WO2012136039A1 - 烟道气二氧化碳捕集系统微旋流净化方法与装置 - Google Patents

烟道气二氧化碳捕集系统微旋流净化方法与装置 Download PDF

Info

Publication number
WO2012136039A1
WO2012136039A1 PCT/CN2011/078899 CN2011078899W WO2012136039A1 WO 2012136039 A1 WO2012136039 A1 WO 2012136039A1 CN 2011078899 W CN2011078899 W CN 2011078899W WO 2012136039 A1 WO2012136039 A1 WO 2012136039A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
micro
solid
gas
washing
Prior art date
Application number
PCT/CN2011/078899
Other languages
English (en)
French (fr)
Inventor
汪华林
毛松柏
沈其松
叶宁
张艳红
王剑刚
沈玲
崔馨
Original Assignee
上海华畅环保设备发展有限公司
南化集团研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011100850394A external-priority patent/CN102179126B/zh
Priority claimed from CN2011100860837A external-priority patent/CN102151477B/zh
Priority claimed from CN201110087821XA external-priority patent/CN102179153B/zh
Application filed by 上海华畅环保设备发展有限公司, 南化集团研究院 filed Critical 上海华畅环保设备发展有限公司
Priority to US13/984,406 priority Critical patent/US9533247B2/en
Publication of WO2012136039A1 publication Critical patent/WO2012136039A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention belongs to the field of energy environment, and relates to a micro-swirl purification method for a flue gas, a tail gas, a regeneration gas and a composite amine solution of a flue gas carbon dioxide capture system, in particular to a flue gas, an exhaust gas, A method of removing aerosol particles from the regeneration gas and removing solid particulates and oil from the complex amine solution, and a device for carrying out the method.
  • Background technique a micro-swirl purification method for a flue gas, a tail gas, a regeneration gas and a composite amine solution of a flue gas carbon dioxide capture system, in particular to a flue gas, an exhaust gas, A method of removing aerosol particles from the regeneration gas and removing solid particulates and oil from the complex amine solution, and a device for carrying out the method.
  • the global carbon dioxide emissions of the power generation industry account for 40% of the total global carbon dioxide emissions. It is estimated that by 2030, the global power generation will double by the present. If no effective measures are taken, the carbon dioxide emissions will also increase by 2/. 3. In China, where thermal power generation is dominant, since most of the carbon dioxide emitted during power generation comes from coal combustion, the capture and storage of carbon dioxide in thermal power plants is more important for achieving greenhouse gas reduction.
  • Decarburization after combustion separates carbon dioxide from the flue gas.
  • the methods of collecting carbon dioxide include chemical solvent absorption, adsorption, and membrane separation.
  • the current best collection method is the chemical solvent amine absorption method.
  • the amine reacts with carbon dioxide to form a salt compound.
  • the solvent is then warmed and the compound decomposed to separate the solvent and high purity carbon dioxide.
  • the flue gas generated by combustion contains many impurities, and the presence of impurities increases the cost of trapping
  • the flue gas is pretreated (washing cooling, water removal, electrostatic precipitator, desulfurization and denitration, etc.) before being subjected to absorption treatment; Remove the active impurities (sulfur, nitrogen oxides, particulates, etc.); otherwise these impurities will preferentially react with the solvent, consume a large amount of solvent and corrode the equipment.
  • the flue gas entrains aerosol particles such as water. On the one hand, it will gradually dilute the concentration of the amine solution in the absorption tower, increase the consumption of the amine liquid, and cause the carbon dioxide-rich amine liquid to be discharged, resulting in high concentration of refractory organic pollution. Object On the other hand, these aerosol particles are easy to induce the foaming of the amine liquid in the absorption tower, causing the running loss of the amine liquid, causing the amine gas to be entrained in the outer exhaust body of the absorption tower, which further causes an increase in the consumption of the amine liquid. And cause air pollution.
  • a cyclone separation method and apparatus may be employed, but the existing cyclone separation technique has a pressure drop of 500 Pa-600 Pa, or even as high as lOOOPa, and cannot be added after the water washing tower. In the system in front of the flue gas absorption tower, this will cause the flue gas pressure to be insufficient, and it is necessary to add a flue gas supercharging system, which is uneconomical.
  • the invention adopts a rotary flow separation technology with a rated pressure drop of 20 mmH 2 O column, that is, a pressure drop of 200 Pa, which is only 1/3 - 1/5 of the pressure drop of the existing cyclone separator, and controls the flue after the dust washing.
  • the aerosol content of the gas can effectively control and capture the flue gas and dust entering the absorption tower, and can effectively utilize the residual pressure of the low partial pressure flue gas.
  • the flue gas and circulating washing water entering the washing tower if the solid content is higher than 100 mg/kg, will cause the washing tower to clog, resulting in a short running cycle and frequent backwashing.
  • the cyclone separator is used to remove the dust in the flue gas, and the solids circulating the washing water are stored in the water washing tank.
  • the flue gas flow of a thermal power plant is large, such as a thermal power plant, the flow rate of flue gas is 630000 Nm 3 /h, and the high-precision cyclone separator can select an average particle size of about 4 ⁇ m in the flue gas.
  • the aerosol particles are trapped, the size of the cyclone is large and the cost is high; and the total pressure of the flue gas is only 2000Pa, and the existing cyclone is used to consume 600Pa-1000Pa, which will supply pressure for subsequent processes. tension.
  • the invention does not use a cyclone separator to perform gas-solid separation of the flue gas before entering the water washing tower, but the flue gas directly enters the water washing tower, the water washing tower effluent performs liquid-solid micro-swirl separation, or the circulating washing water performs micro-rotation. Flow separation and purification. Moreover, due to the large amount of flue gas treatment, the amount of washing circulating water is required to be large.
  • the invention adopts a technical scheme of partial micro-swirl separation and multi-stage micro-swirl concentrated sludge, which can ensure that the flue gas residual pressure is not reduced or
  • the micro-reduction can ensure that PM2.5 particles in the flue gas can be purified and enriched.
  • the flue gas is absorbed by the carbon dioxide absorbent in the absorption tower to capture the carbon dioxide trapping system, and the tail gas is entrained with a large amount of aerosol particles, especially PM2. .5 particles, such as not trapping the exhaust gas before it is discharged into the atmosphere, not only will cause serious damage to the atmospheric environment, but also cause entrainment loss of the washing liquid, resulting in a large operating cost of the entire flue gas carbon dioxide capture device.
  • the increase in the magnitude of the economic benefits is greatly affected, so how to recover these aerosol particles is a major technical problem in the energy environment.
  • the existing methods for trapping aerosol particles include a rotary flow separator and an electric trap.
  • the pressure drop of the former is generally 500 Pa-600 Pa, and even higher than 100 OOPa.
  • the existing technology cannot be used for flue gas carbon dioxide capture. In the collecting system, first, the pressure drop is too high, and the flue gas exhaust gas at the top of the absorption tower cannot support such high pressure drop consumption; the second is to use the existing cyclone separator technology. Surgery, it is necessary to pressurize the flue gas exhaust, which is complicated and uneconomical. For electric traps, because the flue gas exhaust gas has a large water content, it is easy to cause safety hazards, and the cost is too high. There is no economical electric trap in the project. Therefore, it is necessary to select a micro-rotating flow separator with low pressure drop and high efficiency of separation.
  • the regenerative gas carbon dioxide entrains the composite amine solution particles, which will adversely affect subsequent devices and processing, and even pollute the environment. In addition, aerosol particles are lost, such as
  • the 1 million tons/year scale carbon dioxide capture device consumes about 1600 tons/year of compound amine solvent per year, worth 40 million yuan. 80% of these spent composite solvents are taken away by the purified gas in the form of aerosol. Especially, PM2.5 particles, how to recover these aerosol particles is a major technical problem in the energy environment.
  • the existing methods for trapping aerosol particles include a rotary flow separator and an electric trap. The pressure drop of the former is generally 500 Pa-600 Pa, and even higher than 100 OOPa. The existing technology cannot be used for flue gas carbon dioxide capture.
  • the Nanhua Group Research Institute has developed a new technology for low partial pressure (flue gas, etc.) CO 2 capture, which is based on MEA aqueous solution and is supplemented with active amines, antioxidants and corrosion inhibitors.
  • the complex amine solution is used for CO 2 capture, which solves the problems of large amine degradation loss, severe equipment corrosion and high energy consumption in the conventional method.
  • the complex amine solution contains a large amount of solid particles and oil. If the composite amine solution is not removed before entering the absorption tower, it will inevitably cause blockage of downstream pipelines and equipment, which will not only seriously affect the capture of carbon dioxide. Efficiency, and can lead to paralysis of the entire device.
  • an activated carbon filter is usually arranged before the absorption tower to remove solid particles and oil entrained in the composite amine solution.
  • the working principle of the activated carbon filter is to adsorb impurities into the activated carbon particles, although the adsorption effect is good in the initial stage, the time is one. Long, the adsorption capacity of activated carbon will inevitably decrease to different extents, and the adsorption effect will also decrease. Therefore, the activated carbon in the activated carbon filter must be cleaned or replaced periodically, which affects the safe, stable and efficient operation of the complete flue gas carbon dioxide capture device.
  • the prior art liquid-solid micro-cyclones and liquid-liquid micro-cyclones can efficiently remove the solid particles and oil entrained in the composite amine solution, and the separation precision of the solid particles and the oil droplets respectively reaches 3 micrometers. And 10 microns, and it is not easy to block, no need to replace the internals, suitable for long-term stable use.
  • the invention provides a micro-swirl purification method and device for a flue gas carbon dioxide capture system, thereby solving the problem Problems in the prior art.
  • the present invention provides a microfluidic purification method for a flue gas carbon dioxide capture system.
  • the method includes:
  • the gas-liquid micro-swirl separation of the regeneration gas entrained with the aerosol particles is carried out to capture the aerosol particles entrained in the regeneration gas, and the regeneration gas after the removal of the aerosol particles is used in a subsequent stage.
  • the concentration of aerosol particles in the flue gas, exhaust gas, and regeneration gas is less than 50 mg. /Nm 3 .
  • the average particle size of the aerosol particles in the flue gas, exhaust gas, and regeneration gas Not more than 2.5 microns.
  • the rated pressure drop of the flue gas, exhaust gas, and regeneration gas is 20 mmH 2 O
  • the maximum pressure drop is not more than 30mmH 2 O.
  • the circulating wash water treated by the liquid-solid micro-swirl separation of the step (b) may be all of the circulating wash water or a portion of the circulating wash water.
  • step (d) after the gas-liquid microfluidic separation treatment of the step (d), more than 80% of the aerosol particles carried by the exhaust gas can be recovered, and the aerosol particles in the efflux environment are reduced by 80%. the above.
  • the gas-liquid microfluidic separation treatment of the step (d) may be carried out in the upper half of the column of the absorption tower or may be completed outside the absorption tower.
  • the content of the impurity component in the complex amine solution is greatly reduced. It avoids the blockage of downstream pipelines and equipment and improves the collection efficiency of carbon dioxide in the absorption tower.
  • the present invention provides a microfluidic purification device for a flue gas carbon dioxide capture system, the device comprising:
  • the water washing tower (1) removes the dust entrained in the flue gas by using the circulating washing water purified by the liquid-solid micro-swirl separator.
  • An ultra-low pressure drop rotary flow separator (2) connected to the flue gas outlet of the water washing tower (1) for removing aerosol particles entrained in the flue gas after washing, and recovering the aerosol particles.
  • Liquid-solid micro-cyclonic separator group connected to the wash water outlet of the water washing tower (1) and the wash water outlet of the ultra-low pressure drop rotary flow separator (2) (3-1, 3-2, 3-3 ) for micro-swirl separation of solid particles entrained in the wash water and concentration of solid particles.
  • washing tank (4) connected to the purified water outlet of the liquid-solid microcyclonic separator group for collecting and storing washing water, And the water supply tower is recycled.
  • a water washing circulating water pump (5) connected to the washing tank (4) and the water washing tower (1) for conveying the washing water extracted from the washing tank (4) to the water washing tower (1).
  • the absorption tower (6) is for absorbing and trapping carbon dioxide components in the flue gas, and removing gas components such as sulfur dioxide and nitrogen oxides entrained in the exhaust gas.
  • An ultra-low pressure drop rotary flow separator (7) connected to the exhaust outlet of the absorber tower (6) is used for the rotational separation and recovery of the aerosol particles entrained in the exhaust gas.
  • a liquid-solid microcyclonic separator group (8-1, 8-2, 8-3) connected to the washing liquid outlet of the ultralow pressure drop rotary flow separator (7) and the washing liquid outlet of the absorption tower (6) ) for micro-swirl separation of solid particles entrained in the washing liquid.
  • a regeneration tower (9) for preparing carbon dioxide for regeneration gas is provided.
  • An air-cooled cooler (10) connected to the regeneration gas outlet of the regeneration tower (9) for air-cooling the regeneration gas.
  • a water-cooled cooler (11) connected to the outlet of the air-cooled chiller (10) for water-cooling the regeneration gas.
  • An ultra-low pressure drop rotary flow separator (12) connected to the outlet of the water-cooled cooler (11) for micro-swirl separation of aerosol particles entrained in the regeneration gas, both to purify the regeneration gas and to recover the regeneration gas Entrained aerosol particles.
  • a lean liquid pump (13) connected to the lean bottom outlet of the regeneration tower (9) for transporting a carbon dioxide-depleted complex amine solution.
  • a lean liquid cooler (14) connected to the outlet of the lean pump (13) for cooling the composite amine solution.
  • a secondary liquid-liquid microcyclone (18) connected to the top outlet of the liquid-liquid microcyclone (17) for concentrating the oil.
  • the liquid-solid micro-cyclonic separator group and the liquid-solid micro-swirl separator are both connected in series by two or more liquid-solid micro-cyclonic separators.
  • the ultra-low pressure drop rotary flow separators (2), (7), (12) can enhance the separation effect by series multi-stage arrangement, and efficiently remove flue gas and exhaust gas. , aerosol microparticles entrained in the regeneration gas Granules.
  • the purified washing liquid is returned to the washing liquid system for recycling, so that the running loss of the washing liquid is reduced by about 80%.
  • the aerosol particles captured by the ultra-low pressure drop rotary flow separator (12) are directly returned to the complex amine solution system for recycling, thereby reducing the consumption of the complex amine solution by about 50%. .
  • the carbon dioxide in the rich liquid is decomposed and outputted from the top of the column, and the residual carbon dioxide-depleted complex amine solution is output from the bottom of the column, with solids entrained therein.
  • Impurity components such as particles and engine oil.
  • the concentration of solid particulates and oil is greatly increased by concentration of the secondary liquid-solid microcyclone (16) and the secondary liquid-liquid microcyclone (18). , reducing the operating load of the subsequent sludge and sewage oil enrichment device.
  • the residual liquid output from the top outlet of the secondary liquid-solid microcyclone (16) and the bottom outlet of the secondary liquid-liquid microcyclone (18) is returned to the bottom of the regeneration tower. And re-enter the two-stage cyclone purification system of the complex amine solution for cyclic purification treatment.
  • the cyclone (18) can be arranged in multiple stages in series to form a micro-cycloid set to improve separation efficiency.
  • Fig. 1 is a flow chart showing the process of flue gas cyclone flow washing and dewatering of a flue gas carbon dioxide capture system according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a rotary stream purification process for absorbing the overhead gas of a flue gas carbon dioxide capture system according to another embodiment of the present invention.
  • Fig. 3 is a flow chart showing the micro-swirl collection process of the flue gas carbon dioxide capture system regeneration gas according to still another embodiment of the present invention.
  • FIG. 4 is a flow chart of a two-stage cyclone purification process of a complex amine solution of a flue gas carbon dioxide capture system according to still another embodiment of the present invention. detailed description After extensive and intensive research, the inventors of the present invention discovered that:
  • the raw material of the flue gas carbon dioxide capture system contains a large amount of dust in the flue gas. If it is not removed, it will inevitably cause blockage of the subsequent device, which will seriously affect the continuous and stable operation of the whole set of carbon dioxide capture devices.
  • aerosol particles such as water particles, dust particles and liquid-solid composite particles will inevitably be entrained in the flue gas, if not removed, not only It will cause the entrainment loss of a large amount of washing water, and will increase the dilution rate of the impurities of the flue gas to the amine liquid, causing the foaming phenomenon of the amine liquid during the carbon dioxide absorption process.
  • the present scheme adopts an ultra-low pressure drop rotary flow separator.
  • a liquid-solid micro-cyclonic separator group is arranged at the circulating washing water outlet of the washing tower and the circulating washing water outlet of the ultra-low pressure drop rotating flow separator, which can effectively reduce the concentration of solid particles in the washing water, and thus the concentrated washing Water can be recycled into the water washing system.
  • This scheme can improve the purity of the flue gas and reduce the running loss of the washing water by about 80%.
  • the flue gas in the flue gas carbon dioxide capture system is absorbed by the carbon dioxide absorber in the absorption tower to capture the carbon dioxide trapping system, and the exhaust gas is entrained with a large amount of aerosol particles, such as not in the exhaust gas exhaust. Removing it before entering the atmosphere will not only cause serious damage to the atmospheric environment, but also cause entrainment loss of the washing liquid, resulting in a substantial increase in the operating cost of the complete flue gas carbon dioxide capture device, which greatly affects economic benefits. Therefore, the present scheme adopts a super-low pressure drop rotary flow separator in the upper half of the tower of the absorption tower or outside the absorption tower to efficiently remove the aerosol particles and purify the exhaust gas.
  • a liquid-solid micro-cyclonic separator group is disposed at the washing liquid outlet of the ultra-low pressure drop rotary flow separator and the washing liquid outlet of the absorption tower, which can effectively reduce the concentration of solid particles in the washing liquid, and thus the concentrated washing liquid It can enter the recycling of the washing liquid system.
  • This scheme can reduce the emission of aerosol particles, avoid the entrainment loss of the washing liquid, prevent the damage of the above chemicals to the atmospheric environment, and inhibit or even eliminate the smog in the cold season. Corrosion of the device.
  • the flue gas carbon dioxide capture system contains a large amount of saturated steam containing the complex amine solution from the carbon dioxide of the regeneration gas output from the regeneration tower. If it is not removed, the quality of the carbon dioxide of the regeneration gas will be greatly reduced, and the subsequent storage will be carried out. It has a serious impact on industrial applications, and the entrainment loss of a large amount of complex amine solution can also cause the operating cost of the flue gas carbon dioxide capture device to be greatly increased, and the economic benefits are greatly affected.
  • the scheme uses an air-cooled cooler and a water-cooled cooler to cool the regeneration gas carbon dioxide in series, and maximizes the liquefaction of the saturated steam containing the complex amine solution entrained in the regeneration gas into droplets, which are then separated by a micro-rotating flow with ultra-low pressure drop.
  • the aerosol particles can be removed efficiently and the regeneration gas can be purified.
  • the captured aerosol particles are collected into a liquid, and the composite amine solution outputted from the bottom of the regeneration tower is directly returned to the complex amine solution system for recycling, and the purity of the regeneration gas can be improved by using the scheme, and the consumption of the composite amine solution is increased. Reduce by about 50%.
  • the solid particles and the oil content in the complex amine solution can be effectively reduced, so that the composite amine solution can be purified to enter the absorption tower to efficiently capture carbon dioxide gas.
  • the solid particles and oil are removed by further concentration and then into the sludge and sewage enrichment unit, thus reducing the operating load of the sludge and sewage oil enrichment unit.
  • the gas-liquid micro-rotating flow separation of the exhaust gas at the top of the carbon dioxide absorption tower is carried out by ultra-low pressure drop to remove the aerosol particles entrained in the exhaust gas to obtain purified exhaust gas.
  • the regeneration gas (mainly containing carbon dioxide;) prepared by the regeneration tower is air-cooled and water-cooled, so that the saturated steam containing the complex amine solution entrained in the regeneration gas is converted into a droplet to obtain a regeneration gas entrained with aerosol particles. .
  • the gas-liquid micro-swirl separation of the regeneration gas entrained with aerosol particles is carried out to capture the aerosol particles entrained in the regeneration gas, and the regeneration gas after the aerosol particles are removed for use in subsequent sections.
  • the circulating washing water of the flue gas is subjected to cyclone dust removal and purification, and the sludge in the circulating washing water is subjected to multi-stage cyclone concentration to remove the dust entrained in the flue gas and enrich the dust;
  • the flue gas is subjected to ultra-low pressure drop gas-liquid micro-swirl separation to remove aerosol particles-liquid particles and liquid-solid composite particles entrained in the flue gas after washing, and delay the impurity of the flue gas to compound
  • the dilution rate of the amine solution inhibits the foaming of the complex amine solution during carbon dioxide absorption.
  • This scheme selects the HL/G ultra-low pressure drop rotary flow separator independently developed by East China University of Science and Technology to remove the aerosol particles entrained in the flue gas, and adopts the HL/S liquid-solid micro-cyclonic separator group. To concentrate the circulating wash water.
  • the following table shows the physical properties of the inlet material of the HL/G ultra-low pressure drop rotary flow separator:
  • the concentration of imported aerosol particles is not large At 1500 mg/Nm 3 , the concentration of aerosol particles at the gas phase outlet is not more than 50 mg/Nm 3 , and the operating pressure drop of the equipment under standard conditions is not more than 0.0002 MPa, which is equivalent to 20 mm water column height.
  • HL/S type liquid-solid micro-cyclonic separator at the rated flow rate, when the imported solid particle content is 500mg/L ⁇ 5000mg/L, the outlet solid particle content is 100mg/L (according to GB260 standard), the inlet and outlet The pressure drop is ⁇ 0.1 ⁇ , and the solid particulate content of the outlet of the tertiary microfluidizer is 50mg/L.
  • the exhaust gas from the top of the carbon dioxide absorption tower is subjected to an ultra-low pressure drop of the rotating stream to remove the aerosol particles entrained in the exhaust gas, and the recovered aerosol particles are separated by the liquid-solid micro-swirl and returned to the washing liquid system.
  • This scheme selects the HL/G ultra-low pressure drop rotary flow separator independently developed by East China University of Science and Technology to remove the aerosol particles entrained in the exhaust gas, and concentrates it with HL/S liquid-solid micro-cyclonic separator group. detergent.
  • the following table shows the physical properties of the inlet material of the ultra-low pressure drop rotary flow separator:
  • Ultra-low pressure drop rotary flow separator at rated flow rate when the concentration of imported aerosol particles is not more than 1500 mg/m 3 , the concentration of gaseous phase aerosol aerosol particles is not more than 50 mg/m 3 , and the equipment is under standard conditions.
  • the operating pressure drop is not more than 0.0002 MPa, which is equivalent to 20 mm water column height.
  • the regeneration gas carbon dioxide of the regeneration tower is air-cooled and water-cooled to convert the steam entrained in the regeneration gas into droplets; then, the cooled regeneration gas is subjected to ultra-low pressure drop gas-liquid micro-rotation flow separation.
  • the recovered aerosol particles are directly returned to the complex amine solution system.
  • This scheme selects the HL/G ultra-low pressure drop micro-rotating flow separator independently developed by East China University of Science and Technology to remove the aerosol particles entrained in the regeneration gas.
  • the following table shows the inlet material of the ultra-low pressure drop micro-rotating flow separator.
  • Ultra-low pressure drop micro-rotating flow separator at rated flow rate when the concentration of imported aerosol particles is not more than 1500 mg/m 3 , the concentration of gaseous phase aerosol aerosol particles is not more than 20 mg/m 3 , and under standard conditions
  • the operating pressure drop of the equipment is not more than 0.0002 MPa, which is equivalent to 20 mm water column height.
  • This scheme selects the HL/S liquid-solid micro-swirl separator independently developed by East China University of Science and Technology and the HL/L liquid-liquid micro-swirl separator to remove the solid particles and oil entrained in the composite amine solution.
  • the physical properties of the material are processed for the device:
  • the imported solid particle content is 500mg/L ⁇
  • the outlet solids content is 100mg/L (according to GB260 standard)
  • the pressure drop at the inlet and outlet is ⁇ 0.1 ⁇
  • the HL/L liquid-liquid micro-swirl separator is less than the oil content in the inlet.
  • the liquid phase outlet oil concentration is not more than 150mg/L (excluding dissolved oil and emulsified oil).
  • the analytical method adopts Q/RCD-302-2000 gravimetric method, HL/L liquid-liquid micro-swirl separator
  • the pressure drop between the inlet and the liquid phase outlet is 0.15 MPa to 0.20 MPa.
  • the flue gas carbon dioxide capture system micro-swirl purification device is used in the process of recovering carbon dioxide from 1 million tons/year flue gas. It is easy to operate, easy to control, can meet industrial production and environmental coordination requirements, and delays the flue.
  • the dilution rate of the impurity of the gas to the complex amine solution, the foaming phenomenon of the complex amine solution during the absorption of carbon dioxide, the purity of the flue gas, the regeneration gas and the complex amine solution, the prevention of the damage of the aerosol particles to the atmospheric environment, and the inhibition Eliminate the smog in the cold season and its corrosion to the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

烟道气二氧化碳捕集系统微旋流净化方法与装置 技术领域
本发明属于能源环境领域, 涉及一种烟道气二氧化碳捕集系统烟道气、 尾气、 再 生气和复合胺溶液的微旋流净化方法, 具体地说, 涉及一种从烟道气、 尾气、 再生气 中脱除气溶胶微粒以及从复合胺溶液中脱除固体微粒和机油的方法, 以及实施该方法 所用的装置。 背景技术
近年来, 温室效应加剧等问题使环境与经济可持续发展面临严峻的挑战。 因 此, 引起温室效应和全球气候变化的二氧化碳的减排技术成为各国关注的焦点。美 国等国家提出了一种二氧化碳的减排方法 二氧化碳捕集技术,目前这种技术主 要是针对电站排放出的二氧化碳进行捕集。
当前全球发电行业所排放的二氧化碳占全球二氧化碳总排放量的 40%, 预计 到 2030年时, 全球发电量将比现在增加一倍, 如不采取有效措施, 二氧化碳排放 量也将随之增长 2/3。 而在火力发电占绝对主导地位的中国, 由于在发电过程中排 放的二氧化碳大部分来自燃煤, 因此在火电站中实现二氧化碳的捕集和储存,对于 实现温室气体减排更为重要。
目前, 正在大力开发的碳捕集技术主要有 3 种, 即燃烧后脱碳、 燃烧前脱碳 和富氧燃烧技术。其中燃烧前捕捉技术只能用于新建发电厂, 而另两种技术则可同 时应用于新建和既有发电厂。
燃烧后脱碳是从烟气中分离二氧化碳。 二氧化碳的收集法主要有化学溶剂吸 收法、 吸附法和膜分离等方法。 当前最好的收集法为化学溶剂胺吸收法。胺与二氧 化碳发生化学反应后形成一种盐类化合物。然后对溶剂加温, 化合物分解, 分离出 溶剂和高纯度的二氧化碳。 由于燃烧产生的烟气中含有很多杂质, 而存在的杂质会 增加捕集的成本, 因此烟气进行吸收处理前要进行预处理 (水洗冷却、 除水、 静电 除尘、 脱硫与脱硝等;), 去除其中的活性杂质 (硫、 氮氧化物和颗粒物等;), 否则这些 杂质会优先与溶剂发生化学反应, 消耗大量的溶剂并腐蚀设备。
烟道气夹带水等气溶胶微粒, 一方面将逐步稀释吸收塔中胺液的浓度, 增大 了胺液的消耗量, 并使富含二氧化碳的胺液外排,造成高浓度难降解有机污染物的 外排;另一方面,这些气溶胶微粒容易诱发胺液在吸收塔中发泡,引起胺液的跑损, 使吸收塔顶外排气体夹带胺液,又进一步引起胺液消耗量的增加,并造成大气污染。 为了控制烟道气夹带的粉尘量和液滴量,可以采用旋风分离方法和装置,但是现有 的旋风分离技术的压力降为 500Pa-600Pa, 甚至高达 lOOOPa 以上, 不能够再增设 于水洗塔之后、烟道气吸收塔前的系统中, 这样会造成烟道气压力不够, 需要增设 烟道气的增压系统, 很不经济。 本发明采用额定压力降为 20mmH2O柱, 即压力降 为 200Pa, 只有现有旋风分离器压力降的 1/3 - 1/5的低压力降的旋转流分离技术, 控制洗尘后的烟道气的气溶胶含量,既可以有效控制和捕集进入吸收塔的烟道气水 和粉尘, 又可以有效利用低分压烟道气的余压。
进入水洗塔的烟道气和循环洗涤水, 如果固体含量高于 100mg/kg, 就会使水 洗塔堵塞, 造成连续运转周期短, 并频繁反冲洗。 现有的方法是, 烟道气在进入水 洗塔之前,采用旋风分离器去除烟道气中的粉尘,循环洗涤水的固体储存在水洗槽 中。 但是, 火力发电厂的烟道气流量大, 如某火力发电装置, 烟道气的流量为 630000Nm3/h, 选择高精度的旋风分离器才能够将平均粒径约为 4微米烟道气中的 气溶胶微粒捕集出来, 旋风分离器的外廓尺寸庞大, 造价高; 而且烟道气的总压才 2000Pa, 选用现有的旋风分离器就需要消耗 600Pa-1000Pa, 给后续工序造成供压 紧张。本发明不采用旋风分离器对进入水洗塔前的烟道气进行气固分离, 而是烟道 气直接进入水洗塔, 水洗塔出水进行液-固微旋流分离, 或循环洗涤水进行微旋流 分离净化。 而且由于烟道气处理量大, 要求洗涤循环水的量很大, 本发明采用部分 微旋流分离和多级微旋流浓缩污泥的技术方案,既可以保证烟道气余压不降低或者 微量降低, 又可以保证烟道气中 PM2.5的微粒能够被净化富集。
在现行的烟道气二氧化碳捕集系统中, 烟道气在吸收塔中被二氧化碳吸收剂 吸收捕集二氧化碳后生成了二氧化碳捕集系统的尾气,该尾气中夹带有大量气溶胶 微粒, 尤其是 PM2.5微粒, 如不在尾气排入大气前将其捕集脱除, 不仅会对大气 环境造成严重危害,而且会造成洗涤液的夹带跑损,造成整套烟道气二氧化碳捕集 装置的运行成本大幅度提高,使经济效益大受影响, 因此如何回收这些气溶胶微粒 是能源环境领域面临的重大技术问题。现有的气溶胶微粒的捕集方法有旋转流分离 器和电捕集器, 前者压力降一般为 500Pa-600Pa, 甚至高达 lOOOPa 以上, 现有的 这种技术不能够用于烟道气二氧化碳捕集系统中,一是压力降太高, 吸收塔顶的烟 道气尾气不能够支持这样高的压力降消耗; 二是如果要选用现有的旋风分离器技 术, 必须对烟道气尾气进行增压, 既复杂又不经济。 对于电捕集器, 因为烟道气尾 气含水量大, 容易产生安全隐患, 而且成本太高, 在工程中没有经济适用的电捕集 器。 因此, 必须选择低压力降、 高效分离精度的微型旋转流分离器。
在烟道气二氧化碳捕集系统中, 再生气二氧化碳中夹带有复合胺溶液微粒, 会对后续装置及加工产生不良影响, 甚至于污染环境。 另外, 气溶胶微粒流失, 如
100万吨 /年规模的二氧化碳捕集装置, 每年消耗的复合胺液溶剂约 1600吨 /年,价 值 4000万元人民币, 这些消耗的复合溶剂中 80%是以气溶胶的形式被净化气体带 走了, 尤其是 PM2.5微粒, 如何回收这些气溶胶微粒是能源环境领域面临的重大 技术问题。现有的气溶胶微粒的捕集方法有旋转流分离器和电捕集器,前者压力降 一般为 500Pa-600Pa, 甚至高达 lOOOPa 以上, 现有的这种技术不能够用于烟道气 二氧化碳捕集系统中,一是压力降太高,低分压的烟道气不能够支持这样高的压力 降消耗; 二是如果要选用现有的旋风分离器技术, 必须对烟道气进行增压, 既复杂 又不经济。 对于电捕集器, 因为再生气含水量大, 容易产生安全隐患, 而且成本太 高, 在工程中没有经济适用的电捕集器。 因此, 必须选择低压力降、 高效分离精度 的微型旋转流分离器。
针对烟道气二氧化碳捕集, 南化集团研究院开发了低分压 (烟道气等 )CO2捕集 新技术, 采用以 MEA水溶液为主体, 添加活性胺、 抗氧剂和缓蚀剂组成的复合胺 溶液进行 CO2捕集, 解决了传统方法中胺降解损耗大、 设备腐蚀严重和能耗高等 问题。然而在长期运行中, 复合胺溶液中夹带有大量的固体微粒和机油, 如果不在 复合胺溶液进入吸收塔前将其脱除,势必会造成下游管线和设备的堵塞, 不仅严重 影响二氧化碳的捕集效率,而且可能会导致整套装置的瘫痪。 目前在吸收塔之前通 常设置活性炭过滤器来脱除复合胺溶液中夹带的固体微粒和机油,然而活性炭过滤 器的工作原理是把杂质吸附到活性炭颗粒内,初期虽然吸附效果较好,可时间一长, 活性炭的吸附能力必然有不同程度的下降, 吸附效果也随之下降, 因此活性炭过滤 器中的活性炭必须要定期清洗或更换,影响了整套烟道气二氧化碳捕集装置的安全 稳定高效运行。现有技术中液 -固微旋流器和液-液微旋流器可以高效地脱除复合胺 溶液中夹带的固体微粒和机油,其对固体微粒和油滴的分离精度分别达到了 3微米 和 10微米, 而且其不易堵塞, 无需更换内件, 适合于长期稳定的使用。
发明内容
本发明提供了一种烟道气二氧化碳捕集系统微旋流净化方法与装置,从而解决了 现有技术中存在的问题。
一方面, 本发明提供了一种烟道气二氧化碳捕集系统微旋流净化方法。该方法包 括:
(a)对洗尘后的烟道气进行超低压力降的气-液微旋流分离, 以脱除烟道气中夹带 的气溶胶微粒——水微粒、尘微粒和液-固复合微粒,得到含水含尘很低的洗尘脱水后 的烟道气
(b)对循环洗涤水进行液-固微旋流分离处理,以脱除循环洗涤水中夹带的固体微 粒, 并浓缩富集循环洗涤水中的固体微粒。
(c) 对烟道气中的二氧化碳组分进行吸收捕集, 二氧化碳溶于吸收液并生成了烟 道气二氧化碳捕集系统的尾气。
(d)对二氧化碳吸收塔顶外排的尾气进行超低压力降的气 -液微旋转流分离,以脱 除尾气中夹带的气溶胶微粒, 得到净化尾气。
(e) 对回收的气溶胶微粒进行液-固微旋流分离, 以脱除洗涤液中夹带的固体微 粒, 净化洗涤液返回洗涤液系统。
(f) 对再生塔制备的再生气 (;主要含二氧化碳;)进行风冷和水冷, 以便将再生气中 夹带的含复合胺溶液的饱和蒸汽转化成雾滴, 得到夹带气溶胶微粒的再生气。
(g)对夹带气溶胶微粒的再生气进行超低压力降的气-液微旋流分离,以捕获再生 气中夹带的气溶胶微粒, 脱除气溶胶微粒后的再生气供后续工段使用。
(h)将捕获下来的气溶胶微粒聚集为液体, 并汇同再生塔底输出的复合胺溶液直 接返回复合胺溶液系统。
(i) 对从再生塔输出的贫二氧化碳的复合胺溶液进行冷却, 以减缓复合胺溶液中 油水剪切乳化程度, 提高油水旋流分离的效果。
G)对经过冷却处理后的复合胺溶液进行液-固微旋流分离, 以脱除其中夹带的固 体微粒,并采用一级或多级液-固微旋流分离进一步浓缩固体微粒,直到固相中固体微 粒浓度达到 10%以上。
(k)对复合胺溶液进行液-液微旋流分离, 以脱除其中夹带的机油, 并采用一级或 多级液 -液微旋流分离进一步浓缩机油, 直到油相中机油浓度达到 10%以上, 净化复 合胺溶液进入吸收塔捕集二氧化碳。
在一个优选的实施方式中, 经所述步骤 0)、 (d), (; g)的气-液微旋流分离处理后, 烟道气、 尾气、 再生气中气溶胶微粒的浓度小于 50mg/Nm3。 在另一个优选的实施方式中, 经所述步骤 0)、 (d), (; g)的气-液微流分离处理后, 烟道气、 尾气、 再生气中气溶胶微粒的平均粒径不大于 2.5微米。
在另一个优选的实施方式中, 经所述步骤 0)、 (d), (; g)的气-液微流分离处理后, 烟道气、 尾气、 再生气的额定压力降为 20mmH2O, 最大压力降不大于 30mmH2O。
在另一个优选的实施方式中, 经所述步骤 (b)的液-固微旋流分离, 单级旋流分离 的额定压力降 O. lMPa, 2微米及其以上微粒的分离精度达到 90%。
在另一个优选的实施方式中, 经所述步骤 (b)的液-固微旋流分离处理的循环洗涤 水, 可以是全部循环洗涤水, 也可以是部分循环洗涤水。
在另一个优选的实施方式中, 经所述步骤 (d)的气-液微流分离处理后, 尾气携带 的 80%以上气溶胶微粒能够得到回收, 外排环境中的气溶胶微粒降低 80%以上。
在另一个优选的实施方式中, 所述步骤 (d)的气 -液微流分离处理可以在吸收塔的 塔内上半部分完成, 也可以在吸收塔的外部完成。
在另一个优选的实施方式中, 经所述步骤 (e;)、 G)的液 -固微旋流分离后, 洗涤液、 复合胺溶液中夹带的 80%以上固体微粒得到脱除,其中 3微米及以上固体微粒的脱除 率超过 90%。
在另一个优选的实施方式中, 经所述步骤 的液 -液微旋流分离后, 复合胺溶液 中夹带的 80%以上机油得到脱除, 其中 10微米及以上油滴的脱除率超过 90%。
在另一个优选的实施方式中, 经所述步骤 G)的液 -固微旋流分离和所述步骤 的 液 -液微旋流分离后,复合胺溶液中的杂质组分含量得到大幅度降低,避免了下游管线 和设备的堵塞, 提高了吸收塔内二氧化碳的捕集效率。
另一方面, 本发明提供了一种烟道气二氧化碳捕集系统微旋流净化装置, 该装置 包括:
水洗塔 (1), 使用经过液-固微旋流分离器净化后的循环洗涤水脱除烟道气中夹带 的粉尘。
与水洗塔 (1)的烟道气出口相连的超低压力降的旋转流分离器 (2), 用于脱除洗尘 后的烟道气中夹带的气溶胶微粒, 并回收这些气溶胶微粒。
与水洗塔 (1)的洗涤水出口和超低压力降的旋转流分离器 (2)的洗涤水出口相连的 液 -固微旋流分离器组 (3-1, 3-2, 3-3), 用于对洗涤水中夹带的固体微粒进行微旋流分 离与固体微粒的浓缩。
与液-固微旋流分离器组的净化水出口相连的水洗槽 (4),用于收集和贮存洗涤水, 并供水洗塔循环利用。
与水洗槽 (4)及水洗塔 (1)相连的水洗循环水泵 (5), 用于向水洗塔 (1)输送从水洗槽 (4)抽出的洗涤水。
吸收塔 (6), 用于吸收捕集烟道气中的二氧化碳组分, 并脱除尾气中夹带的二氧 化硫和氮氧化物等气体组分。
与吸收塔 (6)塔顶的尾气出口相连的超低压力降的旋转流分离器 (7), 用于对尾气 中夹带的气溶胶微粒进行旋转流分离与回收。
与超低压力降的旋转流分离器 (7)的洗涤液出口和吸收塔 (6)的洗涤液出口相连的 液 -固微旋流分离器组 (8-1, 8-2, 8-3), 用于对洗涤液中夹带的固体微粒进行微旋流分 离。
再生塔 (9), 用于制备再生气二氧化碳。
与再生塔 (9)的再生气出口相连的风冷冷却器 (10), 用于对再生气进行风冷。
与风冷冷却器 (10)出口相连的水冷冷却器 (11), 用于对再生气进行水冷。
与水冷冷却器 (11)出口相连的超低压力降的旋转流分离器 (12), 用于对再生气中 夹带的气溶胶微粒进行微旋流分离, 既净化再生气, 又回收再生气中夹带的气溶胶微 粒。
与再生塔 (9)塔底贫液出口相连的贫液泵 (13), 用于输送贫二氧化碳的复合胺溶 液。
与贫液泵 (13)出口相连的贫液冷却器 (14), 用于冷却复合胺溶液。
与贫液冷却器 (14)出口相连的液 -固微旋流器 (15), 用于对复合胺溶液中夹带的固 体微粒进行微旋流分离。
与液 -固微旋流器 (15)的底部出口相连的二级液 -固微旋流器 (16),用于浓缩固体微 粒。
与液 -固微旋流器 (15)的顶部出口相连的液 -液微旋流器 (17),用于对复合胺溶液中 夹带的机油进行微旋流分离。
与液 -液微旋流器 (17)的顶部出口相连的二级液 -液微旋流器 (18), 用于浓缩机油。 在一个优选的实施方式中, 所述液-固微旋流分离器组和均由两级或两级以上液- 固微旋流分离器串联而成。
在另一个优选的实施方式中, 所述超低压力降的旋转流分离器 (2)、 (7), (12)可通 过串联多级布置来强化分离效果, 高效脱除烟道气、 尾气、 再生气中夹带的气溶胶微 粒。
在另一个优选的实施方式中, 经液 -固微旋流分离器组的串联强化分离后, 净化 洗涤液返回洗涤液系统循环利用, 使洗涤液的跑损量降低了 80%左右。
在另一个优选的实施方式中, 经超低压力降的旋转流分离器 (12)捕获下来的气溶 胶微粒直接返回复合胺溶液系统进行循环利用,使复合胺溶液的消耗量降低了 50%左 右。
在另一个优选的实施方式中, 经再生塔的煮沸和汽提处理后, 富液中的二氧化碳 得到分解并从塔顶输出, 残留的贫二氧化碳的复合胺溶液从塔底输出, 其中夹带有固 体微粒、 机油等杂质组分。
在另一个优选的实施方式中,经二级液 -固微旋流器 (16)和二级液 -液微旋流器 (18) 的浓缩处理后, 固体微粒和机油的浓度得到大幅度提高, 减轻了后续污泥和污油富集 装置的操作负荷。
在另一个优选的实施方式中, 从二级液 -固微旋流器 (16)的顶部出口以及二级液- 液微旋流器 (18)的底部出口输出的残液返回再生塔塔底, 并重新进入复合胺溶液两级 旋流净化系统进行循环净化处理。
在另一个优选的实施方式中, 液 -固微旋流器 (15)、 二级液 -固微旋流器 (16)、 液- 液微旋流器 (17)、 二级液 -液微旋流器 (18)均可进行多级串联布置形成微旋流器组以提 高分离效率。 附图说明
图 1 是根据本发明一个实施方式的烟道气二氧化碳捕集系统烟道气旋流洗尘脱 水工艺流程图。
图 2 是根据本发明另一个实施方式的烟道气二氧化碳捕集系统吸收塔顶尾气的 旋转流净化工艺流程图。
图 3 是根据本发明再一个实施方式的烟道气二氧化碳捕集系统再生气的微旋流 收液工艺流程图。
图 4 是根据本发明再一个实施方式的烟道气二氧化碳捕集系统复合胺溶液两级 旋流净化工艺流程图。 具体实施方式 本发明的发明人在经过了广泛而深入的研究之后发现:
(1)烟道气二氧化碳捕集系统的原料一烟道气中夹带有大量粉尘, 如不将其脱 除, 势必会造成后续装置的堵塞, 严重影响整套二氧化碳捕集装置的连续稳定运转, 本方案采用水洗塔水洗脱除烟道气中夹带的粉尘后, 烟道气中又会不可避免地夹带水 微粒、尘微粒和液-固复合微粒等气溶胶微粒, 如不将其脱除, 不仅会导致大量洗涤水 的夹带跑损, 而且会提高烟道气的杂质对胺液的稀释速度, 造成二氧化碳吸收过程中 胺液的发泡现象, 因此本方案采用超低压力降的旋转流分离器来高效脱除气溶胶微 粒, 使烟道气得到净化。 在水洗塔的循环洗涤水出口和超低压力降的旋转流分离器的 循环洗涤水出口处设置液-固微旋流分离器组, 可有效减低洗涤水中固体微粒的浓度, 这样浓缩后的洗涤水便可进入水洗系统循环利用, 采用本方案可以提高烟道气的纯 度, 并使洗涤水的跑损量降低了 80%左右。
(2)烟道气二氧化碳捕集系统中烟道气在吸收塔中被二氧化碳吸收剂吸收捕集二 氧化碳后生成了二氧化碳捕集系统的尾气, 该尾气中夹带有大量气溶胶微粒, 如不在 尾气排入大气前将其脱除, 不仅会对大气环境造成严重危害, 而且会造成洗涤液的夹 带跑损, 造成整套烟道气二氧化碳捕集装置的运行成本大幅度提高, 使经济效益大受 影响, 因此本方案采取在吸收塔的塔内上半部分或在吸收塔的外部设置超低压力降的 旋转流分离器来高效脱除气溶胶微粒, 使尾气得到净化。 在超低压力降的旋转流分离 器的洗涤液出口和吸收塔的洗涤液出口处设置液 -固微旋流分离器组,可有效减低洗涤 液中固体微粒的浓度, 这样浓缩后的洗涤液便可进入洗涤液系统循环利用, 采用本方 案可以减少气溶胶微粒的排放量, 避免洗涤液的夹带跑损, 预防上述化学品对大气环 境的危害, 并抑制甚至消除寒冷季节的烟雾弥漫及其对装置的腐蚀。
(3)烟道气二氧化碳捕集系统中从再生塔输出的再生气二氧化碳中夹带了大量含 复合胺溶液的饱和蒸汽, 如不将其脱除, 会大大降低再生气二氧化碳的质量, 对后续 封存和工业应用造成严重影响, 并且大量复合胺溶液的夹带跑损也会导致烟道气二氧 化碳捕集装置的运行成本大幅度提高, 使经济效益大受影响。 本方案采用风冷冷却器 和水冷冷却器串联冷却再生气二氧化碳, 将再生气中夹带的含复合胺溶液的饱和蒸汽 最大限度地液化成雾滴, 这样再通过超低压力降的微旋转流分离器便可高效脱除气溶 胶微粒, 使再生气得到净化。 将捕获下来的气溶胶微粒聚集为液体, 并汇同再生塔底 输出的复合胺溶液直接返回复合胺溶液系统进行循环利用, 采用本方案可以提高再生 气的纯度, 并使复合胺溶液的消耗量降低 50%左右。 (4)烟道气二氧化碳捕集系统中从再生塔输出的贫二氧化碳的复合胺溶液中夹带 了一定量的固体微粒和机油, 极易导致下游管线的堵塞, 使整套二氧化碳捕集系统陷 于瘫痪, 并且固体微粒和机油的掺杂严重影响了复合胺溶液的纯度, 使吸收塔内二氧 化碳的吸收效率大为降低, 因此必须要在复合胺溶液进入吸收塔之前脱除其中夹带的 固体微粒和机油, 如果增设液 -固微旋流器和液-液微旋流器, 就可以有效降低复合胺 溶液中固体微粒和机油含量, 这样净化复合胺溶液便可进入吸收塔高效捕集二氧化碳 气体, 而脱除的固体微粒和机油通过进一步的浓缩提纯再进入污泥和污油富集装置, 这样就可以减轻污泥和污油富集装置的操作负荷。
本发明的技术构思如下:
(1)对洗尘后的烟道气进行超低压力降的气-液微旋流分离,以脱除烟道气中夹带 的气溶胶微粒——水微粒、尘微粒和液-固复合微粒,得到含水含尘很低的洗尘脱水后 的烟道气。
(2)对循环洗涤水进行液-固微旋流分离处理,以脱除循环洗涤水中夹带的固体微 粒, 并浓缩富集循环洗涤水中的固体微粒。
(3)对烟道气中的二氧化碳组分进行吸收捕集, 二氧化碳溶于吸收液并生成了烟 道气二氧化碳捕集系统的尾气。
(4)对二氧化碳吸收塔顶外排的尾气进行超低压力降的气 -液微旋转流分离,以脱 除尾气中夹带的气溶胶微粒, 得到净化尾气。
(5) 对回收的气溶胶微粒进行液-固微旋流分离, 以脱除洗涤液中夹带的固体微 粒, 净化洗涤液返回洗涤液系统。
(6) 对再生塔制备的再生气 (;主要含二氧化碳;)进行风冷和水冷, 以便将再生气中 夹带的含复合胺溶液的饱和蒸汽转化成雾滴, 得到夹带气溶胶微粒的再生气。
(7)对夹带气溶胶微粒的再生气进行超低压力降的气-液微旋流分离,以捕获再生 气中夹带的气溶胶微粒, 脱除气溶胶微粒后的再生气供后续工段使用。
(8)将捕获下来的气溶胶微粒聚集为液体, 并汇同再生塔底输出的复合胺溶液直 接返回复合胺溶液系统。
(9)对从再生塔输出的贫二氧化碳的复合胺溶液进行冷却, 以减缓复合胺溶液中 油水剪切乳化程度, 提高油水旋流分离的效果。
(10) 对经过冷却处理后的复合胺溶液进行液-固微旋流分离, 以脱除其中夹带的 固体微粒,并采用一级或多级液-固微旋流分离进一步浓缩固体微粒,直到固相中固体 微粒浓度达到 10%以上。
(11) 对复合胺溶液进行液-液微旋流分离, 以脱除其中夹带的机油, 并采用一级 或多级液 -液微旋流分离进一步浓缩机油, 直到油相中机油浓度达到 10%以上, 净化 复合胺溶液进入吸收塔捕集二氧化碳。 实施例
下面结合具体的实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本 发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按 照常规条件, 或按照制造厂商所建议的条件。 实施例 1 :中国石化南化集团研究院 100万吨 /年烟道气回收二氧化碳装置工艺包 采用了本专利所述装置。 其工艺流程简图如图 1〜4所示:
实施方式 (1):
对烟道气的循环洗涤水进行旋流脱尘净化,对循环洗涤水中的污泥进行多级旋流 浓缩, 以脱除烟道气中夹带的粉尘并将粉尘富集起来; 对洗尘后的烟道气进行超低压 力降的气-液微旋流分离,以脱除洗尘后的烟道气中夹带的气溶胶微粒一液体微粒和 液-固复合微粒,延缓烟道气的杂质对复合胺液的稀释速度,抑制二氧化碳吸收过程中 复合胺液的发泡现象。
本方案选用华东理工大学独立自主研制的 HL/G型超低压力降的旋转流分离器来 脱除烟道气中夹带的气溶胶微粒, 并采用 HL/S型液 -固微旋流分离器组来浓缩循环洗 涤水。 下表为 HL/G型超低压力降的旋转流分离器进口物料的物性参数:
Figure imgf000012_0001
HL/G型超低压力降的旋转流分离器在额定流量下, 进口气溶胶微粒的浓度不大 于 1500 mg/Nm3时, 气相出口气溶胶微粒的浓度不大于 50 mg/Nm3, 并且在标准状态 下设备操作压力降不大于 0.0002MPa, 折合 20mm水柱高。 HL/S型液-固微旋流分离 器在额定流量下, 进口固体微粒含量 500mg/L〜5000mg/L时, 出口固体微粒含量 100mg/L (按照 GB260标准), 进液口和出液口压力降<0.1^^ , 三级微旋流浓缩器的 出口固体微粒含量 50mg/L。
实施方式 (2):
对二氧化碳吸收塔顶外排的尾气进行超低压力降的旋转流分离,以脱除尾气中夹 带的气溶胶微粒, 回收的气溶胶微粒经液-固微旋流分离后返回洗涤液系统中。
本方案选用华东理工大学独立自主研制的 HL/G型超低压力降的旋转流分离器来 脱除尾气中夹带的气溶胶微粒, 并采用 HL/S型液-固微旋流分离器组来浓缩洗涤液。 下表为超低压力降的旋转流分离器进口物料的物性参数:
Figure imgf000013_0001
超低压力降的旋转流分离器在额定流量下, 进口气溶胶微粒的浓度不大于 1500 mg/m3时, 气相出口气溶胶微粒的浓度不大于 50 mg/m3, 并且在标准状态下设备操作 压力降不大于 0.0002MPa, 折合 20mm水柱高。 HL/S型液 -固微旋流分离器在额定流 量下, 进口固体微粒含量 500mg/L〜5000mg/L时, 出口固体微粒含量 100mg/L (按 照 GB260标准;), 进液口和出液口压力降<0.1^^ , 三级微旋流浓缩器的出口固体微 粒含量 50mg/L。 实施方式 (3):
首先对再生塔的再生气二氧化碳进行风冷和水冷,以便将再生气中夹带的蒸汽转 化为雾滴;然后对经过冷却处理后的再生气进行超低压力降的气 -液微旋转流分离, 以 脱除再生气中夹带的气溶胶微粒; 回收的气溶胶微粒直接返回复合胺溶液系统中。 本方案选用华东理工大学独立自主研制的 HL/G型超低压力降的微旋转流分离器 来脱除再生气中夹带的气溶胶微粒。下表为超低压力降的微旋转流分离器进口物料的
Figure imgf000014_0001
超低压力降的微旋转流分离器在额定流量下,进口气溶胶微粒的浓度不大于 1500 mg/m3时, 气相出口气溶胶微粒的浓度不大于 20 mg/m3, 并且在标准状态下设备操作 压力降不大于 0.0002MPa, 折合 20mm水柱高。 实施方式 (4):
对从再生塔输出的贫二氧化碳的复合胺溶液进行液-固微旋流分离, 以脱除其中 夹带的固体微粒并进一步浓缩固体微粒,对一级处理后的复合胺溶液进行液-液微旋流 分离, 以脱除其中夹带的机油并进一步浓缩机油。
本方案选用华东理工大学独立自主研制的 HL/S型液 -固微旋流分离器和 HL/L型 液-液微旋流分离器来脱除复合胺溶液中夹带的固体微粒和机油,下表为该套装置处理 物料的物性参数:
Figure imgf000014_0002
HL/S 型液 -固微旋流分离器在额定流量下, 进口固体微粒含量 500mg/L〜 5000mg/L时, 出口固体微粒含量 100mg/L (按照 GB260标准), 进液口和出液口压力 降<0.1^^ , HL/L型液-液微旋流分离器在进液含油量小于 1000mg/L时, 液相出口含 油浓度不大于 150mg/L (不计溶解油和乳化油), 分析方法采用 Q/RCD-302-2000重量 法, HL/L型液-液微旋流分离器的进口与液相出口之间的压力降为 0.15MPa~0.20MPa。
该套烟道气二氧化碳捕集系统微旋流净化装置, 用于 100万吨 /年烟道气回收二 氧化碳的工艺流程中, 操作方便, 易于控制, 能够满足工业生产和环境协调要求, 延 缓烟道气的杂质对复合胺溶液的稀释速度, 抑制二氧化碳吸收过程中复合胺溶液的发 泡现象, 提高烟道气、 再生气和复合胺溶液的纯度, 预防气溶胶微粒对大气环境的危 害, 抑制甚至消除寒冷季节的烟雾弥漫及其对装置的腐蚀。 在本发明题记的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独 引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技术 人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所附权利要求书 所限定的范围。

Claims

权 利 要 求
1. 一种烟道气二氧化碳捕集系统微旋流净化方法, 该方法包括:
(a) 对洗尘后的烟道气进行超低压力降的气-液微旋流分离,以脱除烟道气中夹 带的气溶胶微粒 水微粒、 尘微粒和液-固复合微粒, 得到含水含尘很低的洗尘 脱水后的烟道气;
(b) 对循环洗涤水进行液-固微旋流分离处理,以脱除循环洗涤水中夹带的固体 微粒, 并浓缩富集循环洗涤水中的固体微粒;
(c) 对烟道气中的二氧化碳组分进行吸收捕集, 二氧化碳溶于吸收液并生成了 烟道气二氧化碳捕集系统的尾气;
(d) 对二氧化碳吸收塔顶外排的尾气进行超低压力降的气 -液微旋转流分离,以 脱除尾气中夹带的气溶胶微粒, 得到净化尾气;
(e) 对回收的气溶胶微粒进行液-固微旋流分离,以脱除洗涤液中夹带的固体微 粒, 净化洗涤液返回洗涤液系统;
(f) 对再生塔制备的主要含二氧化碳的再生气进行风冷和水冷, 以便将再生气 中夹带的含复合胺溶液的饱和蒸汽转化成雾滴, 得到夹带气溶胶微粒的再生气;
(g) 对夹带气溶胶微粒的再生气进行超低压力降的气-液微旋流分离,以捕获再 生气中夹带的气溶胶微粒, 脱除气溶胶微粒后的再生气供后续工段使用;
(h) 将捕获下来的气溶胶微粒聚集为液体, 并汇同再生塔底输出的复合胺溶液 直接返回复合胺溶液系统;
(i) 对从再生塔输出的贫二氧化碳的复合胺溶液进行冷却, 以减缓复合胺溶液 中油水剪切乳化程度, 提高油水旋流分离的效果;
(0 对经过冷却处理后的复合胺溶液进行液-固微旋流分离, 以脱除其中夹带的 固体微粒, 并采用一级或多级液-固微旋流分离进一步浓缩固体微粒, 直到固相中 固体微粒浓度达到 10%以上;
(k) 对复合胺溶液进行液-液微旋流分离, 以脱除其中夹带的机油, 并采用一级 或多级液 -液微旋流分离进一步浓缩机油, 直到油相中机油浓度达到 10%以上, 净 化复合胺溶液进入吸收塔捕集二氧化碳。
2. 如权利要求 1所述的方法, 其特征在于, 经所述步骤 (a)、 (d)、 (g)的气-液 微旋流分离处理后, 烟道气、 尾气、 再生气中气溶胶微粒的浓度小于 50mg/Nm3
3. 如权利要求 1所述的方法, 其特征在于, 经所述步骤 (a)、 (d)、 (g)的气-液 微流分离处理后,烟道气、尾气、再生气中气溶胶微粒的平均粒径不大于 2.5微米。
4. 如权利要求 1所述的方法, 其特征在于, 经所述步骤 (a)、 (d)、 (g)的气-液 微流分离处理后, 烟道气、 尾气、 再生气的额定压力降为 20mmH2O, 最大压力降 不大于 30mmH2O。
5.如权利要求 1所述的方法,其特征在于,经所述步骤 (b)的液-固微旋流分离, 单级旋流分离的额定压力降 O. lMPa, 2微米及其以上微粒的分离精度达到 90%。
6. 如权利要求 1所述的方法, 其特征在于, 经所述步骤 (b)的液-固微旋流分离 处理的循环洗涤水, 可以是全部循环洗涤水, 也可以是部分循环洗涤水。
7. 如权利要求 1所述的方法, 其特征在于, 经所述步骤 (d)的气-液微流分离处 理后, 尾气携带的 80%以上气溶胶微粒能够得到回收, 外排环境中的气溶胶微粒 降低 80%以上。
8. 如权利要求 1所述的方法, 其特征在于, 所述步骤 (d)的气-液微流分离处理 可以在吸收塔的塔内上半部分完成, 也可以在吸收塔的外部完成。
9. 如权利要求 1所述的方法, 其特征在于, 经所述步骤 (; e;)、 G)的液-固微旋流 分离后, 洗涤液、 复合胺溶液中夹带的 80%以上固体微粒得到脱除, 其中 3 微米 及以上固体微粒的脱除率超过 90%。
10. 如权利要求 1所述的方法, 其特征在于, 经所述步骤 (X)的液 -液微旋流分 离后, 复合胺溶液中夹带的 80%以上机油得到脱除, 其中 10微米及以上油滴的脱 除率超过 90%。
11. 如权利要求 1所述的方法, 其特征在于, 经所述步骤 G)的液 -固微旋流分 离和所述步骤 0 的液 -液微旋流分离后, 复合胺溶液中的杂质组分含量得到大幅度 降低, 避免了下游管线和设备的堵塞, 提高了吸收塔内二氧化碳的捕集效率。
12. 一种用于权利要求 1所述方法的装置, 它包括:
水洗塔 (1), 使用经过液 -固微旋流分离器净化后的循环洗涤水脱除烟道气中夹 带的粉尘;
与水洗塔 (1)的烟道气出口相连的超低压力降的旋转流分离器 (2), 用于脱除洗 尘后的烟道气中夹带的气溶胶微粒, 并回收这些气溶胶微粒;
与水洗塔 (1)的洗涤水出口和超低压力降的旋转流分离器 (2)的洗涤水出口相连 的液 -固微旋流分离器组 (3-1, 3-2, 3-3), 用于对洗涤水中夹带的固体微粒进行微 旋流分离与固体微粒的浓缩;
与液 -固微旋流分离器组的净化水出口相连的水洗槽 (4), 用于收集和贮存洗涤 水, 并供水洗塔循环利用;
与水洗槽 (4)及水洗塔 (1)相连的水洗循环水泵 (5), 用于向水洗塔 (1)输送从水洗 槽 (4)抽出的洗涤水;
吸收塔 (6), 用于吸收捕集烟道气中的二氧化碳组分, 并脱除尾气中夹带的二 氧化硫和氮氧化物等气体组分;
与吸收塔 (6)塔顶的尾气出口相连的超低压力降的旋转流分离器 (7), 用于对尾 气中夹带的气溶胶微粒进行旋转流分离与回收;
与超低压力降的旋转流分离器 (7)的洗涤液出口和吸收塔 (6)的洗涤液出口相连 的液 -固微旋流分离器组 (8-1, 8-2, 8-3), 用于对洗涤液中夹带的固体微粒进行微 旋流分离;
再生塔 (9), 用于制备再生气二氧化碳;
与再生塔 (9)的再生气出口相连的风冷冷却器 (10), 用于对再生气进行风冷; 与风冷冷却器 (10)出口相连的水冷冷却器 (11), 用于对再生气进行水冷; 与水冷冷却器 (11)出口相连的超低压力降的旋转流分离器 (12), 用于对再生气 中夹带的气溶胶微粒进行微旋流分离, 既净化再生气, 又回收再生气中夹带的气溶 胶微粒;
与再生塔 (9)塔底贫液出口相连的贫液泵 (13),用于输送贫二氧化碳的复合胺溶 液;
与贫液泵 (13)出口相连的贫液冷却器 (14), 用于冷却复合胺溶液;
与贫液冷却器 (14)出口相连的液 -固微旋流器 (15), 用于对复合胺溶液中夹带的 固体微粒进行微旋流分离;
与液 -固微旋流器 (15)的底部出口相连的二级液 -固微旋流器 (16),用于浓缩固体 微粒;
与液 -固微旋流器 (15)的顶部出口相连的液 -液微旋流器 (17),用于对复合胺溶液 中夹带的机油进行微旋流分离;
与液 -液微旋流器 (17)的顶部出口相连的二级液 -液微旋流器 (18), 用于浓缩机
13. 如权利要求 12所述的装置, 其特征在于, 所述液-固微旋流分离器组和均 由两级或两级以上液-固微旋流分离器串联而成。
14. 如权利要求 12所述的装置, 其特征在于, 所述超低压力降的旋转流分离 器 (2)、 (7), (12)可通过串联多级布置来强化分离效果, 高效脱除烟道气、 尾气、 再生气中夹带的气溶胶微粒。
15. 如权利要求 12所述的装置, 其特征在于, 经液 -固微旋流分离器组的串联 强化分离后,净化洗涤液返回洗涤液系统循环利用,使洗涤液的跑损量降低了 80% 左右。
16. 如权利要求 12所述的装置, 其特征在于, 经超低压力降的旋转流分离器 (12)捕获下来的气溶胶微粒直接返回复合胺溶液系统进行循环利用, 使复合胺溶液 的消耗量降低了 50%左右。
17. 如权利要求 12所述的装置, 其特征在于, 经再生塔的煮沸和汽提处理后, 富液中的二氧化碳得到分解并从塔顶输出,残留的贫二氧化碳的复合胺溶液从塔底 输出, 其中夹带有固体微粒、 机油等杂质组分。
18. 如权利要求 12所述的装置, 其特征在于, 经二级液 -固微旋流器 (16)和二 级液 -液微旋流器 (18)的浓缩处理后, 固体微粒和机油的浓度得到大幅度提高,减轻 了后续污泥和污油富集装置的操作负荷。
19. 如权利要求 12所述的装置, 其特征在于, 从二级液 -固微旋流器 (16)的顶 部出口以及二级液 -液微旋流器 (18)的底部出口输出的残液返回再生塔塔底,并重新 进入复合胺溶液两级旋流净化系统进行循环净化处理。
20. 如权利要求 12 所述的装置, 其特征在于, 液 -固微旋流器 (15)、 二级液- 固微旋流器 (16)、 液 -液微旋流器 (17)、 二级液 -液微旋流器 (18)均可进行多级串联布 置形成微旋流器组以提高分离效率。
PCT/CN2011/078899 2011-04-06 2011-08-25 烟道气二氧化碳捕集系统微旋流净化方法与装置 WO2012136039A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/984,406 US9533247B2 (en) 2011-04-06 2011-08-25 Method and apparatus for micro-hydrocyclone purification for flue gas carbon dioxide capture system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201110085039.4 2011-04-06
CN2011100850394A CN102179126B (zh) 2011-04-06 2011-04-06 烟道气二氧化碳捕集系统烟道气旋流洗尘脱水方法与装置
CN201110086083.7 2011-04-07
CN2011100860837A CN102151477B (zh) 2011-04-07 2011-04-07 烟道气二氧化碳捕集系统复合胺溶液旋流净化方法与装置
CN201110087821.X 2011-04-08
CN201110087821XA CN102179153B (zh) 2011-04-08 2011-04-08 烟道气二氧化碳捕集系统尾气旋转流净化方法与装置

Publications (1)

Publication Number Publication Date
WO2012136039A1 true WO2012136039A1 (zh) 2012-10-11

Family

ID=46968552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078899 WO2012136039A1 (zh) 2011-04-06 2011-08-25 烟道气二氧化碳捕集系统微旋流净化方法与装置

Country Status (2)

Country Link
US (1) US9533247B2 (zh)
WO (1) WO2012136039A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411088A (zh) * 2018-05-23 2018-08-17 宿迁市通用机械有限公司 一种环保型热处理炉
CN111908489A (zh) * 2020-08-25 2020-11-10 湖南省银桥科技有限公司 一种饲料添加剂碳酸氢钠系统及其工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109011973A (zh) * 2018-08-07 2018-12-18 中山华明泰科技股份有限公司 一种收集含水含气含颗粒的环保结构及其收集方法
CN112646622B (zh) * 2019-10-11 2022-07-26 中国石油化工股份有限公司 一种气井井口雾化加药装置及输气系统
JP7283799B2 (ja) * 2021-10-08 2023-05-30 株式会社14za 可動ディスプレイスタンド
CN116037331B (zh) * 2023-03-06 2023-06-23 常州长登焊材股份有限公司 一种高速卷拔机用拉拔油循环系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314102A (zh) * 2008-05-30 2008-12-03 西安热工研究院有限公司 燃煤电厂烟气中二氧化碳捕集方法和装置
CN101732968A (zh) * 2009-12-31 2010-06-16 华东理工大学 催化裂化烟气洗涤脱硫工艺中微旋流脱固方法与装置
CN101785957A (zh) * 2010-02-10 2010-07-28 毛恒松 二氧化碳的分离和储存方法
CN102114359A (zh) * 2011-01-13 2011-07-06 华东理工大学 烟道气二氧化碳捕集系统再生气的微旋流收液方法与装置
CN102151477A (zh) * 2011-04-07 2011-08-17 上海华畅环保设备发展有限公司 烟道气二氧化碳捕集系统复合胺溶液旋流净化方法与装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314102A (zh) * 2008-05-30 2008-12-03 西安热工研究院有限公司 燃煤电厂烟气中二氧化碳捕集方法和装置
CN101732968A (zh) * 2009-12-31 2010-06-16 华东理工大学 催化裂化烟气洗涤脱硫工艺中微旋流脱固方法与装置
CN101785957A (zh) * 2010-02-10 2010-07-28 毛恒松 二氧化碳的分离和储存方法
CN102114359A (zh) * 2011-01-13 2011-07-06 华东理工大学 烟道气二氧化碳捕集系统再生气的微旋流收液方法与装置
CN102151477A (zh) * 2011-04-07 2011-08-17 上海华畅环保设备发展有限公司 烟道气二氧化碳捕集系统复合胺溶液旋流净化方法与装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411088A (zh) * 2018-05-23 2018-08-17 宿迁市通用机械有限公司 一种环保型热处理炉
CN111908489A (zh) * 2020-08-25 2020-11-10 湖南省银桥科技有限公司 一种饲料添加剂碳酸氢钠系统及其工艺

Also Published As

Publication number Publication date
US9533247B2 (en) 2017-01-03
US20140026752A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP3969949B2 (ja) アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
AU2012357358B2 (en) Method for capturing carbon dioxide in power station flue gas and device therefor
JP5579602B2 (ja) ガス混合物の分離のためのプロセスおよび装置
CN201244430Y (zh) 燃煤电厂烟气中二氧化碳捕集装置
JP5745844B2 (ja) ガス混合物の分離のためのプロセスおよび装置
WO2012136039A1 (zh) 烟道气二氧化碳捕集系统微旋流净化方法与装置
JP4625478B2 (ja) アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
JP5875245B2 (ja) Co2回収システム及びco2ガス含有水分の回収方法
Sharma et al. A critical review of existing strategies for emission control in the monoethanolamine-based carbon capture process and some recommendations for improved strategies
CN101314102A (zh) 燃煤电厂烟气中二氧化碳捕集方法和装置
WO2010053683A1 (en) Reabsorber for ammonia stripper offgas
JP2013512772A (ja) アルコールに基づくガスのストリッピング方法
EP2144689A1 (en) Carbon dioxide scrubbing with ammonium carbonate and ammonia vapor control
CN102151477B (zh) 烟道气二氧化碳捕集系统复合胺溶液旋流净化方法与装置
CN109569251B (zh) 一种利用含so2烟气制稀硫酸的装置及方法
CN105289217A (zh) 一种废气中VOCs回收利用系统
AU2014206161A1 (en) An ammonia stripper for a carbon capture system for reduction of energy consumption
CN115634561A (zh) 火电厂二氧化碳捕集洗涤装置及方法
CN102179126B (zh) 烟道气二氧化碳捕集系统烟道气旋流洗尘脱水方法与装置
US20190143261A1 (en) Methods for inhibiting solvent emissions
CN104772021B (zh) 多元醇‑乙二胺水溶液捕集工业气中co2的方法
CN103157346A (zh) 低温甲醇洗与co2捕集耦合方法及系统
CN104307337A (zh) 一种捕捉和分离热风炉烟气中二氧化碳的方法及其系统
JP5185970B2 (ja) アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
EP2581129A1 (en) Method for stripping acid gas from a solvent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13984406

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11863106

Country of ref document: EP

Kind code of ref document: A1