WO2024031757A1 - 像素单元、像素重复排列单元和显示面板 - Google Patents

像素单元、像素重复排列单元和显示面板 Download PDF

Info

Publication number
WO2024031757A1
WO2024031757A1 PCT/CN2022/116010 CN2022116010W WO2024031757A1 WO 2024031757 A1 WO2024031757 A1 WO 2024031757A1 CN 2022116010 W CN2022116010 W CN 2022116010W WO 2024031757 A1 WO2024031757 A1 WO 2024031757A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
pixels
unit
sides
Prior art date
Application number
PCT/CN2022/116010
Other languages
English (en)
French (fr)
Inventor
邱岳
李伟丽
李文星
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2024031757A1 publication Critical patent/WO2024031757A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a pixel unit, a pixel repeating arrangement unit and a display panel.
  • the resolution of display screens is also constantly improving, so that the displayed images on the display screens have better display effects.
  • the current display panel is limited to the design of pixel graphics.
  • the displayed images, especially the text display, will have a serious jagged feeling and are prone to color edges, resulting in a poor user experience.
  • the present disclosure provides a pixel unit, a pixel repeating arrangement unit and a display panel, which alleviate or eliminate the aliasing phenomenon by staggering the sub-pixels in the pixel unit.
  • a first aspect of the present disclosure provides a pixel unit, which includes two first sub-pixels, two second sub-pixels and one third sub-pixel.
  • the first sub-pixel, the second sub-pixel and the third sub-pixel have different preset light colors.
  • Two first sub-pixels and two second sub-pixels are distributed around the third sub-pixel, and the two second sub-pixels are located on both sides of a straight line determined by the centroids of the two first sub-pixels.
  • the sub-pixels in the pixel unit are arranged in a staggered manner to alleviate the jagged feeling of the pixel unit when displaying; in addition, the situation of the first sub-pixel or the second sub-pixel being in separate rows or columns can be avoided to avoid the appearance of colored edges in the displayed image; in addition, when arranging pixels, the degree of staggered arrangement of sub-pixels included in each pixel unit can be increased to further alleviate the edge jaggedness of the displayed image, thereby improving the display effect.
  • two first sub-pixels are respectively located on opposite sides of a third sub-pixel, and two second sub-pixels are respectively located on opposite sides of the third sub-pixel.
  • the two first sub-pixels are respectively located on the sides of the two opposite pixel sides of the third sub-pixel that are away from each other, and the two second sub-pixels are respectively located on the other two opposite sides of the third sub-pixel.
  • the pixel sides of the third sub-pixel corresponding to the two first sub-pixels are the first pixel side and the second pixel side
  • the pixel sides of the third sub-pixel corresponding to the two second sub-pixels are the third pixel side.
  • the pixel side is adjacent to the fourth pixel side
  • the first pixel side is adjacent to the third pixel side
  • the second pixel side is adjacent to the fourth pixel side
  • the second pixel side and the fourth pixel side are arranged in sequence.
  • the second pixel side and the third pixel side are connected by at least one pixel side
  • the first pixel side and the fourth pixel side are connected by at least one pixel side.
  • one of the two first sub-pixels is connected to one of the two second sub-pixels to form a group, and the other of the two first sub-pixels is connected to The other of the two second sub-pixels is connected to form another group, and the first sub-pixels and the second sub-pixels of different groups are spaced apart from each other.
  • the first sub-pixel and the second sub-pixel are staggered in the form of a group, thereby further alleviating the edge jaggedness and color fringing problems of the displayed image; in addition, the partial structure of the third sub-pixel (such as the light-emitting layer)
  • the preparation can share the same opening of the mask to reduce the accuracy requirements of the mask and the alignment accuracy requirements of the corresponding preparation process, thereby reducing costs.
  • the preset light emission wavelength of the first sub-pixel is smaller than the preset light emission wavelength of the second sub-pixel and greater than the preset light emission wavelength of the third sub-pixel.
  • the first sub-pixel is a green sub-pixel
  • the second sub-pixel is a red sub-pixel
  • the third sub-pixel is a blue sub-pixel.
  • the opening area of the third sub-pixel may be designed to be larger than the opening areas of the first sub-pixel and the second sub-pixel.
  • the plan shapes of the first sub-pixel, the second sub-pixel and the third sub-pixel are all polygons. Both the first sub-pixel and the second sub-pixel respectively share one pixel edge of the third sub-pixel, and at least two opposite pixel edges of the third sub-pixel are not shared with any one of the first sub-pixel and the second sub-pixel. .
  • the plan shapes of the first sub-pixel, the second sub-pixel and the third sub-pixel are all polygons, and the pixel side of the third sub-pixel opposite to the first sub-pixel is the third sub-pixel.
  • the common pixel edge of the third sub-pixel and the first sub-pixel, the pixel edge of the third sub-pixel opposite to the second sub-pixel is the common pixel edge of the third sub-pixel and the second sub-pixel, and at least two of the third sub-pixel Opposite pixel edges of the stripes are not shared with pixel edges of either of the first sub-pixel and the second sub-pixel.
  • the two first sub-pixels are centrally symmetrical about the centroid of the third subpixel; and/or the two second subpixels are centrally symmetrical about the centroid of the third subpixel.
  • the light emitted from the pixel unit is relatively uniform to improve the image display effect.
  • the planar shape of the third sub-pixel is a hexagon, and the planar shapes of the first sub-pixel and the second sub-pixel are both quadrilateral.
  • Each of the first sub-pixel and the second sub-pixel shares a pixel edge arrangement with the third sub-pixel.
  • the two pixel sides shared by the third sub-pixel and the first sub-pixel are arranged opposite to each other, the two pixel sides shared by the third sub-pixel and the second sub-pixel are opposite to each other, and the third sub-pixel is not connected to the first sub-pixel and the second sub-pixel.
  • Relative setting of pixels shared by two sub-pixels For example, further, opposite sides of a hexagon are parallel to each other.
  • a hexagon is formed by splicing a rectangle and two isosceles triangles, and two opposite sides of the rectangle share the base of the isosceles triangle. Two sides of the rectangle that are not shared with the isosceles triangles are shared with the pixel edges of the first subpixel, and one side of each isosceles triangle is shared with the pixel edges of the second subpixel.
  • the vertex angle of the isosceles triangle is a right angle
  • the length of the two sides of the rectangle that are not shared with the isosceles triangle is the length of the base of the isosceles triangle. 1/2.
  • the planar shape of the first sub-pixel is a rectangle
  • the planar shape of the second sub-pixel is a right-angled trapezoid
  • the pixel side of the second sub-pixel shared with the first sub-pixel is a right-angled trapezoid.
  • the top side of the trapezoid, and the pixel side shared by the second sub-pixel and the third sub-pixel is the oblique waist of the right-angled trapezoid.
  • the planar shape of the first sub-pixel is a square.
  • the ratio of the areas of the two first sub-pixels, the areas of the two second sub-pixels and the areas of the two third sub-pixels is 2:3:4. This ratio relationship can compensate for the differences in the various sub-pixels. Differences in light extraction efficiency, lifespan, etc. can ensure the display effect of displayed images while allowing products with this pixel unit (such as the display panel described below) to have a longer service life.
  • the plan shape of the first sub-pixel is a rectangle
  • the plan shape of the second sub-pixel is a parallelogram
  • the pixel side of the second sub-pixel is shared with the first sub-pixel. Connected to the pixel edge shared with the third sub-pixel.
  • the planar shape of the first sub-pixel is a square.
  • the ratio of the areas of the two first sub-pixels, the areas of the two second sub-pixels and the areas of the two third sub-pixels is 1:1:2.
  • this ratio relationship can compensate for the shortcomings of the third sub-pixel in terms of light extraction efficiency, lifespan, etc., so as to ensure the display effect of the displayed image while making the pixel unit have Products (such as the display panel described below) have a longer service life.
  • the planar shape of the first sub-pixel is a right-angled trapezoid
  • the pixel side of the first sub-pixel shared with the third sub-pixel is a right-angled waist of the right-angled trapezoid
  • the second sub-pixel The pixel side shared with the first sub-pixel is the base side of the right-angled trapezoid
  • the pixel side of the second sub-pixel that is away from the adjacent first sub-pixel is parallel to the pixel side shared with the adjacent first sub-pixel.
  • the length of the top side of the right-angled trapezoid and the length of the right-angled waist are equal; and/or the length ratio of the top side and the bottom side of the right-angled trapezoid is 2/3, and the pixel of the second sub-pixel is shared with the first sub-pixel.
  • the sides are equal in length to the top side of the right trapezoid.
  • the staggered arrangement of pixel units can be ensured without gaps between adjacent pixel units, so as to alleviate the problem of edge jaggedness in the displayed image.
  • a second aspect of the present disclosure provides a pixel repeating arrangement unit, which includes at least one pixel unit in the first aspect.
  • each pixel repeating arrangement unit includes two pixel units, wherein the straight line determined by the centroids of the two first sub-pixels in one pixel unit is the same as the straight line in the other pixel unit.
  • Straight lines in the pixel unit determined by the centroids of the two first sub-pixels are parallel.
  • a straight line determined by the centroids of two first sub-pixels in the pixel unit passes through a second second sub-pixel in another pixel unit. sub-pixel.
  • two first sub-pixels located between two third sub-pixels are centrally symmetrical; and/or, two first sub-pixels located between two third sub-pixels are centrally symmetrical; The two sub-pixels are centrally symmetrical.
  • a third aspect of the present disclosure provides a display panel, which includes a display area in which a plurality of pixel repeating arrangement units in the second aspect are arranged. Multiple pixel repeating arrangement units are arranged in multiple rows and multiple columns, and in each pixel repeating arrangement unit, a straight line determined by the centroids of the two first sub-pixels in each pixel unit is parallel to the row direction. In the same row, any straight line in each pixel repeating unit will coincide with a straight line in other pixel repeating units. In the same column, for any pixel repeating arrangement unit located at a non-endpoint (pixel repeating arrangement units are arranged on both sides of it), the third sub-pixel in each pixel unit is not the same as the first sub-pixel.
  • the pixel side opposite to the second sub-pixel is opposite to the pixel side of a third sub-pixel in the adjacent pixel repeated arrangement unit that is not adjacent to the first sub-pixel and the second sub-pixel, so that each pixel is repeatedly arranged.
  • the straight line in the unit that is perpendicular to the row direction and passes through the centroid of the third sub-pixel is parallel to and spaced apart from the straight line in the adjacent pixel repeating arrangement unit that is perpendicular to the row direction and passes through the centroid of the third sub-pixel.
  • FIG. 1 is a schematic plan view of a display panel according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of the pixel structure of the S area of the display panel shown in FIG. 1 .
  • FIG. 3 is an exploded schematic diagram of the pixel structure shown in FIG. 2 .
  • FIG. 4 is a schematic plan view of a pixel repeating arrangement unit of the pixel structure in FIG. 3 .
  • FIG. 5 is a schematic plan view of a pixel unit in FIG. 4 .
  • FIG. 6 is a schematic plan view of the third sub-pixel in the pixel unit shown in FIG. 5 .
  • FIG. 7 is a cross-sectional view of the pixel unit in FIG. 5 along line L3.
  • FIG. 8 is a schematic plan view of another pixel repeating arrangement unit provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic plan view of a pixel unit of another display panel according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic plan view of a pixel structure composed of the pixel units shown in FIG. 9 .
  • FIG. 11 is an exploded schematic diagram of the pixel structure shown in FIG. 10 .
  • FIG. 12 is a schematic plan view of another pixel structure composed of the pixel units shown in FIG. 9 .
  • FIG. 13 is an exploded schematic diagram of the pixel structure shown in FIG. 12 .
  • FIG. 14 is a schematic plan view of a partial area of a pixel structure of another display panel according to an embodiment of the present disclosure.
  • FIG. 15 is an exploded schematic diagram of the pixel structure shown in FIG. 14 .
  • FIG. 16 is a schematic plan view of another pixel structure composed of the pixel units shown in FIG. 14 .
  • FIG. 17 is an exploded schematic diagram of the pixel structure shown in FIG. 16 .
  • the display area of the display panel is arranged with sub-pixels. Adjacent sub-pixels (which can be called sub-pixels) with different light emitting colors constitute a large pixel. By controlling the display grayscale of each sub-pixel in the large pixel, the large pixel can emit light. Any color of light, that is, a large pixel, is the smallest independent unit for image display. A large number of large pixels need to be arranged in the display panel to achieve image display. In a display panel, large pixels are repeatedly arranged in an array, which inevitably causes some large pixels and even sub-pixels to be arranged in multiple rows and columns.
  • edges of the displayed image will appear jagged visually; in addition, if the preset light colors of the sub-pixels in each row and/or column are the same, colored edges will appear in the displayed image (such as the preset The displayed image does not include monochrome or colored lines), resulting in poor display.
  • Embodiments of the present disclosure provide a pixel unit, a pixel repeating arrangement unit and a display panel to at least solve the above technical problems.
  • the pixel unit includes two first sub-pixels, two second sub-pixels and one third sub-pixel.
  • the first sub-pixel, the second sub-pixel and the third sub-pixel have different preset light colors.
  • Two first sub-pixels and two second sub-pixels are distributed around the third sub-pixel, and the two second sub-pixels are located on both sides of a straight line determined by the centroids of the two first sub-pixels.
  • the two first sub-pixels and the two second sub-pixels in the pixel unit are located on two opposite sides of the third sub-pixel respectively, which is equivalent to splitting a first sub-pixel and a second sub-pixel in a large area. It is divided into two first sub-pixels and two second sub-pixels of a small area, and are placed on both sides of the third sub-pixel respectively, so that the sub-pixels in the pixel unit are staggered, thereby easing the jagged feeling when displaying; in addition, after pixel arrangement based on this pixel unit, it is possible to avoid the situation where the first sub-pixel or the second sub-pixel is in a separate row or column, that is, the sub-pixels of each row or column In the pixels, only the first sub-pixel or the second sub-pixel will not be arranged to avoid the occurrence of color edges in the display image; in addition, when the pixels are arranged, the pixel units are arranged while maintaining the connection between adjacent pixel units.
  • the row direction and the column direction of the cloth can be intersecting but not perpendicular, thereby further improving the degree of staggered arrangement of sub-pixels included in each pixel unit, so as to further alleviate the edge jagged phenomenon of the displayed image, thereby improving the display effect.
  • the structures of the pixel unit, the pixel repeating arrangement unit and the display panel according to at least one embodiment of the present disclosure will be described with reference to the accompanying drawings. It should be noted that since both pixel units and pixel repeating units are used to constitute the pixel structure of the display panel, in these embodiments, the structure of the display panel is first introduced, and the pixel units and pixel repeating units included in the display panel are introduced. The structure of the arrangement unit is described simultaneously.
  • a spatial rectangular coordinate system is established based on the surface of the display panel to describe the positions of various components in the display panel and the arrangement of the pixel units and the sub-pixels they include.
  • the X-axis and Y-axis are parallel to the surface of the display panel
  • the X-axis is parallel to the straight line determined by the centroids of the two first sub-pixels in the pixel unit
  • the Z-axis is parallel to the center of the display panel.
  • the surface is vertical.
  • the display panel 10 includes a frame area 12 surrounding the display area 11 .
  • a pixel structure is provided in the display area 11 to achieve image display.
  • At least one pixel unit 100 forms a pixel repeating arrangement unit 200 (in Figure 3, two pixel units 100 form a pixel repeating arrangement unit 200).
  • the pixel repeating arrangement unit 200 is arranged in an array. It has multiple rows and columns to form the pixel structure of the display area.
  • the row direction is the extension direction of the straight line L1. In the same row, any straight line L1 in each pixel repeating arrangement unit 200 will coincide with a straight line L1 in other pixel repeating arrangement units 200.
  • the column direction is the extension direction of straight line L2.
  • the pixel repeating arrangement unit 200 in each pixel unit 100 is The pixel side of the third sub-pixel 130 that is not opposite to the first sub-pixel 110 and the second sub-pixel 120 repeats with the adjacent pixels.
  • the adjacent pixel sides of the second sub-pixel 120 are opposite to each other, 200 so that the straight line L4 perpendicular to the row direction and passing through the centroid of the third sub-pixel in each pixel repeating arrangement unit 200 is aligned with the adjacent pixel repeating arrangement unit 200
  • the straight lines L4 that are perpendicular to the row direction and pass through the centroid of the third sub-pixel 130 are parallel and spaced apart from each other, and the line connecting the centroids of the third sub-pixels 130 determines the straight line L2.
  • the frame area 12 can be used to lay out traces leading from the display area 11 .
  • the frame area 12 may include a bonding area 13.
  • overlapping terminals may be provided in the bonding area 13, and the above-mentioned traces drawn from the display area 11 may be summarized in the bonding area. 13 and connected to the overlapping terminal to electrically connect with an external circuit (such as a flexible circuit board with a driver chip, etc.) through the overlapping terminal.
  • an external circuit such as a flexible circuit board with a driver chip, etc.
  • the pixel unit 100 is provided with two first sub-pixels 110 , two second sub-pixels 120 and one third sub-pixel 130 .
  • the first sub-pixel 110 and the second sub-pixel The preset light colors of 120 and the third sub-pixel 130 are different.
  • the two first sub-pixels 110 and the two second sub-pixels 120 are staggered around the third sub-pixel 130, so that the straight line L3 (parallel to the X-axis) determined by the centroids of the two first sub-pixels 110 passes through the third sub-pixel 130.
  • the two second sub-pixels 120 are respectively arranged on both sides of the straight line L3.
  • the first sub-pixel 110, the second sub-pixel 120, the first sub-pixel 110, and the second sub-pixel 120 are arranged in sequence, and In the direction of the straight line L4 perpendicular to the straight line L3 (parallel to the Y-axis direction), the two second sub-pixels 120 are interlaced.
  • the number of three sub-pixels is designed to be 2:2:1, which is equivalent to reducing the size of each first sub-pixel 110 and the second sub-pixel while maintaining the same area of the entire pixel unit.
  • the design area is 120, and the emission areas of the light corresponding to the color of the first sub-pixel 110 and the color corresponding to the second sub-pixel 120 are dispersed to alleviate the aliasing problem during image display; in addition, as shown in Figures 2 to 4 shows that after the pixel units 100 in FIG. 5 are combined into the pixel repeating arrangement unit 200 and are repeatedly arranged based on the pixel repeating arrangement unit 200 to form a pixel structure, neither the first sub-pixel 110 nor the second sub-pixel 120 can be arranged individually. One row or one column, that is, the first sub-pixel and the second sub-pixel will be arranged in a staggered manner, thereby eliminating the color fringing problem that may exist when displaying the image.
  • two first sub-pixels 110 are located on two opposite sides of a third sub-pixel 130, and two second sub-pixels 120 is also located on the other two opposite sides of the third sub-pixel 130.
  • the two first sub-pixels 110 are respectively located on two opposite pixel sides of the third sub-pixel 130 (for example, the first pixel side 131 and the second pixel side 132 described below).
  • the sides that are away from each other, and the two second sub-pixels 120 are respectively located on the other two opposite pixel sides of the third sub-pixel 130 (such as the third pixel side 133 and the fourth pixel side 134 described below).
  • One side, that is, the first sub-pixel 110 and the second sub-pixel 120 are both configured to correspond to different pixel sides of the third sub-pixel 130 .
  • the corresponding two pixel sides of the third sub-pixel 130 are the first pixel side 131 and the second pixel side 132 of the first sub-pixel 110 .
  • the pixel sides of the second sub-pixel 120 are the third pixel side 133 and the fourth pixel side 134, the first pixel side 131 and the third pixel side 133 are adjacent, the second pixel side 132 and the fourth pixel side 134 are adjacent, and in the In the circumferential direction of the three sub-pixels 130, the first pixel side 131, the third pixel side 133, the second pixel side 132 and the fourth pixel side 134 are arranged in sequence, and the first pixel side 131 and the third pixel side 133
  • the two first sub-pixels 110 and the two second sub-pixels 120 corresponding to the second pixel side 132 and the fourth pixel side 134 respectively also have the same arrangement relationship.
  • the second pixel side 132 and the third pixel side 133 are connected by at least one pixel side (for example, the sixth pixel side 136 described below), and the first pixel side 131 and the third pixel side 136 are connected to each other.
  • the four pixel sides 134 are connected by at least one pixel side (such as the fifth pixel side 135 described below). In this way, the pixel side of the third sub-pixel 130 that is not opposite to the first sub-pixel 110 and the second sub-pixel 120, It can be used to splice this pixel unit with other pixel units.
  • the edge of the third sub-pixel in the pixel unit will be connected to the first sub-pixel and the second sub-pixel, and no changes will be made to the size of the part of the edge of the third sub-pixel used for the connection. Limitations can be designed based on actual process requirements.
  • the edge of the third sub-pixel is used to interface with the first sub-pixel and the second sub-pixel.
  • each pixel unit in each pixel unit, only a part of the edge of the third sub-pixel is used to interface with the first sub-pixel and the second sub-pixel.
  • the third sub-pixels in the adjacent but different pixel repeating arrangement units can be connected to reduce the process requirements during the production of the third sub-pixel.
  • the third sub-pixel allows the third sub-pixel to have a larger aperture ratio; in addition, after the pixel repeating arrangement unit is arranged into multiple rows and multiple columns, the row direction and the column direction intersect but are not perpendicular, thereby further increasing the size of the first sub-pixel and the second sub-pixel.
  • the first sub-pixels 110 and the second sub-pixels 120 are connected in pairs to form two groups, each group includes a first sub-pixel 110 and a second sub-pixel 120, The first sub-pixel 110 and the second sub-pixel 120 in the same group are connected, and the two groups are separated by the third sub-pixel 130, that is, the first sub-pixel 110 and the second sub-pixel 120 in different groups are separated from each other.
  • the edge of the third sub-pixel 1330 in each pixel unit 100 can be used to dock with the edge of another adjacent pixel unit 100 located in the same column.
  • the edge of the third sub-pixel 130 (located at the interval between the two groups of the pixel unit), so that the first sub-pixel 110 and the second sub-pixel 120 in the entire pixel structure are staggered in the form of a group to further alleviate the problem.
  • MASK opening of the mask
  • Each sub-pixel may include an effective light-emitting area (as shown in Figure 5, the area of each sub-pixel located within the dotted box) and a boundary area (as shown in Figure 5, the area of each sub-pixel located outside the dotted box),
  • the effective light-emitting area is used to emit light used to form a display image
  • the boundary area is used to define the light-emitting boundaries of sub-pixels of different colors.
  • the "aperture ratio" may be the ratio of the area of the effective light-emitting area to the area of the sub-pixel (the sum of the area of the effective light-emitting area and the area of the boundary area).
  • the corresponding film layer structure will be patterned through a mask to determine the range of the effective light-emitting area and the boundary area, so the accuracy of the mask (such as the size of the opening used for patterning ) directly limits the arrangement density of sub-pixels (the greater the arrangement density, the higher the resolution).
  • the openings of the mask used for patterning these sub-pixels can be connected, thereby reducing the accuracy requirements of the mask.
  • the specific structure of the sub-pixels is introduced to explain the technical principle that adjacent sub-pixels with the same preset light emission color will increase the aperture ratio. It should be noted that in embodiments of the present disclosure, the specific structure of the sub-pixel unit can be designed according to the type of the display panel, and the type of the display panel is not limited here. Therefore, in these embodiments, the structures of sub-pixels are described for several different types of display panels.
  • the display panel 10 is an organic light-emitting display panel (OLED panel).
  • the display panel 10 may include a substrate 210 and a display function layer located on the substrate 210 .
  • the display function layer includes a plurality of organic light emitting devices 230 and a pixel defining layer 220 for defining the organic light emitting devices 230 .
  • the organic light-emitting device 230 includes an anode 231, a light-emitting functional layer 233, and a cathode 232 stacked in sequence on the substrate 210.
  • the light-emitting functional layer 233 includes a light-emitting layer.
  • the pixel definition layer 220 includes an opening corresponding to each organic light-emitting device 230. Each opening exposes the anode 231 of the corresponding organic light-emitting device 230 and is used to accommodate the light-emitting functional layer 233 (for example, the light-emitting layer is located in the opening).
  • the substrate 210 may be an array substrate, which includes a drive circuit layer. The portion of the drive circuit layer located in the display area includes a plurality of pixel drive circuits 211 connected to the anode (only the thin film transistors included in the pixel drive circuit 211 are shown in FIG. 7 ). The area where the organic light-emitting device 230 is located is the effective light-emitting area of each sub-pixel, and the boundary area of the sub-pixel is actually the area where the pixel defining layer 220 is distributed.
  • the position of the organic light-emitting device 230 is actually determined by the opening of the pixel definition layer 220.
  • an entire layer of pixel definition material will be deposited on the substrate 210.
  • film layer which is then patterned (using a mask) to form a pixel defining layer 220 having a plurality of openings.
  • the anode position error and the alignment error between the anode and the mask need to be considered.
  • the anode needs to be designed to be larger than the opening, and the pixels between the openings need to be defined.
  • the layer 220 requires a certain design width to ensure that the opening and the anode 231 can be aligned. An increase in the design width will result in a corresponding reduction in the design area of the opening, thereby reducing the "aperture ratio" of the sub-pixel.
  • the third sub-pixels 130 with the same preset light emission color are connected as shown in FIGS. 2 and 3 , the structures of the light-emitting functional layers in the connected third sub-pixels are the same and can be designed to share the light-emitting function.
  • the pixel defining layer 130 is not provided between the two third sub-pixels 130 so that the organic light-emitting devices 230 in the two third sub-pixels 130 are located in the same opening, so that the organic light-emitting device 230 of the third sub-pixel 130 can have a larger design. area, that is, so that the "aperture ratio" of the third sub-pixel is increased.
  • the display panel may be a liquid crystal display panel, which includes an array substrate and an opposite substrate arranged opposite each other, and liquid crystal is filled between the array substrate and the opposite substrate.
  • Control electrodes are provided on the array substrate and the counter substrate to form an electric field.
  • the liquid crystal state is controlled to control the polarization state of light (light provided by an external device such as a backlight module), and the polarizing plate is used to control the brightness of the light.
  • a color filter (CF) and a black matrix (BM) are installed on the light-emitting side of the display panel to control the color and light-emitting boundary of the emitted light to achieve display.
  • the color filter includes multiple color filters, which are used to form the main body of a sub-pixel.
  • the range of the color filter is defined by the black matrix, and the openings of the black matrix are used to define the position of the color filter.
  • the color filter acts as the effective light-emitting area of the sub-pixel.
  • the portion of the color filter that overlaps the opening of the black matrix serves as the effective light-emitting area.
  • the preparation method of the black matrix may include coating, deposition or photolithography with the help of a mask.
  • the corresponding sub-pixels of the mask for example, The openings of the color filters can be connected to each other, allowing the sub-pixels to have a larger aperture ratio.
  • the display panel may be a display structure such as electronic paper
  • the sub-pixels may be a cavity structure containing electronic ink.
  • electronic ink can be a small ball containing ink. The small ball is charged, and an electrode is provided in the chamber. The electric field is generated through the electrode to control the distribution of the small ball, thereby achieving image display.
  • the two sub-pixels can share a cavity, thereby allowing the sub-pixels to have a larger aperture ratio.
  • the preset light colors there are no restrictions on the preset light colors (lights of different colors have different wavelengths) of the first sub-pixel, the second sub-pixel and the third sub-pixel, and can be designed according to actual display requirements.
  • the preset light emitting wavelength of the first sub-pixel is smaller than the preset light emitting wavelength of the second sub-pixel and greater than the preset light emitting wavelength of the third sub-pixel.
  • the first subpixel 110 is a green subpixel G
  • the second subpixel 120 is a red subpixel R
  • the third subpixel 130 is a blue subpixel B.
  • the two first sub-pixels are centrally symmetrical with respect to the centroid of the third sub-pixel; and/or the two second sub-pixels are centrally symmetrical with respect to the centroid of the third sub-pixel.
  • Centrosymmetric In this way, the light emission from the pixel unit is relatively uniform, thereby improving the image display effect.
  • the third sub-pixel 130 is a centrally symmetrical figure, the center of symmetry is its centroid (the position of the letter "B" in Figure 5), and the straight line L3 passes through the center of symmetry of the third sub-pixel 130.
  • the two first sub-pixels 110 exhibit central symmetry with respect to the symmetry center
  • the two second sub-pixels 120 also exhibit central symmetry with respect to the symmetry center.
  • the overall shape of the pixel unit is determined based on the shapes of the three sub-pixels, and the overall shape of the pixel unit determines the arrangement of the pixel repeating units.
  • the pixel repeating arrangement unit and its arrangement method will be described in combination with several design shapes of the pixel unit and the sub-pixels it includes.
  • first sub-pixel and the second sub-pixel are located on two opposite sides of the third sub-pixel, so the first sub-pixel and the second sub-pixel can be designed based on the shape of the third sub-pixel.
  • first sub-pixel and the second sub-pixel can be designed based on the shape of the third sub-pixel.
  • the plan shapes of the first sub-pixel, the second sub-pixel and the third sub-pixel are all polygons.
  • the pixel side of the third sub-pixel opposite to the first sub-pixel is the common pixel side between the third sub-pixel and the first sub-pixel
  • the pixel side of the third sub-pixel opposite to the second sub-pixel is the common pixel side between the third sub-pixel and the first sub-pixel.
  • the pixel edges shared by two sub-pixels, and at least two opposite pixel edges in the third sub-pixel are not shared with the pixel edges of any one of the first sub-pixel and the second sub-pixel, then the pixel edge of the third sub-pixel
  • the number is greater than the sum of the number of the first sub-pixels and the number of the second sub-pixels, and the difference is not less than two, that is, the third sub-pixel has at least six pixel sides.
  • the unshared pixel side of the third sub-pixel in the pixel unit can be spliced with the unshared pixel side of the third sub-pixel in the adjacent pixel unit, so that the pixel unit Arranged relatively closely to increase the resolution of the displayed image.
  • the planar shape of the third sub-pixel 130 is a hexagon, and the planar shapes of the first sub-pixel 110 and the second sub-pixel 120 are both quadrilateral.
  • the hexagon includes a first pixel side 131, a third pixel side 133, a sixth pixel side 136, a second pixel side 132, a fourth pixel side 134 and a fifth pixel side 135 that are connected in sequence.
  • the pixel side 111 of the first sub-pixel 110 (corresponding to the first pixel side 131 and the second pixel side 132 of the third sub-pixel 130) is the common pixel side of the first sub-pixel 110 and the third sub-pixel 130.
  • the pixel side 121 of the pixel 120 (corresponding to the third pixel side 133 and the fourth pixel side 134 of the third sub-pixel 130) is a common pixel side of the second sub-pixel 120 and the third sub-pixel 130.
  • the first pixel side 131 and the second pixel side 132 of the third sub-pixel 130 shared with the two first sub-pixels 110 are two opposite sides of a hexagon.
  • the third sub-pixel 130 and the two first pixel sides 110 are opposite sides of a hexagon.
  • the third pixel side 133 and the fourth pixel side 134 shared by the two sub-pixels 120 are the other two opposite sides of the hexagon.
  • the first pixel side 131 and the third pixel side 133 are connected, and the second pixel side 132 and the fourth pixel side are connected. Pixel edges 134 are connected. In this way, the two pixel sides of the third sub-pixel 130 that are not shared by the first sub-pixel 110 and the second sub-pixel 120 face each other.
  • the opposite sides of the hexagon are parallel to each other, that is, the first pixel side 131 and the second pixel side 132 opposite to each other are parallel to each other, and the third pixel side 133 and the fourth pixel side opposite to each other are parallel to each other.
  • the sides 134 are parallel to each other, and the fifth pixel side 135 and the sixth pixel side 136 which are opposite to each other are parallel to each other.
  • the hexagon is an axially symmetrical and centrally symmetrical figure, specifically formed by splicing a rectangle and two isosceles triangles as described below.
  • the hexagonal third sub-pixel 130 is formed by splicing a rectangle and two isosceles triangles, and the two opposite sides of the rectangle share an equal angle.
  • the base of the waist triangle. This base is a dummy side and will not appear after the graphics are spliced.
  • the two sides of the rectangle that are not shared with the isosceles triangle, the first pixel side 131 and the second pixel side 132, are shared with the first sub-pixel 110.
  • One of the sides of each isosceles triangle (the third pixel side 133 or the fourth Pixel edge 134) simultaneously serves as a pixel edge of the second sub-pixel 120.
  • the hexagonal third sub-pixel 130 is both a centrally symmetrical figure and an axially symmetrical figure, for example, having two symmetry axes L3 and L4 as shown in FIG. 5 .
  • the symmetry axis L3 passes through the centroid of the hexagon and the centers of the first pixel side 131 and the second pixel side 132
  • the symmetry axis L4 passes through the vertices of the two isosceles triangles mentioned above.
  • the side lengths of the hexagon which determines the size of each internal angle and determines the specific shape of the hexagon
  • the vertex angles of an isosceles triangle used to form a hexagon are right angles.
  • the length of the two sides of the rectangle that are not shared with the isosceles triangle is 1/2 the length of the base of the isosceles triangle.
  • the size of the third sub-pixel 130 in the direction along the symmetry axis L3 is 2/3 of its size in the direction along the symmetry axis L4.
  • the shapes of the first sub-pixel and the second sub-pixel will be described, taking the shape of the third sub-pixel as a hexagon (axially symmetrical and centrally symmetrical) as shown in FIG. 5 as an example.
  • the planar shape of the first sub-pixel 110 is a rectangle.
  • the rectangle includes four sides 111 to 114.
  • Sides 111 and 112 are opposite, and sides 113 and 112 are opposite to each other.
  • the sides 114 are opposite, and the planar shape of the second sub-pixel 120 is a right-angled trapezoid, which includes a slanted waist 121 , a right-angled side 122 , a top side 123 and a bottom side 124 .
  • the structure of a pixel repeating arrangement unit can be as shown in Figures 2 to 5.
  • the pixel repeating arrangement unit 200 can be composed of two pixel units 100.
  • the pixel repeating arrangement unit 200 is along a straight line. Arrangement in the extension direction (row direction) of L1 (or straight line L3).
  • the two pixel units will stagger along the extending direction of the straight line L4 perpendicular to the straight line L3. That is, the two pixel units 100 are each formed by two first sub-pixels 110.
  • the two straight lines L3 determined by the centroids are parallel to each other and spaced apart from each other.
  • each pixel repeating arrangement unit 200 the straight line determined by the centroids of the two first sub-pixels 110 in the pixel unit 100, Passing through a second sub-pixel 110 in another pixel unit 100.
  • the degree of interleaving between the two pixel units 100 is the length of the pixel side 112 of the first sub-pixel 110 away from the third sub-pixel 130 .
  • the first sub-pixel 110 mentioned in the previous embodiment is a square and the second sub-pixel 120 is a right-angled trapezoid
  • the same pixel repeats the staggering of the two pixel units 100 in the arrangement unit 200 along the line L4
  • the ratio of the distance to the size of the entire pixel repeating arrangement unit 200 along the straight line L4 is 1/4.
  • the pixel side 112 of the first sub-pixel 110 of one pixel unit 100 away from the third sub-pixel 130 is different from that of another pixel.
  • the right-angled sides 122 (pixel sides) of the second sub-pixel 120 of the unit 100 coincide.
  • the pixel structure formed by the pixel repeating arrangement unit 200 based on the above design can be seen in Figures 2 and 3. All the pixel units 100 are connected to each other, and there may be no gaps between each pixel unit 100, so that the display panel
  • the display area is used to arrange sub-pixels, so that the display panel has a larger resolution.
  • FIG. 8 Another structure of the pixel repeating arrangement unit can be as shown in Figure 8.
  • the pixel repeating arrangement unit can be composed of two pixel units, which is the same as the pixel repeating arrangement unit shown in Figure 4. The difference is that the degree of interleaving of two pixel units in the pixel repeating arrangement unit shown in FIG. 8 is greater than the length of the pixel side 112 of the first sub-pixel 110 away from the third sub-pixel 130 . In this way, in the area between the two third sub-pixels 130 in each pixel repeating arrangement unit, the right-angled sides (pixel sides) of the two second sub-pixels 120 of the two pixel units will partially overlap.
  • a dummy area 140 will be formed between the four pixel units included in adjacent pixel repeating units in the same column.
  • the degree of interlacing of sub-pixels with the same preset light color becomes larger, which can further alleviate the problems of aliasing and color fringing.
  • the light extraction efficiency, lifespan, etc. of sub-pixels with different light colors are different.
  • the shorter the wavelength of the emitted light the light extraction efficiency of the organic light-emitting device. Poorer, requires higher driving voltage and has shorter service life.
  • by designing the area ratios of three sub-pixels convenient differences in light extraction efficiency, lifespan, etc. of the different types of sub-pixels can be compensated. For example, in the embodiment shown in FIG.
  • the ratio of the areas of the first sub-pixel 110 , the second sub-pixel 120 and the third sub-pixel 130 is 2: 3:8, and in each pixel unit 100, the ratio of the areas of the two first sub-pixels 110, the areas of the two second sub-pixels 120 and the areas of the two third sub-pixels 130 is 2:3:4 , this ratio relationship can compensate for the differences in light extraction efficiency, lifespan, etc. of the three sub-pixels, so as to ensure the display effect of the displayed image while allowing products with this pixel unit (such as the display panel below) to have a longer service life. life.
  • the pixel unit 100 shown in FIG. 5 can be modified to obtain the pixel unit 100a shown in FIG. 9 .
  • the plan shape of the first sub-pixel 110a is still a rectangle
  • the plan shape of the second sub-pixel 120a becomes a parallelogram
  • the pixel side 123a of the second sub-pixel 120a shared with the first sub-pixel 110a and the third sub-pixel 120a are shared with each other.
  • the pixel side 121a shared by the sub-pixels 130a is connected, the pixel side 121a of the second sub-pixel 120a is parallel to the pixel side 122a facing away from the third sub-pixel 130a, and the pixel side 123a of the second sub-pixel 120a is parallel to the pixel side 123a facing away from the first sub-pixel 110a.
  • Pixel sides 124a are parallel.
  • the structure of a pixel repeating arrangement unit can be as shown in Figures 10 and 11.
  • One pixel unit 100a can serve as a pixel repeating arrangement unit 200a.
  • the pixel repeating arrangement unit 200a (pixel unit 100a ) are arranged along the extension direction (row direction) of straight line L1 (or straight line L3), and the pixel repeating arrangement units 200a of the same row are connected and do not intersect along straight line L4.
  • the pixel side of the first sub-pixel 110a of each pixel repeating arrangement unit 200a (or pixel unit 100a) facing away from the third sub-pixel 130a is the same as another pixel repeating arrangement unit 200a (or pixel unit 100a) in the same row.
  • the pixel side of the first sub-pixel 110a facing away from the third sub-pixel 130a coincides with the pixel side of the second sub-pixel 120a of the repeating arrangement unit 200a (or pixel unit 100a) facing away from the third sub-pixel 130a, with the same
  • the pixel sides of the second sub-pixel 120 of the adjacent pixel repeating arrangement unit 200a (or the pixel unit 100a) in the row that are away from the third sub-pixel 130a coincide with each other.
  • the pixel structure formed by the pixel repeating arrangement unit 200 based on the above design can be seen in Figures 10 and 11. All the pixel repeating arrangement units 200a (or pixel units 100a) are connected to each other, and each pixel unit 100a can be connected to each other. There are no gaps, so that the display area of the display panel is used to arrange sub-pixels, so that the display panel has a greater resolution.
  • FIGS. 12 and 13 another structure of a pixel repeating arrangement unit can be shown in FIGS. 12 and 13 .
  • the pixel repeating arrangement unit 200a may be composed of two pixel units 100a, and the two pixel units 100a in each pixel repeating arrangement unit 200a are along
  • the extension directions of the straight lines L4 are staggered, that is, the straight lines L3 determined by the centroids of the two first sub-pixels 110 a in the two pixel units 100 a are parallel to each other and spaced apart from each other.
  • the units are repeatedly arranged.
  • the straight line determined by the centroids of the two first sub-pixels 110a in the pixel unit 100a passes through a second sub-pixel 110a in another pixel unit 100a, and the degree of interlacing is that of the first sub-pixel 110a.
  • the length of the pixel side facing away from the third sub-pixel 130a is a square, the staggered distance of the two pixel units 100a in the same pixel repeating arrangement unit 200a along the straight line L4 is equal to the size of the entire pixel repeating arrangement unit 200a along the straight line L4.
  • the ratio is 1/4.
  • a dummy area 140a will be formed between the four pixel units included in the adjacent pixel repeating arrangement unit 200a in the same column.
  • the degree of interlacing of sub-pixels with the same preset light color becomes larger, which can further alleviate the problems of aliasing and color fringing.
  • the ratio of the areas of the first sub-pixel 110a, the second sub-pixel 120a and the third sub-pixel 130a is 1:1:4
  • the ratio of the areas of the two first sub-pixels 110a, the areas of the two second sub-pixels 120a and the areas of the two third sub-pixels 130a is 1:1:2.
  • the preset light wavelength of the three sub-pixels 130a is relatively small (for example, blue light is emitted)
  • this ratio relationship can compensate for the shortcomings of the third sub-pixel 130a in terms of light extraction efficiency, lifespan, etc., so as to ensure the display of the displayed image.
  • the product with the pixel unit (such as the display panel described below) has a longer service life.
  • the pixel unit 100a shown in FIG. 9 can be modified to obtain the pixel unit 100b shown in FIGS. 16 and 17 .
  • the transformation principle can be shown in Figures 14 and 15, that is, the dummy area 140a is divided to compensate for the surrounding sub-pixels, thereby increasing the design area of these sub-pixels and improving the aperture ratio.
  • the shape of the dummy area 140a surrounded by two first sub-pixels 110a and two second sub-pixels 120a is a parallelogram. If the diagonal of the parallelogram is By dividing, four triangles (such as ⁇ BQC and ⁇ EQH, etc.) determined by the diagonal intersection point Q and four sides will be obtained.
  • the four triangles are combined with the adjacent first sub-pixel 110a or the second sub-pixel 110a.
  • the sub-pixels 120a are merged, so that the first sub-pixel 110a changes from a parallelogram ABCD to a trapezoid AQCD to obtain the first sub-pixel 110b, and the second sub-pixel 120a changes from a rectangular EFGH to a right-angled trapezoid QEFGH to obtain the second sub-pixel 120b.
  • the pixel side shared by the first sub-pixel 110b and the third sub-pixel 130b is the right-angled waist of the right-angled trapezoid QEFGH
  • the pixel side shared by the second sub-pixel 120b and the first sub-pixel 110b is the base side of the right-angled trapezoid QEFGH
  • the third Among the two sub-pixels 120b, the pixel side away from the adjacent first sub-pixel 110b is parallel to the pixel side shared by the adjacent first sub-pixel 110b.
  • the lengths of the top edge of the right-angled trapezoid and the right-angled waist are equal; and/or, the length of the right-angled trapezoid is equal to that of the right-angled trapezoid.
  • the length ratio of the top side to the bottom side is 2/3, and the length of the pixel side shared by the second sub-pixel and the first sub-pixel is equal to the length of the top side of the right-angled trapezoid.
  • the third of the right-angled trapezoid QEFGH is The lengths of the top side HG and the right-angle waist GF of one sub-pixel 110b are equal, the length ratio of the top side HG and the bottom side QF is 2/3, and the pixel side DC of the second sub-pixel 120b shared with the first sub-pixel 110b and The lengths of the top sides HG of the right-angled trapezoid QEFGH are equal.
  • a structure of a pixel repeating arrangement unit 200b can be as shown in Figures 16 and 17.
  • the arrangement manner of the pixel repeating arrangement unit 200b is the same as the arrangement manner of the pixel repeating arrangement unit 200a shown in FIG. 12 and FIG. 13 , and will not be described again here.
  • the pixel repeating arrangement units 200b are connected to each other, and there may be no gap between the pixel units 100b, so that the display area of the display panel is used to arrange sub-pixels, thereby making the display panel have a larger resolution; in addition, the two pixel units 100b included in each pixel repeating arrangement unit 200b present a staggered arrangement along the direction perpendicular to the row direction (the extension direction of the straight line L4 mentioned in the previous embodiment) to alleviate aliasing and color edge issues.
  • the pixel repeating arrangement unit when the pixel repeating arrangement unit is composed of two pixel units, there is no restriction on the positional relationship such as the spacing and the degree of interleaving of the pixel units in the same pixel repeating arrangement unit, and it can be based on actual needs. Make other designs.
  • the two first sub-pixels located between the two third sub-pixels are centrally symmetrical and located between the two third sub-pixels.
  • the two second sub-pixels between the third sub-pixel are also centrally symmetrical.
  • the symmetry centers of the two first sub-pixels and the symmetry centers of the two second sub-pixels The centers coincide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种像素单元(100)、像素重复排列单元(200)和显示面板(10),像素单元(100)包括两个第一子像素(110)、两个第二子像素(120)和一个第三子像素(130)。第一子像素(110)、第二子像素(120)和第三子像素(130)的预设出光颜色不同。两个第一子像素(110)以及两个第二子像素(120)围绕第三子像素(130)分布,且两个第二子像素(120)位于两个第一子像素(110)的形心所确定的直线(L3)的两侧。上述结构的像素单元(100)可以有助于缓解显示图像存在的锯齿感和彩边的问题。

Description

像素单元、像素重复排列单元和显示面板
本发明是要求由申请人提出的,申请日为2022年08月09日,申请号为CN 202210952036.4,名称为“像素单元、像素重复排列单元和显示面板”的申请的优先权。以上申请的全部内容通过整体引用结合于此。
技术领域
本公开涉及显示技术领域,具体涉及一种像素单元、像素重复排列单元和显示面板。
背景技术
随着显示技术的不断发展,显示屏的分辨率也在不断提高,以使得显示屏的显示图像具备更好的显示效果。而当前的显示面板,限于像素图形的设计,其显示图像尤其是文字显示,会存在较严重的锯齿感,且容易出现彩边,从而导致用户体验感不高。
发明内容
有鉴于此,本公开提供一种像素单元、像素重复排列单元和显示面板,通过将像素单元中的子像素进行错位排布,以缓解或者消除锯齿现象。
本公开第一方面提供一种像素单元,该像素单元包括两个第一子像素、两个第二子像素和一个第三子像素。第一子像素、第二子像素和第三子像素的预设出光颜色不同。两个第一子像素以及两个第二子像素围绕第三子像素分布,且两个第二子像素位于两个第一子像素的形心所确定的直线的两侧。
在上述方案中,像素单元中的子像素呈现交错排布,从而以缓解像素单元在进行显示时的锯齿感;此外,可以避免出现第一子像素或者第二子像素单独呈行或列的情况出现,以避免显示图像中出现彩边;另外,在像素排布时,可以提高各个像素单元包括的子像素的交错排布程度,以进一步缓解显示图像的边缘锯齿现象,从而提高显示效果。
在本公开第一方面的一个具体实现方式中,两个第一子像素分别位于第三子像素的相对的两侧,且两个第二子像素分别位于第三子像素的相对的另两侧。例如,进一步地,两个第一子像素分别位于第三子像素的相对的两条像素边的彼此背离的一侧,且两个第二子像素分别位于第三子像素的相对的另两条像素边的彼此背离的一侧。例如,更进一步地,第三子像素的对应两个第一子像素的像素边为第一像素边和第二像素边,第三子像素的对应两个第二子像素的像素边为第三像素边和第四像素边,第一像素边和第三像素边邻接,第二像素边和第四像素边邻接,且在第三子像素的周向上,第一像素边、第三像素边、第二像素边和第四像素边依次排布。例如,更进一步地,第二像素边和第三像素边之间通过至少一条像素边连接,且第一像素边和第四像素边之间通过至少一条像素边连接。
在本公开第一方面的一个具体实现方式中,两个第一子像素中的一个与两个第二子像素中的一个相接以构成一个组,两个第一子像素中的另一个与两个第二子像素中的另一个相接以构成另一个组,不同组的第一子像素和第二子像素彼此间隔。
在上述方案中,第一子像素和第二子像素以组的形式交错排布,从而进一步缓解显示图像的边缘锯齿和彩边问题;此外,第三子像素的部分结构(例如发光层)的制备可以共用掩膜板的同一开口,以降低掩膜板的精度需求以及相应制备工艺的对位精度要求,从而降低成本。
在本公开第一方面的一个具体实现方式中,第一子像素的预设出光波长小于第二子像素的预设出光波长,且大于第三子像素的预设出光波长。例如进一步,第一子像素为绿色子像素,第二子像素为红色子像素,第三子像素为蓝色子像素。
在本公开第一方面的一个具体实现方式中,第三子像素的开口面积可以设计为大于第一子像 素与第二子像素的开口面积。
在本公开第一方面的一个具体实现方式中,第一子像素、第二子像素与第三子像素的平面形状都为多边形。第一子像素和第二子像素都分别共用第三子像素的一个像素边,且第三子像素中至少两个相对的像素边未与第一子像素和第二子像素中的任一个共用。
在本公开第一方面的一个具体实现方式中,第一子像素、第二子像素与第三子像素的平面形状皆为多边形,第三子像素的与第一子像素相对的像素边为第三子像素和第一子像素的共用像素边,第三子像素的与第二子像素相对的像素边为第三子像素和第二子像素的共用像素边,且第三子像素中至少两条相对的像素边未与第一子像素和第二子像素中的任一个的像素边共用。例如,进一步地,两个第一子像素关于第三子像素的形心呈中心对称;和/或,两个第二子像素关于第三子像素的形心呈中心对称。
在上述方案中,像素单元的出光相对均匀,以提高图像显示效果。
在本公开第一方面的一个具体实现方式中,第三子像素的平面形状为六边形,第一子像素和第二子像素的平面形状都为四边形。第一子像素和第二子像素中的每一个都与第三子像素共用一条像素边设置。第三子像素的与第一子像素共用的两条像素边相对设置,第三子像素的与第二子像素共用的两条像素边相对,且第三子像素未与第一子像素和第二子像素共用的像素相对设置。例如,进一步地,六边形的相对的边彼此平行。
在本公开第一方面的一个具体实现方式中,六边形由一个矩形和两个等腰三角形拼接形成,矩形中的两个相对的边共用为等腰三角形的底边。矩形中的两个未与等腰三角形共用的边与第一子像素的像素边共用,每个等腰三角形的一条侧边与第二子像素的像素边共用。
在本公开第一方面的一个具体实现方式中,等腰三角形的顶角为直角,和/或,矩形的两个未与等腰三角形共用的边的长度为等腰三角形的底边的长度的1/2。
在本公开第一方面的一个具体实现方式中,第一子像素的平面形状为矩形,第二子像素的平面形状为直角梯形,第二子像素的与第一子像素共用的像素边为直角梯形的顶边,且第二子像素的与第三子像素共用的像素边为直角梯形的斜腰。例如,进一步地,第一子像素的平面形状为正方形。
在上述方案中,两个第一子像素的面积、两个第二子像素的面积和两个第三子像素的面积之比为2:3:4,该比值关系可以补偿各种子像素在出光效率、寿命等方面的差异,以在保证显示图像的显示效果的同时,使得具有该像素单元的产品(例如下述的显示面板)具有更长的使用寿命。
在本公开第一方面的另一个具体实现方式中,第一子像素的平面形状为矩形,第二子像素的平面形状为平行四边形,且第二子像素的与第一子像素共用的像素边和与第三子像素共用的像素边相接。例如,进一步地,第一子像素的平面形状为正方形。
在上述方案中,两个第一子像素的面积、两个第二子像素的面积和两个第三子像素的面积之比为1:1:2,在第三子像素的预设出光波长相对较小(例如出射的是蓝光)的情况下,该比值关系可以补偿第三子像素在出光效率、寿命等方面的不足,以在保证显示图像的显示效果的同时,使得具有该像素单元的产品(例如下述的显示面板)具有更长的使用寿命。
在本公开第一方面的再一个具体实现方式中,第一子像素的平面形状为直角梯形,第一子像素的与第三子像素共用的像素边为直角梯形的直角腰,第二子像素的与第一子像素共用的像素边为直角梯形的底边,且第二子像素中与相接的第一子像素背离的像素边和与相接的第一子像素共用的像素边平行。例如,进一步地,直角梯形的顶边和直角腰的长度相等;和/或,直角梯形的顶边和底边的长度比值为2/3,第二子像素的与第一子像素共用的像素边和直角梯形的顶边的长度相等。
在上述方案中,可以在保证相邻的像素单元之间没有间隙的情况下,保证像素单元的交错排布,以缓解显示图像中出现边缘锯齿的问题。
本公开第二方面提供一种像素重复排列单元,该像素重复排列单元包括至少一个上述第一方面中的像素单元。
在本公开第二方面的一个具体实现方式中,每个像素重复排列单元包括两个像素单元,其中,一个像素单元中的由两个第一子像素的形心所确定的直线,与另一个像素单元中的由两个第一子像素的形心所确定的直线平行。
在本公开第二方面的一个具体实现方式中,在每个像素重复排列单元中,像素单元中由两个第一子像素的形心所确定的直线,经过另一个像素单元中的一个第二子像素。
在本公开第二方面的一个具体实现方式中,位于两个第三子像素之间的两个第一子像素呈中心对称;和/或,位于两个第三子像素之间的两个第二子像素呈中心对称。
本公开第三方面提供一种显示面板,该显示面板包括显示区,显示区中排布有多个上述第二方面中的像素重复排列单元。多个像素重复排列单元排布为多行多列,且在每个像素重复排列单元 中,每个像素单元中的由两个第一子像素的形心所确定的直线与行方向平行。同一行中,每个像素重复排列单元中的任一条直线都会与其它像素重复排列单元中的一条直线重合。同一列中,对于位于非端点的任何一个像素重复排列单元(其前后两侧都排布有像素重复排列单元),其中的每个像素单元中的第三子像素的未与第一子像素和第二子像素相对的像素边,与相邻的像素重复排列单元中的一个第三子像素的未与第一子像素和第二子像素相邻的像素边相对,以使得每个像素重复排列单元中的与行方向垂直且经过第三子像素的形心的直线,与相邻的像素重复排列单元中的与行方向垂直且经过第三子像素的形心的直线平行且彼此间隔。
附图说明
图1为本公开一实施例提供的一种显示面板的平面结构示意图。
图2为图1所示显示面板的S区域的像素结构的放大图。
图3为图2所示的像素结构的拆分示意图。
图4为图3中的像素结构的一种像素重复排列单元的平面结构示意图。
图5为图4中的一个像素单元的平面结构示意图。
图6为图5所示的像素单元中的第三子像素的平面结构示意图。
图7为图5中的像素单元沿线L3的截面图。
图8为本公开一实施例提供的另一种像素重复排列单元的平面结构示意图。
图9为本公开一实施例提供的另一种显示面板的像素单元的平面结构示意图。
图10为由图9所示的像素单元构成的一种像素结构的平面结构示意图。
图11为图10所示的像素结构的拆分示意图。
图12为由图9所示的像素单元构成的另一种像素结构的平面结构示意图。
图13为图12所示的像素结构的拆分示意图。
图14为本公开一实施例提供的另一种显示面板的像素结构的部分区域的平面结构示意图。
图15为图14所示的像素结构的拆分示意图。
图16为由图14所示的像素单元构成的另一种像素结构的平面结构示意图。
图17为图16所示的像素结构的拆分示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
显示面板的显示区排布有子像素,出光颜色不同且相邻的子像素(可称为亚像素)构成大像素,通过控制大像素中的每个子像素的显示灰阶,可以使得大像素出射任一颜色光线,即大像素为实现图像显示的最小独立单元。显示面板中需要排布大量的大像素,以实现图像显示。在显示面板中,大像素会重复性地阵列排布,这必然会使得部分大像素乃至子像素也会呈现多行、多列的排布形式。上述设计下,显示图像的边缘在视觉效果上会呈现锯齿感;此外,如果每一行和/或每一列的子像素的预设出光颜色相同,在显示图像中会出现彩边(例如预设的显示图像并不包括的单色或彩色线条),导致显示不良。
本公开的实施例提供一种像素单元、像素重复排列单元和显示面板,以至少解决上述的技术问题。该像素单元包括两个第一子像素、两个第二子像素和一个第三子像素。第一子像素、第二子像素和第三子像素的预设出光颜色不同。两个第一子像素以及两个第二子像素围绕第三子像素分布,且两个第二子像素位于两个第一子像素的形心所确定的直线的两侧。如此,像素单元中的两个第一子像素和两个第二子像素都分别位于第三子像素的两个相对侧,相当于将大面积的一个第一子像素和一个第二子像素拆分为了小面积的两个第一子像素和两个第二子像素,且分别置于第三子像素的两侧,以使得像素单元中的子像素呈现交错排布,从而以缓解像素单元在进行显示时的锯齿感;此外,在基于该像素单元进行像素排布后,可以避免出现第一子像素或者第二子像素单独呈行或列的情况出现,即,每一行或者每一列的子像素中,不会只排布有第一子像素或者第二子像素,以避免显示图像中出现彩边;另外,在像素排布时,维持相邻像素单元相接的前提下,像素单元排布的行方向和列方向可以交叉但不垂直,从而进一步提高各个像素单元包括的子像素的交错排布程度,以 进一步缓解显示图像的边缘锯齿现象,从而提高显示效果。
下面,结合附图对根据本公开至少一个实施例中的像素单元、像素重复排列单元和显示面板的结构进行说明。需要说明的是,鉴于像素单元和像素重复排列单元都用于构成显示面板的像素结构,因此,在该些实施例中,首先介绍显示面板的结构,并对显示面板包括的像素单元以及像素重复排列单元的结构进行同步描述。
此外,在该些附图中,以显示面板所在面为基准建立空间直角坐标系,以对显示面板中的各个元件的位置以及像素单元及其包括的子像素的排布方式进行说明。在该空间直角坐标系中,X轴和Y轴与显示面板的所在面平行,且X轴与像素单元中的两个第一子像素的形心所确定的直线平行,Z轴与显示面板的所在面垂直。
如图1~图7所示,显示面板10包括显示区11环绕显示区11的边框区12。显示区11中设置像素结构以实现图像显示,至少一个像素单元100组成像素重复排列单元200(图3中为两个像素单元100组成一个像素重复排列单元200),像素重复排列单元200阵列排布为多行多列,以构成显示区的像素结构。行方向为直线L1的延伸方向,同一行中,每个像素重复排列单元200中的任一条直线L1都会与其它像素重复排列单元200中的一条直线L1重合。列方向为直线L2的延伸方向,同一列中,对于位于非端点的任何一个像素重复排列单元200(其前后两侧都排布有像素重复排列单元200),其中的每个像素单元100中的第三子像素130的未与第一子像素110和第二子像素120相对的像素边,与相邻的像素重复排列单元200中的一个第三子像素130的未与第一子像素110和第二子像素120相邻的像素边相对,200以使得每个像素重复排列单元中的与行方向垂直且经过第三子像素的形心的直线L4,与相邻的像素重复排列单元200中的与行方向垂直且经过第三子像素130的形心的直线L4平行且彼此间隔,相接的第三子像素130的形心的连线确定直线L2。边框区12可以用于布设从显示区11中引出的走线。例如,边框区12可以包括邦定区13,该邦定区13中可以设置多个搭接端子(或者称为焊盘),上述从显示区11中引出的走线可以汇总至该邦定区13中并与搭接端子连接,以通过搭接端子与外部电路(例如具有驱动芯片的柔性电路板等)电连接。
具体地,如图5所示,在像素单元100中,设置有两个第一子像素110、两个第二子像素120和一个第三子像素130,第一子像素110、第二子像素120和第三子像素130的预设出光颜色不同。两个第一子像素110和两个第二子像素120交错地围绕第三子像素130,以使得两个第一子像素110的形心所确定的直线L3(平行于X轴)经过第三子像素130。两个第二子像素120分别布置在直线L3的两侧。如此,在环绕第三子像素130的周向(例如顺时针方向)上,会呈现第一子像素110、第二子像素120、第一子像素110、第二子像素120依次排布,且在与直线L3垂直的直线L4所在的方向(平行于Y轴方向)上,两个第二子像素120出现交错。如此,在每个像素单元中,三种子像素的数量设计为2:2:1,在维持整个像素单元面积不变的情况下,相当于缩小了每个第一子像素110和第二子像素120的设计面积,且分散了第一子像素110对应的颜色的光和第二子像素120对应颜色的光的出射区域,以缓解图像显示时的锯齿问题;此外,如图2~图4所示,在将图5中的像素单元100组合为像素重复排列单元200并基于像素重复排列单元200进行重复排列以形成像素结构后,第一子像素110和第二子像素120都不能单独排列为一行或者一列,即,第一子像素和第二子像素会呈现交错排布,从而消除显示图像时可能存在的彩边问题。
例如,在本公开的实施例提供的像素单元中,如图5和图6所示,两个第一子像素110位于一个第三子像素130的两个相对侧,且两个第二子像素120也位于第三子像素130的另外两个相对侧。
例如,如图5和图6所示,两个第一子像素110分别位于第三子像素130的相对的两条像素边(例如下述的第一像素边131和第二像素边132)的彼此背离的一侧,且两个第二子像素120分别位于第三子像素130的相对的另两条像素边(例如下述的第三像素边133和第四像素边134)的彼此背离的一侧,即,第一子像素110和第二子像素120都设置为与第三子像素130的不同像素边对应。
例如,如图5和图6所示,第三子像素130的对应两个第一子像素110的像素边为第一像素边131和第二像素边132,第三子像素130的对应两个第二子像素120的像素边为第三像素边133和第四像素边134,第一像素边131和第三像素边133邻接,第二像素边132和第四像素边134邻接,且在第三子像素130的周向上,第一像素边131、第三像素边133、第二像素边132和第四像素边134依次排布,而与该些第一像素边131、第三像素边133、第二像素边132和第四像素边134分别对应的两个第一子像素110和两个第二子像素120也有同样的排布关系。
例如,如图5和图6所示,第二像素边132和第三像素边133之间通过至少一条像素边(例如下述的第六像素边136)连接,且第一像素边131和第四像素边134之间通过至少一条像素边(例 如下述的第五像素边135)连接,如此,第三子像素130的未与第一子像素110和第二子像素120相对的像素边,可以用于该像素单元和其它的像素单元拼接。
在本公开的实施例中,像素单元中的第三子像素的边缘会与第一子像素和第二子像素对接,在此对第三子像素的边缘中用于对接的部分的尺寸不做限制,可以根据实际工艺的需求进行设计。
例如,在本公开一些实施例中,在每个像素单元中,第三子像素的边缘都用于与第一子像素和第二子像素对接。
例如,在本公开另一些实施例中,在每个像素单元中,第三子像素的边缘中仅有一部分用于与第一子像素和第二子像素对接。如此,在基于像素单元构成像素重复排列单元,并进一步排列为像素结构时,相邻但不同的像素重复排列单元中的第三子像素可以对接,以降低第三子像素制作时的工艺需求,并允许第三子像素可以具备更大的开口率;此外,像素重复排列单元排列为多行多列之后,行方向和列方向相交但不垂直,从而进一步增大了第一子像素和第二子像素的交错程度,以进一步消除彩边问题。示例性的,如图4所示,第一子像素110与第二子像素120两两相接以构成两个组,每个组都包括一个第一子像素110和一个第二子像素120,同一个组中的第一子像素110和第二子像素120相接,两个组由第三子像素130间隔,即不同的组的第一子像素110和第二子像素120彼此间隔。如此,如图2和图3所示,在两个组的间隔处,每个像素单元100中的第三子像素1330的边缘可以用于对接位于同一列的另一个相邻的像素单元100的第三子像素130的边缘(位于所在像素单元的两个组的间隔处),从而使得整个像素结构中的第一子像素110和第二子像素120以组的形式交错排布,以进一步缓解显示图像的边缘锯齿和彩边问题;此外,上述设计可以使得第三子像素130单独排列为一行或一列(例如,图2所示排布为多列),使得第三子像素130的部分结构(例如发光层等)的制备可以共用掩膜板(MASK)的同一开口,以降低掩膜板的精度需求以及相应制备工艺的对位精度要求,从而降低成本。
每个子像素可以包括有效发光区域(如图5所示,每个子像素的位于虚线框之内的区域)和边界区域(如图5所示,每个子像素的位于虚线框之外的区域),有效发光区域用于出射用于构成显示图像的光线,边界区域用于界定不同颜色子像素的发光边界。“开口率”可以为有效发光区域的面积与子像素的面积(有效发光区域的面积和边界区域的面积之和)的比值。此外,在显示面板的制备过程中,会通过掩膜板对相应的膜层结构进行构图,以确定有效发光区域和边界区域的范围,如此掩膜板的精度(例如用于构图的开口的大小)直接限制了子像素的排布密度(排布密度越大,分辨率越高)。在部分预设出光颜色相同的子像素(例如第三子像素)相接的情况下,掩膜板的用于构图该些子像素的开口可以连通,从而降低掩膜板的精度要求。
下面,通过一些具体的实施例,对子像素的具体结构进行介绍,以对上述预设出光颜色相同的子像素相邻会增大开口率的技术原理进行解释。需要说明的是,在本公开的实施例中,子像素单元的具体结构可以根据显示面板的类型进行设计,而显示面板的类型在此不做限制。因此,在该些实施例中,针对几个不同类型的显示面板,对其中的子像素的结构进行说明。
例如,在本公开一些实施例中,如图1~图7所示,显示面板10为有机发光显示面板(OLED面板),显示面板10可以包括基底210以及位于基底210上的显示功能层。显示功能层包括多个有机发光器件230和用于限定有机发光器件230的像素界定层220。有机发光器件230包括依次叠置在基底210上的阳极231、发光功能层233和阴极232,发光功能层233包括发光层。像素界定层220包括对应每个有机发光器件230的开口,每个开口暴露对应的有机发光器件230的阳极231,且用于容纳发光功能层233(例如其中的发光层位于该开口中)。基底210可以为阵列基板,其包括驱动电路层,该驱动电路层的位于显示区的部分包括与阳极连接的多个像素驱动电路211(图7中仅示出了像素驱动电路211包括的薄膜晶体管)。有机发光器件230所在的区域即为每个子像素的有效发光区域,而子像素的边界区域实际为像素界定层220分布的区域。
基于上述描述可知,有机发光器件230的位置实际是由像素界定层220的开口决定的,而在如图7所示的显示面板的制备过程中,会在基底210上沉积整层的像素界定材料膜层,然后对其进行构图(使用掩膜板)以形成具有多个开口的像素界定层220。在此过程中,如果预设出光颜色相同的子像素都彼此间隔,需要考虑阳极位置误差、阳极和掩膜板的对位误差,阳极需要设计为比开口更大,且开口之间的像素界定层220需要一定的设计宽度,从而保证开口和阳极231可以对准,而该设计宽度的增加,会使得开口的设计面积相应减小,从而使得子像素的“开口率”减小。在如图2和图3所示的预设出光颜色相同的第三子像素130相接的情况下,该相接的第三子像素中的发光功能层的结构相同而可以设计为共用发光功能层,即,可以不需要考虑相接的两个第三子像素130中的有机发光器件230之间的像素界定层130的宽度,或者相接的两个第三子像素130中的有机发光器件230之间不设置像素界定层130,以使得该两个第三子像素130中的有机发光器件230位于 同一个开口中,从而使得第三子像素130的有机发光器件230可以具备更大的设计面积,即,使得第三子像素的“开口率”增加。
例如,在本公开另一些实施例中,显示面板可以为液晶显示面板,其包括相对设置的阵列基板和对置基板,阵列基板和对置基板之间填充液晶。阵列基板和对置基板上设置有控制电极以形成电场,通过控制电场以控制液晶状态以控制光线(外部装置例如背光模组提供的光线)的偏振状态,并配合偏振片以控制出光亮度。显示面板的出光侧会设置彩膜(CF)和黑矩阵(BM)以控制出射光线的颜色和出光边界,从而实现显示。彩膜包括多个滤色器,滤色器用于构成一个子像素的主体。在滤色器和黑矩阵同层的情况下,滤色器的范围受到黑矩阵的界定,黑矩阵的开口用于限定滤色器的位置,此情形下滤色器充当子像素有效发光区域的。在滤色器和黑矩阵位于不同层的情况下,滤色器的与黑矩阵的开口重叠的部分作为有效发光区域。例如,黑矩阵的制备方法可以包括借助掩膜板进行涂布、沉积或者光刻等,在预设出光颜色相同的子像素相接的情况下,该掩膜板的对应该些子像素(例如其中的滤色器)的开口可以彼此连通,从而使得子像素具备更大的开口率。
例如,在本公开再一些实施例中,显示面板可以为电子纸等类型的显示结构,子像素可以为容纳有电子墨水的腔室结构。例如,电子墨水可以为容纳有墨水的小球,小球带有电荷,腔室中设置有电极,通过电极产生电场以控制小球的分布,从而实现图像显示。在预设出光颜色相同的子像素相接的情况下,该两个子像素可以共用腔室,从而使得子像素具备更大的开口率。
在本公开的实施例中,对第一子像素、第二子像素和第三子像素的预设出光颜色(不同颜色的光线具有不同的波长)不做限制,可以根据实际显示需求进行设计。例如,第一子像素的预设出光波长小于第二子像素的预设出光波长,且大于第三子像素的预设出光波长。示例性的,如2~图5所示,第一子像素110为绿色子像素G,第二子像素120为红色子像素R,第三子像素130为蓝色子像素B。
在本公开至少一个实施例提供的像素单元中,两个第一子像素关于第三子像素的形心呈中心对称;和/或,两个第二子像素关于第三子像素的形心呈中心对称。如此,像素单元的出光相对均匀,以提高图像显示效果。示例性的,如图5所示,第三子像素130为中心对称图形,对称中心为其形心(图5中字母“B”所在的位置),直线L3经过第三子像素130的对称中心,如此,两个第一子像素110关于该对称中心呈现中心对称,两个第二子像素120也关于该对称中心呈现中心对称。
在本公开的实施例中,像素单元的整体形状要基于三种子像素的形状来决定,而像素单元的整体形状会决定像素重复排列单元的排列方式。下面,在几个具体的实施例中,结合像素单元及其包括的子像素的几种设计形状,对像素重复排列单元及其排列方式进行说明。
需要说明的是,第一子像素和第二子像素位于第三子像素的两个相对侧,因此可以基于第三子像素的形状来设计第一子像素和第二子像素。下面,先对第三子像素的几种具体形状进行描述,然后再对第一子像素和第二子像素的几种设计方式进行说明。
在本公开至少一个实施例提供的像素单元中,第一子像素、第二子像素与第三子像素的平面形状都为多边形。第三子像素的与第一子像素相对的像素边为第三子像素和第一子像素的共用像素边,第三子像素的与第二子像素相对的像素边为第三子像素和第二子像素的共用像素边,且第三子像素中至少两条相对的像素边未与第一子像素和第二子像素中的任一个的像素边共用,那么第三子像素的像素边的个数大于第一子像素的个数、第二子像素的个数总和,且差值不小于二,即,第三子像素至少具备六个像素边。如此,在基于像素单元进行像素排列时,像素单元中的第三子像素的未共用的像素边可以与相邻的像素单元中的第三子像素的未共用的像素边拼接,以使得像素单元相对紧密地排布,以提高显示图像的分辨率。
在本公开至少一个实施例提供的像素单元中,如图5所示,第三子像素130的平面形状为六边形,第一子像素110和第二子像素120的平面形状都为四边形。该六边形包括依次相接的第一像素边131、第三像素边133、第六像素边136、第二像素边132、第四像素边134和第五像素边135。第一子像素110的像素边111(对应于第三子像素130的第一像素边131和第二像素边132)为第一子像素110和第三子像素130的共用像素边,第二子像素120的像素边121(对应于第三子像素130的第三像素边133和第四像素边134)为第二子像素120和第三子像素130的共用像素边。第三子像素130的与两个第一子像素110共用的第一像素边131和第二像素边132是六边形的两个相对边,同样地,第三子像素130的与两个第二子像素120共用的第三像素边133和第四像素边134是六边形的另外两个相对边,第一像素边131和第三像素边133相接,第二像素边132和第四像素边134相接。如此,第三子像素130的未与第一子像素110和第二子像素120共用的两个像素边相对。
例如,如图5所示,该六边形的相对的边彼此平行,即,彼此相对的第一像素边131和第二像素边132彼此平行,彼此相对的第三像素边133和第四像素边134彼此平行,彼此相对的第五像 素边135和第六像素边136彼此平行。此外,在相对的边的长度相等的情况下,该六边形为轴对称和中心对称图形,具体为如下所述的由一个矩形和两个等腰三角形拼接形成。
在本公开至少一个实施例提供的像素单元中,如图5所示,六边形的第三子像素130由一个矩形和两个等腰三角形拼接形成,矩形的两个相对的边共用为等腰三角形的底边,该底边为虚设的边,在图形拼接后不会呈现。矩形的两个未与等腰三角形共用的边第一像素边131和第二像素边132与第一子像素110共用,每个等腰三角形的其中一条侧边(第三像素边133或第四像素边134)同时作为的第二子像素120的一条像素边。如此,六边形的第三子像素130即是中心对称图形,又是轴对称图形,例如具有如图5所示的两个对称轴L3和L4。对称轴L3经过六边形的形心且经过第一像素边131和第二像素边132的中心,对称轴L4经过上述提及的两个等腰三角形的顶点。
在本公开的实施例中,对六边形的各个边长的比例关系(决定其各个内角的大小,并决定六边形的具体形状)不做限制,可以根据实际工艺的需要进行设计。例如,如图5所示,用于拼接成六边形的等腰三角形的顶角为直角。例如,进一步地,矩形的两个未与等腰三角形共用的边的长度为等腰三角形的底边的长度的1/2。如此,第三子像素130在沿对称轴L3的方向上的尺寸为其在沿对称轴L4的方向上的尺寸的2/3。
在下面的实施例中,以第三子像素的形状为如图5所示的六边形(轴对称且中心对称)为例,对第一子像素和第二子像素的形状进行说明。
例如,在本公开一些实施例提供的像素单元中,如图5所示,第一子像素110的平面形状为矩形,该矩形包括四条边111~114,边111和边112相对,边113和边114相对,第二子像素120的平面形状为直角梯形,该直角梯形包括斜腰121、直角边122、顶边123和底边124。边113和顶边123重合,斜腰121作为第二子像素120和第三子像素130的共用像素边,边111作为第一子像素110和第三子像素130的共用像素边。
基于图5所示的像素单元100,一种像素重复排列单元的结构可以如图2~图5所示,像素重复排列单元200可以由两个像素单元100组成,像素重复排列单元200沿着直线L1(或者直线L3)的延伸方向(行方向)排布。此外,在每个像素重复排列单元200中,两个像素单元会沿着与直线L3垂直的直线L4的延伸方向交错,即,两个像素单元100中分别由两个第一子像素110的形心所确定的两条直线L3彼此平行且彼此间隔,例如进一步地,在每个像素重复排列单元200中,像素单元100中由两个所述第一子像素110的形心所确定的直线,经过另一个像素单元100中的一个第二子像素110。两个像素单元100的交错的程度为第一子像素110的背离第三子像素130的像素边112的长度。如此,在前述实施例中提及的第一子像素110为正方形且第二子像素120为直角梯形的情况下,同一个像素重复排列单元200中的两个像素单元100沿着直线L4的交错距离,与整个像素重复排列单元200沿着直线L4的尺寸之比为1/4。如此,在每个像素重复排列单元200中且位于两个第三子像素130之间的区域,一个像素单元100的第一子像素110的背离第三子像素130的像素边112与另一个像素单元100的第二子像素120的直角边122(像素边)重合。基于上述设计的像素重复排列单元200所构成的像素结构可以参见图2和图3,所有的像素单元100之间彼此对接在一起,各个像素单元100之间是可以没有间隙的,以使得显示面板的显示区都用于排布子像素,从而使得显示面板具备更大的分辨率。
基于图5所示的像素单元100,另一种像素重复排列单元的结构可以如图8所示,像素重复排列单元可以由两个像素单元组成,与如图4所示的像素重复排列单元的不同之处在于,图8所示的像素重复排列单元中的两个像素单元的交错程度,大于第一子像素110的背离第三子像素130的像素边112的长度。如此,在每个像素重复排列单元中且位于两个第三子像素130之间的区域,两个像素单元的两个第二子像素120的直角边(像素边)会部分重合。在基于上述设计的像素重复排列单元所构成的像素结构中,同一列的相邻像素重复排列单元所包括的四个像素单元之间会形成虚设区域140,然而与图4所示的情况相比,预设出光颜色相同的子像素的交错程度变大,可以进一步缓解锯齿和彩边问题。
对于一些类型的显示面板而言,出光颜色不同的子像素的出光效率、寿命等都是不同的,例如,对于包括有机发光器件的子像素,出射光的波长越短的有机发光器件的出光效率较差,需要更高的驱动电压从而具备更短的使用寿命。在本公开的实施例中,通过设计三种子像素的面积比,可以补偿该不同类型的子像素在出光效率、寿命等方便的差异。例如,在如图5所示的实施例中,如果第一子像素110的平面形状设计为正方形,第一子像素110、第二子像素120和第三子像素130的面积之比为2:3:8,而在每个像素单元100中,两个第一子像素110的面积、两个第二子像素120的面积和两个第三子像素130的面积之比为2:3:4,该比值关系可以补偿三种子像素在出光效率、寿命等方面的差异,以在保证显示图像的显示效果的同时,使得具有该像素单元的产品(例如下述的 显示面板)具有更长的使用寿命。需要说明的是,在第一子像素、第二子像素和第三子像素的出光颜色分别设置为如图5所示的绿、红、蓝的情况下,上述比例2:3:4可以显著提升显示面板的使用寿命。
在本公开另一些实施例提供的像素单元中,可以基于图5所示的像素单元100进行改造,以获得如图9所示的像素单元100a。具体为,第一子像素110a的平面形状仍为矩形,第二子像素120a的平面形状变为了平行四边形,且第二子像素120a的与第一子像素110a共用的像素边123a和与第三子像素130a共用的像素边121a相接,第二子像素120a的像素边121a和背离第三子像素130a的像素边122a平行,第二子像素120a的像素边123a和背离第一子像素110a的像素边124a平行。
基于图9所示的像素单元100a,一种像素重复排列单元的结构可以如图10和图11所示,一个像素单元100a即可充当一个像素重复排列单元200a像素重复排列单元200a(像素单元100a)沿着直线L1(或者直线L3)的延伸方向(行方向)排布,且同一行的像素重复排列单元200a相接,且不会沿着直线L4交错。如此,每个像素重复排列单元200a(或者像素单元100a)的第一子像素110a的背离第三子像素130a的像素边,与同一行中的另一个像素重复排列单元200a(或者像素单元100a)的第一子像素110a的背离第三子像素130a的像素边重合,每个像素重复排列单元200a(或者像素单元100a)的第二子像素120a的背离第三子像素130a的像素边,与同一行中且相邻的像素重复排列单元200a(或者像素单元100a)的第二子像素120的背离第三子像素130a的像素边重合。基于上述设计的像素重复排列单元200所构成的像素结构可以参见图10和图11,所有的像素重复排列单元200a(或者像素单元100a)之间彼此对接在一起,各个像素单元100a之间是可以没有间隙的,以使得显示面板的显示区都用于排布子像素,从而使得显示面板具备更大的分辨率。
基于图9所示的像素单元100,另一种像素重复排列单元的结构可以如图12和图13所示。与如图10和图11所示的像素重复排列单元的不同之处在于,像素重复排列单元200a可以由两个像素单元100a组成,每个像素重复排列单元200a中的两个像素单元100a沿着直线L4的延伸方向呈现交错,即,两个像素单元100a中的由两个第一子像素110a的形心所确定的直线L3彼此平行且彼此间隔,例如进一步地,在每个像素重复排列单元200a中,像素单元100a中由两个所述第一子像素110a的形心所确定的直线,经过另一个像素单元100a中的一个第二子像素110a,且交错的程度为第一子像素110a的背离第三子像素130a的像素边的长度。如此,在第一子像素110a为正方形的情况下,同一个像素重复排列单元200a中的两个像素单元100a沿着直线L4的交错距离,与整个像素重复排列单元200a沿着直线L4的尺寸之比为1/4。在基于上述设计的像素重复排列单元200a所构成的像素结构中,同一列的相邻像素重复排列单元200a所包括的四个像素单元之间会形成虚设区域140a,然而与图10和图11所示的情况相比,预设出光颜色相同的子像素的交错程度变大,可以进一步缓解锯齿和彩边问题。
在第一子像素的形状为正方形的情况下,图9所示的像素单元100a中,第一子像素110a、第二子像素120a和第三子像素130a的面积之比为1:1:4,而在每个像素单元100a中,两个第一子像素110a的面积、两个第二子像素120a的面积和两个第三子像素130a的面积之比为1:1:2,在第三子像素130a的预设出光波长相对较小(例如出射的是蓝光)的情况下,该比值关系可以补偿第三子像素130a在出光效率、寿命等方面的不足,以在保证显示图像的显示效果的同时,使得具有该像素单元的产品(例如下述的显示面板)具有更长的使用寿命。
在本公开再一些实施例提供的像素单元中,可以基于图9所示的像素单元100a进行改造,以获得如图16和图17所示的像素单元100b。改造原理可如图14和图15所示,即,将虚设区140a进行划分,以补偿至周边的子像素中,从而增加该些子像素的设计面积,以提高开口率。示例性的,如图14和图15所示,被两个第一子像素110a和两个第二子像素120a环绕形成的虚设区域140a的形状为平行四边形,如果以该平行四边形的对角线进行划分,会得到四个以对角线交点Q和四个边所确定的四个三角形(例如△BQC和△EQH等),将该四个三角形与相邻的第一子像素110a或者第二子像素120a合并,从而使得第一子像素110a由平行四边形ABCD变为梯形AQCD以得到第一子像素110b,而第二子像素120a由矩形EFGH变为直角梯形QEFGH以得到第二子像素120b。第一子像素110b的与第三子像素130b共用的像素边为直角梯形QEFGH的直角腰,第二子像素120b的与第一子像素110b共用的像素边为直角梯形QEFGH的底边,且第二子像素120b中与相接的第一子像素110b背离的像素边和与相接的第一子像素110b共用的像素边平行。
例如,在本公开的实施例中,在第一子像素设计为直角梯形且第二子像素设计为梯形的情况下,直角梯形的顶边和直角腰的长度相等;和/或,直角梯形的顶边和底边的长度比值为2/3,第二子像素的与第一子像素共用的像素边和直角梯形的顶边的长度相等。示例性的,在如图14和图15所示的改造过程中,如果第一子像素110b为正方形,那么在获得的如图16和图17所示的像素单元 100b中,直角梯形QEFGH的第一子像素110b的顶边HG和直角腰GF的长度相等,顶边HG和底边QF的长度比值为2/3,且第二子像素120b的与第一子像素110b共用的像素边DC和直角梯形QEFGH的顶边HG的长度相等。
基于图14和图15的改造所获得的像素单元100b,一种像素重复排列单元200b的结构可以如图16和图17所示。像素重复排列单元200b的排列方式和与如图12和图13所示的像素重复排列单元200a的的排列方式相同,在此不作赘述。需要说明的是,像素重复排列单元200b之间彼此对接在一起,各个像素单元100b之间是可以没有间隙的,以使得显示面板的显示区都用于排布子像素,从而使得显示面板具备更大的分辨率;此外,每个像素重复排列单元200b所包括的两个像素单元100b沿与行方向垂直的方向(前述实施例中提及的直线L4的延伸方向)呈现交错排布,以缓解锯齿和彩边问题。
在本公开的实施例中,在像素重复排列单元由两个像素单元构成的情况下,对同一个像素重复排列单元中的像素单元的间距、交错程度等位置关系不做限制,可以根据实际需要进行其它设计。例如,在如图2~图9和图12~图17所示出的所有像素重复排列单元中,位于两个第三子像素之间的两个第一子像素呈中心对称,且位于两个第三子像素之间的两个第二子像素也是呈中心对称的。此外,在如图2~图5、图12~图13和图16~图17所示出的所有像素重复排列单元中,两个第一子像素的对称中心和两个第二子像素的对称中心重合。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种像素单元,其特征在于,包括两个第一子像素、两个第二子像素和一个第三子像素,其中,所述第一子像素、所述第二子像素和所述第三子像素的预设出光颜色不同,以及
    两个所述第一子像素以及两个所述第二子像素围绕所述第三子像素分布,且两个所述第二子像素位于两个所述第一子像素的形心所确定的直线的两侧。
  2. 根据权利要求1所述的像素单元,其特征在于,
    两个所述第一子像素分别位于所述第三子像素的相对的两侧,且两个所述第二子像素分别位于所述第三子像素的相对的另两侧;
    优选地,两个所述第一子像素分别位于所述第三子像素的相对的两条像素边的彼此背离的一侧,且两个所述第二子像素分别位于所述第三子像素的相对的另两条像素边的彼此背离的一侧;
    进一步优选地,所述第三子像素的对应两个所述第一子像素的像素边为第一像素边和第二像素边,所述第三子像素的对应两个所述第二子像素的像素边为第三像素边和第四像素边,所述第一像素边和所述第三像素边邻接,所述第二像素边和所述第四像素边邻接,且在所述第三子像素的周向上,所述第一像素边、所述第三像素边、所述第二像素边和所述第四像素边依次排布;
    进一步优选地,所述第二像素边和所述第三像素边之间通过至少一条像素边连接,且所述第一像素边和所述第四像素边之间通过至少一条像素边连接。
  3. 根据权利要求2所述的像素单元,其特征在于,
    两个所述第一子像素中的一个与两个所述第二子像素中的一个相接以构成一个组,两个所述第一子像素中的另一个与两个所述第二子像素中的另一个相接以构成另一个组,不同组的所述第一子像素和所述第二子像素彼此间隔;
    优选地,所述第一子像素的预设出光波长小于所述第二子像素的预设出光波长,且大于所述第三子像素的预设出光波长;
    优选地,所述第一子像素为绿色子像素,所述第二子像素为红色子像素,所述第三子像素为蓝色子像素;
    优选地,所述第三子像素的开口面积大于所述第一子像素与所述第二子像素的开口面积。
  4. 根据权利要求3所述的像素单元,其特征在于,
    所述第一子像素、所述第二子像素与所述第三子像素的平面形状皆为多边形,以及
    所述第三子像素的与所述第一子像素相对的像素边为所述第三子像素和所述第一子像素的共用像素边,所述第三子像素的与所述第二子像素相对的像素边为所述第三子像素和所述第二子像素的共用像素边,且所述第三子像素中至少两条相对的像素边未与所述第一子像素和所述第二子像素中的任一个的像素边共用;
    优选地,两个所述第一子像素关于所述第三子像素的形心呈中心对称,和/或,两个所述第二子像素关于所述第三子像素的形心呈中心对称。
  5. 根据权利要求4所述的像素单元,其特征在于,
    所述第三子像素的平面形状为六边形,所述第一子像素和所述第二子像素的平面形状都为四边形,
    所述第一子像素和所述第二子像素中的每一个都与所述第三子像素共用一条像素边,以及
    所述第三子像素的与所述第一子像素共用的两条像素边相对设置,所述第三子像素的与所述第二子像素共用的两条像素边相对设置,且所述第三子像素未与所述第一子像素和所述第二子像素共用的像素边相对设置;
    优选地,所述六边形的相对的边彼此平行。
  6. 根据权利要求5所述的像素单元,其特征在于,
    所述六边形由一个矩形和两个等腰三角形拼接形成,所述矩形中的两个相对的边共用为所述等腰三角形的底边,所述矩形中的两个未与所述等腰三角形共用的边与所述第一子像素的像素边共用,每个所述等腰三角形的一条侧边与所述第二子像素的像素边共用,优选地,所述等腰三角形的顶角为直角,和/或,所述矩形的两个未与所述等腰三角形共用的边的长度为所述等腰三角形的底边的长度的1/2,
    优选地,所述第一子像素的平面形状为矩形,所述第二子像素的平面形状为直角梯形,所述第二子像素的与所述第一子像素共用的像素边为所述直角梯形的顶边,且所述第二子像素的与所述第三子像素共用的像素边为所述直角梯形的斜腰,优选地,所述第一子像素的平面形状为正方形;或者
    所述第一子像素的平面形状为矩形,所述第二子像素的平面形状为平行四边形,且所述第二子像素的与所述第一子像素共用的像素边和与所述第三子像素共用的像素边相接,优选地,所述第一子像素的平面形状为正方形;或者
    所述第一子像素的平面形状为直角梯形,所述第一子像素的与所述第三子像素共用的像素边为所述直角梯形的直角腰,所述第二子像素的与所述第一子像素共用的像素边为所述直角梯形的底边,且所述第二子像素中与相接的所述第一子像素背离的像素边和与相接的所述第一子像素共用的像素边平行,优选地,所述直角梯形的顶边和直角腰的长度相等;和/或,所述直角梯形的顶边和底边的长度比值为2/3,所述第二子像素的与所述第一子像素共用的像素边和所述直角梯形的顶边的长度相等。
  7. 一种像素重复排列单元,其特征在于,包括至少一个如权利要求1~6中任一项所述的像素单元。
  8. 根据权利要求7所述的像素重复排列单元,其特征在于,包括至少两个所述像素单元,其中,一个所述像素单元中的由两个所述第一子像素的形心所确定的直线,与另一个所述像素单元中的由两个所述第一子像素的形心所确定的直线平行,
    优选地,每个所述像素单元中由两个所述第一子像素的形心所确定的直线,经过另一个所述像素单元中的一个所述第二子像素。
  9. 根据权利要求7所述的像素重复排列单元,其特征在于,
    位于两个所述第三子像素之间的两个所述第一子像素呈中心对称;和/或
    位于两个所述第三子像素之间的两个所述第二子像素呈中心对称。
  10. 一种显示面板,其特征在于,包括显示区,其中,所述显示区中排布有多个如权利要求7~9中任一项所述的像素重复排列单元,
    多个所述像素重复排列单元排布为多行多列,且在每个所述像素重复排列单元中,每个所述像素单元中的由两个所述第一子像素的形心所确定的直线与行方向平行,以及
    同一行中,每个所述像素重复排列单元中的任一条所述直线都会与其它所述像素重复排列单元中的一条所述直线重合,以及
    同一列中,对于两侧都排布有所述像素重复排列单元的任何一个所述像素重复排列单元,其中的每个所述像素单元中的所述第三子像素的未与所述第一子像素和所述第二子像素相对的像素边,与相邻的所述像素重复排列单元中的所述第三子像素的未与所述第一子像素和所述第二子像素相邻的像素边相对,以使得每个所述像素重复排列单元中的与所述行方向垂直且经过所述第三子像素的形心的直线,与相邻的所述像素重复排列单元中的与所述行方向垂直且经过所述第三子像素的形心的直线平行且彼此间隔。
PCT/CN2022/116010 2022-08-09 2022-08-31 像素单元、像素重复排列单元和显示面板 WO2024031757A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210952036.4A CN115241262A (zh) 2022-08-09 2022-08-09 像素单元、像素重复排列单元和显示面板
CN202210952036.4 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024031757A1 true WO2024031757A1 (zh) 2024-02-15

Family

ID=83679694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116010 WO2024031757A1 (zh) 2022-08-09 2022-08-31 像素单元、像素重复排列单元和显示面板

Country Status (2)

Country Link
CN (1) CN115241262A (zh)
WO (1) WO2024031757A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109427851A (zh) * 2017-08-31 2019-03-05 昆山国显光电有限公司 像素结构、oled显示屏以及蒸镀掩膜版
CN110133886A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 像素排列结构、显示基板和显示装置
CN110364558A (zh) * 2019-07-15 2019-10-22 云谷(固安)科技有限公司 像素排布结构及显示面板
CN111047998A (zh) * 2019-12-13 2020-04-21 云谷(固安)科技有限公司 像素结构和显示面板
CN214043670U (zh) * 2020-12-25 2021-08-24 京东方科技集团股份有限公司 像素排布结构、精密金属掩膜版组和显示装置
EP3944225A1 (en) * 2020-07-21 2022-01-26 Samsung Display Co., Ltd. Display device
CN216133865U (zh) * 2021-07-09 2022-03-25 南方科技大学 一种像素排列结构及显示面板
CN114628474A (zh) * 2022-03-09 2022-06-14 武汉天马微电子有限公司 像素排布结构、显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109427851A (zh) * 2017-08-31 2019-03-05 昆山国显光电有限公司 像素结构、oled显示屏以及蒸镀掩膜版
CN110133886A (zh) * 2018-02-09 2019-08-16 京东方科技集团股份有限公司 像素排列结构、显示基板和显示装置
CN110364558A (zh) * 2019-07-15 2019-10-22 云谷(固安)科技有限公司 像素排布结构及显示面板
CN111047998A (zh) * 2019-12-13 2020-04-21 云谷(固安)科技有限公司 像素结构和显示面板
EP3944225A1 (en) * 2020-07-21 2022-01-26 Samsung Display Co., Ltd. Display device
CN214043670U (zh) * 2020-12-25 2021-08-24 京东方科技集团股份有限公司 像素排布结构、精密金属掩膜版组和显示装置
CN216133865U (zh) * 2021-07-09 2022-03-25 南方科技大学 一种像素排列结构及显示面板
CN114628474A (zh) * 2022-03-09 2022-06-14 武汉天马微电子有限公司 像素排布结构、显示面板及显示装置

Also Published As

Publication number Publication date
CN115241262A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
US11800771B2 (en) Display substrate, fine metal mask set and display device
CN114994973B (zh) 显示基板和显示装置
JP6759396B2 (ja) ピクセル構造およびその表示方法、表示装置
EP3751611B1 (en) Pixel arrangement structure, display substrate, display device and mask plate group
JP5638780B2 (ja) 4色駆動液晶表示装置及びこれに使用する表示板
WO2020020337A1 (zh) 子像素排列结构、掩膜装置、显示面板及装置
US11563060B2 (en) Pixel arrangement structure, display substrate, and display device
CN104465714A (zh) 一种像素结构及其显示方法、显示装置
WO2017206548A1 (zh) 像素阵列、显示基板和显示装置
CN113471271B (zh) 一种显示面板和显示装置
CN113238402B (zh) 显示面板和显示装置
US11574960B2 (en) Pixel arrangement structure, display substrate, display device and mask plate group
CN112968040A (zh) 像素阵列、显示装置及高精度金属掩膜板
CN110634934A (zh) 一种显示面板及显示装置
TWI653490B (zh) 顯示器
CN113488521A (zh) 一种显示面板、显示装置、蒸镀装置
WO2015056791A1 (ja) 表示装置及びカラーフィルター
WO2024031757A1 (zh) 像素单元、像素重复排列单元和显示面板
WO2019148678A1 (zh) 有机发光二极管像素排列结构及显示面板
CN115188789A (zh) 显示像素排布结构及显示面板
CN111755495A (zh) 像素排布结构、高精度金属掩膜板及显示面板
CN112331695A (zh) 像素排列结构及显示面板
WO2022193121A1 (zh) 阵列基板和显示装置
US12035599B2 (en) Display substrate and display device
KR20160110836A (ko) 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954704

Country of ref document: EP

Kind code of ref document: A1