WO2024031504A1 - 一种信号发送、信号接收方法、装置、设备及存储介质 - Google Patents

一种信号发送、信号接收方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024031504A1
WO2024031504A1 PCT/CN2022/111653 CN2022111653W WO2024031504A1 WO 2024031504 A1 WO2024031504 A1 WO 2024031504A1 CN 2022111653 W CN2022111653 W CN 2022111653W WO 2024031504 A1 WO2024031504 A1 WO 2024031504A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs port
port group
group
dmrs
preset
Prior art date
Application number
PCT/CN2022/111653
Other languages
English (en)
French (fr)
Inventor
孔磊
Original Assignee
新华三技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新华三技术有限公司 filed Critical 新华三技术有限公司
Priority to CN202280002699.8A priority Critical patent/CN117882344A/zh
Priority to EP22954474.7A priority patent/EP4425857A1/en
Priority to PCT/CN2022/111653 priority patent/WO2024031504A1/zh
Publication of WO2024031504A1 publication Critical patent/WO2024031504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of communication technology, and in particular to a signal transmission and signal reception method, device, equipment and storage medium.
  • MIMO Multiple Input Multiple Output, Multiple Input Multiple Output
  • NR New RAT, New Access Technology
  • MIMO scenarios there is a constant demand for multiplexing capacity of DMRS (De-Modulation Reference Signal) of DL (Down Link) and UL (Up Link) from various use cases. Increase, which requires CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing, Cyclic Prefix-Orthogonal Frequency Division Multiplexing) waveform to support more DMRS ports.
  • DMRS De-Modulation Reference Signal
  • DL Down Link
  • UL Up Link
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • waveform to support more DMRS ports.
  • the purpose of the embodiments of the present application is to provide a signal sending and receiving method, device, equipment and storage medium to increase the number of DMRS ports supported by the CP-OFDM waveform.
  • the specific technical solutions are as follows:
  • embodiments of the present application provide a signal sending method, which is applied to the first communicating party.
  • the method includes:
  • the first communicating party is a base station
  • the second communicating party is a UE (User Equipment, User Equipment), or the first communicating party is a UE, and the second communicating party is a base station.
  • embodiments of the present application provide a signal receiving method, which is applied to the second communicating party.
  • the method includes:
  • the first communicating party is a base station and the second communicating party is a UE, or the first communicating party is a UE and the second communicating party is a base station.
  • inventions of the present application provide a signal sending device, which is applied to the first communicating party.
  • the device includes:
  • a determining unit configured to determine the DMRS port corresponding to the reference signal that needs to be sent to the second communicating party in the DMRS port group, and each DMRS port in the DMRS port group occupies one resource element on average;
  • a sending unit configured to use the DMRS port to send the reference signal
  • the first communicating party is a base station and the second communicating party is a UE, or the first communicating party is a UE and the second communicating party is a base station.
  • inventions of the present application provide a signal receiving device, which is applied to the second communicating party.
  • the device includes:
  • a determining unit configured to determine the DMRS port corresponding to the reference signal that the first communicating party needs to send in the DMRS port group, and each DMRS port in the DMRS port group occupies one resource element on average;
  • a receiving unit configured to receive the reference signal sent using the DMRS port
  • the first communicating party is a base station and the second communicating party is a UE, or the first communicating party is a UE and the second communicating party is a base station.
  • embodiments of the present application provide an electronic device, including a processor and a machine-readable storage medium.
  • the machine-readable storage medium stores machine-executable instructions that can be executed by the processor. The processing The machine is prompted by the machine-executable instructions to: implement any of the method steps provided in the first aspect, or implement any of the method steps provided in the second aspect.
  • embodiments of the present application provide a computer-readable storage medium.
  • a computer program is stored in the computer-readable storage medium.
  • the computer program is executed by a processor, any one of the aspects provided in the first aspect is implemented. method steps, or implement any of the method steps provided in the second aspect.
  • embodiments of the present application provide a computer program that, when executed by a processor, implements any of the method steps provided in the first aspect, or implements any of the method steps provided in the second aspect. Method steps.
  • the first communicating party when receiving or sending a reference signal, uses the corresponding DMRS port in the DMRS port group to send the reference signal to the second communicating party.
  • Each DMRS port in the DMRS port group The ports occupy one RE on average.
  • the CP-OFDM waveform can support the maximum number of DMRS ports to reach the number of REs included in the OFDM symbols occupied by the DMRS port group.
  • Figure 1 is a first schematic diagram of DMRS port groups occupying OFDM symbols in related technologies
  • Figure 2 is a second schematic diagram of DMRS port groups occupying OFDM symbols in related technologies
  • Figure 3 is a schematic flow chart of a signal sending method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a single OFDM symbol provided by an embodiment of the present application.
  • Figure 5 is a first schematic diagram of dual OFDM symbols provided by an embodiment of the present application.
  • Figure 6 is a second schematic diagram of dual OFDM symbols provided by an embodiment of the present application.
  • Figure 7 is a third schematic diagram of dual OFDM symbols provided by an embodiment of the present application.
  • Figure 8 is a fourth schematic diagram of dual OFDM symbols provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of the frequency domain offset corresponding to a in Figure 5, a in Figure 6, and a in Figure 7;
  • Figure 10 is a fifth schematic diagram of dual OFDM symbols provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of the DMRS port group implemented by pre- and incremental DMRS provided by the embodiment of the present application;
  • Figure 12 is a schematic diagram of a DMRS port group implemented by pre-DMRS provided by an embodiment of the present application
  • Figure 13 is a schematic diagram of incremental DMRS implementation DMRS port group provided by the embodiment of the present application.
  • Figure 14 is a schematic diagram of DMRS port group occupancy compliance for continuous time slots provided by the embodiment of the present application.
  • Figure 15 is a schematic diagram of implementing DMRS port group occupancy compliance across time slots according to an embodiment of the present application.
  • Figure 16 is a schematic flow chart of a first signal receiving method provided by an embodiment of the present application.
  • Figure 17 is a second flow diagram of the signal receiving method provided by the embodiment of the present application.
  • Figure 18 is a schematic structural diagram of a signal sending device provided by an embodiment of the present application.
  • Figure 19 is a first structural schematic diagram of a signal receiving device provided by an embodiment of the present application.
  • Figure 20 is a second structural schematic diagram of a signal receiving device provided by an embodiment of the present application.
  • Figure 21 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • DMRS is used for channel estimation and demodulation of uplink and downlink reference signals.
  • a DMRS port group occupies one or more OFDM symbols.
  • a DMRS port group includes multiple DMRS ports and/or CDM (Code Division Multiplexing) groups.
  • a CDM group includes multiple DMRS ports. DMRS ports in the same CDM group cannot be distinguished through the time domain or frequency domain, but can only be distinguished through the code domain.
  • the symbols described in the embodiments of this application are OFDM symbols, and one OFDM symbol includes 12 REs (Resource Elements).
  • MIMO is one of the key technologies in NR systems.
  • 3GPP 3rd Generation Partnership Project, 3rd Generation Partnership Project
  • Rel Release, candidate version
  • FDD Frequency Division Duplex, frequency division duplex
  • TDD Time Division Duplex, time division Duplex
  • the main content is: the necessary enhancements of UL MIMO need to be identified and standardized, and the necessary enhancements of DL MIMO need to be introduced to meet the evolution requirements of NR deployment, thus helping to apply to FR1 (Frequency Range 1 , Frequency Range 1) and FR2 (Frequency Range 2, Frequency Range 2) use of large antenna arrays.
  • FR1 Frequency Range 1 , Frequency Range 1
  • FR2 Frequency Range 2, Frequency Range 2
  • the orthogonal port used for transmitting DMRS is the DMRS port mentioned in the embodiment of this application.
  • the technical solution provided by the embodiment of the present application is based on the solution designed above, which increases the number of DMRS ports supported by the CP-OFDM waveform.
  • DMRS in existing standards is divided into DMRS configuration type 1 and DMRS configuration type 2.
  • the DMRS port group occupies one OFDM symbol and can support 4 orthogonal DMRS ports, as shown in a in Figure 1; the DMRS port group occupies two OFDM symbols and can support up to 8 orthogonal DMRS ports.
  • a rectangular box represents an RE
  • a column of rectangular boxes represents an OFDM symbol.
  • the rectangular box with the number 0 represents the RE occupied by a CDM group.
  • the CDM group includes DMRS port 0 and DMRS port 1; the rectangular box with the number 1 represents the RE occupied by a CDM group.
  • the CDM The group includes DMRS port 2 and DMRS port 3. It can be seen that when the DMRS port group occupies one OFDM symbol, that is, when a single OFDM symbol is used, a maximum of 4 DMRS ports are supported.
  • the rectangular box with the number 0 represents the RE occupied by a CDM group.
  • the CDM group includes DMRS port 0, DMRS port 1, DMRS port 4 and DMRS port 5; the rectangular box with the number 1 represents a CDM RE occupied by the group.
  • the CDM group includes DMRS port 2, DMRS port 3, DMRS port 6 and DMRS port 7. It can be seen that when the DMRS port group occupies two OFDM symbols, that is, in the case of dual OFDM symbols, it supports up to 8 DMRS ports.
  • a single OFDM symbol can support up to 6 orthogonal DMRS ports, as shown in a in Figure 2; dual OFDM symbols can support up to 12 orthogonal DMRS ports, as shown in b in Figure 2 .
  • a rectangular box represents an RE
  • a column of rectangular boxes represents an OFDM symbol.
  • the rectangular box with the number 0 represents the RE occupied by a CDM group.
  • the CDM group includes DMRS port 0 and DMRS port 1; the rectangular box with the number 1 represents the RE occupied by a CDM group.
  • the CDM group includes DMRS port 2 and DMRS port 3; the rectangular box where the number 2 is located is a CDM group, and the CDM group includes DMRS port 4 and DMRS port 5. It can be seen that in the case of a single OFDM symbol, up to 6 DMRS ports are supported.
  • the rectangular box with the number 0 represents the RE occupied by a CDM group.
  • the CDM group includes DMRS port 0, DMRS port 1, DMRS port 6 and DMRS port 7;
  • the rectangular box with the number 1 represents a CDM RE occupied by the group, the CDM group includes DMRS port 2, DMRS port 3, DMRS port 8 and DMRS port 9;
  • the rectangular box where the number 2 is located is a CDM group, the CDM group includes DMRS port 4, DMRS port 5, DMRS Port 10 and DMRS port 11. It can be seen that in the case of dual OFDM symbols, up to 12 DMRS ports are supported.
  • embodiments of the present application provide a signal sending method and a signal receiving method, in which the first communicating party uses the corresponding DMRS port in the DMRS port group to send a reference signal to the second communicating party.
  • Each communication party in the DMRS port group Each DMRS port occupies one RE on average.
  • the CP-OFDM waveform can support the maximum number of DMRS ports to reach the number of REs included in the OFDM symbols occupied by the DMRS port group.
  • FIG. 3 is a schematic flow chart of a signal sending method provided by an embodiment of the present application.
  • This method can be applied to a first communicating party, which can be a base station or a UE.
  • the second communicating party is a UE.
  • the first communicating party is a UE
  • the second communicating party for the base station.
  • the UE may be an advanced UE such as CPE (Customer Premise Equipment), FWA (Fixed Wireless Access), vehicles, and industrial equipment.
  • CPE Customer Premise Equipment
  • FWA Wireless Wireless Access
  • the above signal sending method includes the following steps:
  • Step S31 Determine the DMRS port corresponding to the reference signal that needs to be sent to the second communicating party in the DMRS port group.
  • Each DMRS port in the DMRS port group occupies one RE on average.
  • Step S32 Use the DMRS port to send the reference signal.
  • the first communicating party when sending a reference signal, uses the corresponding DMRS port in the DMRS port group to send the reference signal to the second communicating party.
  • Each DMRS port in the DMRS port group averages Occupying one RE, in this way, the CP-OFDM waveform can support the maximum number of DMRS ports reaching the number of REs included in the OFDM symbols occupied by the DMRS port group.
  • the base station can pre-set the number of symbols occupied by the DMRS port group, the symbols occupied by the DMRS port group, the DMRS ports and CDM groups included in the DMRS port group, and the number of each DMRS port.
  • the CDM group includes The number of each DMRS port, etc.
  • Each DMRS port in the DMRS port group is orthogonal in the time domain, frequency domain or code domain.
  • DMRS includes pre-DMRS and incremental DMRS.
  • the DMRS port group in the embodiment of the present application can be used as a pre-DMRS port or an incremental DMRS port. That is, the DMRS port group can be located at the pre-symbol position or at the pre-symbol position. Increment symbol position.
  • the number of prefix symbols can be set according to actual needs. For example, the number of prefix symbols is 3, that is, the first 3 symbols are prefix symbols, and the incremental symbol is the symbol at any position after the prefix symbol.
  • Incremental DMRS ports are used in medium/high-speed scenarios to meet the estimation accuracy of channel time variability.
  • the incremental DMRS port is just a copy of the front DMRS port, that is, the incremental DMRS port and the front DMRS port must maintain the number of DMRS ports, sequence, number of occupied OFDM symbols, and OCC (Orthogonal Cover Code, orthogonal cover code) consistent. Therefore, when the front-end DMRS is designed, there is no need to design additional incremental DMRS.
  • the following DMRS port group design takes the front DMRS port as an example.
  • the number of symbols occupied by the DMRS port group is 1, that is, one OFDM symbol occupied by the DMRS port group, that is, a single OFDM symbol.
  • each DMRS port included in the DMRS port group can occupy 1 RE according to frequency division multiplexing, as shown in a in Figure 4.
  • a rectangular box represents an RE
  • a column of rectangular boxes represents a symbol.
  • the rectangular boxes with numbers 0-11 respectively represent REs occupied by one DMRS port.
  • the number of the DMRS port corresponding to the rectangular box of each number can be set according to actual needs.
  • the number of the DMRS port corresponding to the rectangular box with each number can be set sequentially.
  • the number of the DMRS port corresponding to the rectangular box with the number 0 is 0, and the number of the DMRS port corresponding to the rectangular box with the number 1 is 1.
  • the DMRS port number corresponding to the rectangular box with number 2 is 3, and so on.
  • the number of the DMRS port corresponding to each numerical rectangular box can also be set at specified intervals. For example, if the specified value is 2, the number of the DMRS port corresponding to the rectangular box with the number 0 is 0, and the number of the DMRS port corresponding to the rectangular box with the number 1 is The number is 2, and the number of the DMRS port corresponding to the rectangular box with number 2 is 4, and so on.
  • the embodiment of the present application supports up to 12 DMRS ports. This will not increase the overhead of DMRS in Rel-15/16/17, keeping the front DMRS only occupying 1 OFDM symbol, while increasing the number of DMRS ports supported in the case of a single OFDM symbol.
  • the number of symbols occupied by the DMRS port group is 1, that is, one OFDM symbol occupied by the DMRS port group, that is, a single OFDM symbol.
  • each CDM group included in the DMRS port group follows the frequency domain CDM method of the first preset length. Occupying the first preset number of REs, the value of the first preset number is the same as the value of the first preset length, and the value of the first preset number is greater than or equal to 2.
  • each CDM group includes 2 DMRS ports.
  • each CDM included in the DMRS port group occupies 2 REs, as shown in b in Figure 4.
  • a rectangular box represents an RE
  • a column of rectangular boxes represents a symbol.
  • the rectangular boxes with numbers 0-5 respectively represent the REs occupied by a CDM group.
  • the number of DMRS ports included in each CDM group can be set according to actual needs.
  • the numbers of DMRS ports included in each CDM group can be set sequentially.
  • the DMRS ports are numbered 0 and 1
  • the DMRS ports are numbered 2 and 3
  • the DMRS ports corresponding to the rectangular box with the number 3 are Numbered 4 and 5, and so on.
  • the number of the DMRS port can also be set at a specified interval. For example, if the specified value is 2, in the CDM group corresponding to the rectangular box with the number 0, the DMRS port numbers are 0 and 2. In the CDM group corresponding to the rectangular box with the number 1, the DMRS port numbers corresponding to the rectangular box with the number 3 are 4 and 6, and the DMRS port numbers corresponding to the rectangular box with the number 3 are 8 and 10, and so on.
  • the first preset number of REs occupied by each CDM group may be adjacent, as shown in b in Figure 4 .
  • the first preset number of REs occupied by each CDM group may not be adjacent, as shown in c in Figure 4 , which is a schematic diagram of the DMRS port group occupying OFDM symbols when the first preset number is 2.
  • a rectangular box represents an RE
  • a column of rectangular boxes represents a symbol.
  • the rectangular boxes with numbers 0-5 respectively represent the REs occupied by a CDM group, and multiple rectangular boxes with the same number correspond to one CDM group.
  • the number of DMRS ports included in each CDM group can be set according to actual needs. For details, please refer to the relevant description in part b in Figure 4.
  • the number of symbols occupied by the DMRS port group is a preset value, and the preset value is greater than or equal to 2, that is, multiple OFDM symbols occupied by the DMRS port group, that is, multiple OFDM symbols.
  • each DMRS port included in the DMRS port group can occupy one RE according to the frequency division multiplexing method and the time division multiplexing method.
  • the DMRS port group occupies 2 OFDM symbols, that is, dual OFDM symbols.
  • the 2 OFDM symbols include 24 REs.
  • each DMRS port included in the DMRS port group occupies 1 RE, in this case, can support 13, 14, ..., 24 DMRS ports, as shown in a-l in Figure 5, a schematic diagram of the DMRS port group occupying OFDM symbols. As shown in a-l in Figure 5, a rectangular box represents an RE, and a column of rectangular boxes represents a symbol.
  • the rectangular boxes with numbers 0-23 respectively represent REs occupied by a DMRS port, and the rectangular boxes without numbers are unoccupied REs.
  • the number of the DMRS port corresponding to the rectangular box of each number can be set according to actual needs.
  • the DMRS port numbers corresponding to the rectangular boxes of each number can be set sequentially or at specified intervals.
  • the embodiment of the present application supports up to 24 DMRS ports, which will not increase the overhead of DMRS in Rel-15/16/17, and keep the front DMRS only occupying 2 OFDM symbols, while increasing the number of DMRS ports supported in the case of dual OFDM symbols.
  • the number of symbols occupied by the DMRS port group is a preset value, and the preset value is greater than or equal to 2, that is, multiple OFDM symbols occupied by the DMRS port group, that is, multiple OFDM symbols.
  • each CDM group includes a preset number of DMRS ports, and the DMRS port group includes every DMRS port except the CDM group.
  • Each DMRS port occupies 1 RE according to frequency division multiplexing and time division multiplexing; each CDM group included in the DMRS port group occupies a preset value according to frequency division multiplexing and time domain CDM with a preset length. Resource element, each CDM group includes a default number of DMRS ports.
  • the DMRS port group occupies 2 OFDM symbols, that is, dual OFDM symbols.
  • the 2 OFDM symbols include 24 REs
  • each CDM group includes 2 DMRS ports.
  • each DMRS port except the CDM group that is, each independent DMRS port occupies 1 RE, as shown in a in Figure 6, DMRS ports 1, 2,... , 11, etc.; according to the frequency division multiplexing method and the time domain CDM method with length 2, each CDM group occupies 2 REs, as shown in b in Figure 6, CDM group 0 and CDM group 1, etc.
  • a-l in Figure 6 a schematic diagram of the DMRS port group occupying OFDM symbols.
  • a rectangular box represents an RE
  • a column of rectangular boxes represents a symbol.
  • the rectangular boxes with numbers 0-11 respectively represent the REs occupied by a DMRS port or CDM group.
  • the rectangular boxes without numbers are unoccupied REs.
  • Multiple rectangular boxes with the same number correspond to one CDM. Group.
  • the number of the DMRS port corresponding to each numerical rectangular box can be set according to actual needs, and the number of the DMRS port in the CDM group corresponding to each numerical rectangular box can be set according to actual needs.
  • the DMRS port numbers corresponding to the rectangular boxes of each number can be set sequentially or at specified intervals.
  • the number of DMRS ports in the CDM group corresponding to the rectangular box of each number can be set sequentially or at specified intervals.
  • the number of symbols occupied by the DMRS port group is a preset value, and the preset value is greater than or equal to 2, that is, multiple OFDM symbols occupied by the DMRS port group, that is, multiple OFDM symbols.
  • each CDM group includes a second preset number of DMRS ports, and each DMRS port included in the DMRS port group
  • Each included CDM group occupies a second preset number of REs according to the frequency domain CDM method of the second preset length and the time domain CDM method of the preset length, and the value of the second preset number is greater than or equal to A value of the second preset length, and a value of the second preset length that is less than or equal to a multiple of the preset value.
  • the DMRS port group occupies 2 OFDM symbols, that is, dual OFDM symbols.
  • the 2 OFDM symbols include 24 REs
  • each CDM group includes 2 DMRS ports.
  • each CDM group occupies 2-4 REs.
  • 13, 14, ..., 24 DMRS ports can be supported, as shown in a-l in Figure 7, a schematic diagram of the DMRS port group occupying OFDM symbols.
  • a rectangular box represents an RE
  • a column of rectangular boxes represents a symbol.
  • the rectangular boxes with numbers 0-5 respectively represent the REs occupied by a CDM group.
  • the rectangular boxes without numbers are unoccupied REs.
  • Multiple rectangular boxes with the same number correspond to one CDM group.
  • the number of the DMRS port in the CDM group corresponding to the rectangular box of each number can be set according to actual needs. For example, the number of DMRS ports in the CDM group corresponding to the rectangular box of each number can be set sequentially or at specified intervals.
  • the embodiment of the present application supports up to 24 DMRS ports, which will not increase the overhead of DMRS in Rel-15/16/17, and keep the front DMRS only occupying 2 OFDM symbols, while increasing the number of DMRS ports supported in the case of dual OFDM symbols.
  • multiple REs occupied by each CDM group on each symbol may be adjacent, as shown in a-l in Figure 7 .
  • the multiple REs occupied by each CDM group on each symbol may not be adjacent, as shown in a-l in Figure 8, a schematic diagram of a DMRS port group occupying OFDM symbols.
  • a rectangular box represents an RE
  • a column of rectangular boxes represents a symbol.
  • the rectangular boxes with numbers 0-5 respectively represent the REs occupied by a CDM group, and multiple rectangular boxes with the same number correspond to one CDM group.
  • the number of DMRS ports included in each CDM group can be set according to actual needs. For details, please refer to the relevant description of part a-l in Figure 7.
  • the occupied resource element is offset from the starting position of the target symbol by a preset offset, and the target symbol is one that is not present in the DMRS port group.
  • the symbol of the resource element occupied by the DMRS port is included.
  • the preset offset represents the number of REs offset in the frequency domain. The size of the preset offset can be set according to actual requirements and is not limited.
  • the schematic diagram of the frequency domain offset corresponding to the case of supporting 13 DMRS ports shown in a in Figure 5 is shown in a in Figure 9. Based on a in Figure 9, it can be seen that there are unused symbols on the second symbol occupied by the DMRS port group. Among the occupied REs, the second symbol is the target symbol. The RE occupied by DMRS port 12 on the second symbol is offset by 5 REs relative to the starting position of the second symbol.
  • the schematic diagram of the frequency domain offset corresponding to the case of supporting 13 DMRS ports shown in a in Figure 6 is shown in b in Figure 9.
  • the second symbol is the target symbol.
  • the RE occupied by CDM group 5 on the second symbol is offset by 5 REs relative to the starting position of the second symbol.
  • the schematic diagram of the frequency domain offset corresponding to the case of supporting 13 DMRS ports shown in a in Figure 7 is shown in c in Figure 9.
  • the second symbol is the target symbol.
  • the RE occupied by CDM group 2 on the second symbol is offset by 5 REs relative to the starting position of the second symbol.
  • the frequency domain offset corresponding to the case of supporting 14, 15, ..., 24 DMRS ports is similar to the frequency domain offset corresponding to the case of supporting 13 DMRS ports, and will not be described again this time.
  • each DMRS port of each PRB Physical Resource Block, physical resource block
  • the technical solution provided by the embodiments of the present application can be supported in environments with low frequency selectivity, such as small open spaces such as outdoor small concerts, tennis courts, or outdoor cafes. Outdoor environment.
  • the number of symbols occupied by the DMRS port group is a preset value, and the preset value is greater than or equal to 2, that is, multiple OFDM symbols occupied by the DMRS port group, that is, multiple OFDM symbols.
  • each DMRS port included in the DMRS port group occupies one RE according to frequency division multiplexing.
  • the DMRS port here may be a port in a CDM group, or it may not be a port in a CDM group.
  • the DMRS port group uses frequency division multiplexing to occupy REs in the frequency domain, and in the time domain, it can use time division multiplexing to occupy REs, as shown in Figure 5; in the time domain , the time domain CDM of a specified length can also be used to occupy the RE, as shown in Figure 6.
  • the number of symbols occupied by the DMRS port group is a preset value, and the preset value is greater than or equal to 2, that is, multiple OFDM symbols occupied by the DMRS port group, that is, multiple OFDM symbols.
  • each DMRS port included in the DMRS port group occupies one RE in a time division multiplexing manner.
  • the DMRS port here may be a port in a CDM group, or it may not be a port in a CDM group.
  • the DMRS port group uses time division multiplexing to occupy REs in the time domain, and in the frequency domain, it can use frequency division multiplexing to occupy REs, as shown in Figure 5; in the frequency domain , the frequency domain CDM of a specified length can also be used to occupy the RE, as shown in Figure 10.
  • the rectangular boxes with numbers 0-8 respectively represent the REs occupied by a CDM group.
  • the rectangular boxes without numbers are unoccupied REs. Multiple rectangular boxes with the same number correspond to one CDM group.
  • a part of the symbols occupied by the DMRS port group is located at the leading symbol position, and another part of the symbols occupied by the DMRS port group is located at the incremental symbol position.
  • the DMRS port located at the prefix symbol position may be called a prefix DMRS port
  • the DMRS port located at the incremental symbol position may be called an incremental DMRS port. Both the prefix DMRS port and the incremental DMRS port are Together, more orthogonal DMRS ports can be supported.
  • the DMRS ports in the DMRS port group may belong to one or more CDM combinations, or they may not belong to a CDM combination, and there is no limit to this.
  • the first three symbols are preamble symbols and the DMRS port group occupies two OFDM symbols.
  • the first OFDM symbol is the third symbol of a timeslot. That is, the first OFDM symbol is located at the preamble symbol position.
  • the two OFDM symbols are the eighth symbol of a time slot, that is, the second OFDM symbol is located at the incremental symbol position after the preceding symbol, as shown in Figure 11.
  • the first OFDM symbol is implemented using preamble symbols
  • the DMRS port on the second OFDM symbol is implemented using incremental symbols.
  • the number of incremental symbols and the position of the incremental symbols in a time slot are flexible.
  • the rectangular boxes with numbers 0-11 respectively represent the REs occupied by a CDM group.
  • the rectangular boxes without numbers are unoccupied REs. Multiple rectangular boxes with the same number correspond to one CDM group.
  • the design of increasing the number of DMRS ports is carried out without increasing the existing DMRS overhead, that is, the design of increasing the number of DMRS ports is carried out by using only 1 to 2 OFDM symbols.
  • the scope of application of the technical solutions provided by the embodiments of this application is expanded.
  • the DMRS ports in the DMRS port group may belong to one or more CDM combinations, or may not belong to a CDM combination, which is not limited.
  • the DMRS ports in the DMRS port group may belong to one or more CDM combinations, or may not belong to a CDM combination, which is not limited.
  • the number of prefix symbols can be set according to actual needs.
  • the DMRS port group occupancy symbols are configured for one or more time slots; when the DMRS port group occupancy symbols are configured for multiple time slots, the multiple time slots may be consecutive. Gaps can also be discontinuous. The number of symbols occupied by the DMRS port group in each time slot and its position in the time slot are flexible. The DMRS port group in each time slot can be located at the prefix symbol position or the incremental symbol position.
  • the DMRS port group occupies one OFDM symbol in one time slot. Among them, this OFDM symbol is configured for two time slots. These two time slots can be continuous time slots, as shown in Figure 14. These two time slots can also be discontinuous time slots, as shown in Figure 15. Show. In Figure 14 and Figure 15, the rectangular boxes with numbers 0-11 respectively represent REs occupied by a DMRS port, and the rectangular boxes without numbers are unoccupied REs.
  • the above step S31 may be: based on the symbols occupied by the DMRS port group configured for the current time slot, determine that the DMRS port group in the current time slot needs to be sent to the second communicating party
  • the reference signal corresponds to the DMRS port.
  • the symbols occupied by the DMRS port group configured for the current time slot can also be configured for other time slots. That is, the symbols occupied by the DMRS port group can be configured for multiple time slots.
  • the design of increasing the number of DMRS ports is carried out without increasing the existing DMRS overhead, that is, the design of increasing the number of DMRS ports is carried out by using only 1 to 2 OFDM symbols.
  • the scope of application of the technical solutions provided by the embodiments of the present application is expanded. For example, it is suitable for scenarios that are not sensitive to demodulation delay and have a large number of reference signals that need to be transmitted.
  • the first communicating party when the first communicating party is a base station and the second communicating party is a UE, the first communicating party can also send a preset number of bits of DCI to the second communicating party, where the DCI indicates the reference signal in the DMRS port group.
  • the corresponding DMRS port; the maximum value corresponding to the preset number of bits is greater than or equal to the maximum number of DMRS ports included in the DMRS port group.
  • the first communicating party can also receive a preset number of bits of DCI sent by the second communicating party, where the DCI indicates the DMRS port corresponding to the reference signal in the DMRS port group;
  • the maximum value corresponding to the preset number of bits is greater than or equal to the maximum number of DMRS ports included in the DMRS port group.
  • the base station assigns the value of the port indication information field to the UE based on the preset Rank configuration, carries the value of the port indication information field in the DCI, and sends it to the UE. Subsequently, the base station sends the reference signal to the UE based on the DMRS port set corresponding to the value of the port indication information field in the DCI, and receives the reference signal sent by the UE. The UE sends a reference signal to the base station based on the DMRS port set corresponding to the value of the port indication information field in the DCI, and receives the reference signal sent by the base station.
  • Port indication information field value Number of DMRS CDM groups without data DMRS port set Number of prefixed symbols 0 6 0 1 1 6 1 1 2 6 2 1 3 6 3 1 4 6 4 1 5 6 5 1 6 6 6 1 7 6 7 1 8 6 8 1 9 6 9 1 10 6 10 1 11 6 11 1 12 6 12 2 13 6 13 2 14 6 14 2 15 6 15 2 16 6 16 2 17 6 17 2 18 6 18 2 19 6 19 2
  • the value of the port indication information field can be expressed as Value
  • the DMRS port can be expressed as DMRS CDM group(s)
  • the number of DMRS CDM groups without data transmission can be expressed as Number of DMRS CDM group(s)without data, preceded by The number of symbols can be expressed as Number of front-load symbols.
  • the base station can randomly select a port indication information field value from the port indication information field values 0-23, carry the port indication information field value in the DCI, and send it to the UE. Subsequently, the base station sends a reference signal to the UE based on a DMRS port corresponding to the value of the port indication information field in the DCI, and receives the reference signal sent by the UE. The UE sends a reference signal to the base station based on a DMRS port corresponding to the value of the port indication information field in the DCI, and receives the reference signal sent by the base station.
  • Port indication information field value Number of DMRS CDM groups without data DMRS port set Number of prefixed symbols 0 6 0-11 1 1 6 0-5;12-17 2 2 reserve reserve reserve 3 reserve reserve reserve 4 reserve reserve reserve 5-31 reserve reserve reserve reserve
  • the base station can randomly select a port indication information field value from the port indication information field values 0-1, carry the port indication information field value in the DCI, and send it to the UE. Subsequently, the base station sends the reference signal to the UE based on the 12 DMRS ports corresponding to the value of the port indication information field in the DCI, and receives the reference signal sent by the UE. Based on the 12 DMRS ports corresponding to the value of the port indication information field in the DCI, the UE sends reference signals to the base station and receives reference signals sent by the base station.
  • Port indication information field value Number of DMRS CDM groups without data DMRS port set Number of prefixed symbols 0 6 0-23 2 1 reserve reserve reserve 2 reserve reserve reserve 3 reserve reserve reserve 4 reserve reserve reserve 5-31 reserve reserve reserve reserve
  • the base station can select the value 0 of the port indication information field, carry the value 0 of the port indication information field in the DCI, and send it to the UE. Subsequently, the base station sends the reference signal to the UE based on the 24 DMRS ports corresponding to the value of the port indication information field in the DCI, and receives the reference signal sent by the UE. Based on the 24 DMRS ports corresponding to the value of the port indication information field in the DCI, the UE sends reference signals to the base station and receives reference signals sent by the base station.
  • the DMRS port corresponding to the value of each port indication information field can be set according to actual needs.
  • the value 1 of the port indication information field in Table 2 can correspond to DMRS port sets 0-5 and 12-17. It can also correspond to DMRS port sets 12-23, etc., and is not limited to this.
  • the corresponding signaling process may need to be modified accordingly, such as the corresponding PBCH (Physical Broadcast Channel), RRC (Radio Resource Control, Radio Resource Control),
  • PBCH Physical Broadcast Channel
  • RRC Radio Resource Control, Radio Resource Control
  • the design related to DMRS indication in MAC CE (Media Access Control Customer Edge, user edge device for media access control) or DCI must be modified or updated to support the technical solution provided by the embodiment of this application.
  • Specific signaling updates/modifications that may be involved include MIB (Master Information Block, main information block), SIB (System Information Block, system information block) 1, MSG (Message, signaling) 2, MSG4, RRC setup (Setup) , full mode command (security Mode Command), RRC reconfiguration (Reconfiguration) related to the number of DMRS ports, position information of DMRS port occupied symbols, length of DMRS occupied symbols, mapping type, whether to configure incremental DMRS, etc. parameter.
  • the technical solution provided by the embodiment of this application can increase the maximum number of DMRS ports supported in the current standard from 12 to 24 without increasing the existing DMRS overhead, meeting the requirements of downlink and uplink DMRS complexities.
  • With the continuous increase in usage capacity there is a need to increase the number of orthogonal ports of DMRS.
  • new application scenarios such as holographic communication, real-time UHD (Ultra High Definition, ultra-high definition) video, security monitoring, machine vision, and extended reality (XR-Extended Reality).
  • UHD Ultra High Definition, ultra-high definition
  • XR-Extended Reality extended reality
  • the downlink and uplink DMRS multiplexing capacity The demand continues to increase, and the number of orthogonal ports of DMRS needs to be increased.
  • embodiments of the present application also provide a signal receiving method, which is applied to the second communicating party.
  • the method includes:
  • Step S161 Determine the DMRS port corresponding to the reference signal that the first communicating party needs to send in the DMRS port group.
  • Each DMRS port in the DMRS port group occupies one RE on average.
  • Step S162 Receive the reference signal sent using the DMRS port.
  • the first communicating party is the base station and the second communicating party is the UE, or the first communicating party is the UE and the second communicating party is the base station.
  • the first communicating party when receiving a reference signal, uses the corresponding DMRS port in the DMRS port group to send the reference signal to the second communicating party.
  • Each DMRS port in the DMRS port group averages Occupying one RE, in this way, the CP-OFDM waveform can support the maximum number of DMRS ports reaching the number of REs included in the OFDM symbols occupied by the DMRS port group.
  • the number of symbols occupied by the DMRS port group is 1;
  • Each DMRS port included in the DMRS port group occupies 1 resource element in a frequency division multiplexing manner
  • Each CDM group included in the DMRS port group occupies a first preset number of resource elements in a frequency domain CDM manner of a first preset length.
  • Each CDM group includes a first preset number of DMRS ports. The first preset The value of the number is the same as the value of the first preset length, and the value of the first preset number is greater than or equal to 2.
  • the first preset number of resource elements occupied by each CDM group are adjacent; or
  • the first preset number of resource elements occupied by each CDM group are not adjacent.
  • the number of symbols occupied by the DMRS port group is a preset value; the preset value is greater than or equal to 2;
  • Each DMRS port included in the DMRS port group occupies 1 resource element in a frequency division multiplexing manner
  • Each DMRS port included in the DMRS port group occupies 1 resource element in a time division multiplexing manner
  • Each DMRS port included in the DMRS port group occupies one resource element according to frequency division multiplexing and time division multiplexing;
  • Each DMRS port included in the DMRS port group except the CDM group occupies one resource element according to the frequency division multiplexing method and time division multiplexing method; each CDM group included in the DMRS port group uses the frequency division multiplexing method and the length is The default time-domain CDM method occupies a default value of resource elements, and each CDM group includes a default number of DMRS ports; or
  • Each CDM group included in the DMRS port group occupies a second preset number of resource elements according to the frequency domain CDM method with a second preset length and the time domain CDM method with a preset length.
  • Each CDM group includes a second preset length.
  • a preset number of DMRS ports, the second preset number is greater than or equal to the second preset length, and is less than or equal to the second preset length that is a multiple of the preset value.
  • the occupied resource element is offset by a preset offset relative to the starting position of the target symbol, and the target symbol exists and is not included in the DMRS port group. Symbol of the resource element occupied by the DMRS port.
  • multiple resource elements occupied by each CDM group on each symbol are adjacent;
  • the multiple resource elements occupied by each CDM group on each symbol are not adjacent.
  • a part of the symbols occupied by the DMRS port group is located at the leading symbol position, and another part of the symbols occupied by the DMRS port group is located at the incremental symbol position;
  • All symbols occupied by the DMRS port group are in leading symbol positions;
  • All symbols occupied by the DMRS port group are located in incremental symbol positions.
  • the symbols occupied by the DMRS port group are configured for one or more time slots; the number of multiple time slots is less than or equal to a preset value;
  • the multiple time slots are continuous or discontinuous.
  • the above signal receiving method may also include step S173.
  • Steps S171 to S172 are the same as the above steps S161 to S162.
  • Step S173 Use the reference signals carried by the DMRS port groups on some or all of the multiple time slots to perform channel estimation.
  • the device when the symbols occupied by the DMRS port group are configured for multiple time slots, the device can use the reference signals carried by the DMRS port group on some or all time slots to perform channel estimation, which improves the flexibility of channel estimation.
  • step S173 may specifically be:
  • the reference signal carried by the DMRS port group in the time slot before the time slot is used for channel estimation; or, the DMRS port in the time slot after the time slot is used for channel estimation.
  • the reference signal carried by the DMRS port group is used for channel estimation; or the reference signal carried by the DMRS port group in the time slot before the time slot and the time slot after the time slot is used for channel estimation.
  • the second time slot does not include the DMRS port group.
  • the reference signal carried by the DMRS port group in the first time slot can be used to complete the comparison.
  • the reference signal carried by the DMRS port group in the third time slot can also be used to complete the channel estimation of the second time slot.
  • the first time slot and the third time slot can also be used.
  • the reference signals carried by the DMRS port groups in these two time slots complete the channel estimation of the second time slot.
  • step S173 may specifically be:
  • the reference signal carried by the DMRS port group in the time slot is used for channel estimation; or, the DMRS port group in the time slot and the time slot before the time slot are used for channel estimation.
  • the reference signal carried by the DMRS port group in the time slot after the time slot is used for channel estimation.
  • the first time slot includes a DMRS port group.
  • the reference signal carried by the DMRS port group of the first time slot can be used to complete the analysis of the first time slot.
  • the channel estimation of one time slot can also be accomplished by using the reference signal carried by the DMRS port group in the first time slot and the subsequent third time slot to complete the channel estimation of the first time slot.
  • the DMRS port group in the 1st time slot and the previous 0th time slot can be used The reference signal carried completes the channel estimation of the first time slot.
  • the reference signal carried by the DMRS port group in the previous 0th time slot, the 1st time slot and the subsequent 3rd time slot can also be used to complete the channel estimation for the first time slot.
  • time slot before and after only one time slot before and after is used as an example.
  • the number of time slots before and after is not limited.
  • the time slots before and after assisting in channel estimation are not limited.
  • the number is limited.
  • the reference signals carried by the DMRS port groups in the previous two time slots can be used for channel estimation.
  • the above signal receiving method may also include:
  • the second communicating party receives a DCI of a preset number of bits sent by the first communicating party.
  • the DCI indicates the DMRS port corresponding to the reference signal in the DMRS port group; the preset number of bits The corresponding maximum value is greater than or equal to the maximum number of DMRS ports included in the DMRS port group;
  • the second communicating party When the second communicating party is a base station and the first communicating party is a UE, the second communicating party sends a preset number of bits of DCI to the first communicating party.
  • the DCI indicates the DMRS port corresponding to the reference signal in the DMRS port group; the preset number of bits corresponds to The maximum value is greater than or equal to the maximum number of DMRS ports included in the DMRS port group.
  • embodiments of the present application also provide a signal sending device, which is applied to the first communicating party.
  • the device includes:
  • the determining unit 181 is used to determine the DMRS port corresponding to the reference signal that needs to be sent to the second communicating party in the DMRS port group.
  • Each DMRS port in the DMRS port group occupies one resource element on average;
  • the sending unit 182 is used to send the reference signal using the DMRS port;
  • the first communicating party is the base station and the second communicating party is the UE, or the first communicating party is the UE and the second communicating party is the base station.
  • the first communicating party when sending a reference signal, uses the corresponding DMRS port in the DMRS port group to send the reference signal to the second communicating party.
  • Each DMRS port in the DMRS port group averages Occupying one RE, in this way, the CP-OFDM waveform can support the maximum number of DMRS ports reaching the number of REs included in the OFDM symbols occupied by the DMRS port group.
  • the number of symbols occupied by the DMRS port group is 1;
  • Each DMRS port included in the DMRS port group occupies 1 resource element in a frequency division multiplexing manner
  • Each CDM group included in the DMRS port group occupies a first preset number of resource elements in a frequency domain CDM manner of a first preset length.
  • Each CDM group includes a first preset number of DMRS ports. The first preset The value of the number is the same as the value of the first preset length, and the value of the first preset number is greater than or equal to 2.
  • the first preset number of resource elements occupied by each CDM group are adjacent; or
  • the first preset number of resource elements occupied by each CDM group are not adjacent.
  • the number of symbols occupied by the DMRS port group is a preset value; the preset value is greater than or equal to 2;
  • Each DMRS port included in the DMRS port group occupies 1 resource element in a frequency division multiplexing manner
  • Each DMRS port included in the DMRS port group occupies 1 resource element in a time division multiplexing manner
  • Each DMRS port included in the DMRS port group occupies one resource element according to frequency division multiplexing and time division multiplexing;
  • Each DMRS port included in the DMRS port group except the CDM group occupies one resource element according to the frequency division multiplexing method and time division multiplexing method; each CDM group included in the DMRS port group uses the frequency division multiplexing method and the length is The default time-domain CDM method occupies a default value of resource elements, and each CDM group includes a default number of DMRS ports; or
  • Each CDM group included in the DMRS port group occupies a second preset number of resource elements according to the frequency domain CDM method with a second preset length and the time domain CDM method with a preset length.
  • Each CDM group includes a second preset length.
  • a preset number of DMRS ports, the second preset number is greater than or equal to the second preset length, and is less than or equal to the second preset length that is a multiple of the preset value.
  • the occupied resource element is offset by a preset offset relative to the starting position of the target symbol, and the target symbol is one that is not present in the DMRS port group. Includes the symbol of the resource element occupied by the DMRS port.
  • multiple resource elements occupied by each CDM group on each symbol are adjacent;
  • the multiple resource elements occupied by each CDM group on each symbol are not adjacent.
  • a part of the symbols occupied by the DMRS port group is located at the leading symbol position, and another part of the symbols occupied by the DMRS port group is located at the incremental symbol position;
  • All symbols occupied by the DMRS port group are in leading symbol positions;
  • All symbols occupied by the DMRS port group are located in incremental symbol positions.
  • the symbols occupied by the DMRS port group are configured for one or more time slots
  • the multiple time slots are continuous or discontinuous
  • the determining unit is specifically configured to determine the DMRS port corresponding to the reference signal that needs to be sent to the second communicating party in the DMRS port group in the current time slot based on the symbols occupied by the DMRS port group configured for the current time slot.
  • the above-mentioned signal sending device may further include a processing unit for:
  • a DCI of a preset number of bits is sent to the second communicating party.
  • the DCI indicates the DMRS port corresponding to the reference signal in the DMRS port group; the maximum value corresponding to the preset number of bits Greater than or equal to the maximum number of DMRS ports included in the DMRS port group;
  • a DCI of a preset number of bits sent by the second communicating party is received.
  • the DCI indicates the DMRS port corresponding to the reference signal in the DMRS port group; the maximum number of bits corresponding to the preset number of bits is The value is greater than or equal to the maximum number of DMRS ports included in the DMRS port group.
  • embodiments of the present application also provide a signal receiving device, which is applied to the second communicating party.
  • the device includes:
  • the determining unit 191 is used to determine the DMRS port corresponding to the reference signal that the first communicating party needs to send in the DMRS port group.
  • Each DMRS port in the DMRS port group occupies one resource element on average;
  • the receiving unit 192 is used to receive the reference signal sent using the DMRS port;
  • the first communicating party is the base station
  • the second communicating party is the user equipment UE, or the first communicating party is the UE, and the second communicating party is the base station.
  • the first communicating party when receiving a reference signal, uses the corresponding DMRS port in the DMRS port group to send the reference signal to the second communicating party.
  • Each DMRS port in the DMRS port group averages Occupying one RE, in this way, the CP-OFDM waveform can support the maximum number of DMRS ports reaching the number of REs included in the OFDM symbols occupied by the DMRS port group.
  • the number of symbols occupied by the DMRS port group is 1;
  • Each DMRS port included in the DMRS port group occupies 1 resource element in a frequency division multiplexing manner
  • Each CDM group included in the DMRS port group occupies a first preset number of resource elements in a frequency domain CDM manner of a first preset length.
  • Each CDM group includes a first preset number of DMRS ports. The first preset The value of the number is the same as the value of the first preset length, and the value of the first preset number is greater than or equal to 2.
  • the first preset number of resource elements occupied by each CDM group are adjacent; or
  • the first preset number of resource elements occupied by each CDM group are not adjacent.
  • the number of symbols occupied by the DMRS port group is a preset value; the preset value is greater than or equal to 2;
  • Each DMRS port included in the DMRS port group occupies 1 resource element in a frequency division multiplexing manner
  • Each DMRS port included in the DMRS port group occupies 1 resource element in a time division multiplexing manner
  • Each DMRS port included in the DMRS port group occupies one resource element according to frequency division multiplexing and time division multiplexing;
  • Each DMRS port included in the DMRS port group except the CDM group occupies 1 resource element according to frequency division multiplexing and time division multiplexing; each CDM group included in the DMRS port group uses frequency division multiplexing, and the length is predetermined
  • the set time-domain CDM mode occupies a set number of resource elements, and each CDM group includes a set number of DMRS ports; or
  • Each CDM group included in the DMRS port group occupies a second preset number of resource elements according to the frequency domain CDM method with a second preset length and the time domain CDM method with a preset length.
  • Each CDM group includes a second preset length.
  • a preset number of DMRS ports, the second preset number is greater than or equal to the second preset length, and is less than or equal to the second preset length that is a multiple of the preset value.
  • the occupied resource element is offset by a preset offset relative to the starting position of the target symbol, and the target symbol exists and is not included in the DMRS port group. Symbol of the resource element occupied by the DMRS port.
  • multiple resource elements occupied by each CDM group on each symbol are adjacent;
  • the multiple resource elements occupied by each CDM group on each symbol are not adjacent.
  • a part of the symbols occupied by the DMRS port group is located at the leading symbol position, and another part of the symbols occupied by the DMRS port group is located at the incremental symbol position;
  • All symbols occupied by the DMRS port group are in leading symbol positions;
  • All symbols occupied by the DMRS port group are located in incremental symbol positions.
  • the symbols occupied by the DMRS port group are configured for one or more time slots
  • the multiple time slots are continuous or discontinuous
  • the above-mentioned signal receiving device may also include:
  • the estimation unit 193 is configured to perform channel estimation using reference signals carried by the DMRS port group on some or all of the multiple time slots when the symbols occupied by the DMRS port group are configured for multiple time slots.
  • the estimation unit 193 may be used to:
  • the reference signal carried by the DMRS port group in the time slot before the time slot is used.
  • Channel estimation or, use the reference signal carried by the DMRS port group in the time slot after the time slot for channel estimation; or use the reference signal carried by the DMRS port group in the time slot before the time slot and the time slot after the time slot.
  • one of the multiple time slots includes a DMRS port group
  • the reference signal carried by the DMRS port group in the time slot after the time slot is used for channel estimation.
  • the above-mentioned signal receiving device may further include a processing unit for:
  • the first communicating party When the first communicating party is a base station and the second communicating party is a UE, receive a DCI of a preset number of bits sent by the first communicating party.
  • the DCI indicates the DMRS port corresponding to the reference signal in the DMRS port group; the maximum value corresponding to the preset number of bits. Greater than or equal to the maximum number of DMRS ports included in the DMRS port group;
  • a DCI of a preset number of bits is sent to the first communicating party.
  • the DCI indicates the DMRS port corresponding to the reference signal in the DMRS port group; the maximum value corresponding to the preset number of bits Greater than or equal to the maximum number of DMRS ports included in the DMRS port group.
  • the embodiment of the present application also provides an electronic device, as shown in Figure 21, including a processor 211 and a machine-readable storage medium 212.
  • the machine-readable storage medium 212 stores a machine that can be executed by the processor 211. Executable instructions, the processor 211 is prompted by the machine executable instructions to implement the method steps described in any of the embodiments in FIGS. 3-17.
  • the electronic device may be a base station or a UE, such as the first communicating party and the second communicating party mentioned above.
  • the communication bus mentioned in the above-mentioned electronic equipment can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used for communication between the above-mentioned electronic devices and other devices.
  • the memory may include random access memory (Random Access Memory, RAM) or non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory.
  • RAM Random Access Memory
  • NVM Non-Volatile Memory
  • the memory may also be at least one storage device located far away from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU central processing unit
  • NP Network Processor
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • a computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, any of the above-mentioned tasks in Figures 3-16 can be implemented. Method steps described in an embodiment.
  • a computer program is also provided.
  • the computer program is executed by a processor, the method steps described in any of the above embodiments in Figures 3-17 are implemented.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号发送、信号接收方法、装置、设备及存储介质,涉及通信技术领域,该方法包括:第一通信方确定DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口,DMRS端口组中每个DMRS端口平均占用一个资源元素,使用DMRS端口,发送参考信号;第二通信方确定DMRS端口组中第一通信方需要发送的参考信号对应的DMRS端口,DMRS端口组中每个DMRS端口平均占用一个资源元素,接收使用DMRS端口发送的参考信号。通过本申请实施例提供的技术方案,CP-OFDM波形可以支持最大DMRS端口数量达到DMRS端口组占用的OFDM符号所包括的RE数量。

Description

一种信号发送、信号接收方法、装置、设备及存储介质 技术领域
本申请涉及通信技术领域,特别是涉及一种信号发送、信号接收方法、装置、设备及存储介质。
背景技术
MIMO(Multiple Input Multiple Output,多入多出)是NR(New RAT,新接入技术)系统的关键技术之一。在MIMO场景中,来自各种用例的DL(Down Link,下行链路)和UL(Up Link,上行链路)的DMRS(De-Modulation Reference Signal,解调参考信号)的复用容量的需求不断增加,这样就需要CP-OFDM(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,循环前缀-正交频分复用)波形支持更多的DMRS端口的数量。
发明内容
本申请实施例的目的在于提供一种信号发送、信号接收方法、装置、设备及存储介质,以增加CP-OFDM波形支持的DMRS端口的数量。具体技术方案如下:
第一方面,本申请实施例提供了一种信号发送方法,应用于第一通信方,所述方法包括:
确定DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口,所述DMRS端口组中每个DMRS端口平均占用一个资源元素;
使用所述DMRS端口,发送所述参考信号;
其中,所述第一通信方为基站,所述第二通信方为UE(User Equipment,用户设备),或者,所述第一通信方为UE,所述第二通信方为基站。
第二方面,本申请实施例提供了一种信号接收方法,应用于第二通信方,所述方法包括:
确定DMRS端口组中第一通信方需要发送的参考信号对应的DMRS端口,所述DMRS端口组中每个DMRS端口平均占用一个资源元素;
接收使用所述DMRS端口发送的所述参考信号;
其中,所述第一通信方为基站,所述第二通信方为UE,或者,所述第一通信方为UE,所述第二通信方为基站。
第三方面,本申请实施例提供了一种信号发送装置,应用于第一通信方,所述装置包括:
确定单元,用于确定DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口,所述DMRS端口组中每个DMRS端口平均占用一个资源元素;
发送单元,用于使用所述DMRS端口,发送所述参考信号;
其中,所述第一通信方为基站,所述第二通信方为UE,或者,所述第一通信方为UE,所述第二通信方为基站。
第四方面,本申请实施例提供了一种信号接收装置,应用于第二通信方,所述装置包括:
确定单元,用于确定DMRS端口组中第一通信方需要发送的参考信号对应的DMRS端口,所述DMRS端口组中每个DMRS端口平均占用一个资源元素;
接收单元,用于接收使用所述DMRS端口发送的所述参考信号;
其中,所述第一通信方为基站,所述第二通信方为UE,或者,所述第一通信方为UE,所述第二通信方为基站。
第五方面,本申请实施例提供了一种电子设备,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器被所述机器可执行指令促使:实现第一方面提供的任一所述的方法步骤,或实现第二方面提供的任一所述的方法步骤。
第六方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现第一方面提供的任一所述的方法步骤,或实现第二方面提供的任一所述的方法步骤。
第七方面,本申请实施例提供了一种计算机程序,所述计算机程序被处理器执行时实现第一方面提供的任一所述的方法步骤,或实现第二方面提供的任一所述的方法步骤。
本申请实施例提供的技术方案中,在接收或发送参考信号时,第一通信方使用DMRS端口组中相应的DMRS端口,向第二通信方发送的参考信号,该DMRS端口组中每个DMRS端口平均占用一个RE,这样,CP-OFDM波形可以支持最大DMRS端口数量达到DMRS端口组占用的OFDM符号所包括的RE数量。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1为相关技术中DMRS端口组占用OFDM符号的第一种示意图;
图2为相关技术中DMRS端口组占用OFDM符号的第二种示意图;
图3为本申请实施例提供的信号发送方法的一种流程示意图;
图4为本申请实施例提供的单OFDM符号的一种示意图;
图5为本申请实施例提供的双OFDM符号的第一种示意图;
图6为本申请实施例提供的双OFDM符号的第二种示意图;
图7为本申请实施例提供的双OFDM符号的第三种示意图;
图8为本申请实施例提供的双OFDM符号的第四种示意图;
图9为图5中a、图6中a、图7中a对应的频域偏移的一种示意图;
图10为本申请实施例提供的双OFDM符号的第五种示意图;
图11为本申请实施例提供的前置和增量DMRS实现DMRS端口组的一种示意图;
图12为本申请实施例提供的前置DMRS实现DMRS端口组的一种示意图;
图13为本申请实施例提供的增量DMRS实现DMRS端口组的一种示意图;
图14为本申请实施例提供的连续时隙实施DMRS端口组占用符合的一种示意图;
图15为本申请实施例提供的跨时隙实施DMRS端口组占用符合的一种示意图;
图16为本申请实施例提供的信号接收方法的第一种流程示意图;
图17为本申请实施例提供的信号接收方法的第二种流程示意图;
图18为本申请实施例提供的信号发送装置的一种结构示意图;
图19为本申请实施例提供的信号接收装置的第一种结构示意图;
图20为本申请实施例提供的信号接收装置的第二种结构示意图;
图21为本申请实施例提供的电子设备的一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员基于本申请所获得的所有其他实施例,都属于本申请保护的范围。
下面对本申请实施例中出现的词语进行解释说明。
DMRS用于信道估计,为上下行参考信号解调。
DMRS端口组占用1个或多个OFDM符号,DMRS端口组包括多个DMRS端口和/或CDM(Code Division Multiplexing,码分复用)组,一个CDM组包括多个DMRS端口。同一CDM组内的DMRS端口无法通过时域或频域区分,只能通过码域区分。
本申请实施例中所述的符号即为OFDM符号,一个OFDM符号包括12个RE(Resource Element,资源元素)。
MIMO是NR系统中的关键技术之一。在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)Rel(Release,候选版本)-15/16/17中,针对FDD(Frequency Division Duplex,频分双工)和TDD(Time Division Duplex,时分双工)系统研究并标准化了MIMO相关的特性,其中的主要内容是:用于DL MIMO操作。在Rel-18中,主要内容是:需要识别和标准化UL MIMO的必要增强功能,同时还需要引入DL MIMO的必要增强功能,以满足NR部署演进要求,从而有助于适用于FR1(Frequency Range 1,频率范围1)和FR2(Frequency Range 2,频率范围2)的大型天线阵列的使用。上述UL MIMO和DL MIMO的必要增强功能涉及以下MIMO增强领域:
来自各种用例的DL和UL DMRS的复用容量的需求不断增加,因此需要增加用于传输DMRS的正交端口的数量。其中,用于传输DMRS的正交端口即为本申请实施例中所说的DMRS端口。
本申请实施例提供的技术方案是针对上述所设计的方案,该方案用增加CP-OFDM波形所支持的DMRS端口数量。
目前,从标准化的角度来说,对于CP-OFDM波形,3GPP Rel-15/16/17中最多支持12个DMRS端口,无法直接扩展到大于12个DMRS端口的情况。具体的,现有标准中的DMRS分为DMRS配置类型(configuration type)1和DMRS configuration type 2。
对于DMRS configuration type 1,DMRS端口组占用一个OFDM符号可以支持4个正交的DMRS端口,如图1中的a所示;DMRS端口组占用两个OFDM符号最多可以支持8个正交DMRS端口,如图1中的b所示。图1中的a和b中,一个矩形框表示一个RE,一列矩形框表示一个OFDM符号。
图1中的a所示,数字0的矩形框表示一个CDM组所占用的RE,该CDM组包括DMRS端口0和DMRS端口1;数字1的矩形框表示一个CDM组所占用的RE,该CDM组包括DMRS端口2和DMRS端口3。可见,DMRS端口组占用一个OFDM符号的情况下,即单OFDM符号的情况下,最多支持4个DMRS端口。
图1中的b所示,数字0的矩形框表示一个CDM组所占用的RE,该CDM组包括DMRS端口0、DMRS端口1、DMRS端口4和DMRS端口5;数字1的矩形框表示一个CDM组所占用的RE,该CDM组包括DMRS端口2、DMRS端口3、DMRS端口6和DMRS端口7。可见,DMRS端口组占用两个OFDM符号的情况下,即双OFDM符号的情况下,最多支持8个DMRS端口。
基于图1中的a和b可知,对于DMRS configuration type 1,最多支持8个DMRS端口,每个DMRS端口平均占用3RE/RB(Resource Block,资源块)。
对于DMRS configuration type 2,单OFDM符号最多可以支持6个正交的DMRS端口,如图2中的a所示;双OFDM符号最多可以支持12个正交DMRS端口,如图2中的b所示。图2中的a和b所示,一个矩形框表示一个RE,一列矩形框表示一个OFDM符号。
图2中的a所示,数字0的矩形框为表示一个CDM组所占用的RE,该CDM组包括DMRS端口0和DMRS端口1;数字1的矩形框表示一个CDM组所占用的RE,该CDM组包括DMRS端口2和DMRS端口3;数字2所在的矩形框为一个CDM组,该CDM组包括DMRS端口4和DMRS端口5。可见,单OFDM符号的情况下,最多支持6个DMRS端口。
图2中的b所示,数字0的矩形框表示一个CDM组所占用的RE,该CDM组包括DMRS端口0、DMRS端口1、DMRS端口6和DMRS端口7;数字1的矩形框表示一个CDM组所占用的RE,该CDM组包括DMRS端口2、DMRS端口3、DMRS端口8和DMRS端口9;数字2所在的矩形框为一个CDM组,该CDM组包括DMRS端口4、DMRS端口5、DMRS端口10和DMRS端口11。可见,双OFDM符号的情况下,最多支持12个DMRS端口。
基于图2中的a和b可知,对于DMRS configuration type 2,最多支持12个DMRS端口,每个DMRS端口平均占用2RE/RB。
如前所述,从标准化的角度来说,目前3GPP Rel-15/16/17最多仅支持12个正交DMRS端口,无法直接扩展到更多的正交DMRS端口,因此需要重新设计如何支持更多正交的DMRS端口。
基于此,本申请实施例提供了一种信号发送方法和信号接收方法中,第一通信方使用DMRS端口组中相应的DMRS端口,向第二通信方发送的参考信号,该DMRS端口组中每个DMRS端口平均占用一个RE,这样,CP-OFDM波形可以支持最大DMRS端口数量达到DMRS端口组占用的OFDM符号所包括的RE数量。
下面通过具体实施例对本申请实施例提供的信号发送方法和信号接收方法进行详细说明。
参见图3,图3为本申请实施例提供的信号发送方法的一种流程示意图。该方法可以应用于第一通信方,该第一通信方可以为基站或UE,当第一通信方为基站时,第二通信方为UE,当第一通信方为UE时,第二通信方为基站。本申请实施例中,UE可以为CPE(Customer Premise Equipment,用户端设备)、FWA(Fixed Wireless Access,固定无线接入)、车辆和工业设备等高级UE。上述信号发送方法包括如下步骤:
步骤S31,确定DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口,DMRS端口组中每个DMRS端口平均占用一个RE。
步骤S32,使用DMRS端口,发送参考信号。
本申请实施例提供的技术方案中,在发送参考信号时,第一通信方使用DMRS端口组中相应的DMRS端口,向第二通信方发送的参考信号,该DMRS端口组中每个DMRS端口平均占用一个RE,这样,CP-OFDM波形可以支持最大DMRS端口数量达到DMRS端口组占用的OFDM符号所包括的RE数量。
本申请实施例中,基站可以预先设置了DMRS端口组所占用的符号数,DMRS端口组所占用的符号,DMRS端口组包括的DMRS端口和CDM组,以及各个DMRS端口的编号,CDM组包括的各个 DMRS端口的编号等。
DMRS端口组中各个DMRS端口在时域、频域或码域上正交。DMRS包括前置DMRS和增量DMRS,本申请实施例中的DMRS端口组可用做前置DMRS端口,也可用做增量DMRS端口,也就是,DMRS端口组可以位于前置符号位置,也可以位于增量符号位置。前置符号的个数可以根据实际需求进行设定,如前置符号个数为3,即前3个符号为前置符号,增量符号为前置符号后任一位置处的符号。增量DMRS端口在中/高速场景中使用,可以满足对信道时变性的估计精度。增量DMRS端口只是前置DMRS端口的一个副本,即增量DMRS端口和前置DMRS端口必须在DMRS端口数、序列、占用OFDM符号数、以及OCC(Orthogonal Cover Code,正交覆盖码)都保持一致。因此在设计了前置DMRS的情况下,不用额外的去专门设计增量DMRS。
下面的DMRS端口组设计以前置DMRS端口为例。
在一些实施例中,DMRS端口组占用的符号数为1,即DMRS端口组占用的一个OFDM符号,即单OFDM符号。这种情况下,当DMRS端口组中不存在CDM组时,DMRS端口组包括的每个DMRS端口可以按照频分复用方式占用1个RE,如图4中的a所示。图4中的a所示,一个矩形框表示一个RE,一列矩形框表示一个符号。图4中的a所示,数字0-11的矩形框分别表示一个DMRS端口所占用的RE。图4中的a所示,每个数字的矩形框对应的DMRS端口的编号可以根据实际需求进行设置。
举例来说,每个数字的矩形框对应的DMRS端口的编号可以顺序设置,例如,数字0的矩形框对应的DMRS端口的编号为0,数字1的矩形框对应的DMRS端口的编号为1,数字2的矩形框对应的DMRS端口的编号为3,以此类推。
每个数字的矩形框对应的DMRS端口的编号也可以间隔指定值设置,例如,指定值为2,数字0的矩形框对应的DMRS端口的编号为0,数字1的矩形框对应的DMRS端口的编号为2,数字2的矩形框对应的DMRS端口的编号为4,以此类推。
基于图4中的a可知,在单OFDM符号的情况下,本申请实施例最多支持12个DMRS端口。这不会增加Rel-15/16/17中DMRS的开销,保持前置DMRS同样只占用1个OFDM符号,同时增加了单OFDM符号的情况下所支持的DMRS端口数量。
在一些实施例中,DMRS端口组占用的符号数为1,即DMRS端口组占用的一个OFDM符号,即单OFDM符号。这种情况下,当DMRS端口组中存在CDM组,每个CDM组包括第一预设个数的DMRS端口时,DMRS端口组包括的每个CDM组按照第一预设长度的频域CDM方式占用第一预设个数的RE,第一预设个数的值与第一预设长度的值相同,第一预设个数的值大于等于2。
以第一预设个数的值为2举例说明,每个CDM组包括2个DMRS端口,按照长度为2的频域CDM方式,DMRS端口组占用的符号上,DMRS端口组包括的每个CDM组占用2个RE,如图4中的b所示。图4中的b所示,一个矩形框表示一个RE,一列矩形框表示一个符号。图4中的b所示,数字0-5的矩形框分别表示一个CDM组所占用的RE。图4中的b所示,每个CDM组包括的DMRS端口的编号可以根据实际需求进行设置。
举例来说,每个CDM组包括的DMRS端口的编号可以顺序设置。数字0的矩形框对应的CDM组中,DMRS端口的编号为0和1,数字1的矩形框对应的CDM组中,DMRS端口的编号为2和3,数字3的矩形框对应的DMRS端口的编号为4和5,以此类推。
每个数字的矩形框对应的CDM组中,DMRS端口的编号也可以间隔指定值设置,例如,指定值为 2,数字0的矩形框对应的CDM组中,DMRS端口的编号为0和2,数字1的矩形框对应的CDM组中,DMRS端口的编号为4和6,数字3的矩形框对应的DMRS端口的编号为8和10,以此类推。
本申请实施例中,每个CDM组占用的第一预设个数的RE可以相邻,如图4中的b所示。每个CDM组占用的第一预设个数的RE也可以不相邻,如图4中的c所示的第一预设个数为2时DMRS端口组占用OFDM符号的示意图。图4中的c所示,一个矩形框表示一个RE,一列矩形框表示一个符号。图4中的c所示,数字0-5的矩形框分别表示一个CDM组所占用的RE,具有相同数字的多个矩形框对应一个CDM组。图4中的c所示,每个CDM组包括的DMRS端口的编号可以根据实际需求进行设置,具体可参见图4中的b部分的相关描述。
基于图4中b和c可知,在单OFDM符号的情况下,本申请实施例最多支持12个DMRS端口,这不会增加Rel-15/16/17中DMRS的开销,保持前置DMRS同样只占用1个OFDM符号,同时增加了单OFDM符号的情况下所支持的DMRS端口数量。
在一些实施例中,DMRS端口组占用的符号数为预设值,该预设值大于或等于2,即DMRS端口组占用的多个OFDM符号,即多OFDM符号。这种情况下,当DMRS端口组中不存在CDM组时,DMRS端口组包括的每个DMRS端口可以按照频分复用方式以及时分复用方式占用1个RE。
以预设值为2举例说明。此时,DMRS端口组占用2个OFDM符号,即双OFDM符号,2个OFDM符号包括24个RE,按照频分复用方式以及时分复用方式,DMRS端口组包括的每个DMRS端口分别占用1个RE,这种情况下,可以支持13、14、…、24个DMRS端口,如图5中a-l所示的DMRS端口组占用OFDM符号的示意图。图5中a-l所示,一个矩形框表示一个RE,一列矩形框表示一个符号。图5中a-l所示,数字0-23的矩形框分别表示一个DMRS端口所占用的RE,没有数字的矩形框为未被占用的RE。图5中a-l所示,每个数字的矩形框对应的DMRS端口的编号可以根据实际需求进行设置。举例来说,每个数字的矩形框对应的DMRS端口的编号可以顺序设置,也可以间隔指定值设置。
基于图5中的a-l可知,在双OFDM符号的情况下,本申请实施例最多支持24个DMRS端口,这不会增加Rel-15/16/17中DMRS的开销,保持前置DMRS同样只占用2个OFDM符号,同时增加了双OFDM符号的情况下所支持的DMRS端口数量。
在一些实施例中,DMRS端口组占用的符号数为预设值,该预设值大于或等于2,即DMRS端口组占用的多个OFDM符号,即多OFDM符号。这种情况下,当DMRS端口组中即存在不属于CDM组的DMRS端口,也存在CDM组时,每个CDM组包括预设值个的DMRS端口,DMRS端口组包括的除CDM组外的每个DMRS端口按照频分复用方式以及时分复用方式占用1个RE;DMRS端口组包括的每个CDM组按照频分复用方式、以及长度为预设值的时域CDM方式占用预设值的资源元素,每个CDM组包括预设值个的DMRS端口。
以预设值为2举例说明。此时,DMRS端口组占用2个OFDM符号,即双OFDM符号,2个OFDM符号包括24个RE,每个CDM组包括2个的DMRS端口。按照频分复用方式以及时分复用方式,除CDM组外的每个DMRS端口,也就是独立的每个DMRS端口占用1个RE,如图6中a所示,DMRS端口1、2、…、11等;按照频分复用方式、以及长度为2的时域CDM方式,每个CDM组占用2个RE,如图6中b所示,CDM组0和CDM组1等。这种情况下,可以支持13、14、…、24个DMRS端口,如图6中a-l所示的DMRS端口组占用OFDM符号的示意图。图6中a-l所示,一个矩形框表示一个RE,一列矩形框表示一个符号。图6中a-l所示,数字0-11的矩形框分别表示一个DMRS端口或 CDM组所占用的RE,没有数字的矩形框为未被占用的RE,具有相同数字的多个矩形框对应一个CDM组。图6中a-l所示,每个数字的矩形框对应的DMRS端口的编号可以根据实际需求进行设置,每个数字的矩形框对应的CDM组中DMRS端口的编号可以根据实际需求进行设置。举例来说,每个数字的矩形框对应的DMRS端口的编号可以顺序设置,也可以间隔指定值设置。每个数字的矩形框对应的CDM组中DMRS端口的编号可以顺序设置,也可以间隔指定值设置。
基于图6中a-l可知,在双OFDM符号的情况下,本申请实施例最多支持24个DMRS端口,这不会增加Rel-15/16/17中DMRS的开销,保持前置DMRS同样只占用2个OFDM符号,同时增加了双OFDM符号的情况下所支持的DMRS端口数量。
在一些实施例中,DMRS端口组占用的符号数为预设值,该预设值大于或等于2,即DMRS端口组占用的多个OFDM符号,即多OFDM符号。这种情况下,当DMRS端口组中不存在不属于CDM组的DMRS端口,仅存在CDM组时,每个CDM组包括第二预设个数的DMRS端口,DMRS端口组包括的每个DMRS端口包括的每个CDM组按照第二预设长度的频域CDM方式、以及长度为预设值的时域CDM方式占用第二预设个数的RE,第二预设个数的值大于或等于第二预设长度的值,且小于或等于预设值的倍数的第二预设长度的值。
以预设值为2,第二预设长度为2举例说明。第二预设个数大于或等于2,且小于或等于4。此时,DMRS端口组占用2个OFDM符号,即双OFDM符号,2个OFDM符号包括24个RE,每个CDM组包括2个的DMRS端口。按照长度为2的频域CDM方式、以及长度为2的时域CDM方式,每个CDM组占用2-4个RE。这种情况下,可以支持13、14、…、24个DMRS端口,如图7中a-l所示的DMRS端口组占用OFDM符号的示意图。图7中a-l所示,一个矩形框表示一个RE,一列矩形框表示一个符号。图7中a-l所示,数字0-5的矩形框分别表示一个CDM组所占用的RE,没有数字的矩形框为未被占用的RE,具有相同数字的多个矩形框对应一个CDM组。图7中a-l所示,每个数字的矩形框对应的CDM组中DMRS端口的编号可以根据实际需求进行设置。举例来说,每个数字的矩形框对应的CDM组中DMRS端口的编号可以顺序设置,也可以间隔指定值设置。
基于图7中a-l所示,在双OFDM符号的情况下,本申请实施例最多支持24个DMRS端口,这不会增加Rel-15/16/17中DMRS的开销,保持前置DMRS同样只占用2个OFDM符号,同时增加了双OFDM符号的情况下所支持的DMRS端口数量。
本申请实施例中,每个CDM组在每个符号上占用的多个RE可以相邻,如图7中a-l所示。每个CDM组在每个符号上占用的多个RE也可以不相邻,如图8中a-l所示的DMRS端口组占用OFDM符号的示意图。图8中a-l所示,一个矩形框表示一个RE,一列矩形框表示一个符号。图8中a-l所示,数字0-5的矩形框分别表示一个CDM组所占用的RE,具有相同数字的多个矩形框对应一个CDM组。图8中a-l所示,每个CDM组包括的DMRS端口的编号可以根据实际需求进行设置,具体可参见图7中a-l部分的相关描述。
在一些实施例中,在DMRS端口组占用的所有符号中的目标符号上,被占用的资源元素相对于目标符号的起始位置偏移预设偏移量,目标符号为存在未被DMRS端口组包括的DMRS端口占用的资源元素的符号,预设偏移量表示在频域上偏移的RE的个数,预设偏移量的大小可以根据实际需求进行设定,对此不进行限定。
仍以预设值为2,预设偏移量为5举例说明。图5中的a所示的支持13个DMRS端口情况所对应 的频域偏移的示意图如图9中a所示,基于图9中a可知,DMRS端口组占用的第2个符号上存在未被占用的RE,第2个符号为目标符号,第2个符号上被DMRS端口12占用的RE相对于第2个符号的起始位置偏移了5个RE。图6中a所示的支持13个DMRS端口情况所对应的频域偏移的示意图如图9中b所示,基于图9中b可知,DMRS端口组占用的第2个符号上存在未被占用的RE,第2个符号为目标符号,第2个符号上被CDM组5占用的RE相对于第2个符号的起始位置偏移了5个RE。图7中a所示的支持13个DMRS端口情况所对应的频域偏移的示意图如图9中c所示,基于图9中c可知,DMRS端口组占用的第2个符号上存在未被占用的RE,第2个符号为目标符号,第2个符号上被CDM组2占用的RE相对于第2个符号的起始位置偏移了5个RE。对于支持14、15、…、24个DMRS端口情况所对应的频域偏移,与支持13个DMRS端口情况所对应的频域偏移相似,此次不在赘述。
在双OFDM符号的情况下,与相关技术中最多支持12个DMRS端口相比,本申请实施例提供的技术方案中,为了支持更多DMRS端口,每个DMRS端口占用的RE减少,例如,对于支持24个DMRS端口的情况,每个PRB(Physical Resource Block,物理资源块)的每个DMRS端口减少到仅占用1个RE。因此,具有多DMRS端口的MU-MIMO场景中,本申请实施例提供的技术方案在频率选择性较低的环境中能够得到支持,例如户外小型音乐会、网球场或户外咖啡馆等小型开放空间户外环境。
在一些实施例中,DMRS端口组占用的符号数为预设值,该预设值大于或等于2,即DMRS端口组占用的多个OFDM符号,即多OFDM符号。这种情况下,DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个RE。这里的DMRS端口可以是一个CDM组内的端口,也可以不是CDM组内的端口。也就是,本申请实施例中,DMRS端口组在频域上采用频分复用方式占用RE,在时域上,可以采用时分复用的方式占用RE,如图5所示;在时域上,也可以采用指定长度的时域CDM占用RE,如图6所示。
在一些实施例中,DMRS端口组占用的符号数为预设值,该预设值大于或等于2,即DMRS端口组占用的多个OFDM符号,即多OFDM符号。这种情况下,DMRS端口组包括的每个DMRS端口按照时分复用方式占用1个RE。这里的DMRS端口可以是一个CDM组内的端口,也可以不是CDM组内的端口。也就是,本申请实施例中,DMRS端口组在时域上采用时分复用方式占用RE,在频域上,可以采用频分复用的方式占用RE,如图5所示;在频域上,也可以采用指定长度的频域CDM占用RE,如图10所示。图10中,数字0-8的矩形框分别表示一个CDM组所占用的RE,没有数字的矩形框为未被占用的RE,具有相同数字的多个矩形框对应一个CDM组。
在一些实施例中,DMRS端口组中占用的一部分符号位于前置符号位置,DMRS端口组占用的另一部分符号位于增量符号位置。本申请实施例中,位于前置符号位置的DMRS端口可以称为前置DMRS端口,位于增量置符号位置的DMRS端口可以称为增量DMRS端口,前置DMRS端口和增量DMRS端口二者合在一起,可以支持更多的正交DMRS端口,DMRS端口组中的DMRS端口可以属于一个或多个CDM组合,也可以不属于CDM组合,对此不进行限定。
仍以预设值为2举例说明。假设前3个符号为前置符号,DMRS端口组占用两个OFDM符号中,第一个OFDM符号为一个时隙的第三个符号,也就是,第一个OFDM符号位于前置符号位置,第二个OFDM符号为一个时隙的第八个符号,也就是,第二个OFDM符号位于前置符号之后的增量符号位置,如图11所示。此时,第一个OFDM符号利用前置符号实现,第二个OFDM符号上DMRS端口利用增量符号实现。增量符号的数量以及增量符号在一个时隙里的位置是灵活可变的。图11中,数字0-11的 矩形框分别表示一个CDM组所占用的RE,没有数字的矩形框为未被占用的RE,具有相同数字的多个矩形框对应一个CDM组。
本申请实施例提供的技术方案中,在不增加现有DMRS开销的情况下进行的增加DMRS端口数的设计,即仅使用1~2个OFDM符号进行的增加DMRS端口数的设计。通过增量DMRS,拓展了本申请实施例提供的技术方案的适用范围。
在一个实施例中,DMRS端口组中,所有DMRS端口占用的所有符号位于前置符号位置。本申请实施例中,DMRS端口组中的DMRS端口可以属于一个或多个CDM组合,也可以不属于CDM组合,对此不进行限定。
仍以预设值为2举例说明。假设前4个符号为前置符号,DMRS端口组占用两个OFDM符号,这两个OFDM符号分别为一个时隙的第三个符号和第四个符号,也就是,这两个OFDM符号位于前置符号位置,如图12所示。图12中,数字0-11的矩形框分别表示一个CDM组所占用的RE,没有数字的矩形框为未被占用的RE,具有相同数字的多个矩形框对应一个CDM组。
在一个实施例中,DMRS端口组中,所有DMRS端口占用的所有符号位于增量符号位置。本申请实施例中,DMRS端口组中的DMRS端口可以属于一个或多个CDM组合,也可以不属于CDM组合,对此不进行限定。
仍以预设值为2举例说明。假设前4个符号为前置符号,DMRS端口组占用两个OFDM符号,这两个OFDM符号分别为一个时隙的第七个符号和第八个符号,也就是,这两个OFDM符号位于前置符号之后的增量符号位置,如图13所示。图13中,数字0-11的矩形框分别表示一个CDM组所占用的RE,没有数字的矩形框为未被占用的RE,具有相同数字的多个矩形框对应一个CDM组。
本申请实施例中,前置符号的个数可以根据实际需求进行设定。
在一些实施例中,DMRS端口组占用符号被配置给一个或多个时隙;当DMRS端口组占用符号被配置给多个时隙时,这多个时隙可以为连续的,这多个时隙也可以为不连续的。各个时隙中DMRS端口组占用的符号数量和在时隙里的位置是灵活可变的,各个时隙中DMRS端口组可以位于前置符号位置,也可以位于增量符号位置。
仍以预设值为2举例说明。一个时隙中DMRS端口组占用一个OFDM符号。其中,这一个OFDM符号被配置给2个时隙,这2个时隙可以为连续的时隙,如图14所示,这2个时隙也可以为不连续的时隙,如图15所示。图14和图15中,数字0-11的矩形框分别表示一个DMRS端口所占用的RE,没有数字的矩形框为未被占用的RE。
基于时隙对应的DMRS端口组占用符号的配置,上述步骤S31可以为:基于配置给当前时隙的DMRS端口组所占用的符号,确定当前时隙中DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口。这里,配置给当前时隙的DMRS端口组所占用的符号还可以配置为其他时隙,也就是,DMRS端口组所占用的符号可以被配置给多个时隙。
本申请实施例提供的技术方案中,在不增加现有DMRS开销的情况下进行的增加DMRS端口数的设计,即仅使用1~2个OFDM符号进行的增加DMRS端口数的设计。通过多个时隙,拓展了本申请实施例提供的技术方案的适用范围,例如,适用于对解调时延不敏感并且有大量参考信号需要传输的情景。
在一些实施例中,当第一通信方为基站,第二通信方为UE时,第一通信方还可以向第二通信方发送预设数量比特的DCI,该DCI指示DMRS端口组中参考信号对应的DMRS端口;预设数量比特对应 的最大值大于或等于DMRS端口组包括的最大DMRS端口数。
当第二通信方为基站,第一通信方为UE时,第一通信方还可以接收第二通信方发送的预设数量比特的DCI,该DCI指示DMRS端口组中参考信号对应的DMRS端口;预设数量比特对应的最大值大于或等于DMRS端口组包括的最大DMRS端口数。
举例来说,预设值为2,一个OFDM符号包括12个RE,则DMRS端口组包括的最大DMRS端口数为2*12=24,4比特对应的最大值为2的4次幂=16,5比特对应的最大值为2的5次幂=32,16<124<32,因此,第一通信方可以向第二通信方发送采用5比特或更大比特的DCI,或者,第一通信方可以接收第二通信方发送的5比特或更大比特的DCI。这样,基站才可以准确的将UE接收或发送参考信号所使用的DMRS端口准确的配置给UE。
例如,基站基于预先设置的Rank(等级)配置,为UE分配的端口指示信息域取值,并将端口指示信息域取值携带在DCI中,发送给UE。后续,基站基于DCI中的端口指示信息域取值所对应的DMRS端口集合,向UE发送参考信号,以及接收UE发送的参考信号。UE基于DCI中的端口指示信息域取值所对应的DMRS端口集合,向基站发送参考信号,以及接收基站发送的参考信号。
以最大符号数(max Length)为2,分别Rank=1、Rank=12、Rank24为例进行说明。Rank=1的配置可参见表1所示,Rank=12的配置可参见表2所示,Rank=24的配置可参见表3所示。
表1
端口指示信息域取值 没有数据的DMRS CDM组数 DMRS端口集合 前置符号数
0 6 0 1
1 6 1 1
2 6 2 1
3 6 3 1
4 6 4 1
5 6 5 1
6 6 6 1
7 6 7 1
8 6 8 1
9 6 9 1
10 6 10 1
11 6 11 1
12 6 12 2
13 6 13 2
14 6 14 2
15 6 15 2
16 6 16 2
17 6 17 2
18 6 18 2
19 6 19 2
20 6 20 2
21 6 21 2
22 6 22 2
23 6 23 2
24 保留 保留 保留
25 保留 保留 保留
26 保留 保留 保留
27 保留 保留 保留
28-31 保留 保留 保留
基于表1,端口指示信息域取值可以表示Value,DMRS端口可以表示为DMRS CDM group(s),没有数据传输的DMRS CDM组数可以表示为Number of DMRS CDM group(s)without data,前置符号数可以表示为Number of front-load symbols。基于表1,基站可以从端口指示信息域取值0-23中随机选择一个端口指示信息域取值,将该端口指示信息域取值携带在DCI中,发送给UE。后续,基站基于DCI中的端口指示信息域取值所对应的1个DMRS端口,向UE发送参考信号,以及接收UE发送的参考信号。UE基于DCI中的端口指示信息域取值所对应的1个DMRS端口,向基站发送参考信号,以及接收基站发送的参考信号。
表2
端口指示信息域取值 没有数据的DMRS CDM组数 DMRS端口集合 前置符号数
0 6 0-11 1
1 6 0-5;12-17 2
2 保留 保留 保留
3 保留 保留 保留
4 保留 保留 保留
5-31 保留 保留 保留
基于表2,基站可以从端口指示信息域取值0-1中随机选择一个端口指示信息域取值,将该端口指示信息域取值携带在DCI中,发送给UE。后续,基站基于DCI中的端口指示信息域取值所对应的12个DMRS端口,向UE发送参考信号,以及接收UE发送的参考信号。UE基于DCI中的端口指示信息域取值所对应的12个DMRS端口,向基站发送参考信号,以及接收基站发送的参考信号。
表3
端口指示信息域取值 没有数据的DMRS CDM组数 DMRS端口集合 前置符号数
0 6 0-23 2
1 保留 保留 保留
2 保留 保留 保留
3 保留 保留 保留
4 保留 保留 保留
5-31 保留 保留 保留
基于表3,基站可以选择端口指示信息域取值0,将该端口指示信息域取值0携带在DCI中,发送 给UE。后续,基站基于DCI中的端口指示信息域取值所对应的24个DMRS端口,向UE发送参考信号,以及接收UE发送的参考信号。UE基于DCI中的端口指示信息域取值所对应的24个DMRS端口,向基站发送参考信号,以及接收基站发送的参考信号。
本申请实施例中,每个端口指示信息域取值对应的DMRS端口可以根据实际需求进行设定,例如表2中端口指示信息域取值1可以对应DMRS端口集合0-5、12-17,也可以对应DMRS端口集合12-23等,对此不进行限定。
为了支持更多的正交DMRS端口数,可能需要对相应的信令流程进行相应的修改,例如对相应的PBCH(Physical Broadcast Channel,物理广播信道)、RRC(Radio Resource Control,无线资源控制)、MAC CE(Media Access Control Customer Edge,媒体访问控制的用户边缘设备)或DCI中与DMRS指示有关的设计进行修改或更新,来支持本申请实施例提供的技术方案。具体可能涉及到的信令更新/修改包括MIB(Master Information Block,主信息块)、SIB(System Information Block,系统信息块)1、MSG(Message,信令)2、MSG4、RRC设置(Setup)、全模式命令(security Mode Command)、RRC重配置(Reconfiguration)中与DMRS端口数、DMRS端口占用符号的位置信息、DMRS占用符号的长度、映射类型(mapping type)、是否配置增量DMRS等相关参数。
本申请实施例提供的技术方案,可以在不增加现有DMRS开销的情况下,将目前标准中最大所支持的DMRS端口数从12个增加到了24个,满足下行链路和上行链路DMRS复用容量不断增加,需要增加DMRS的正交端口数量的需求。例如全息通信、实时UHD(Ultra High Definition,超高清)视频、安全监控、机器视觉和扩展现实(XR-Extended Reality)等新型应用场景,这些场景中,下行链路和上行链路DMRS复用容量的需求不断增加,需要增加DMRS的正交端口数量。
与上述信号发送方法对应,本申请实施例还提供了一种信号接收方法,应用于第二通信方,如图16所示,该方法包括:
步骤S161,确定DMRS端口组中第一通信方需要发送的参考信号对应的DMRS端口,DMRS端口组中每个DMRS端口平均占用一个RE。
步骤S162,接收使用DMRS端口发送的参考信号。
其中,第一通信方为基站,第二通信方为UE,或者,第一通信方为UE,第二通信方为基站。
本申请实施例提供的技术方案中,在接收参考信号时,第一通信方使用DMRS端口组中相应的DMRS端口,向第二通信方发送的参考信号,该DMRS端口组中每个DMRS端口平均占用一个RE,这样,CP-OFDM波形可以支持最大DMRS端口数量达到DMRS端口组占用的OFDM符号所包括的RE数量。
在一些实施例中,DMRS端口组占用的符号数为1;
DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
DMRS端口组包括的每个CDM组按照第一预设长度的频域CDM方式占用第一预设个数的资源元素,每个CDM组包括第一预设个数的DMRS端口,第一预设个数的值与第一预设长度的值相同,第一预设个数的值大于等于2。
在一些实施例中,每个CDM组占用的第一预设个数的资源元素相邻;或者
每个CDM组占用的第一预设个数的资源元素不相邻。
在一些实施例中,DMRS端口组占用的符号数为预设值;预设值大于或等于2;
DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
DMRS端口组包括的每个DMRS端口按照时分复用方式占用1个资源元素;或者
DMRS端口组包括的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;或者
DMRS端口组包括的除CDM组外的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;DMRS端口组包括的每个CDM组按照频分复用方式、以及长度为预设值的时域CDM方式占用预设值的资源元素,每个CDM组包括预设值个的DMRS端口;或者
DMRS端口组包括的每个CDM组按照第二预设长度的频域CDM方式、以及长度为预设值的时域CDM方式占用第二预设个数的资源元素,每个CDM组包括第二预设个数的DMRS端口,第二预设个数大于或等于第二预设长度,且小于或等于预设值的倍数的第二预设长度。
在一些实施例中,在DMRS端口组占用所有符号中的目标符号上,被占用的资源元素相对于目标符号的起始位置偏移预设偏移量,目标符号为存在未被DMRS端口组包括的DMRS端口占用的资源元素的符号。
在一些实施例中,每个CDM组在每个符号上占用的多个资源元素相邻;或者
每个CDM组在每个符号上占用的多个资源元素不相邻。
在一些实施例中,DMRS端口组占用的一部分符号位于前置符号位置,DMRS端口组占用的另一部分符号位于增量符号位置;或者
DMRS端口组占用的所有符号位于前置符号位置;或者
DMRS端口组占用的所有符号位于增量符号位置。
在一些实施例中,DMRS端口组占用的符号被配置给一个或多个时隙;多个时隙的数量小于或等于预设值;
当DMRS端口组占用的符号被配置给多个时隙时,多个时隙为连续的或不连续的。
当DMRS端口组占用的符号被配置给多个时隙时,如图17所示,上述信号接收方法还可以包括步骤S173。步骤S171-步骤S172与上述步骤S161-步骤S162相同。
步骤S173,利用多个时隙中部分或全部时隙上DMRS端口组携带的参考信号进行信道估计。
本申请实施例中,当DMRS端口组占用的符号被配置给多个时隙时,设备可以利用部分或全部时隙上DMRS端口组携带的参考信号进行信道估计,提高了信道估计的灵活性。
在一些实施例中,上述步骤S173具体可以为:
当多个时隙中一个时隙上不包括DMRS端口组时,利用该时隙之前的时隙中DMRS端口组携带的参考信号进行信道估计;或者,利用该时隙之后的时隙中DMRS端口组携带的参考信号进行信道估计;或者,利用该时隙之前的时隙和该时隙之后的时隙中DMRS端口组携带的参考信号进行信道估计。
仍以图15中所示多个时隙为例,图15中,第2个时隙上不包括DMRS端口组,此时,可以利用第1个时隙中DMRS端口组携带的参考信号完成对第2个时隙的信道估计,也可以利用第3个时隙中DMRS端口组携带的参考信号完成对第2个时隙的信道估计,还可以利用第1个时隙和第3个时隙这两个时隙中DMRS端口组携带的参考信号完成对第2个时隙的信道估计。
在一些实施例中,上述步骤S173具体可以为:
当多个时隙中一个时隙上包括DMRS端口组时,利用该时隙中DMRS端口组携带的参考信号进行 信道估计;或者,利用该时隙和该时隙之前的时隙中DMRS端口组携带的参考信号进行信道估计;或者,利用该时隙和该时隙之前的时隙中DMRS端口组携带的参考信号进行信道估计;或者,利用该时隙、该时隙之前的时隙和该时隙之后的时隙中DMRS端口组携带的参考信号进行信道估计。
仍以图15中所示多个时隙为例,图15中,第1个时隙上包括DMRS端口组,此时,可以利用第1个时隙自身DMRS端口组携带的参考信号完成对第1个时隙的信道估计,也可以利用第1个时隙和之后第3个时隙中DMRS端口组携带的参考信号完成对第1个时隙的信道估计。
若在第1个时隙之前,还存在一个时隙实施了相应的DMRS端口组占用符号,如第0个时隙,则可以利用第1个时隙和之前第0个时隙中DMRS端口组携带的参考信号完成对第1个时隙的信道估计。本申请实施例中,还可以可以利用之前的第0时隙、第1个时隙和之后第3个时隙中DMRS端口组携带的参考信号完成对第1个时隙的信道估计。
本申请实施例中,仅以之前和之后分别具有1个时隙举例说明,并不对之前和之后分别具有的时隙个数进行限定,相应,也不对辅助进行信道估计的之前和之后的时隙个数进行限定,例如,可以利用之前的两个时隙中DMRS端口组携带的参考信号进行信道估计。
在一些实施例中,上述信号接收方法还可以包括:
当第一通信方为基站,第二通信方为UE时,第二通信方接收第一通信方发送预设数量比特的DCI,DCI指示DMRS端口组中参考信号对应的DMRS端口;预设数量比特对应的最大值大于或等于DMRS端口组包括的最大DMRS端口数;
当第二通信方为基站,第一通信方为UE时,第二通信方向第一通信方发送预设数量比特的DCI,DCI指示DMRS端口组中参考信号对应的DMRS端口;预设数量比特对应的最大值大于或等于DMRS端口组包括的最大DMRS端口数。
与上述信号发送方法对应,本申请实施例还提供了一种信号发送装置,应用于第一通信方,如图18所示,该装置包括:
确定单元181,用于确定DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口,DMRS端口组中每个DMRS端口平均占用一个资源元素;
发送单元182,用于使用DMRS端口,发送参考信号;
其中,第一通信方为基站,第二通信方为UE,或者,第一通信方为UE,第二通信方为基站。
本申请实施例提供的技术方案中,在发送参考信号时,第一通信方使用DMRS端口组中相应的DMRS端口,向第二通信方发送的参考信号,该DMRS端口组中每个DMRS端口平均占用一个RE,这样,CP-OFDM波形可以支持最大DMRS端口数量达到DMRS端口组占用的OFDM符号所包括的RE数量。
在一些实施例中,DMRS端口组占用的符号数为1;
DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
DMRS端口组包括的每个CDM组按照第一预设长度的频域CDM方式占用第一预设个数的资源元素,每个CDM组包括第一预设个数的DMRS端口,第一预设个数的值与第一预设长度的值相同,第一预设个数的值大于等于2。
在一些实施例中,每个CDM组占用的第一预设个数的资源元素相邻;或者
每个CDM组占用的第一预设个数的资源元素不相邻。
在一些实施例中,DMRS端口组占用的符号数为预设值;预设值大于或等于2;
DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
DMRS端口组包括的每个DMRS端口按照时分复用方式占用1个资源元素;或者
DMRS端口组包括的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;或者
DMRS端口组包括的除CDM组外的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;DMRS端口组包括的每个CDM组按照频分复用方式、以及长度为预设值的时域CDM方式占用预设值的资源元素,每个CDM组包括预设值个的DMRS端口;或者
DMRS端口组包括的每个CDM组按照第二预设长度的频域CDM方式、以及长度为预设值的时域CDM方式占用第二预设个数的资源元素,每个CDM组包括第二预设个数的DMRS端口,第二预设个数大于或等于第二预设长度,且小于或等于预设值的倍数的第二预设长度。
在一些实施例中,在DMRS端口组占用所有符号中的的目标符号上,被占用的资源元素相对于目标符号的起始位置偏移预设偏移量,目标符号为存在未被DMRS端口组包括的DMRS端口占用的资源元素的符号。
在一些实施例中,每个CDM组在每个符号上占用的多个资源元素相邻;或者
每个CDM组在每个符号上占用的多个资源元素不相邻。
在一些实施例中,DMRS端口组占用的一部分符号位于前置符号位置,DMRS端口组占用的另一部分符号位于增量符号位置;或者
DMRS端口组占用的所有符号位于前置符号位置;或者
DMRS端口组占用的所有符号位于增量符号位置。
在一些实施例中,DMRS端口组占用的符号被配置给一个或多个时隙;
当DMRS端口组占用的符号被配置给多个时隙时,多个时隙为连续的或不连续的;
所述确定单元,具体用于基于配置给当前时隙的DMRS端口组所占用的符号,确定当前时隙中DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口。
在一些实施例中,上述信号发送装置还可以包括处理单元,用于:
当第一通信方为基站,第二通信方为UE时,向第二通信方发送预设数量比特的DCI,DCI指示DMRS端口组中参考信号对应的DMRS端口;预设数量比特对应的最大值大于或等于DMRS端口组包括的最大DMRS端口数;
当第二通信方为基站,第一通信方为UE时,接收第二通信方发送的预设数量比特的DCI,DCI指示DMRS端口组中参考信号对应的DMRS端口;预设数量比特对应的最大值大于或等于DMRS端口组包括的最大DMRS端口数。
与上述信号接收方法对应,本申请实施例还提供了一种信号接收装置,应用于第二通信方,如图19所示,该装置包括:
确定单元191,用于确定DMRS端口组中第一通信方需要发送的参考信号对应的DMRS端口,DMRS端口组中每个DMRS端口平均占用一个资源元素;
接收单元192,用于接收使用DMRS端口发送的参考信号;
其中,第一通信方为基站,第二通信方为用户设备UE,或者,第一通信方为UE,第二通信方为 基站。
本申请实施例提供的技术方案中,在接收参考信号时,第一通信方使用DMRS端口组中相应的DMRS端口,向第二通信方发送的参考信号,该DMRS端口组中每个DMRS端口平均占用一个RE,这样,CP-OFDM波形可以支持最大DMRS端口数量达到DMRS端口组占用的OFDM符号所包括的RE数量。
在一些实施例中,DMRS端口组占用的符号数为1;
DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
DMRS端口组包括的每个CDM组按照第一预设长度的频域CDM方式占用第一预设个数的资源元素,每个CDM组包括第一预设个数的DMRS端口,第一预设个数的值与第一预设长度的值相同,第一预设个数的值大于等于2。
在一些实施例中,每个CDM组占用的第一预设个数的资源元素相邻;或者
每个CDM组占用的第一预设个数的资源元素不相邻。
在一些实施例中,DMRS端口组占用的符号数为预设值;预设值大于或等于2;
DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
DMRS端口组包括的每个DMRS端口按照时分复用方式占用1个资源元素;或者
DMRS端口组包括的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;或者
DMRS端口组包括的除CDM组外的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;DMRS端口组包括的每个CDM组按照频分复用、以及长度为预设值的时域CDM方式占用预设值的资源元素,每个CDM组包括预设值个的DMRS端口;或者
DMRS端口组包括的每个CDM组按照第二预设长度的频域CDM方式、以及长度为预设值的时域CDM方式占用第二预设个数的资源元素,每个CDM组包括第二预设个数的DMRS端口,第二预设个数大于或等于第二预设长度,且小于或等于预设值的倍数的第二预设长度。
在一些实施例中,在DMRS端口组占用所有符号中的目标符号上,被占用的资源元素相对于目标符号的起始位置偏移预设偏移量,目标符号为存在未被DMRS端口组包括的DMRS端口占用的资源元素的符号。
在一些实施例中,每个CDM组在每个符号上占用的多个资源元素相邻;或者
每个CDM组在每个符号上占用的多个资源元素不相邻。
在一些实施例中,DMRS端口组占用的一部分符号位于前置符号位置,DMRS端口组占用的另一部分符号位于增量符号位置;或者
DMRS端口组占用的所有符号位于前置符号位置;或者
DMRS端口组占用的所有符号位于增量符号位置。
在一些实施例中,DMRS端口组占用的符号被配置给一个或多个时隙;
当DMRS端口组占用的符号被配置给多个时隙时,多个时隙为连续的或不连续的;
这种情况下,如图20所示,上述信号接收装置还可以包括:
估计单元193,用于当DMRS端口组占用的符号被配置给多个时隙时,利用多个时隙中部分或全部时隙上DMRS端口组携带的参考信号进行信道估计。
在一些实施例中,估计单元193,具体可以用于:
当DMRS端口组占用的符号被配置给多个时隙时,若多个时隙中一个时隙上不包括DMRS端口组,则利用该时隙之前的时隙中DMRS端口组携带的参考信号进行信道估计;或者,利用该时隙之后的时隙中DMRS端口组携带的参考信号进行信道估计;或者,利用该时隙之前的时隙和该时隙之后的时隙中DMRS端口组携带的参考信号进行信道估计;
若多个时隙中一个时隙上包括DMRS端口组,则利用该时隙中DMRS端口组携带的参考信号进行信道估计;或者,利用该时隙和该时隙之前的时隙中DMRS端口组携带的参考信号进行信道估计;或者,利用该时隙和该时隙之前的时隙中DMRS端口组携带的参考信号进行信道估计;或者,利用该时隙、该时隙之前的时隙和该时隙之后的时隙中DMRS端口组携带的参考信号进行信道估计。
在一些实施例中,上述信号接收装置还可以包括处理单元,用于:
当第一通信方为基站,第二通信方为UE时,接收第一通信方发送预设数量比特的DCI,DCI指示DMRS端口组中参考信号对应的DMRS端口;预设数量比特对应的最大值大于或等于DMRS端口组包括的最大DMRS端口数;
当第二通信方为基站,第一通信方为UE时,向第一通信方发送预设数量比特的DCI,DCI指示DMRS端口组中参考信号对应的DMRS端口;预设数量比特对应的最大值大于或等于DMRS端口组包括的最大DMRS端口数。
本申请实施例还提供了一种电子设备,如图21所示,包括处理器211和机器可读存储介质212,所述机器可读存储介质212存储有能够被所述处理器211执行的机器可执行指令,所述处理器211被所述机器可执行指令促使:实现上述图3-17任一实施例所述的方法步骤。
本申请实施例中,电子设备可以为基站,也可以为UE,如上述第一通信方和第二通信方。
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口用于上述电子设备与其他设备之间的通信。
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
在本申请提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述图3-16任一实施例所述的方法步骤。
在本申请提供的又一实施例中,还提供了一种计算机程序,计算机程序被处理器执行时实现上述图3-17任一实施例所述的方法步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实 现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置、电子设备、存储介质和计算机程序实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的较佳实施例,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。

Claims (41)

  1. 一种信号发送方法,其特征在于,应用于第一通信方,所述方法包括:
    确定解调参考信号DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口,所述DMRS端口组中每个DMRS端口平均占用一个资源元素;
    使用所述DMRS端口,发送所述参考信号;
    其中,所述第一通信方为基站,所述第二通信方为用户设备UE,或者,所述第一通信方为UE,所述第二通信方为基站。
  2. 根据权利要求1所述的方法,其特征在于,所述DMRS端口组占用的符号数为1;
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个码分复用CDM组按照第一预设长度的频域CDM方式占用第一预设个数的资源元素,每个CDM组包括所述第一预设个数的DMRS端口,所述第一预设个数的值与所述第一预设长度的值相同,所述第一预设个数的值大于等于2。
  3. 根据权利要求2所述的方法,其特征在于,每个CDM组占用的所述第一预设个数的资源元素相邻;或者
    每个CDM组占用的所述第一预设个数的资源元素不相邻。
  4. 根据权利要求1所述的方法,其特征在于,所述DMRS端口组占用的符号数为预设值;所述预设值大于或等于2;
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个DMRS端口按照时分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的除码分复用CDM组外的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;所述DMRS端口组包括的每个CDM组按照频分复用方式、以及长度为所述预设值的时域CDM方式占用所述预设值的资源元素,每个CDM组包括所述预设值个的DMRS端口;或者
    所述DMRS端口组包括的每个CDM组按照第二预设长度的频域CDM方式、以及长度为所述预设值的时域CDM方式占用第二预设个数的资源元素,每个CDM组包括所述第二预设个数的DMRS端口,所述第二预设个数的值大于或等于所述第二预设长度的值,且小于或等于所述预设值的倍数的所述第二预设长度的值;或者
    所述DMRS端口组包括的每个CDM组按照第三预设长度的频域CDM方式、以及时分复用方式占用第三预设个数的资源元素,每个CDM组包括所述第三预设个数的DMRS端口,所述第三预设个数的值大于或等于所述第三预设长度的值。
  5. 根据权利要求4所述的方法,其特征在于,在所述DMRS端口组占用的所有符号中的目标符号上,被占用的资源元素相对于所述目标符号的起始位置偏移预设偏移量,所述目标符号为存在未被所述DMRS端口组包括的DMRS端口占用的资源元素的符号。
  6. 根据权利要求4所述的方法,其特征在于,每个CDM组在每个符号上占用的多个资源元素相邻;或者
    每个CDM组在每个符号上占用的多个资源元素不相邻。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述DMRS端口组占用的一部分符号位于前置符号位置,所述DMRS端口组占用的另一部分符号位于增量符号位置;或者
    所述DMRS端口组占用的所有符号位于前置符号位置;或者
    所述DMRS端口组占用的所有符号位于增量符号位置。
  8. 根据权利要求2-6任一项所述的方法,其特征在于,所述DMRS端口组占用的符号被配置给一个或多个时隙;
    当所述DMRS端口组占用的符号被配置给多个时隙时,所述多个时隙为连续的或不连续的;
    所述确定解调参考信号DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口的步骤,包括:
    基于配置给当前时隙的DMRS端口组所占用的符号,确定当前时隙中DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口。
  9. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一通信方为基站,所述第二通信方为UE时,向所述第二通信方发送预设数量比特的下行控制信息DCI,所述DCI指示DMRS端口组中所述参考信号对应的DMRS端口;所述预设数量比特对应的最大值大于或等于所述DMRS端口组包括的最大DMRS端口数;
    当所述第二通信方为基站,所述第一通信方为UE时,接收所述第二通信方发送的预设数量比特的下行控制信息DCI,所述DCI指示DMRS端口组中所述参考信号对应的DMRS端口;所述预设数量比特对应的最大值大于或等于所述DMRS端口组包括的最大DMRS端口数。
  10. 一种信号接收方法,其特征在于,应用于第二通信方,所述方法包括:
    确定解调参考信号DMRS端口组中第一通信方需要发送的参考信号对应的DMRS端口,所述DMRS端口组中每个DMRS端口平均占用一个资源元素;
    接收使用所述DMRS端口发送的所述参考信号;
    其中,所述第一通信方为基站,所述第二通信方为用户设备UE,或者,所述第一通信方为UE,所述第二通信方为基站。
  11. 根据权利要求10所述的方法,其特征在于,所述DMRS端口组占用的符号数为1;
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个码分复用CDM组按照第一预设长度的频域CDM方式占用第一预设个数的资源元素,每个CDM组包括所述第一预设个数的DMRS端口,所述第一预设个数的值与所述第一预设长度的值相同,所述第一预设个数的值大于等于2。
  12. 根据权利要求11所述的方法,其特征在于,每个CDM组占用的所述第一预设个数的资源元素相邻;或者
    每个CDM组占用的所述第一预设个数的资源元素不相邻。
  13. 根据权利要求10所述的方法,其特征在于,所述DMRS端口组占用的符号数为预设值;所述预设值大于或等于2;
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个DMRS端口按照时分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的除码分复用CDM组外的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;所述DMRS端口组包括的每个CDM组按照频分复用方式、以及长度为所述预设值的时域CDM方式占用所述预设值的资源元素,每个CDM组包括所述预设值个的DMRS端口;或者
    所述DMRS端口组包括的每个CDM组按照第二预设长度的频域CDM方式、以及长度为所述预设值的时域CDM方式占用第二预设个数的资源元素,每个CDM组包括所述第二预设个数的DMRS端口,所述第二预设个数的值大于或等于所述第二预设长度的值,且小于或等于所述预设值的倍数的所述第二预设长度的值;或者
    所述DMRS端口组包括的每个CDM组按照第三预设长度的频域CDM方式、以及时分复用方式占用第三预设个数的资源元素,每个CDM组包括所述第三预设个数的DMRS端口,所述第三预设个数的值大于或等于所述第三预设长度的值。
  14. 根据权利要求13所述的方法,其特征在于,在所述DMRS端口组占用所有符号中的目标符号上,被占用的资源元素相对于所述目标符号的起始位置偏移预设偏移量,所述目标符号为存在未被所述DMRS端口组包括的DMRS端口占用的资源元素的符号。
  15. 根据权利要求13所述的方法,其特征在于,每个CDM组在每个符号上占用的多个资源元素相邻;或者
    每个CDM组在每个符号上占用的多个资源元素不相邻。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,所述DMRS端口组占用的一部分符号位于前置符号位置,所述DMRS端口组占用的另一部分符号位于增量符号位置;或者
    所述DMRS端口组占用的所有符号位于前置符号位置;或者
    所述DMRS端口组占用的所有符号位于增量符号位置。
  17. 根据权利要求11-15任一项所述的方法,其特征在于,所述DMRS端口组占用的符号被配置给一个或多个时隙;
    当所述DMRS端口组占用的符号被配置给多个时隙时,所述多个时隙为连续的或不连续的;
    所述方法还包括:
    当所述DMRS端口组占用的符号被配置给多个时隙时,利用所述多个时隙中部分或全部时隙上所述DMRS端口组携带的所述参考信号进行信道估计。
  18. 根据权利要求17所述的方法,其特征在于,所述利用所述多个时隙中部分或全部时隙上所述DMRS端口组携带的所述参考信号进行信道估计的步骤,包括:
    当所述多个时隙中一个时隙上不包括所述DMRS端口组时,利用该时隙之前的时隙中所述DMRS端口组携带的所述参考信号进行信道估计;或者,利用该时隙之后的时隙中所述DMRS端口组携带的所述参考信号进行信道估计;或者,利用该时隙之前的时隙和该时隙之后的时隙中所述DMRS端口组携带的所述参考信号进行信道估计;
    当所述多个时隙中一个时隙上包括所述DMRS端口组时,利用该时隙中所述DMRS端口组携带的所述参考信号进行信道估计;或者,利用该时隙和该时隙之前的时隙中所述DMRS端口组携带的所述 参考信号进行信道估计;或者,利用该时隙和该时隙之前的时隙中所述DMRS端口组携带的所述参考信号进行信道估计;或者,利用该时隙、该时隙之前的时隙和该时隙之后的时隙中所述DMRS端口组携带的所述参考信号进行信道估计。
  19. 根据权利要求10-15任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一通信方为基站,所述第二通信方为UE时,接收所述第一通信方发送预设数量比特的下行控制信息DCI,所述DCI指示DMRS端口组中所述参考信号对应的DMRS端口;所述预设数量比特对应的最大值大于或等于所述DMRS端口组包括的最大DMRS端口数;
    当所述第二通信方为基站,所述第一通信方为UE时,向所述第一通信方发送预设数量比特的下行控制信息DCI,所述DCI指示DMRS端口组中所述参考信号对应的DMRS端口;所述预设数量比特对应的最大值大于或等于所述DMRS端口组包括的最大DMRS端口数。
  20. 一种信号发送装置,其特征在于,应用于第一通信方,所述装置包括:
    确定单元,用于确定解调参考信号DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口,所述DMRS端口组中每个DMRS端口平均占用一个资源元素;
    发送单元,用于使用所述DMRS端口,发送所述参考信号;
    其中,所述第一通信方为基站,所述第二通信方为用户设备UE,或者,所述第一通信方为UE,所述第二通信方为基站。
  21. 根据权利要求20所述的装置,其特征在于,所述DMRS端口组占用的符号数为1;
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个码分复用CDM组按照第一预设长度的频域CDM方式占用第一预设个数的资源元素,每个CDM组包括所述第一预设个数的DMRS端口,所述第一预设个数的值与所述第一预设长度的值相同,所述第一预设个数的值大于等于2。
  22. 根据权利要求21所述的装置,其特征在于,每个CDM组占用的所述第一预设个数的资源元素相邻;或者
    每个CDM组占用的所述第一预设个数的资源元素不相邻。
  23. 根据权利要求20所述的装置,其特征在于,所述DMRS端口组占用的符号数为预设值;所述预设值大于或等于2;
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个DMRS端口按照时分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的除码分复用CDM组外的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;所述DMRS端口组包括的每个CDM组按照频分复用、以及长度为所述预设值的时域CDM方式占用所述预设值的资源元素,每个CDM组包括所述预设值个的DMRS端口;或者
    所述DMRS端口组包括的每个CDM组按照第二预设长度的频域CDM方式、以及长度为所述预设值的时域CDM方式占用第二预设个数的资源元素,每个CDM组包括所述第二预设个数的DMRS端口,所述第二预设个数的值大于或等于所述第二预设长度的值,且小于或等于所述预设值的倍数的所述第二 预设长度的值;或者
    所述DMRS端口组包括的每个CDM组按照第三预设长度的频域CDM方式、以及时分复用方式占用第三预设个数的资源元素,每个CDM组包括所述第三预设个数的DMRS端口,所述第三预设个数的值大于或等于所述第三预设长度的值。
  24. 根据权利要求23所述的装置,其特征在于,在所述DMRS端口组占用所有符号中的的目标符号上,被占用的资源元素相对于所述目标符号的起始位置偏移预设偏移量,所述目标符号为存在未被所述DMRS端口组包括的DMRS端口占用的资源元素的符号。
  25. 根据权利要求23所述的装置,其特征在于,每个CDM组在每个符号上占用的多个资源元素相邻;或者
    每个CDM组在每个符号上占用的多个资源元素不相邻。
  26. 根据权利要求21-25任一项所述的装置,其特征在于,所述DMRS端口组占用的一部分符号位于前置符号位置,所述DMRS端口组占用的另一部分符号位于增量符号位置;或者
    所述DMRS端口组占用的所有符号位于前置符号位置;或者
    所述DMRS端口组占用的所有符号位于增量符号位置。
  27. 根据权利要求21-25任一项所述的装置,其特征在于,所述DMRS端口组占用的符号被配置给一个或多个时隙;
    当所述DMRS端口组占用的符号被配置给多个时隙时,所述多个时隙为连续的或不连续的;
    所述确定单元,具体用于基于配置给当前时隙的DMRS端口组所占用的符号,确定当前时隙中DMRS端口组中需要向第二通信方发送的参考信号对应的DMRS端口。
  28. 根据权利要求20-25任一项所述的装置,其特征在于,所述装置还包括处理单元,用于:
    当所述第一通信方为基站,所述第二通信方为UE时,向所述第二通信方发送预设数量比特的下行控制信息DCI,所述DCI指示DMRS端口组中所述参考信号对应的DMRS端口;所述预设数量比特对应的最大值大于或等于所述DMRS端口组包括的最大DMRS端口数;
    当所述第二通信方为基站,所述第一通信方为UE时,接收所述第二通信方发送的预设数量比特的下行控制信息DCI,所述DCI指示DMRS端口组中所述参考信号对应的DMRS端口;所述预设数量比特对应的最大值大于或等于所述DMRS端口组包括的最大DMRS端口数。
  29. 一种信号接收装置,其特征在于,应用于第二通信方,所述装置包括:
    确定单元,用于确定解调参考信号DMRS端口组中第一通信方需要发送的参考信号对应的DMRS端口,所述DMRS端口组中每个DMRS端口平均占用一个资源元素;
    接收单元,用于接收使用所述DMRS端口发送的所述参考信号;
    其中,所述第一通信方为基站,所述第二通信方为用户设备UE,或者,所述第一通信方为UE,所述第二通信方为基站。
  30. 根据权利要求29所述的装置,其特征在于,所述DMRS端口组占用的符号数为1;
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个码分复用CDM组按照第一预设长度的频域CDM方式占用第一预设个数的资源元素,每个CDM组包括所述第一预设个数的DMRS端口,所述第一预设个数的值与所述第一预设长度的值相同,所述第一预设个数的值大于等于2。
  31. 根据权利要求30所述的装置,其特征在于,每个CDM组占用的所述第一预设个数的资源元素相邻;或者
    每个CDM组占用的所述第一预设个数的资源元素不相邻。
  32. 根据权利要求29所述的装置,其特征在于,所述DMRS端口组占用的符号数为预设值;所述预设值大于或等于2;
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个DMRS端口按照时分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;或者
    所述DMRS端口组包括的除码分复用CDM组外的每个DMRS端口按照频分复用方式以及时分复用方式占用1个资源元素;所述DMRS端口组包括的每个CDM组按照频分复用方式、以及长度为所述预设值的时域CDM方式占用所述预设值的资源元素,每个CDM组包括所述预设值个的DMRS端口;或者
    所述DMRS端口组包括的每个CDM组按照第二预设长度的频域CDM方式、以及长度为所述预设值的时域CDM方式占用第二预设个数的资源元素,每个CDM组包括所述第二预设个数的DMRS端口,所述第二预设个数的值大于或等于所述第二预设长度的值,且小于或等于所述预设值的倍数的所述第二预设长度的值;或者
    所述DMRS端口组包括的每个CDM组按照第三预设长度的频域CDM方式、以及时分复用方式占用第三预设个数的资源元素,每个CDM组包括所述第三预设个数的DMRS端口,所述第三预设个数的值大于或等于所述第三预设长度的值。
  33. 根据权利要求32所述的装置,其特征在于,在所述DMRS端口组占用所有符号中的目标符号上,被占用的资源元素相对于所述目标符号的起始位置偏移预设偏移量,所述目标符号为存在未被所述DMRS端口组包括的DMRS端口占用的资源元素的符号。
  34. 根据权利要求32所述的装置,其特征在于,每个CDM组在每个符号上占用的多个资源元素相邻;或者
    每个CDM组在每个符号上占用的多个资源元素不相邻。
  35. 根据权利要求30-34任一项所述的装置,其特征在于,所述DMRS端口组占用的一部分符号位于前置符号位置,所述DMRS端口组占用的另一部分符号位于增量符号位置;或者
    所述DMRS端口组占用的所有符号位于前置符号位置;或者
    所述DMRS端口组占用的所有符号位于增量符号位置。
  36. 根据权利要求30-34任一项所述的装置,其特征在于,所述DMRS端口组占用的符号被配置给一个或多个时隙;
    当所述DMRS端口组占用的符号被配置给多个时隙时,所述多个时隙为连续的或不连续的;
    所述装置还包括:
    估计单元,用于当所述DMRS端口组占用的符号被配置给多个时隙时,利用所述多个时隙中部分或全部时隙上所述DMRS端口组携带的所述参考信号进行信道估计。
  37. 根据权利要求36所述的装置,其特征在于,所述估计单元,具体用于:
    当所述DMRS端口组占用的符号被配置给多个时隙时,若所述多个时隙中一个时隙上不包括所述DMRS端口组,则利用该时隙之前的时隙中所述DMRS端口组携带的所述参考信号进行信道估计;或者,利用该时隙之后的时隙中所述DMRS端口组携带的所述参考信号进行信道估计;或者,利用该时隙之前的时隙和该时隙之后的时隙中所述DMRS端口组携带的所述参考信号进行信道估计;
    若所述多个时隙中一个时隙上包括所述DMRS端口组,则利用该时隙中所述DMRS端口组携带的所述参考信号进行信道估计;或者,利用该时隙和该时隙之前的时隙中所述DMRS端口组携带的所述参考信号进行信道估计;或者,利用该时隙和该时隙之前的时隙中所述DMRS端口组携带的所述参考信号进行信道估计;或者,利用该时隙、该时隙之前的时隙和该时隙之后的时隙中所述DMRS端口组携带的所述参考信号进行信道估计。
  38. 根据权利要求29-34任一项所述的装置,其特征在于,所述装置还包括处理单元,用于:
    当所述第一通信方为基站,所述第二通信方为UE时,接收所述第一通信方发送预设数量比特的下行控制信息DCI,所述DCI指示DMRS端口组中所述参考信号对应的DMRS端口;所述预设数量比特对应的最大值大于或等于所述DMRS端口组包括的最大DMRS端口数;
    当所述第二通信方为基站,所述第一通信方为UE时,向所述第一通信方发送预设数量比特的下行控制信息DCI,所述DCI指示DMRS端口组中所述参考信号对应的DMRS端口;所述预设数量比特对应的最大值大于或等于所述DMRS端口组包括的最大DMRS端口数。
  39. 一种电子设备,其特征在于,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器被所述机器可执行指令促使:实现权利要求1-9任一所述的方法步骤,或实现权利要求10-19任一所述的方法步骤。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-9任一所述的方法步骤,或实现权利要求10-19任一所述的方法步骤。
  41. 一种计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-9任一所述的方法步骤,或实现权利要求10-19任一所述的方法步骤。
PCT/CN2022/111653 2022-08-11 2022-08-11 一种信号发送、信号接收方法、装置、设备及存储介质 WO2024031504A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280002699.8A CN117882344A (zh) 2022-08-11 2022-08-11 一种信号发送、信号接收方法、装置、设备及存储介质
EP22954474.7A EP4425857A1 (en) 2022-08-11 2022-08-11 Signal sending method and apparatus, signal receiving method and apparatus, device, and storage medium
PCT/CN2022/111653 WO2024031504A1 (zh) 2022-08-11 2022-08-11 一种信号发送、信号接收方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111653 WO2024031504A1 (zh) 2022-08-11 2022-08-11 一种信号发送、信号接收方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024031504A1 true WO2024031504A1 (zh) 2024-02-15

Family

ID=89850304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111653 WO2024031504A1 (zh) 2022-08-11 2022-08-11 一种信号发送、信号接收方法、装置、设备及存储介质

Country Status (3)

Country Link
EP (1) EP4425857A1 (zh)
CN (1) CN117882344A (zh)
WO (1) WO2024031504A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535616A (zh) * 2019-09-06 2019-12-03 北京展讯高科通信技术有限公司 解调参考信号dmrs的传输方法、装置及存储介质
CN111327409A (zh) * 2018-12-14 2020-06-23 电信科学技术研究院有限公司 一种数据传输方法及装置
CN112134664A (zh) * 2019-06-25 2020-12-25 华为技术有限公司 资源确定方法及装置
CN114079555A (zh) * 2020-08-14 2022-02-22 华为技术有限公司 信号传输方法和装置
US20220231814A1 (en) * 2021-01-15 2022-07-21 Qualcomm Incorporated Dmrs design for dft-s-ofdm with increased subcarrier spacing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327409A (zh) * 2018-12-14 2020-06-23 电信科学技术研究院有限公司 一种数据传输方法及装置
CN112134664A (zh) * 2019-06-25 2020-12-25 华为技术有限公司 资源确定方法及装置
CN110535616A (zh) * 2019-09-06 2019-12-03 北京展讯高科通信技术有限公司 解调参考信号dmrs的传输方法、装置及存储介质
CN114079555A (zh) * 2020-08-14 2022-02-22 华为技术有限公司 信号传输方法和装置
US20220231814A1 (en) * 2021-01-15 2022-07-21 Qualcomm Incorporated Dmrs design for dft-s-ofdm with increased subcarrier spacing

Also Published As

Publication number Publication date
CN117882344A (zh) 2024-04-12
EP4425857A1 (en) 2024-09-04

Similar Documents

Publication Publication Date Title
US10645688B2 (en) Time-frequency resource allocation method and apparatus
US20200374097A1 (en) Pilot signal generation method and apparatus
US10979194B2 (en) Resource indication method, user equipment, and network device
EP3576334B1 (en) Method for transmitting dmrs, and communication device
US11457443B2 (en) Method for transmitting configuration information and terminal device
WO2020124353A1 (zh) 侧行通信的方法和终端设备
US11129199B2 (en) Data transmission method, network device, and user equipment
JP2022544799A (ja) 制御情報を示す方法及び装置
WO2022022579A1 (zh) 一种通信方法及装置
WO2020024218A1 (en) Standalone sss for rrm and channel estimation enhancement
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
CN112425228A (zh) 用于资源指示的方法和装置
WO2023011110A1 (zh) 一种通信方法及装置
WO2020030253A1 (en) Reducing dci payload
JP7448567B2 (ja) サウンディング信号リソースをアクティブ化または非アクティブ化するための方法、および装置
WO2018202103A1 (zh) 一种参考信号图样的传输方法及其装置
JP2022544318A (ja) アップリンク伝送時間領域リソース決定方法および装置
CN114650599A (zh) 信息传输方法、装置、iab节点及网络设备
EP3857775B1 (en) Burst detection in wireless communications
WO2024031504A1 (zh) 一种信号发送、信号接收方法、装置、设备及存储介质
WO2021031874A1 (zh) 信号传输方法和通信装置
CN116033558A (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
EP3468243A1 (en) Csi-rs transmission method and network device
JP6752967B2 (ja) ワイヤレス通信方法およびデバイス
CN110830402B (zh) 一种同步广播信息的发送、检测方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002699.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022954474

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2024536037

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022954474

Country of ref document: EP

Effective date: 20240530