WO2024031901A1 - 含二氧化碳相变溶液的分离方法和分离装置 - Google Patents

含二氧化碳相变溶液的分离方法和分离装置 Download PDF

Info

Publication number
WO2024031901A1
WO2024031901A1 PCT/CN2022/138787 CN2022138787W WO2024031901A1 WO 2024031901 A1 WO2024031901 A1 WO 2024031901A1 CN 2022138787 W CN2022138787 W CN 2022138787W WO 2024031901 A1 WO2024031901 A1 WO 2024031901A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
phase
separation
phase change
change solution
Prior art date
Application number
PCT/CN2022/138787
Other languages
English (en)
French (fr)
Inventor
叶晓东
季燕
江洋洋
陈曦
郭本帅
叶宁
黄汉根
毛松柏
Original Assignee
中国石油化工股份有限公司
中石化南京化工研究院有限公司
中国石化集团南京化学工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中石化南京化工研究院有限公司, 中国石化集团南京化学工业有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024031901A1 publication Critical patent/WO2024031901A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0205Separation of non-miscible liquids by gas bubbles or moving solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor

Definitions

  • the invention specifically relates to a separation method and separation device for a carbon dioxide-containing phase change solution.
  • Carbon dioxide capture technology is the most effective and rapid way to solve the current problem of huge domestic carbon emissions.
  • the key technology is CO 2 separation, that is, to separate CO 2 from other substances for subsequent process processing.
  • Classified according to the separation principle, power and carrier, CO 2 separation technology mainly includes: absorption separation, adsorption separation, membrane separation, cryogenic separation, etc.
  • the absorption method is the most mature and widely used CO 2 separation technology.
  • the chemical absorption process represented by ethanolamine (MEA) is already very mature.
  • MEA ethanolamine
  • the heat required for the regeneration process is the most important part of the energy consumption of the entire process.
  • the second is to optimize the heat exchange network of the process through thermal coupling and improve the energy utilization efficiency of the entire process.
  • phase change absorbent becomes two liquid phases with a large difference in CO 2 loading after absorbing CO 2 , almost all CO 2 is concentrated in the lower layer. After separation, the lower layer is sent to the desorption tower, and the upper layer is directly returned to the absorption tower. . Compared with the traditional chemical absorption method, this process can reduce the amount of liquid entering the desorption tower under the same CO 2 removal amount, thereby reducing desorption energy consumption.
  • CN102500195A discloses a two-phase carbon dioxide capture device in the field of flue gas purification treatment technology. Specific disclosure: Its device has one more separator than the traditional capture device. The solvent solution contained in the separator will be divided into two liquid phases with significantly different carbon dioxide contents. The upper and lower liquid phases are realized by standing, rotating, centrifugal separation or filtration. Separation, the upper liquid is directly recycled, and the lower liquid is sent to the desorption tower for regeneration. This device significantly reduces the energy consumption of capturing carbon dioxide by chemical absorption, thereby reducing the cost of large-scale application of this technology. This technology focuses on a two-phase carbon dioxide capture device.
  • CN107519732A discloses a method for strengthening the regeneration of the organic phase after desulfurization and decarburization of phase change absorbers. It is proposed that the organic phase from the separator first passes through the standing wave acoustic field processor in the boiler, and the displacement effect of ultrasound, The cavitation effect and resonance effect act on the organic phase, which easily breaks the carbamate bonds in the organic phase, generating organic amines and carbon dioxide. The carbon dioxide is sent to the regeneration gas separator from the bottom of the regeneration tower, and the regenerated organic amines are depleted. The liquid pump returns to the absorption tower for absorption.
  • the displacement effect of ultrasonic waves can cause the organic phase regenerated materials to continuously move, collide, and condense toward the wave antinodes or nodes; the strong impact force and high-speed microjet generated by the cavitation effect can reduce the collision, condensation, and cohesion of the organic phase regenerated materials.
  • the frictional resistance during the settling process and the thermal effect generated at the same time can reduce the viscosity.
  • CN109092020A provides a carbon dioxide capture system suitable for phase change absorbers, which includes an absorption tower, a phase separator, a dense phase pump, at least one interstage separator, at least one interstage cooler, a mixer, a rich Liquid pump and desorption tower.
  • the absorption tower includes a tower cavity. The part of the tower cavity located between the first inlet of the absorption tower and the second inlet of the absorption tower is divided into multiple stages.
  • the tower chambers at each level store lean liquid containing phase change absorbent; the phase change absorbent contains nanoparticles, and the spaces between each level are
  • the separator is connected to the outlet of the corresponding stage of the absorption tower.
  • the reaction of alkali metals with heteroatoms and/or one or more heavy metals can improve the quality of raw materials.
  • the current reaction process efficiency of this method is low, especially the utilization rate of alkali metals is not high, and the product contains Unreacted alkali metal, the unreacted alkali metal in the product needs to be further processed to meet the requirements of low-sulfur marine fuel oil.
  • How to achieve efficient application of alkali metal desulfurization technology in the production of low-sulfur ship fuel is an urgent problem that needs to be overcome in the oil refining field.
  • phase change absorbers According to the current published literature and patented technologies at home and abroad, a large amount of research is mainly carried out around the formulation of phase change absorbers.
  • the existing technology is mainly aimed at the formulation of phase change solvents, and the treatment of phase change stratification It is often mentioned that the use of a separator is used, and such a separator mainly separates two layers by standing still. The problem of long standing separation time is often ignored.
  • a separator In order to stabilize the gas processing capacity, test continuity and high adsorption capacity of the solvent, it has to be solved by increasing the solution circulation volume.
  • the purpose of the present invention is to overcome the problems of long standing separation time, the same circulation volume and gas processing volume, and insufficient continuity in the traditional process of capturing carbon dioxide with phase change absorbers.
  • Another aspect of the present invention is to overcome the existing technology.
  • the purpose of this aspect is to overcome the problem of weak antioxidant effect of the phase change absorbent and provide a separation method and separation device for the phase change solution containing carbon dioxide. This method improves the separation efficiency of the phase change solvent through bubble disturbance and fixes the raw material gas and the solvent. In the case of circulation volume, the capture rate is increased.
  • a first aspect of the present invention provides a method for separating a carbon dioxide-containing phase change solution.
  • the method includes: using bubbles to disturb the carbon dioxide-containing phase change solution, and separating at least two liquid phases.
  • a second aspect of the present invention provides a separation device for a carbon dioxide-containing phase change solution, which device includes:
  • the absorption unit is used for the phase change solution to absorb carbon dioxide to provide a carbon dioxide-containing phase change solution
  • a phase separation unit provided with an exhaust port is used to separate the carbon dioxide-containing phase change solution to obtain a carbon dioxide-rich liquid phase and a carbon dioxide-poor liquid phase, and the phase separation unit is provided with an exhaust port;
  • a bubble generation unit for generating a carbon dioxide-containing phase change solution in the bubble disturbance phase separation unit
  • Optionally includes a regeneration unit connected to the phase separation unit for collecting the carbon dioxide-rich liquid phase of the phase separation unit and regenerating it;
  • a collection unit communicated with the phase separation unit and used for collecting the carbon dioxide-depleted liquid phase of the phase separation unit.
  • bubbles are used to disturb the carbon dioxide-containing phase change solution.
  • the bubbles and the carbon dioxide-containing phase change solution are composed of a non-uniform multi-phase system.
  • the bubbles will combine with the solution system with a smaller density and move upward together, accelerating the different densities.
  • Solution separation at the same time, the push flow generated by the bubble generating unit can promote the formation of vortex in the phase separation unit, further accelerating the separation effect of different solutions and improving the separation efficiency of phase change solutions.
  • the separation method of the present invention can improve the separation efficiency of phase change solvents, improve the capture rate and reduce the load of the processing unit under the condition of fixed feed gas and solvent circulation amounts. Covered area.
  • the bubble generator parameters can be flexibly adjusted according to the actual separation effect to ensure stable system operation and avoid energy waste.
  • the bubble gas can be recovered and recycled as a gas source for the micropore generator.
  • the gas that generates bubbles is an inert gas such as carbon dioxide, which can also remove dissolved oxygen in the lower carbon dioxide-rich liquid phase and improve the antioxidant performance.
  • an inert gas such as carbon dioxide
  • the amine concentration decrease rate is significantly reduced.
  • Figure 1 is a schematic diagram of a separation device for a carbon dioxide-containing phase change solution provided by a preferred embodiment of the present invention.
  • the phase change solution refers to a liquid-liquid phase change absorbent, that is, the phase change solution still exists in the form of a liquid phase after absorbing CO2 , because the CO2 load is different, the CO2 -poor solution and the CO2-rich solution 2The solution will be divided into two distinct phases.
  • a first aspect of the present invention provides a separation method for a carbon dioxide-containing phase change solution, which method includes:
  • a heterogeneous multiphase system composed of bubbles and carbon dioxide-containing phase change solution.
  • the bubbles will combine with the solution system with a smaller density and move upward together to accelerate the separation of solutions with different densities.
  • the push flow generated by the bubble generating unit can It promotes the formation of vortexes in phase change solutions containing carbon dioxide, further accelerates the separation effect of different solutions, improves the separation efficiency of phase change solutions, improves the separation efficiency of phase change solvents, and improves the capture rate under the condition of fixed feed gas and solvent circulation amounts.
  • the separation efficiency of the phase change solution can be improved by using bubbles to disturb the carbon dioxide-containing phase change solution.
  • the size of the bubbles can be selected in a wide range.
  • the bubble diameter of the bubbles is not greater than 50 ⁇ m. Including but not limited to 50 ⁇ m, 45 ⁇ m, 42 ⁇ m, 40 ⁇ m, 38 ⁇ m, 35 ⁇ m, 33 ⁇ m, 32 ⁇ m, 30 ⁇ m, 25 ⁇ m, 20 ⁇ m, 18 ⁇ m, 15 ⁇ m, 10 ⁇ m, 5 ⁇ m; preferably 15-30 ⁇ m.
  • the volume ratio of the bubbles to the carbon dioxide-containing phase change solution is not particularly limited.
  • the gas-liquid volume ratio of the gas used to generate bubbles to the carbon dioxide-containing phase change solution is: 10-90, including but not limited to 10, 20, 30, 40, 50, 60, 70, 80, 90, preferably 20-50.
  • the source of the gas used to generate bubbles is not particularly limited, as long as it does not react with the phase change solution.
  • the gas used to generate bubbles is selected from inert gases.
  • the gas is preferably at least one of carbon dioxide, nitrogen and helium, and is more preferably carbon dioxide.
  • the gas that generates bubbles is an inert gas such as carbon dioxide, which can also remove dissolved oxygen in the lower carbon dioxide-rich liquid phase and improve the antioxidant performance.
  • the amine concentration decrease rate is significantly reduced.
  • the separation conditions of the phase change solution are not particularly limited. Conventional separation conditions in the art are applicable to the present invention.
  • the phase change conditions include: the separation temperature is 35-60°C, including but not limited to 35°C. °C, 40°C, 45°C, 48°C, 50°C, 55°C, 60°C.
  • the separation method further includes: regenerating the carbon dioxide-rich liquid phase among the two separated liquid phases.
  • the source of the carbon dioxide gas is not particularly limited.
  • the carbon dioxide in the phase change solution containing carbon dioxide originates from flue gas generated from coal burning and/or steelmaking, preferably flue gas.
  • the CO 2 content in the gas is 10-20 volume %.
  • the CO 2 content includes but is not limited to 10 volume %, 11 volume %, 12 volume %, 13 volume %, 14 volume %, 15 volume %, 16 volume %, 17 Volume %, 18 volume %, 19 volume %, 20 volume %.
  • the carbon dioxide-containing phase change solution contains 2.0-4.8 mol CO 2 /kg solvent, including but not limited to 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.1, 3.2, 3.3 , 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8mol CO 2 /kg solvent.
  • the solvent in the phase change solution, includes the first A solvent and optionally a second solvent, wherein the first solvent is selected from organic amines, preferably at least one selected from alcoholamines, amides and fatty amines;
  • the exemplary first solvent is selected from monoethanolamine, N-methyldiethanolamine, triethylenetetramine, hydroxyethylethylenediamine, 2,2-dimethylcyclopropylmethane At least one of amide, N,N-diethylethanolamine and N,N-dimethylcyclohexylamine.
  • the second solution refers to the solvent of the phase change solution, which may or may not contain the second solvent.
  • the mass content of the first solvent is 15-80 wt%, preferably 15-30 wt%.
  • the solvent includes the first solvent and the second solvent at the same time.
  • the second solvent is selected from one or more of C2-C10 alcohols, water, sulfones and polyethers.
  • the second solvent is selected from 1-propanol, tert-butanol, water, sulfolane, polyether, 2-amino-2-methyl-1-propanol, 3-glycol and decane At least one kind of alcohol.
  • the solvent of the phase change solution includes: based on 100% by weight, 10-90% monoethanolamine and 10-90% sulfolane.
  • the solvent of the phase change solution includes: based on 100% by weight, 10-50% triethylenetetramine, 30-80% N,N-diethylethanolamine, 5 -50% 1-propanol.
  • the solvent of the phase change solution includes: based on 100% by weight, 10-50% N-methyldiethanolamine, 30-80% n-butanol, 5-50% of water.
  • the separation method of the present invention is in a separation device for a carbon dioxide-containing phase change solution. carried out, the device includes:
  • a phase separation unit is used to separate the carbon dioxide-containing phase change solution to obtain a carbon dioxide-rich liquid phase and a carbon dioxide-poor liquid phase, and the phase separation unit is provided with an exhaust port;
  • a bubble generation unit for generating a carbon dioxide-containing phase change solution in the bubble disturbance phase separation unit
  • the separation method includes:
  • the bubble generating unit generates bubbles to disturb the carbon dioxide-containing phase change solution in the phase separation unit, and the gas generated by the bubble generating unit is discharged through the exhaust port.
  • the method is performed in a separation device containing carbon dioxide phase change solution, and the device includes:
  • a phase separator is used to separate the carbon dioxide-containing phase change solution to obtain a lower carbon dioxide-rich liquid phase and an upper carbon dioxide-poor liquid phase, and the upper end of the phase separator is provided with an exhaust port;
  • a bubble generator for generating bubbles to disturb the carbon dioxide-containing phase change solution in the phase separator
  • the separation method includes:
  • the bubble generator generates bubbles to disturb the carbon dioxide-containing phase change solution in the phase separator, and the gas generated by the bubble generator is discharged through the exhaust port.
  • the second aspect of the present invention provides a separation device for a carbon dioxide-containing phase change solution, which device includes:
  • the absorption unit is used for the phase change solution to absorb carbon dioxide to provide a carbon dioxide-containing phase change solution
  • a phase separation unit provided with an exhaust port is used to separate the carbon dioxide-containing phase change solution to obtain a carbon dioxide-rich liquid phase and a carbon dioxide-poor liquid phase, and the phase separation unit is provided with an exhaust port;
  • a bubble generation unit for generating a carbon dioxide-containing phase change solution in the bubble disturbance phase separation unit
  • a regeneration unit connected to the phase separation unit, used to collect the carbon dioxide-rich liquid phase of the phase separation unit and regenerate it;
  • a collection unit communicated with the phase separation unit and used for collecting the carbon dioxide-depleted liquid phase of the phase separation unit.
  • the device includes:
  • Absorption tower used for the phase change solution to absorb carbon dioxide to provide a carbon dioxide-containing phase change solution
  • a phase separator with an exhaust port is provided at the upper end for separating the carbon dioxide-containing phase change solution to obtain a lower carbon dioxide-rich liquid phase and an upper carbon dioxide-poor liquid phase, and an exhaust port is provided at the upper end of the phase separator;
  • a bubble generator for generating bubbles to disturb the carbon dioxide-containing phase change solution in the phase separator
  • a regeneration tower connected to the lower outlet of the phase separator, used to collect the lower carbon dioxide-rich liquid phase of the phase separator and regenerate it;
  • the lean liquid mixing tank connected to the side outlet of the phase separator is used to collect the upper carbon dioxide-lean liquid phase of the phase separator.
  • the bubble generator/bubble generating unit can be arranged inside the phase separator/phase separation unit or outside the phase separator/phase separation unit.
  • the microbubbles generated can only disturb the carbon dioxide-containing phase change solution. That’s it.
  • the phase separator/phase separation unit is set to have an internal roughness Ra>0.4 ⁇ m, including but not limited to 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ⁇ m, preferably 5-15 ⁇ m.
  • the ratio of the height to the diameter of the phase separator/phase separation unit is not less than 4, including but not limited to 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 , 14, 15, 16, 17, 18, 19, 20; preferably 10-15.
  • a vent valve is provided on the top of the phase separator/phase separation unit.
  • the phase separator/phase separation unit may or may not be filled with fillers. According to a preferred embodiment of the present invention, there is no filler in the phase separator/phase separation unit.
  • the bubble generator/bubble generating unit there are no special requirements for the position of the bubble generator/bubble generating unit, as long as it can disturb the carbon dioxide-containing phase change solution.
  • the bubble generator/bubble generating unit The unit is located at the bottom of the phase separator/phase separation unit.
  • the gas discharged from the exhaust port is processed and returned to the bubble generator/bubble generating unit.
  • solvent A is a mixture of monoethanolamine (MEA) and sulfolane, in which the mass content of monoethanolamine is 20%.
  • solvent B is a mixture of triethylenetetramine, N,N-diethylethanolamine and 1-propanol, in which the mass content of triethylenetetramine is 30% and the mass content of N,N-diethylethanolamine is 30%. The mass content is 50%, and the mass content of 1-propanol is 20%.
  • solvent C is a mixture of N-methyldiethanolamine, n-butanol and water, wherein the mass content of n-butanol is 30%, the mass content of water is 50%, and the mass content of N-methyldiethanolamine is 20%.
  • the separation device includes:
  • Absorption tower 2 used to provide phase change solution containing carbon dioxide
  • a phase separator 1 with an exhaust port 4 is provided at the upper end for separating phase change solutions containing carbon dioxide;
  • the bubble generator 2 arranged at the bottom of the phase separator 1 is used to generate bubbles and pass them into the phase separator, disturb the phase change solution containing carbon dioxide, and pass gas into the bubble generator 2 to generate bubbles;
  • the regeneration tower 6 connected to the lower outlet of the phase separator 1 is used to collect and regenerate the carbon dioxide-rich liquid phase in the lower layer of the phase separator 1;
  • the lean liquid mixing tank 5 connected to the side outlet of the phase separator 1 is used to collect the upper layer of the carbon dioxide-depleted liquid phase of the phase separator 1 .
  • flue gas containing 12 volume% CO 2 is passed into the absorption tower 3 to obtain a phase change solution containing carbon dioxide.
  • the phase change solution containing carbon dioxide is input into the phase separator 1 from the absorption tower 3, and gas is introduced into the bubble generator 2 provided in the phase separator 1 to generate bubbles to disturb the phase change solution containing carbon dioxide in the phase separator 1.
  • the lower carbon dioxide-rich liquid phase enters the regeneration tower 6 through the lower outlet of the phase separator 1 and is regenerated;
  • the upper carbon dioxide-poor liquid phase enters the lean liquid mixing tank 5 through the side outlet of the phase separator 1.
  • the CO 2 capture rate refers to the ratio of (CO 2 content in the raw gas - CO 2 content in the purified gas) to the amount of CO 2 in the raw gas.
  • the antioxidant degradation effect is inferred based on the decrease in amine concentration after long-term stable operation.
  • concentration of solvent substances such as amine decreases, the better the antioxidant effect.
  • the internal roughness Ra value of the phase separator is 10 ⁇ m.
  • the solvent of the phase change solution is solvent A
  • the flow rate of the phase change solution is 25L/h
  • the height-to-diameter ratio of the phase separator is 5
  • the nitrogen flow rate is 250L/h
  • the diameter of the bubble generated is 50um
  • the volume ratio of nitrogen to phase change solution is 10.
  • the separation temperature is 40°C;
  • the phase change solution containing carbon dioxide contains 3.4mol CO 2 /kg solvent.
  • the CO 2 capture rate is 90%; after 240 hours of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 2%.
  • Example 1 Compared with Example 1, the difference is that the flow rate of the phase change solution is 20L/h, the volume ratio of nitrogen to the phase change solution is 12.5, and the other conditions are the same as Example 1.
  • the carbon dioxide-containing phase change solution contains 3.35mol CO 2 /kg solvent.
  • the CO2 capture rate was 88%; after 240h of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 2.1%.
  • Example 1 Compared with Example 1, the difference is that the flow rate of the phase change solution is 20L/h, the nitrogen flow rate is 500L/h, the volume ratio of nitrogen gas to the phase change solution is 25, and the other conditions are the same as in Example 1.
  • the phase change solution containing carbon dioxide contains 3.41mol CO 2 /kg solvent.
  • the CO 2 capture rate was 90.2%; after 240 hours of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 2.0%. Compared with Example 1, the flow rate of solvent A was reduced and the nitrogen flow rate was increased, and the CO 2 capture rate was equivalent to that of Example 1.
  • Example 2 Compared with Example 2, the difference is that the bubble diameter is 30um, and the other conditions are the same as Example 2.
  • the phase change solution containing carbon dioxide contains 3.38mol CO 2 /kg solvent.
  • the CO 2 capture rate was 89.1%; after 240 hours of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 2.1%.
  • Example 3 Compared with Example 3, the difference is that the bubble diameter is 30um, and the other conditions are the same as Example 3.
  • the phase change solution containing carbon dioxide contains 3.43mol CO 2 /kg solvent.
  • the CO 2 capture rate was 91%; after 240 hours of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 1.9%.
  • Example 1 Compared with Example 1, the difference is that the phase separator height-to-diameter ratio is 10, and the other conditions are the same as Example 1.
  • the phase change solution containing carbon dioxide contains 3.45mol CO 2 /kg solvent.
  • the CO 2 capture rate was 92%; after 240 hours of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 1.9%.
  • the solvent of the phase change solution is solvent B
  • the flow rate of the phase change solution is 30L/h
  • the height-to-diameter ratio of the phase separator is 10
  • the bubble diameter is 30um
  • the nitrogen flow rate is 500L/h
  • the volume ratio of nitrogen to phase change solution is 16.67.
  • the separation temperature is 40°C;
  • the carbon dioxide-containing phase change solution contains 3.5mol CO 2 /kg solvent.
  • the CO 2 capture rate was 91%; after 240 hours of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 2.0%.
  • the solvent of the phase change solution is solution C
  • the flow rate of the phase change solution is 20L/h
  • the height-to-diameter ratio of the phase separator is 10
  • the bubble diameter is 30um
  • the nitrogen flow rate is 500L/h
  • the volume ratio of nitrogen to phase change solution is 25
  • the separation temperature is 40°C;
  • the absorption amount is 4.0mol CO 2 /kg solvent.
  • the CO 2 capture rate is 95%; after 240 hours of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 1.8%.
  • Example 1 the difference is that carbon dioxide is introduced into the bubble generator installed in the phase separator to generate bubbles to disturb the carbon dioxide-containing phase change solution in the phase separator to obtain a lower carbon dioxide-rich liquid phase and an upper layer lean Carbon dioxide liquid phase; other conditions are the same as Example 1.
  • the absorption amount is 4.0mol CO 2 /kg solvent.
  • the CO 2 capture rate is 95%; after 240 hours of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 1.6%.
  • the solvent of the phase change solution is solvent A
  • the flow rate of the phase change solution is 25L/h
  • the height-to-diameter ratio of the phase separator is 5
  • the bubble generator is turned off
  • the separation temperature is 40°C
  • the phase change solution containing carbon dioxide contains 3.4 mol CO 2 /kg solvent.
  • the CO 2 capture rate is 80%; after 240 hours of operation, the amine concentration in the lower carbon dioxide-rich liquid phase dropped by 2.8%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

一种含二氧化碳相变溶液的分离方法和分离装置,分离方法包括:使用气泡扰动含二氧化碳相变溶液,分离得到至少两层液相。分离装置包括:吸收单元,用于相变溶液吸收二氧化碳提供含二氧化碳相变溶液;设置有排气口的相分离单元,用于分离含二氧化碳相变溶液得到富二氧化碳液相和贫二氧化碳液相,且相分离单元设置有排气口;气泡发生单元,用于产生气泡扰动相分离单元中的含二氧化碳相变溶液;可选地包括与相分离单元连通的再生单元,用于收集相分离单元的富二氧化碳液相,并进行再生;与相分离单元连通的收集单元,用于收集相分离单元的贫二氧化碳液相。加速不同溶液的分离速度,提高相变溶液的分离效率。

Description

含二氧化碳相变溶液的分离方法和分离装置
相关申请的交叉引用
本申请要求2022年08月12日提交的中国专利申请202210970449.5的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明具体涉及一种含二氧化碳相变溶液的分离方法和分离装置。
背景技术
二氧化碳捕集技术是解决目前国内碳排放量巨大的问题最有效、快速的方法。目前,正在大力开发的二氧化碳捕集技术主要有3种,即燃烧后脱碳、燃烧前脱碳和富氧燃烧技术。无论是采用哪种捕集系统,其关键技术都是CO 2的分离,即将CO 2同其他物质进行分离,以便后续工艺处理。根据分离的原理、动力和载体等进行分类,CO 2分离技术主要包括:吸收法分离、吸附法分离、膜分离、深冷法分离等。
从目前的技术进展来看,吸收法是最成熟、应用最广的CO 2分离技术。以乙醇胺(MEA)为代表的化学吸收法工艺已经非常成熟,在醇胺法二氧化碳捕集技术中,再生过程所需要的热量是整个工艺过程能耗最重要的部分。目前,降低能耗的措施主要有以下两种途径:一是开发新型溶剂,利用溶剂的空间位阻效应或活化效应降低再生反应所需的活化能,或利用溶剂的相变效应减少所需再生的溶液量;二是通过热量耦合以优化工艺的热交换网络,提高整个工艺过程的能量利用效率。
由于相变吸收剂在吸收CO 2后成为上下两个CO 2负载量相差较大的液相,几乎所有的CO 2集中在下层,在经过分离后将下层送入解吸塔,上层直接返回吸收塔。与传统的化学吸收法相比,相同的CO 2脱除量下,该工艺可以减少进入解吸塔的液量,从而降低解吸能耗。
CN102500195A公布的是烟气净化处理技术领域的一种两相二氧化碳捕集装置。具体公开:其装置比传统捕集装置多了一个分离器,分离器内装有的溶剂溶液将分为两个二氧化碳含量有显著差异的液相,通过静置,旋转离心分离或者过 滤实现上下层液体的分离,将上层液体直接循环利用,下层液体送往解吸塔再生。该装置大幅度降低了化学吸收法捕集二氧化碳的能耗,进而降低了该技术大规模应用的成本。该技术着重介绍了两相二氧化碳捕集装置。
CN107519732A公布了一种用于强化相变吸收剂脱硫脱碳后有机相的再生方法,提出一种来自分离器中的有机相先经过煮沸器中的驻波声场处理器,将超声的位移效应、空化效应和共振效应作用于有机相,易于有机相中氨基甲酸盐键断链,生成有机胺和二氧化碳,二氧化碳从再生塔底端送至再生气分离器,再生后的有机胺则经贫液泵返回至吸收塔进行吸收。其中,超声波的位移效应能使有机相再生物质不断向波腹或波节移动、碰撞、凝聚;空化效应产生的强大的冲击力及高速微射流可以减小有机相待再生物质在碰撞凝聚和沉降过程中的摩擦阻力,同时产生的热效应可以起到降粘的效果。
CN109092020A提供了一种适用于相变吸收剂的二氧化碳捕集系统,其包括吸收塔、分相器、浓相泵、至少一级级间分离器、至少一级级间冷却器、混合器、富液泵以及解吸塔。吸收塔包括塔腔。塔腔的位于吸收塔第一入口和吸收塔第二入口之间的部分分为多级,各级塔腔存放含有相变吸收剂的贫液;相变吸收剂含有纳米颗粒,各级级间分离器连通吸收塔对应级出口。碱金属与杂原子和/或一种或多种重金属中的一部分反应即碱金属脱硫法能够改善原料品质,但目前该方法反应过程效率低,特别是碱金属的利用率不高,产物中含有未反应的碱金属,后续需要进一步处理产品中未反应的碱金属,以满足低硫船用燃料油的要求。碱金属脱硫技术在生产低硫船燃领域如何实现高效的应用,是炼油领域亟需攻克的难题。
发明内容
针对目前国内外公开的文献和专利技术看来,主要是围绕相变吸收剂的配方方面开展的大量研究,如上介绍,现有技术主要是针对相变溶剂配方,而对于相变分层的处理往往就是提到使用分离器,而这样的分离器主要就是靠静置分离两层。对于存在的静置分离时间长问题常常被忽略。为了稳定的气体处理量、试验的连续性和溶剂的高吸附能力,不得不通过增加溶液循环量以解决。
本发明的一方面的目的是为了克服现有技术,相变吸收剂捕集二氧化碳传统工艺中的存在静置分离时间长,相同循环量和气体处理量,连续性不够的问题, 本发明另一方面的目的是为了克服相变吸收剂抗氧化效果弱的问题,提供一种含二氧化碳相变溶液的分离方法和分离装置,该方法通过气泡扰动提高相变溶剂分离效率,在固定原料气与溶剂循环量的情况下,提高捕集率。
为了实现上述目的,本发明第一方面提供一种含二氧化碳相变溶液的分离方法,该方法包括:使用气泡扰动含二氧化碳相变溶液,分离得到至少两层液相。
本发明第二方面提供一种含二氧化碳相变溶液的分离装置,该装置包括:
吸收单元,用于相变溶液吸收二氧化碳提供含二氧化碳相变溶液;
设置有排气口的相分离单元,用于分离含二氧化碳相变溶液得到富二氧化碳液相和贫二氧化碳液相,且相分离单元设置有排气口;
气泡发生单元,用于产生气泡扰动相分离单元中的含二氧化碳相变溶液;
可选地包括与相分离单元连通的再生单元,用于收集相分离单元的富二氧化碳液相,并进行再生;
与相分离单元连通的收集单元,用于收集相分离单元的贫二氧化碳液相。
通过上述技术方案,使用气泡扰动含二氧化碳相变溶液,气泡和含二氧化碳相变溶液共同组成的不均匀多相体系,气泡上浮过程中会与密度更小的溶液体系结合共同向上运动,加速不同密度溶液分离;同时,气泡发生单元产生的推流作用能够促进相分离单元内形成涡流,进一步加速不同溶液的分离效果,提高相变溶液的分离效率。相比传统的旋流分离等方法,采用本发明所述的分离方法,能够提高相变溶剂分离效率,在固定原料气与溶剂循环量的情况下,提高捕集率,减小该处理单元的占地面积。且可根据实际的分离效果灵活调整气泡发生器参数,保证系统运行稳定并避免能源浪费,同时气泡气体可以回收,作为微孔发生器的气源循环利用。
本发明的优选实施方式中,产生气泡的气体采用惰性气体例如二氧化碳,还能够去除下层富二氧化碳液相中溶解氧,提高抗氧化性能,下层富二氧化碳液相长时间使用,胺浓度下降率明显降低。
附图说明
图1是本发明一种优选实施方式提供的含二氧化碳相变溶液的分离装置示意图。
附图标记说明
1-相分离器;2-气泡发生器;
3-吸收塔;4-排气口;
5-贫液混合罐;6-再生塔。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明中,所述相变溶液指的是液-液相变吸收剂,即相变溶液在吸收CO 2后仍然以液相的形式存在,因为CO 2负荷不同,贫CO 2溶液和富CO 2溶液会分为明显的两相。
本发明第一方面提供一种含二氧化碳相变溶液的分离方法,该方法包括:
使用气泡扰动含二氧化碳相变溶液,分离得到至少两层液相。气泡和含二氧化碳相变溶液共同组成的不均匀多相体系,气泡上浮过程中会与密度更小的溶液体系结合共同向上运动,加速不同密度溶液分离;同时,气泡发生单元产生的推流作用能够促进含二氧化碳相变溶液形成涡流,进一步加速不同溶液的分离效果,提高相变溶液的分离效率,提高相变溶剂分离效率,在固定原料气与溶剂循环量的情况下,提高捕集率。
本发明中,采用气泡扰动含二氧化碳相变溶液即可提升相变溶液的分离效率,所述气泡的大小可选范围较宽,根据本发明的一种优选所述气泡的气泡直径不大于50μm,包括但不限于为50μm、45μm、42μm、40μm、38μm、35μm、33μm、32μm、30μm、25μm、20μm、18μm、15μm、10μm、5μm;优选为15-30μm。
本发明中,对所述气泡和含二氧化碳相变溶液的体积比没有特别的限定,根据本发明的一种优选实施方式,用于产生气泡的气体与含二氧化碳相变溶液的气液体积比为10-90,包括但不限于为10、20、30、40、50、60、70、80、90,优选为20-50。
本发明中,对所述用于产生气泡的气体来源没有特别的限定,只要不与所述 相变溶液反应即可,根据本发明的一种优选实施方式,用于产生气泡的气体选自惰性气体,优选为二氧化碳、氮气和氦气中的至少一种,更优选为二氧化碳。本发明中,产生气泡的气体采用惰性气体例如二氧化碳,还能够去除下层富二氧化碳液相中溶解氧,提高抗氧化性能,下层富二氧化碳液相长时间使用,胺浓度下降率明显降低。
本发明中,对相变溶液的分离条件没有特别的限定,本领域常规的分离条件均适用于本发明,优选地,相变条件包括:分离温度为35-60℃,包括但不限于为35℃、40℃、45℃、48℃、50℃、55℃、60℃。
根据本发明,优选地,所述分离方法还包括:将分离得到的两层液相中的富二氧化碳液相进行再生。
本发明中,对所述二氧化碳气体的来源没有特别的限定,根据本发明的一种优选实施方式,含二氧化碳相变溶液中的二氧化碳来源于燃煤和/或炼钢产生的烟气,优选烟气中CO 2含量为10-20体积%,例如CO 2含量包括但不限于为10体积%、11体积%、12体积%、13体积%、14体积%、15体积%、16体积%、17体积%、18体积%、19体积%、20体积%。
根据本发明的一种优选实施方式,含二氧化碳相变溶液中,含2.0-4.8mol CO 2/kg溶剂,包括但不限于为2.0、2.2、2.4、2.6、2.8、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8mol CO 2/kg溶剂。
本发明中,对所述相变溶液中的溶剂种类没有特别的限定,本领域常规的溶剂均能够用于本发明,根据本发明的一种优选实施方式,相变溶液中,溶剂包括第一溶剂和可选地第二溶剂,其中,第一溶剂选自有机胺,优选选自醇胺、酰胺和脂肪胺中的至少一种;
根据本发明的一种优选实施方式,示例性的第一溶剂选自一乙醇胺、N-甲基二乙醇胺、三乙烯四胺、羟乙基乙二胺、2,2-二甲基环丙甲酰胺、N,N-二乙基乙醇胺和N,N-二甲基环己胺中的至少一种。本发明中,可选地第二溶液指的是相变溶液的溶剂中,可以含有第二溶剂,也可以不含第二溶剂。
根据本发明的一种优选实施方式,以溶剂总质量为基准,第一溶剂的质量含量为15-80wt%,优选为15-30wt%。
根据本发明的一种优选实施方式,溶剂同时包括所述第一溶剂和第二溶剂, 优选第二溶剂选自C2-C10的醇、水、砜和聚醚中的一种或多种。
根据本发明的一种优选实施方式,第二溶剂选自1-丙醇、叔丁醇、水、环丁砜、聚醚、2-氨基-2-甲基-1-丙醇、3-甘醇和癸醇的至少一种。
根据本发明的一种优选实施方式,所述相变溶液的溶剂包括:以100重量%计,10-90%的一乙醇胺和10-90%的环丁砜。
根据本发明的一种优选实施方式,所述相变溶液的溶剂包括:以100重量%计,10-50%的三乙烯四胺、30-80%的N,N-二乙基乙醇胺、5-50%的1-丙醇。
根据本发明的一种优选实施方式,所述相变溶液的溶剂包括:以100重量%计,10-50%的N-甲基二乙醇胺、30-80%的正丁醇、5-50%的水。
本发明的方法可以采用任意方式实现,只要按照本发明思路操作即可实现本发明的目的,根据本发明的一种优选实施方式,本发明所述的分离方法在含二氧化碳相变溶液的分离装置中进行,该装置包括:
相分离单元,用于分离含二氧化碳相变溶液,得到富二氧化碳液相和贫二氧化碳液相,且相分离单元设置有排气口;
气泡发生单元,用于产生气泡扰动相分离单元中的含二氧化碳相变溶液;
所述分离方法包括:
气泡发生单元产生气泡,扰动相分离单元中的含二氧化碳相变溶液,气泡发生单元产生的气体经排气口排出。
根据本发明的优选实施方式,其中,该方法在含二氧化碳相变溶液的分离装置中进行,该装置包括:
相分离器,用于分离含二氧化碳相变溶液,得到下层富二氧化碳液相和上层贫二氧化碳液相,且相分离器上端设置有排气口;
气泡发生器,用于产生气泡扰动相分离器中的含二氧化碳相变溶液;
所述分离方法包括:
气泡发生器产生气泡,扰动相分离器中的含二氧化碳相变溶液,气泡发生器产生的气体经排气口排出。
根据本发明的优选实施方式,本发明第二方面提供一种含二氧化碳相变溶液的分离装置,该装置包括:
吸收单元,用于相变溶液吸收二氧化碳提供含二氧化碳相变溶液;
设置有排气口的相分离单元,用于分离含二氧化碳相变溶液得到富二氧化碳 液相和贫二氧化碳液相,且相分离单元设置有排气口;
气泡发生单元,用于产生气泡扰动相分离单元中的含二氧化碳相变溶液;
与相分离单元连通的再生单元,用于收集相分离单元的富二氧化碳液相,并进行再生;
与相分离单元连通的收集单元,用于收集相分离单元的贫二氧化碳液相。
根据本发明的优选实施方式,该装置包括:
吸收塔,用于相变溶液吸收二氧化碳提供含二氧化碳相变溶液;
上端设置有排气口的相分离器,用于分离含二氧化碳相变溶液得到下层富二氧化碳液相和上层贫二氧化碳液相,且相分离器上端设置有排气口;
气泡发生器,用于产生气泡扰动相分离器中的含二氧化碳相变溶液;
与相分离器下部出口相连的再生塔,用于收集相分离器的下层富二氧化碳液相,并进行再生;
与相分离器侧部出口相连的贫液混合罐,用于收集相分离器的上层贫二氧化碳液相。
本发明中,所述气泡发生器/气泡发生单元可以设置在相分离器/相分离单元内,也可以设置在相分离器/相分离单元外,产生的微气泡只要能够扰动含二氧化碳相变溶液即可。
根据本发明的一种优选实施方式,所述相分离器/相分离单元设置为内部粗糙度Ra>0.4μm,包括但不限于为0.5、0.6、0.7、0.8、0.9、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15μm,优选为5-15μm。
根据本发明的一种优选实施方式,相分离器/相分离单元高度与直径的比值不小于4,包括但不限于为4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20;优选10-15。
根据本发明的一种优选实施方式,所述相分离器/相分离单元顶部有放空阀用于。
本发明中,相分离器/相分离单元内可填充填料,也可以不填充填料,根据本发明的一种优选实施方式,相分离器/相分离单元内无填料。
本发明中,对所述气泡发生器/气泡发生单元的位置没有特别的要求,只要能够扰动含二氧化碳相变溶液即可,根据本发明的一种优选实施方式,所述气泡发生器/气泡发生单元设置在相分离器/相分离单元底。
根据本发明的一种优选实施方式,从排气口排出的气体经处理后返回气泡发生器/气泡发生单元。
接下来通过具体实施例对本发明的含二氧化碳相变溶液的分离方法作进一步的说明。实施例只是对本发明方法的具体实施方式的举例说明,并不构成本发明保护范围的限制。
以下实施例中,溶剂A为一乙醇胺(MEA)和环丁砜的混合物,其中一乙醇胺的质量含量为20%。
以下实施例中,溶剂B为三乙烯四胺、N,N-二乙基乙醇胺和1-丙醇的混合物,其中三乙烯四胺的质量含量为30%、N,N-二乙基乙醇胺的质量含量为50%、1-丙醇质量含量为20%。
以下实施例中,溶剂C为N-甲基二乙醇胺、正丁醇和水的混合物,其中,正丁醇质量含量为30%,水质量含量为50%,N-甲基二乙醇胺的质量含量为20%。
以下实施例在如图1所示的分离装置示意图的分离装置中进行,该分离装置包括:
吸收塔2,用于提供含二氧化碳相变溶液;
上端设置有排气口4的相分离器1,用于分离含二氧化碳相变溶液;
设置在相分离器1底部的气泡发生器2,用于产生气泡通入相分离器中,扰动含二氧化碳相变溶液,往气泡发生器2中通入气体产生气泡;
与相分离器1下部出口相连的再生塔6,用于收集相分离器1的下层富二氧化碳液相再生,并进行再生;
与相分离器1侧部出口相连的贫液混合罐5,用于收集相分离器1的上层贫二氧化碳液相。
本发明中,往吸收塔3中通入含12体积%CO 2的烟气得到含二氧化碳的相变溶液。含二氧化碳的相变溶液从吸收塔3输入到相分离器1中,往设置在相分离器1内的气泡发生器2中通入气体,产生气泡扰动相分离器1内的含二氧化碳相变溶液得到下层富二氧化碳液相和上层贫二氧化碳液相;
下层富二氧化碳液相通过相分离器1下部出口进入再生塔6,并进行再生;
上层贫二氧化碳液相通过相分离器1侧部出口进入贫液混合罐5。
以下实施例中,CO 2捕集率的指的是(原料气中CO 2的含量-净化气中CO 2 的含量)与原料气中CO 2的量的比值。
以下实施例中,按照长时间稳定运行后胺浓度下降结果,推测抗氧化降解效果,溶剂物质如胺浓度下降越低,抗氧化效果越好。
以下实施例中,相分离器内部粗糙度Ra值为10μm。
实施例1
相变溶液的溶剂为溶剂A,相变溶液的流量25L/h,相分离器高径比值为5;氮气流量为250L/h,产生的气泡直径为50um,氮气与相变溶液的体积比为10,分离温度为40℃;
含二氧化碳相变溶液中,含3.4mol CO 2/kg溶剂。
CO 2捕集率为90%;经过240h运行后,下层富二氧化碳液相中,胺浓度下降2%。
实施例2
与实施例1相比,不同之处在于,相变溶液的流量为20L/h,氮气与相变溶液的体积比为12.5,其余条件同实施例1。
含二氧化碳相变溶液中,含3.35mol CO 2/kg溶剂。
CO 2捕集率为88%;经过240h运行后,下层富二氧化碳液相中,胺浓度下降2.1%。
实施例3
与实施例1相比,不同之处在于,相变溶液的流量为20L/h,氮气流量为500L/h,氮气与相变溶液的体积比为25,其余条件同实施例1。
含二氧化碳相变溶液中,含3.41mol CO 2/kg溶剂。
CO 2捕集率为90.2%;经过240h运行后,下层富二氧化碳液相中,胺浓度下降2.0%。与实施例1相比,减少溶剂A的流量,增大氮气流量,CO 2捕集率与实施例1相当。
实施例4
与实施例2相比,不同之处在于,气泡直径为30um,其余条件同实施例2。
含二氧化碳相变溶液中,含3.38mol CO 2/kg溶剂。
CO 2捕集率为89.1%;经过240h运行后,下层富二氧化碳液相中,胺浓度下降2.1%。
实施例5
与实施例3相比,不同之处在于,气泡直径为30um,其余条件同实施例3。
含二氧化碳相变溶液中,含3.43mol CO 2/kg溶剂。
CO 2捕集率为91%;经过240h运行后,下层富二氧化碳液相中,胺浓度下降1.9%。
实施例6
与实施例1相比,不同之处在于,相分离器高径比值为10,其余条件同实施例1。
含二氧化碳相变溶液中,含3.45mol CO 2/kg溶剂。
CO 2捕集率为92%;经过240h运行后,下层富二氧化碳液相中,胺浓度下降1.9%。
实施例7
相变溶液的溶剂为溶剂B,相变溶液的流量30L/h,相分离器高径比值为10,气泡直径为30um,氮气流量为500L/h;氮气与相变溶液的体积比为16.67,分离温度为40℃;
含二氧化碳相变溶液中,含3.5mol CO 2/kg溶剂。
CO 2捕集率为91%;经过240h运行后,下层富二氧化碳液相中,胺浓度下降2.0%。
实施例8
相变溶液的溶剂为溶液C,相变溶液的流量20L/h,相分离器高径比值为10,气泡直径为30um,氮气流量为500L/h;氮气与相变溶液的体积比为25,分离温度为40℃;
含二氧化碳相变溶液中,吸收量为4.0mol CO 2/kg溶剂。
CO 2捕集率为95%;经过240h运行后,下层富二氧化碳液相中,胺浓度下 降1.8%。
实施例9
按照实施例1的方法,不同之处在于,往设置在相分离器内的气泡发生器中通入二氧化碳,产生气泡扰动相分离器内的含二氧化碳相变溶液得到下层富二氧化碳液相和上层贫二氧化碳液相;其余条件同实施例1。
含二氧化碳相变溶液中,吸收量为4.0mol CO 2/kg溶剂。
CO 2捕集率为95%;经过240h运行后,下层富二氧化碳液相中,胺浓度下降1.6%。
对比例1
相变溶液的溶剂为溶剂A,相变溶液的流量25L/h,相分离器高径比值为5,关闭气泡发生器,分离温度为40℃;含二氧化碳相变溶液中,含3.4mol CO 2/kg溶剂。
CO 2捕集率为80%;经过240h运行后,下层富二氧化碳液相中,胺浓度下降2.8%。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (29)

  1. 一种含二氧化碳相变溶液的分离方法,其特征在于,该方法包括:使用气泡扰动含二氧化碳相变溶液,分离得到至少两层液相。
  2. 根据权利要求1所述的分离方法,其中,所述气泡的气泡直径不大于50μm。
  3. 根据权利要求1或2所述的分离方法,其中,所述气泡的气泡直径为15-30μm。
  4. 根据权利要求1-3中任意一项所述的分离方法,其中,用于产生气泡的气体与含二氧化碳相变溶液的气液体积比为10-90。
  5. 根据权利要求1-4中任意一项所述的分离方法,其中,用于产生气泡的气体与含二氧化碳相变溶液的气液体积比为20-50。
  6. 根据权利要求1-5中任意一项所述的分离方法,其中,用于产生气泡的气体选自惰性气体。
  7. 根据权利要求1-6中任意一项所述的分离方法,其中,用于产生气泡的气体选自二氧化碳、氮气和氦气中的至少一种。
  8. 根据权利要求1-7中任意一项所述的分离方法,其中,用于产生气泡的气体为二氧化碳。
  9. 根据权利要求1-8中任意一项所述的分离方法,其中,分离条件包括:分离温度为35-60℃。
  10. 根据权利要求1-9中任意一项所述的分离方法,其中,该方法还包括:将分离得到的两层液相中的富二氧化碳液相进行再生。
  11. 根据权利要求1-10中任意一项所述的分离方法,其中,
    含二氧化碳相变溶液中,二氧化碳来源于燃煤和/或炼钢产生的烟气。
  12. 根据权利要求11所述的分离方法,其中,烟气中CO 2含量为10-20体积%。
  13. 根据权利要求1-12中任意一项所述的分离方法,其中,含二氧化碳相变溶液中,含2.0-4.8mol CO 2/kg溶剂。
  14. 根据权利要求1-13中任意一项所述的分离方法,其中,
    含二氧化碳相变溶液中,溶剂包括第一溶剂和可选地第二溶剂,其中,第一溶剂选自有机胺,
    第二溶剂选自C2-C10的醇、水、砜和聚醚中的一种或多种。
  15. 根据权利要求14所述的分离方法,其中,以溶剂总质量为基准,第一溶剂的质量含量为15-80wt%。
  16. 根据权利要求14或15所述的分离方法,其中,以溶剂总质量为基准,第一溶剂的质量含量为15-30wt%。
  17. 根据权利要求14-16中任意一项所述的分离方法,其中,
    所述第一溶剂选自醇胺、酰胺和脂肪胺中的至少一种。
  18. 根据权利要求14-17中任意一项所述的分离方法,其中,
    所述第一溶剂选自一乙醇胺、N-甲基二乙醇胺、三乙烯四胺、羟乙基乙二胺、2,2-二甲基环丙甲酰胺、N,N-二乙基乙醇胺和N,N-二甲基环己胺中的至少一种。
  19. 根据权利要求14-18中任意一项所述的分离方法,其中,
    第二溶剂选自1-丙醇、正丁醇、叔丁醇、水、环丁砜、聚醚、2-氨基-2-甲基-1-丙醇、3-甘醇和癸醇的至少一种。
  20. 根据权利要求14-19中任意一项所述的分离方法,其中,
    所述相变溶液的溶剂包括:以100重量%计,10-90%的一乙醇胺和10-90%的环丁砜;或者
    所述相变溶液的溶剂包括:以100重量%计,10-50%的三乙烯四胺、30-80%的N,N-二乙基乙醇胺、5-50%的1-丙醇;或者
    所述相变溶液的溶剂包括:以100重量%计,10-50%的N-甲基二乙醇胺、30-80%的正丁醇、5-50%的水。
  21. 根据权利要求1-20中任意一项所述的分离方法,其中,该方法在含二氧化碳相变溶液的分离装置中进行,该装置包括:
    相分离单元,用于分离含二氧化碳相变溶液,得到富二氧化碳液相和贫二氧化碳液相,且相分离单元设置有排气口;
    气泡发生单元,用于产生气泡扰动相分离单元中的含二氧化碳相变溶液;
    所述分离方法包括:
    气泡发生单元产生气泡,扰动相分离单元中的含二氧化碳相变溶液,气泡发生单元产生的气体经排气口排出。
  22. 根据权利要求1-21中任意一项所述的分离方法,其中,
    所述分离装置包括:
    相分离器,用于分离含二氧化碳相变溶液,得到下层富二氧化碳液相和上层贫二氧化碳液相,且相分离器上端设置有排气口;
    气泡发生器,用于产生气泡扰动相分离器中的含二氧化碳相变溶液;
    所述分离方法包括:
    气泡发生器产生气泡,扰动相分离器中的含二氧化碳相变溶液,气泡发生器产生的气体经排气口排出。
  23. 一种含二氧化碳相变溶液的分离装置,其特征在于,该装置包括:
    吸收单元,用于相变溶液吸收二氧化碳提供含二氧化碳相变溶液;
    设置有排气口的相分离单元,用于分离含二氧化碳相变溶液得到富二氧化碳 液相和贫二氧化碳液相,且相分离单元设置有排气口;
    气泡发生单元,用于产生气泡扰动相分离单元中的含二氧化碳相变溶液;
    可选地包括与相分离单元连通的再生单元,用于收集相分离单元的富二氧化碳液相,并进行再生;
    与相分离单元连通的收集单元,用于收集相分离单元的贫二氧化碳液用。
  24. 根据权利要求23所述的分离装置,其中,该装置包括:
    吸收塔,用于相变溶液吸收二氧化碳提供含二氧化碳相变溶液;
    上端设置有排气口的相分离器,用于分离含二氧化碳相变溶液得到下层富二氧化碳液相和上层贫二氧化碳液相,且相分离器上端设置有排气口;
    气泡发生器,用于产生气泡扰动相分离器中的含二氧化碳相变溶液;
    与相分离器下部出口相连的再生塔,用于收集相分离器的下层富二氧化碳液相,并进行再生;
    与相分离器侧部出口相连的贫液混合罐,用于收集相分离器的上层贫二氧化碳液相。
  25. 根据权利要求23或24所述的分离装置,其中,相分离器或相分离单元设置为内部粗糙度Ra>0.4μm。
  26. 根据权利要求23-25中任意一项所述的分离装置,其中,相分离器或相分离单元设置为内部粗糙度Ra为5-15μm。
  27. 根据权利要求23-26中任意一项所述的分离装置,其中,相分离器或相分离单元高度与直径的比值不小于4。
  28. 根据权利要求23-27中任意一项所述的分离装置,其中,相分离器或相分离单元高度与直径的比值为10-15。
  29. 根据权利要求23-28中任意一项所述的分离装置,其中,
    所述气泡发生器或气泡发生单元设置在相分离器或相分离单元底部。
PCT/CN2022/138787 2022-08-12 2022-12-13 含二氧化碳相变溶液的分离方法和分离装置 WO2024031901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210970449.5 2022-08-12
CN202210970449.5A CN117618988A (zh) 2022-08-12 2022-08-12 含二氧化碳相变溶液的分离方法和分离装置

Publications (1)

Publication Number Publication Date
WO2024031901A1 true WO2024031901A1 (zh) 2024-02-15

Family

ID=89850523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138787 WO2024031901A1 (zh) 2022-08-12 2022-12-13 含二氧化碳相变溶液的分离方法和分离装置

Country Status (2)

Country Link
CN (1) CN117618988A (zh)
WO (1) WO2024031901A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070237695A1 (en) * 2006-04-07 2007-10-11 Liang Hu Phase transitional absorption method
CN105032126A (zh) * 2014-04-18 2015-11-11 株式会社东芝 二氧化碳回收装置及二氧化碳回收方法
CN207552015U (zh) * 2017-10-13 2018-06-29 上海嘉金泵业制造有限公司 全自动一体化除渣除油污水处理设备
CN108992974A (zh) * 2018-08-07 2018-12-14 台州多凯工业设计有限公司 一种汽车回收时的油水分离设备
CN114191975A (zh) * 2021-12-31 2022-03-18 河北科技大学 一种具有二次相变功能的捕集co2吸收剂及应用方法
CN114602294A (zh) * 2022-02-25 2022-06-10 昆明理工大学 一种用于捕集co2的两相吸收剂及其应用
CN114832593A (zh) * 2022-05-13 2022-08-02 嘉兴碳捕快科技有限公司 一种液—液分相式的二氧化碳吸收和解吸系统
CN218589741U (zh) * 2022-08-12 2023-03-10 中国石油化工股份有限公司 含二氧化碳相变溶液的分离装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070237695A1 (en) * 2006-04-07 2007-10-11 Liang Hu Phase transitional absorption method
CN105032126A (zh) * 2014-04-18 2015-11-11 株式会社东芝 二氧化碳回收装置及二氧化碳回收方法
CN207552015U (zh) * 2017-10-13 2018-06-29 上海嘉金泵业制造有限公司 全自动一体化除渣除油污水处理设备
CN108992974A (zh) * 2018-08-07 2018-12-14 台州多凯工业设计有限公司 一种汽车回收时的油水分离设备
CN114191975A (zh) * 2021-12-31 2022-03-18 河北科技大学 一种具有二次相变功能的捕集co2吸收剂及应用方法
CN114602294A (zh) * 2022-02-25 2022-06-10 昆明理工大学 一种用于捕集co2的两相吸收剂及其应用
CN114832593A (zh) * 2022-05-13 2022-08-02 嘉兴碳捕快科技有限公司 一种液—液分相式的二氧化碳吸收和解吸系统
CN218589741U (zh) * 2022-08-12 2023-03-10 中国石油化工股份有限公司 含二氧化碳相变溶液的分离装置

Also Published As

Publication number Publication date
CN117618988A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN105693452B (zh) 一种天然气制乙炔的净化系统及方法
CN204746030U (zh) 适用于海洋平台的撬装式吸收二氧化碳气体的装置
CN101856579B (zh) 一种改进碳酸钾的节能捕集co2新工艺
CN202605989U (zh) 一种二氧化碳捕集再生装置
CN101978234A (zh) 高炉煤气的分离方法
CN114602294A (zh) 一种用于捕集co2的两相吸收剂及其应用
WO2024031901A1 (zh) 含二氧化碳相变溶液的分离方法和分离装置
WO2012167388A1 (en) Enhanced enzymatic co2 capture techniques according to solution pka, temperature and/or enzyme character
CN111454758B (zh) 一种高效紧凑型天然气甘醇脱水系统及方法
WO2012136039A1 (zh) 烟道气二氧化碳捕集系统微旋流净化方法与装置
CN102151477B (zh) 烟道气二氧化碳捕集系统复合胺溶液旋流净化方法与装置
CN218589741U (zh) 含二氧化碳相变溶液的分离装置
CN219156823U (zh) 一种低温甲醇洗富液闪蒸气co2和h2s脱除装置
CN101480559B (zh) 一种用膜回收烟气中硫的方法
CN114262636B (zh) 一种天然气脱硫脱碳系统及方法
CN101912715A (zh) 废气吸收旋流处理方法与装置
KR100779618B1 (ko) 2단 보르텍스 튜브를 이용한 이산화탄소 흡수제거 장치 및그 방법
CN208186972U (zh) 一种烯烃装置回收排放气的装置
JP4861729B2 (ja) 水素製造方法および水素製造装置
CN1935318B (zh) 超声波增扰式油气吸收回收的方法及装置
CN205635417U (zh) 一种天然气制乙炔的净化系统
CN109569242A (zh) 强化气-液-液三相体系吸收co2的方法
CN113694696A (zh) 一种船舶尾气脱硫装置及脱硫方法
CN113731119A (zh) 一种用于二氧化碳捕获阈值可控的液-液相变吸收剂
CN113731171A (zh) 一种船用二氧化碳洗涤塔、喷淋洗涤吸收系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954839

Country of ref document: EP

Kind code of ref document: A1