ZP zero power
  • the serving cell sends zero-power CSI-RS (which can be understood as not sending any signal), and the terminal device measures the noise and interference of the interfering cell on the ZP CSI-RS resource.
  • the network device sends a reference signal (RS), such as a non-zero power (NZP) channel state information-reference signal (CSI-RS) on the channel measurement resource.
  • RS reference signal
  • NZP non-zero power
  • CSI-RS channel state information-reference signal
  • the terminal equipment receives the reference signal on the channel measurement resource to perform channel estimation.
  • the terminal equipment can also receive signals on the CSI-IM resources associated with the channel measurement resources to perform interference measurement.
  • the terminal device may determine the CSI based on the channel measurement results obtained on the channel measurement resources and the interference measurement results obtained on the CSI-IM resources associated with the channel measurement resources, and send the CSI to the network device through the uplink channel.
  • Network devices can schedule based on this CSI.
  • CSI may include pre-coding matrix indicator (pre-coding matrix indicator, PMI), channel quality indicator (channel quanlity indicator, CQI), rank indicator (rank indicator, RI), layer indicator (layer indicator, LI) of one or more.
  • pre-coding matrix indicator PMI
  • channel quality indicator channel quanlity indicator, CQI
  • rank indicator rank indicator
  • layer indicator layer indicator of one or more.
  • the terminal device can perform measurements on the multiple channel measurement resources and their associated CSI-IM resources to obtain multiple CSI . Subsequently, one CSI can be selected from the multiple CSIs and reported to the network device. In this scenario, the terminal device may also send channel measurement resource indication information to the network device to indicate which channel measurement resource the CSI reported by the terminal device is based on.
  • NCJT measurement assumption means that when the terminal device performs measurements, it is assumed that subsequent data comes from two TRPs.
  • the network device can configure at least one CSI-RS resource set for the terminal device.
  • Two resource groups are configured in each resource set, including K 1 and K 2 channel measurement resources respectively.
  • the channel measurement resources in each resource group are associated with the same TRP.
  • N (N ⁇ 2) resource pairs are configured in each resource set, and each resource pair is composed of channel measurement resources in two resource groups.
  • Each resource pair is associated with a CSI-IM resource.
  • the network device can configure CMR1, CMR3, CMR5, and CMR6 to belong to resource group 0, and TRP 0 Association; configure CMR2 and CMR4 to belong to resource group 1 and be associated with TRP 1.
  • CMR1 and CMR2 constitute resource pair 1
  • CMR3 and CMR4 constitute resource pair 2.
  • the terminal device can receive the reference signal on each resource pair for channel estimation, and receive the signal on the CSI-IM resource associated with the resource pair for interference measurement, thereby obtaining 2 NCJT CSI.
  • the terminal device can measure CSI on one CMR, or can measure CSI on one CMR and its associated CSI-IM resources.
  • version 18 requires support for up to 4 TRPs for CJT transmission.
  • the TRPs actually used to transmit data to the terminal device may exist. This situation is In the case of single TRP transmission, A case where 2 TRPs are used for CJT transmission, A case where 3 TRPs are used for CJT transmission, and A case where 4 TRPs are used for CJT transmission.
  • this application provides a measurement resource configuration method that can reasonably configure measurement resources for terminal devices in a scenario where CJT is introduced.
  • the technical solution provided by this application can be used in various communication systems.
  • the communication system can be a third generation partnership project (3GPP) communication system, for example, the fourth generation (4th generation, 4G) long-term evolution (long term evolution, LTE) system, evolved LTE system (LTE-Advanced, LTE-A) system, fifth generation (5th generation, 5G) NR system, vehicle to everything (V2X) system, LTE and NR hybrid group Network systems, or device-to-device (D2D) systems, machine to machine (M2M) communication systems, Internet of Things (IoT), and other next-generation communication systems.
  • 3GPP third generation partnership project
  • 4G long-term evolution
  • LTE-A evolved LTE system
  • 5th generation, 5G NR system vehicle to everything
  • V2X vehicle to everything
  • LTE and NR hybrid group Network systems or device-to-device (D2D) systems, machine to machine (M2M) communication systems, Internet of Things (IoT), and other next-generation communication
  • the above-mentioned communication systems applicable to the present application are only examples.
  • the communication systems applicable to the present application are not limited to these and will be explained uniformly here, and will not be described in detail below.
  • the communication system includes at least one network device 410 and at least one terminal device 420 connected to the network device 410 for illustration. It should be understood that the number of terminal devices and network devices in Figure 4 is only an example, and may be more or less.
  • the network device 410 in the embodiment of this application is a device that connects the terminal device 420 to a wireless network.
  • the network device 410 may be a node in a wireless access network, and may also be called a base station. It can also be called a radio access network (RAN) node (or device).
  • RAN radio access network
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutionary Node B) in the LTE system or LTE-A system, such as a traditional macro base station eNB and a micro base station eNB in a heterogeneous network scenario.
  • a next generation node B (gNB) in an NR system may be included.
  • it may include a transmission reception point (TRP), a home base station (eg, home evolved NodeB, or home Node B, HNB), a base band unit (base band unit, BBU), a baseband pool (BBU pool), or Wireless fidelity (WiFi) access point (AP), etc.
  • TRP transmission reception point
  • BBU home evolved NodeB
  • BBU base band unit
  • BBU pool baseband pool
  • WiFi Wireless fidelity
  • NTN network equipment
  • L1 layer 1
  • DU Integrated access and backhaul
  • IAB Integrated access and backhaul
  • the network device may be a device that implements base station functions in IoT, such as V2X, D2D, or a device that implements base station functions in machine to machine (M2M), which is not limited by the embodiments of this application.
  • the base stations in the embodiments of this application may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, home base stations, TRPs, and transmitting points. , TP), mobile switching center, etc., the embodiments of this application do not specifically limit this.
  • the terminal device 420 in this embodiment of the present application may be a user-side device used to implement wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal can be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, or a mobile station in a 5G network or a public land mobile network (PLMN) evolved after 5G. , remote station, remote terminal, mobile equipment, wireless communication equipment, terminal agent or terminal device, etc.
  • UE user equipment
  • PLMN public land mobile network
  • the access terminal may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), or a device with wireless communications Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminals in control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Functional handheld devices computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminals in control, wireless terminals in self-driving, wireless terminals in remote medical, wireless
  • the terminal may be a terminal with communication functions in IoT, such as a terminal in V2X (such as an Internet of Vehicles device), a terminal in D2D communication, or a terminal in M2M communication, etc.
  • Terminals can be mobile or fixed.
  • network equipment or terminal equipment can perform some or all of the steps in the embodiment of the present application, and these steps or operations are only examples, and the embodiment of the present application can also perform other operations or various operations.
  • each step can be performed in the different order presented in the embodiment of the present application, and it is possible not to perform all the operations in the embodiment of the present application.
  • this application provides a method for configuring measurement resources.
  • the method for configuring measurement resources includes the following steps:
  • the network device sends the first configuration information to the terminal device.
  • the terminal device receives the first configuration information from the network device.
  • the first configuration information is used to configure a channel measurement resource set.
  • the channel measurement resource set includes M channel measurement resources, where M is a positive integer.
  • M may be equal to 4, or equal to 3, or equal to 2.
  • the value of M is not specifically limited in this application.
  • channel measurement resources can be understood as: resources for channel measurement (resourceForChannelMeasurement).
  • Channel measurement can be understood as channel estimation, etc.
  • channel measurement resources may also be called reference signal resources, and the two may be replaced with each other.
  • the channel measurement resources may be NZP CSI-RS resources, for example.
  • the first configuration information may be carried in a CSI resource configuration (CSI-ResourceConfig) information element.
  • the identifier of the CSI resource configuration may be carried in the resourceForChannelMeasurement information element in the CSI report configuration (CSI-reportConfig).
  • the M channel measurement resources included in the channel measurement resource set may be a subset of the K channel measurement resources configured by the network device, where K is a positive integer greater than M.
  • the network device may configure K channel measurement resources, and the network device may configure M channel measurement resources among the K channel measurement resources as a resource set or resource group.
  • the M channel measurement resources can be implicitly instructed to be used in the CJT scenario.
  • the network device can configure a total of six channel measurement resources CMR1, CMR2, CMR3, CMR4, CMR5, and CMR6 for the terminal device. Moreover, the network device can configure CMR1, CMR2, CMR3, and CMR4 as a resource set or resource group for use in CJT scenarios.
  • the network device can configure the M channel measurement resources through the first configuration information, and carry a flag bit in the first configuration information to indicate that the M channel measurement resources are used in the CJT scenario.
  • the network device can configure CMR1, CMR2, CMR3, and CMR4 for the terminal device.
  • the first configuration information carries a flag bit to indicate that CMR1, CMR2, CMR3, and CMR4 are used in the CJT scenario.
  • each of the M channel measurement resources is associated with a TRP or TRP group, that is, the M channel measurement resources are associated with M TRPs or M TRP groups. Different channel measurement resources are associated with different TRPs or TRP groups.
  • the M TRPs or TRP groups associated with the M channel measurement resources can be understood as TRPs configured by the network device that can be used for CJT transmission.
  • the TRP group may include one or more TRPs. The following embodiments of the present application are described by taking M channel measurement resources associated with M TRPs or M TRP groups, and the TRP group includes one TRP as an example.
  • the terminal device determines the CSI.
  • the CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources in the above channel measurement resource set.
  • the first group of channel measurement resources and the second group of channel measurement resources are different.
  • the CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources, which can be understood as: the CSI is obtained based on measurements on the first group of channel measurement resources and the second group of channel measurement resources.
  • determining the CSI by the terminal device may include: the terminal device derives the CSI.
  • the terminal device may perform measurements on the first group of channel measurement resources and the second group of channel measurement resources to obtain the CSI.
  • the first group of channel measurement resources is used for channel measurement.
  • the terminal device performs channel estimation on a first group of channel measurement resources.
  • the second group of channel measurement resources is used for interference measurement.
  • the terminal equipment performs interference measurement on the second group of channel measurement resources.
  • the terminal equipment can use the resources originally used for channel measurement to perform interference measurement.
  • the total number of channel measurement resources M1 included in the first group of channel measurement resources may be configured by the network device, or may be determined by the terminal device itself. M1 can be smaller than M.
  • the channel measurement resources specifically included in the first group of channel measurement resources may be selected by the terminal device.
  • the terminal device can select CMR1 and CMR3 to form the first group of channel measurement resources.
  • the terminal equipment can also select other CMRs to constitute the first group of channel measurement resources.
  • the TRP associated with the first group of channel measurement resources selected by the terminal device can be understood as the TRP selected by the terminal device to subsequently send data to the terminal device.
  • M1 is greater than 1
  • the TRP associated with the first group of channel measurement resources can be understood as the TRP that actually participates in subsequent CJT transmission.
  • the sum of M2 and M1 may be equal to M, that is, the second group of channel measurement resources may include all channel measurement resources in the set except the first group. All channel measurement resources except channel measurement resources.
  • the M channel measurement resource sets in the channel measurement resource set are: CMR1, CMR2, CMR3, and CMR4, respectively associated with TRP1, TRP2, TRP3, and TRP4.
  • the terminal device selects CMR1. and CMR3 constitute the first group of channel measurement resources, and the second group of channel measurement resources may be composed of CMR2 and CMR4. That is to say, the terminal equipment can perform channel measurements on CSR1 and CMR3, and perform interference measurements on CMR2 and CMR4.
  • the sum of M2 and M1 may also be less than M, that is, the second group of channel measurement resources may include part of the channel measurement resources in the channel measurement resource set except the first group of channel measurement resources.
  • the second group of channel measurement resources may include only CMR2 or only CMR4. That is to say, the terminal equipment can perform channel measurement on CSR1 and CMR3, and perform interference measurement on CMR2; or, the terminal equipment can perform channel measurement on CSR1 and CMR3, and perform interference measurement on CMR4.
  • the M TRPs associated with the M channel measurement resources can be understood as TRPs in the same cooperative set.
  • the terminal device denoted as terminal device A
  • the remaining TRPs may be used to send data for other terminal devices.
  • the data transmission of the remaining TRPs will cause interference to terminal device A. Therefore, the interference measurement performed by terminal equipment A on the second group of channel measurement resources can be understood as: the measurement of interference caused by the TRP associated with the second group of channel measurement resources to terminal equipment A. Since the TRP associated with the second group of channel measurement resources and the TRP associated with the first group of channel measurement resources belong to the same cooperative set, the interference measurement on the second group of channel measurement resources can also be understood as the interference measurement within the cooperative set.
  • M1 may also be equal to M, that is, the terminal device selects the TRPs associated with all channel measurement resources in the channel measurement resource set for subsequent CJT transmission, or the network device specifies the TRPs associated with all channel measurement resources in the channel measurement resource set for subsequent CJT transmission. Subsequent CJT transmission. In this scenario, it can be considered that the second group of channel measurement resources does not exist.
  • the network device may also send first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the first indication information indicates whether the channel measurement resource set can be used for interference measurement.
  • the first indication information may be a 1-bit indicator. When this bit is set to "1 (or 0)", it indicates that the channel measurement resource set can be used for interference measurement; when this bit is set to "0" (or 1)", indicates that the channel measurement resource set cannot be used for interference measurement.
  • This application takes an example in which the first indication information indicates that the channel measurement resource set can be used for interference measurement.
  • the channel measurement resource set can be used for interference measurement, which can be understood as: all channel measurement resources in the channel measurement resource set can be used for interference measurement.
  • the channel measurement resource set cannot be used for interference measurement, which can be understood as: none of the channel measurement resources in the channel measurement resource set can be used for interference measurement.
  • the first indication information may indicate whether each channel measurement resource in the channel measurement resource set can be used for interference measurement.
  • the first indication information may be a bitmap including M bits.
  • the M bits correspond to the M channel measurement resources in the channel measurement resource set. When a certain bit is set to "1 (or 0)", it indicates that the channel measurement resource corresponding to the bit can be used for interference measurement; a certain When a bit is set to "0 (or 1)", it indicates that the channel measurement resource corresponding to this bit cannot be used for interference measurement.
  • the first indication information indicates that the second group of channel measurement resources can be used for interference measurement.
  • the terminal device may send second indication information to the network device.
  • the network device receives the second indication information from the terminal device.
  • the second indication information indicates whether the channel measurement resource set is used for channel measurement and interference measurement.
  • the second indication information indicates that the set of channel measurement resources is used for channel measurement and interference measurement.
  • the second indication information may be a 1-bit indicator. When this bit is set to “1 (or 0)", it indicates that the channel measurement resource set is used for channel measurement and interference measurement; when this bit is set to "1 (or 0)", it indicates that the channel measurement resource set is used for channel measurement and interference measurement. When “0 (or 1)”, it indicates that the channel measurement resource set is used for channel measurement and not for interference measurement.
  • the second indication information indicates whether the second group of channel measurement resources is used for interference measurement. In the case where the terminal equipment uses the second group of channel measurement resources for interference measurement, the second indication information indicates that the second group of channel measurement resources is used for interference measurement.
  • the second indication information may be a bitmap including M bits.
  • the M bits correspond to the M channel measurement resources in the channel measurement resource set. When a certain bit is set to "1 (or 0)", it indicates that the channel measurement resource corresponding to the bit is used for interference measurement; a certain When a bit is set to "0 (or 1)", it indicates that the channel measurement resource corresponding to this bit is not used for interference measurement.
  • the terminal device sends CSI to the network device.
  • the network device receives the CSI from the terminal device.
  • the CSI may include the first CSI and difference information.
  • the first CSI is associated with a first group of channel measurement resources
  • the difference information indicates a difference between the first CSI and the second CSI
  • the second CSI is associated with the first group of channel measurement resources and the second group of channel measurements. Resource association.
  • the terminal device may perform channel measurement on the first group of channel measurement resources to obtain the first CSI.
  • the terminal device also performs interference measurement on the second group of channel measurement resources, and combines the channel measurement results and the interference measurement results to obtain the second CSI. Afterwards, the terminal device can obtain the difference information based on the first CSI and the second CSI.
  • the first CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources
  • the difference information indicates the difference between the first CSI and the second CSI
  • the second CSI is associated with the first group of channel measurement resources. Measure resource associations.
  • the terminal device may perform channel measurement on the first group of channel measurement resources to obtain the second CSI.
  • the terminal equipment also performs interference measurement on the second group of channel measurement resources, and combines the channel measurement results and the interference measurement results to obtain the first CSI.
  • the terminal device can obtain the difference information based on the first CSI and the second CSI.
  • the CSI may include first CSI and second CSI.
  • the first CSI is associated with the first group of channel measurement resources
  • the second CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources.
  • the CSI may only include CSI obtained by combining channel measurement results and interference measurement results.
  • the first CSI or the second CSI may include one or more of PMI, CQI, RI, and LI.
  • the terminal device can also send third indication information to the network device.
  • the network device receives the third indication information from the terminal device.
  • the third indication information may indicate the first group of channel measurement resources, or the TRP associated with the first group of channel measurement resources, so that the network device can learn the TRP selected by the terminal device, so that data can be subsequently sent to the terminal device through the TRP.
  • the third indication information may be called CSI-RS resource indicator.
  • the third indication information may be included in the CSI as a part of the CSI; the third indication information may not be included in the CSI.
  • the third indication information and the CSI may be carried in the same signaling; or the third information and the CSI may be carried in different signaling, which is not specifically limited in this application.
  • the above-mentioned second indication information may be a bitmap including M-M1 bits.
  • the M-M1 bits correspond to the M-M1 channel measurement resources in the channel measurement resource set except the first group of channel measurement resources.
  • a certain bit is set to "1 (or 0)"
  • a bit is set to "0 (or 1)"
  • the terminal device can use the first set of channel measurement resources to perform channel measurement, use the second set of channel measurement resources to perform interference measurement, and report the interference to the network device.
  • CSI related to channel measurements and interference measurements That is, the terminal equipment considers the interference within the same resource set when determining the CSI, which can improve the accuracy of the CSI, enable the network equipment to perform reasonable scheduling based on the CSI in the future, and reduce the CJT transmission of TRP associated with the second group of channel measurement resources in the resource set. Impact.
  • the network device does not need to configure additional resources for interference measurement in the cooperation set, which can reduce resource overhead.
  • the measurement resource configuration method provided by this application may also include: the network device sends second configuration information to the terminal device.
  • the terminal device receives the second configuration information from the network device.
  • the second configuration information is used to configure an interference measurement resource associated with the channel measurement resource set.
  • the second configuration information is used to configure an interference measurement resource set associated with the channel measurement resource set.
  • the interference measurement resource set may be composed of one interference measurement resource, that is, the interference measurement resource set only includes one interference measurement resource.
  • the interference measurement resources may be CSI-IM resources.
  • This interference measurement resource is used to measure the interference and noise caused by TRPs outside the cooperation set to terminal equipment.
  • the TRPs in the cooperating set include TRP1, TRP2, TRP3, and TPR4, then the interference measurement resource can be used for interference to the terminal device by TRP5 outside the cooperating set.
  • the CSI in the above step S502 may also be associated with the interference measurement resources. That is, the terminal device can also measure the interference outside the cooperative set on the interference measurement resource, and determine the CSI based on the interference measurement result.
  • each resource pair is associated with a CSI-IM resource.
  • the network device is configured with up to 4 TRPs to send data to the terminal device, then there are transmission situation.
  • the network equipment needs to configure 15 CSI-IM resources, which is prone to occurrence. Insufficient resources.
  • the network device configures an associated interference resource for the channel measurement resource set.
  • the interference resources can be used to perform interference measurements on cells outside the coordination set, which can greatly save the cost of interference resources.
  • the methods and/or steps implemented by the network device can also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software) that can be used in the network device.
  • Implementation; the methods and/or steps implemented by the terminal device can also be implemented by components (such as processors, chips, chip systems, circuits, logic modules, or software) that can be used in the terminal device.
  • the chip system may be composed of chips, or the chip system may include chips and other discrete devices.
  • the communication device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • Embodiments of the present application can divide the communication device into functional modules according to the above method embodiments.
  • functional modules can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 8 shows a schematic structural diagram of a communication device 80 .
  • the communication device 80 includes a processing module 801 and a transceiver module 802.
  • the communication device 80 can be used to implement the functions of the above-mentioned network equipment or terminal equipment.
  • the communication device 80 may also include a storage module (not shown in Figure 8) for storing program instructions and data.
  • the transceiver module 802 which may also be called a transceiver unit, is used to implement sending and/or receiving functions.
  • the transceiver module 802 may be composed of a transceiver circuit, a transceiver, a transceiver, or a communication interface.
  • the transceiver module 802 may include a receiving module and a sending module, respectively configured to perform the receiving and sending steps performed by the network device or terminal device in the above method embodiments, and/or to support the steps described herein.
  • the processing module 801 can be used to perform steps of the processing class (such as determining, generating, etc.) performed by the network device or the terminal device in the above method embodiments, and/or to support the steps described herein.
  • Other processes of technology are also be used to perform steps of the processing class (such as determining, generating, etc.) performed by the network device or the terminal device in the above method embodiments, and/or to support the steps described herein.
  • Other processes of technology are examples of technology.
  • the transceiver module 802 is used to receive the first configuration information from the network device.
  • the first configuration information is used to configure a channel measurement resource set.
  • the channel measurement resource set includes M channel measurement resources, where M is a positive integer;
  • the processing module 801 is used to Determine channel state information CSI, CSI Associated with the first group of channel measurement resources and the second group of channel measurement resources in the channel measurement resource set;
  • the first group of channel measurement resources are used for channel measurement, the second group of channel measurement resources are used for interference measurement, the first group of channel measurement resources
  • the measurement resources are different from the second group of channel measurement resources;
  • the transceiver module 802 is also used to send CSI to the network device.
  • the transceiving module 802 is also used to receive the first indication information from the network device.
  • the first indication information indicates that the set of channel measurement resources can be used for interference measurement; or the first indication information indicates that the second set of channel measurement resources can be used for interference measurement.
  • the transceiving module 802 is also used to send the second indication information to the network device.
  • the second indication information indicates that the set of channel measurement resources is used for channel measurement and interference measurement; or the second indication information indicates that the second set of channel measurement resources is used for interference measurement.
  • the CSI includes the first CSI and difference information.
  • the first CSI is associated with a first group of channel measurement resources
  • the difference information indicates a difference between the first CSI and the second CSI
  • the second CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources.
  • the first CSI is associated with a first set of channel measurement resources and a second set of channel measurement resources
  • the difference information indicates a difference between the first CSI and the second CSI
  • the second CSI is associated with the first set of channel measurement resources.
  • the transceiving module 802 is also used to receive the second configuration information from the network device.
  • the second configuration information is used to configure an interference measurement resource associated with the channel measurement resource set; or the second configuration information is used to configure an interference measurement resource set associated with the channel measurement resource set.
  • the interference measurement resource set consists of one interference measurement resource.
  • the interference measurement resources are channel state information-interference measurement CSI-IM resources.
  • the CSI is also associated with an interference measurement resource or an interference measurement resource set.
  • the processing module 801 is used to determine the first configuration information; the transceiver module 802 is used to send the first configuration information to the terminal device.
  • the first configuration information is used to configure a channel measurement resource set.
  • the channel measurement resource set includes M channel measurement resources. M is a positive integer; the transceiver module 802 is also used to receive channel state information CSI from the terminal device.
  • the CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources in the channel measurement resource set; the first group of channel measurement resources
  • the resources are used for channel measurement, the second group of channel measurement resources are used for interference measurement, and the first group of channel measurement resources and the second group of channel measurement resources are different.
  • the transceiving module 802 is also used to send the first indication information to the terminal device.
  • the first indication information indicates that the set of channel measurement resources can be used for interference measurement; or the first indication information indicates that the second set of channel measurement resources can be used for interference measurement.
  • the transceiving module 802 is also used to receive second indication information from the terminal device.
  • the second indication information indicates that the set of channel measurement resources is used for channel measurement and interference measurement; or the second indication information indicates that the second set of channel measurement resources is used for interference measurement.
  • the CSI includes the first CSI and difference information.
  • the first CSI is associated with a first group of channel measurement resources
  • the difference information indicates a difference between the first CSI and the second CSI
  • the second CSI is associated with the first group of channel measurement resources and the second group of channel measurement resources.
  • the first CSI is associated with a first set of channel measurement resources and a second set of channel measurement resources
  • the difference information indicates a difference between the first CSI and the second CSI
  • the second CSI is associated with the first set of channel measurement resources.
  • the transceiving module 802 is also used to send the second configuration information to the terminal device.
  • the second configuration information is used to configure an interference measurement resource associated with the channel measurement resource set; or the second configuration information is used to configure an interference measurement resource set associated with the channel measurement resource set.
  • the interference measurement resource set consists of one interference measurement resource.
  • the interference measurement resources are channel state information-interference measurement CSI-IM resources.
  • the CSI is also associated with an interference measurement resource or an interference measurement resource set.
  • the communication device 80 may be presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific application-specific integrated circuit (ASIC), a circuit, a processor and a memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions.
  • ASIC application-specific integrated circuit
  • the function/implementation process of the transceiver module 802 can be implemented through the input and output interface (or communication interface) of the chip or chip system, and the processing module 801
  • the function/implementation process can be realized by the processor (or processing circuit) of the chip or chip system.
  • the communication device 80 provided in this embodiment can perform the above method, the technical effects it can obtain can be referred to the above method embodiment, and will not be described again here.
  • the terminal equipment or network equipment described in the embodiments of the present application can also be implemented using the following: one or more field programmable gate arrays (FPGA), programmable logic device (programmable logic device (PLD), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic device
  • controller state machine
  • gate logic discrete hardware components
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device 900 includes a processor 901 and a transceiver 902 .
  • the communication device 900 may be a network device, or a chip or chip system thereof; or, the communication device 900 may be a terminal device, or a chip or module thereof.
  • Figure 9 shows only the main components of the communication device 900.
  • the communication device may further include a memory 903 and an input and output device (not shown).
  • the processor 901 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • Memory 903 is mainly used to store software programs and data.
  • the transceiver 902 may include a radio frequency circuit and an antenna.
  • the radio frequency circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor 901, the transceiver 902, and the memory 903 can be connected through a communication bus.
  • the processor 901 can read the software program in the memory 903, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 901 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 901.
  • the processor 901 converts the baseband signal into data and performs processing on the data. deal with.
  • the radio frequency circuit and antenna can be arranged independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely and independently of the communication device. .
  • the above-mentioned communication device 80 may take the form of the communication device 900 shown in FIG. 9 .
  • the function/implementation process of the processing module 801 in Figure 8 can be implemented by the processor 901 in the communication device 900 shown in Figure 9 calling the computer execution instructions stored in the memory 903.
  • the function/implementation process of the transceiver module 802 in FIG. 8 can be implemented by the transceiver 902 in the communication device 900 shown in FIG. 9 .
  • the network equipment or terminal equipment in this application can adopt the composition structure shown in Figure 10, or include the components shown in Figure 10.
  • Figure 10 is a schematic diagram of the composition of a communication device 1000 provided by the present application.
  • the communication device 1000 can be a terminal device or a chip or system on a chip in the terminal device; or it can be a network device or a module or chip in the network device or an on-chip system. system.
  • the communication device 1000 includes at least one processor 1001 and at least one communication interface (FIG. 10 is only an example of including a communication interface 1004 and a processor 1001 for illustration).
  • the communication device 1000 may also include a communication bus 1002 and a memory 1003.
  • the processor 1001 can be a general central processing unit (CPU), a general processor, a network processor (NP), a digital signal processor (DSP), a microprocessor, or a microcontroller device, programmable logic device (PLD), or any combination thereof.
  • the processor 1001 can also be other devices with processing functions, such as circuits, devices or software modules, without limitation.
  • the communication bus 1002 is used to connect different components in the communication device 1000 so that different components can communicate.
  • the communication bus 1002 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • Communication interface 1004 used to communicate with other devices or communication networks.
  • the communication interface 1004 may be a module, a circuit, a transceiver, or any device capable of realizing communication.
  • the communication interface 1004 may also be an input and output interface located within the processor 1001 to implement signal input and signal output of the processor.
  • Memory 1003 may be a device with a storage function, used to store instructions and/or data. Wherein, the instructions may be computer programs.
  • the memory 1003 may be a read-only memory (ROM) or other types of static storage devices that can store static information and/or instructions, or may be a random access memory (RAM). or other types of dynamic storage devices that can store information and/or instructions, and can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices etc., no restrictions.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 1003 may exist independently of the processor 1001 or may be integrated with the processor 1001.
  • the memory 1003 may be located within the communication device 1000 or may be located outside the communication device 1000, without limitation.
  • the processor 1001 can be used to execute instructions stored in the memory 1003 to implement the methods provided by the following embodiments of the application.
  • the communication device 1000 may also include an output device 1005 and an input device 1006.
  • the output device 1005 communicates with the processor 1001 and can display information in a variety of ways.
  • the output device 1005 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • Input device 1006 communicates with processor 1001 and can receive user input in a variety of ways.
  • the input device 1006 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
  • the communication device 80 shown in FIG. 8 may take the form of the communication device 1000 shown in FIG. 10 .
  • the function/implementation process of the processing module 801 in Figure 8 can be implemented by the processor 1001 in the communication device 1000 shown in Figure 10 calling the computer execution instructions stored in the memory 1003.
  • the function/implementation process of the transceiver module 802 in Figure 8 can be implemented through the communication interface 1004 in the communication device 1000 shown in Figure 10 .
  • the structure shown in Figure 10 does not constitute a specific limitation on network equipment or terminal equipment.
  • the network device or the terminal device may include more or less components than shown in the figures, or some components may be combined, or some components may be separated, or may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • embodiments of the present application further provide a communication device, which includes a processor and is configured to implement the method in any of the above method embodiments.
  • the communication device further includes a memory.
  • This memory is used to store necessary computer programs and data.
  • the computer program may include instructions, and the processor may call the instructions in the computer program stored in the memory to instruct the communication device to perform the method in any of the above method embodiments.
  • the memory may not be in the communication device.
  • the communication device further includes an interface circuit, which is a code/data reading and writing interface circuit.
  • the interface circuit is used to receive computer execution instructions (computer execution instructions are stored in the memory and may be directly read from memory, or possibly through other devices) and transferred to the processor.
  • the communication device further includes a communication interface, which is used to communicate with modules external to the communication device.
  • the communication device may be a chip or a chip system.
  • the communication device may be composed of a chip or may include a chip and other discrete devices. This is not specifically limited in the embodiments of the present application.
  • This application also provides a computer-readable storage medium on which a computer program or instructions are stored. When the computer program or instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which implements the functions of any of the above method embodiments when executed by a computer.
  • the systems, devices and methods described in this application can also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed to multiple network units. Components shown as units may or may not be physical units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • computer program instructions When computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in Stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center via a wired (e.g., simultaneous Axial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测量资源的配置方法及装置,可以应用于引入相干联合传输CJT的场景。该方法包括:网络设备向终端设备发送第一配置信息,为终端设备配置信道测量资源集合,该信道测量资源集合包括至少一个信道测量资源。终端设备收到第一配置信息后,确定信道状态信息CSI,并向网络设备发送该CSI。其中,该CSI与信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联。第一组信道测量资源被用于信道测量,第二组信道测量资源被用于干扰测量,第一组信道测量资源和第二组信道测量资源不同。基于该方案,终端设备在确定CSI时考虑了同一资源集内的干扰,能够提高CSI的准确性。此外,网络设备无需额外配置用于干扰测量的资源,能够降低资源开销。

Description

一种测量资源的配置方法及装置
本申请要求于2022年09月14日提交国家知识产权局、申请号为202211117025.0、申请名称为“一种测量资源的配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种测量资源的配置方法及装置。
背景技术
相干联合传输(coherent joint transmission,CJT)是多传输接收点(transmission reception point,TRP)传输技术中的一种。基于CJT技术,天线数量的增加可以带来波束成形增益,TRP数量的增加可以带来功率增益,并且干扰控制更加灵活,可以显著提升小区的平均通信性能以及小区边缘的通信性能。
在CJT传输中,多个TRP中的一个TRP可向终端设备发送一个下行控制信息(downlink control information,DCI),该DCI调度一个物理下行共享信道(physical downlink shared channel,PDSCH)。该多个TRP均向终端设备发送该PDSCH的每一层数据。即在CJT传输中,多个TRP可以同时向终端设备发送相同的数据。
在CJT传输中信道和干扰的测量尤为重要。然而,目前业界对于CJT传输中的测量资源配置并未进行相关设计。
发明内容
本申请提供一种测量资源的配置方法及装置,能够合理配置测量资源,提高信道状态信息CSI的准确性。
第一方面,提供了一种测量资源的配置方法,该方法可以由终端设备执行,也可以由终端设备的部件,例如终端设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。该方法包括:
接收来自网络设备的第一配置信息,确定信道状态信息CSI,并向网络设备发送CSI。其中,第一配置信息用于配置信道测量资源集合,信道测量资源集合包括M个信道测量资源,M为正整数。该CSI与信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联。第一组信道测量资源被用于信道测量,第二组信道测量资源被用于干扰测量,第一组信道测量资源和第二组信道测量资源不同。
基于该方案,对于网络设备配置的M个信道测量资源,终端设备可以使用其中的第一组信道测量资源进行信道测量,使用其中的第二组信道测量资源进行干扰测量,并向网络设备上报与信道测量和干扰测量相关的CSI。即终端设备在确定CSI时考虑了同一资源集内的干扰,从而能够提高CSI的准确性。进而使得网络设备后续能够根据CSI进行合理调度,降低资源集内第二组信道测量资源关联的TRP对后续传输的影响。此外,由于资源集对应的TRP协作集内的干扰测量可以通过第二组信道测量资源进行,因此,网络设备无需额外配置用于协作集内的干扰测量的资源,能够降低资源开销。
在一种可能的设计中,该方法还包括:接收来自网络设备的第一指示信息。其中,第一指示信息指示信道测量资源集合能够用于干扰测量;或者,第一指示信息指示第二组信道测量资源能够用于干扰测量。
基于该可能的设计,网络设备向终端设备指示信道测量资源集合或第二组信道测量资源能够用于干扰测量,使得终端设备可以根据网络设备的指示在第二组信道测量资源上进行干扰测量,从而提高CSI的准确性。
在一种可能的设计中,该方法还包括:向网络设备发送第二指示信息。其中,第二指示信息指示信道测量资源集合被用于信道测量和干扰测量;或者,第二指示信息指示第二组信道测量资源被用于干扰测量。
基于该可能的设计,通过第二指示信息,网络设备可以获知第二组信道测量资源被用于干扰测量,从而获知终端设备上报的CSI考虑了协作集内的干扰,进而可以根据该CSI进行合理调度。
在一种可能的设计中,该CSI包括第一CSI和差异信息。其中,第一CSI与第一组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源和第二组信道测量资源关联。或者,第一CSI与第一组信道测量资源和第二组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源关联。
基于该可能的设计,可以使得网络设备获知未进行协作集内干扰测量时的CSI,以及进行了协作集内干扰测量时的CSI,从而使得网络设备获知更多的信息量,以便网络设备基于终端设备的上报进行更合理 地调度。
在一种可能的设计中,该方法还包括:接收来自网络设备的第二配置信息。其中,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源。或者,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源集合。
基于该可能的设计,网络设备为信道测量资源集配置一个关联的干扰资源。对于终端设备的各种测量假设,均可以使用该干扰资源进行协作集外小区的干扰测量,能够极大地节省干扰资源的开销。
在一种可能的设计中,干扰测量资源集合由一个干扰测量资源构成。
在一种可能的设计中,干扰测量资源为信道状态信息-干扰测量CSI-IM资源。
在一种可能的设计中,CSI还与干扰测量资源或干扰测量资源集合关联。基于该可能的设计,终端设备在确定CSI时进一步考虑了协作集外的干扰,从而可以进一步提高CSI的准确性。
第二方面,提供了一种测量资源的配置方法,该方法可以由网络设备执行,也可以由网络设备的部件,例如网络设备的处理器、芯片、或芯片系统等执行,还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。该方法包括:
向终端设备发送第一配置信息,接收来自终端设备的信道状态信息CSI。其中,该第一配置信息用于配置信道测量资源集合,信道测量资源集合包括M个信道测量资源,M为正整数。CSI与信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联。第一组信道测量资源被用于信道测量,第二组信道测量资源被用于干扰测量,第一组信道测量资源和第二组信道测量资源不同。
基于该方案,网络设备向终端设备配置的M个信道测量资源,其中的第一组信道测量资源被用于信道测量,其中的第二组信道测量资源被用于干扰测量,即终端设备在确定CSI时考虑了同一资源集内的干扰,从而能够提高CSI的准确性。进而使得网络设备后续能够根据CSI进行合理调度,降低资源集内第二组信道测量资源关联的TRP对后续传输的影响。此外,由于资源集对应的TRP协作集内的干扰测量可以通过第二组信道测量资源进行,因此,网络设备无需额外配置用于协作集内的干扰测量的资源,能够降低资源开销。
在一种可能的设计中,该方法还包括:向终端设备发送第一指示信息。其中,第一指示信息指示信道测量资源集合能够用于干扰测量;或者,第一指示信息指示第二组信道测量资源能够用于干扰测量。
在一种可能的设计中,该方法还包括:接收来自终端设备的第二指示信息。其中,第二指示信息指示信道测量资源集合被用于信道测量和干扰测量;或者,第二指示信息指示第二组信道测量资源被用于干扰测量。
在一种可能的设计中,该CSI包括第一CSI和差异信息。第一CSI与第一组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源和第二组信道测量资源关联。或者,第一CSI与第一组信道测量资源和第二组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源关联。
在一种可能的设计中,该方法还包括:向终端设备发送第二配置信息。其中,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源。或者,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源集合。
在一种可能的设计中,干扰测量资源集合由一个干扰测量资源构成。
在一种可能的设计中,干扰测量资源为信道状态信息-干扰测量CSI-IM资源。
在一种可能的设计中,CSI还与干扰测量资源或干扰测量资源集合关联。
其中,第二方面的任一种可能的设计所带来的技术效果可参考上述第一方面中的相应设计所带来的技术效果,在此不再赘述。
第三方面,提供了一种通信装置用于实现各种方法。该通信装置可以为第一方面中的终端设备,或者终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。所述通信装置包括实现方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与功能相对应的模块或单元。
在一些可能的设计中,该通信装置可以包括处理模块和收发模块。该处理模块,可以用于实现上述任一方面及其任意可能的实现方式中的处理功能。收发模块可以包括接收模块和发送模块,分别用以实现上述任一方面及其任意可能的实现方式中的接收功能和发送功能。
在一些可能的设计中,收发模块可以由收发电路,收发机,收发器或者通信接口构成。
该通信装置为第一方面中的终端设备,或者终端设备中包含的装置时:
在一些可能的设计中,收发模块,用于接收来自网络设备的第一配置信息,第一配置信息用于配置信道测量资源集合,信道测量资源集合包括M个信道测量资源,M为正整数;处理模块,用于确定信道状态信息CSI,CSI与信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联;第一组信道测量资源被用于信道测量,第二组信道测量资源被用于干扰测量,第一组信道测量资源和第二组信道测量资源不同;收发模块,还用于向网络设备发送CSI。
在一些可能的设计中,收发模块,还用于接收来自网络设备的第一指示信息。其中,第一指示信息指示信道测量资源集合能够用于干扰测量;或者,第一指示信息指示第二组信道测量资源能够用于干扰测量。
在一些可能的设计中,收发模块,还用于向网络设备发送第二指示信息。其中,第二指示信息指示信道测量资源集合被用于信道测量和干扰测量;或者,第二指示信息指示第二组信道测量资源被用于干扰测量。
在一些可能的设计中,收发模块,还用于接收来自网络设备的第二配置信息。其中,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源;或者,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源集合。
该通信装置为第二方面中的网络设备,或者网络设备中包含的装置时:
处理模块,用于确定第一配置信息;收发模块,用于向终端设备发送第一配置信息,第一配置信息用于配置信道测量资源集合,信道测量资源集合包括M个信道测量资源,M为正整数;收发模块,还用于接收来自终端设备的信道状态信息CSI,CSI与信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联;第一组信道测量资源被用于信道测量,第二组信道测量资源被用于干扰测量,第一组信道测量资源和第二组信道测量资源不同。
在一些可能的设计中,收发模块,还用于向终端设备发送第一指示信息。其中,第一指示信息指示信道测量资源集合能够用于干扰测量;或者,第一指示信息指示第二组信道测量资源能够用于干扰测量。
在一些可能的设计中,收发模块,还用于接收来自终端设备的第二指示信息。其中,第二指示信息指示信道测量资源集合被用于信道测量和干扰测量;或者,第二指示信息指示第二组信道测量资源被用于干扰测量。
在一些可能的设计中,收发模块,还用于向终端设备发送第二配置信息。其中,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源;或者,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源集合。
第四方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行任一方面所述的方法。该通信装置可以为第一方面中的终端设备,或者终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。
第五方面,提供一种通信装置,包括:处理器和通信接口;该通信接口,用于与该通信装置之外的模块通信;所述处理器用于执行计算机程序或指令,以使该通信装置执行任一方面所述的方法。该通信装置可以为第一方面中的终端设备,或者终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。
第六方面,提供了一种通信装置,包括:至少一个处理器;所述处理器用于执行存储器中存储的计算机程序或指令,以使该通信装置执行任一方面所述的方法。该存储器可以与处理器耦合,或者,也可以独立于该处理器。该通信装置可以为第一方面中的终端设备,或者终端设备中包含的装置,比如芯片或芯片系统;或者,该通信装置可以为第二方面中的网络设备,或者网络设备中包含的装置,比如芯片或芯片系统。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当其在通信装置上运行时,使得通信装置可以执行任一方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得该通信装置可以执行任一方面所述的方法。
第九方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现任一方面中所涉及的功能。
在一些可能的设计中,该通信装置包括存储器,该存储器,用于保存必要的程序指令和数据。
在一些可能的设计中,该装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
可以理解的是,第三方面至第九方面中任一方面提供的通信装置是芯片时,通信装置的发送动作/功能可以理解为输出信息,通信装置的接收动作/功能可以理解为输入信息。
其中,第三方面至第九方面中任一种设计方式所带来的技术效果可参见第一方面或第二方面中不同设计方式所带来的技术效果,在此不再赘述。
附图说明
图1为本申请提供的一种相干联合发送CJT的场景示意图;
图2为本申请提供的一种非相干联合发送NCJT的场景示意图;
图3为本申请提供的一种NCJT场景下测量资源的配置示意图;
图4为本申请提供的一种通信系统的结构示意图;
图5为本申请提供的一种测量资源的配置方法的流程示意图;
图6为本申请提供的一种CJT场景下信道测量资源的使用方法示意图;
图7为本申请提供的另一种测量资源的配置方法的流程示意图;
图8为本申请提供的一种通信装置的结构示意图;
图9为本申请提供的另一种通信装置的结构示意图;
图10为本申请提供的又一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“…时”以及“若”均指在某种客观情况下会做出相应的处理,并非是限定时间,且也不要求实现时要有判断的动作,也不意味着存在其它限定。
可以理解,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本申请中,除特殊说明外,各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术的简要介绍如下。
1、相干联合发送(coherent joint transmission,CJT):
CJT是多传输接收点(transmission reception point,TRP)传输技术中的一种,适用于业务量较大的、密集部署的蜂窝网络。在CJT传输中,多个TRP可以同时向终端设备发送相同的数据。
示例性的,如图1所示,以2个TRP(TRP 0和TRP 1)参与CJT传输为例,2个TRP中的一个TRP向终端设备发送下行控制信息(downlink control information,DCI),调度物理下行共享信道(physical downlink shared channel,PDSCH)。该PDSCH的每一层数据由TRP 0和TRP 1发送。
示例性的,假设该PDSCH包括两层数据,分别表示为S0和S1,TRP 0和TRP 1采用的预编码矩阵分别为W(0)和W(1),则TRP 0发送的信号可以表示为:
其中,N天线数。TRP 1发送的信号可以表示为:
TRP 0和TRP 1发送的信号经过信道传输后,接收端收到的信号可以表示为:
其中,H0为TRP 0与终端设备之间的信道矩阵,H1为TRP 1与终端设备之间的信道矩阵。N0为噪声。
2、非相干联合发送(non coherent joint transmission,NCJT):
NCJT也是多TRP传输技术中的一种。在新空口(new radio,NR)的版本16(Release-16)中引入。NCJT可以分为基于多DCI的NCJT和基于单DCI的NCJT。
在NCJT中通常由2个TRP参与传输。如图2中的(a)所示,在基于多DCI的NCJT中,TRP 0和TRP 1可以分别向终端设备发送DCI 0和DCI 1,分别调度PDSCH 0和PDSCH 1,即TRP 0可以向终端设备发送PDSCH 0,TRP 1可以向终端设备发送PDSCH 1。
如图2中的(b)所示,在基于单DCI的NCJT中,TRP 0和TRP 1中的一个TRP(以TRP 0为例)向终端设备发送DCI,该DCI调度一个PDSCH。该PDSCH的部分层的数据由两个TRP中的一个TRP发送,另一部分层的数据由两个TRP中的另一个TRP发送。
3、信道状态信息(channel state information,CSI)测量:
在NR的前期版本(例如版本15或版本16)中,CSI测量基于单TRP CSI测量假设进行。即,终端设备在进行CSI测量时,假设后续的数据来自1个TRP。
测量之前,网络设备可以向终端设备配置用于信道测量的资源(称为信道测量资源)和CSI干扰测量(interference measurement)资源(即CSI-IM资源)。其中,每个信道测量资源可以关联一个CSI-IM资源。
示例性的,CSI-IM资源可以为零功率(zero power,ZP)CSI-RS资源。在该CSI-IM资源上,服务小区发送零功率CSI-RS(可以理解为不发送任何信号),终端设备在ZP CSI-RS资源上测量干扰小区的噪声和干扰。
之后,网络设备在信道测量资源上发送参考信号(reference signal,RS),例如非零功率(non zero power,NZP)的信道状态信息-参考信号(channel state information-reference signal,CSI-RS)。终端设备在信道测量资源上接收参考信号进行信道估计。此外,终端设备还可以在信道测量资源关联的CSI-IM资源上接收信号进行干扰测量。
终端设备可以基于在信道测量资源上获得的信道测量结果,以及在信道测量资源关联的CSI-IM资源上获得的干扰测量结果,确定CSI,并通过上行信道向网络设备发送该CSI。网络设备可以根据该CSI进行调度。
示例性的,CSI可以包括预编码矩阵指示(pre-coding matrix indicator,PMI)、信道质量指示(channel quanlity indicator,CQI)、秩指示(rank indicator,RI)、层指示(layer indicator,LI)中的一种或多种。
在网络设备配置了多个信道测量资源及其各自关联的CSI-IM资源的情况下,终端设备可以在该多个信道测量资源及其各自关联的CSI-IM资源上进行测量,得到多个CSI。后续可以从该多个CSI中选择一个CSI上报给网络设备。该场景下,终端设备还可以向网络设备发送信道测量资源指示信息,用于指示终端设备上报的CSI是基于哪个信道测量资源得到的。
在引入NCJT后,前期的CSI测量配置无法很好的支持NCJT的测量需求。因此,在版本17中对CSI测量的相关配置及实现进行了增强,以支持NCJT CSI测量假设。其中,NCJT测量假设是指终端设备在测量时,假设后续的数据来自2个TRP。
测量配置增强后,网络设备可以为终端设备配置至少一个CSI-RS资源集合(resource set)。每个资源集合内配置2个资源组(resource group),分别包括K1和K2个信道测量资源。每个资源组中的信道测量资源关联同一个TRP。
此外,每个资源集合内配置N(N≤2)资源对(resource pair),每个资源对由两个资源组中的信道测量资源构成。每个资源对关联一个CSI-IM资源。示例性的,如图3所示,以K1=4、K2=2、信道测量资源简称为CMR为例,网络设备可以配置CMR1、CMR3、CMR5、和CMR6属于资源组0,与TRP 0关联;配置CMR2和CMR4属于资源组1,与TRP 1关联。同时,CMR1和CMR2构成资源对1,CMR3和CMR4构成资源对2。
对于NCJT,终端设备可以在每个资源对上接收参考信号进行信道估计,并在该资源对关联的CSI-IM资源上接收信号进行干扰测量,从而得到2个NCJT CSI。对于单TRP CSI测量假设,终端设备可以在一个CMR上进行测量得到CSI,或者可以在一个CMR及其关联的CSI-IM资源上进行测量得到CSI。
在引入CJT后,版本18要求支持最多4个TRP进行CJT传输。以网络设备向终端设备配置的最大协作TRP数等于4为例,后续实际用于向终端设备传输数据的TRP可能存在种情况,即种单TRP传输的情况,种采用2个TRP进行CJT传输的情况,种采用3个TRP进行CJT传输的情况,以及种采用4个TRP进行CJT传输的情况。
由此可见,引入CJT后的传输情况相比于NCJT较为复杂,因此,目前的测量资源配置可能不再适用。基于此,本申请提供一种测量资源的配置方法,能够在引入CJT的场景下为终端设备合理配置测量资源。
本申请提供的技术方案可用于各种通信系统,该通信系统可以为第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统,例如,第四代(4th generation,4G)长期演进(long term evolution,LTE)系统、演进的LTE系统(LTE-Advanced,LTE-A)系统、第五代(5th generation,5G)NR系统、车联网(vehicle to everything,V2X)系统、LTE和NR混合组网的系统、或者设备到设备(device-to-device,D2D)系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of things,IoT),以及其他下一代通信系统等。或者,该通信系统也可以为非3GPP通信系统,不予限制。
其中,上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
如图4所示,为本申请提供的一种可能的通信系统的结构示意图。图4中以该通信系统包括至少一个网络设备410,以及与该网络设备410连接的至少一个终端设备420为例进行说明。应理解,图4中的终端设备和网络设备的数量仅是举例,还可以更多或者更少。
可选的,本申请实施例中的网络设备410,是一种将终端设备420接入到无线网络的设备,所述网络设备410可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。
例如,网络设备可以包括LTE系统或LTE-A系统中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB。或者,可以包括NR系统中的下一代节点B(next generation node B,gNB)。或者,可以包括传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、基带池(BBU pool),或无线保真(wireless fidelity,WiFi)接入点(access point,AP)等。或者,可以包括NTN中的基站,即可以部署于高空平台或者卫星,在NTN中,网络设备可以作为层1(L1)中继(relay),或者可以作为基站,或者可以作为DU,或者可以作为接入回传一体化(integrated access and backhual,IAB)节点。或者,网络设备可以是IoT中实现基站功能的设备,例如V2X、D2D、或者机器到机器(machine to machine,M2M)中实现基站功能的设备,本申请实施例并不限定。
可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、家庭基站、TRP、发射点(transmitting point,TP)、移动交换中心等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的终端设备420,可以是用于实现无线通信功能的用户侧设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者5G之后演进的公共陆地移动网络(public land mobile network,PLMN)中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。或者,终端可以是IoT中具有通信功能的终端,例如V2X中的终端(例如车联网设备)、D2D通信中的终端、或者M2M通信中的终端等。终端可以是移动的,也可以是固定的。
下面将结合附图,对本申请实施例提供的方法进行展开说明。可以理解的,本申请实施例中,网络设备或终端设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
示例性的,本申请下述实施例提供的方法可以应用于引入CJT的场景。当然,此处仅是示例性的对本申请的应用场景进行说明,该应用场景对本申请不造成任何限定,本申请对下述提供的方法的应用场景也不作具体限定,例如还可以用于其他引入多个TRP同时向终端设备发送数据的场景。
如图5所示,为本申请提供的一种测量资源的配置方法,该测量资源的配置方法包括如下步骤:
S501、网络设备向终端设备发送第一配置信息。相应的,终端设备接收来自网络设备的第一配置信息。
其中,该第一配置信息用于配置信道测量资源集合。该信道测量资源集合包括M个信道测量资源,M为正整数。示例性的,M可以等于4,或等于3,或等于2,本申请对M的取值不作具体限定。
示例性的,信道测量资源可以理解为:用于信道测量的资源(resourceForChannelMeasurement)。信道测量可以理解为信道估计等。
本申请中,信道测量资源也可以称为参考信号资源,二者可以相互替换。此外,信道测量资源例如可以为NZP CSI-RS资源。
可选的,该第一配置信息可以携带在CSI资源配置(CSI-ResourceConfig)信元中。该CSI资源配置的标识可以携带在CSI报告配置(CSI-reportConfig)中的用于信道测量的资源(resourceForChannelMeasurement)信元中。
作为一种可能的实现,该信道测量资源集合包括的M个信道测量资源可以是网络设备配置的K个信道测量资源的子集,K为大于M的正整数。例如,网络设备可以配置K个信道测量资源,并且,网络设备可以将该K个信道测量资源中的M个信道测量资源配置为资源集合或资源组。通过该种资源配置形式,可以隐式指示该M个信道测量资源用于CJT场景。
示例性的,假设K等于6、M等于4,网络设备可以为终端设备配置CMR1、CMR2、CMR3、CMR4、CMR5、CMR6共6个信道测量资源。并且,网络设备可以将CMR1、CMR2、CMR3、CMR4配置为资源集合或资源组,以用于CJT场景。
作为另一种可能的实现,网络设备可以通过第一配置信息配置该M个信道测量资源,并且在第一配置信息中携带标志位,用于表示该M个信道测量资源用于CJT场景。
示例性的,以M等于4为例,网络设备可以为终端设备配置CMR1、CMR2、CMR3、CMR4。并且在第一配置信息中携带标志位,用于表示CMR1、CMR2、CMR3、CMR4用于CJT场景。
可选的,该M个信道测量资源中的每个信道测量资源分别关联一个TRP或TRP组,即M个信道测量资源关联M个TRP或M个TRP组。不同信道测量资源关联的TRP或TRP组不同。该M个信道测量资源关联的M个TRP或TRP组可以理解为网络设备配置的能够用于CJT传输的TRP。其中,TRP组可以包括一个或多个TRP。本申请下述实施例以M个信道测量资源关联M个TRP或M个TRP组,TRP组中包括一个TRP为例进行说明。
S502、终端设备确定CSI。
其中,该CSI与上述信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联。第一组信道测量资源和第二组信道测量资源不同。
可选的,CSI与第一组信道测量资源和第二组信道测量资源关联,可以理解为:CSI是基于在第一组信道测量资源和第二组信道测量资源上的测量得到的。
可选的,终端设备确定CSI可以包括:终端设备得到(derive)CSI。例如,终端设备可以在第一组信道测量资源和第二组信道测量资源上进行测量得到CSI。
其中,第一组信道测量资源被用于信道测量。例如,终端设备在第一组信道测量资源上进行了信道估计。
其中,第二组信道测量资源被用于干扰测量。例如,终端设备在第二组信道测量资源上进行了干扰测量。也就是说,终端设备可以利用原本用于信道测量的资源进行干扰测量。
可选的,第一组信道测量资源包括的信道测量资源的总数M1可以是网络设备配置的,或者可以是终端设备自行确定的。M1可以小于M。第一组信道测量资源具体包括的信道测量资源可以是终端设备自行选择的。
示例性的,以信道测量资源集合中的M个信道测量资源集合为:CMR1、CMR2、CMR3、CMR4,M1等于2为例,终端设备可以选择CMR1和CMR3构成第一组信道测量资源。当然,终端设备还可以选择其他CMR构成第一组信道测量资源。
可选的,终端设备选择的第一组信道测量资源关联的TRP,可以理解为终端设备选择的后续向终端设备发送数据的TRP。在M1大于1时,该第一组信道测量资源关联的TRP可以理解为后续实际参与CJT传输的TRP。
对于第二组信道测量资源包括的信道测量资源的总数M2,作为一种可能的实现,其与M1之和可以等于M,即第二组信道测量资源可以包括信道测量资源集合中除第一组信道测量资源之外的全部信道测量资源。
示例性的,如图6所示,以信道测量资源集合中的M个信道测量资源集合为:CMR1、CMR2、CMR3、CMR4,分别关联TRP1、TRP2、TRP3、TRP4为例,假设终端设备选择CMR1和CMR3构成第一组信道测量资源,第二组信道测量资源可以由CMR2和CMR4构成。也就是说,终端设备可以在CSR1和CMR3上进行信道测量,并且,在CMR2和CMR4上进行干扰测量。
作为另一种可能的实现,M2与M1之和也可以小于M,即第二组信道测量资源可以包括信道测量资源集合中除第一组信道测量资源之外的部分信道测量资源。例如,终端设备选择CMR1和CMR3构成第一组信道测量资源时,第二组信道测量资源可以仅包括CMR2,或者仅包括CMR4。也就是说,终端设备可以在CSR1和CMR3上进行信道测量,并且,在CMR2上进行干扰测量;或者,终端设备可以在CSR1和CMR3上进行信道测量,并且,在CMR4上进行干扰测量。
可选的,在信道测量资源集合包括的M个信道测量资源用于CJT场景的情况下,该M个信道测量资源关联的M个TRP可以理解为同一个协作集内的TRP。在终端设备(记为终端设备A)选择M1个TRP进行后续数据传输时,其余TRP可能用于为其他终端设备发送数据,那么,其余TRP的数据发送会对终端设备A造成干扰。因此,终端设备A在第二组信道测量资源上进行的干扰测量,可以理解为:第二组信道测量资源关联的TRP对终端设备A造成的干扰的测量。由于第二组信道测量资源关联的TRP和第一组信道测量资源关联的TRP属于同一协作集,从而,第二组信道测量资源上的干扰测量也可以理解为协作集内的干扰测量。
以上以第一组信道测量资源组中信道测量资源的总数M1小于信道测量资源集合中信道测量资源的总数M为例进行说明。当然,M1也可以等于M,即终端设备选择信道测量资源集合中的所有信道测量资源关联的TRP进行后续的CJT传输,或者,网络设备指定信道测量资源集合中的所有信道测量资源关联的TRP进行后续的CJT传输。该场景下,可以认为第二组信道测量资源不存在。
在一些实施例中,如图7所示,在步骤S502之前,网络设备还可以向终端设备发送第一指示信息。相应的,终端设备接收来自网络设备的第一指示信息。
作为一种可能的实现,第一指示信息指示信道测量资源集合是否能够用于干扰测量。示例性的,第一指示信息可以为1比特的指示(indicator),当该比特设置为“1(或0)”时,指示信道测量资源集合能够用于干扰测量;当该比特设置为“0(或1)”时,指示信道测量资源集合不能用于干扰测量。本申请以第一指示信息指示信道测量资源集合能够用于干扰测量为例进行说明。
可选的,信道测量资源集合能够用于干扰测量,可以理解为:信道测量资源集合中的信道测量资源都能够用于干扰测量。信道测量资源集合不能用于干扰测量,可以理解为:信道测量资源集合中的信道测量资源都不能用于干扰测量。
作为另一种可能的实现,第一指示信息可以指示信道测量资源集合中的每个信道测量资源是否能够用于干扰测量。
示例性的,第一指示信息可以为包括M个比特的比特位图(bitmap)。该M个比特与信道测量资源集合中的M个信道测量资源一一对应,某个比特设置为“1(或0)”时,指示该比特对应的信道测量资源能够用于干扰测量;某个比特设置为“0(或1)”时,指示该比特对应的信道测量资源不能用于干扰测量。在第二组信道测量资源被用于干扰测量的情况下,第一指示信息指示第二组信道测量资源能够用于干扰测量。
在另一些实施例中,如图7所示,终端设备可以向网络设备发送第二指示信息。相应的,网络设备接收来自终端设备的第二指示信息。
作为一种可能的实现,第二指示信息指示信道测量资源集合是否被用于信道测量和干扰测量。在终端设备使用第二组信道测量资源进行干扰测量,或者说第二组信道测量资源被用于干扰测量的情况下,第二指示信息指示信道测量资源集合被用于信道测量和干扰测量。
示例性的,第二指示信息可以为1比特的指示(indicator),当该比特设置为“1(或0)”时,指示信道测量资源集合被用于信道测量和干扰测量;当该比特设置为“0(或1)”时,指示信道测量资源集合被用于信道测量,未被用于干扰测量。
作为另一种可能的实现,第二指示信息指示第二组信道测量资源是否被用于干扰测量。在终端设备使用第二组信道测量资源进行干扰测量的情况下,第二指示信息指示第二组信道测量资源被用于干扰测量。
示例性的,第二指示信息可以为包括M个比特的比特位图。该M个比特与信道测量资源集合中的M个信道测量资源一一对应,某个比特设置为“1(或0)”时,指示该比特对应的信道测量资源被用于干扰测量;某个比特设置为“0(或1)”时,指示该比特对应的信道测量资源未被用于干扰测量。
S503、终端设备向网络设备发送CSI。相应的,网络设备接收来自终端设备的CSI。
在一些实施例中,该CSI可以包括第一CSI和差异信息。作为一种可能的实现,第一CSI与第一组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源和第二组信道测量资源关联。
示例性的,终端设备可以在第一组信道测量资源上进行信道测量,得到第一CSI。此外,终端设备还在第二组信道测量资源上进行干扰测量,结合信道测量的结果和干扰测量的结果,得到第二CSI。之后,终端设备可以根据第一CSI和第二CSI,得到差异信息。
作为另一种可能的实现,第一CSI与第一组信道测量资源和第二组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源关联。
示例性的,终端设备可以在第一组信道测量资源上进行信道测量,得到第二CSI。此外,终端设备还在第二组信道测量资源上进行干扰测量,结合信道测量的结果和干扰测量的结果,得到第一CSI。之后,终端设备可以根据第一CSI和第二CSI,得到差异信息。
在另一些实施例中,该CSI可以包括第一CSI和第二CSI。其中,第一CSI与第一组信道测量资源关联,第二CSI与第一组信道测量资源和第二组信道测量资源关联。
在又一些实施例中,该CSI可以只包括结合信道测量结果和干扰测量结果得到的CSI。
可选的,第一CSI或第二CSI可以包括PMI、CQI、RI、LI中的一种或多种。
可选的,终端设备还可以向网络设备发送第三指示信息。相应的,网络设备接收来自终端设备的第三指示信息。该第三指示信息可以指示第一组信道测量资源,或指示第一组信道测量资源关联的TRP,以使网络设备获知终端设备选择的TRP,以便后续通过该TRP向终端设备发送数据。示例性的,该第三指示信息可以称为CSI-RS资源指示(CSI-RS resource indicator)。
可选的,第三指示信息可以包含在CSI中,作为CSI的一部分;第三指示信息也可以不包含在CSI中。当第三指示信息包含在CSI中时,第三指示信息和CSI可以携带在同一信令中;或者,第三信息和CSI也可以携带在不同信令中,本申请对此不作具体限定。
可选的,终端设备发送第三指示信息的情况下,上述第二指示信息可以为包括M-M1个比特的比特位图。该M-M1个比特与信道测量资源集合中除第一组信道测量资源外的M-M1个信道测量资源一一对应,某个比特设置为“1(或0)”时,指示该比特对应的信道测量资源被用于干扰测量;某个比特设置为“0(或 1)”时,指示该比特对应的信道测量资源未被用于干扰测量。
基于上述方案,对于网络设备配置的M个信道测量资源,终端设备可以使用其中的第一组信道测量资源进行信道测量,使用其中的第二组信道测量资源进行干扰测量,并向网络设备上报与信道测量和干扰测量相关的CSI。即终端设备在确定CSI时考虑了同一资源集内的干扰,能够提高CSI的准确性,使得网络设备后续能够根据CSI进行合理调度,降低资源集内第二组信道测量资源关联的TRP对CJT传输的影响。此外,网络设备无需额外配置用于协作集内的干扰测量的资源,能够降低资源开销。
在一些实施例中,本申请提供的测量资源的配置方法还可以包括:网络设备向终端设备发送第二配置信息。相应的,终端设备接收来自网络设备的第二配置信息。
其中,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源。或者,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源集合。该干扰测量资源集合可以由一个干扰测量资源构成,即干扰测量资源集合仅包括一个干扰测量资源。
可选的,该干扰测量资源可以为CSI-IM资源。该干扰测量资源用于测量协作集外的TRP对终端设备的干扰和噪声。示例性的,基于图6所示的示例,协作集内的TRP包括TRP1、TRP2、TRP3、和TPR4,那么该干扰测量资源可以用于协作集外的TRP5对终端设备的干扰。
可选的,在网络设备配置了干扰测量资源的情况下,上述步骤S502中的CSI还可以和该干扰测量资源关联。即终端设备还可以在干扰测量资源上测量协作集外的干扰,并结合该干扰测量结果确定CSI。
在NCJT测量下,每个资源对关联一个CSI-IM资源。在CJT场景下,假设网络设备配置最多4个TRP为终端设备发送数据,那么共有种传输情况。终端设备在进行测量时同样存在15中测量假设,即种单TRP的测量假设,种采用2个TRP进行CJT的测量假设,种采用3个TRP进行CJT的测量假设,以及种采用4个TRP进行CJT的侧向假设。
若在CJT场景下参考NCJT的CSI-IM资源配置,为每种测量假设均配置一个CSI-IM资源用于测量协作集外小区的干扰,那么网络设备需要配置15个CSI-IM资源,容易出现资源不够用的情况。
基于本申请的上述方案,网络设备为信道测量资源集配置一个关联的干扰资源。对于终端设备的各种测量假设,均可以使用该干扰资源进行协作集外小区的干扰测量,能够极大地节省干扰资源的开销。
可以理解的是,以上各个实施例中,由网络设备实现的方法和/或步骤,也可以由可用于该网络设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件)实现;由终端设备实现的方法和/或步骤,也可以由可用于该终端设备的部件(例如处理器、芯片、芯片系统、电路、逻辑模块、或软件)实现。其中,芯片系统可以由芯片构成,或者,芯片系统可以包括芯片和其他分立器件。
可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通信装置图8示出了一种通信装置80的结构示意图。该通信装置80包括处理模块801和收发模块802。该通信装置80可以用于实现上述网络设备或终端设备的功能。
在一些实施例中,该通信装置80还可以包括存储模块(图8中未示出),用于存储程序指令和数据。
在一些实施例中,收发模块802,也可以称为收发单元用以实现发送和/或接收功能。该收发模块802可以由收发电路、收发机、收发器或者通信接口构成。
在一些实施例中,收发模块802,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由网络设备或终端设备执行的接收和发送类的步骤,和/或用于支持本文所描述的技术的其它过程;处理模块801,可以用于执行上述方法实施例中由网络设备或终端设备执行的处理类(例如确定、生成等)的步骤,和/或用于支持本文所描述的技术的其它过程。
在该通信装置80用于实现上述终端设备的功能时:
收发模块802,用于接收来自网络设备的第一配置信息,第一配置信息用于配置信道测量资源集合,信道测量资源集合包括M个信道测量资源,M为正整数;处理模块801,用于确定信道状态信息CSI,CSI 与信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联;第一组信道测量资源被用于信道测量,第二组信道测量资源被用于干扰测量,第一组信道测量资源和第二组信道测量资源不同;收发模块802,还用于向网络设备发送CSI。
可选的,收发模块802,还用于接收来自网络设备的第一指示信息。其中,第一指示信息指示信道测量资源集合能够用于干扰测量;或者,第一指示信息指示第二组信道测量资源能够用于干扰测量。
可选的,收发模块802,还用于向网络设备发送第二指示信息。其中,第二指示信息指示信道测量资源集合被用于信道测量和干扰测量;或者,第二指示信息指示第二组信道测量资源被用于干扰测量。
可选的,该CSI包括第一CSI和差异信息。其中,第一CSI与第一组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源和第二组信道测量资源关联。或者,第一CSI与第一组信道测量资源和第二组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源关联。
可选的,收发模块802,还用于接收来自网络设备的第二配置信息。其中,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源;或者,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源集合。
可选的,干扰测量资源集合由一个干扰测量资源构成。
可选的,干扰测量资源为信道状态信息-干扰测量CSI-IM资源。
可选的,CSI还与干扰测量资源或干扰测量资源集合关联。
在该通信装置80用于实现上述网络设备的功能时:
处理模块801,用于确定第一配置信息;收发模块802,用于向终端设备发送第一配置信息,第一配置信息用于配置信道测量资源集合,信道测量资源集合包括M个信道测量资源,M为正整数;收发模块802,还用于接收来自终端设备的信道状态信息CSI,CSI与信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联;第一组信道测量资源被用于信道测量,第二组信道测量资源被用于干扰测量,第一组信道测量资源和第二组信道测量资源不同。
可选的,收发模块802,还用于向终端设备发送第一指示信息。其中,第一指示信息指示信道测量资源集合能够用于干扰测量;或者,第一指示信息指示第二组信道测量资源能够用于干扰测量。
可选的,收发模块802,还用于接收来自终端设备的第二指示信息。其中,第二指示信息指示信道测量资源集合被用于信道测量和干扰测量;或者,第二指示信息指示第二组信道测量资源被用于干扰测量。
可选的,该CSI包括第一CSI和差异信息。第一CSI与第一组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源和第二组信道测量资源关联。或者,第一CSI与第一组信道测量资源和第二组信道测量资源关联,差异信息指示第一CSI和第二CSI之间的差异,第二CSI与第一组信道测量资源关联。
可选的,收发模块802,还用于向终端设备发送第二配置信息。其中,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源;或者,第二配置信息用于配置信道测量资源集合关联的一个干扰测量资源集合。
可选的,干扰测量资源集合由一个干扰测量资源构成。
可选的,干扰测量资源为信道状态信息-干扰测量CSI-IM资源。
可选的,CSI还与干扰测量资源或干扰测量资源集合关联。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请中,该通信装置80可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定专用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一些实施例中,当图8中的通信装置80是芯片或芯片系统时,收发模块802的功能/实现过程可以通过芯片或芯片系统的输入输出接口(或通信接口)实现,处理模块801的功能/实现过程可以通过芯片或芯片系统的处理器(或者处理电路)实现。
由于本实施例提供的通信装置80可执行上述方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
作为一种可能的产品形态,本申请实施例所述的终端设备或网络设备,还可以使用下述来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic  device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
作为另一种可能的产品形态,本申请实施例所述的终端设备或网络设备,可以由一般性的总线体系结构来实现。为了便于说明,参见图9,图9是本申请实施例提供的通信装置900的结构示意图,该通信装置900包括处理器901和收发器902。该通信装置900可以为网络设备,或其中的芯片或芯片系统;或者,该通信装置900可以为终端设备,或其中的芯片或模块。图9仅示出了通信装置900的主要部件。除处理器901和收发器902之外,所述通信装置还可以进一步包括存储器903、以及输入输出装置(图未示意)。
可选的,处理器901主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器903主要用于存储软件程序和数据。收发器902可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
可选的,处理器901、收发器902、以及存储器903可以通过通信总线连接。
当通信装置开机后,处理器901可以读取存储器903中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器901对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器901,处理器901将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到上述通信装置80可以采用图9所示的通信装置900的形式。
作为一种示例,图8中的处理模块801的功能/实现过程可以通过图9所示的通信装置900中的处理器901调用存储器903中存储的计算机执行指令来实现。图8中的收发模块802的功能/实现过程可以通过图9所示的通信装置900中的收发器902来实现。
作为又一种可能的产品形态,本申请中的网络设备或终端设备可以采用图10所示的组成结构,或者包括图10所示的部件。图10为本申请提供的一种通信装置1000的组成示意图,该通信装置1000可以为终端设备或者终端设备中的芯片或者片上系统;或者,可以为网络设备或者网络设备中的模块或芯片或片上系统。
如图10所示,该通信装置1000包括至少一个处理器1001,以及至少一个通信接口(图10中仅是示例性的以包括一个通信接口1004,以及一个处理器1001为例进行说明)。可选的,该通信装置1000还可以包括通信总线1002和存储器1003。
处理器1001可以是一个通用中央处理器(central processing unit,CPU)、通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器1001还可以是其它具有处理功能的装置,例如电路、器件或软件模块,不予限制。
通信总线1002用于连接通信装置1000中的不同组件,使得不同组件可以通信。通信总线1002可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口1004,用于与其他设备或通信网络通信。示例性的,通信接口1004可以模块、电路、收发器或者任何能够实现通信的装置。可选的,所述通信接口1004也可以是位于处理器1001内的输入输出接口,用以实现处理器的信号输入和信号输出。
存储器1003,可以是具有存储功能的装置,用于存储指令和/或数据。其中,指令可以是计算机程序。
示例性的,存储器1003可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或其他磁存储设备 等,不予限制。
需要指出的是,存储器1003可以独立于处理器1001存在,也可以和处理器1001集成在一起。存储器1003可以位于通信装置1000内,也可以位于通信装置1000外,不予限制。处理器1001,可以用于执行存储器1003中存储的指令,以实现本申请下述实施例提供的方法。
作为一种可选的实现方式,通信装置1000还可以包括输出设备1005和输入设备1006。输出设备1005和处理器1001通信,可以以多种方式来显示信息。例如,输出设备1005可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备1006和处理器1001通信,可以以多种方式接收用户的输入。例如,输入设备1006可以是鼠标、键盘、触摸屏设备或传感设备等。
在一些实施例中,在硬件实现上,本领域的技术人员可以想到上述图8所示的通信装置80可以采用图10所示的通信装置1000的形式。
作为一种示例,图8中的处理模块801的功能/实现过程可以通过图10所示的通信装置1000中的处理器1001调用存储器1003中存储的计算机执行指令来实现。图8中的收发模块802的功能/实现过程可以通过图10所示的通信装置1000中的通信接口1004来实现。
需要说明的是,图10所示的结构并不构成对网络设备或终端设备的具体限定。比如,在本申请另一些实施例中,网络设备或终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
在一些实施例中,本申请实施例还提供一种通信装置,该通信装置包括处理器,用于实现上述任一方法实施例中的方法。
作为一种可能的实现方式,该通信装置还包括存储器。该存储器,用于保存必要的计算机程序和数据。该计算机程序可以包括指令,处理器可以调用存储器中存储的计算机程序中的指令以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。
作为另一种可能的实现方式,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。
作为又一种可能的实现方式,该通信装置还包括通信接口,该通信接口用于与该通信装置之外的模块通信。
可以理解的是,该通信装置可以是芯片或芯片系统,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该计算机程序或指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。作为单元显示的部件可以是或者也可以不是物理单元。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存 储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (34)

  1. 一种测量资源的配置方法,其特征在于,所述方法包括:
    接收来自网络设备的第一配置信息,所述第一配置信息用于配置信道测量资源集合,所述信道测量资源集合包括M个信道测量资源,M为正整数;
    确定信道状态信息CSI,所述CSI与所述信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联;所述第一组信道测量资源被用于信道测量,所述第二组信道测量资源被用于干扰测量,所述第一组信道测量资源和所述第二组信道测量资源不同;
    向所述网络设备发送所述CSI。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:接收来自网络设备的第一指示信息;
    其中,所述第一指示信息指示所述信道测量资源集合能够用于干扰测量;或者,所述第一指示信息指示所述第二组信道测量资源能够用于干扰测量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:向所述网络设备发送第二指示信息;
    其中,所述第二指示信息指示所述信道测量资源集合被用于信道测量和干扰测量;或者,所述第二指示信息指示所述第二组信道测量资源被用于干扰测量。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述CSI包括第一CSI和差异信息;
    所述第一CSI与所述第一组信道测量资源关联,所述差异信息指示所述第一CSI和第二CSI之间的差异,所述第二CSI与所述第一组信道测量资源和所述第二组信道测量资源关联;或者,
    所述第一CSI与所述第一组信道测量资源和所述第二组信道测量资源关联,所述差异信息指示所述第一CSI和第二CSI之间的差异,所述第二CSI与所述第一组信道测量资源关联。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:接收来自所述网络设备的第二配置信息;
    其中,所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源;或者,所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源集合。
  6. 根据权利要求5所述的方法,其特征在于,所述干扰测量资源集合由一个干扰测量资源构成。
  7. 根据权利要求5或6所述的方法,其特征在于,所述干扰测量资源为信道状态信息-干扰测量CSI-IM资源。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述CSI还与所述干扰测量资源或所述干扰测量资源集合关联。
  9. 一种测量资源的配置方法,其特征在于,所述方法包括:
    向终端设备发送第一配置信息,所述第一配置信息用于配置信道测量资源集合,所述信道测量资源集合包括M个信道测量资源,M为正整数;
    接收来自所述终端设备的信道状态信息CSI,所述CSI与所述信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联;所述第一组信道测量资源被用于信道测量,所述第二组信道测量资源被用于干扰测量,所述第一组信道测量资源和所述第二组信道测量资源不同。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:向所述终端设备发送第一指示信息;
    其中,所述第一指示信息指示所述信道测量资源集合能够用于干扰测量;或者,所述第一指示信息指示所述第二组信道测量资源能够用于干扰测量。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:接收来自所述终端设备的第二指示信息;
    其中,所述第二指示信息指示所述信道测量资源集合被用于信道测量和干扰测量;或者,所述第二指示信息指示所述第二组信道测量资源被用于干扰测量。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述CSI包括第一CSI和差异信息;
    所述第一CSI与所述第一组信道测量资源关联,所述差异信息指示所述第一CSI和第二CSI之间的差异,所述第二CSI与所述第一组信道测量资源和所述第二组信道测量资源关联;或者,
    所述第一CSI与所述第一组信道测量资源和所述第二组信道测量资源关联,所述差异信息指示所述第一CSI和第二CSI之间的差异,所述第二CSI与所述第一组信道测量资源关联。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述方法还包括:向所述终端设备发送第二配置信息;
    其中,所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源;或者,所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源集合。
  14. 根据权利要求13所述的方法,其特征在于,所述干扰测量资源集合由一个干扰测量资源构成。
  15. 根据权利要求13或14所述的方法,其特征在于,所述干扰测量资源为信道状态信息-干扰测量CSI-IM资源。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述CSI还与所述干扰测量资源或所述干扰测量资源集合关联。
  17. 一种通信装置,其特征在于,所述通信装置包括:收发模块和处理模块;
    所述收发模块,用于接收来自网络设备的第一配置信息,所述第一配置信息用于配置信道测量资源集合,所述信道测量资源集合包括M个信道测量资源,M为正整数;
    所述处理模块,用于确定信道状态信息CSI,所述CSI与所述信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联;所述第一组信道测量资源被用于信道测量,所述第二组信道测量资源被用于干扰测量,所述第一组信道测量资源和所述第二组信道测量资源不同;
    所述收发模块,还用于向所述网络设备发送所述CSI。
  18. 根据权利要求17所述的通信装置,其特征在于,所述收发模块,还用于接收来自网络设备的第一指示信息;
    其中,所述第一指示信息指示所述信道测量资源集合能够用于干扰测量;或者,所述第一指示信息指示所述第二组信道测量资源能够用于干扰测量。
  19. 根据权利要求17或18所述的通信装置,其特征在于,所述收发模块,还用于向所述网络设备发送第二指示信息;
    其中,所述第二指示信息指示所述信道测量资源集合被用于信道测量和干扰测量;或者,所述第二指示信息指示所述第二组信道测量资源被用于干扰测量。
  20. 根据权利要求17-19任一项所述的通信装置,其特征在于,所述收发模块,还用于接收来自所述网络设备的第二配置信息;
    其中,所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源;或者,所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源集合。
  21. 一种通信装置,其特征在于,所述通信装置包括:收发模块;
    所述收发模块,用于向终端设备发送第一配置信息,所述第一配置信息用于配置信道测量资源集合,所述信道测量资源集合包括M个信道测量资源,M为正整数;
    所述收发模块,还用于接收来自所述终端设备的信道状态信息CSI,所述CSI与所述信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联;所述第一组信道测量资源被用于信道测量,所述第二组信道测量资源被用于干扰测量,所述第一组信道测量资源和所述第二组信道测量资源不同。
  22. 根据权利要求21所述的通信装置,其特征在于,所述收发模块,还用于向所述终端设备发送第一指示信息;
    其中,所述第一指示信息指示所述信道测量资源集合能够用于干扰测量;或者,所述第一指示信息指示所述第二组信道测量资源能够用于干扰测量。
  23. 根据权利要求21或22所述的通信装置,其特征在于,所述收发模块,还用于接收来自所述终端设备的第二指示信息;
    其中,所述第二指示信息指示所述信道测量资源集合被用于信道测量和干扰测量;或者,所述第二指示信息指示所述第二组信道测量资源被用于干扰测量。
  24. 根据权利要求21-23任一项所述的通信装置,其特征在于,所述收发模块,还用于向所述终端设备发送第二配置信息;
    其中,所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源;或者,所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源集合。
  25. 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器,用于运行计算机程序或指令,以使所述通信装置执行如权利要求1-8任一项所述的方法。
  26. 一种通信装置,其特征在于,所述通信装置包括处理器;所述处理器,用于运行计算机程序或指令,以使所述通信装置执行如权利要求9-16任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有计算机指令或程序,当计算 机指令或程序在计算机上运行时,使得如权利要求1-8任一项所述的方法被执行。
  28. 一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有计算机指令或程序,当计算机指令或程序在计算机上运行时,使得如权利要求9-16任一项所述的方法被执行。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令;当部分或全部所述计算机指令在计算机上运行时,使得如权利要求1-8任一项所述的方法被执行。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令;当部分或全部所述计算机指令在计算机上运行时,使得如权利要求9-16任一项所述的方法被执行。
  31. 一种通信系统,其特征在于,所述通信系统包括:终端设备和网络设备;
    所述网络设备,用于向终端设备发送第一配置信息,所述第一配置信息用于配置信道测量资源集合,所述信道测量资源集合包括M个信道测量资源,M为正整数;
    所述终端设备,用于接收来自所述网络设备的所述第一配置信息;确定信道状态信息CSI,向所述网络设备发送所述CSI;所述CSI与所述信道测量资源集合中的第一组信道测量资源和第二组信道测量资源关联;所述第一组信道测量资源被用于信道测量,所述第二组信道测量资源被用于干扰测量,所述第一组信道测量资源和所述第二组信道测量资源不同;
    所述网络设备,还用于接收来自所述终端设备的所述CSI。
  32. 根据权利要求31所述的通信系统,其特征在于,
    所述网络设备,还用于向所述终端设备发送第一指示信息;所述第一指示信息指示所述信道测量资源集合能够用于干扰测量;或者,所述第一指示信息指示所述第二组信道测量资源能够用于干扰测量;
    所述终端设备,还用于接收来自所述网络设备的所述第一指示信息。
  33. 根据权利要求31或32所述的通信系统,其特征在于,
    所述终端设备,还用于向所述网络设备发送第二指示信息;所述第二指示信息指示所述信道测量资源集合被用于信道测量和干扰测量;或者,所述第二指示信息指示所述第二组信道测量资源被用于干扰测量;
    所述网络设备,还用于接收来自所述终端设备的所述第二指示信息。
  34. 根据权利要求31-33任一项所述的通信系统,其特征在于,
    所述网络设备,还用于向所述终端设备发送第二配置信息;所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源;或者,所述第二配置信息用于配置所述信道测量资源集合关联的一个干扰测量资源集合;
    所述终端设备,还用于接收来自所述网络设备的所述第二配置信息。
PCT/CN2023/118102 2022-09-14 2023-09-11 一种测量资源的配置方法及装置 WO2024055939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211117025.0 2022-09-14
CN202211117025.0A CN117749225A (zh) 2022-09-14 2022-09-14 一种测量资源的配置方法及装置

Publications (1)

Publication Number Publication Date
WO2024055939A1 true WO2024055939A1 (zh) 2024-03-21

Family

ID=90254984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118102 WO2024055939A1 (zh) 2022-09-14 2023-09-11 一种测量资源的配置方法及装置

Country Status (2)

Country Link
CN (1) CN117749225A (zh)
WO (1) WO2024055939A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034857A1 (zh) * 2018-08-14 2020-02-20 维沃移动通信有限公司 Csi报告配置方法、终端设备和网络设备
WO2021059239A1 (en) * 2019-09-27 2021-04-01 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for early csi feedback in nr
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置
CN115023906A (zh) * 2020-02-07 2022-09-06 高通股份有限公司 用于多trp csi的动态干扰测量

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034857A1 (zh) * 2018-08-14 2020-02-20 维沃移动通信有限公司 Csi报告配置方法、终端设备和网络设备
WO2021059239A1 (en) * 2019-09-27 2021-04-01 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for early csi feedback in nr
CN115023906A (zh) * 2020-02-07 2022-09-06 高通股份有限公司 用于多trp csi的动态干扰测量
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "CSI enhancement for coherent JT and mobility", 3GPP DRAFT; R1-2203151, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052143969 *

Also Published As

Publication number Publication date
CN117749225A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
US11284246B2 (en) Uplink transmission method, uplink transmission configuration method, user equipment and base station
WO2020048438A1 (zh) 一种射频参数的上报方法及装置
WO2021052179A1 (zh) 一种上行数据传输方法及装置
TWI681680B (zh) 一種獲取、回饋發送波束資訊的方法及裝置
WO2021052473A1 (zh) 通信方法和通信装置
JP2023527234A (ja) チャネル測定方法および装置
WO2020029233A1 (zh) 上报信道状态信息的方法和装置
WO2021134626A1 (zh) 传输同步信号块的方法和装置
US20220094402A1 (en) Electronic apparatus, wireless communication method and computer-readable medium
EP4181446A1 (en) Method and apparatus for acquiring channel parameter
US11303328B2 (en) Communication method and apparatus, network device, terminal device, and system
US20230379020A1 (en) Precoding method and apparatus
WO2023030032A1 (zh) 信道状态信息的获取方法和装置
WO2022199346A1 (zh) 指示方法及相关产品
WO2024055939A1 (zh) 一种测量资源的配置方法及装置
CN112351451A (zh) 波束失败恢复方法及装置
WO2022012256A1 (zh) 通信的方法及通信装置
CN112054831B (zh) 信道状态信息的反馈方法及装置
WO2020156514A1 (zh) 测量上报方法和通信装置
WO2023151564A1 (zh) 通信方法、装置及系统
WO2024061093A1 (zh) 一种上行预编码的指示方法及通信装置
US20240204844A1 (en) Information feedback method and related apparatus
WO2024032241A1 (zh) 一种频域分量上报的方法及装置
US20240048216A1 (en) Communication method and communication apparatus
WO2024032234A1 (zh) 一种测量上报的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864671

Country of ref document: EP

Kind code of ref document: A1