WO2024032106A1 - 整片太阳能电池、分片电池、光伏组件及光伏屋顶 - Google Patents

整片太阳能电池、分片电池、光伏组件及光伏屋顶 Download PDF

Info

Publication number
WO2024032106A1
WO2024032106A1 PCT/CN2023/097464 CN2023097464W WO2024032106A1 WO 2024032106 A1 WO2024032106 A1 WO 2024032106A1 CN 2023097464 W CN2023097464 W CN 2023097464W WO 2024032106 A1 WO2024032106 A1 WO 2024032106A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solar cell
line
width
bus
Prior art date
Application number
PCT/CN2023/097464
Other languages
English (en)
French (fr)
Inventor
黄佰生
余永林
冯春暖
吕俊
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2024032106A1 publication Critical patent/WO2024032106A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures

Definitions

  • This application relates to the field of photovoltaic power generation technology, and in particular to a whole-chip solar cell, segmented cell, photovoltaic module and photovoltaic roof.
  • Solar cells can convert renewable clean energy light energy into electrical energy, so they have broad application prospects.
  • the existing grid line design of the whole-chip solar cell easily causes the resistance of the segmented cells obtained by cutting the whole-chip solar cell to be relatively high, and the cost of the whole-chip solar cell is high.
  • This application provides a whole-chip solar cell, a sliced cell, a photovoltaic module and a photovoltaic roof, aiming to solve the problem that the sliced cells obtained by cutting the existing whole-chip solar cells have a large resistance, and the cost of the whole-chip solar cell is relatively low. high problem.
  • a first aspect of the application provides a whole-chip solar cell, including: a solar cell body, an electrode structure located on the surface of the solar cell body, and a preset cutting line located on the surface of the solar cell body;
  • the electrode structure includes: several collector grid lines distributed in parallel, and the collector grid lines are used to collect carriers of the solar cell body;
  • the surface of the solar body is divided into several areas by the preset cutting lines;
  • the several regions are divided into at least two groups according to their widths; the at least two groups include: a first group and a second group; the width of the regions is in a direction perpendicular to the preset cutting line;
  • the spacing of the current collecting grid lines in at least one area in the first group and at least one area in the second group is negatively correlated with the width of the first group and the second group.
  • the collector grid lines on the larger segmented cells After the entire solar cell is cut, the collector grid lines on the larger segmented cells The spacing between them is smaller, and the spacing between the collector grids on smaller-sized sliced cells is larger.
  • the carrier transmission distance on the larger segmented battery is longer.
  • the spacing between the collector grid lines on the larger segmented battery is smaller, and the collector grid distribution is more dense.
  • the larger size can be appropriately reduced.
  • the spacing between the collector grid lines on the smaller segmented battery is larger, and the collector grid lines are more sparsely distributed.
  • the carrier transmission distance of the smaller segmented battery is relatively short, which can reduce the number of collector grid lines. Reduce material waste and reduce the cost of the entire solar cell.
  • the spacing of the current collecting grid lines in each region of the first group and each region of the second group is negatively correlated with the width of the first group and the second group.
  • the spacing of the current collecting grid lines in at least three areas of the first group and the second group is in negative proportion to the width of the first group and the second group.
  • the spacing between the collector grid lines of the larger group is less than or equal to 2 mm, and the spacing of the collector grid lines of the smaller group is greater than or equal to 2 mm. Equal to 0.5mm.
  • the spacing between the collector grid lines of the larger group is 0.5 to 1.1 mm, and the spacing of the collector grid lines of the smaller group is greater than 0.5 to 1.1 mm.
  • 1.1 is less than or equal to 2mm.
  • the electrode structure further includes: a bus grid line distributed across the current collection grid line, the bus grid line being used to collect and conduct carriers on the current collection grid line;
  • the line width of the portion immediately adjacent to the bus grid line and the portion intersecting with the bus grid line is greater than the line width of the remaining portions
  • the length ratio of the part immediately adjacent to the bus bar line and the part intersecting with the bus bar line is (1:1) to (2:1).
  • the line width of the portion of the current collecting grid line that is immediately adjacent to the bus grid line and the portion that intersects with the bus grid line is 0.1 to 0.3 millimeters.
  • the part of the current collecting grid line that is immediately adjacent to the bus grid line is symmetrical with respect to the bus grid line that intersects it.
  • the total length of the portion of the current collecting grid line that is immediately adjacent to the bus grid line and the portion that intersects with the bus grid line is 1 to 3 millimeters.
  • the line width of each part of the current collecting grid line that is immediately adjacent to the bus grid line is negatively correlated with the distance of the intersection point of the bus grid line that it intersects.
  • the shape of the projection of the part of the current collecting grid line that is immediately adjacent to the bus grid line and the part that intersects with the bus grid line on the surface of the solar cell body is: greater than or equal to 4 polygon;
  • the polygon includes two relatively distributed first sides, and the two first sides are connected to the current collecting grid. line vertical;
  • the line connecting the midpoints of the two first sides is parallel to the current collecting grid line, and the distance between the two first sides is greater than the distance between the other two opposite sides.
  • the projection shape of the portion of the current collecting grid line that is immediately adjacent to the bus grid line and the portion that intersects the bus grid line on the surface of the solar cell body is: an octagon.
  • the length and width of the entire solar cell are one of the following dimensions: (182 ⁇ 2) ⁇ (166 ⁇ 2) mm; (182 ⁇ 2) ⁇ (170.75 ⁇ 2) mm; (182 ⁇ 2) ⁇ (180 ⁇ 2) mm; (182 ⁇ 2) ⁇ (182 ⁇ 2) mm; (183.75 ⁇ 2) ⁇ (182 ⁇ 2) mm; (190 ⁇ 2) ⁇ (182 ⁇ 2) mm; (198 ⁇ 2) ⁇ (182 ⁇ 2) mm; (207 ⁇ 2) ⁇ (182 ⁇ 2) mm; (210 ⁇ 2) ⁇ (182 ⁇ 2) mm; (212 ⁇ 2) ⁇ (182 ⁇ 2) mm; (218 ⁇ 2) ⁇ (207 ⁇ 2) mm; (218.2 ⁇ 2) ⁇ (182 ⁇ 2) mm; (218.2 ⁇ 2) ⁇ (198 ⁇ 2) mm; (218.2 ⁇ 2) ⁇ (210 ⁇ 2) mm; (218.2 ⁇ 2) ⁇ (220 ⁇ 2) mm; (218.8 ⁇ 2) ⁇ (207 ⁇ 2) mm; (219 ⁇ 2) ⁇ (182 ⁇ 2) mm; (220 ⁇ 2) ⁇ (182 ⁇ 2)
  • a second aspect of the present application provides a sliced battery, which is obtained by asymmetrically cutting any of the aforementioned whole-chip solar cells along the preset cutting line.
  • the direction of the width of the segmented battery is perpendicular to the cutting line on the segmented battery, and the length of the segmented battery is equal to the width of the entire solar cell;
  • At least two segmented cells obtained by asymmetrically cutting a whole solar cell include at least one double segmented cell; the ratio of the length and width of the double segmented cell is 2 ⁇ 0.2.
  • a third aspect of the present application provides a photovoltaic module, including: a battery string formed of at least one whole-chip solar cell as any one of the foregoing, and/or at least one of the foregoing sliced cells.
  • the number of battery strings in the photovoltaic module is greater than or equal to 4.
  • the total number of whole solar cells and sliced cells in the photovoltaic module is: one of 36, 42, 48, 54, 60, 66, and 72.
  • a fourth aspect of the present application provides a photovoltaic roof, which includes: a plurality of any of the aforementioned photovoltaic modules, and the photovoltaic modules are installed on the roof of a building.
  • Figure 1 shows a schematic structural diagram of the first whole-chip solar cell in the embodiment of the present application
  • Figure 2 shows a schematic structural diagram of the second whole-chip solar cell in the embodiment of the present application
  • Figure 3 shows a schematic structural diagram of the third full-chip solar cell in the embodiment of the present application.
  • Figure 4 shows a partially enlarged structural schematic diagram of an entire solar cell in an embodiment of the present application
  • Figure 5 shows a partially enlarged structural schematic diagram of a collector grid line in an embodiment of the present application
  • Figure 6 shows a partially enlarged structural schematic diagram of another current collecting grid line in an embodiment of the present application.
  • Figure 7 shows a partially enlarged structural schematic diagram of yet another collector grid line in an embodiment of the present application.
  • FIG. 8 shows an enlarged schematic diagram of the partial distribution of a collector grid line and a bus grid line in an embodiment of the present application.
  • the solar cell can be, for example, HJT (Hetero-Junction with Intrinsic Thin-layer, heterojunction) solar cell, SHJ (Silicon Heterojunction solar cells, silicon heterojunction solar cell), IBC (Interdigited back) contact, interdigital back contact) solar cells, TOPcon (Tunnel Oxide Passivated Contact, tunnel oxide layer passivation contact) solar cells, PERC (Passivated Emitterand Rear Cell, passivated emitter and rear solar cells), etc.
  • HJT Hetero-Junction with Intrinsic Thin-layer, heterojunction
  • SHJ Silicon Heterojunction solar cells
  • IBC Interdigited back contact
  • TOPcon Tunnel oxide layer passivation contact
  • PERC Passivated Emitterand Rear Cell, passivated emitter and rear solar cells
  • Figure 1 shows a schematic structural diagram of the first whole-chip solar cell in the embodiment of the present application.
  • Figure 2 shows a schematic structural diagram of the second whole-chip solar cell in the embodiment of the present application.
  • Figure 3 shows a schematic structural diagram of the third whole-chip solar cell in the embodiment of the present application.
  • the black dots located in the middle area in Figures 1 to 3 indicate that details of the middle area are omitted.
  • the entire solar cell includes: a solar cell body and an electrode structure located on the surface of the solar cell body.
  • the electrode structure may include: several collector grid lines 11 distributed in parallel, and the collector grid lines 11 are used to collect carriers on the entire solar cell body.
  • the entire solar cell also includes a preset cutting line 12 located on the surface of the solar cell body.
  • the preset cutting line 12 can be a scribing line set before cutting.
  • the preset cutting line 12 can also be a virtual scribing line on the surface of the solar cell body. , used to design cutting paths and partition the solar cell body.
  • the preset cutting line 12 may be parallel to the current collecting grid line 11 .
  • the current collecting grid line 11 has a portion parallel to the preset cutting line 12 .
  • the solar cell body is the part of the entire solar cell that generates and separates carriers.
  • the solar cell body may be the part of the entire solar cell except for the electrode structure.
  • the surface of the solar cell body may be the surface on which the electrode structure is provided on the solar cell body.
  • the surface of the solar energy body is divided into several areas by preset cutting lines 12 .
  • the surface of the solar energy body is specifically divided into several regions by the preset cutting lines 12 and is not limited.
  • the preset cutting line 12 is 2 lines, the surface of the solar body is divided into 3 areas by preset cutting lines 12.
  • the spacing between the collector grid lines on an entire solar cell is equal.
  • the cutting of the entire solar cell is usually symmetrical.
  • the preset cutting lines on the surface of the solar cell body divide the surface of the solar cell body into large and small. Several equal areas, each area corresponds to a segmented battery. Since the size of each segmented battery is equal, then the carrier transmission distance on each segmented battery is approximately the same and relatively small, then each segment Battery resistance is relatively small.
  • the symmetric cutting of the existing technology usually cannot meet various power requirements and has poor regional adaptability, so asymmetric cutting is required.
  • the cutting line is preset, and after the surface of the solar body is divided, there are at least two areas of different sizes.
  • the collector grid on the larger segmented cell The spacing between the lines is equal to the spacing between the collector grid lines on the smaller sized tile cells, resulting in the larger sized tile cells due to the longer carrier transmission distance on the larger sized tile cells.
  • the resistance is large, and the carrier transmission distance of smaller sliced cells is relatively short, which may lead to a waste of material in the collector grid, resulting in a higher cost of the entire solar cell.
  • each area is divided into at least two groups according to the width W1.
  • the width W1 of each group is different, and the width W1 of each area in the same group is equal.
  • the width W1 of a group is the width W1 of an area in the group.
  • the width W1 of the area is in a direction perpendicular to the preset cutting line 12 .
  • Each area corresponds to a segmented cell, and the area is divided into at least two groups according to the width W1, which indicates that the entire solar cell will be asymmetrically cut during the subsequent cutting process, and several segmented cells of different sizes are obtained after cutting.
  • several segmented batteries of different sizes can meet a variety of power requirements and have good regional adaptability.
  • asymmetric cutting here means that for the whole solar cell, as long as the sizes of the two segmented cells obtained by any one cutting are not equal, it means that any of the two segmented cells is A segmented cell is obtained by asymmetrically cutting the entire solar cell. For example, two sliced cells are cut from one whole solar cell. The area of the light facing or backlight surface of one of the two sliced cells is larger than the light facing or backlight surface of the other sliced cell. area, then these two segmented cells are obtained by asymmetrically cutting a whole solar cell. For another example, three segmented cells are obtained by cutting a whole solar cell.
  • the area of the light facing or backlight surface of one of the three segmented cells is equal to the light facing or backlight surface of the whole piece of solar cell. half of the surface area, indicating that the segmented cell is symmetrically cut from the entire solar cell. 3 slices Among the other two in the pool, the area of the light facing or backlight surface of one segmented cell is larger than the area of the light facing or backlighting surface of the other segmented cell. Then, these two segmented cells are composed of a whole Solar cells are cut asymmetrically.
  • the number of groups of different widths contained in an entire solar cell only needs to be greater than or equal to 2.
  • the number of regions included in each group only needs to be greater than or equal to 1.
  • the widths W1 of the three areas divided by the two preset cutting lines 12 are not equal.
  • the entire solar cell body surface shown in Figure 1 is divided into three areas by the preset cutting lines 12.
  • the 3 areas are divided into 3 groups according to their width, and the number of areas in each group is 1.
  • the width W1 of the lowermost region is the largest
  • the width W1 of the uppermost region is in the middle
  • the width W1 of the middle region is the smallest.
  • the width W1 of the 3rd and 4th areas is equal, and the width W1 of the 3rd and 4th areas is equal from the top to bottom.
  • the 3rd and 4th areas are divided into a group, and the widths of the remaining 3 areas are not equal, then the entire solar cell body surface shown in Figure 2 is divided into 5 areas by the preset cutting line 12, 5
  • Each area is divided into 4 groups according to the width.
  • the 1st area is a group
  • the 2nd area is a group
  • the 3rd and 4th areas are a group
  • the 5th area is a group.
  • Each area is a group.
  • the width W1 of the lowermost area is the largest, along the direction from top to bottom, the width W1 of the second area is second, and the width W1 of the uppermost area is the largest again, along the direction from top to bottom. direction, the width W1 of the 3rd and 4th regions is the smallest.
  • the widths W1 of the three areas divided by the two preset cutting lines 12 are not equal.
  • the entire solar cell body surface shown in Figure 3 is divided into three areas by the preset cutting lines 12. Area, the 3 areas are divided into 3 groups according to their width, and the number of areas in each group is 1.
  • the width W1 of the lowermost region is the largest, the width W1 of the uppermost region is in the middle, and the width W1 of the middle region is the smallest.
  • the at least two groups include: a first group and a second group.
  • the spacing of the current collecting grid lines 11 in at least one area in the first group and at least one area in the second group is negatively correlated with the width of the first group and the second group. That is to say, in the first group and the second group, the greater the width of one group, the smaller the spacing of the current collecting grid lines 11 in at least one area of the group, and the smaller the width of the other group, the smaller the spacing of the current collecting grid lines 11 in at least one area of the group.
  • the larger the spacing between the collector grid lines 11 is.
  • Each area corresponds to a segmented battery, and the lengths of each segmented battery are equal.
  • a large width indicates that the size of the segmented battery is larger, and a small width indicates that the size of the segmented battery is small. That is to say, the spacing between the current collecting grid lines 11 on the larger segmented battery is smaller, and the spacing between the current collecting grid lines 11 on the smaller sized segmented battery is larger.
  • the carrier transmission distance on the larger segmented battery is longer, the spacing between the collector grid lines 11 on the larger segmented battery is smaller, the collector grid lines 11 are more densely distributed, and the size can be appropriately reduced.
  • the resistance of the larger sliced cell The spacing between the collector grid lines 11 on the smaller-sized sliced cells is larger, and the collector grid lines 11 are more distributed.
  • the carrier transmission distance of sparse and small-sized sliced cells is relatively short, which can reduce the material waste of the collector grid 11 and reduce the cost of the entire solar cell.
  • the first group and the second group among the three groups can both be: the uppermost area and the lowermost area.
  • the width W1 of the uppermost region is smaller than the width W1 of the lowermost region, so the spacing of the current collecting grid lines 11 in the uppermost region is greater than the spacing of the current collecting grid lines 11 in the lowermost region.
  • the uppermost area and the lowermost area the uppermost area has a smaller width W1 and a smaller size
  • the lowermost area has a larger width W1 and a larger size.
  • the size of the lowermost area is larger, the carrier transmission distance on the corresponding segmented battery is longer, and the spacing between the current collecting grid lines 11 is smaller, which can appropriately reduce the resistance of the segmented battery.
  • the size of the uppermost area is smaller, the carrier transmission distance on the corresponding sliced cell is shorter, and the spacing between the collector grid lines 11 is larger, which can appropriately reduce the cost of the entire solar cell.
  • the first group among the four groups shown in FIG. 2 may be the lowermost area, and the second group may be the third and fourth areas along the top-to-bottom direction.
  • the width W1 of the lowermost area is greater than the width W1 of the third and fourth areas. Therefore, the spacing between the current collecting grid lines 11 in the lowermost area is smaller than the width W1 of the current collecting grid lines in the third and fourth areas. 11 spacing.
  • the width W1 of the lowermost area is large and the size is large, while the width W1 of the third and fourth areas is small and the size is small.
  • the size of the lowermost area is larger, the carrier transmission distance on the corresponding segmented battery is longer, and the spacing between the current collecting grid lines 11 is smaller, which can appropriately reduce the resistance of the segmented battery.
  • the size of the third and fourth regions is smaller, the carrier transmission distance on the corresponding sliced cells is shorter, and the spacing between the current collecting grid lines 11 is larger, which can appropriately reduce the cost of the entire solar cell.
  • the number of regions in the first group is greater than 1, and/or the number of regions in the second group is greater than 1, and the spacing of the collector grid lines 11 in several regions in the first group, and the spacing of the collector grid lines 11 in the second group are The spacing of the current collecting grid lines 11 in several areas is inversely related to the width of the first group and the second group, and is not limited.
  • the spacing of the current collecting grid lines 11 in each region of the first group, the spacing of the current collecting grid lines 11 of a region in the second group may be negatively correlated with the widths of the first group and the second group.
  • the number of regions in the first group is n, n is greater than 1, and/or the number of regions in the second group is m, m is greater than 1, the spacing of the collector grid lines 11 of x regions in the first group, the second
  • the spacing of the current collecting grid lines 11 in the y areas in the group is negatively correlated with the width of the first group and the second group.
  • x is greater than 1, less than or equal to n
  • y is greater than 1, less than or equal to m.
  • the spacing of the current collecting grid lines 11 in the x areas in the first group may be equal or unequal, without any specific limitation.
  • the spacing of the current collecting grid lines 11 in the y area in the second group may be equal or unequal, without any specific limitation.
  • the spacing of the collecting grid lines 11 in y areas in the second group and have a negative correlation with the width of the first group and the second group, that is, Can.
  • the number of regions in the first group is 3 and the number of regions in the second group is 4, the width of the first group is greater than the width of the second group, the spacing between the collector grid lines 11 in the first group, area No. 11 and area 12, and the area No. 31 and area 32 in the second group
  • the spacing of the current collecting grid lines 11 in three areas, area No. 33 and area No. 33 is negatively correlated with the width of the first group and the second group.
  • the spacing of the current collecting grid lines 11 in area No. 11 and area No. 12 of the first group is not equal, and is smaller than the spacing of the current collecting grid lines 11 in area No. 31, area No. 32, and area No. 33 of the second group. spacing.
  • the spacing of the current collecting grid lines 11 in areas No. 31, 32, and 33 of the second group are all equal.
  • negative correlation here includes, but is not limited to, negative proportions, monotonically decreasing exponential functions, monotonically decreasing logarithmic functions, etc.
  • the spacing of the current collecting grid lines in each area in the first group and each area in the second group is negatively related to the width of the first group and the second group. Therefore, the larger size of the sliced battery
  • the upper carrier transmission distance is longer, and the spacing between the collector grid lines 11 on the larger-sized segmented batteries is smaller, which can reduce the resistance of each larger-sized segmented battery.
  • the spacing between the collector grid lines 11 on each smaller-sized segmented battery is larger, and the carrier transmission distance of the smaller-sized segmented battery is relatively shorter, which can further reduce the material waste of the collector grid lines 11. Reduce the cost of the entire solar cell.
  • the number of areas in the first group is 3, the number of areas in the second group is 4, the width of the first group is greater than the width of the second group, and the area No. 11, area No. 12, and area No. 13 in the first group total
  • the spacing between the current collector grid lines 11 in the three areas and the spacing between the current collector grid lines 11 in the second group of four areas, namely area 31, area 32, area 33, and area 34, are all the same as those in the first group.
  • the width of the second group is negatively correlated.
  • the spacing of the collector grid lines 11 in areas No. 11, 12, and 13 of the first group is smaller than that of the collector grid lines 11, 32, 33, and 34 of the second group. 11 spacing.
  • the spacing of the current collecting grid lines 11 in at least three areas in the first group and the second group is in negative proportion to the width of the first group and the second group.
  • the spacing of the current collecting grid lines 11 in the three regions is in negative proportion to the width of the first group and the second group.
  • the current collecting grid lines 11 in each area are easy to process and prepare. For negative ratios Specific proportional coefficients, etc. are not limited.
  • the spacing between the collector grid lines 11 of the larger group is less than or equal to 2 mm, and the spacing of the collector grid lines 11 of the smaller group is greater than or equal to 0.5. mm.
  • the spacing of the current collecting grid lines 11 on the same whole-chip solar cell is equal, but the spacing between the current-collecting grid lines 11 on different whole-chip solar cells may not be equal.
  • the spacing between the lines 11 and the spacing between the current collecting grid lines 11 in the second group is approximately the same as the spacing between the current collecting grid lines 11 on different whole-chip solar cells in the prior art.
  • the current collector grid lines 11 in the first group and the current collector grid lines 11 in the second group in this application can be prepared using different manufacturing processes for the current collector grid lines 11 on the entire solar cell.
  • the process improvement is small. , or basically no improvement is needed, and the production cost is lower.
  • the spacing of the collector grid lines 11 of the larger group is 0.6mm, 0.7mm, 0.85mm, 0.93mm, 1.02mm, 1.08mm, 1.8mm, 1.7mm, 1.5mm, 1.3mm, 1.2mm, 1.1mm, 2mm, the spacing of the collector grid lines 11 in a group with a smaller width is greater than or equal to 0.5mm, and at the same time, it is greater than the spacing of the collector grid lines 11 in the group with a larger width. spacing.
  • the spacing of the collector grid lines of the larger group is 0.5 to 1.1 mm, and the spacing of the collector grid lines of the smaller group is greater than 1.1 and less than or equal to 2mm.
  • the spacing of the current collecting grid lines 11 in the first group and the spacing of the current collecting grid lines 11 in the second group are different from the values of the spacing of the current collecting grid lines 11 on the entire solar cell in the prior art. The range is more suitable.
  • the first group of current collector grid lines 11 and the second group of current collector grid lines 11 in this application can be prepared.
  • the process basically does not need to be improved, and the production cost is lower.
  • the spacing of the collector grid lines 11 of the larger group is 0.5mm, 0.6mm, 0.7mm, 0.85mm, 0.93mm, 1.02mm, 1.08mm, 1.1mm.
  • the spacing of the collector grid lines 11 of a group with a smaller width is 2mm, 1.8mm, 1.73mm, 1.62mm, 1.6mm, 1.55mm, 1.3mm, 1.13mm.
  • one of the above areas corresponds to one segmented battery.
  • the width W1 of the sliced battery can be determined as follows: In this formula, Pm is the power required by the photovoltaic module, L is the length of the entire solar cell, W is the width of the entire solar cell, N is the number of entire solar cells used in the photovoltaic module, and Lp is the power of the photovoltaic module. Loss ratio, Lp can be the photovoltaic module power/the sum of the power of all the whole solar cells and all the sliced cells in the photovoltaic module, eta is the photoelectric conversion efficiency of the whole solar cell, and S is the area of the solar body surface.
  • Table 1 below is a parameter correspondence table of some sliced cells, photovoltaic modules, and whole solar cells provided in this application.
  • is 23.5%
  • Lp is 1%
  • the size of the segmented battery can be selected as shown in Table 1.
  • Table 1 Correspondence table of parameters between sliced cells, photovoltaic modules, and whole solar cells
  • the cutting ratio refers to the ratio of the width W1 of the segmented cell to the length L of the entire solar cell.
  • FIG. 4 shows a partially enlarged structural schematic diagram of an entire solar cell in an embodiment of the present application.
  • FIG. 5 shows a partially enlarged structural schematic diagram of a current collecting grid line in an embodiment of the present application.
  • FIG. 6 shows a partially enlarged structural schematic diagram of another current collecting grid line in an embodiment of the present application.
  • FIG. 7 shows a partially enlarged structural schematic diagram of yet another collector grid line in an embodiment of the present application.
  • FIG. 8 shows an enlarged schematic diagram of the partial distribution of a collector grid line and a bus grid line in an embodiment of the present application.
  • FIG. 4 can be an enlarged structural schematic diagram of the portion framed by the dotted line in FIG. 3 .
  • Figures 5, 6, and 7 can be enlarged structural schematic diagrams of the portion of the collector grid line 11 located in the dotted box in Figure 4.
  • FIG. 8 may be an enlarged structural schematic diagram of the part located in the dotted box in FIG. 4 .
  • the electrode structure may also include:
  • the bus grid lines 13 are arranged alternately.
  • the bus grid lines 13 are used to collect and conduct the carriers on the collector grid lines.
  • the bus grid line 13 is used to collect and conduct carriers on the current collector grid line 11 of the same polarity that is electrically connected thereto.
  • the line width of the portion 1111 adjacent to the bus grid line 13 and the portion intersecting the bus grid line 13 is larger than that of the remaining portions. line width.
  • the current collecting grid lines 11 immediately adjacent to the predetermined cutting line 12 refer to the two current collecting grid lines on both sides of the predetermined cutting line 12 and closest to the predetermined cutting line 12 .
  • the portion 111 of the collector grid line 11 located in the dotted box is the portion 1111 of the collector grid line 11 that is adjacent to the preset cutting line 12 , the portion 1111 that is adjacent to the bus grid line 13 , and the portion that intersects with the bus grid line 13 .
  • the line width of the portion 1111 adjacent to the bus grid line 13 and the portion intersecting with the bus grid line 13 is greater than the line width of the remaining portions, that is, That is, no electrode disk is provided in the area immediately adjacent to the preset cutting line 12, but a part of the current collector grid line 11 with a larger line width is used to replace the electrode disk and be electrically connected to the interconnection component in the series.
  • the size of the collector grid line 11 with a larger line width is still smaller than the size of the electrode plate.
  • the height of the collector grid line 11 protruding from the solar cell body is smaller, and this part of the collector grid with a larger line width is smaller.
  • the electric grid wire is less affected by cutting, which can improve the reliability of the photovoltaic module.
  • the electrical connection reliability of the part of the collector grid line with the larger line width to the bus grid line 13 is better, and the reliability of the electrical connection with the interconnection components in the series is also better.
  • the portion of the current collector grid line 11 adjacent to the preset cutting line 12 that intersects with the bus grid line 13 is: among the current collector grid lines 11 adjacent to the preset cutting line 12 ,
  • the projection of the surface of the solar cell body coincides with the projection of the bus grid 13 on the surface of the solar cell body.
  • the portion 1111 of the current collecting grid line 11 adjacent to the preset cutting line 12 and adjacent to the bus grid line 13 is the portion of the current collecting grid line 11 adjacent to the preset cutting line 12 located on both sides of the bus grid line 13 .
  • the close proximity here may only be a total of two collector grid lines 11 that are close to the preset cutting line 12 and located on both sides of the preset cutting line 12, or they may be close to the preset cutting line 12 and located at the preset cutting line 12.
  • the length ratio of the portion 1111 adjacent to the bus grid line 13 and the portion (not marked in the figure) intersecting with the bus grid line 13 is (1: 1) to (2:1).
  • the ratio of the lengths of the portion 1111 immediately adjacent to the bus grid line 13 and the portion intersecting the bus grid line 13 is within this range, and is less affected by cutting, which can further improve the performance of the photovoltaic module. reliability.
  • the electrical connection reliability of the part of the collector grid line with the larger line width to the bus grid line 13 is better, and the reliability of the electrical connection with the interconnection components in the series is also better.
  • the length ratios of the portion 1111 of the collector grid line 11 that is adjacent to the preset cutting line 12 and that is adjacent to the bus grid line 13 and the portion that intersects with the bus grid line 13 are 1:1, 1.1:1, 1.3:1, and 1.5. :1, 1.6:1, 1.72:1, 1.83:1, 1.9:1, 1.93:1, 2:1.
  • the portion 1111 adjacent to the bus grid lines 13 and the portion intersecting the bus grid lines have a line width of 0.1 to 0.3 mm.
  • the impact of cutting is smaller, which can further improve the reliability of photovoltaic modules.
  • the electrical connection reliability of the part of the collector grid line with the larger line width to the bus grid line 13 is better, and the reliability of the electrical connection with the interconnection components in the series is also better.
  • the line widths of the portion 1111 adjacent to the bus grid line 13 and the portion intersecting with the bus grid lines are 0.1 mm, 0.1 mm, 0.13 mm, 0.18 mm, and 0.20 mm. mm, 0.21 mm, 0.24 mm, 0.26 mm, 0.29 mm, 0.3 mm.
  • the portion 1111 of the collector grid line 11 that is immediately adjacent to the bus grid line 13 is symmetrical with respect to the bus grid line 13 that intersects it.
  • the portion 1111 adjacent to the bus grid line 13 and the portion intersecting the bus grid line 13 have relatively regular shapes and are easy to process and prepare.
  • the part of the collector grid line with a larger line width is less affected by cutting and more uniform, which can further improve the reliability of the photovoltaic module.
  • the electrical connection reliability of the part of the collector grid line with the larger line width to the bus grid line 13 is better, and the reliability of the electrical connection with the interconnection components in the series is also better.
  • the total length L1 of the portion 1111 of the collector grid line 11 that is immediately adjacent to the bus grid line 13 and the portion that intersects with the bus grid line 13 is 1 to 3 millimeters.
  • the total length L1 of the portion 1111 immediately adjacent to the bus grid line 13 and the portion intersecting the bus grid line 13 is within this range, which can further improve the reliability of the photovoltaic module.
  • the electrical connection reliability of the part of the collector grid line with the larger line width to the bus grid line 13 is better, and the reliability of the electrical connection with the interconnection components in the series is also better.
  • the line width of each part of the collector grid line 11 adjacent to the preset cutting line 12 and the portion 1111 adjacent to the bus grid line 13 is related to the bus grid line 13 that intersects it.
  • the distance of the intersection point is negatively related.
  • the intersection point here may be: the geometric center of the intersection of the current collecting grid line 11 and the bus grid line 13 .
  • the shape of the projection of the portion 1111 of the collector grid 11 that is immediately adjacent to the bus grid 13 and the portion intersecting with the bus grid 13 on the surface of the solar cell body is: Polygons greater than or equal to 4.
  • the polygon includes two oppositely distributed first sides 1112 , and the two first sides 1112 are perpendicular to the current collecting grid line 11 .
  • the line connecting the midpoints of the two first sides 1112 is parallel to the current collecting grid line 1112, and the distance between the two first sides 1112 is greater than the distance between the other two opposite sides.
  • the spacing between the two first sides 1112 is the total length L1 of the portion 1111 of the collector grid line 11 that is adjacent to the bus grid line 13 and the portion that intersects with the bus grid line 13.
  • the shape of the portion 1111 of the grid line 13 and the portion intersecting with the bus grid line 13 is relatively regular, flexible, and easy to process and manufacture.
  • the portion 1111 of the current collecting grid line 11 that is adjacent to the bus grid line 13 and the portion that intersects with the bus grid line 13 are decagonal.
  • the portion of the current collecting grid line 11 that is immediately adjacent to the bus grid line 13 and the portion that intersects with the bus grid line 13 has an octagonal shape projected onto the surface of the solar cell body.
  • the portion 1111 adjacent to the bus grid line 13 and the portion intersecting with the bus grid line 13 are relatively regular in shape and are easy to process and manufacture.
  • the length and width of the entire solar cell are one of the following dimensions: (182 ⁇ 2) ⁇ (166 ⁇ 2) mm, (182 ⁇ 2) ⁇ (170.75 ⁇ 2) mm, (182 ⁇ 2) ⁇ (180 ⁇ 2)mm, (182 ⁇ 2) ⁇ (182 ⁇ 2)mm, (183.75 ⁇ 2) ⁇ (182 ⁇ 2)mm, (190 ⁇ 2) ⁇ (182 ⁇ 2)mm, ( 198 ⁇ 2) ⁇ (182 ⁇ 2)mm, (207 ⁇ 2) ⁇ (182 ⁇ 2)mm, (210 ⁇ 2) ⁇ (182 ⁇ 2)mm, (212 ⁇ 2) ⁇ (182 ⁇ 2)mm , (218 ⁇ 2) ⁇ (207 ⁇ 2) mm, (218.2 ⁇ 2) ⁇ (182 ⁇ 2) mm, (218.2 ⁇ 2) ⁇ (198 ⁇ 2) mm, (218.2 ⁇ 2) ⁇ (210 ⁇ 2 )mm, (218.2 ⁇ 2) ⁇ (220 ⁇ 2)mm, (218.8 ⁇ 2) ⁇ (207 ⁇ 2)mm, (219 ⁇ 2) ⁇ (182 ⁇ 2)mm, (220 ⁇ 2) ⁇ (182 ⁇ 2) mm, (227.2)
  • the length and width of the entire solar cell are flexible and diverse.
  • the power of the photovoltaic module formed by the entire solar cell or the segmented cells obtained by cutting the entire solar cell is flexible and diverse, and can meet a wide range of power requirements.
  • the power is basically There will be no interruption, and, by the
  • the photovoltaic roof formed by photovoltaic modules is also flexible and diverse, has good regional adaptability, and has a wider geographical scope of application.
  • Embodiments of the present application also provide a segmented battery, which is obtained by asymmetrically cutting any of the aforementioned whole solar cells along the above-mentioned preset cutting line 12, and one area corresponds to one segmented battery.
  • This segmented cell has the same or similar beneficial effects as the aforementioned whole-chip solar cell, and to avoid repetition, they will not be described again here.
  • the direction of the width of the segmented battery is perpendicular to the cutting line on the segmented battery, and the direction of the length of the segmented battery is parallel to the cutting line, and the direction of the length of the segmented battery is parallel to the cutting line.
  • the length of the segmented cell is equal to the width W of the entire solar cell.
  • At least two segmented cells obtained by asymmetrically cutting a whole solar cell include at least one double segmented cell, and the ratio of the length and width of the double segmented cell is 2 ⁇ 0.2.
  • the ratio of the length and width of the double-segmented battery is 1.8, 1.9, 1.97, 2, 2.03, 2.09, 2.1, 2.13, 2.2.
  • the length and width of the entire solar cell are equal and are cut symmetrically. Then, the ratio of the length and width of the segmented cell in the prior art is approximately 2.
  • the two solar cells obtained by asymmetric cutting are The ratio of the length and width of the double-slice battery can also be 2, or very close to 2.
  • the double-slice battery in the embodiment of the present application has good dimensional compatibility with the existing technology, and the double-slice battery corresponds to
  • the processes can all adopt the processes corresponding to the existing segmented cells, etc., and the cost is relatively low, and in the embodiment of the present application, other segmented cells obtained by asymmetrically cutting a whole solar cell can meet more power requirements. , can avoid power outages, and the photovoltaic roof formed by the photovoltaic modules is also flexible and has good regional adaptability.
  • the two-fold slices obtained by asymmetrically cutting a whole-chip solar cell are well adapted to region A, while the other sliced cells obtained by asymmetrically cutting the whole-chip solar cell can be well adapted to region B.
  • the uppermost segmented battery is a double segmented battery, and the ratio of its length and width W1 is 2:1.
  • the double-segmented cells in Figure 3 are used in region A.
  • the photovoltaic modules and photovoltaic roofs corresponding to the double-segmented cells have better adaptability to region A.
  • Other segmented cells are used in region B.
  • the photovoltaic modules and photovoltaic roofs corresponding to other segmented cells except double segmented cells have better adaptability to region B.
  • segmented cells in this application are not only compatible with existing technology segmented cells, but also can meet more power demands and reduce power outages as much as possible, and their corresponding photovoltaic modules and photovoltaic roofs have Better regional adaptability and wider geographical scope of application.
  • the preset cutting line 12 or the cutting line can generally be parallel to the current collecting grid line 12 .
  • the current collecting grid line 12 has a portion parallel to the preset cutting line 12 or the cutting line.
  • the length direction of the segmented battery is parallel to the cutting line. Therefore, in the segmented battery: the length direction can be parallel to the current collecting grid line 12, or the current collecting grid line 12 has a portion parallel to the length direction. point.
  • the direction of the length can be perpendicular to the preset cutting line 12. Therefore, the direction of the length can be perpendicular to the current collecting grid line 12, or the current collecting grid line 12 has a direction with the length. vertical part.
  • the direction of the length of the sliced solar cell is parallel to the current collecting grid line 12, while in the entire solar cell, the direction of the length L is perpendicular to the current collecting grid line 12. Therefore, The length of the segmented cells is equal to the width W of the entire solar cell.
  • the sum of the widths W1 of the individual segmented cells obtained by cutting the entire solar cell is equal to the length L of the entire solar cell.
  • the sum of the widths W1 of the three segmented cells in Figures 1 and 3 is equal to the length L of the entire solar cell.
  • the sum of the widths W1 of the five segmented cells in Figure 2 is equal to the length L of the entire solar cell.
  • the present application also provides a photovoltaic module, including: a battery string formed from at least one whole-chip solar cell and/or at least one segmented battery.
  • This photovoltaic module has the same or similar beneficial effects as any of the aforementioned whole-chip solar cells and/or sliced cells. To avoid repetition, they will not be described again here.
  • the number of battery strings in the photovoltaic module is greater than or equal to 4.
  • the number of battery strings in the photovoltaic module is more appropriate, and the power of the formed photovoltaic module can meet most of the power requirements, and there will be basically no power interruption.
  • the number of battery strings in the photovoltaic module can be 4, 5, 6, 7, and integer multiples of 4, 5, 6, 7, etc.
  • the total number of whole-chip solar cells and segmented cells in the photovoltaic module is one of: 36, 42, 48, 54, 60, 66, and 72.
  • the total number of whole-chip solar cells and segmented cells in the photovoltaic module is The number of cells is more appropriate, and the power of the photovoltaic module formed can meet most of the power requirements, and the power will basically not be interrupted.
  • the photovoltaic roof includes a plurality of any of the aforementioned photovoltaic modules.
  • the photovoltaic module is installed on the roof of a building. Since the size and power of the photovoltaic module are more flexible, it can meet the power of the photovoltaic module. demand, and the power of photovoltaic modules will basically not be interrupted, and can adapt to the size or power needs of different regions. Therefore, the formed photovoltaic roof has better flexibility and compatibility with building roofs in different regions. The sex is better too.
  • the number of photovoltaic modules included in the photovoltaic roof is not specifically limited, and the specific size, shape, etc. of the building roof are not specifically limited either.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

整片太阳能电池、分片电池、光伏组件及光伏屋顶,其中,整片太阳能电池包括:太阳能电池本体,位于太阳能电池本体表面的电极结构,以及位于太阳能电池本体表面的预设切割线(12);电极结构包括:平行分布的若干条集电栅线(11);太阳能电池本体表面被预设切割线(12)划分为若干个区域;若干个区域按照宽度大小分为至少两个组;至少两个组包括:第一组和第二组;第一组中至少一个区域、第二组中至少一个区域的集电栅线(11)的间距,和第一组、第二组的宽度负相关。尺寸较大的分片电池上的集电栅线(11)分布更密集,减小了尺寸较大的分片电池的电阻;尺寸较小的分片电池上的集电栅线(11)分布更稀疏,减少了整片太阳能电池的成本。

Description

整片太阳能电池、分片电池、光伏组件及光伏屋顶
相关申请的交叉引用
本申请要求在2022年08月12日提交中国专利局、申请号为202222131788.2、发明名称为“整片太阳能电池、分片电池、光伏组件及光伏屋顶”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏发电技术领域,特别是涉及一种整片太阳能电池、分片电池、光伏组件及光伏屋顶。
背景技术
太阳能电池能够将再生清洁能源光能转换为电能,因此,具有广阔的应用前景。
然而,现有的整片太阳能电池的栅线设计,容易导致由该整片太阳能电池切割得到的分片电池电阻较大,且整片太阳能电池的成本较高。
发明内容
本申请提供一种整片太阳能电池、分片电池、光伏组件及光伏屋顶,旨在解决由现有技术的整片太阳能电池切割得到的分片电池电阻较大,且整片太阳能电池的成本较高的问题。
本申请的第一方面,提供了一种整片太阳能电池,包括:太阳能电池本体,位于所述太阳能电池本体表面的电极结构,以及位于所述太阳能本体表面的预设切割线;
所述电极结构包括:平行分布的若干条集电栅线,所述集电栅线用于收集所述太阳能电池本体的载流子;
所述太阳能本体表面被所述预设切割线划分为若干个区域;
所述若干个区域按照宽度大小分为至少两个组;所述至少两个组包括:第一组和第二组;所述区域的宽度所在的方向和所述预设切割线垂直;
其中,所述第一组中至少一个区域、所述第二组中至少一个区域的集电栅线的间距,和所述第一组、所述第二组的宽度负相关。
本申请中,整片太阳能电池切割后,尺寸较大的分片电池上的集电栅线 之间的间距较小,尺寸较小的分片电池上的集电栅线之间的间距较大。尺寸较大的分片电池上载流子传输距离较长,尺寸较大的分片电池上的集电栅线之间的间距较小,集电栅线分布更密集,可以适当减小尺寸较大的分片电池的电阻。尺寸较小的分片电池上的集电栅线之间的间距较大,集电栅线分布更稀疏,尺寸较小的分片电池载流子传输距离相对较短,可以减少集电栅线的材料浪费,减少整片太阳能电池的成本。
可选的,所述第一组中每一个区域、所述第二组中每一个区域的集电栅线的间距,均和所述第一组、所述第二组的宽度负相关。
可选的,所述第一组和所述第二组中至少三个区域的集电栅线的间距,和所述第一组、所述第二组的宽度成负比。
可选的,所述第一组和所述第二组中,宽度较大的一个组的集电栅线的间距小于或等于2mm,宽度较小的一个组的集电栅线的间距大于或等于0.5mm。
可选的,所述第一组和所述第二组中,宽度较大的一个组的集电栅线的间距为0.5至1.1mm,宽度较小的一个组的集电栅线的间距大于1.1小于或等于2mm。
可选的,所述电极结构还包括:与所述集电栅线相交分布的汇流栅线,所述汇流栅线用于汇集并传导所述集电栅线上的载流子;
至少紧邻所述预设切割线的所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分的线宽,大于其余部分的线宽;
其中,紧邻所述汇流栅线的部分,和与所述汇流栅线相交的部分的长度比值为(1:1)至(2:1)。
可选的,所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分的线宽为0.1至0.3毫米。
可选的,所述集电栅线中,紧邻所述汇流栅线的部分,关于与其相交的汇流栅线对称。
可选的,所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分的总长度为1至3毫米。
可选的,所述集电栅线中,紧邻所述汇流栅线的部分中各处的线宽,关于与其相交的汇流栅线的交点的距离负相关。
可选的,所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分,在所述太阳能电池本体表面的投影的形状为:大于或等于4的多边形;
所述多边形包括相对分布的两条第一边,所述两条第一边与所述集电栅 线垂直;
两条所述第一边的中点的连线,和所述集电栅线平行,所述两条第一边之间的间距,大于其余相对的两条边之间的间距。
可选的,所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分,在所述太阳能电池本体表面的投影的形状为:八边形。
可选的,所述整片太阳能电池的长度和宽度为下述尺寸中的一种:
(182±2)×(166±2)毫米;
(182±2)×(170.75±2)毫米;
(182±2)×(180±2)毫米;
(182±2)×(182±2)毫米;
(183.75±2)×(182±2)毫米;
(190±2)×(182±2)毫米;
(198±2)×(182±2)毫米;
(207±2)×(182±2)毫米;
(210±2)×(182±2)毫米;
(212±2)×(182±2)毫米;
(218±2)×(207±2)毫米;
(218.2±2)×(182±2)毫米;
(218.2±2)×(198±2)毫米;
(218.2±2)×(210±2)毫米;
(218.2±2)×(220±2)毫米;
(218.8±2)×(207±2)毫米;
(219±2)×(182±2)毫米;
(220±2)×(182±2)毫米;
(227.8±2)×(182±2)毫米;
(227.8±2)×(218.8±2)毫米;
(228±2)×(182±2)毫米;
(253±2)×(182±2)毫米;
(253±2)×(218±2)毫米;
(274±2)×(207±2)毫米;
(274±2)×(227.8±2)毫米;
(274±2)×(253±2)毫米;
(275±2)×(198±2)毫米;
(275±2)×(210±2)毫米;
(275±2)×(220±2)毫米;
(275±2)×(230±2)毫米;
(282±2)×(220±2)毫米。
本申请的第二方面,提供了一种分片电池,由任一前述的整片太阳能电池,沿所述预设切割线,非对称切割得到。
可选的,所述分片电池的宽度所在的方向,与所述分片电池上的切割线垂直,所述分片电池的长度等于所述整片太阳能电池的宽度;
一个所述整片太阳能电池非对称切割得到的至少两个分片电池中,包括至少一个二倍分片电池;所述二倍分片电池的长度和宽度的比值为2±0.2。
本申请的第三方面,提供了一种光伏组件,包括:由至少一个如任一前述的整片太阳能电池,和/或,至少一个前述的分片电池形成的电池串。
可选的,所述光伏组件中的电池串的数量大于或等于4。
可选的,所述光伏组件中的整片太阳能电池和分片电池的总数量为:36、42、48、54、60、66、72中的一个。
本申请的第四方面,提供了一种光伏屋顶,包括:若干个任一前述的光伏组件,所述光伏组件安装在建筑屋顶上。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例中的第一种整片太阳能电池的结构示意图;
图2示出了本申请实施例中的第二种整片太阳能电池的结构示意图;
图3示出了本申请实施例中的第三种整片太阳能电池的结构示意图;
图4示出了本申请实施例中的一种整片太阳能电池的局部放大结构示意图;
图5示出了本申请实施例中的一种集电栅线的局部放大结构示意图;
图6示出了本申请实施例中的另一种集电栅线的局部放大结构示意图;
图7示出了本申请实施例中的还一种集电栅线的局部放大结构示意图;
图8示出了本申请实施例中的一种集电栅线和汇流栅线的局部分布放大示意图。
附图标记说明:
11-集电栅线,12-预设切割线,13-汇流栅线,111-紧邻预设切割线12
的集电栅线中,紧邻汇流栅线的部分,以及与汇流栅线相交的部分,1111-紧邻汇流栅线13的部分,1112-第一边。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提供一种太阳能电池,太阳能电池例如可以为HJT(Hetero-Junction with Intrinsic Thin-layer,异质结)太阳能电池、SHJ(Silicon Heterojunction solar cells,硅异质结太阳能电池)、IBC(Interdigited back contact,叉指背接触)太阳能电池、TOPcon(Tunnel Oxide Passivated Contact,隧穿氧化层钝化接触)太阳能电池、PERC(Passivated Emitterand Rear Cell,钝化发射极和背面太阳能电池)等。
图1示出了本申请实施例中的第一种整片太阳能电池的结构示意图。图2示出了本申请实施例中的第二种整片太阳能电池的结构示意图。图3示出了本申请实施例中的第三种整片太阳能电池的结构示意图。图1至图3中位于中间区域的黑点表示对该中间区域的细节省略的意思。
参照图1至图3所示,本申请中,整片太阳能电池包括:太阳能电池本体,位于太阳能电池本体表面的电极结构。该电极结构可以包括:平行分布的若干条集电栅线11,该集电栅线11用于收集整片太阳能电池本体上的载流子。该整片太阳能电池还包括位于太阳能本体表面的预设切割线12,该预设切割线12可以为切割之前设置的划线,该预设切割线12也可以为太阳能电池本体表面的虚拟划线,用于设计切割路径和对太阳能电池本体进行分区。该预设切割线12可以与集电栅线11平行。或者,集电栅线11具有与预设切割线12平行的部分。太阳能电池本体为整片太阳能电池中产生并分离载流子的部分。例如,太阳能电池本体可以为整片太阳能电池中除了电极结构之外的部分。
太阳能本体表面可以为太阳能电池本体设置电极结构的表面。太阳能本体表面被预设切割线12划分为若干个区域。太阳能本体表面被预设切割线12具体划分为几个区域不作限定。例如,图1、图3中,预设切割线12为2 条,太阳能本体表面被预设切割线12划分为3个区域。图2中,预设切割线12为4条,太阳能本体表面被预设切割线12划分为5个区域。
发明人发现,现有技术中,整片太阳能电池的栅线设计,容易导致由该整片太阳能电池切割得到的分片电池电阻较大,且整片太阳能电池的成本较高的主要原因在于:现有技术中,一个整片太阳能电池上的集电栅线的间距均相等,对于整片太阳能电池的切割通常是对称切割,太阳能电池本体表面的预设切割线,将太阳能本体表面划分为大小相等的若干个区域,每个区域对应一个分片电池,由于,每个分片电池尺寸相等,则,每个分片电池上载流子传输距离大致相等,且相对较小,则,各个分片电池电阻相对较小。然而,现有技术的对称切割通常无法满足多种功率需求,且地域适应性较差,需要进行非对称切割。采用现有技术的整片太阳能电池进行非对称切割过程中,预设切割线,将太阳能本体表面划分后,至少具有两个尺寸不等的区域,尺寸较大的分片电池上的集电栅线之间的间距和尺寸较小的分片电池上的集电栅线之间的间距均相等,由于尺寸较大的分片电池上载流子传输距离较长,导致尺寸较大的分片电池的电阻较大,而尺寸较小的分片电池载流子传输距离相对较短,又可能会导致集电栅线的材料浪费,导致整片太阳能电池的成本较高。
参照图1至图3所示,针对上述问题,本申请中,若干个区域按照宽度W1大小分为至少两个组,各个组的宽度W1不等,同一组中的各个区域的宽度W1相等,一个组的宽度W1就是该组中一个区域的宽度W1。区域的宽度W1所在的方向和预设切割线12垂直。每个区域对应一个分片电池,区域按照宽度W1大小分为至少两个组,表征该整片太阳能电池后续在切割过程中会存在非对称切割,切割得到大小不完全相同的若干个分片电池,大小不完全相同的若干个分片电池能够满足多种功率需求,且地域适应性较好。
需要说明的是,此处的非对称切割是指,对于该整片太阳能电池而言,只要任意一次切割得到的两个分片电池的大小不相等,就表征这两个分片电池中的任意一个分片电池由该整片太阳能电池非对称切割得到。例如,2个分片电池由一个整片太阳能电池切割得到,2个分片电池中的一个分片电池的向光面或背光面的面积,大于另一个分片电池的向光面或背光面的面积,则,这2个分片电池即由一个整片太阳能电池非对称切割得到。再例如,3个分片电池由一个整片太阳能电池切割得到,3个分片电池中的1个分片电池的向光面或背光面的面积等于该整片太阳能电池的向光面或背光面的面积的一半,表明该分片电池由该整片太阳能电池对称切割得到。3个分片电 池中的另外2个中,一个分片电池的向光面或背光面的面积,大于另一个分片电池的向光面或背光面的面积,则,这2个分片电池即由一个整片太阳能电池非对称切割得到。
一个整片太阳能电池包含的宽度不等的组的数量只需要大于或等于2即可。各个组中包括的区域的数量大于等于1即可。例如,图1中,两条预设切割线12划分后的3个区域的宽度W1均不相等,则,图1所示的整片太阳能电池本体表面被预设切割线12划分为3个区域,3个区域按照宽度大小,分为3个组,每个组中区域的数量均为1。图1中,最靠下的区域的宽度W1最大,最靠上的区域的宽度W1居中,位于中间的区域的宽度W1最小。再例如,图2中,4条预设切割线12划分后的5个区域中,沿着从上至下的方向,第3和第4个区域的宽度W1相等,将从上至下的方向,第3和第4个区域划分为一个组,其余的3个区域的宽度均不相等,则,图2所示的整片太阳能电池本体表面被预设切割线12划分为5个区域,5个区域按照宽度大小,分为4个组,沿着从上至下的方向,第1个区域为一个组,第2个区域为一个组,第3和第4个区域为一个组,第5个区域为一个组。图2中,最靠下的区域的宽度W1最大,沿着从上至下的方向,第2个区域的宽度W1次之,最靠上的区域的宽度W1再次之,沿着从上至下的方向,第3和第4个区域的宽度W1最小。再例如,图3中,两条预设切割线12划分后的3个区域的宽度W1均不相等,则,图3所示的整片太阳能电池本体表面被预设切割线12划分为3个区域,3个区域按照宽度大小,分为3个组,每个组中区域的数量均为1。图3中,最靠下的区域的宽度W1最大,最靠上的区域的宽度W1居中,位于中间的区域的宽度W1最小。
该至少两个组包括:第一组和第二组。其中,第一组中至少一个区域、第二组中至少一个区域的集电栅线11的间距,和第一组、第二组的宽度负相关。就是说,第一组和第二组中,一个组的宽度越大,该组中至少一个区域的集电栅线11的间距越小,另一个组的宽度越小,该组中至少一个区域的集电栅线11的间距越大。每个区域对应一个分片电池,各个分片电池的长度相等,宽度大说明该分片电池的尺寸较大,宽度小表明该分片电池的尺寸小。就是说,尺寸较大的分片电池上的集电栅线11之间的间距较小,尺寸较小的分片电池上的集电栅线11之间的间距较大。尺寸较大的分片电池上载流子传输距离较长,尺寸较大的分片电池上的集电栅线11之间的间距较小,集电栅线11分布更密集,可以适当减小尺寸较大的分片电池的电阻。尺寸较小的分片电池上的集电栅线11之间的间距较大,集电栅线11分布更 稀疏,尺寸较小的分片电池载流子传输距离相对较短,可以减少集电栅线11的材料浪费,减少整片太阳能电池的成本。
如图1、图2、图3所示的3个组中的第一组和第二组均可以为:最靠上的区域,以及最靠下的区域。最靠上的区域的宽度W1,小于最靠下的区域的宽度W1,则,最靠上的区域中集电栅线11的间距,大于最靠下的区域中集电栅线11的间距。最靠上的区域和最靠下的区域中,最靠上的区域的宽度W1小,尺寸小,最靠下的区域的宽度W1大,尺寸大。最靠下的区域的尺寸较大,对应的分片电池上载流子传输距离较长,集电栅线11之间的间距较小,可以适当减小该分片电池的电阻。最靠上的区域的尺寸较小,对应的分片电池上载流子传输距离较短,集电栅线11之间的间距较大,可以适当减少整片太阳能电池的成本。
再例如,图2所示的4个组中的第一组可以为:最靠下的区域,第二组可以为沿着从上至下的方向的第3和第4个区域。最靠下的区域的宽度W1,大于第3和第4个区域的宽度W1,则,最靠下的区域中集电栅线11的间距,小于第3和第4个区域中集电栅线11的间距。最靠下的区域和第3和第4个区域中,最靠下的区域的宽度W1大,尺寸大,第3和第4个区域的宽度W1小,尺寸小。最靠下的区域的尺寸较大,对应的分片电池上载流子传输距离较长,集电栅线11之间的间距较小,可以适当减小该分片电池的电阻。第3和第4个的区域的尺寸较小,对应的分片电池上载流子传输距离较短,集电栅线11之间的间距较大,可以适当减少整片太阳能电池的成本。
需要说明的是,第一组中的区域数量大于1,和/或,第二组中的区域数量大于1,第一组中的几个区域的集电栅线11的间距、第二组中几个区域的集电栅线11的间距,和第一组、第二组的宽度负相关不作限定。例如,可以是第一组中的每一个区域的集电栅线11的间距、第二组中的一个区域的集电栅线11的间距,和第一组、第二组的宽度负相关。
第一组中的区域数量为n,n大于1,和/或,第二组中的区域数量为m,m大于1,第一组中x个区域的集电栅线11的间距、第二组中的y个区域的集电栅线11的间距,和第一组、第二组的宽度负相关。x大于1,小于或等于n,y大于1,小于或等于m。第一组中x个区域的集电栅线11的间距可以相等或不等,不作具体限定,第二组中y区域的集电栅线11的间距可以相等或不等,不作具体限定,只需满足前述的第一组中x个区域的集电栅线11的间距、第二组中的y个区域的集电栅线11的间距,和第一组、第二组的宽度负相关即可。例如,第一组中的区域数量为3,第二组中的区域数量 为4,第一组的宽度大于第二组的宽度,第一组中的11号区域和12号区域共2个区域的集电栅线11的间距,和第二组的31号区域、32号区域、33号区域共3个区域的集电栅线11的间距,和第一组、第二组的宽度负相关。第一组的11号区域和12号区域的集电栅线11的间距,均小于第二组的31号区域、32号区域、33号区域的集电栅线11的间距。同时,第一组的11号区域和12号区域的集电栅线11的间距并不相等,且均小于第二组的31号区域、32号区域、33号区域的集电栅线11的间距。第二组的31号区域、32号区域、33号区域的集电栅线11的间距均相等。
需要说明的是,此处的负相关包括但并不限于,负比例、单调递减的指数函数、单调递减的对数函数等。
可选的,第一组中每一个区域、第二组中每一个区域的集电栅线的间距,均和第一组、第二组的宽度负相关,进而,尺寸较大的分片电池上载流子传输距离较长,尺寸较大的分片电池上的集电栅线11之间的间距均较小,可以减小各个尺寸较大的分片电池的电阻。各个尺寸较小的分片电池上的集电栅线11之间的间距较大,尺寸较小的分片电池载流子传输距离相对较短,可以进一步减少集电栅线11的材料浪费,减少整片太阳能电池的成本。需要说明的是,在第一组中的区域的数量大于1的情况下,第一组中的各个区域的集电栅线11之间的间距是否相等,不作具体限定。在第二组中的区域的数量大于1的情况下,第二组中的各个区域的集电栅线11之间的间距是否相等,也不作具体限定。
例如,第一组中的区域数量为3,第二组中的区域数量为4,第一组的宽度大于第二组的宽度,第一组的11号区域、12号区域、13号区域共3个区域的集电栅线11的间距,和第二组的31号区域、32号区域、33号区域、34号区域共4个区域的集电栅线11的间距,均和第一组、第二组的宽度负相关。第一组的11号区域、12号区域、13号区域的集电栅线11的间距,均小于第二组的31号区域、32号区域、33号区域、34号区域的集电栅线11的间距。同时,第一组的11号区域、12号区域、13号区域的集电栅线11的间距并不相等,且均小于第二组的31号区域、32号区域、33号区域、34号区域的集电栅线11的间距。第二组的31号区域、32号区域、33号区域、34号区域的集电栅线11的间距均相等。
可选的,第一组和第二组中至少三个区域的集电栅线11的间距,和第一组、第二组的宽度成负比。三个区域的集电栅线11的间距和第一组、第二组的宽度成负比,各个区域的集电栅线11易于加工制备。对于负比中的 具体比例系数等不作限定。
可选的,第一组和第二组中,宽度较大的一个组的集电栅线11的间距小于或等于2mm,宽度较小的一个组的集电栅线11的间距大于或等于0.5mm。现有技术中,同一个整片太阳能电池上的集电栅线11的间距相等,不同的整片太阳能电池上的集电栅线11的间距可能不相等,上述第一组中的集电栅线11的间距和第二组中的集电栅线11的间距,与现有技术中不同的整片太阳能电池上的集电栅线11的间距的取值范围大致相同,进而,采用现有技术的不同的整片太阳能电池上的集电栅线11的制备工艺,就可以制备本申请中第一组中的集电栅线11和第二组中的集电栅线11,工艺改进小,或基本无需改进,生产成本更低。
例如,第一组和第二组中,宽度较大的一个组的集电栅线11的间距为0.6mm、0.7mm、0.85mm、0.93mm、1.02mm、1.08mm、1.8mm、1.7mm、1.5mm、1.3mm、1.2mm、1.1mm、2mm,宽度较小的一个组的集电栅线11的间距大于或等于0.5mm,同时,大于上述宽度较大的组中集电栅线11的间距。
可选的,第一组和第二组中,宽度较大的一个组的集电栅线的间距为0.5至1.1mm,宽度较小的一个组的集电栅线的间距大于1.1小于或等于2mm。上述第一组中的集电栅线11的间距和第二组中的集电栅线11的间距,与现有技术中不同的整片太阳能电池上的集电栅线11的间距的取值范围更为适配,进而,采用现有技术的不同的整片太阳能电池上的集电栅线11的制备工艺,就可以制备本申请中第一组中的集电栅线11和第二组中的集电栅线11,工艺基本无需改进,生产成本更低。
例如,第一组和第二组中,宽度较大的一个组的集电栅线11的间距为0.5mm、0.6mm、0.7mm、0.85mm、0.93mm、1.02mm、1.08mm、1.1mm,宽度较小的一个组的集电栅线11的间距为2mm、1.8mm、1.73mm、1.62mm、1.6mm、1.55mm、1.3mm、1.13mm。
可选的,上述一个区域对应一个分片电池。分片电池的宽度W1的确定方式可以为:该公式中,Pm为光伏组件所需的功率,L为整片太阳能电池的长度,W为整片太阳能电池的宽度,N为光伏组件中所用整片太阳能电池的数量,Lp为光伏组件的功率损耗比例,Lp可以为光伏组件功率/光伏组件中所有的整片太阳能电池以及所有的分片电池的功率之和,η为整片太阳能电池的光电转换效率,S为太阳能本体表面的面积。
例如,使用长度和宽度为183.75×182mm的整片太阳能电池,其太阳能本体表面的面积S为333.05cm2,η取23.5%,Lp取值为1%,光伏组件所需的功率Pm为440W,N=60,则,W1≈87mm。若N=54,则,W1≈97mm,因此对于183.75×182的整片太阳能电池而言,非对称切割后可以同时使用宽度W1≈97mm的大片分片电池与宽度W1≈87mm的小片分片电池进行440W档位光伏组件的制作。宽度W1≈97mm的大片分片电池中集电栅线11的间距,小于宽度W1≈87mm的小片分片电池中集电栅线11的间距。
下表1为本申请提供的一些分片电池和光伏组件、整片太阳能电池的参数对应表。下表中η取23.5%,Lp取值为1%,分片电池的尺寸选择可以如下表1。
表1:分片电池和光伏组件、整片太阳能电池的参数对应表
表1中,切割比例是指,该分片电池的宽度W1与整片太阳能电池的长度L的比值。
图4示出了本申请实施例中的一种整片太阳能电池的局部放大结构示意图。图5示出了本申请实施例中的一种集电栅线的局部放大结构示意图。图6示出了本申请实施例中的另一种集电栅线的局部放大结构示意图。图7示出了本申请实施例中的还一种集电栅线的局部放大结构示意图。图8示出了本申请实施例中的一种集电栅线和汇流栅线的局部分布放大示意图。图4可以为图3中虚线框框出部分的放大结构示意图。图5、图6、图7可以为图4中集电栅线11位于虚线框中的部分的放大结构示意图。图8可以为图4中位于虚线框中的部分的放大结构示意图。
可选的,参照图1至8所示,电极结构还可以包括:与集电栅线11相 交分布的汇流栅线13,汇流栅线13用于汇集并传导集电栅线上的载流子。具体的,该汇流栅线13用于将与其电连接的同极性的集电栅线11上的载流子汇集并传导。
参照图4至图8所示,至少紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分的线宽,大于其余部分的线宽。紧邻预设切割线12的集电栅线11是指预设切割线12两侧、距离预设切割线12最近的两个集电栅线。如图4,集电栅线11位于虚线框中的部分111即为紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分。紧邻预设切割线12的位置若设置有与串内互联件电性连接的电极盘,由于电极盘尺寸相对较大,且与太阳能电池本体之间的距离较大,紧邻预设切割线12的位置的电极盘更容易受到切割的影响,更容易隐裂,严重影响了光伏组件的可靠性。本申请实施例中,紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分的线宽,大于其余部分的线宽,就是说,紧邻预设切割线12的区域内不设置电极盘,而是用线宽较大的一部分集电栅线11替换电极盘,与串内互联件电性连接。一方面,即便是线宽较大的集电栅线11的尺寸依然小于电极盘的尺寸,另一方面,集电栅线11突出太阳能电池本体的高度更小,线宽较大的这部分集电栅线相对于电极盘而言,受到的切割的影响较小,可以提升光伏组件的可靠性。同时,线宽较大的这部分集电栅线与汇流栅线13的电性连接可靠性较好,与串内互联件电性连接的可靠性也较好。
参照图8所示,需要说明的是,紧邻预设切割线12的集电栅线11中,与汇流栅线13相交的部分为:紧邻预设切割线12的集电栅线11中,在太阳能电池本体表面的投影,与汇流栅线13在太阳能电池本体表面的投影重合的部分。紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111为:紧邻预设切割线12的集电栅线11中,位于汇流栅线13两侧的部分。此处的紧邻可以仅是紧挨预设切割线12,且位于预设切割线12两侧的共两条集电栅线11,或者,可以是紧挨预设切割线12,且位于预设切割线12两侧的共多条集电栅线11。在本申请实施例中,对此不作具体限定。
参照图8所示,紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111,与汇流栅线13相交的部分(图中未标记)的长度比值为(1:1)至(2:1)。紧邻汇流栅线13的部分1111,与汇流栅线13相交的部分的长度的比值在该范围内,受到的切割的影响更小,可以进一步提升光伏组件的 可靠性。同时,线宽较大的这部分集电栅线与汇流栅线13的电性连接可靠性更好,与串内互联件电性连接的可靠性也更好。
例如,紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111,与汇流栅线13相交的部分的长度比值为1:1、1.1:1、1.3:1、1.5:1、1.6:1、1.72:1、1.83:1、1.9:1、1.93:1、2:1。
可选的,参照图4至图8所示,紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线相交的部分的线宽为0.1至0.3毫米,在该范围内,受到的切割的影响更小,可以进一步提升光伏组件的可靠性。同时,线宽较大的这部分集电栅线与汇流栅线13的电性连接可靠性更好,与串内互联件电性连接的可靠性也更好。
例如,紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线相交的部分的线宽为0.1毫米、0.1毫米、0.13毫米、0.18毫米、0.20毫米、0.21毫米、0.24毫米、0.26毫米、0.29毫米、0.3毫米。
可选的,参照图8所示,集电栅线11中,紧邻汇流栅线13的部分1111,关于与其相交的汇流栅线13对称。紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分形状较为规则,易于加工制备。并且,线宽较大的这部分集电栅线受到的切割的影响更小,更均匀,可以进一步提升光伏组件的可靠性。同时,线宽较大的这部分集电栅线与汇流栅线13的电性连接可靠性更好,与串内互联件电性连接的可靠性也更好。
可选的,参照图5至图7所示,集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分的总长度L1为1至3毫米。集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分的总长度L1在该范围内,可以进一步提升光伏组件的可靠性。同时,线宽较大的这部分集电栅线与汇流栅线13的电性连接可靠性更好,与串内互联件电性连接的可靠性也更好。
可选的,参照图5至图7所示,紧邻预设切割线12的集电栅线11中,紧邻汇流栅线13的部分1111中各处的线宽,关于与其相交的汇流栅线13的交点的距离负相关。就是说紧邻汇流栅线13的部分1111中越靠近汇流栅线13,线宽越大,紧邻汇流栅线13的部分1111中越靠近汇流栅线13与串内互联件电性连接的概率越大,利于提升汇流栅线13和集电栅线11电性连接的可靠性,以及利于与提升线宽较大的这部分集电栅线与串内互联件电性 连接的可靠性。需要说明的是,此处的交点可以为:该集电栅线11与汇流栅线13相交部分的几何中心。
可选的,参照图5至图8所示,集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分,在太阳能电池本体表面的投影的形状为:大于或等于4的多边形。该多边形包括相对分布的两条第一边1112,两条第一边1112与集电栅线11垂直。两条第一边1112的中点的连线,和集电栅线1112平行,两条第一边1112之间的间距,大于其余相对的两条边之间的间距。两条第一边1112之间的间距就是集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分的总长度L1,集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分的形状较为规则,且灵活多样,易于加工制造。例如,图7所示,集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分为十边形。
可选的,参照图5所示,集电栅线11中,紧邻汇流栅线13的部分,以及与汇流栅线13相交的部分,在太阳能电池本体表面的投影的形状为:八边形。集电栅线11中,紧邻汇流栅线13的部分1111,以及与汇流栅线13相交的部分的形状较为规则,易于加工制造。
可选的,整片太阳能电池的长度和宽度为下述尺寸中的一种:(182±2)×(166±2)毫米、(182±2)×(170.75±2)毫米、(182±2)×(180±2)毫米、(182±2)×(182±2)毫米、(183.75±2)×(182±2)毫米、(190±2)×(182±2)毫米、(198±2)×(182±2)毫米、(207±2)×(182±2)毫米、(210±2)×(182±2)毫米、(212±2)×(182±2)毫米、(218±2)×(207±2)毫米、(218.2±2)×(182±2)毫米、(218.2±2)×(198±2)毫米、(218.2±2)×(210±2)毫米、(218.2±2)×(220±2)毫米、(218.8±2)×(207±2)毫米、(219±2)×(182±2)毫米、(220±2)×(182±2)毫米、(227.8±2)×(182±2)毫米、(227.8±2)×(218.8±2)毫米、(228±2)×(182±2)毫米、(253±2)×(182±2)毫米、(253±2)×(218±2)毫米、(274±2)×(207±2)毫米、(274±2)×(227.8±2)毫米、(274±2)×(253±2)毫米、(275±2)×(198±2)毫米、(275±2)×(210±2)毫米、(275±2)×(220±2)毫米、(275±2)×(230±2)毫米、(282±2)×(220±2)毫米。整片太阳能电池的长度和宽度灵活多样,由该整片太阳能电池或由该整片太阳能电池切割得到的分片电池,形成的光伏组件的功率灵活多样,能够满足较多的功率需求,功率基本不会出现断档,而且,由该 光伏组件形成的光伏屋顶也灵活多样,地域适应性好,地域适用范围更广。
本申请实施例还提供一种分片电池,该分片电池由任一前述的整片太阳能电池,沿上述预设切割线12,非对称切割得到,一个区域对应一个分片电池。该分片电池与前述的整片太阳能电池具有相同或相似的有益效果,为了避免重复,此处不再赘述。
可选的,参照图1至图3所示,该分片电池的宽度所在的方向,与该分片电池上的切割线垂直,该分片电池的长度所在的方向与该切割线平行,该分片电池的长度等于该整片太阳能电池的宽度W。一个整片太阳能电池非对称切割得到的至少两个分片电池中,包括至少一个二倍分片电池,该二倍分片电池的长度和宽度的比值为2±0.2。例如,该二倍分片电池的长度和宽度的比值为1.8、1.9、1.97、2、2.03、2.09、2.1、2.13、2.2。现有技术中,整片太阳能电池的长度和宽度相等,且对称切割,则,现有技术的分片电池的长度和宽度的比值大致为2,本申请实施例中,非对称切割得到的二倍分片电池长度和宽度的比值也可以为2,或者很靠近2,则,本申请实施例中的二倍分片与现有技术的分片电池尺寸兼容性好,二倍分片电池对应的工艺均可以采用现有技术的分片电池对应的工艺等,成本较低,且本申请实施例中,一个整片太阳能电池非对称切割得到的其他分片电池均能够满足较多的功率需求,能够避免功率出现断档,而且,由该光伏组件形成的光伏屋顶也灵活多样,地域适应性好。
例如,一个整片太阳能电池非对称切割得到的二倍分片良好的适应于地域A,而该整片太阳能电池非对称切割得到的其他分片电池可以良好的适应于地域B。再例如,图3中,最靠上的分片电池为二倍分片电池,其长度和宽度W1的比值为2:1。图3中的二倍分片电池应用于地域A,二倍分片电池对应的光伏组件、光伏屋顶,与地域A的适配性更优,而图3中除了二倍分片电池之外的其他分片电池应用于地域B,除了二倍分片电池之外的其他分片电池对应的光伏组件、光伏屋顶,与地域B的适配性更优。
综上所述,本申请中的分片电池,不仅能够兼容现有技术的分片电池,而且能够满足更多的功率需求,尽可能的减少功率断档,且其对应的光伏组件、光伏屋顶具有更好的地域适应性,地域适用范围更广。
需要说明的是,预设切割线12或切割线通常可以与集电栅线12平行。或者,该集电栅线12具有与预设切割线12或切割线平行的部分。分片电池的长度所在的方向与切割线平行,因此,分片电池中:长度所在的方向可以与集电栅线12平行,或者,该集电栅线12具有与长度所在的方向平行的部 分。而,整片太阳能电池中,长度所在的方向可以与预设切割线12垂直,因此,长度所在的方向可以与集电栅线12垂直,或者,该集电栅线12具有与长度所在的方向垂直的部分。例如,参照图1至图3所示,分片电池中长度所在的方向与集电栅线12平行,而,整片太阳能电池中,长度L所在的方向与集电栅线12垂直,因此,分片电池的长度就等于整片太阳能电池的宽度W,整片太阳能电池切割得到的各个分片电池的宽度W1之和,等于该整片太阳能电池的长度L。例如,图1、图3中3个分片电池的宽度W1之和,等于该整片太阳能电池的长度L。再例如,图2中5个分片电池的宽度W1之和,等于该整片太阳能电池的长度L。
本申请还提供一种光伏组件,包括:由任一前述的至少一个整片太阳能电池、和/或,任一前述的至少一个分片电池形成的电池串。该光伏组件具有与任一前述的整片太阳能电池、和/或,分片电池相同或相似的有益效果,为了避免重复,此处不再赘述。
可选的,该光伏组件中的电池串的数量大于或等于4,该光伏组件中电池串的数量较为合适,形成的光伏组件的功率能够满足大部分的功率需求,功率基本不会出现断档。例如,该光伏组件中的电池串的数量可以为4、5、6、7,以及4、5、6、7的整数倍等。
可选的,该光伏组件中的整片太阳能电池和分片电池的总数量为:36、42、48、54、60、66、72中的一种,该光伏组件中整片太阳能电池、分片电池的数量较为合适,形成的光伏组件的功率能够满足大部分的功率需求,且功率基本不会出现断档。
本申请还提供一种光伏屋顶,该光伏屋顶包括若干个任一种前述的光伏组件,该光伏组件安装在建筑屋顶上,由于该光伏组件尺寸、功率等更为灵活,能够满足光伏组件的功率需求,且光伏组件的功率基本不会出现断档,能够适应不同地域的尺寸或功率需要等,因此,形成的光伏屋顶与不同地域的建筑屋顶的灵活性更好,与不同地域的建筑屋顶的兼容性也更好。
需要说明的是,光伏屋顶中包括的光伏组件的数量等不作具体限定,且建筑屋顶的具体尺寸、形状等也不作具体限定。
在本申请中,整片太阳能电池、分片电池、光伏组件、光伏屋顶四者之间,相关内容可以相互参照,且能达到相同或相似的有益效果,为了避免重复,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品 或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。

Claims (19)

  1. 一种整片太阳能电池,其中,包括:太阳能电池本体,位于所述太阳能电池本体表面的电极结构,以及位于所述太阳能本体表面的预设切割线;
    所述电极结构包括:平行分布的若干条集电栅线,所述集电栅线用于收集所述太阳能电池本体的载流子;
    所述太阳能本体表面被所述预设切割线划分为若干个区域;
    所述若干个区域按照宽度大小分为至少两个组;所述至少两个组包括:第一组和第二组;所述区域的宽度所在的方向和所述预设切割线垂直;
    其中,所述第一组中至少一个区域、所述第二组中至少一个区域的集电栅线的间距,和所述第一组、所述第二组的宽度负相关。
  2. 根据权利要求1所述的整片太阳能电池,其中,所述第一组中每一个区域、所述第二组中每一个区域的集电栅线的间距,均和所述第一组、所述第二组的宽度负相关。
  3. 根据权利要求1所述的整片太阳能电池,其中,所述第一组和所述第二组中至少三个区域的集电栅线的间距,和所述第一组、所述第二组的宽度成负比。
  4. 根据权利要求1所述的整片太阳能电池,其中,所述第一组和所述第二组中,宽度较大的一个组的集电栅线的间距小于或等于2mm,宽度较小的一个组的集电栅线的间距大于或等于0.5mm。
  5. 根据权利要求4所述的整片太阳能电池,其中,所述第一组和所述第二组中,宽度较大的一个组的集电栅线的间距为0.5至1.1mm,宽度较小的一个组的集电栅线的间距大于1.1小于或等于2mm。
  6. 根据权利要求1至5中任一所述的整片太阳能电池,其中,所述电极结构还包括:与所述集电栅线相交分布的汇流栅线,所述汇流栅线用于汇集并传导所述集电栅线上的载流子;
    至少紧邻所述预设切割线的所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分的线宽,大于其余部分的线宽;
    其中,紧邻所述汇流栅线的部分,和与所述汇流栅线相交的部分的长度比值为(1:1)至(2:1)。
  7. 根据权利要求6所述的整片太阳能电池,其中,所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分的线宽为0.1至0.3毫米。
  8. 根据权利要求6所述的整片太阳能电池,其中,所述集电栅线中, 紧邻所述汇流栅线的部分,关于与其相交的汇流栅线对称。
  9. 根据权利要求8所述的整片太阳能电池,其中,所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分的总长度为1至3毫米。
  10. 根据权利要求8所述的整片太阳能电池,其中,所述集电栅线中,紧邻所述汇流栅线的部分中各处的线宽,关于与其相交的汇流栅线的交点的距离负相关。
  11. 根据权利要求8所述的整片太阳能电池,其中,所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分,在所述太阳能电池本体表面的投影的形状为:大于或等于4的多边形;
    所述多边形包括相对分布的两条第一边,所述两条第一边与所述集电栅线垂直;
    两条所述第一边的中点的连线,和所述集电栅线平行,所述两条第一边之间的间距,大于其余相对的两条边之间的间距。
  12. 根据权利要求11所述的整片太阳能电池,其中,所述集电栅线中,紧邻所述汇流栅线的部分,以及与所述汇流栅线相交的部分,在所述太阳能电池本体表面的投影的形状为:八边形。
  13. 根据权利要求1至5中任一所述的整片太阳能电池,其中,所述整片太阳能电池的长度和宽度为下述尺寸中的一种:
    (182±2)×(166±2)毫米;
    (182±2)×(170.75±2)毫米;
    (182±2)×(180±2)毫米;
    (182±2)×(182±2)毫米;
    (183.75±2)×(182±2)毫米;
    (190±2)×(182±2)毫米;
    (198±2)×(182±2)毫米;
    (207±2)×(182±2)毫米;
    (210±2)×(182±2)毫米;
    (212±2)×(182±2)毫米;
    (218±2)×(207±2)毫米;
    (218.2±2)×(182±2)毫米;
    (218.2±2)×(198±2)毫米;
    (218.2±2)×(210±2)毫米;
    (218.2±2)×(220±2)毫米;
    (218.8±2)×(207±2)毫米;
    (219±2)×(182±2)毫米;
    (220±2)×(182±2)毫米;
    (227.8±2)×(182±2)毫米;
    (227.8±2)×(218.8±2)毫米;
    (228±2)×(182±2)毫米;
    (253±2)×(182±2)毫米;
    (253±2)×(218±2)毫米;
    (274±2)×(207±2)毫米;
    (274±2)×(227.8±2)毫米;
    (274±2)×(253±2)毫米;
    (275±2)×(198±2)毫米;
    (275±2)×(210±2)毫米;
    (275±2)×(220±2)毫米;
    (275±2)×(230±2)毫米;
    (282±2)×(220±2)毫米。
  14. 一种分片电池,其中,由权利要求1至13中任一所述的整片太阳能电池,沿所述预设切割线,非对称切割得到。
  15. 根据权利要求14所述的分片电池,其中,所述分片电池的宽度所在的方向,与所述分片电池上的切割线垂直,所述分片电池的长度等于所述整片太阳能电池的宽度;
    一个所述整片太阳能电池非对称切割得到的至少两个分片电池中,包括至少一个二倍分片电池;所述二倍分片电池的长度和宽度的比值为2±0.2。
  16. 一种光伏组件,其中,包括:由至少一个如权利要求1至13中任一所述的整片太阳能电池,和/或,至少一个权利要求14或15中所述的分片电池形成的电池串。
  17. 根据权利要求16所述的光伏组件,其中,所述光伏组件中的电池串的数量大于或等于4。
  18. 根据权利要求16或17所述的光伏组件,其中,所述光伏组件中的整片太阳能电池和分片电池的总数量为:36、42、48、54、60、66、72中的一个。
  19. 一种光伏屋顶,其中,包括:若干个权利要求16至18中任一所述 的光伏组件,所述光伏组件安装在建筑屋。
PCT/CN2023/097464 2022-08-12 2023-05-31 整片太阳能电池、分片电池、光伏组件及光伏屋顶 WO2024032106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222131788.2U CN218215318U (zh) 2022-08-12 2022-08-12 整片太阳能电池、分片电池、光伏组件及光伏屋顶
CN202222131788.2 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032106A1 true WO2024032106A1 (zh) 2024-02-15

Family

ID=84655556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097464 WO2024032106A1 (zh) 2022-08-12 2023-05-31 整片太阳能电池、分片电池、光伏组件及光伏屋顶

Country Status (2)

Country Link
CN (1) CN218215318U (zh)
WO (1) WO2024032106A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218215318U (zh) * 2022-08-12 2023-01-03 隆基绿能科技股份有限公司 整片太阳能电池、分片电池、光伏组件及光伏屋顶
CN115360266A (zh) * 2022-08-24 2022-11-18 横店集团东磁股份有限公司 太阳能电池及制造方法、光伏组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221613A1 (en) * 2004-04-06 2005-10-06 Sharp Kabushiki Kaisha Electrode formation method, electrode and solar battery
CN103545388A (zh) * 2013-11-15 2014-01-29 英利能源(中国)有限公司 太阳能电池板组件
CN206595265U (zh) * 2017-03-22 2017-10-27 苏州阿特斯阳光电力科技有限公司 一种副栅线渐变的太阳能电池正面电极
CN207637822U (zh) * 2017-12-12 2018-07-20 阿特斯阳光电力集团有限公司 光伏发电装置
CN109346554A (zh) * 2018-08-23 2019-02-15 晶澳(扬州)太阳能科技有限公司 一种光伏组件的制作方法
CN218215318U (zh) * 2022-08-12 2023-01-03 隆基绿能科技股份有限公司 整片太阳能电池、分片电池、光伏组件及光伏屋顶

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221613A1 (en) * 2004-04-06 2005-10-06 Sharp Kabushiki Kaisha Electrode formation method, electrode and solar battery
CN103545388A (zh) * 2013-11-15 2014-01-29 英利能源(中国)有限公司 太阳能电池板组件
CN206595265U (zh) * 2017-03-22 2017-10-27 苏州阿特斯阳光电力科技有限公司 一种副栅线渐变的太阳能电池正面电极
CN207637822U (zh) * 2017-12-12 2018-07-20 阿特斯阳光电力集团有限公司 光伏发电装置
CN109346554A (zh) * 2018-08-23 2019-02-15 晶澳(扬州)太阳能科技有限公司 一种光伏组件的制作方法
CN218215318U (zh) * 2022-08-12 2023-01-03 隆基绿能科技股份有限公司 整片太阳能电池、分片电池、光伏组件及光伏屋顶

Also Published As

Publication number Publication date
CN218215318U (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
WO2024032106A1 (zh) 整片太阳能电池、分片电池、光伏组件及光伏屋顶
CN220065714U (zh) 背接触太阳能电池及光伏组件
CN110379867B (zh) 硅基异质结太阳电池叠瓦光伏组件及其制备方法
CN209435183U (zh) 一种太阳能电池组件
EP1995792A2 (en) Solar cell and manufacturing method of the solar cell
CN108963020B (zh) 一种太阳能电池片排片结构及光伏组件
WO2006027898A1 (ja) 太陽光発電用モジュール及びこれを用いた太陽光発電システム
US11961930B2 (en) Crystalline silicon solar cell and preparation method therefor, and photovoltaic assembly
CN110085703B (zh) 一种正六边形太阳能电池片的切片方法及拼接方法
WO2018176527A1 (zh) 采用中心汇聚栅线电极的太阳能叠片组件
CN210156385U (zh) 硅基异质结太阳电池叠瓦光伏组件
WO2023179646A1 (zh) 光伏组件、光伏系统以及光伏组件的制造方法
CN209217000U (zh) 一种光伏组件
WO2024140364A1 (zh) 太阳电池小片、太阳电池片、太阳电池串以及叠瓦组件
WO2024041120A1 (zh) 一种背接触电池
US11862744B1 (en) Photovoltaic module and method for preparing the photovoltaic module
JP4593980B2 (ja) 光電変換装置とこれを用いた太陽電池素子、並びに太陽電池モジュール
JP2023180192A (ja) 太陽電池及び光起電力モジュール
CN212230438U (zh) 一种太阳能电池片及太阳能电池组件
CN210272382U (zh) 一种电池片及电池组件
CN109509797B (zh) 条形电池片及其制备方法、太阳能电池片及太阳能组件
CN108666387B (zh) 一种背接触异质结n型单晶硅太阳电池
CN108987515B (zh) 分片贯孔单面直连太阳能电池组件及制备方法
CN109216475B (zh) 一种太阳能电池板组件
CN215771170U (zh) 叠瓦电池片、叠瓦电池切片及叠瓦组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851334

Country of ref document: EP

Kind code of ref document: A1