WO2024031541A1 - 多功能氧化石墨烯的制备方法和pvcpvdf复合膜的制备方法 - Google Patents

多功能氧化石墨烯的制备方法和pvcpvdf复合膜的制备方法 Download PDF

Info

Publication number
WO2024031541A1
WO2024031541A1 PCT/CN2022/111798 CN2022111798W WO2024031541A1 WO 2024031541 A1 WO2024031541 A1 WO 2024031541A1 CN 2022111798 W CN2022111798 W CN 2022111798W WO 2024031541 A1 WO2024031541 A1 WO 2024031541A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
pvcpvdf
add
thf
nbe
Prior art date
Application number
PCT/CN2022/111798
Other languages
English (en)
French (fr)
Inventor
石建军
张爱斌
刘铭
胡海清
陈正宇
乔萍
Original Assignee
江苏卫星新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏卫星新材料股份有限公司 filed Critical 江苏卫星新材料股份有限公司
Priority to PCT/CN2022/111798 priority Critical patent/WO2024031541A1/zh
Publication of WO2024031541A1 publication Critical patent/WO2024031541A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide

Definitions

  • the invention belongs to the field of polymer materials, and in particular relates to a preparation method of multifunctional graphene oxide and a preparation method of PVCPVDF composite membrane.
  • Graphene oxide as the precursor and derivative of graphene, contains a large number of oxygen-containing functional groups on its surface and edges, such as carboxyl, carbonyl, hydroxyl and epoxy groups, which provide reaction sites for modification.
  • Oxidiated ring-opening metathesis polymerization SI-ROMP
  • SI-ROMP surface-initiated ring-opening metathesis polymerization
  • SI-ROMP Compared with solution phase reactions, SI-ROMP has unique characteristics in terms of experimental processes, polymer growth kinetics, and side reactions.
  • Graphene oxide membranes show excellent separation properties in fields such as oil-water separation, sewage purification, seawater desalination, gas separation, and heavy metal ion separation.
  • the application and research on modifying graphene oxide using the SI-ROMP method are still rare.
  • membrane separation technologies are used for desalination and wastewater treatment. Different types of membranes are used with different morphologies, structures and physicochemical properties.
  • MD osmotic distillation
  • OMD osmotic membrane distillation
  • OMD osmotic membrane distillation
  • the efficiency of these technologies is affected by the fouling phenomenon, which refers to the accumulation of organic/inorganic sediments (including biological matter) on the membrane surface and/or within the membrane pores.
  • the pollution is different from the pollution observed in electrodialysis and pressure-driven membrane processes such as electrodialysis, membrane capacitive deionization, reverse osmosis, nanofiltration, ultrafiltration, microfiltration, etc.
  • electrodialysis membrane capacitive deionization
  • reverse osmosis nanofiltration
  • ultrafiltration ultrafiltration
  • microfiltration microfiltration
  • the pollution of MD, OD and OMD increases. This reduces the risk of membrane pores, thereby reducing the quantity and quality of produced water or the concentration efficiency of the process.
  • the purpose of the embodiments of the present invention is to provide a method for preparing multifunctional graphene oxide and a method for preparing a PVCPVDF composite membrane, aiming to solve the problems existing in the prior art identified in the background art.
  • a method for preparing multifunctional graphene oxide includes the following steps:
  • SI-ROMP was used to grow functional polynorbornene on the surface of graphene oxide, and catalyst-modified graphene oxide (GO-[Ru]) was prepared.
  • GO-[Ru] catalyst-modified graphene oxide
  • 20 mg GO-NBE was dispersed in 5 mL anhydrous THF by ultrasound.
  • 4 mg of Grubbs 2 catalyst was dissolved in 1 ml of anhydrous THF and added to the reaction system, and stirred at room temperature for 25 min. Then, the reaction mixture was centrifuged to separate GO-[Ru], and the resulting solid was resuspended in anhydrous tetrahydrofuran. The obtained GO-[ Ru] was immediately put into use.
  • GO-pNBFn was synthesized using the ROMP method.
  • the prepared GO-[Ru] was dispersed in 5 mL of anhydrous THF.
  • graphene oxide-boron nitride-boron nitride-polyethylene glycol (GO-pNBFn-pNb-PEG) was copolymerized.
  • Nb-PEG monomer was added to the prepared GO-pNBFn, and the suspension was stirred again. After 90 minutes, the solid product was separated by repeated centrifugation, and the product was washed with tetrahydrofuran to remove residual monomers and free polymers or copolymers, and then vacuum dried at 30°C for 12 hours to obtain the modified graphene oxide product.
  • a preparation method of PVCPVDF composite membrane including the following steps:
  • the preparation method of multifunctional graphene oxide and the preparation method of PVCPVDF composite membrane provided by the embodiments of the present invention have the following beneficial effects: using graphene oxide as a substrate, surface-initiated ring-opening metathesis polymerization is used on the surface of graphene oxide. , separately polymerize and copolymerize fluorine-containing hydrophobic monomers and oligoethylene glycol antibacterial monomers to obtain the final finished material, and apply it on the PVCPVDF composite membrane as a distillation membrane, which improves its use efficiency and service life.
  • Figure 1 is an SEM image of GO and GO modified according to the embodiment of the present invention
  • Figure 2 is a SEM picture 1 of the modified film provided in the embodiment of the present invention.
  • Figure 3 is a thermogravimetric test chart of the modified PVCPVDF film provided by the embodiment of the present invention.
  • Figure 4 is an infrared spectrum of the modified PVCPVDF film provided by the embodiment of the present invention.
  • Figure 5 is the Raman spectrum of the composite film provided by the embodiment of the present invention.
  • Figure 6 is a TG spectrum of the composite film provided by the embodiment of the present invention.
  • Figure 7 is the second SEM picture of the modified film provided by the embodiment of the present invention.
  • the Grubbs catalyst is fixed on the surface of graphene oxide to prepare polymer-grafted graphene oxide, and the ROMP of norbornene is realized on the active site.
  • the resulting interlayer structure hybrid material of polymer-modified graphene oxide improves the solubility of organic solvents.
  • the functional design of norbornene monomers is widely used to construct various polymers, which needs further study in SI-ROMP. The results show that the copolymer simultaneously has the characteristics of a polymer prepared from two monomers, while the vertical direction of the surface is consistent with the latter monomer, which covers the former monomer.
  • This PVCPVDF composite membrane contains modified GO.
  • the effect of GO itself can make the material porous.
  • fluorine-containing hydrophobic monomers and oligoethylene glycol antibacterial monomers through SI-ROMP, which can effectively Self-cleaning and resistance to non-specific proteins further advance the use of membranes.
  • the purpose of the present invention is to provide a method for preparing multifunctional graphene oxide and a method for preparing PVCPVDF composite membrane. While expanding the graphene functional modification method, the purpose of the present invention is to synthesize a high adsorption capacity of hexavalent chromium ions. adsorbent.
  • Grubbs catalyst with clear structure and high functional group tolerance and norbornene with large ring tension were selected as the catalyst and monomer respectively for the polymerization reaction.
  • the polymerization behavior of ROMP was initially explored on the GO surface and studied through certain characterization methods.
  • the modified GO was applied to PVCPVDF and fluorine-containing hydrophobic monomers and oligoethylene glycol antibacterial monomers were introduced through SI-ROMP to expand the presence of GO and GO composite PVCPVDF materials in the membrane.
  • the application of distillation, permeation distillation and permeation membrane distillation also provides a more efficient platform for the adsorption of hexavalent chromium.
  • a method for preparing multifunctional graphene oxide including the following steps:
  • SI-ROMP was used to grow functional polynorbornene on the surface of graphene oxide, and catalyst-modified graphene oxide (GO-[Ru]) was prepared.
  • GO-[Ru] catalyst-modified graphene oxide
  • 20 mg GO-NBE was dispersed in 5 mL without In water THF
  • 4 mg of Grubbs 2 catalyst was dissolved in 1 ml of anhydrous THF and added to the reaction system. Stirred at room temperature for 25 min. Then, the reaction mixture was centrifuged to separate GO-[Ru], and the resulting solid was resuspended in anhydrous tetrahydrofuran. The obtained GO -[Ru] was put into use immediately.
  • GO-pNBFn was synthesized using the ROMP method.
  • the prepared GO-[Ru] was dispersed in 5 mL of anhydrous THF.
  • graphene oxide-boron nitride-boron nitride-polyethylene glycol (GO-pNBFn-pNb-PEG) was copolymerized.
  • Nb-PEG monomer was added to the prepared GO-pNBFn, and the suspension was stirred again. For 90 minutes, the solid product was separated by repeated centrifugation, and the product was washed with tetrahydrofuran to remove residual monomers and free polymers or copolymers, and vacuum dried at 30°C for 12 hours to obtain a modified graphene oxide product.
  • Graphene oxide as the precursor and derivative of graphene, contains a large number of oxygen-containing functional groups on its surface and edges, such as carboxyl groups, carbonyl groups, hydroxyl groups and epoxy groups, which provide reaction sites for modification.
  • graphene oxide has many excellent effects but is easily contaminated by bacteria during use.
  • copolymerizing fluorine-containing hydrophobic monomers and oligoethylene glycol antibacterial monomers on the surface of the material By copolymerizing fluorine-containing hydrophobic monomers and oligoethylene glycol antibacterial monomers on the surface of the material.
  • distillation membranes are porous and have super-hydrophobic and antibacterial properties, which can greatly increase efficiency and lifespan during use.
  • the ring-opening metathesis polymerization method based on surface initiation can effectively and controllably introduce new functional monomers on the surface of the material while retaining its original function.
  • a preparation method of PVCPVDF composite membrane includes the following steps:
  • Figure 1 (a) GO, (b) GO grafted with fluorine-containing monomer, (c) GO grafted with oligoethylene glycol monomer, (d) GO copolymerized with two monomers.
  • the present invention Compared with existing materials and existing preparation methods, the present invention has the following advantages:
  • Graphene oxide is a functionalized form of graphene oxide. Due to its unique physical and chemical properties, it is suitable for many industrial applications and has many advantages. The preparation of this material retains its own heterogeneity and introduces Functional monomers are added to enhance the performance and service life of GO itself.
  • DMF not only has a good dissolving effect on PVCPVDF, but can also disperse GO well. It is the best solvent for scraping films.
  • THF tetrahydrofuran
  • Surface-initiated ring-opening metathesis polymerization is a method of grafting polymers onto specific surfaces.
  • the so-called surface refers to the contact surface between the material itself and the outside world.
  • the surface of materials plays a very important role in the field of materials science. The surface properties of materials directly affect the performance and practicality of the materials. At present, as more and more researchers conduct more in-depth studies on material surfaces, material surface science has also developed rapidly.
  • the material after copolymerizing NBFn-pNb-PEG is PVCPVDF/GO-NBE-NBFn-pNb-PEG.
  • white spherical substances there are also some flaky substances on the surface of the material.
  • the grafting of the material is not very uniform, probably because not all the reaction sites are exposed after the incorporation of GO-NBE.
  • the two monomers have been copolymerized on the surface of the material.
  • the PVCPVDF composite membrane begins to decompose at 310°C.
  • the decomposition temperature of the composite membrane material increases from 310°C to 350°C.
  • the weight loss increases.
  • the decomposition heat of the composite membrane material rises to 380°C, 400°C to 410°C, it can be seen that the decomposition heat of the material after composite modification has increased significantly, which can also indicate that the surface modification of the material has been successful and the thermal stability of the composite membrane material has increased.
  • Figure 5 (a) PVCPVDF composite film, (b) PVCPVDF/GO-NBE, (c) composite film grafted with fluorine-containing monomer, (d) grafted oligoethylene glycol composite film, (e) copolymerization Composite film modified by two monomers
  • FT-IR spectroscopy is a sensitive and convenient method to analyze the synthesis process of composite functional materials based on the absorption of infrared radiation (Figure 5).
  • the composite film mixed with GO-NBE has obvious changes.
  • Figure b the C-H stretching of norborneol appears at 2920 cm-1.
  • There is a stronger ester C O stretching signal at 1720 cm-1, indicating that a modified norborneol structure (GO-NBE) is incorporated into the material.
  • the CF2 stretch in the fluorocarbon region has a strong absorption peak at 1100-1400cm-1. It may be that the original sharp peak becomes a round peak due to the signal coverage of the fluorine-containing peak. Based on the FIIR results, it was confirmed that the pNBFn film was grafted on the surface of the composite film/GO-NBE. In Figure d, when NB-PEG is grafted alone, a slight -OH peak appears at 3500 cm-1, which is caused by -OH in the oligopolyethylene glycol structure, but may not be due to the grafting rate. It is very high so the peak is not very obvious.
  • Figure 6 TG spectrum of composite films, (a) PVCPVDF composite film, (b) doped GO-NBE composite film, (c) composite film grafted with fluorine-containing monomer, (d) grafted oligoethylene glycol Composite film of alcohol, (e) Composite film of copolymerized NBFn and NB-PEG
  • the PVCPVDF composite membrane begins to decompose at 310°C.
  • the decomposition temperature of the composite membrane material increases from 310°C to 350°C.
  • the weight loss increases.
  • the decomposition heat of the composite membrane material rises to 380°C, 400°C to 410°C, it can be seen that the decomposition heat of the material after composite modification has increased significantly, which can also indicate that the surface modification of the material has been successful and the thermal stability of the composite membrane material has increased.
  • the material after copolymerizing NBFn-pNb-PEG is PVCPVDF/GO-NBE-NBFn-pNb-PEG.
  • white spherical substances there are also some flaky substances on the surface of the material.
  • the grafting of the material is not very uniform, probably because not all the reaction sites are exposed after the incorporation of GO-NBE.
  • the two monomers have been copolymerized on the surface of the material.
  • GO with a norbornene structure can be obtained by reacting 20 mg GO with 5-norbornene-2-acyl chloride using triethylamine as the stabilizer in an ice-water bath for 48 hours. Add 4 mg of Grubbs second-generation catalyst to the GO connected with the norbornene structure under nitrogen protection. After reacting for 40 minutes, wash with distilled water and THF and centrifuge to obtain the GO-[RU] structure. Under nitrogen protection, add 0.2 After C10F21 reacts for a period of time, add 0.05 oligoethylene glycol antibacterial monomer 2000 for reaction. After the reaction, wash with distilled water and THF and centrifuge.
  • GO with a norbornene structure can be obtained by reacting 20 mg GO with 5-norbornene-2-acyl chloride using triethylamine as the stabilizer in an ice-water bath for 48 hours. Add 4 mg of Grubbs second-generation catalyst to the GO connected with the norbornene structure under nitrogen protection. After reacting for 40 minutes, wash with distilled water and THF and centrifuge to obtain the GO-[RU] structure. Under nitrogen protection, add 0.2 After C10F21 reacts for a period of time, add 0.05 oligoethylene glycol antibacterial monomer 550 for reaction. After the reaction, wash with distilled water and THF and centrifuge.
  • Dissolve MF add the dissolved PVCPVDF solution to the weighed GO connected with the intermediate, and disperse by ultrasonic for 1 hour. Under the protection of N2 gas, add 2mg Grubbs second-generation catalyst. After 40 minutes of reaction, add 0.1g C10F21 and react for a period of time. , then add 0.05 oligoethylene glycol antibacterial monomer 2000 for reaction, and use methylene chloride for washing after the reaction.
  • Dissolve MF add the dissolved PVCPVDF solution to the weighed GO connected with the intermediate, and disperse by ultrasonic for 1 hour. Under the protection of N2 gas, add 2mg Grubbs second-generation catalyst. After 40 minutes of reaction, add 0.1g C10F21 and react for a period of time. , then add 0.1 oligoethylene glycol antibacterial monomer 2000 for reaction, and use methylene chloride for washing after the reaction.
  • Dissolve MF add the dissolved PVCPVDF solution to the weighed GO connected with the intermediate, and disperse it by ultrasonic for 1 hour. Under the protection of N2 gas, add 2 mg Grubbs second-generation catalyst. After 40 minutes of reaction, add 0.2 C10F21 and react for a period of time. Then add 0.05 oligoethylene glycol antibacterial monomer 2000 for reaction, and use methylene chloride for washing after the reaction.
  • Dissolve MF add the dissolved PVCPVDF solution to the weighed GO connected with the intermediate, and disperse by ultrasonic for 1 hour. Under the protection of N2 gas, add 2mg Grubbs second-generation catalyst. After 40 minutes of reaction, add 0.1g C10F21 and react for a period of time. , then add 0.05 oligoethylene glycol antibacterial monomer 550 for reaction, and use methylene chloride for washing after the reaction.
  • Dissolve MF add the dissolved PVCPVDF solution to the weighed GO connected with the intermediate, and disperse by ultrasonic for 1 hour. Under the protection of N2 gas, add 2mg Grubbs second-generation catalyst. After 40 minutes of reaction, add 0.1g C10F21 and react for a period of time. , then add 0.1 oligoethylene glycol antibacterial monomer 550 for reaction, and use methylene chloride for washing after the reaction.
  • Dissolve MF add the dissolved PVCPVDF solution to the weighed GO connected with the intermediate, and disperse it by ultrasonic for 1 hour. Under the protection of N2 gas, add 2 mg Grubbs second-generation catalyst. After 40 minutes of reaction, add 0.2 C10F21 and react for a period of time. Then add 0.05 oligoethylene glycol antibacterial monomer 550 for reaction, and use methylene chloride for washing after the reaction.
  • the above embodiments of the present invention provide a method for preparing multifunctional graphene oxide and a method for preparing a PVCPVDF composite membrane, which are modified by graphene oxide, a graphene derivative.
  • Graphene is a two-dimensional planar material composed of sp2 hybridized carbon atoms. It is widely used in the field of materials due to its superior properties. During the application of graphene-based materials in the field of sewage purification, surface wetting and contamination issues are key issues hindering their industrial application.
  • the surface of graphene oxide (GO) contains a large number of oxygen functional groups, which provides a reaction platform for its functional modification.
  • SI-ROMP Active and controllable surface-initiated ring-opening metathesis polymerization

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明适用于高分子材料领域,提供了一种多功能氧化石墨烯的制备方法和PVCPVDF复合膜的制备方法,由氧化石墨烯作为基底利用表面引发的开环易位聚合方式在氧化石墨烯表面,分别聚合含氟疏水单体和低聚乙二醇抗菌单体并进行共聚,以此来获得最后的成品材料,并且在此之上应用于PVCPVDF复合膜为蒸馏膜,提高了其使用效率及使用寿命。

Description

多功能氧化石墨烯的制备方法和PVCPVDF复合膜的制备方法 技术领域
本发明属于高分子材料领域,尤其涉及一种多功能氧化石墨烯的制备方法和PVCPVDF复合膜的制备方法。
背景技术
氧化石墨烯(GO)作为石墨烯的前驱体和衍生物,其表面和边缘含有大量含氧官能团,如羧基、羰基、羟基和环氧基团,为改性提供了反应位点。表面引发开环易位聚合(SI-ROMP)作为ROMP的一种变体,近年来已成为一种强大而广泛应用于基材表面功能高分子材料合成的聚合方法。
与溶液相反应相比,SI-ROMP在实验过程、聚合物生长动力学、副反应等方面都有其独特的特点。氧化石墨烯膜在油水分离、污水净化、海水淡化、气体分离、重金属离子分离等领域表现出优异的分离特性。然而,用SI-ROMP法改性氧化石墨烯的应用和研究尚不多见。
为了解决世界范围内的水资源短缺问题,各种膜分离技术被用于海水淡化和废水处理。采用不同形态、结构和物理化学特性的不同类型的膜。膜蒸馏(MD)、渗透蒸馏(OD)和渗透膜蒸馏(OMD)是三种常用的膜技术,它们利用多孔膜和疏水膜生产蒸馏水和/或浓缩废水,回收和循环利用有价化合物。然而,这些技术的效率受到污垢现象的影响,这是指有机/无机沉积物(包括生物物质)在膜表面及/或膜孔内积聚。污染不同于电渗析、膜电容去离子化、反渗透、纳滤、超滤、微滤等电渗析和压力驱动膜过程中观察到的污染,除了堵塞孔道以外,MD、 OD和 OMD的污染增加了膜孔的风险,从而降低了采出水的数量和质量或过程的浓缩效率。
技术解决方案
本发明实施例的目的在于提供一种多功能氧化石墨烯的制备方法和PVCPVDF复合膜的制备方法,旨在解决背景技术中确定的现有技术存在的问题。
本发明实施例是这样实现的,一种多功能性氧化石墨烯的制备方法,包括如下步骤:
将85mg氧化石墨烯放入100mL圆底烧瓶中,加入20ml新鲜蒸馏的THF,超声分散1h,将0.83ml三乙胺搅拌加入到GO/THF溶液中,将5-降冰片烯-2-酰氯溶于10mL THF中,在冰水浴条件下缓缓滴入氧化石墨烯/THF溶液中,反应在室温下进行48h,反复离心后,用蒸馏水和四氢呋喃洗涤3次,在30℃真空干燥12h后得到GO-NBE;
采用SI-ROMP在氧化石墨烯表面生长功能性多降冰片烯,制备了催化剂改性氧化石墨烯(GO-[Ru]),在N2保护下,超声将20mg GO-NBE分散在5mL无水THF中,将4mg Grubbs 2催化剂使用1ml无水THF溶解并加入反应体系,室温搅拌25min,随后,将反应混合物离心分离出GO-[Ru],用无水四氢呋喃重悬所得固体,获得的GO-[Ru]立即投入使用,以NBFn为单体,采用ROMP法合成了GO-pNBFn,将制备的GO-[Ru]分散在5mL无水THF 中,超声处理15min,氮气气泡3min,注入溶解在无水THF中的NBFn单体溶液,聚合反应在室温45min下进行,以氧化石墨烯-氮化硼为基料,以Nb-PEG为单体,经共聚合成了氧化石墨烯-氮化硼-氮化硼-聚乙二醇(GO-pNBFn-pNb-PEG),在制备的GO-pNBFn中加入Nb-PEG单体,将悬浮液再搅拌90分钟,固体产物的分离经过反复离心处理,并用四氢呋喃清洗产物以去除残留的单体和自由聚合物或共聚物,在30℃真空干燥12h得到改性氧化石墨烯产品
一种PVCPVDF复合膜的制备方法,包括以下步骤:
将15%PVC与85%PVDF以DMF为溶剂12%的比例加入1%的GO-NBE,再加入不同比例的低聚乙二醇与含氟疏水单体进行聚合刮膜,得到氧化石墨烯复合PVCPVDF复合膜,其中所述GO-NBE为采用如前述步骤中所制得的降冰片烯修饰的GO。
有益效果
本发明实施例提供的一种多功能氧化石墨烯的制备方法、PVCPVDF复合膜的制备方法,具有以下有益效果:由氧化石墨烯作为基底利用表面引发的开环易位聚合方式在氧化石墨烯表面,分别聚合含氟疏水单体和低聚乙二醇抗菌单体并进行共聚,以此来获得最后的成品材料,并且在此之上应用于PVCPVDF复合膜为蒸馏膜,提高了其使用效率及使用寿命。
附图说明
图1为本发明实施例提供的GO及GO改性后的SEM图;
图2为本发明实施例提供改性后的薄膜SEM图一;
图3为本发明实施例提供的改性PVCPVDF薄膜的热重测试图;
图4为本发明实施例提供的改性PVCPVDF薄膜的红外光谱图;
图5为本发明实施例提供的复合薄膜的Raman图谱;
图6为本发明实施例提供的复合薄膜的TG图谱;
图7为本发明实施例提供的改性后的薄膜SEM图二。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述。
本发明实施例将Grubbs催化剂固定在氧化石墨烯表面制备聚合物接枝氧化石墨烯,在活性位点上实现降冰片烯的ROMP。所得的聚合物修饰氧化石墨烯的嵌层结构杂化材料提高了有机溶剂的溶解度。降冰片烯单体的功能设计被广泛应用于构建各种聚合物,这在SI-ROMP中还需要进一步研究。结果表明共聚物同时具有由两种单体制备的聚合物的特征,而表面垂直方向与后一单体一致,后一单体覆盖前一单体。
本PVCPVDF复合膜因加入了改性GO,GO本身的作用可致材料多孔,并且在此之上,我们通过SI-ROMP引入了含氟疏水单体以及低聚乙二醇抗菌单体,可以有效地进行自清洁与非特异性蛋白的抵抗,对膜的使用更进一步。
如图1所示,本发明的目的在于提供多功能氧化石墨烯的制备方法、PVCPVDF复合膜的制备方法,在扩充石墨烯功能化修饰方法的同时,合成一种高吸附量的六价铬离子吸附剂。首先选用结构明确,功能基团耐受性高的Grubbs催化剂和环张力大的降冰片烯分别作为聚合反应的催化剂和单体,在GO表面初步探索ROMP的聚合行为,并通过一定的表征手段研究制备的GO及石墨烯基材料的结构、组成、形貌和溶解性;通过改变聚合条件研究GO表面ROMP聚合物接枝量的变化规律和特点。ROMP聚合物由于主链结构中带有C=C,将对主链的C=C进行环氧化修饰制备新型聚合物,以充分体现ROMP聚合方法独特的优势。随后,在GO表面ROMP聚合的工作基础上,将改性的GO应用于PVCPVDF通过SI-ROMP引入含氟疏水单体以及低聚乙二醇抗菌单体,以扩大GO及GO复合PVCPVDF材料在膜蒸馏、渗透蒸馏以及渗透膜蒸馏上的应用,也为六价铬例子的吸附提供了更有效率的平台。
一种多功能性氧化石墨烯的制备方法,包括以下步骤:
S01:将85mg氧化石墨烯放入100mL圆底烧瓶中,加入20ml新鲜蒸馏的THF,超声分散1h,将0.83ml三乙胺搅拌加入到GO/THF溶液中,将5-降冰片烯-2-酰氯溶于10mL THF中,在冰水浴条件下缓缓滴入氧化石墨烯/THF溶液中,反应在室温下进行48h,反复离心后,用蒸馏水和四氢呋喃洗涤3次,在30℃真空干燥12h后得到GO-NBE;
S02:采用SI-ROMP在氧化石墨烯表面生长功能性多降冰片烯,制备了催化剂改性氧化石墨烯(GO-[Ru]),在N2保护下,超声将20mg GO-NBE分散在5mL无水THF中,将4mg Grubbs 2催化剂使用1ml无水THF溶解并加入反应体系,室温搅拌25min,随后,将反应混合物离心分离出GO-[Ru],用无水四氢呋喃重悬所得固体,获得的GO-[Ru]立即投入使用,以NBFn为单体,采用ROMP法合成了GO-pNBFn,将制备的GO-[Ru]分散在5mL无水THF 中,超声处理15min,氮气气泡3min,注入溶解在无水THF中的NBFn单体溶液,聚合反应在室温45min下进行,以氧化石墨烯-氮化硼为基料,以Nb-PEG为单体,经共聚合成了氧化石墨烯-氮化硼-氮化硼-聚乙二醇(GO-pNBFn-pNb-PEG),在制备的GO-pNBFn中加入Nb-PEG单体,将悬浮液再搅拌90分钟,固体产物的分离经过反复离心处理,并用四氢呋喃清洗产物以去除残留的单体和自由聚合物或共聚物,在30℃真空干燥12h得到改性氧化石墨烯产品。
1)、氧化石墨烯(GO)作为石墨烯的前驱体和衍生物,其表面和边缘含有大量含氧官能团,如羧基、羰基、羟基和环氧基团,为改性提供了反应位点。
2)、氧化石墨烯作为新型材料,具有很多优异的效果但是在使用过程中极易染菌,通过在材料表面共聚了含氟疏水单体及低聚乙二醇抗菌单体。
3)、蒸馏膜作为海水淡化等应用的最重要部分,具有多孔,且具备超疏水和抗菌性能,可以在使用中大大增加了使用效率及寿命。
4)、基于表面引发的开环易位聚合方法作为一种制备功能性高分子材料的有效手段,可以有效且可控的在材料表面引入新的功能单体且保留其原本的功能。
另一方面,一种PVCPVDF复合膜的制备方法,包括以下步骤:
将15%PVC与85%PVDF以DMF为溶剂12%的比例加入1%的GO-NBE,再加入不同比例的低聚乙二醇与含氟疏水单体进行聚合刮膜,得到氧化石墨烯复合PVCPVDF复合膜,其中所述GO-NBE为采用如前述实施例所述的制备方法S01中所制得的降冰片烯修饰的GO。
图1中:(a)GO,(b)接枝含氟单体的GO(c)接枝低聚乙二醇单体的GO,(d)共聚两种单体的GO。
利用SEM对GO、GO-pNBFn和GO-pNBFn-pNb-PEG的形貌进行了研究(图1)。由于含氧官能团之间的相互作用,观察到了纹理结构,在图像中也可以发现GO的层状结构。在功能化聚合物被接枝到GO表面后,pNBFn和pNBFn-pNb-PEG覆盖在GO基底上,然而,由于催化剂的活性位点不均匀以及聚合物的接枝率较低,导致覆盖不均匀,在某些区域的覆盖密度较低。
本发明与现有材料和现有制备方法相比,具有如下优点:
1)、氧化石墨烯(GO)是氧化石墨烯的官能化形式,由于其独特的物理和化学性质而适合许多工业应用,具有诸多优点,本材料的制备保留了其自身的有异性,并且引入了功能性单体,加强了GO本身使用性能及使用寿命。
2)、取定量的PVCPVDF使用DMF作为溶剂进行溶解,DMF不仅对PVCPVDF有很好的溶解效果,也可以很好的分散GO,是作为刮膜的最佳溶剂。
3)、由于PVCPVDF与GO皆不会溶解于四氢呋喃(THF)可以选用THF作为开环易位聚合溶剂,且它对于我们所选用的GRUBBS二代催化剂活性极好,可以极大促进材料的表面聚合。
4)、本材料制备中由于引入了GO材料较单纯的PVCPVDF膜材料的孔洞更丰富,并且获得了更优异的机械性能。
5)、表面引发的开环易位聚合是一种将聚合物接枝到特定表面上的方法。所谓面是指材料本身与外界的接触面。 材料的表面在材料中材料科学领域占有非常重要的地位。 材料的表面性能直接影响材料的性能和实用性。 目前,随着越来越多的研究人员对材料表面进行更深入的研究,材料表面科学因此也得到了快速发展
图2中:(a)掺杂GO的PVCPVDF复合薄膜,(b)接枝低聚乙二醇单体的复合薄膜(c)接枝含氟单体的复合薄膜,(d)共聚两种单体的复合薄膜
由图2可见,掺有GO-NBE材料后的复合薄膜PVCPVDF/GO-NBE薄膜表面可看出GO以球状物体掺杂在薄膜中间,可以看出加了GO-NBE后材料的孔洞更丰富(看不出,孔隙率的表征才能这样说),这也是因为GO的掺入使得材料具有多孔的性能。在接枝了NBFn后材料表面出现多个球体物质,由此可证明NBFn已经接枝在材料表面,共聚了NBFn-pNb-PEG后的材料PVCPVDF/GO-NBE-NBFn-pNb-PEG可看出材料表面除了白色球状物质还有些许片状的物质,由图可看,材料的接枝并没有非常均匀,可能是因为GO-NBE掺入后反应位点并未全部露出。但还是可以看出两种单体已经共聚在材料表面。
如图3 :(a)PVCPVDF复合膜,(b)掺杂GO-NBE复合薄膜,(c)接枝含氟单体的复合薄膜,(d)接枝低聚乙二醇的复合薄膜,(e)共聚NBFn与NB-PEG的复合薄膜
如图3所示,PVCPVDF未见拉曼吸收峰,掺有GO-NBE后所有材料显示GO的结构在G波段(1598 cm-1)和D波段(1352 cm-1)分别表现出两个特殊的峰值。接枝了含氟单体、低聚乙二醇单体与共聚了两种单体后可以看出G段的吸收峰变小并略微红移,这是由于接枝了单体后材料表面被覆盖,GO作为位点出现了更多的缺陷所以会发生红移并且D带与G带的峰面积变小。D带与G带的强度比(ID/IG)被用来定义石墨烯缺陷。计算了PVCPVDF/GO-NBEPVCPVDF/GO-NBE-pNBFn、PVCPVDF/GO- NBE--pNb-PEG和PVCPVDF/GO-NBE-NBFn-pNb-PEG的ID/IG值,结果分别为0.90、0.95、0.95和1.01。这些数值证实了在复合膜材料引入功能化的pNBFn和pNb-PEG增加了材料的无序性,并提供了共聚物与复合薄膜实现共价偶联的证据。
图4中:(a)PVCPVDF复合膜,(b)掺杂GO-NBE复合薄膜,(c)接枝含氟单体的复合薄膜,(d)接枝低聚乙二醇的复合薄膜,(e)共聚NBFn与NB-PEG的复合薄膜;
由图4可见,PVCPVDF复合膜在310℃开始分解,复合了GO-NBE后复合膜材料的分解温度由310℃升至350℃重量损失增加,接枝单体后复合膜材料的分解热升至380℃、400℃于410℃,由此可见材料在复合改性后的分解热有显著升高,也可以侧面表明材料的表面改性成功,复合膜材料的热稳定性升高。
图5 中:(a)PVCPVDF复合膜,(b)PVCPVDF/GO-NBE,(c)接枝含氟单体的复合薄膜,(d)接枝低聚乙二醇复合薄膜,(e)共聚了两种单体改性后的复合薄膜
     FT-IR光谱法作为一种敏感而便捷的方法,根据对红外辐射的吸收来分析复合功能材料的合成过程(图5)。掺有GO-NBE的复合薄膜有明显的变化,图b中降冰片的C-H拉伸出现在2920 cm-1。而在1720 cm-1处有一个更强的酯类C=O拉伸的信号,表明在材料中掺入了改性了降冰片结构(GO-NBE)。进行了一步聚合接枝NBFn后,图c可见在976 cm-1处出现了pNBFn主链上的反式-C=C的小峰。在氟碳区的CF2拉伸在1100-1400cm-1处有强烈的吸收峰。可能因为含氟峰信号覆盖所以原本的尖峰变为圆峰。基于FIIR的结果,证实了在复合薄膜/GO-NBE表面接枝了pNBFn薄膜。在图d单独接枝了NB-PEG时,在3500 cm-1处出现了微小的-OH峰,这是由于低聚乙二醇结构中的-OH引起的,但是可能由于接枝率并没有很高所以峰并没有很明显。当共聚两种单体在复合薄膜表面时,由图e可以看到跟共聚前的图相比1100-1300 cm-1处依然有较大的变化这是由于NBFn中的C-F与低聚乙二醇中的C-O-C基的生长所导致的。
图6中:复合薄膜的TG图谱,(a)PVCPVDF复合膜,(b)掺杂GO-NBE复合薄膜,(c)接枝含氟单体的复合薄膜,(d)接枝低聚乙二醇的复合薄膜,(e)共聚NBFn与NB-PEG的复合薄膜
由图6可见,PVCPVDF复合膜在310℃开始分解,复合了GO-NBE后复合膜材料的分解温度由310℃升至350℃重量损失增加,接枝单体后复合膜材料的分解热升至380℃、400℃于410℃,由此可见材料在复合改性后的分解热有显著升高,也可以侧面表明材料的表面改性成功,复合膜材料的热稳定性升高。
图7中:(a)PVCPVDF/GO-NBE放大5000倍,(b)PVCPVDF/GO-NBE放大10000倍,(c)PVCPVDF/GO-NBE-pNBFn放大5000倍,(d)PVCPVDF/GO-NBE-pNBFn放大10000倍,(e)PVCPVDF/GO-NBE-NBFn-pNb-PEG放大5000倍,(f)PVCPVDF/GO-NBE-NBFn-pNb-PEG放大10000倍
由图7可见,掺有GO-NBE材料后的复合薄膜PVCPVDF/GO-NBE薄膜表面可看出GO以球状物体掺杂在薄膜中间,可以看出加了GO-NBE后材料的孔洞更丰富(看不出,孔隙率的表征才能这样说),这也是因为GO的掺入使得材料具有多孔的性能。在接枝了NBFn后材料表面出现多个球体物质,由此可证明NBFn已经接枝在材料表面,共聚了NBFn-pNb-PEG后的材料PVCPVDF/GO-NBE-NBFn-pNb-PEG可看出材料表面除了白色球状物质还有些许片状的物质,由图可看,材料的接枝并没有非常均匀,可能是因为GO-NBE掺入后反应位点并未全部露出。但还是可以看出两种单体已经共聚在材料表面。
以下结合较佳实施例,对本发明的实施方式进行详细说明:
实施例一
    将20mgGO与5-降冰片烯-2-酰氯,以三乙胺为稳定剂冰水浴条件下反应48小时,可获得接有降冰片烯结构的GO。将接有降冰片烯结构的GO,在氮气保护条件下,加入4mgGrubbs二代催化剂,反应40min后,用蒸馏水以及THF洗涤,离心可得到GO-[RU]结构,在氮气保护下,加入0.1g C10F21反应一段时间后,再加入0.05低聚乙二醇抗菌单体2000进行反应,反应结束后使用蒸馏水以及THF洗涤、离心。
实施例二
20mgGO片烯-2-酰氯,以三乙胺为稳定剂冰水浴条件下反应48小时,可获得接有降冰片烯结构的GO。将接有降冰片烯结构的GO,在氮气保护条件下,加入4mgGrubbs二代催化剂,反应40min后,用蒸馏水以及THF洗涤,离心可得到GO-[RU]结构,在氮气保护下,加入0.1g C10F21反应一段时间后,再加入0.1低聚乙二醇抗菌单体2000进行反应,反应结束后使用蒸馏水以及THF洗涤、离心。
实施例三
将20mgGO与5-降冰片烯-2-酰氯,以三乙胺为稳定剂冰水浴条件下反应48小时,可获得接有降冰片烯结构的GO。将接有降冰片烯结构的GO,在氮气保护条件下,加入4mgGrubbs二代催化剂,反应40min后,用蒸馏水以及THF洗涤,离心可得到GO-[RU]结构,在氮气保护下,加入0.2 C10F21反应一段时间后,再加入0.05低聚乙二醇抗菌单体2000进行反应,反应结束后使用蒸馏水以及THF洗涤、离心。
实施例四
将20mgGO与5-降冰片烯-2-酰氯,以三乙胺为稳定剂冰水浴条件下反应48小时,可获得接有降冰片烯结构的GO。将接有降冰片烯结构的GO,在氮气保护条件下,加入4mgGrubbs二代催化剂,反应40min后,用蒸馏水以及THF洗涤,离心可得到GO-[RU]结构,在氮气保护下,加入0.2 C10F21反应一段时间后,再加入0.05低聚乙二醇抗菌单体550进行反应,反应结束后使用蒸馏水以及THF洗涤、离心。
实施例五
    将20mgGO与5-降冰片烯-2-酰氯,以三乙胺为稳定剂冰水浴条件下反应48小时,可获得接有降冰片烯结构的GO。将接有降冰片烯结构的GO,在氮气保护条件下,加入4mgGrubbs二代催化剂,反应40min后,用蒸馏水以及THF洗涤,离心可得到GO-[RU]结构,在氮气保护下,加入0.1g C10F21反应一段时间后,再加入0.05低聚乙二醇抗菌单体500进行反应,反应结束后使用蒸馏水以及THF洗涤、离心。
实施例六
20mgGO片烯-2-酰氯,以三乙胺为稳定剂冰水浴条件下反应48小时,可获得接有降冰片烯结构的GO。将接有降冰片烯结构的GO,在氮气保护条件下,加入4mgGrubbs二代催化剂,反应40min后,用蒸馏水以及THF洗涤,离心可得到GO-[RU]结构,在氮气保护下,加入0.1g C10F21反应一段时间后,再加入0.1低聚乙二醇抗菌单体550进行反应,反应结束后使用蒸馏水以及THF洗涤、离心。
实施例七
    取0.12gPVC与0.24gPVDF加入20mg接枝中间体的GO,在60℃条件下用D
MF进行溶解,将溶解的PVCPVDF溶液加入称量的接有中间体的GO,超声1h进行分散,在N2气体保护下,加入2mg Grubbs二代催化剂,反应40min后,加入0.1g C10F21反应一段时间后,再加入0.05低聚乙二醇抗菌单体2000进行反应,反应过后使用二氯甲烷进行洗涤。
实施例八
    取0.12gPVC与0.24gPVDF加入20mg接枝中间体的GO,在60℃条件下用D
MF进行溶解,将溶解的PVCPVDF溶液加入称量的接有中间体的GO,超声1h进行分散,在N2气体保护下,加入2mg Grubbs二代催化剂,反应40min后,加入0.1g C10F21反应一段时间后,再加入0.1低聚乙二醇抗菌单体2000进行反应,反应过后使用二氯甲烷进行洗涤。
实施例九
    取0.12gPVC与0.24gPVDF加入20mg接枝中间体的GO,在60℃条件下用D
MF进行溶解,将溶解的PVCPVDF溶液加入称量的接有中间体的GO,超声1h进行分散,在N2气体保护下,加入2mg Grubbs二代催化剂,反应40min后,加入0.2 C10F21反应一段时间后,再加入0.05低聚乙二醇抗菌单体2000进行反应,反应过后使用二氯甲烷进行洗涤。
实施例十
    取0.12gPVC与0.24gPVDF加入20mg接枝中间体的GO,在60℃条件下用D
MF进行溶解,将溶解的PVCPVDF溶液加入称量的接有中间体的GO,超声1h进行分散,在N2气体保护下,加入2mg Grubbs二代催化剂,反应40min后,加入0.1g C10F21反应一段时间后,再加入0.05低聚乙二醇抗菌单体550进行反应,反应过后使用二氯甲烷进行洗涤。
实施例十一
    取0.12gPVC与0.24gPVDF加入20mg接枝中间体的GO,在60℃条件下用D
MF进行溶解,将溶解的PVCPVDF溶液加入称量的接有中间体的GO,超声1h进行分散,在N2气体保护下,加入2mg Grubbs二代催化剂,反应40min后,加入0.1g C10F21反应一段时间后,再加入0.1低聚乙二醇抗菌单体550进行反应,反应过后使用二氯甲烷进行洗涤。
实施例十二
    取0.12gPVC与0.24gPVDF加入20mg接枝中间体的GO,在60℃条件下用D
MF进行溶解,将溶解的PVCPVDF溶液加入称量的接有中间体的GO,超声1h进行分散,在N2气体保护下,加入2mg Grubbs二代催化剂,反应40min后,加入0.2 C10F21反应一段时间后,再加入0.05低聚乙二醇抗菌单体550进行反应,反应过后使用二氯甲烷进行洗涤。
本发明上述实施例中提供了一种多功能氧化石墨烯的制备方法和PVCPVDF复合膜的制备方法,采用石墨烯衍生物氧化石墨烯进行改性。石墨烯是sp2杂化碳原子组成的二维平面材料,凭借其优越的性能广泛应用于材料领域。石墨烯基材料在污水净化领域应用过程中,表面润湿和污染问题是阻碍其工业化应用的关键问题。氧化石墨烯(GO)表面含有大量氧功能基团,为其功能化修饰提供了反应平台。活性、可控的表面引发开环易位聚合(SI-ROMP)功能化修饰抗蛋白吸附性能的聚合物链,增强材料表面的疏水性能和抗菌能力,使材料表面呈现良好的自清洁和耐污染特性,从而最大限度避免表面润湿和污染问题。由于修饰后的氧化石墨烯(GO)/GO复合PVCPVDF薄膜疏水性和抗菌能力增强,同时吸附的后处理过程易于分离,为废水中重金属离子的吸附带来了契机,拓宽石墨烯的应用范围。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (2)

  1. 一种多功能性氧化石墨烯的制备方法,其特征在于,包括以下步骤:
    S01:将85mg氧化石墨烯放入100mL圆底烧瓶中,加入20ml新鲜蒸馏的THF,超声分散1h,将0.83ml三乙胺搅拌加入到GO/THF溶液中,将5-降冰片烯-2-酰氯溶于10mL THF中,在冰水浴条件下缓缓滴入氧化石墨烯/THF溶液中,反应在室温下进行48h,反复离心后,用蒸馏水和四氢呋喃洗涤3次,在30℃真空干燥12h后得到GO-NBE;
    S02:采用SI-ROMP在氧化石墨烯表面生长功能性多降冰片烯,制备了催化剂改性氧化石墨烯(GO-[Ru]),在N2保护下,超声将20mg GO-NBE分散在5mL无水THF中,将4mg Grubbs 2催化剂使用1ml无水THF溶解并加入反应体系,室温搅拌25min,随后,将反应混合物离心分离出GO-[Ru],用无水四氢呋喃重悬所得固体,获得的GO-[Ru]立即投入使用,以NBFn为单体,采用ROMP法合成了GO-pNBFn,将制备的GO-[Ru]分散在5mL无水THF 中,超声处理15min,氮气气泡3min,注入溶解在无水THF中的NBFn单体溶液,聚合反应在室温45min下进行,以氧化石墨烯-氮化硼为基料,以Nb-PEG为单体,经共聚合成了氧化石墨烯-氮化硼-氮化硼-聚乙二醇(GO-pNBFn-pNb-PEG),在制备的GO-pNBFn中加入Nb-PEG单体,将悬浮液再搅拌90分钟,固体产物的分离经过反复离心处理,并用四氢呋喃清洗产物以去除残留的单体和自由聚合物或共聚物,在30℃真空干燥12h得到改性氧化石墨烯产品。
  2. 一种PVCPVDF复合膜的制备方法,其特征在于,包括以下步骤:
    将15%PVC与85%PVDF以DMF为溶剂12%的比例加入1%的GO-NBE,再加入不同比例的低聚乙二醇与含氟疏水单体进行聚合刮膜,得到氧化石墨烯复合PVCPVDF复合膜,其中所述GO-NBE为采用如权利要求1所述的制备方法S01中所制得的降冰片烯修饰的GO。
PCT/CN2022/111798 2022-08-11 2022-08-11 多功能氧化石墨烯的制备方法和pvcpvdf复合膜的制备方法 WO2024031541A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111798 WO2024031541A1 (zh) 2022-08-11 2022-08-11 多功能氧化石墨烯的制备方法和pvcpvdf复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111798 WO2024031541A1 (zh) 2022-08-11 2022-08-11 多功能氧化石墨烯的制备方法和pvcpvdf复合膜的制备方法

Publications (1)

Publication Number Publication Date
WO2024031541A1 true WO2024031541A1 (zh) 2024-02-15

Family

ID=89850348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111798 WO2024031541A1 (zh) 2022-08-11 2022-08-11 多功能氧化石墨烯的制备方法和pvcpvdf复合膜的制备方法

Country Status (1)

Country Link
WO (1) WO2024031541A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1177603A (zh) * 1997-04-09 1998-04-01 中国科学院上海有机化学研究所 含氟碳基团水溶性高聚物、制备及应用
CN108461308A (zh) * 2018-01-25 2018-08-28 齐鲁工业大学 一种石墨烯/聚离子液体复合材料及制备方法和应用
CN111808515A (zh) * 2020-06-24 2020-10-23 中国船舶重工集团公司第七二五研究所 一种可降解的双亲性污损抗粘附防污树脂的制备方法
CN112403287A (zh) * 2020-11-20 2021-02-26 海南师范大学 一种pvdf-pvc超疏水双层复合膜制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1177603A (zh) * 1997-04-09 1998-04-01 中国科学院上海有机化学研究所 含氟碳基团水溶性高聚物、制备及应用
CN108461308A (zh) * 2018-01-25 2018-08-28 齐鲁工业大学 一种石墨烯/聚离子液体复合材料及制备方法和应用
CN111808515A (zh) * 2020-06-24 2020-10-23 中国船舶重工集团公司第七二五研究所 一种可降解的双亲性污损抗粘附防污树脂的制备方法
CN112403287A (zh) * 2020-11-20 2021-02-26 海南师范大学 一种pvdf-pvc超疏水双层复合膜制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIN XIAOXUE, SHI JIANJUN, SHI ZAIFENG, NIWAYAMA SATOMI: "Hydrophobic and antifouling modification of graphene oxide with functionalized polynorbornene by surface-initiated ring-opening metathesis polymerization", NEW JOURNAL OF CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 46, no. 12, 21 March 2022 (2022-03-21), GB , pages 5806 - 5818, XP093138750, ISSN: 1144-0546, DOI: 10.1039/D1NJ05935A *
ZHANG DASHUAI, ZHANG YAN, ZHANG XIAOPENG, LI CHEN, WANG LILI, SHUN TIANYI, WU HONGTING, LIN QIANG, SHI ZAIFENG: "Preparation of hydrophobic PVDF/PVC/nano-graphite composite membrane and its self-cleaning properties", MATERIALS RESEARCH EXPRESS, IOP PUBLISHING, GB, vol. 7, no. 2, 1 February 2020 (2020-02-01), GB , pages 026407, XP093138753, ISSN: 2053-1591, DOI: 10.1088/2053-1591/ab706e *
ZHANG, DASHUAI: "Preparation of Superhydrophobic PVDF/PVC Composite Membrane and its Application in Membrane Distillation Seawater Desalination", DOCTORAL DISSERTATIONS, HAINAN NORMAL UNIVERSITY, CHINA, no. 12, 1 April 2020 (2020-04-01), China, pages 1 - 119, XP009552582, DOI: 10.27719/d.cnki.ghnsf.2020.000001 *
ZHANG, QIUPING ET AL.: "Covalent Modification of Graphene Oxide with Polynorbornene by Surface-Initiated Ring-Opening Metathesis Polymerization", POLYMER, vol. 55, no. 23, 28 September 2014 (2014-09-28), XP029092602, ISSN: 1873-2291, DOI: 10.1016/j.polymer.2014.09.049 *

Similar Documents

Publication Publication Date Title
Deng et al. Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation
Wang et al. High performance loose nanofiltration membranes obtained by a catechol-based route for efficient dye/salt separation
US8420704B2 (en) Nano-structured polymer composites and process for preparing same
He et al. Performance improvement for thin-film composite nanofiltration membranes prepared on PSf/PSf-g-PEG blended substrates
JP6060450B2 (ja) 親水性改質フッ素化膜(iv)
Kim et al. Preparation, characterization and performance of poly (aylene ether sulfone)/modified silica nanocomposite reverse osmosis membrane for seawater desalination
Zhu et al. Tethering hydrophilic polymer brushes onto PPESK membranes via surface-initiated atom transfer radical polymerization
Yu et al. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment
Ren et al. Oligo-ethylene-glycol based thin-film composite nanofiltration membranes for effective separation of mono-/di-valent anions
Ang et al. Graphene oxide functionalized with zwitterionic copolymers as selective layers in hybrid membranes with high pervaporation performance
Park et al. Preparation of anion exchanger by amination of acrylic acid grafted polypropylene nonwoven fiber and its ion-exchange property
WO2010096563A1 (en) Polyamide membranes with fluoroalcohol functionality
Zhang et al. High flux and high selectivity thin-film composite membranes based on ultrathin polyethylene porous substrates for continuous removal of anionic dyes
Tian et al. Nanofiltration membrane combining environmental-friendly polycarboxylic interlayer prepared from catechol for enhanced desalination performance
Ndaya et al. Synthesis of ordered, functional, robust nanoporous membranes from liquid crystalline brush-like triblock copolymers
Chen et al. Employing lignin in the formation of the selective layer of thin-film composite membranes for pervaporation desalination
Teng et al. Plasma deposition of acrylamide onto novel aromatic polyamide membrane for pervaporation
Wang et al. PVC-g-PVP amphiphilic polymer synthesis by ATRP and its membrane separation performance for silicone-containing wastewater
Yan et al. Benzene ring crosslinking of a sulfonated polystyrene-grafted SEBS (S-SEBS-g-PSt) membrane by the Friedel–Crafts reaction for superior desalination performance by pervaporation
CN113461912B (zh) 多环芳族骨架聚合物及其制备方法和应用
WO2024031541A1 (zh) 多功能氧化石墨烯的制备方法和pvcpvdf复合膜的制备方法
KR20120083695A (ko) 폴리아크릴로니트릴계 공중합체, 이를 포함하는 분리막 제조 방법, 이를 포함하는 분리막 및 이를 이용한 수처리 모듈
EP3075763B1 (en) Hydrophilically modified fluorinated membrane
US20130327701A1 (en) Separation membrane and water treatment device including a separation membrane
CN114907550B (zh) 兼具快速吸附与高效降解污染物的苝基胶束及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954508

Country of ref document: EP

Kind code of ref document: A1